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Samenvatting

De term elektromagnetische inverse verstrooiing verwiggtr de technieken en pro-
cessen die men gebruikt om informatie te winnen over bepadifecten uit de manier
waarop ze elektromagnetische straling verstrooien. Elaldgnetische inverse ver-
strooiing is dus een voorbeeld van elektromagnetischalbeshing. Wanneer hier-
voor microgolfstraling wordt gebruikt, spreekt men van ragolfbeeldvorming, dat
toepassingen heeft als medische beeldvorming, nietud#istt testen, geofysische
exploratie, enzovoort. In een elektromagnetisch verstrgeexperiment wordt het
studieobject belicht met een aantal gekende invallenddretaagnetische golven,
waarbij de positie van de bron en vaak ook de frequentie gl wordt. Voor
elk van deze belichtingen worden de verstrooide elektroratigche velden gemeten
in een aantal waarnemingspunten. Als de invallende veldesteemeetpunten goed
gekozen zijn, bevat deze vertrooiingsdata voldoende rimftie om de vorm, de lo-
catie en elektromagnetische materiaalparameters vanuuitgbject te bepalen.

Een elektromagnetische beeldvormingstechniek die dgeeteipenschappen uit
de data haalt op een kwantitatieve manier, dus onder de vanrhwn numerieke waar-
den, wordt een kwantitatieve elektromagnetische beetdvaystechniek genoemd.
Over het algemeen is het een iteratieve methode die helimégire elektromagneti-
sche inverse verstrooiingsprobleem oplost door het tedteran als een optimalisa-
tievraagstuk, waarbij een numeriek verstrooiingsmodét g@rdt aan de data door
de objectparameters te varen. In de praktijk zal men een onderzoeksdomein be-
dekken met een rooster van voxels (een voxel is een 3D piretakmen de mate-
riaalparameters — in deze thesis de complexe permittivitiei elke voxel als optima-
lisatieveranderlijke beschouwen. Hoewel er andere methbestaan die enkel een
lineair probleem oplossen in plaats van een niet-lineaiintgisatievraagstuk, zijn
zulke methodes vaak gebaseerd op vereenvoudigingen vaens&boiingsmodel en
in elk geval geven ze alleen kwalitatieve informatie overstlglieobjecten, meestal
enkel over de vorm, de afmetingen en de positie. In dezeshesiden 3D kwanti-
tatieve microgolfbeeldvormingsalgoritmes ontwikkeldtrde nadruk op effiéntie en
reconstructiekwaliteit.

Een belangrijk onderdeel van de meeste kwantitatieve startie-algoritmes is
een voorwaartse simulator, die de verstrooiing van de gikevallende golven aan
een gegeven 3D complexe-permittiviteitsprofiel in het endeksdomein berekent.
Door de herhaalde oplossingen van het voorwaartse veiisgeprobleem en het
grote aantal onbekenden daarin, is het oplossen van hetasfedgnetische inverse
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verstrooiingsprobleem een rekenintensieve taak en is ed @an efficénte voor-
waartse simulatoren. In deze thesis werd een snelle sionuthe gebruik maakt van
een volumeintegraalvergelijking, meplementeerd om het voorwaartse verstrooiings-
probleem op te lossen. Het oplossen van het resulterensrinstelsel gebeurt ite-
ratief, omdat het stelsel teveel onbekenden heeft om hetlingette inversiemethodes
op te lossen. Om de iteratieve oplossing effitite maken, worden twee stratégie
gecombineerd. Enerzijds worden de matrix-vector-vergnandigingen in elke stap
van de iteratieve oplossing versneld door een combinatiedeaFast Fourier Trans-
form (FFT) en het Multilevel Fast Multipole Algoritme (MLFR() te gebruiken. Het
wordt aangetoond dat deze hybride MLFMA-FFT methode hestgeschikt is voor
verstrooiing aan geometéa die groot zijn, maar veel lege ruimte bevatten. Ander-
zZijds wordt het aantal benodigde iteraties gereduceerd mhiddel van een extrapo-
latietechniek die gepaste beginschattingen bepaaltewelids dicht bij de oplossing
liggen. Deze techniek combineert een stapschema in de dsiiigomet een lineaire
extrapolatie over de permittiviteit onder de vorm van eemnBoenadering. Zoals
blijkt uit dit proefschrift, vertoont deze voorwaartse silator inderdaad een verbe-
terde efficéntie.

De snelle voorwaartse simulator werdmgorporeerd in een optimalisatietechniek
die het verschil tussen gemeten data en gesimuleerde daitaaliseert door het per-
mittiviteitsprofiel aan te passen. In dit proefschrift woegn Gauss-Newton methode
met lijnoptimalisatie gebruikt om een kleinste kwadratatafbut-kostfunctie te mini-
maliseren waaraan een regularisatiemechanisme werd/tmegge Dit laatste is nodig
door het slecht gesteld zijn van het inverse verstrooiirgdpem, wat zich uit in het
feit dat sommige aanzienlijke veranderingen in het peivitéftsprofiel, meestal met
hoge spatiale frequentie, enkel kleine afwijkingen in destreoiingsdata veroorzaken
die niet kunnen geresolveerd worden als er meetruis op @ezdatHierdoor kunnen
zulke sterk oscillerende perturbaties de reconstructieiegpermittiviteit verstoren en
dit moet worden tegengegeaan met regularisatie. Een regatlamethode verwerkt
bepaalde a priori informatie over het studieobject in dénoglisatie, bijvoorbeeld de
afwezigheid van rimpels met hoge spatiale frequentie. Ztet verlies aan infor-
matie in de data gecompenseerd en de vervorming van de tegtiesvermeden.

Twee verschillende regularisatiemethodes werden ongldkin dit onderzoek.
De eerste regularisatietechniek straft sterke fluctuatide permittiviteit af door een
gladheidsvoorwaarde op te leggen. Dit is een veel gebratgak voor inverse
verstrooiing. Echter, in dit proefschrift wordt deze voaarde opgelegd op een mul-
tiplicatieve manier in plaats van op de gewoonlijke addéienanier. Dat wil zeggen
dat het gewicht van de regularisatie in de totale kostfenatheemt als de data fit
verbetert. Hierdoor past de regularisatie zichzelf aan legrruisniveau en wordt
de keuze van een regularisatieparameter minder kritisehtwi2ede regularisatieme-
thode is Value Picking (VP) regularisatie, een nieuwe mag¢hantwikkeld in dit on-
derzoek. Deze techniek is ontworpen om stuksgewijs hormegemittiviteitsprofie-
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len te reconstrueren. Zulke profielen zijn moeilijk te restomeren omdat scherpe
overgangen tussen gebieden met verschillende perrattivitoeten bewaard blijven,
terwijl andere sterke fluctuaties moeten onderdrukt wardieiplaats van hiervoor te
werken op de ruimtelijke verdeling van de permittiviteibats bestaande methodes
voor het behoud van randen in de reconstructie, legt VP agigatie de beperking
op dat slechts een klein aantal verschillende permititgiteaarden in de reconstructie
mogen voorkomen. Dit vermijdt een aantal problemen met ded&ean een glad-
heidsdrempel die voorkomen in andere methodes. De peritgitiswaarden waarvan
sprake moeten echter niet op voorhand gekend zijn en humlasotdt eveneens
geoptimaliseerd in een stepwise relaxed VP (SRVP) regaltieischema.

Beide regularisatietechnieken werdeitrg®rporeerd in het raamwerk van de Gauss-
Newton minimalisatie en resulteren in sterk verbeterdelikeivan de reconstruc-
ties. De efficéntie van het minimalisatiealgoritme kan ook worden vesizktin elke
stap van de iteratieve optimalisatie moet er een lineairs&Newton stelsel worden
opgelost om de aanpassing van het permittiviteitsprofibetekenen. Dit is typisch
een groot stelsel en daarom wordt het iteratief opgelostzeBxelsels zijn echter
slecht geconditioneerd ten gevolge van het slecht gesigld/an het inverse ver-
strooiingsprobleem. Gelukkig laten de vermelde regudéigsnethodes het gebruik
toe van een LSQR methode met conditionering met behulp velnuietes, waarmee
de Gauss-Newton stelsels effinot kunnen worden opgelost. Dit wordt in deze thesis
aangetoond. Tenslotte werden grenzen op de permittsxitaérden in het algoritme
opgenomen door het wijzigen van het pad in de lijnoptim#ksavat ervoor zorgt
dat de voorwaarste problemen goed geconditioneerd blgudret aantal voorwaarste
iteraties beperkt.

Een andere bijdrage van dit onderzoek is het voorstel vamienve methode,
genaamd Consistentie Inversie (Cl), die gebaseerd is oplfdezprincipes als een
andere goed gekende reconstructiemethode, de ConstraseSoversion (CSI) me-
thode. Deze laatste techniek beschouwt de contraststrogtprivalente stroombron-
nen die een veld veroorzaken dat identiek is aan het veiderweld - als fundamentele
onbekenden naast de permittiviteit. In de ClI methode wod#epermittiviteitsonbe-
kenden echter ggimineerd uit de optimalisatie en worden ze slechts bebaaten
laatste stap. Dit vermijdt afwisselende updates van péwitgit en contraststromen
en kan daardoor resulteren in een snellere convergentieCleethode werd ook
uitgerust met VP regularisatie, wat resulteert in de VPCihoée.

De kwantitatieve elektromagnetische beeldvormingsndgbhamntwikkeld in dit
werk werden gevalideerd op zowel synthetische data als perementele data, voor
zowel homogene als inhomogene objecten en in al deze gevallie kwaliteit van de
reconstructies hoog. De succesvolle, volledig blinde mstractie van een onbekend
object uitgaande van gemeten data, ons geleverd door higtiRsesnel in Marseille,
Frankrijk, demonstreert i@en klap de geldigheid van de voorwaartse simulator, de
performantie van het reconstructiealgoritme en de kwhairsn de metingen. De re-
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constructie van een numeriek borstfantoom, gebaseerd dpbk#tden, is bemoedi-
gend voor de verdere ontwikkeling van biomedische micribgeldvorming en in het
bijzonder borstkankerdetectie met microgolven.



Summary

The term electromagnetic inverse scattering refers toebkriques and processes
used to obtain information about certain objects from thg imawhich they scatter
electromagnetic radiation. Electromagnetic inverseteday thus is an example of
electromagnetic imaging. Microwave imaging is the specéae of electromagnetic
imaging that employs microwave radiation and has apptioatin medical imaging,
non-destructive testing, geophysical exploration, et@ar electromagnetic scattering
experiment, the target under study is illuminated with a hanof known incoming
electromagnetic waves with varying position of the soumteana and often also
with varying frequency. For each such illumination, thetssrad electromagnetic
fields are measured in a number of observation points. Wheim¢fdent waves and
measurement positions are properly chosen, these songtgaia contain sufficient
information to retrieve the shape, location and electrameéig material parameters of
the target.

An electromagnetic imaging method that extracts thesecopj@perties from the
data in a quantitative way, i.e. it obtains their numericalues, is termed a quan-
titative electromagnetic imaging method. It generally isigrative method which
solves the non-linear electromagnetic inverse scattgniagglem by recasting it as an
optimization problem, where a numerical scattering moslétted to the data by tun-
ing the object properties. In practice, the electromagristierse scattering problem
is most often solved by discretizing an investigation donwith a 3D voxel grid (a
voxel is a 3D pixel) and by considering the electromagnetitamal parameters — the
complex permittivity in this thesis — in each voxel as optiation variables. Although
other imaging methods exist which solve only a linear systestead of a non-linear
optimization problem, such methods often rely on approxiona of the scattering
model and in any case they only give qualitative informationthe targets, mostly
only of its shape, size and location. In this thesis, 3D dtetive microwave imaging
algorithms are developed with emphasis on efficiency of kperghms and quality of
the reconstruction.

An important part of most quantitative reconstruction aitpons is a forward sim-
ulator, which calculates the scattering of the known inetdgaves from a certain
3D profile of the complex permittivity in the investigatiommain. Because of the
repeated forward scattering problem solutions during ttérazation and the large
number of unknowns in this problem, solving the electronegigrinverse scattering
problem is a computationally challenging task and thereniseal for efficient forward
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simulators. In this thesis a fast simulation tool has begoiéemented which makes
use of a volume integral equation (VIE) to solve the forwardttering problem. The
solution of the resulting linear system is done iteratiysigice it is a system with too
many unknowns to solve it directly through matrix inversicro do this efficiently,
two strategies are combined. First, the matrix-vector iplidations needed in every
step of the iterative solution are accelerated using a coatioin of the Fast Fourier
Transform (FFT) method and the Multilevel Fast Multipolegdtithm (MLFMA). It
is shown that this hybrid MLFMA-FFT method is most suitedlimge, sparse scatter-
ing problems. Secondly, the number of iterations is redigealsing an extrapolation
technique to determine suitable initial guesses, whiclaleady close to the solution.
This techniqgue combines a marching-on-in-source-pasiitheme with a linear ex-
trapolation over the permittivity under the form of a Borrpapximation. It is shown
that this forward simulator indeed exhibits a better efficie

The fast forward simulator is incorporated in an optimiaatiechnique which
minimizes the discrepancy between measured data and sadudata by adjusting
the permittivity profile. A Gauss-Newton optimization methwith line search is
employed in this dissertation to minimize a least squarés fitacost function with
additional regularization. The latter is needed becausbeoiil-posedness of the in-
verse scattering problem, which is reflected in the factdbatin significant changes
in the permittivity profile, mostly with high spatial frequey, yield only small devia-
tions in the scattering data which cannot be resolved whenl#ha is corrupted with
measurement noise. As a result, such strongly oscillatnbations can distort the
permittivity reconstruction and this has to be remedieddgutarization. A regular-
ization method incorporates some a priori information anttirget — for instance the
absence of ripples with high spatial frequency in the peivitif profile — in the opti-
mization process to compensate for the loss of informati@hta avoid distortion of
the reconstruction.

Two different regularization methods were developed is tiesearch. The first
regularization method penalizes strong fluctuations inpienittivity by imposing a
smoothing constraint, which is a widely used approach ieris® scattering. How-
ever, in this thesis, this constraint is incorporated in dtiplicative way instead of
in the usual additive way, i.e. its weight in the cost funitie reduced with an im-
proving data fit. As a result, the regularization adaptdfissgomatically to the noise
level, which renders the determination of a regularizagiarameter less critical. The
second regularization method is Value Picking regulaioratwhich is a new method
proposed in this dissertation. This regularization is glesil to reconstruct piece-
wise homogeneous permittivity profiles. Such profiles anmgl lh@ reconstruct since
sharp interfaces between different permittivity regiomseénto be preserved, while
other strong fluctuations need to be suppressed. Insteaplesfting on the spatial
distribution of the permittivity, as certain existing metts for edge preservation do,
itimposes the restriction that only a few different periwity values should appear in



XV

the reconstruction. This avoids some problems with theraetation of a smoothing
threshold that occur in other methods. The permittivityuesl just mentioned do not
have to be known in advance, however, and their number isugidated in a stepwise
relaxed VP (SRVP) regularization scheme.

Both regularization techniques have been incorporatedén3auss-Newton op-
timization framework and yield significantly improved restruction quality. The
efficiency of the minimization algorithm can also be improveén every step of the
iterative optimization, a linear Gauss-Newton updateesyshas to be solved. This
typically is a large system and therefore is solved iteedyivHowever, these systems
are ill-conditioned as a result of the ill-posedness of thelise scattering problem.
Fortunately, the aforementioned regularization techesgailow for the use of a sub-
space preconditioned LSQR method to solve these systerieefly, as is shown
in this thesis. Finally, the incorporation of constraintstbe permittivity through a
modified line search path, helps to keep the forward probleth posed and thus the
number of forward iterations low.

Another contribution of this thesis is the proposal of a nemnsistency Inversion
(Cl) algorithm. Itis based on the same principles as anatiediiknown reconstruction
algorithm, the Contrast Source Inversion (CSI) method ciitionsiders the contrast
currents — equivalent currents that generate a field idarticthe scattered field — as
fundamental unknowns together with the permittivity. Ie tbl method, however, the
permittivity variables are eliminated from the optimizatiand are only reconstructed
in a final step. This avoids alternating updates of pernitigtiand contrast currents,
which may result in a faster convergence. The Cl method lsasbeen supplemented
with VP regularization, yielding the VPCI method.

The quantitative electromagnetic imaging methods dewsldp this work have
been validated on both synthetic and measured data, forHmsttogeneous and in-
homogeneous objects and yield a high reconstruction gualiall these cases. The
successful, completely blind reconstruction of an unkntavget from measured data,
provided by the Institut Fresnel in Marseille, France, destates at once the valid-
ity of the forward scattering code, the performance of themnstruction algorithm
and the quality of the measurements. The reconstructionnof@erical MRI based
breast phantom is encouraging for the further developmignioanedical microwave
imaging and of microwave breast cancer screening in péaticu
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ON THE 3D ELECTROMAGNETIC QUANTITATIVE
INVERSE SCATTERING PROBLEM : ALGORITHMS AND
REGULARIZATION






CHAPTER]1

Introduction

1.1 Situation and history

Microwave imaging aims at characterizing an unknown objertugh electromag-
netic scattering experiments. In such an experiment, tigetés illuminated with dif-
ferent microwaves and the scattered electromagnetic fietdseasured for each such
illumination. From these scattering data one tries to deitez certain object proper-
ties, such as shape, location and the distribution of @lewignetic material proper-
ties, such as the complex permittivity, inside the objecisdible applications include
non-destructive testing, biomedical imaging and geopay®xploration. A variety
of microwave imaging methods exist and the most distinatifferences among them
can be found in the algorithms that extract unknown objeaperties from the scat-
tering data. Based on the output of such an algorithm, onealistinguish two major
classes of electromagnetic imaging methods. The methdds first class are termed
qualitative, because they do not provide quantitativerinfition on the electromag-
netic properties of the object under study. Instead they giMe some idea about
the support of the object, i.e. its shape and location andée of multiple objects
also their number. Microwave Diffraction Tomography [1-9JORT (decomposi-
tion of the time reversal operator) [10-12], radar basetrtegies [13-16] includ-
ing Confocal microwave imaging [17-19] and, more recerttig Linear Sampling
method [20, 21] are examples of qualitative methods. Thersgclass of methods is
quantitative. They provide detailed information aboutlad relevant parameters that
determine the interaction of an object with electromagniids, i.e. its shape and
location but also the values of its electromagnetic mdtpasameters. The qualita-
tive methods just mentioned are based on a linear or linedrizodel that relates the
data and the reconstruction parameters (e.g. reflectiniyiced currents, permittiv-
ity,...), while quantitative methods solve the exact nioiedr electromagnetic inverse
scattering problem. Because the latter requires the salafi a system of non-linear
equations, an iterative optimization procedure is geheagplied. Therefore, quan-
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titative imaging is both mathematically and computatibnatore challenging than
qualitative imaging.

During the last two decades quantitative microwave imatgogniques were mainly
developed for two-dimensional (2D), mostly Transverse Mg (TM)- polarized
configurations [22—-37]. In this 2D scalar framework varigesative reconstruction
algorithms for different application-specific configuoats [31, 32] as well as some
experimental issues have been investigated [33, 34, 3#joAgh an early implemen-
tation of the Newton-Kantorovich algorithm was applied tiraple 3D configuration
by Joachimowicz et al. [23] in 1991, three-dimensional (gDantitative microwave
imaging has not really been considered until the beginninth@ new millennium.
Bulyshev et al. [38] developed a 3D microwave tomography@ggh in a scalar ap-
proximation and Abubakar et al. [39] presented full-veietoBD inversion results
using a multiplicative regularized contrast source inggrsnethod, in both cases for
biomedical applications. Other recent work on 3D inverséoeported in [40—47] and
in [48], where 3D quantitative inversion is performed in thme domain. However,
one can say that we only stand at the dawn of 3D quantitatieeomvave imaging and
that a lot of ground has to be covered before such techniquebe successfully used
in practical applications.

1.2 Problem formulation

Itis the goal of this doctoral thesis to investigate and tigy8D complex permittivity
reconstruction algorithms. The two main challenges assediwith quantitative mi-
crowave imaging are the ill-posedness of the electroméagimyerse scattering prob-
lem and its non-linearity. The former jeopardizes the radess of the reconstruction
algorithms and the quality of the results and the latterltesu a high computational
cost because it requires iterative optimization. A goodathm for quantitative mi-
crowave imaging thus reduces the computational burden &b mmipossible and in-
cludes a proper regularization strategy to stabilize tobenstruction.

The type of quantitative microwave imaging algorithms tisatonsidered in this
dissertation attempts to recover the value of the complemitvity in every point
of an investigation domain. In the optimization approachmiocrowave imaging, a
cost function, which depends on the permittivity distribat is defined and then iter-
atively minimized. Most authors employ a least squares fitatast function, which
measures the difference between the measured field data@sdattered field com-
puted for any given permittivity profile. Since the scattefeeld depends on two
types of unknowns, the complex permittivity and the totdtfiaside the object, two
approaches for defining the cost function have been repottethe first, “conven-
tional”, approach, the total field unknown is eliminated lypstitution, such that the
cost function only depends on the complex permittivity. sSTApproach involves the
solution of a full forward scattering problem in each itévatof the optimization, i.e.
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the numerical simulation of the scattering experiment fgiven permittivity profile.
Various Newton-type schemes [22, 23, 26, 29, 32] and a felajloptimization tech-
niques [24, 28] have been applied here. The Newton-basetboetan be made to
converge in a few iterations, but the forward problem sohagiin each iteration can
lead to long computation times. A second approach was pexséy van den Berg
et al. [27] and is called the contrast source inversion mee{i@sl). The method is
a modification of the modified gradient method [25] and hasibewwroved and ex-
tended [30, 39, 49, 50] since its introduction. With thisckiof methods, the solution
of the forward problems is eliminated by introducing a seawfiliary variables — the
contrast currents for the CSI method and the electric fieldlse investigation domain
for the modified gradient method — in a reformulated costfienc The larger number
of unknowns, however, implies that efficient Newton-typéimgzation methods can
no longer be used in this approach, because of memory liomitgtand this results
in a larger number of iterations. It is not clear yet whethed avhen the CSI and
related methods outperform the conventional methods heythave been applied by
many authors during the last decade. In this thesis we iigatstways to improve the
efficiency of both approaches.

lll-posedness is typical for many inverse problems. Of threé criteria in Ha-
damard’s definition of ill-posedness [51], non-uniquereass instability are the two
major burdens. The first problem stems from the combinati@limited information
content in the data with a desire to reconstruct the compdemittivity profile with
a high spatial resolution, which can introduce more regontbn parameters than
there are degrees of freedom in the data. The instabilityei$s the result of a low
sensitivity of the scattered field to some fluctuations in flkemittivity profile with
high spatial frequency. Without precautions, such unwafitectuations can be am-
plified in the reconstruction, without noticeably degragthe data fit. To cope with
these problems, a regularization strategy is indispersdliie purpose of regulariza-
tion is to use some a priori information on the target to dedeproper permittivity
profile from the many that fit the data within the uncertaimtyéduced by noise. This
is achieved by imposing extra constraints on the permitivi his dissertation also
studies new regularization methods.

1.3 Results of the research

The major part of this dissertation is devoted to 3D invarsifgorithms that belong
to the conventional approach. The basis of these methotle Gauss-Newton min-
imization algorithm with line search, which is a variant b&tNewton optimization
algorithms. It exploits the specific form of the least sqearest function and requires
no second order derivatives of the scattered fields witheetgp the permittivity un-
knowns. The Gauss-Newton method has been modified in thik w@dnclude reg-
ularization by adding a regularizing function to the datafditction, which results
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in reconstruction algorithms that provide high recondtarcquality and which con-
verge rapidly. In this dissertation we propose two regaldion strategies. The first
one is a multiplicative smoothing (MS) regularization, wlnipenalizes strong local
variations in the permittivity profile by demanding that tleeonstructed permittivity
be sufficiently smooth. MS regularization operates on tregiapdistribution of the
permittivity in the investigation domain and adapts itgeifomatically to the level of
noise on the data, i.e. there are no regularization parasnetech strongly depend on
this noise level. The MS regularization strategy is inspiog the work of mainly van
den Berg and Abubakar [39, 49, 52,53]. The second regutaizenethod proposed
in this thesis is a new type of regularization, which we haaened Value Picking
regularization or VP regularization. This regularizatismost suited for permittivity
profiles which are piecewise homogeneous or approximatelyslike most regular-
ization methods, it does not operate on the spatial distabwf the permittivity, but
imposes the constraint that the permittivity profile shaeddsist of a limited number
of different permittivity values. These values do not hawédé known in advance,
since they act as auxiliary optimization variables. Theimier is also updated in a
stepwise relaxed VP (SRVP) regularization strategy. Te émd a new regularizing
function is proposed and its properties are discussed. fensjon of the VP regular-
ization scheme to a Region Picking (RP) regularization sehis finally suggested.

To reduce the computational cost, an efficient code has metaped to solve the
forward problem iteratively. It is based on a combinatiothef Fast Fourier Transform
(FFT) method [54-58] and the High Frequency Multilevel Rdsitipole Algorithm
(HF MLFMA) [59-62], two methods that lower the memory use #melcomputation
time in every iteration of the forward simulation. Moreaov&nce the forward problem
has to be solved for varying source positions and permntiftpiofiles, an extrapola-
tion procedure over these quantities can be used to determrsuitable initial guess
for the iterative solution algorithm, which results in Idesward iterations and thus
also in an overall speed-up of the reconstruction [29, 63kifrom the forward sim-
ulation, there is another time-consuming component in Mevitased conventional
reconstruction algorithms. That is the part where the H@ssiatrix, or an approx-
imate Hessian matrix, needs to be inverted. Since the dioensf this matrix can
become large in 3D inversion, it is not inverted directly. tia, the associated lin-
ear system is again solved iteratively. However, due to ype&al ill-conditioning
of that system, its iterative solution converges very sjowllherefore, in this thesis,
a subspace preconditioning has been employed to solve tipelsde systems more
efficiently.

The resulting 3D inverse scattering algorithm has beerdatdd extensively on
both synthetic examples, where the data is generated thnougerical simulation,
and real world targets, where the data is actually measuarad experimental setup.
The most popular future application of microwave imagingnisdical imaging [64,
65]. Therefore, we present reconstructions of a numberashbdical phantoms from
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synthetic data to examine the feasibility of microwave roatimaging. The most im-
portant of these examples is the reconstruction of a nuaddsreast phantom, which
is encouraging for the use of microwave imaging in breasteadetection. The
implementation of a 3D Linear Sampling algorithm to find tusi known breast
tissue is also presented in this context. Since the mosteciyihg test for recon-
struction algorithms is their application to real measulath, we present numerous
reconstructions from data which has been gathered in tlséabc polarimetric free-
space measurement facility of Institut Fresnel, Marsgilance [66—68], and even a
completely blind reconstruction of a mystery target. Weenievited to contribute to
a special issue in Inverse Problems on the testing of 3D etaartion algorithms on
experimental data, which is organized by the people oftlnisfiresnel. Note that the
successful inversion from measured data validates not thelyeconstruction algo-
rithm, but also the forward scattering code.

In the last part of this dissertation, an alternative, casttsource based approach
is explored, which we denote as Consistency Inversion (Gl method employs the
same ideas as the CSI method, but the cost function is modifiedier to eliminate
the permittivity unknowns from the problem. In the origilz®| method [27, 49, 50],
the contrast currents and the permittivity unknowns areatgaialternatingly, while in
the CI method the contrast currents are the only optimimat&riables and hence the
alternating updates of two sets of physically differentrgiiges are avoided. Since
it is known that alternating variable optimization methads exhibit slow conver-
gence [69], we think that the CI method may yield faster copeece than the CSI
method. To test whether this is true, we tried both formatadiin ideal circumstances
on two test cases and conclude that the Cl method indeedsyf@dtier convergence
on these examples and might do so in general. Finally, theegBlarization has also
been incorporated in the Cl method, yielding the VPCI methodis again greatly
improves the reconstruction quality for piecewise corispammittivity profiles. The
VPCI method has only been implemented so far for 2D TM recansbns.

The organization of this thesis is as follows. In Chapten2eise problems in gen-
eral and the electromagnetic inverse scattering problepaiticular are defined and
some concepts and notations, necessary to understandstha the text, are intro-
duced. Chaptér/3 discusses the numerical solution of theafarscattering problem
using a Volume Integral Equation (VIE). This chapter introds the hybrid MLFMA-
FFT method and the extrapolation procedure to determinénttial guesses for the
iterative forward solutions. In Chapter 4 our 3D inverseteriang algorithms based on
Gauss-Newton optimization are presented. Both types afl@aegation are proposed
and discussed and various examples illustrate the perfarenaf the algorithm. Fur-
ther improvements to the general framework, namely therparation of constraints
on the optimization variables by means of an adapted lineckgzath and the use of
subspace preconditioning, are also proposed. Chapterevigedl to applications of
the 3D reconstruction algorithm, i.e. biomedical imagimgl @econstructions from
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the Fresnel data. Finally, Chapter 6 explores the contmste based approach to
the inverse scattering problem by introducing the VPCI métfor 2D TM inverse
scattering problems.
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CHAPTERZ

The electromagnetic inverse
scattering problem

This chapter defines inverse problems in general and the@ieagnetic inverse scat-
tering problem in particular. Inverse problems are notgsifor their ill-posedness.

This concept is explained and the notions of regularizaimhoptimization are briefly

introduced. In order to clarify matters, a simple lineareirse problem is discussed,
namely the volumetric inverse source problem in two dinamsi Next, the electro-

magnetic inverse problem is fully defined (in the form thall Wweé used throughout

this dissertation) and the relevant equations from eletaignetic theory are given.

2.1 Inverse problems in general

One of the major objectives of science is to build models ofsptal phenomena
in order to understand these phenomena. With such a modekade to make
predictions, to foresee the consequences of a given cause cduse, which is the
input of the model, can be described as a collection of spediues of themodel
parametersand the consequences, the output of the model, are termeldtherhe
simulation of data using a certain model and starting frommmodel parameters is
termed thdorward problem On the other hand, a model can also be used to determine
the cause of a certain physical phenomenon, given its coesegs. In such case, one
starts from measured or observed data and tries to detetheneodel parameters
that yield such data when the model is evaluated. This is comynreferred to as
solving theinverse problem

Inverse problems are typically ill-posed. Following thdidiion of Jacques Ha-
damard [1], this means that existence of a solution, unigs®nf the solution and sta-
bility cannot be simultaneously guaranteed. This make@tre¥se problem far more
challenging than the corresponding forward problem, wictypically well-posed.
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The inverse scattering problem treated in this dissenidtcalso non-linear, which
means that the data depends on the model parameters in amaanfashion. Unlike
the linear case, not much general theory is available onlinear inverse problems,
which renders a rigorous mathematical treatment of suclolalgmm very difficult and
often impossible for practical applications.

Let us introduce a general notation

d=F(u), (2.1)

whered represents the data vector (in general a complex vectoBravhrepresents
a vector containing the model parameters (also possiblypt®mgand wherd'(u) is
the (non-linear) model, evaluatedin The inverse problem then consists of deter-
mining v from knowledge ofd and F'. Problems with existence can occur whén
is corrupted by measurement noise or when the métebntains certain (e.g. nu-
merical) approximations, such that an exact data fit is nesipde for anyu, in other
words,d does not lie in the range of the operafor This problem can be eliminated
by recasting[(2.1) as an optimization problem where ons taeminimize the least
squares data error

ld — F(w)||? (2.2)

and defines the minimizer as the solution to the inverse problThis way, deast
squares solutiois defined. Moreover, in case of non-linear inverse prob|ét@stive
minimization of [(2.2) is often the only way to solve them. Namiqueness is a more
difficult problem for general non-linear inverse problen@enerally, this problem is
related to overfitting, i.e. the situation that the degrefesesedom in parameter se-
lection exceed the information content of the data. Proxgjdis much non-redundant
information as possible in the data is the common strategyvtdd problems with
non-unigueness. The stability condition, finally, is mofiew violated and occurs
when the model output is not very sensitive to certain (fgsignificant) changes in
the model parameters, such that the subtle effects due de tfenges are exceeded
by the measurement noise and can no longer be resolved. énwtirds, informa-
tion is lost in noise on the data and this again results in Iprob with overfitting.
To solve the instability problem, regularization techr@quare employed. This means
that additional a priori information about the model partar®is incorporated in the
optimization problem to compensate for the loss of infoforatRegularization often
helps to counter non-uniqueness as well.
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2.2 A linear example: the volumetric inverse source
problem

To illustrate the general concepts outlined above, let nsider a simple two-dimensional
(2D) linear inverse problem. The notations and conceptsdioiced in this section will
furthermore be of use in the rest of this work.

Consider a time-harmonic (frequengyangular frequency) current distribution,
represented by its vectorial phasor [R]p) 2, which only depends on the coordinates
x andy (p = z& + yg) and which is oriented along theaxis. Suppose furthermore
that J(p) is embedded in a homogeneous and isotropic background medlith
complex permittivityey, and permeability.y (the permeability of vacuum) and that
it is only non-zero inside a cylinder parallel to theaxis with bounded cross section
S in the zy-plane (Figure 2.1). This is a two-dimensional (2D) tramsgemagnetic
(TM) problem, sinceJ(p)z only generates an electric field along thexis and a
magnetic field parallel to they-plane [2]. In any poinp outsideS, the electric field
E(p) = E(p)z is given by the integral equation

E(p) = jw /S Gulp— p)J(p)dp, (2.3)

where the 2D Green functia,, of the background medium is given B, (p—p’) =
LHE (k| p— p||2), in which H? is the zeroth order Hankel function of the second
kind andk;,, = w./ugep is the wave number of the background medium [2].

° ‘ p2
) ® P1

PL

e Pr—1

Figure 2.1: The configuration of the 2D volumetric inverse source problem.
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The volumetric inverse source problem for the 2D TM caseistsef determining
the current/(p) with supportS that generates a measured fielti*®(p,) in a number
of observation pointg,,! = 1... L, that lie, for example, on a circle arousdFigure
[2.1). This problem is numerically solved after discreii@abf (2.3) (see Sectidn 6.1),
i.e. we have to solve the matrix system

e = Aj, (2.4)

where thelL-dimensional vectoe™** contains the measured field values, where the
N-dimensional vectoj represents the discretized current and whtie a discretized
Green operator (Section 6.1). Since typically the obs@matoints lie on a curve
aroundsS, while the current unknowns are distributed over the serfacthe vector

j contains much more elements than the veettt® (prior to discretization, there
even is an infinitely large number of current unknowns, whiilere is only a finite
numberZ of measurement poin@) As a consequence, the matrk has less rows
than columns, hence it has a null space, i.e. currents axsistld not generate a field in
the measurement points. These currents are called ireisistents. It can be proven
in general that continuous currents existSnwhich generate a zero field everywhere
outsideS [2,4]. These are called non-radiating currents.

Unless the field is heavily over-sampled on the measuremewé @roundS, the
rank of A is equal toL and there is no problem with existence of a solution, since
any L-dimensional vectoe™*** will lie in the range ofA. The existence of invisible
currents, however, generates a problem with uniquenessutinentj, = 5, +5'V",
with 77V an invisible current vector, yields the same field vectoyj asTo restore
uniqueness, one is forced to reformulate the problem. Wéddou example look
for the currentj™®, the unique current that yields the measured fig¥*s and has
minimal norm. This solution is given by

"N =vsTiutere, (2.5)

where the matricet/, S andV form the thin Singular Value Decomposition (SVD)
of A, i.e.
A=USV, (2.6)

The dimensions of the matricd$, V and S are(L x L), (N x L) and(L x L)
respectively. BotlJ and V' have orthonormal columns that span the rangedof
and the range oA respectively.S is a diagonal matrix that contains the non-zero
singular values of4, denoted ago1,...,or} withoy > 09 > ... > op.

1Electric fields outside a bounded source region are quasitinaited, i.e. only a finite number of
samples is needed to represent the field on any curve (in th@2€) or surface (in the 3D case) outside
the source region for a given numerical precision [3]. Tylhyothe optimal sampling rate of the field (order
half of a wavelength) is much lower than the sampling rate né&mleepresent the current distributionsh
(order one tenth of a wavelength).
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Finally there is the stability problem. In the inverse sauproblem, the Green
operator has a low-pass effect [5]. Certain currents whaly wver the domair®
with high spatial frequencies can generate very small fieldse observation points.
This typically is reflected in a rapid decrease of the singuddue spectrum ofA
without sudden jumps in the spectrum. Since it is easilyveerfrom (2.5) that

L

Y 1 ,
1512 = — i eme?, (2.7)
=1 !

wherew; is thel-th column of U, we see that the norm gf*’"¥ can only remain
reasonably small if the projectiona!? e™<*| follow the rapid decrease of the cor-
responding singular values. This is the case, for examplé¢ht® ideal, noise free
data vectore'd°®!. An arbitrary L-dimensional vectov can have projectiongu/ v|

of comparable size for all. Suppose now that the data is corrupted by noise, i.e.
emeas = gldeal 4 gnoise Then the projectionfulf e™®| = |ufleldeal 4 yff encise|

will generally not decrease systematically, since it cafmmexpected that the noise
has smaller projectiona;” e"*'s¢ for larger/. This will cause the terms in (2.7) for
large! to blow up, such that the norm gf"¥ becomes much larger than in the case
without noise. The reconstructed current will thus deviatech from the actual min-
imal norm current due to noise amplification. To counterhist hoise amplification,

a regularization strategy is employed. A frequently adopegularization method is
Tikhonov regularization [6]. Instead of looking for the ekaninimum norm solution,
which is a solution to the minimization problem

FMN = argmin  ||€™® — Aj||?>, under the condition (2.8)
J
I7MN]1?  is minimal, (2.9)

a Tikhonov regularized solution satisfies

G = argmin  [e™* — Ajl1% + g, (2.10)

J

whereq is the positive regularization parameter. This allows foragale-off between
data fit and minimization of the norm. The idea is that the datet perfect anyway,
due to the noise, such that a perfect fit is not needed andithsoene freedom which
can be used to keep the norm small. Let us now first examineotbéa to (2.10).

First note that (2.10) can be rewritten as

j' = argmin  |Kj -y, (2.11)

J
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where

A I o B

with Iy the N x N unit matrix. Since the dimensions &f are(L + N) x N, (2.11)
corresponds to an over-determined least squares problémrémk V), the solution
of which can be found by solving the normal equations

KPKj=K"y (2.13)

or, equivalently
(AHA n aIN) j = At emens, (2.14)

Using the SVD decomposition (2.6) &f in this expression, one obtains

(S8 +aIn)VHj = SU"eme (2.15)
vij (S2+aly) "' SUH emes, (2.16)

One solution of this last equation is given by
J=V (8 +aly)” SU"eme, (2.17)

since the columns d¥ are orthonormal. This solution has no component in the null-
space ofA, since it is a linear combination of the columns¥f Since an invisible
component iy has no influence on the first term in the right hand side of (2ahd
only increases the second term, (2.17hissolution to[(2.10). It is a visible current
vector that more or less fits the data and has reasonable hmdeed, instead of (2.7),
we obtain

L 2
. g
HJTIHQ — 2 (02 45 a)g |u{—lemeas|27 (218)
=1 > !

where we see that the noise amplification is avoided, sireéattorso? /(o7 + a)?
approachv?/a? for smallo;. For largeo;, they becomd /o7, which is the same as
in (2.7).

Note that fora — 0 the minimum norm solution and thus a perfect data fit is
again obtained. When the regularization parametisrtoo large, however, too much
emphasis will be put on a small solution norm, which will degdg the data fit too
much. In order to choose a quasi-optimal valuedothe discrepancy principle can
be used [6, 7]. This states thatis chosen as large as possible, and such that the data
error is equal to the error introduced by the noise, whiclhérhaximal acceptable
error. This means that is chosen such that

meas __ AjTIHQ — ||emeas _ eidealHZ

e = [le™=e|*. (2.19)
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This, of course, requires an estimate of the noise Igg&ts¢||?. Using the explicit
expression foj 7, given by (2.17), (2.19) is transformed into
L on
H _meas|2 noise (|2
2 , = 2.20
o (0_12+a)2|ul € | ||€ || ’ ( )

which is a rational equation in and can be quite easily solved using standard root
finding algorithms.

2.3 The quantitative electromagnetic inverse scatter-
ing problem

2.3.1 Problem formulation

Consider an isotropic inhomogeneous, possibly lossyedigt object embedded in
an isotropic homogeneous background with permittivjfyand permeability:y (Fi-
gure[2.2). This background extends to infinity in all diren8. Since the object is
non-magnetic, its interaction with time harmonic electegmetic fields is entirely de-
termined by its complex permittivity, which is a function of the 3D position vector
r and of the angular frequency.

o(r,w)

e(r,w) = eoer(r,w) — I= (2.21)
wheree,. is the (real) dielectric permittivity of the object amdis the conductivity.
In the rest of this dissertation, only single frequency teeatg will be regarded and
the w-dependency of the permittivity and the conductivity aslvasl thee/“* time
dependency of all phasors (electromagnetic fields, cigraftarges, etc.) will be
omitted.



22 THE ELECTROMAGNETIC INVERSE SCATTERING PROBLEM

Figure 2.2: The 3D scattering configuration: general notations and definitions.

In this setting, it is the goal of the electromagnetic ineessattering problem to re-
construck(r) within a bounded investigation domaih(which includes the unknown
object) from multi-view scattering data. These data aréectdd as follows. The do-
mainD is illuminated with a number of different incident fielﬂﬁiinC (i=1,...,N%).
An incident field is a field that would be present in the homagers background if
the scattering object were absent. For each such illunsinatithe scattered field,
i.e. the difference between the total fidkg} and the incident field, is measured in a
number of measurement positions; (I = 1, ..., NF) which are possibly different
for differents (Figure[2.2). More specifically, we will restrict oursehiesthis work
to incident fields generated by elementary dipole currensitiesJ 5 ; at positionsr;
and oriented along;:

Js,i(r) = 0(r — 1), (2.22)

where/ is the dirac distribution. On the other hand the measuremertedure for
the scattered fields will be modelled simply by taking the poment of E5°** along
the directionsi, ; in the pointsr; ;, i.e. E{*(r;;) - 4;;. The position-orientation
pairs(r;,w;) and(r; ;, u ;), respectively, will be frequently denoted as transmitting
dipoles and receiving dipoles, respectively. The comptetgiguration of transmit-
ting and receiving dipoles is referred to as the dipole camétjon.

2.3.2 The scattering model

As mentioned in Sectidn 2.1, an inverse problem is assattata model. In the case
of the electromagnetic inverse scattering problem, thidehsimulates the scattering
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of an incident fieldE"® from a given complex permittivity functioa(r) inside a
domainD. To build the model, we start from Maxwell's equations in antropic
inhomogeneous dielectric medium, with a source curdent(2.22)

VxE;, = —jwuH;, (2.23)
VxH; = jweE;+ Js;, (2.24)
V- (eE;) = psi, (2.25)
wV-H; = 0, (2.26)

wherep;s ; is the charge density correspondingtg;. Equations/(2.24) and (2.25)
can be rewritten as

VxH;, = jwe,FE;+ J6,i +jw(e — eb)Ei (227)
1
@V Bi = pui- V- (e a)B]. (2.28)

From this and the law of charge conservation

1
p=——V-J (2.29)
Jw

it can be seen that a soluti¢#;, H ;) to (2.23)4(2.26) is also a solution to Maxwell's

cat

equations in a homogeneous backgroapdvith an additional source curredt;**,
given by
T (r) = jw(e(r) — ep) Bi(r) = jwx(r)Ei(r), (2.30)

which is denoted as th@ntrast current The functiony is called thecontrast function
Using the superposition principle, the total fidif] can be obtained as [2]

E;(r) = —jwuo {]I + IJQVV} / Go(r—7') [Js:(r") + T3 (r")] dr', (2.31)
b R3

wherel is the3 x 3 identity dyadic and

ok llT =7

= 2.32
Gl =) = e =] 232

is the scalar Green’s function of homogeneous space, whitsfiss
V3G (r — 1) + kEGyL(r — ') = —5(r — 7). (2.33)

To simplify the notations we introduce an operaggf that acts on a vector func-
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tion p with supportV:

v T) = —jw L . r—7)p(r)dr'. .
60)] (r) =~ |1+ 579 | [ Gulr—r)p(ryar’. (224

Using this operator notation and the fact that the suppothefcontrast current is
contained withinD (the contrast functiory is zero outsideD) and that the source
currentJ s ; is non-zero only in-;, we can rewrite (2.31) as

Ei(r) = E(r) + [G) (jwxE:)] (r), (2.35)
where the incident field" is given by
B (r) = [G5 (J5.)] () (2.36)

with S; an arbitrary volume which contaims. Apparently,[(2.35) is a second kind in-
tegral equation for the total fielH; insideD for fixed contrast. Once this equation,
which is called thelomain equationhas been solved and the field insiiés known,
the contrast current (2.30) is known and (2.31) can be etedutn yield the field
everywhere in space. More specifically, the scattered fi5fd" is obtained through

E(r) =[G (J3°)] (r), (2.37)

which is termed thelata equation Chaptef 3 discusses the numerical solution of the
domain equation and the evaluation of the data equatiorthier avords the solution
of the forward problem. In Chapters 6, the inverse pmlikesolved.

Note that the data equation is a non-linear function of thengévity. Indeed,
although the relation (2.37) betwe&“** and.J°*" is linear,J5°*" itself is a product
of the permittivity contrast and the total fiel; (2.30), which itself depends on the
permittivity through [(2.35). In some early attempts to sothe inverse scattering
problem, the data equation was often linearized by putfing= E™ in (2.30). This
linearization is called the Born approximation [8, 9] andvadid if the contrast is
small. In this work we attempt to solve the full non-lineaverse scattering problem
and make no approximations in the forward scattering model.

2.3.3 The inverse problem

To obtain the complex permittivity(r) or, equivalently, the contragt(r) from knowl-
edge of the scattered field measuremddf¥*(r, ;) - ,;, fori = 1,...,N! and
I =1,...,NE, the inverse scattering problem (2.35),(2.37) is refoated as an op-
timization problem in which a cost functional has to be miizied. The data equation
(2.37) depends on the product of two unknowns, the conjrastd the total fieldE;,
which are related by the domain equation (2.35). Withousiering regularization,
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mainly two different approaches for defining the cost funréil have been employed.
The first one considers only the permittivity as the optimi@avariable in the cost
functional. The field unknowngE’; are eliminated by substituting the solutionto (2.35)
into (2.37). This yields the least squares data fit cost fanat

NT NJ

FL5(e) = 30N | B (ry) - — BP9 (ry) - g | (2.38)

i=1 [=1

which is evaluated for a given permittivity functiefr) by solving the domain equa-
tion (2.35) forE;, i = 1,..., NI, and by using the data equation (2.37) to calculate
the scattered field&5°**. An optimization algorithm is used to update the permittiv-
ity until (2.38) is minimized. Since this is historicallyeHirst approach, we call it the
conventionalapproach to inverse scattering. It involves the solutioa afiulti-view
forward scattering problem to calculate the total fieldsierg step of the optimization
process.

In the second approach both the permittivity and the tothldi&; are considered
as optimization variables. The cost functional then tyhydakes the following form

I NI N N
FMEG(e) = S STy [ B () - g — EPS(ry ) -ty |2

ALY [pdr | B — B — [GP (jwxE)] (r) 2, (2.39)

where an extra term has been added to the data fit cost fuattishich expresses
the constraint (2.35). Whehis the correct Lagrange multiplier [10], the minimizer
of (2.39) exactly satisfies (2.35). Unfortunately, the laagye multiplier is not known
in advance and is not easily obtained in this case where hetblijective functional
and the constraint are non-linear in the optimization \deis. Although optimiza-
tion schemes exist that iteratively update the lagrangeiptier [10], it is simpler to
consider the second term in (2/39) as a penalty term)aad a normalization con-
stant which is either fixed or is adjusted heuristically tiglbout the minimization.
Because of the large number of optimization variables (drenfitivity and the field
for each illumination in every point in the investigationrdain), a conjugate gradi-
ent minimization [10] is usually employed to minimize (2)38ince this method is
very memory efficient. The resulting approach is known asvbdified Gradient ap-
proach [11]. It avoids the solution of multi-view forwardadtering problems, but due
to the increased number of optimization variables, thentigtition generally requires
many iterations to converge. As an alternative to the Madiiieadient approach, van
den Berg et al. [12] later proposed the Contrast Source $ie@(CSI) method, which
considers the contrast current$™" instead of the total fields as auxiliary variables
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by using the cost functional

NI NE N N
FOH(e) = 300, oy | B (re) - s — B (ry) -y |2

! sca . inc . sca
AL [pdr | T — jox B — jwy [GF (T3] (r) 2, (2.40)

which results from multiplying the domain equation (2.35)hwjwy and by using the
definition (2.30) for the contrast currents. Whereas, HotBQRand[(2.40) are mini-
mized using a conjugate gradient approach (see Chaptét.88)(can be minimized
with the faster converging, but less memory efficient Newttgre methods, since it
involves less optimization variables (see [13] for an eagplication of the Newton-
Kantorovich algorithm to inverse scattering). Chapterdesgoted to the conventional
approach. It is the only approach we employ to solve the 3Btmlmagnetic inverse
scattering. In Chaptér 6, a modification of the CSI methodagppsed, which is called
the Cl method.

2.3.4 Discretization of the inverse problem

Since a solution to the optimization problem has to be songirterically, a parameter
representation of the complex permittivity functiefr) is needed to obtain a finite
number of optimization variables. To formulate the diseiaverse scattering problem
in a most general and simple way, we employ a cubic grid digatgon. In Figure
[2.3 this idea is illustrated: a permittivity griB€ with I x G x H cubic cells in the
x-, y- and z-directions is laid over the investigation domdhand the value of the
permittivity is assumed constant in each grid cell. The piirity function is then
approximated by

!
L
P
T
L

6(7‘) ~ Efyg’hE()(I)f,gyh(’l"), (241)
0 0 0

—
I

Q
Il

>
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where®; , 5 is a 3D pulse function that assumes the value 1 in(¢elj, 2) and is zero
elsewhere. The unknown coefficients, ;, represent relative complex permittivity
values.

When some a priori information on the permittivity functianavailable, for ex-
ample the knowledge of some region where the permittivityoisstant, the cells in
this region can be collected in a cell group with indexAll cells (f, g, k) in this
cell group then have the same relative permittivigy, , = €,, which is the actual
optimization variable. In general, the permittivity unkwus thus are denoted as
(the relative permittivity in cell groug,, which can be a single cell) and they are
collected in theN¢-dimensional V¢ < FGH) permittivity vectore. From the per-
mittivity vector e, the relative permittivity ; , 5, in cell (f, g, k) is simply obtained by
determining to which cell group this cell belongs.
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DE

HA,

FA,

Figure 2.3: The piecewise constant approximation for the permittivity function of FEiguP.

The discretization of the electromagnetic field quantitigsch appear in the so-
lution of the forward problem is discussed in Chapter 3.

2.3.5 Derivatives of the scattering model

In the optimization algorithms described in Chapter 4, WwHielong to the conven-
tional approach, the derivatives of the forward scattermafel with respect to the
permittivity variables are needed. In this section it isvghahat these derivatives are
known when the domain equation (2.35) has been solved fmniilations with dipole
sources] 5, (r) = 0(r — 7 ), Where the position-orientation paisy, @) include
allilluminating dipole positions and orientatiofs;, ;) (i = 1,..., N') andall mea-
surement positions and orientatiops ;, i, ;) (i = 1,...,NL, 1 = 1,...,Nf). In
most cases, large portions of the illuminating dipole canfigion coincide with mea-
surement position-orientation pairs and therefore thebmmof additional forward
solutions (with respect to those already conducted to etmlthe scattered field for
every illuminationi = 1,..., NT) is limited.

We first define the Green’s dyad@},; of the total inhomogeneous dielectric
space, such thatjwuoGinn (7, 7') - is the total field in due to an elementary dipole
source(r — r')4 in the presence of both the homogeneous background medidm an
the scattering object. By linearity, the total fild (2.38¢m also is given by

E;(r)= —jwuo/ Ginn(r,7') - Js5:(r")dr'. (2.42)
S;

Taking the derivative of (2.37) — or equivalently of (2.35)nce the incident field
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E™ does not depend on the permittivity of the scattering objegtdefinition —
with respect to the permittivity parametegryields

OE™(r)
Oe,,

) ) aE?cat
= (08 G, 9] (1) + |08 (x5 ) |00, @43
where we have used (2/30) and (2.41) and widgrés the function which is 1 in the
cell groupr and zero elsewher@y, is the support function of cell group. It follows
from (2.43) and((2.36) thal E5°** /0¢,, satisfies an equation as (2.35) corresponding
to a source curreniwey®, E; in cell groupr. Following (2.42), the derivative of the
scattered field thus can be written as

aEzscat

Tﬁy(r) =k /D O, (r") Gipn(r,7") - E;(r")dr'. (2.44)

The derivative of one measured scattered field Vﬂﬁfé‘t(rl_j) -y ; thus is given by

aEs_cat
aé (r1) ;= k2 /D @, (r") ;- Gian(rs, ') - By(r')dr'. (2.45)
Since it can be proven by reciprocity [2] th@,y, (7, 7") = Gflh(r’, r1,;) and with
the definition

E,(r") = —jwuoGinn (v, 715) - Ui, (2.46)

which is the field caused by a dipole curréft—r, ;)% ; in the measurement position
i, it follows that

8E§cat
Oe,

(r1i) - = jwey /D O, (r")E;(r') - By ;(r")dr'. (2.47)
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CHAPTERS

Solving the forward problem

In this chapter, the numerical solution of the domain equaf.35) is discussed.
A Hybrid MLFMA-FFT solver is proposed to do this efficientiyThe method is a
hybridization of the FFT method and the High Frequency Neugl Fast Multipole
algorithm (HF MLFMA), which is especially useful for sparsgnomogeneous scat-
tering configurations. These are configurations in whichinkiestigation domairD
contains much background medium and where the remaindéoisgsy inhomoge-
neous. This situation can be encountered in some speciéicsescattering problems,
e.g. the reconstruction of an unknown object in an envirartmsich contains a num-
ber of other, known objects that are scattered over a lage &lthough the hybrid
code has been incorporated in the 3D inverse solver of chapiis actually always
used as a regular FFT solver in the chapters about inversince we did not treat
sparse inverse scattering configurations in this thesis.

3.1 Introduction

Because the unknown of the domain equation (2.35) is a fieddtify and because we
wish to solve this equation numerically, a Method of Momaetiseretization of (2.35)
is employed, yielding an algebraic linear system. In retatd the 3D electromagnetic
inverse scattering problem, this system has a large dimersid a solution through
direct methods is not feasible. Indeed, direct solutiormaNadimensional linear sys-
tem has a2(N?3) computational complexity. Moreover, the memory neededdres
the system’sV x N-matrix can easily exceed the available computer memory-So
ing the system iteratively using, for example, a conjugatelignt (CG) or stabilized
bi-conjugate gradient (BICGSTAB) solver reduces the cataional complexity to
O(NTN?), with N the number of iterations, but the system’s matrix still labe
stored in this approach.

Two classes of methods that reduce the storage requirerardtspeed up the
matrix-vector multiplications needed in every step of tteeative solver are the Fast
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Fourier transform (FFT) based techniques and the Multil&ast Multipole algo-
rithms (MLFMA’). The first class [1-5] uses the FFT to explibie convolutional
structure of the integral operator in the domain equatiahteas a computational com-
plexity (for one matrix-vector multiplication) o (N log N) and a memory use of
O(N). The methods in the second class, such as the High FrequeRgWMLFMA
[6-9], the Low Frequency MLFMA [10] and the InhomogeneouStable Plane wave
method [11,12], are based on efficient decompositions d&tleen function. The ma-
jor advantages of the FFT methods are their speed and easgmm@ptation, thanks
to the fast, reliable and widespread codes for calculatifigsH13]. The MLFMA's
on the other hand allow a more flexible meshing of the scatieafeometry, since they
can be applied to arbitrary meshes. For moderate to largemeitic problems with
densely distributed mesh elements, the FFT methods aréyufasder, thanks to their
small prefactor, despite the lower computational compyexi MLFMA's (O(N)) on
such dense geometries.

In this chapter, a hybrid MLFMA-FFT method is proposed, whig particularly
suited for large scattering configurations that show sonaessty. The method is a
modification of the HF MLFMA that treats the interactionsweén nearby mesh
elements using FFTs and the interactions between welksggzhelements as in a
regular HF MLFMA. It can also be regarded as a hybridizatibrihe subdomain
FFT method, which is proposed here as an FFT method for actiolteof cubic
subdomains. The subdomain meshing avoids the extensibe 6HT grid over empty
space between scatterers, as is necessary in the clagsicaldthod. It will be shown
that the MLFMA-FFT method outperforms both the regular HFRUA and the FFT
method on large sparse geometries and that it can have loemony requirements
even on large dense geometries.

The outline of this chapter is as follows. In section| 3.2 tbendin equation (2.35)
is reformulated using a mixed potential approach and dize@twith a MoM scheme.
Section 3.3 proposes a subdomain FFT method to speed up thie-wetor products
needed for the iterative solution of the linear system. iBe@&.4 starts by shortly re-
visiting the HF MLFMA. For a more thorough treatment, thedesais referred to [9].
Next, some improvements to the general MLFMA framework aesented. Specifi-
cally, the exploitation of symmetries in the subdomain medbws for a reduction of
the memory cost of the MLFMA and the application of an FFTliptéation scheme
for the vectorial MLFMA together with the use of vector sghat harmonics to rep-
resent the radiation patterns on the lowest level resulecaurate and efficient ag-
gregation and disaggregation stages. Sectioh 3.5 presents/brid MLFMA-FFT
method and discusses its relation to the FFT method and tHdIHFVA and in sec-
tion[3.6 this hybrid method is validated and its performarested. Finally, Sections
[3.7 and 3.8 discuss the choice of the initial guess for thatite solution of the MoM
system and the discretization of the data equation (2.3@)itanderivatives| (2.47),
respectively.
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3.2 Problem reformulation and discretization

3.2.1 Mixed potential formulation

First, the normalized contrast functigns defined:

e(r) —ep

e(r)

Using this normalized contrast, the contrast current (2e8@l its associated charge
density can be rewritten as (in this chapter, the illumoraindex: is mostly omitted)

§(r) = (3.)

J<(r) = jwE(r)D(r), (3.2)
pscat(,r,) — %V'Jscat(’l'), (33)

where D represents the electric flux densily = ¢E. Next, the mixed potential
formulation [14] is employed to rewrite (2.37) as

Escat(,’,) — _ijscat(,r) _ v(pscat(,’,)7 (34)

where A" and s, respectively, represent the vector and scalar potengiaien
by

Ascat(,r_) _ MO/ Gb(’l”—’l”’)Jscat(’l"l)dT/ (35)
D

stcat(,,.) — i Gb(r—r’)pscat(’r‘/)d’l“/. (3.6)
€ Jp

Finally, the domain equatioh (2.B5) is recast as an integgahtion forD, which is
called themixed potential domain equatig¢iviPDE)

; D
E"¢(r) = 6((:)) + jw A (1) 4 Vst (1), (3.7)
The choice for the mixed potential formulation is motivatsdthe fact that the weak
singularity inGy, allows for a simple numerical treatment, as opposed to toager
singularity in the Green dyadic.
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3.2.2 MoM discretization

To solve [(3.7) numerically, a Galerkin Method of Moments ()ais applied. The
electric flux density is expanded as

N
D(r)~ > da®s(r), YreD (3.8)
a=1

where W, are vectorial basis functions anltl, are the unknown expansion coeffi-
cients. To define the functionB,,, the domairD is built from a number of identical
cubic subdomain®?, a = 1,..., N°, which belong to a uniform cubic grid with
grid parameterA. Each subdomain that contains only background medium is re-
moved fromD and every remaining subdomain® is divided inN¢ = P3 cubic
cells with sided (Figurel 3.1). The resulting MoM grid is termed tfoeward grid and
denoted byD”. The cell size5 and the position of the forward grid are chosen such
that it is a subdivision of the permittivity grigb¢, such that every cell has a constant
permittivity. To every cell facef’, in this grid, one basis functio&, = ¥, u, is
assigned, wheré&,, is the normal toF, (a, = &, g or z) and¥,, is a 3D rooftop
function that assumes the valuen F,, and linearly tends to zero along the directions
+a,, over the two cellsS and S;, that shareF,, (Figurel 3.2). Such basis functions
are also reported in [3,15] and a similar formulation oretieérdral meshes is proposed
in [16]. The support off,, is denotedS, = S U S, . With this choice for the ba-
sis functions, the normal component B¥is continuous across all facets of the grid,
as required by the boundary conditions. Furthermore, lsecthe forward grid is a
subdivision of the permittivity grid, the normalized caat functions is a piecewise
constant function which assumes one value per cell. Ingel{respectivelyS, ) this
value is denoted a&" (respectivel\¢y,).

Figure 3.1: The construction of the domaif from a number of identical cubic subdomains
D*, meshed with a uniform cubic grid.
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U

(a) (b)

Figure 3.2: Graphical representation of the rooftop functidp, associated to facdf,: (a)
definition of the support cell§; andS; and a local reference systefii, Vo, W), Where
. is the normal taF,,, and (b)¥,, as a function ofi, andv,, for everyw,: 0 < w, < 4.

After substituting the expansion (3.8) in the domain eque(B.7), the same vec-
torial rooftop functions are used to test the equation. listitate the MoM procedure,
considerA®®*, ¢scat and E,, respectively the potentials due to and the total electric
field corresponding to one terdy, ¥, () in (3.8). TestingA>™" andV ¢t with ¥ 5
yields

Ws(r) - AZ™ (r)dr

Sp
= jwig dg [ﬁi dr®s(r) - dr'Gp(r — ") ¥, (r")
Sg s
+&, | dr®g(r)- dr'Gy(r — r')\Ifu(r')] (3.9)
Ss Sa
and
Ws(r) - Vo (r)dr = — AV Ws(r)dr, (3.10)
Ss Sg

where we have used Gauss’ theorem and the fact®hats zero outsideSs. The
expression fopy®®t in (3.10) is given by

¢ant(r) — _lda |:£;_/ Gb(’l“ — r’)v/ . ‘I’a(’l“/)d'r'/
€b 53

+& Gp(r — )YV - W, (r")dr’
Sa

+ (& - &) /F Gy (r — r’)dr’} , (3.11)
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where the last term represents the contribution of the sartharges that arise from
the discontinuities in the discretized contrast curreatess the facets of the grid. The
testing of E, with ¥ 4 results in

Ty(r)  Bo(r)dr = da[(lfi) / A () - B, (1)
Ss €b SgnSE

+(1- 5(;)/5 . dr®s(r) - \Ila(r)] . (3.12)

Note that we use complete rooftop functiofig in (3.9), (3.10) and (3.12) to test
the MPDE. Strictly speaking this generates a problem in2)3uthen the facet$;
andF,, coincide on the boundary @. In this caseS; (= S;) orS, (= Sj) lies
outsideD, where the expansioh (3.8) is not defined. We therefore dxtemvalidity
of (3.8) over one cell-width exterior t® by replacing the half roofto@,, outside
D with the constant unity function, i.e¥,(r) = 4. This means we assume that
keepingD(r) - u,, constant and equal to its value éh is a good approximation over
a distance outsideD.

Collecting the tested incident field in thg-dimensional vectoe™® and intro-
ducing N-dimensional vectorxslgt with elementstd,, andd with elementsd,,, we
finally obtain the following set ofV linear equations iV unknownsd,,

e =Wed+ Z"df + Zd; (3.13)

or, in short,
e™ = L¢d (3.14)

The elements of th&/ x N matricesZ* consist of double integrals with the Green
function and at most two linear functions in the integransl,appears from (3.9)-
(3.11). These integrals are computed numerically usings&an quadrature and the
1/r-singularity of the Green function is handled by singulastibtraction [17]. The
sparse matrid¥ ¢ is derived from|((3.12). The integrals involved in this aresiga
obtained analytically. Note that the elements of the dersigicesZ* do not depend
on the contrast. This way, they need to be calculated onlg tora series of scattering
simulations with varying contrast, for example in an ineessattering problem, where
the voxel permittivities are iteratively updated until thienulated forward scattering
matches the measured data.

3.3 The subdomain FFT method

SinceN is usually quite large, we solve (3.13) iteratively with alstized bi-conjugate
gradient (BICGSTAB) routine [18]. To speed up the evaluaiof the matrix-vector
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multiplications in [(3.18), we focus on the most time consugnpart, i.e. the multi-
plications withZ*. By denoting withv, the part of anV-dimensional vectop that
corresponds to basis or testing functions in the subdoé&irwe can write

(z+d§++z*d5) Zz+d+ +Zzba Ca Wbe{l,...,N%}, (3.15)

where the matriceZ;:, describe the interaction between two subdomdirfsand
Db. The matrix-vector product&; d£ . andZ, d.  can be cast as 3D discrete
convolutions, since the convolutional symmetryﬁ(&aﬁﬁ is conserved thanks
to the chosen discretization. Therefore, the indeand the notatiorF,, are replaced
by the quintet(p, ¢, 7; a; u) and the notatiorF’;;',. The indicesp, ¢ andr determine
the position ofS, or equivalentlyS;: -, in thex- y- and z-direction respectively
within the subdomaui)“ and the superscript = 1, 2 or 3 discriminates between
the three faced,, for which S, = S, . With this labelling we writeZ;} |50 =
Ztp—-pq—¢,r—r";u;u)and

Zidda] = 2SS A g o )

(3.16)
After performing a 3D FFT of sizé2P + 1) x (2P + 1) x (2P + 1), the discrete
convolution in this expression is transformed into a singikgonal multiplication,
as is well known. We denote this method, where the total mesisists of cubic
subdomaing)®, as the subdomain FFT method. The computational complekiy
evaluation of[(3.13) in the subdomain FFT method (Figuré &.8lominated by the
calculation of the FFTs odiza for every subdomain and the diagonal multiplications
for every combination of subdomains. Thus i@$c; NS N log N¢ +co(NS)2N©)
and the memory use is bounded abovehyl, (N°)2N¢ + dy N9 N©) (for storing
the spectra o2,", which are calculated in the setup time of the algorithm, ahd

57[1), wherecy, ¢, d; andd, are constant prefactors. In practice the memory use is

smaller, because some interacticj§ are identical due to translation symmetry.

3.4 The HF MLFMA

3.4.1 Basic equations

The Multilevel Fast Multipole Algorithm (MLFMA) is a multdvel extension of the
Fast Multipole Method (FMM). In this thesis, a vectorial FMis!l employed. This
means that the mixed potential formulation (3.4) is repidmg the electric field inte-
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Figure 3.3: lllustration of the computational complexity of the subdomain FFT method.

gral formulation
1
E**(p) = —jwuo/ (H + k2VV> Gr(r — ') - T (¢")dr’ (3.17)
D b

and the diagonal addition theorem for the Green dyadic id (see [9], chapter 3,
and [19]). Note that we have put the 0pera<dir+ k—%VV) under the integral sign
(compare with[(2.31)). This is, strictly speaking, onlyigaf the pointr does not
belong to the integration doma@n Since it will become clear in a moment that the
self-interaction (the interaction of with the points in its immediate surroundings)
will not be calculated with (3.17), there is no problem here.

The FMM requires a division of the basis functions in a nundieron-overlapping
FMM-groups. In our implementation the FMM-groups convartligcoincide with the
cubic subdomain®?, which are introduced in section 3.2.2. LBf**" be the scat-
tered electric field, caused by the contrast currents in@math D®. The HF FMM
computesE***, tested with a basis functioll ; belonging to subdomaim® as

[ @t B ar
D
ik
(47)2e,

™ 2w
/ d9/ doV g (0, P) - Tra (0, ¢)sind U, (0, ¢). (3.18)
0 0

1In the other case, depolarizing dyadienust be added, as outlined in [14]
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Note that/(3.18) represents one element-¢& ;" d+ + Zy,d; ) in (3.15). The
diagonal translation operat@g,, is calculated as

L

Tba Z 2l +1 h( )(kbrba)})l<1%<e7 ¢) : "A"ba)7 (319)
=0

whereh,@ is the spherical Hankel function of the second kind and oidéy is the
Legendre function of orddl 7, = ||rpa|l = |72 — r¢| is the distance between the
centers of the subdomairts,, = r4/7ba andfc(e, @) = & sin 0 cos ¢+ sin 0 sin ¢+
Z cos @ is a vector on the unit sphere. The radiation pattéfsandV 3 are given

by

Ua(0,6) — Zgw/ R (L k) - (¢
aclf
+ > 6 / eiko-(r'=T0) (H_kk)-qla(r’)dr’ (3.20)
acl,
Vias(0,0) = /e*jkb'““*ri) (Hfl%fc)'\llﬂ(r)dr, (3.21)
Sp

wherek, = kpk. The set/* in (3.20) contains indicea of basis functions¥,,

for which S lies in D®. Note that these patterns only have transverse components
Uy =U,-wandVy, = Vg, -awithu = ¢ oru = 6. Equation|(3.18) can be shown

to be valid up to arbitrary precision as longsgs is sufficiently large, i.eD* and D®

have to be well-separated [9]. In general, this is expreased, > SR, whereg is

the separation parameter aRds the radius of the subdomains.

3.4.2 Numerical implementation
Integration and interpolation

To evaluate the integrals in (3.18) numerically and to penfthe interpolations needed
to extend the FMM to the MLFMA, we follow an approach, simitarthat of Sar-
vas [20]. In this approach, the radiation patterns are ptesgan a Fourier basis rather
than with the usual spherical harmonics and interpolatamesdone with FFTs. The
difference is that the FMM in [20] is scalar, while ours is tex@l. We use the trans-
verse components of the radiation patterns, which are nudlimaited in terms of
spherical harmonics, in contrast to the cartesian comgenétowever, the functions
U, andVj, do have exponentially decaying Fourier spectra when thefiniion
domain is extended frof, 7] ® [0, 27] to [0, 27] ® [0, 27] using the formula

F(0,¢) = —F(2r — 0,6+ ) (3.22)
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for ' = U or I’ = V', as can easily be verified. The integralin (3.18) then is
replaced by

/\115 ) - B3 (r)dr

1 gk}

27 27 )
57 Eb/ d9/ BV 540, 6) - Ty (6, 6)| sin 0]U o (0, 6)3.23)

where the definition domain of the spherical functiiy is extended with
Tpa(0,9) = Tya(2m — 0,6 + ). (3.24)

Formula[(3.22) thus allows the extension of the FFT appradi¢f0] to the vectorial
case. In the Fourier representatidvy (20, + 1) samples of the radiation patterns,
uniformly spaced i and¢ within the domain0, 7] ® [0, 27|, are needed to perform
the integration in (3.23). The numbel%, and N, depend on the subdomain radiis
and the desired accuracy. We chddg = Ly, Ng = Lo + 1 whereL, is determined
numerically together witlL in (3.19) on a worst case scenario in such a way that the
desired accuracy is achieved with the minimum number of &sng,, turns out to

be much smaller thai, usually somewhat larger thagq. Further differences with
the implementation of [20] involve the recursive calcuwatof the truncated Fourier
spectrum ofl}, (6, ¢)| sin 8| using a recursion formula for the Legendre function (see
AppendixX A) and the use of a (trivial) 2D extension of Theorérhin [20] to anter-
polate the producty, (0, ¢)|sin 8|U ,(8, ¢).

More efficient aggregation and disaggregation

The evaluation of (3.20) itVy (2M, + 1) uniformly spaced sample points, referred to
as aggregation towards the lowest level, can be cast intdrixroperation:

U, = At'df + A "d;,, u=~0or¢. (3.25)

U is aNy(2M, +1)-dimensional vector containing the sampleg/gfand.A™" and
A" are the aggregation matrices. After interpolation, tratish and anterpolation,
the incoming patterd?, (0, ¢) = >, Tva (0, 9)U (6, ¢)| sin 0] of every groupD? is
multiplied in (3.23) withV 5, and integrated for ever§ s in D®. Since the integra-
tion is performed numerically by a summation over samplas,dan also be written
as a matrix operation:

ety = DRy + DRy (3.26)

wheree;,,, contains the weighted scattered field in subdoniziindue to all well-
separated subdomaifi® andR; contains the samples &, (0, ¢) - w. The matrices
DY andD? are the disaggregation matrices and this step in the dhgoiis denoted
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as disaggregation from the lowest level.

Again the contributions o6+ and S, are separated in (3.25) in order to make
the aggregation matrices independent of the contrast. Beaaf this and because of
the identical geometry of all subdomains, the aggregatmhdisaggregation matrices
are the same for every subdomain and have to be stored ordy ©his saves a lot of
memory compared to a HF MLFMA applied to arbitrary meshesnalthese matrices
have to be stored per FMM-group or subdomain.

Although using uniform samples thand¢ allows for an elegant FFT interpola-
tion, combining global exact interpolation with efficienitys suboptimal with respect
to the aggregation toward and disaggregation from the Ibleesl. The cost of these
stages can be reduced by choosing the samples more opti2Hllgr by temporar-
ily switching to another, more economic representatiorhefradiation patterns. The
latter approach has been employed in [22], where the cartesimponents of the radi-
ation patterns are represented in a spherical harmonicsdrathe lowest level. After
aggregation to this basis, the uniform samples are stillegd¢o proceed with the
diagonal translations and the interpolations towardsdridgwvels, where the patterns
are stored in the usual k-space representation. In thientig®n a similar strategy
is adopted, but we use vector spherical harmonics to represdy the transverse
components of the radiation patterns. For example:

Lo l Lo l
Ual0,8) =D > (Yt Xim(0.0) > > (Ka) e Bim(0,0).  (3.27)
=0 m=-1 =0 m=-1

Here, X, and®;,, = k x X,, are vector spherical harmonics as defined in [23].
The multipole coefficient$y,),,, and(x,),,, are determined as

(e = An' Y e [ dr¥a(r)-m{l) (- r2)
+ s
acly
Y g;da/ Ar®,(r) - m!*(r —r9) (3.28)
acly Sa
(ka)pm = A Y €rda / Ar (1) - " (r — r0)
aclf Sa
+ 4yttt Z &, da /S_ dr®,(r) 'nl(}rz*(r—rg) (3.29)
acly &

wherem) (r) = ji(kor) X1, (#) andn,) (r) = -V x mj}) (r), with j, the spher-

lm lm

ical Bessel function of ordel;, are the standing wave vector solutions with zero di-
vergence of the Helmholtz equation as defined in [28]{))* andn"* denote the

m

complex conjugate o;fnl(}g andnl(if respectively. The advantage of this approach is
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that we only need to calculatex (Lo + 1)? multipole coefficients to represebi,,
which is half the amount of uniform samples that are nee?led(2L + 1)(Lo + 1).
The matrix version of (3.28) and (3.29) which now replacegqBis

Yo = MTdi, +M7d, (3.30)
ke = NYdf, +N7d, (3.31)

where~, andk, are vectors containing the multipole coefficientd of. M= and
N are the new aggregation matrices, which are still indepetrmfehe domain index

a. Since these matrices are only half as large as the origgtakgation matrices in
(3.25), the aggregation to multipole coefficients will béamvas fast. The overall gain
factor, however, will be smaller thah because we still have to evaluate the multipole
expressions for the radiation patterns in f#ig2/, + 1) uniform sample points with
(3.27). However, this can be done efficiently. First of allethat®;,,, -0 = — X, - ¢
and®,,, - ¢ = X, - 0. Then let us rewrite (3.27) using a block matrix notation:

u’ Xy —Xy ~
e | = e . 3.32
{ us } [ Xy X Ka (3:32)
It appears that four matrix-vector multiplications (withatrices of much smaller di-

mension than the aggregation matrices) have to be carriedlbis can be avoided,
however, since (3.32) can be diagonalized:

us 1| Iy I, Xog—jXg 0 Yo — JKa
[Uf}_Q[ﬂo —J'Io}{ 0 X9+jx¢}[7a+jﬁa]’

(3.33)
wherel, represents the unit matrix of dimensidfy (2M, + 1). This way, only two
matrix-vector products and some simple recombinationsaremNote that in [22]
three matrix-vector products are required to calculatehhee cartesian components
of the radiation patterns. Furthermore the summationssavier(3.27) can be carried
out efficiently by using FFTs. It can be shown thét,,, - 6 and X, - ¢ depend orp
only through a factoe’™¢, such that the typical summation is of the form

Lo l Lo Lo
Z Z Flm(e)eanlQSq’ylm = Z Z F‘lm(e)ejm(bq’ylm (334)
=0 m=—1 m=—Lo l=|m|
Lo Lo
= Z ejm”zg#q Z F‘lm(g)’ylm (7335)
m=—Lg I=|m|

where we have assumed the fogn = ‘12L207T+1 = qmijrﬂ for the samples in the
¢-direction. The outer summation in (3.35) is a discrete Fwuransform and hence
can be calculated by an FFT.
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V 3, is also expanded in multipoles and by substituting this ejua in (3.18)
and by interchanging the integration and the summationemthltipole expansion,
a disaggregation procedure with multipoles is readily ivlgtéh similar to the aggre-
gation procedure outlined above. The gain in speed obtdipete aggregation and
disaggregation via multipoles will be discussed in Secldha2.

A lastimprovement to the aggregation towards and disagdjeegfrom the lowest
level is a purely technical one. The matrix operations (B8t (3.31) have to be
carried out for every subdomain. Since the aggregation &atjgregation matrices
are the same for all the groups, the vecta)jg,l for all a, for example, can be stored
columnwise in a large matrix wittv columns. This matrix can be multiplied as a
whole with the appropriate aggregation matrix using Lev@&ic Linear Algebra
Subprograms (BLAS) [24, 25], which reduces the CPU time mnably. This will
also be illustrated in Section 3.6.2.

3.5 The hybrid MLFMA-FFT method

The hybrid MLFMA-FFT method consists of applying the HF MLRMf Section
[3.4 to the cubic mesh of Sectibn 3.2.2 and treating the iotierss (3.15) between
subdomains that are not well-separated — the near intenacti with the use of FFTs
(3.16). The resulting method is an improvement with resfebbth the HF MLFMA
and the subdomain FFT method. With regard to the MLFMA, ingathe near in-
teractions with FFTs is rewarding, becausedéN ©)?) near interactions of the HF
MLFMA are replaced by more efficiei?( N diagonal multiplications (Figure 3.4).
With regard to the subdomain FFT method, the hybrid MLFMAFRRethod replaces
the diagonal multiplication in the Fourier domain with thiagbnal translation of the
FMM for well-separated subdomains. Because the dimendidheoformer is pro-
portional to N¢ and thus to the volume of the subdomains, while the dimension
the latter is generally smaller (only proportional to theface area of the subdomains
when these are large enough), this can reduce the computistie and memory use,
even in a two-level FMM. Furthermore, in the multilevel sotee the computational
complexity of the MLFMA-FFT method i€ (N) to O(N log® N), while the subdo-
main FFT method scales &8 °)2N¢ = N2 /N for a fixed size of the subdomains.
For a more in depth study of the method, the subdomain sibe isibst important
parameter. For a fixed separation paramgtéwhich determines the reachable accu-
racy) it determines the height of the MLFMA tree (we add Isvettil there are no
more far interactions on the level to add) and the efficierfap® multilevel scheme.
To investigate the influence of the subdomain size, condidsra very large dense
scattering configuration. In such a situation, the numbemeztr interactions for a
given subdomain (i.e. the number of subdomains with a cehtgrlies within a
radiusR from the center of the considered subdomain) is indepernafethe sub-
domain size. To see what happens when the subdomain sizaéaged, consider a



44

SOLVING THE FORWARD PROBLEM

D@ Db
O(N€ log N©) O(N€ log N)
1
2 Near
3
5 : Far
NS L] B

FFT multiplication FFT-!

Figure 3.4: lllustration of the computational complexity of the MLFMA-FFT method.

doubling of this size:

The number of cellsV® per subdomain is multiplied bg.
The number of subdomains is divided &y

The cost of calculating the FFTs for every subdomain in@eatightly from
NYIn(N®) to N In(8N©).

The cost of the diagonal multiplications in the Fourier damnfar the near inter-
actions is unaltered, since the increase in cells per suatioamd the decrease
in number of subdomains balance each other.

The cost of the translations and interpolations/antetjpoia is seriously re-
duced, because we lose a level and nothing changes for tlaénmiemlevels.

The cost of the aggregation toward and disaggregation freniawest level is
increased, becaudg, is increased. For subdomain sizes of about one wave-
length or less, the increase is practically negligible,foutarger subdomains,

Ly increases linearly with the subdomain size.

One can conclude that unless the subdomains become veey(kgig > 1), an in-
crease in subdomain size reduces the cost and memory usaigspdfse configura-
tions, the behaviour is less predictable, but apart fromeserotic configurations the
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same conclusion stands. This is an important differencle thi¢ original MLFMA,
where the cost of the near interactions is multiplied8oywhen the subdomain size
is doubled. Therefore, in the MLFMA there generally is animopd subdomain size,
smaller than the background wavelength, which balance®#tbetween near and
far interactions optimally, but the use of FFTs shifts thpimum in the MLFMA-FFT
method to much larger subdomains.

Our main goal is to examine for which type of configurations MLFMA-FFT
method outperforms the FFT method in terms of CPU time or nmgroonsumption.
On dense problems it is well known that the MLFMA, and thus dlee MLFMA-
FFT method, isO(N). However, it appears from numerical tests that despite this
lower computational complexity, the MLFMA-FFT method i®wkr than the FFT
method even for fairly large problems, due to the small mtefaof the FFT method.
It will be shown in section 3.6, though, that it uses subsdlgtless memory. An-
other situation is encountered when considering sparsesog configurations, such
as the one in Figure 3.5(a). When the FFT method is used tolasdcihe scatter-
ing from this geometry, the cubic grid has to be extendededthunding boxD of
the domainD as in Figure 3.5(b). This implies that the CPU time and the orgm
needed for the calculation of (3/13) are the same as for sedmniguration irD®.
In this case the MLFMA-FFT or even the subdomain FFT methodygald a faster
matrix-vector multiplication because they discretizegkemetry more economically
(Figure 3.5(c)). If we do not want the grid to extend over oegi of empty space,
the maximal subdomain size is dictated by the sparsity oftimfiguration. Combin-
ing this with the main conclusion of the previous paragrapé,state the following
rule of thumb: if the maximal subdomain size, determinedheygparsity of the ge-
ometry, is not much larger then a wavelength, use this maxémadomain size and
the MFLMA-FFT method. For very large maximal subdomain sjzbe aggregation
and disaggregation steps become unwieldy and it might beoppate to use the sub-
domain FFT on the maximal subdomains or the MLFMA-FFT methitti smaller
subdomains, depending on the specific geometry. In gerrenakver, the MLFMA-
FFT method will consume less memory on any large problem jlabendemonstrated
in Section 3.6.

3.6 Validation and performance analysis

In this section the proposed MLFMA-FFT method is validated #&s performance
is investigated and compared to that of the FFT-method aadith MLFMA on a

number of test cases. All computations are carried out ifbgorecision arithmetics
on a 64 bit computer with 2GHz Dual Core AMD Opteron processu 8GB RAM.

All FFTs are computed using FFTW, the Fastest Fourier Toansfin the West, a
collection of fast C routines for computing the discrete f@utransform [13]. No
parallelizing or multi-threading of any kind are used.
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Figure 3.5: Two ways of handling a sparse cubic mesh (a): extension to the bouinoing®
(b), and division in identical cubic subdomains (c).

3.6.1 Validation

The scattering from a homogeneous sphere is consideredtedlidate the subdo-
main FFT method. The sphere has a radius= \,, of one background wavelength
and a permittivitye = (2 — 2j)e, and is illuminated with an:-polarized plane wave
traveling in the+z-direction:

E™(r) = e ko2 g, (3.36)

The sphere is contained in a cubic dom&iwith side2A,,. The grid on this domain
has a cell sizé = 0.05\;,, which results in196800 unknowns. Such a fine grid is
chosen to reduce the staircasing error. We solve the MPD&anatays: firstly we
considerD as one cubic subdomain, which means that we employ a clagstda
method, and secondly we divide in 64 subdomains and apply the subdomain FFT
method. Both methods needagl BICGSTAB iterations to converge to an accuracy
of 1076, Figure 3.6 compares the scattered fields with the analgidation provided
by the MIE series [14]. The agreement is very good.

We now compare the scattered fields computed by the MLFMA-FiEThod and
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the subdomain FFT-method for the sparse scattering coafigarof Figure 3.7. A
homogeneous sphere with a radils= 2\, and a permittivitye = (2 — 2j)ey, IS
surrounded by,0 cubes with side\,, and permittivitye = 1.5¢;,, that are randomly
distributed in a cubic domai® with side10\,. The cell size i$).1)\,,. This problem
yields344100 unknowns and is solved by both method$Trterations to an accuracy
of 107¢. The results are shown in Figure 3.8. The parameters for thENIA are
chosen such that the relative error on the FMM-formula (Bid&ss thari0~5 and
Figure[ 3.8 (b) shows that the relative difference betweeth bolutions stays below
this value.
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Figure 3.6: Scattering from a homogeneous sphere with radius A\, and permittivitye =

(2 — 2j)en: comparison between MIE series and results from the FFT and suliéiRa
methods. Figure (a) shows tlhecomponent of the scattered field on a semici€le {r : r =
R, sin 0% + R,, cos 02}, with R,,, = 4\, and@ € [0, 7[. Figure (b) shows the error defined
ase.(r) = |lex(r) — ez pmrp(r)||/ maxres |les e (r)|| for both the FFT and subdomain
FFT methods.
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(@ (b)

Figure 3.7: A homogeneous sphere witR = 2\, ande = (2 — 2j)ep,, surrounded by0
particles with side\, ande = 1.5¢;,, randomly distributed over a cubic domaif” with side
10\,. Figure (a) shows the actual scatterers and Figure (b) representetieused by the
MLFMA-FFT and subdomain FFT methods. The cell sizé is 0.1\y,.
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Figure 3.8: Scattering from the scatterers depicted in Figure 3.7. Figure (a) sh@ws th
component of the scattered field on a semicitg€le= {r : r = R,, sin0& + R,, cos0z},
with R,, = 10\, andé € [0, 7[. Figure (b) shows the error definedagr) = |le; 2(r) —
ez 1(r)|l/llez.1(r)|| between the subdomain FFT methed () and the hybrid MLFMA-FFT
method €3 ).
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3.6.2 Performance analysis

We first demonstrate the acceleration of the aggregatioartisvand the disaggrega-
tion from the lowest level, introduced by the techniqueseation 3.4.2, in Table 3.1.
Three sizes of the subdomairsH\,,, 0.8\, and \y,) are considered. The values of
Ly and N* determine the size of the aggregation and disaggregatidrices N is
the number of basis functions in a subdomain if it is filledhadtuniform cubical grid
with § = 0.1\,,. Ly is determined together with (not shown in Table 3]1) such that
the relative error on the FMM-formula (3.18) does not exce&d® when the separa-
tion parametep is set to4. It can be seen that by performing the aggregation towards
and disaggregation from the lowest level via multipoles {M)ead of with uniform
samples (US), the CPU time for these stages can be reduc#fbyo 45%. More-
over, with the use of Level 3 BLAS routines (MB) the total retlan factor ranges
from 3 for a subdomain size @f.5\;, to 5 for a subdomain size of;,. The number of
subdomainsV®, once it is large enough, does not seem to have a significuntnce
on these gain factors.

subdomain size (in,) | Lo | N¢ [ N¥ us M MB
0.5 11 450 | 1000 5.00 3.16 1.66
0.5 11 450 500 2.62 1.61 0.85
0.8 15 | 1728 | 1000 | 45.88 24.64 | 9.32
0.8 15 | 1728 | 500 17.74 | 10.03 | 4.70
1.0 17 | 3300 | 1000 | 112.34 | 61.25 | 21.29
1.0 17 | 3300 | 500 56.26 30.77 | 10.79

Table 3.1: Comparison of CPU times (in seconds) for the aggregation and digsdigne to-
wards and from the lowest level using uniform samples (US), multipdf§safd multipoles
and Level 3 BLAS (MB). Results are given for different subdoméaes and for two values of
NP, the number of subdomains. The valuedgfyield an FMM-accuracy of0~5.

Next, the performances in terms of CPU time and storage remeints of all the
methods described in this chapter are investigated and@@dpTable 3.2 shows the
CPU time for one evaluation df (3.13) and the memory neededlt@ the MPDE for a
number of test geometries. These geometries are all cedtaira cubic bounding box
D¢ with side10);, and are meshed with a uniform cubic grid with cell size 0.1)\,.
For the FFT method, the complete bounding Bx has to be discretized, irrespective
of the actual permittivity profile and geometry insi@’. This yields the test grid
“full”. The subdomain FFT method and the MLFMA-FFT methochdae used on
sparse subdomain grids. The test grid “&fiit’ thus refers to grids like the one of
Figure 3.7(b), whereV" is the number of particles that surround a central cube of
side4\,. All particles are cubes with sidg, and coincide with one subdomain each
in all test grids, except for “clut45/2”. The test grid “clif/2” is identical to “clut45”,
but the size of its subdomains is twice as smab4;,) and hence their number is eight
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times larger than with “clut45”. Finally the test grid “cari indicates a mesh like
the one in Figure 3.5(a) with a wall thickness af and outer dimensions dfo\,.
The subdomains for the test grids “full” and “corner”, whesing MLFMA-FFT or
subdomain FFT, also have a sixg

problem method fv N CPU-time | memory
full FFT 1.0 | 3,030,000 38.92s +7GB
MLFMA-FFT 1.0 | 3,030,000 | 310.88s | 2951 MB
clut45 MLFMA-FFT | 0.07 | 343,900 1291 s 940 MB
subdomain FFT| 0.07 | 343,900 29.87s | >7.3GB
clutd5/2 | MLFMA-FFT | 0.07 | 343,900 32.04s 720 MB
MLFMA 0.07 | 343,900 142.89s | 1570 MB
clut87 MLFMA-FFT | 0.11 487,300 20.83 s 1059 MB
clutl27 | MLFMA-FFT | 0.15 610, 700 25.12s 1156 MB
clutl73 | MLFMA-FFT | 0.19 758,400 34.38 s 1267 MB
corner | MLFMA-FFT | 0.18 591,900 19.33 s 943 MB

Table 3.2: Comparison between the different methods in terms of memory reganmsnand
CPU-time per evaluation of (3.13)y is the volume fraction of the scatterers in the surround-
ing cubeD with side 10\,. Whenever the MLFMA or the subdomain FFT method is not
mentioned for one of the test cases, this means that the available meamnotsufficient for
that method.

We first note that the subdomain FFT method is less efficiemt the FFT method
in case of dense geometries like the test grid “full”, due lhigdner complexity. In fact,
on the test grid “full” and on all other test grids except faiut45”, the subdomain
FFT method could not even be used, because it required mammmehan the avail-
able8 GB. On the sparse test grid “clut45”, the subdomain FFT ntkthelds a faster
matrix vector product than the FFT method, but even here th@mony requirements
are close to the limit.

When we compare the MLFMA-FFT method with the subdomain FFThoge
on the test grid “clut45”, the gain in CPU time and especiallynemory use of the
hybrid method is obvious. In comparison to the FFT methost (@eid “full”), the
MLFMA-FFT method clearly performs better on all sparse gats. The matrix-
vector multiplication is faster and the reduction of therate needs is even more
explicit. Even on the dense problem of test grid “full” the MMA-FFT method
requires less memory than the FFT-method, but it is defdatéztms of CPU time.
Note that most of the-7 GB used by the FFT-method is needed to store the FFT-
vectors and is therefore not affected by how sparse thelgetrittivity profile on the
grid is. Because of thé&(N) storage complexity of both the MLFMA-FFT method
and the FFT method on dense problems like the test grid jfthié hybrid method
will always require less memory than the FFT method on atedty large problems.

Finally the MLFMA-FFT method and the MLFMA are compared or ttame
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cubic mesh and using the same parameters. The MLFMA explatsymmetry to
reuse the aggregation and disaggregation matrices. Wheadoimg so, the aggrega-
tion and disaggregation matrices of oy subdomains with sidg; could be stored
in the available8 GB of RAM. However, even the symmetry adjusted MLFMA could
only be used on the sparsest test grid “clut45/2” with thelsiasubdomains, since
the other test grids required too much memory to store theingsaaction matrices.
For this test grid, the hybrid MLFMA-FFT is almo5&ttimes as fast as the MLFMA
and memory requirements are less than half. It follows tmahtybrid MLFMA-FFT
method is applicable to a much wider range of volumetric [@wis than the MLFMA
and that it also performs better. The test case “clut45i@ttates that dividing the
mesh in smaller subdomains beyond what is necessary to rcimruhe sparsity of
the scatterers is not beneficial in terms of CPU time of the MBFFFT method. On
this example it does reduce the memory use, but this behstvargly depends on the
geometry and is not a fundamental property.

3.7 Choice of the initial guess

Since the total solution time is also proportional to the banof iterations needed to
solve [(3.14), it is important that this numb&t is kept low. Often in computational
electromagnetics, a large number of iterations results fitee ill-conditioning of the
forward problem. A remedy in such a case is the use of somedfipceconditioning.
The domain equation (3.7) is an integral equation of thersg&ind and as a result
is reasonably well-conditioned in general (if the contiaspermittivity is not too
extreme) and it is not so much the large number of iterationstfie solution of (3.14)
that is the problem as the fact that solving the inverse eséatf problem requires the
solution of a large number of forward problems (for a varypggmittivity vectore
and with each of those for varying illuminatioh

Therefore, a more appropriate strategy makes use of thatezpfrward problem
solutions. In [26, 27] it is shown that the number of iteratidv " to solve [(3.14) can
be significantly reduced by means of a “marching-on-in-aimg-technique” provided
that the desired accuracy is not much lower than the relatrar introduced by noise
and the discretization [28]. This technique proposes anuate choice for the initial
guessd, for the solution corresponding to illuminatigrbased on available solutions
which correspond to slightly different illumination andfbject configurations.

Suppose we have a few vectats,, m = 1... M, that can be regarded as approx-
imations ford;. The initial guessi? then is calculated as the linear combination

M
d) =" tmxm (3.37)

m=1

which minimizes the errof L¢d} — ei*||? between the LHS and RHS of (3.14). The
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coefficientsa,,, thus are a solution of the linear system

M
S Lexn ) Lep am = [Lexn) e m/=1,... M. (3.38)

m=1

which is a small system, sindd = 3 or M = 4 is usually sufficient.

In this thesis we propose to use as the approximatiopsto d; on the one
hand a few solutiongl;/, that were computed for the same permittivity vector but
for nearby transmitter positions—so-called “marchingioifumination” [28]—and
on the other hand a Distorted Born approximaﬁlj??, which is calculated as

e P CaE S AV AR i (3.39)

where the vectorg)’” = have elements

Jont = DBEd, (3.40)
+ _

= 9 2q. (3.41)
()

The Distorted Born approximatia#>® thus is the discretized flux density which cor-
responds to the total fieIE?B(r) in the investigation domain, generated by the source
current and the contrast current

TP () = () Br) = j XTI Dl(r) = o D). (342)
which is the product of the new contrast functigiicorresponding to the new permit-
tivity €) and the total field&; obtained for a previous contrast functigh(correspond-
ing to a previous permittivity’) and for the same illumination This approximation
actually represents a linearization of scattering model famction of the permittivity
around the permittivity profile’. Since the matriX¥¥ is sparse and since the mul-
tiplications Z*5°%* can be done with FFT’s, the calculation @f® is fast. Note
further that in[(3.38) only the multiplication df, with d}’® needs to be done, since
the other productfd;, = ell° are just the incoming field vectors which are readily
available. The inclusion of the Distorted Born solutionhie ftnarching-on scheme al-
lows for a simple extrapolation over the permittivity witktdhaving to store multiple
solution vectors for a number of different permittivity fites as would be the case in

a “marching-on-in-permittivity” scheme.
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3.8 Numerical evaluation of the scattered field

So far the focus was on solving the domain equafion (2.353.31) for the total field
inside the domai®. After this, the scattered field still has to be computed inmber

of observation points outsid®, i.e. the data equation (2.37) has to be evaluated. Since
there is no problem with the singularity in the Green’s dgadie can use (3.17) for
this task. Using the expressidn (3.2) for the contrast otirmaed the expansion (3.8)

in (3.17), we can write down the scattered field, due to oma ter¥ ,(r) in (3.8):

Ezcat(rl,i) — WQ,UOdoc |:§(—i- /+ dT/Gb(rl,i7 'r'/) . \Ila(’r'/) (343)
Sa

+ &, dr'Gy(ry;,7") - \Ila(’r’)] , (3.44)
Sa

where we have used the notatiGh, for the electric Green'’s dyadic of the background

medium

k,Z

Gy (r,r’) can be conveniently computed as

Gy(r,v') = (11 + vv) Gy(r — 7). (3.45)

Gy(r,r') = Gp(r—7) K;jR + G 23)?) RR (3.46)
- <1 ~ kb% - (kb1R)2> (I— RR)] : (3.47)

whereR = ||r — /|| andR = (r — 7')/R.

When the scattered field has to be evaluated in a lot of obsenvpbints, the
MLFMA can be used to do this. It is easy to see that the evalnaif Escat(rl,i)a
u, the component along of the scattered field caused by the contrast currents in
subdomainD“, can be obtained with (3.18) ¥ 3(r) is replaced by (r — r; ;)& and
the integration domair® in the left hand side bR3. The same has to be done in
(3.21). To make the process more efficient, the observatartgr; ; should also be
organized in an FMM-tree and a multilevel scheme should lopt@dl. This ensures
that a minimal number of translations have to be carried out.

Finally, the expression (2.47) for the derivatives of thatsred fields, can be
discretized by noting that

E(r) = (3.48)

N
D=+ (1-6)%, ()], (3.49)

%
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where ¥ is the half of®, on SE. Since the forward grid” is a subdivision of
the permittivity gridD¢, the integration withb,, in (2.47) becomes particularly simple
and can be done analytically.

3.9 Conclusions

In this chapter the numerical solution of (2.35) has beeoudised. To this end, a new
hybrid MLFMA-FFT method was presented. The method combihesdvantages of
the HF MLFMA and the FFT method on volumetric scattering peais which can be
meshed using a uniform grid. A flexible subdomain meshingafse scatterers was
introduced and the symmetry in this mesh was exploited toensakne of the more
time and memory consuming stages in the HF MLFMA more efficiétso, a novel
approach employing vector spherical harmonics to reptekenadiation patterns on
the lowest level in combination with an FFT interpolatiorneme for the vectorial
MLFMA was introduced. It was finally shown that the resultihgbrid method is
a valuable supplement to the existing fast methods, bedaisenore efficient on
sparse scattering configurations and it can easily be usadegular FFT solver on
dense problems. Furthermore, when memory is an issue, tleodi low storage
requirements provide a means to tackle very large problehishwwould otherwise
be out of reach.

Although the MLFMA-FFT method reduces the computationa aemory costs
of one matrix-vector multiplication in the iterative satut of the forward problem,
it is desirable to also keep the number of iterations low. HAis &nd, the hybrid
MLFMA-FFT method was supplemented with a marching-on sahéondetermine
an initial guess for the iterative solution of the MoM-systeThis scheme is based on
a marching-on-in-source-position strategy, combinedh wiDistorted Born approxi-
mation to allow for a simple (linear) extrapolation over flemittivity.
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CHAPTER4

Newton-based inverse
scattering

This chapter presents quantitative reconstruction alyos for the 3D inverse scat-
tering problem, which belong to the conventional appro&#ttion 2.3.3). The algo-
rithms in this chapter are based on the Gauss-Newton miatioiz of a cost func-
tion which includes both the least squares data fit cost fomand a regulariza-
tion term. Quasi-Newton optimization using the Broydentéher-Goldfarb-Shanno
(BFGS) update formula is also investigated, but it is codetlithat this method is
outperformed by the Gauss-Newton method.

Two different regularization strategies are proposed. fireeone is a multiplica-
tive smoothing (MS) constraint, which is appropriate whiglela priori information is
available on the scatterers and on the amount of noise orathe ldis also suited for
the reconstruction of strongly inhomogeneous objectsh siscthe ones encountered
in biomedical applications. The second regularizationhoétis the newly developed
value picking (VP) regularization, which is very effectif@r the reconstruction of
piecewise (quasi-) homogeneous scatterers, such as ndmeabgects in industrial or
security applications of inverse scattering.

The rest of the chapter is devoted to two important improvemen the basic
algorithm: the incorporation of constraints on the perimitit with minimal changes
to the algorithm and the use of a subspace preconditionedrL&gorithm to solve
the ill-conditioned Gauss-Newton update systems.
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4.1 The basic optimization problem

4.1.1 The least squares cost function

Let es®(e) be the vector that contains the simulated scattered fieldpoaemts
E;*(r;;)-u,,; (see Section 2.3.1) for all combinations of illuminatiohs(1, ..., NT)
and measurements£ 1,..., N?) and for a given permittivity vectas. This vector
has dimensiolV P = ZZ.N; N[. Furthermore, let theV ’-dimensional vectoe™e
contain the measured data. The least squares data fit cotibfuthen is defined as

1
NIS

FLS(e) = g lle(e) — em|2, (4.)
where N'E5 = |le™es||2 is a normalization constant, such th&t® = 1 fore, =

en/ €0, Yv. Note that, due to the non-linear relation between the géwity and the
scattered fieldsF~* is not quadratic ire. Note further that, to evaluaté’* for a
given permittivity vectore, a multi-view forward problem has to be solved, i.e. one
has to solve the domain equation (2.35) for each transmitlipole. To calculate
derivatives of 7%, (2.35) possibly has to be solved for a number of additiorai-e
tations by receiving dipoles (see Section 2.3.5).

A straightforward approach to the inverse scattering mabWould be to mini-
mize the bare least squares cost function](4.1). Becauseuthber of optimization
variables can become large in 3D inverse scattering prabbemd because the evalu-
ation of the cost functiodm“ is computationally expensive, a global minimization
approach is not feasible, since it would require too many fioxction evaluations.
Therefore, we have to resort to a local minimization appno&e. a minimization
method that relies on local derivatives, although thisodtrces the risk of getting
trapped in local minima in addition to the risk of ending ughe wrong global mini-
mum in case of non-uniqueness.

4.1.2 Newton and Gauss-Newton minimization

Newton’s iterative method for local optimization approxites a non-linear cost func-
tion with a quadratic model based on the function’s first aawbad order derivatives
(the gradient and the Hessian matrix) at the current itematechooses the stationary
point of this model as the next iterate. It has the attradivelamental property of
super-linear convergence if the initial guess is close ghda the solution [1]. How-
ever, when starting further away from the solution, the Mewtorrection may lead
to an increase in the cost function, if at its stationary ptie model is no longer a
good approximation to the function or if the Hessian magirdt positive definite (i.e.
the quadratic approximation does not have positive curgaand hence no (unique)
minimum). Furthermore, for large optimization problems tomputation of second
order derivatives is usually very expensive. A variety ofutan-type methods that
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try to deal with these issues are described in the literahuein this dissertation we
focus on one of these: the Gauss-Newton method with linekear

Let us first give a few definitions. Consider a general costtion F(e). This
function is a real-valued function of th¥< complex variableg, = €, — jel/. We
define a gradient

OF g
de, | _ | Ye
o= |%| %] @2)
o€, 9ee
with g. = g}, becauseF is real, and a Hessian matrix
°F ’°F
Oe, ey, e, O€,
H = |50 9%% (4.3)
e 0€y e} Oer,

with derivatives with respect tq, and its complex conjugaté. These definitions are
equivalent with the use ef, ande/, as independent variables [2], and lead to simplified
notations in the following. For sums of squares the gradagigt Hessian matrix take
particular forms. For the least-squares data effof the gradient is

1 T 1_scat __ ,meas]*
LS |:J [6 € ] :l , (44)

g = NLS JH [escat _ emeas]

whereJ is the NP x N¢ Jacobian matrix containing the first order derivatives ef th
scattered field componentg;, = de5™* /e, The Hessian matrix is

HLS

1 {B JTJ*]’ 45)

“NIS |JgHy B

whereB is aN€¢ x N¢ matrix containing products of second order derivativesef t
scattered field with the data residues,

2 scat\ 1
By, = (a € > [escat 7 emeas]* (46)

Oe, O0e,,

In a Newton optimization scheme the complex permittivitgtee is iteratively
updated as
Ek+1 = €k + Sk, (4.7)

wheresy, is the permittivity correction at iterate given by

S _
{ ’:} =-H;'g,. (4.8)
S

To enlarge the convergence domain, it is better to use tihisctiion as a search direc-
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tion along which the next iterate is located as

Ek+1 = Ek + PrSk, (4.9)

where the positive line parametgy is determined with an approximate line search,
i.e. B is chosen such thaf (e, + O si) is close to a local minimum of along the
search directios;. In this work, the line search is performed with the algarittie-
scribed in [1]. This algorithm requires that the searchdiom is a descent direction,
ie.

OF Al <6}' OF >
- = 731/,1@ —+ Tsu,k
0B 8,=0 ; Oe, e}, -
= [Sf SkH] 9k
= 2§R (Szgc,k)
< 0 (4.10)

In [1] it is proven that an optimization method that searchascessively along dif-
ferent descent paths using the aforementioned approxiliinatsearch converges to
a (local) minimizer provided that the search directionswarormly bounded away
from orthogonality with the steepest descent directigy), .

A widely used alternative for the Newton method in case of swisquares of
non-linear functions, such as the data erfdr®, is the Gauss-Newton method. It
consists of linearizing the functioef“2® in (4.1) around the current iterate as

Ae?ccat — escat (Ek + Sk) _ escat (Ek) ~ Jk5k~ (411)

From {4.11), by identifyinges®® (e, + s;) = €™ and by solving the resulting
system in the least squares sense, the Gauss-Newton goriectF - is given by

-1
k= — (JkH Jk> T [esent — gmeas] (4.12)

Equation[(4.12) is obtained as well from the Newton cormti{4.8) by neglecting
the matrixB in the Hessian matrix (4.5). No second order derivativehefscattered
fields thus are needed. Also, the hermitian matfiX.J is at least positive semi-
definite, hence the update direction (4.12) is never uptilbeed, [(4.12) is of the
form

Sk =—Agecr = —Agey, (4.13)

which satisfies
Shger = —9A g, <0, (4.14)

becaused is hermitian and positive semi-definite. Therefore the dbol(4.10) for a
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descent direction is either satisfied or the search dinestidies along a level contour
of the cost functiors”.

However, the linearization (4.11) may be too bad an appration far from the
solution, possibly resulting in an increase of the cost fiemovhen the update is done
with (4.7). Also, the condition number of’ J typically is large, because the sin-
gular value spectrum of decays rapidly. This is a symptom of the ill-posedness of
the inverse scattering problem (see Section 4.1.4). In smses/.J is even sin-
gular. This situation occurs when the inverse problem iewugtermined, i.e. when
the dimensionV? of the data vector is smaller than the number of unknowiis
Even whenVP > N¢, the system can be under-determined with respect to the phys
ically independent data due to redundancy in the data veetased by reciprocity,
i.e. if both chat(rl,i) -4y, and Efff‘t(ri) - 4; occur in the data vector. Theoreti-
cally, both numbers should be equal and although their medsalues are probably
different due to noise on the data (or due to modelling enndren the data is simu-
lated), the corresponding rows of the jacobian maffigreidentical as can be seen
from (2.47) (by interchanging and (/,4)). This rank deficiency can prevent con-
vergence, because update-directions can be orthogorte sidepest descent vector
(szgc}k = 0). In [3] the convergence of the Gauss-Newton method wasawga
with a Levenberg-Marquardt trust-region approach, whickuees a positive definite
and better conditioned approximate Hessian matrix andivieeps the step sizie ||
sufficiently small. The use of a line search, as in this diasien, also remedies the
problem of a step size which is too large (even if the linedian is no longer valid in
er + Bk sk, we know that the cost function will be reduced), but it doessolve the
problem of a rank-deficient Hessian matrix. The regulaidrestrategies, proposed in
Sections$ 4.2 and 4.3 will take care of that.

Finally, what is meant by aiteration in the rest of the text, is the calculation
of an update direction and the execution of a line searchgatois search direction,
regardless of the iterative algorithm that is used.

4.1.3 Quasi-Newton minimization

The quasi-Newton method consists in approximating the idessatrix in the New-

ton correction[(4.8) with a matrix that does not involve thgliit computation of

second order derivatives. In each iteration this approtéch&lessian matrix is up-
dated based on the change in the gradient with respect toghimps iteration. In this
thesis we consider the Broyden-Fletcher-Goldfarb-Sh#BR&S) update formula for
the inverse Hessian matréf ',

- - TH 610y [ SiyIH) + Hiv, 6,
Hk+1:Hk+<1+7k k’)’k) KOk [ Ok Hk + HEYy0p . (4.15)

557% 557% 557%
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wheredy, = er41 — €x, Vi = Gry1 — g and whereH . is a symmetric matrix for
whichgf H g, > 0, which means that the updates

[sf] = —H,g, (4.16)
Sk

are descent directions. For the first iteration we chddsequal to the identity matrix.
Itis expected that after a sufficient number of iteratiomsrtratricesH ., become close
approximations td%[,;1 [1]. Since [(4.15) directly approximates the inverse Hessia
matrix, only one matrix-vector multiplication is neededcctimpute the quasi-Newton
correction|(4.16). This could be an advantage over the Gilesgon method, where
the solution of a linear system of orddr (see (4.12)), even if this is done iteratively,
can increase the computation time substantially. Unfateiy, we observed a much
slower rate of convergence with this BFGS quasi-Newton é@mantation than with
the modified Gauss-Newton implementation. This will besthated in Section 4.2.3.

4.1.4 The necessity of regularization

Basically, all problems with the ill-posedness of the imeescattering problem are
related to overfitting. Since electromagnetic fields, meagwon any surface outside
the source region, essentially have a limited number ofeegof freedom in finite
precision [4], the information content of the data vectoaligays limited and cannot
be increased beyond a certain point by adding more illuritnatand measurement
positions. On the other hand, the requirement of a high uéisolin the reconstruction
results in a small cell size for the permittivity grigF and therefore a high number of
optimization variables or model parameters. It is cleat thereasing the resolution
will eventually result in overfitting. On top of this, as aidy mentioned in Section
[2.1, noise on the data results in an extra loss of informatidmich already leads
to overfitting with a smaller number of unknowns. In practioginly changes in
the permittivity function with high spatial frequenciesnoat be well resolved and
therefore such fluctuations can grow almost unbounded imgbenstruction. This
results in instability and should be remedied by proper laxization.

To illustrate the seriousness of the problem, we consid& petmittivity profile
in a setting which will be treated more extensively in Chaptelhe target under study
is a circular cylinder parallel to the-axis with radiusd.5\, (), is the background
wavelength) and permittivit@ey, which is enclosed in a larger circular cylinder with
radius);,, and permittivityl.5¢y. The background medium is aii,(= ¢y). This object
is illuminated with 29 line sources parallel to thexis, evenly distributed on a circle
with radius3)\,, around the target and for each illumination, the TM-field sasured
in the same positions. The scattering from such a 2D objetbeasimulated using
a volume integral equation, much like the one used in 3D (®=ti@[6.1). After
simulating the data, Gaussian noise is added to simulatsureaent noise. Let us
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define the signal-to-noise ratio (SNR) as

||emeas||2

SNR =10 logw W

dB, (4.17)

wheres? is the variance of the Gaussian white noise, which is caledlas

0 = e () — e, (4.18)
Here, ¥ is the discrete relative permittivity distribution whictvjthin the applied
discretization, yields the closest approximation to the trelative permittivity dis-
tribution. We also define thaoise levell'N as the data fit error obtained fef:
TN = FL5 (%) (this definition thus encompasses both measurement noisdisn
cretization errors). In the present example the SNR is 20wdiich corresponds to
a noise levell'’Y ~ 0.01 (approximatelyl0% error on the data). Figures 4.1 and
[4.2 show two discretized permittivity profiles. Figlre l4tows the ideal profile®
(FE5 = 0.0104) and Figure 4.2 shows a profile which deviates significamtiynfe®
but yields an almost identical data fif{> = 0.0108). The difference between the
two permittivity profiles is a radially symmetric ripple di¢ formsin(ap)/p, where
p is the distance to the origin anrdis some constant. It is clear that this perturbation
with high spatial frequency goes almost unnoticed in th&tegag measurements. In
order to exclude such large pixel-to-pixel fluctuations wechregularization.

The purpose of regularization can be formulated as folldtedds information to
compensate for the information that is lost due to noise sirtjuincrease the overall
information content. By doing this, it reduces the freedonthie optimization space
and prevents overfitting. The overall result of regulai@ais the choice of (ideally)
one profile among the many that fit the data within the unaestantroduced by the
noise. A good regularization then yields a permittivity fileoclose toe®.
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R(e/eo)

Figure 4.1: A permittivity profile e°.

R(e/eo)

Figure 4.2: A profile that yields the same data fit as the profile of Figure 4.1, but é&shib
perturbation with high spatial frequency.

4.2 Multiplicative smoothing regularization

We proposed the multiplicative smoothing regularizatior[3] as a regularization
which adapts itself to the amount of noise on the data, wittkmowledge of the
noise level. The idea is related to the work of van den Berg Almabakar [6-8]
on multiplicative regularization for the contrast sourogersion method. Habashy
and Abubakar also also incorporated a multiplicative rageér in the Gauss-Newton
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framework [9], but not in exactly the same manner as the oasgmted below.

4.2.1 Modification of the cost function

When using multiplicative smoothing regularization, th&uton of the inverse prob-
lem is sought by minimizing the cost function

FS () =F (e) [1 + aFF (g)], (4.19)

whereF% is a smoothing function, given by

F G-1H-1
Flhie) = D3 lergn—er—10ml
=0 g=0 h=0
F—-1 G H-1
+ Do lergn—erg-ral
=0 g=0 h=0
F-1G-1 H
+ Z lef.g.n — €r.g.n-1]%, (4.20)
=0 g=0 h=0

which is proportional to a discrete version of the exprassio
1 2
— / [Ve(r)|” dr. (4.21)
EO D

Whenever the tripletf, g, h) in (4.20) indicates a cell outsidB¢ (i.e. f = —1,
f=F,g=-1,9g=G,h=—-1orh = H), the corresponding value ef , j is
equal to some fixed relative permittivity valé€&. The most logical choice in most
applications ig? = ¢, /eo.

The addition of a smoothing term to the least squares dataditfunction as in

FL9 () +aFt (e), (4.22)

has the result that the reconstruction algorithm will fasorooth profiles over non-
smooth profiles, much like the extra tetiyi||? in (2.10) favors current vectors with a
small norm. Therefore such a regularization reduces théoeruof degrees of freedom
in the optimization space, since strongly fluctuating péiwitly perturbations, which
would otherwise distort the reconstruction, are excludddwever, as explained in
Section 2.2, the regularization parameidras to be chosen carefully in (4.22) to pro-
vide an optimal trade-off between data fit and smoothnesiseopermittivity profile.
The discrepancy principle, as used in Section 2.2, couldsbd bere as well, in which
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casex is determined such that the corresponding mininainof (4.22) satisfies
FES (e)y =TV, (4.23)

However, since the inverse scattering problem is non-tiaea the solutiore® has
to be determined through an iterative minimization techaiga simple equation as
(2.20) is no longer available and the value fogiven by the discrepancy principle
can only be obtained via a lot of experimentation. Moreosarestimate of the noise
level TV has to be available for this. Other methods for choosing ¢gelarization
parameter exist, such as Generalized cross validatiornlP]Gand the L-curve crite-
rion [13], which do not assume knowledge of the noise levelweler, these methods
still use some a posteriori criteria to determine whethertain choice for the regular-
ization parameter is suitable and hence it is not clear hoawtid repetitive solution
of full optimization problems in their application to noméar inverse problems (see
for example [14]), which increases the computation time.

The incorporation of the smoothing function in a multiptiea way as in[(4.19),
avoids these problems. In (4.19), the weight of the regzagion term is proportional
to 19, the effect of which is twofold:

e An adaptive regularization scheme is obtained, where th&elof the positive
regularization parameteris less critical than with additive regularization. With
additive regularization, the weight of the regularizingntehas to be chosen
large enough to provide enough smoothing in the final recocsbn, but small
enough to allow for a data fit on the noise level, i.-% ~ T, according
to the discrepancy principle. With multiplicative smoat)j the probability of
overregularization is reduced, because the regularizédioelaxed as long as
FL3 is reduced during the minimization of (4.19). It has beeneobsd in all
our numerical experiments involving inversion of noiserapted synthetic data
that 715 is allowed to reach the noise level for choicesxdh a wide range of
values and that this function is not much further minimizedethis happens.
The weight of the regularization thus stays practicallystant from this point
on and ifa is chosen rather large, an appropriately smoothed recantistn is
obtained.

e The optimization space is restricted initially to very srioprofiles and grad-
ually increased to allow for more and more detail in the ratarction. When
the optimization is started from a smooth profile (e.g. a dar@afilled with
background medium)F% has to be increased to obtain less smooth profiles,
which restricts the step size in the initial stages of the-lioear iterative mini-
mization when the weight of the regularization is still lardhis improves the
convergence (the Gauss-Newton linearization becomes vatich.

Note that, in the extreme case of no noise and no discretizatirors TV = 0), the
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cost function”* can be reduced to zero and in such case the regularizatiopletaty
vanishes, as required by the discrepancy principle.

4.2.2 Incorporation in the Gauss-Newton framework

To incorporate the multiplicative smoothing regularinatin the Gauss-Newton mini-
mization framework, we start again from Newton’s methode §hadient and Hessian
of the smoothing functiotF* are given by

= o (4.22)
with Q, = 0F%/0¢, and
H* = E ﬂ , (4.25)

where X is a real and constant matrix withi,, = 02F%/0¢,0¢:. The explicit
expressions for the elements@fandX are
OFR Z OF~
Oe,

4.2
e (4.26)
(f.g.hyec, = 49

i > > o (4.27)

aeyag'; (f,g,h)ECV (f/-,glvh/)EGU 6€f7g,ha€f/7g/)h/
with
FR . )
O€s g1 = O€rgn— Z €f.g' b (4.28)
1o (f,9'W)EBg.q.n
82}‘3 6 if (fagah) = (flvglah,)y
A a- - -1 if (f/,g’,h’) € Bfgh, (4.29)
9¢1,9,10€%1 g1 1 9,
0 else

By 4.n in these expressions represents the set of neighborirgafelell (f, g, k), i.e.
the cells that share a face with céfl g, k). These also include the virtual neighboring
cells just outsidéeDc when(f, g, h) is on the border oD<. As mentioned before, the
permittivity value for those cells is.

Combined with|(4.4) and (4.5), the gradient and Hessianiraitthe regularized
cost-functionF* can be written as

gS = gLS(l + afR) + fLSagR (4.30)
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and

e | {B’ A*}

whereH”® is a complex symmetric matrix with

B' = B(l+aFf) +aJ’ [ec —em]" Qf
+aQ [ — eme] T g, (4.32)
A = J"J(1+aFR) + o [et — emens] QT
+aq [ex — emes] T 4 aNESFLS S, (4.33)
Applying the Newton formula (4!8) t* yields (the indext is omitted in the
following)

As —|—B/*S* _ _JH [escat _ emeas] (1 —‘rOJ}—R) _ Oé./\/'LS]:LSQ*. (434)

Using (4.32) and (4.33) and introducing the linearizatid {), we obtain for the left
hand side of (4.34)

AS—‘rB/*S* — JHJ(l —&-a}'R)s—i—aJH [escat _ emeas} |:QTS+QHS*:|
+ a* {[escat _ emeas]H Aescat 4 [escat _ emeas]T Aescat*}
+ aNLSFLS3s, (4.35)

The optimization is usually started from a constant inpiimittivity ¢, i.e.e; 4, =

e® VYf, g, h. This permittivity vector is the minimizer of # and yields zero fof2.
Consequently, the second and third terms in the right haledadi(4.35) are zero in the
first iteration (and may remain small in a few subsequenaiitens). The data residu
Aemess = [emeas _ escat] ayentually becomes small due to the minimization, such
that all terms except the first one in the right hand side @{#become negligible.
Given this behavior at the beginning and end of the optinmoratve choose to keep
only the first and the last terms. The modified Gauss-Newtarection thus is a
solution of the linear system

(JHJ + A22> §=— (JH [esent — gmeas] 4 AQQ*) , (4.36)

with A2 = aNLSFES /(1 + aFR).

The matrixJ?J + \2X in (4.36) is always positive definite for2 £ 0, since
3 can be proven to be strictly positive definite, and the rigimichside off(4.36) is
proportional to— (gf)*. The presence 02X thus ensures a strict descent direction.
Therefore, the algorithm will converge towards a minimuntloé regularized cost
function, whether the approximations that led(to (4.36)ergwod approximations or
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not.

Some additional insight in the effect of the regularizatiam be obtained by ob-
serving that the update (4.36) is the solution to the folimMiegularized linear least
squares problem:

min || Js — Ae™ |2 4 \2||LTs + L', (4.37)

where L is the Cholesky factor o2 = LL”. The second term in (4.37) can
be interpreted as a generalized Tikhonov regularizatiom {&5] (see Sectioh 2.2).

It is minimized whenXs = —Q*(e), hence also whef®2*(e + s) = 0, since
3s = Q%(e + s) — Q*(e) (FE is a quadratic function). This term thus tries to
minimize F, or fluctuations in the permittivitg, which seems to be more appro-
priate than smoothing the correctianas was done by several authors with regular
Tikhonov regularization, e.g. [3, 16, 17]. The regulaiizatparametei? in (4.37) is
proportional to the data errdfF> — see [17] for a similar strategy in case of regular
Tikhonov regularization — hence the regularization terra &idarger influence in the
beginning of the minimization.

4.2.3 Examples

In this section some early 3D reconstructions from simdlated measured data are
shown, which were presented in [5]. In Chaptér 5, some makstie and more
challenging reconstructions will be presented.

Reconstruction of a heterogeneous lossy dielectric cube

We consider a lossless dielectric cube in air, hence= ¢j, at a frequencyf =
47,7 MHz (Ao = 27 m). It has sidé).6)\q (3.77 m) and permittivite = 1.5¢; and
contains a smaller, lossy cube with sid@)\, (1.89 m) and permittivity = (2—2j)eo.
The origin of the reference system coincides with the ceoft¢he larger cube and
the center of the smaller cube has coordinate8.({5\g, —0.05\g, —0.05X) or (-
0.31 m, -0.31 m, -0.31 m). For the inversion dom&irwe choose a cube with side
o (6.28 m), that is centered on the origin. Figlrel 4.3 showsré¢tative complex
permittivity in three orthogonal slices through. We perform reconstructions for
two dipole configurations: one yielding many and one yiajdiew data. In the first,
“many data”, configuration, shown in Figure 4.4 (a), there &2 dipole positions
regularly spaced on each of 6 meridional circles with r&di# 2)q (12.57 m). In each
position, a transmitter is oriented along two polarizasicthed- and-polarizations,
and for each illumination the scattered field is measuredgibese two polarizations
on receivers in all positions. In the second, “few data” furation, shown in Figure
[4.4 (b), only 3 meridional circles and only tidepolarization are used. This results
in NP = 20736 data for the first andv’ = 1296 data for the second configuration.
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In this paragraph, these data are simulated using the samartbsolver as the one
employed in the reconstruction algorithm, and the diszagiton grids for the inverse
and forward problems coincide. This allows us to test thevemgence behavior in
ideal conditions. We choosE = G = H = 10, and consider the permittivity in
each cell as an unknown, hence the number of reconstrucigailes isV¢ = 1000
and the number of field-unknowns in the forward problenis= 3300. With the
“few data” configuration the number of data thus is barelgéarthan the number
of unknowns,NY ~ N¢. Moreover, there is some redundancy in the data due to
reciprocity, so the “few data” configuration is actually endletermined. The “many
data” configuration is well over-determinedy;” > N¢. For all reconstructions in
this paragraph, the regularization parameter iss 10~* and the initial guess is air
(e =1).

(a) Real part (b) Imaginary part

Figure 4.3: The exact relative permittivity along orthogonal cross-sections oféterbgeneous
lossy dielectric cube.
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(a) Configuration 1 (b) Configuration 2

Figure 4.4: The dipole configurations for the heterogeneous lossy dielectric cube.

Figurel 4.5 shows the root mean square relative recongiruetrorAe’* <, de-
fined as

Acavs _ | Lo — P 4.38
€ = EZ?a (4.38)
v=1

epl?

and the regularized cost functigf® as a function of the number of iterations. Let
us first discuss the reconstructions from noise-free datee tireshold for the for-
ward iterative solver BICGSTAB is set to a relative accuraéy0~¢, both for the
computation of the simulated data and for the reconstmstid he reconstruction it-
erations are stopped when the cost function is very sifall< 10~8. It can be seen
on Figuré 4.5(b) that the cost function rapidly decreasesnnpplying the modified
Gauss-Newton method, for both the “many data” (plain line) &ew data” (dashed
line) configurations . However, Figure 4.5(a) shows thatrée®nstruction error de-
creases more slowly for the “few data” configuration. Aftefew asl 1 iterations, the
“many data” configuration yields an almost exact reconsimnqAe’*M S < 0.01) of
both the real and imaginary parts of the complex permitivithis is illustrated with
images along the three orthogonal slices in Figlres 4(@ja)With the “few data”
configuration the images and profile show small artifacts, Fgures 4.6(c)-(d) and
the profiles along the-axis in Figure 4.7, respectively.

Let us now consider data with 30dB additive Gaussian noisé;wcorresponds
to a realistic SNR. The threshold for the forward iteratieéser BICGSTAB is now
increased td 03, since it would be a waste of effort to solve the forward peotl
to an accuracy far beyond the noise level. With the modifiedsSaNewton method,
the reconstruction errahe’** decreases and then starts to increase again at a cer-
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tain point, as shown by the plain and dashed curves with esossFigure 4.5. This
happens when the data error (or least-squares cost fupctaches the noise level,
i.e. FI5 ~ 1073. The regularized cost functiaR® hardly decreases from this point
on and the tiny reductions are accompanied by an increake iegjularizing function
FI. This behavior is often called “semi-convergence”. In thesgnce of noise on the
data, we thus conclude that the stopping criterium shoulsbised on the least squares
cost function and the noise level or on the loss of convergeviten considering the
regularized cost function, since this allows for the detecof the semi-convergence
point during the reconstruction. In the examples presehézd, the reconstructions
thus are achieved after 3 iterations only. From the imagdpefile in Figures 4.6(e)-
(h) and Figure 4.7, respectively, it appears that the nass degrade the reconstruc-
tions, but the boundaries of the outer and inner cubes draveti reconstructed and
valuable quantitative information on both the real and imaxy parts of the complex
permittivity can still be retrieved. Note again that in Rigl.5 the cost functions of
both dipole configurations coincide, and that the recontittn error behaves better
for the “many data” than for the “few data” configuration.

Figurel 4.5 also shows a result obtained with the BFGS quasitbh algorithm,
applied to the regularized cost functigi’, for exact data and the “few data” configu-
ration. The algorithm converges very slowly in comparisathwhe modified Gauss-
Newton method: after 100 iterations the reconstructioarasrstill 107% and the cost
function is reduced ta0~* only. Such behavior was noticed in all our inversions with
the BFGS-method, as well as in earlier 2D work [18]. The athge of not having to
solve a linear system to obtain an update direction thusnsptetely annihilated by
the large number of iterations required to converge to tlsérele accuracy.

o
.
S

._.
S,

~ee-_d

._.
S,

H
°,

----- ~e- Conf. 2, BEGS, no noise e,
¢ | -«-- Conf. 2, GN, noise
---- Conf. 2, GN, no noise
—— Conf. 1, GN, no noise
—— Conf. 1, GN, noise

12 14 0 2

regularized cost function
5

RMS reconstruction error
o

A‘l é . é . 1‘0 4 6 . é . £0 1‘2 14
Number of iterations Number of iterations

(a) (b)

Figure 4.5: The RMS relative reconstruction error (a) and the regularized costitin (b)
versus the number of iterations for the reconstructions of the heterogerossy dielectric
cube, for the “many data” (Conf. 1) and “few data” (Conf. 2) dipobmfigurations, with the
modified Gauss-Newton (GN) and the BFGS quasi-Newton (BFGS) methsidg exact or
noisy (SNR =30 dB) data.
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(a) Conf. 1, GN, no noise, real part (b) Conf. 1, GN, no noise, imaginary part

[N

(c) Conf. 2, GN, no noise, real part (d) Conf. 2, GN, no noise, imaginary part

(e) Conf. 1, GN, noise, real part (f) Conf. 1, GN, noise, imaginary part

Figure 4.6: Reconstructed relative permittivity corresponding to the curves in Figyére
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(h) Conf. 2, GN, noise, real part (i) Conf. 2, GN, noise, imaginary part

Figure 4.6: Reconstructed relative permittivity corresponding to the curves in Figg,econ-
tinued.
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(b) Imaginary part

Figure 4.7: Profiles of the relative permittivity along theaxis for the reconstructions of Figure

4.6.

Reconstruction of a homogeneous dielectric sphere

We now consider a lossless homogeneous dielectric sphaneviiith a radiug.25)

or 1.57 m (againf = 47,7 MHz) and permittivitye = 2¢,. The origin of the ref-
erence system and the center of the sphere coincide. Famthision domairD we
again choose a cube with sidg (6.28 m), that is centered on the origin. A dipole
configuration identical to the “many data” configuration drfr the previous para-
graph is used, except that the radius of the meridionalesrolow is divided by a
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factor 2, R = Ao (6.28 m). The total number of scattered field data thus isnagai
NP = 20736. These data are now simulated using the full-vectorial yditaMIE
solution, thus avoiding “inverse crim@f We choose again the same discretization
grids for the forward and inverse problems with= G = H = 20, hence the number
of reconstruction variables i¥¢ = 8000 and the number of field-unknowns in the
forward problem isN = 25200. This discretization is actually too fine in terms of
the wavelength, a§ = % usually is recommended for a forward solution, but we
did so to reduce the discretization noise introduced by fineiscal boundary. This
discretization noise was estimated by comparing the aoalpt discretized scattered
field solutions, yielding a SNR of 27dB. The threshold for thievard iterative solver
BICGSTAB is set tol 0~ and the stopping criterion for the modified Gauss-Newton
optimization is chosen a&~® < 2. 1073. The regularization parameter again is
a = 10~* and the initial guess is air.

Figurg 4.8 shows the reconstructed images along the ontlabgmoss sections, ob-
tained after as few as 3 iterations, comprising a total of Giriew forward problem
solutions, including the line-search iterations. The shapmensions and real part
of the permittivity are well reconstructed and the imagynaart of the permittivity is
small, as expected. This also appears from the profiles dlengraxis in Figure 4.9.

(a) Real part (b) Imaginary part

Figure 4.8: Reconstructed relative permittivity aft8riterations of a homogeneous dielectric
sphere € = 2¢o) with radius0.25)\, from analytic data. The white contour shows the bound-
aries of the actual sphere.

1The term “inverse crime” is used to describe a numerical inearexperiment where the data is gener-
ated with the same forward model (same formulation, same dizatiein, etc.) as is used in the inversion
algorithm. Such an experiment might not reveal systematic®inate forward model.
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Figure 4.9: Profiles of the relative permittivity along theaxis for the reconstruction of Figure

4.8.

A homogeneous cube: reconstructions from experimental dat a

We now present reconstruction results from experimentt é& a homogeneous
polyethylene cube with permittivity = 2.4¢, and side 8 cm, surrounded with air. The
scattered fields were measured in the bi-static polarimée-space measurement
facility of Institut Fresnel, Marseille, France, as pargdirst measurement campaign
conducted on 3D obijects, after the successful completioanoéxperimental data-
base for quasi-2D objects [19]. We refer the reader to [20hfdetailed description

of the Fresnel measurement set-up. In this section, théablaidata are limited to
measurements of theecomponent of the scattered field along an arc of a circle in
the zy-plane with radiusR = 167 cm and centered on the center of the cube. The
z-polarized transmitting antenna also moves on this ciféigure 4.10 (a) shows the

5 transmitter positions, at angles. ,, = kn/8 for k € {—2,—1,0,1, 2} and Figure
14.10 (b) shows the receiving arc for a transmittepaty. For a transmitter apr j,

the receiver positions range fropy. ;, + 7/3 to o1, + 47/3 in steps of 1 degree, or
Apr = m/180.

In earlier work [21] we found a good agreement between thesasored data
and simulations obtained with a 3D-BICGSTAB-FFT solverddferent frequencies.
The transmitter was modeled as an elementary dipole andbaatadn factor for each
frequency was derived from the comparison of the simulatedraeasured incident
fields in one point, i.e. in the receiver positigix = 7 opposite to the transmitter
positionpr = 0. Also, a SNR~ 30 dB at 2 GHz and SNR- 23 dB at 4 GHz was
determined by comparing the calibrated measured and diedusgattered fields.

The limited data on a circle in one plane as described abaeatr sufficient
for a successful 3D inversion. However, since we know thatsitatterer is a cube,
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we have exploited symmetries to extend the measurementstétyon with respect
to the origin to two additional circles in thez- andyz-planes, and for each of the
circles to extend the illuminations to 16 transmitter posis with Apr = 7/8. Of
course the polarization of the dipoles is rotated togethér the circles. Also, for
every transmitter position, we use only 43 receiver pos#tjovith Apr = 7/32.
The resulting antenna configuration is shown in Figure |4viliere N/ = 48 and
NI = 43,Vi.

The inversion domairD is a cube with side 15 cm and it is discretized into cells
with sidel cm, henceF' = G = H = 15. The number of reconstruction variables
thus isN¢ = 3375. Since the number of data is only” = 2064, the problem is
under-determined. Therefore data at two different fregigen at 2 GHz and 4 GHz,
are used. AR GHz the grid for the forward problem coincides with the pédtivity
grid, resulting inN = 10800 field unknowns, but at GHz the grid for the forward
problem is twice as fine, with = 0.5 cm. This givesN = 83700 field unknowns.
The threshold of the BICGSTAB iterative solver for the fordigroblem is set to
10~2. The initial estimate is again air.

At 2 GHz the algorithm, now witix = 10~°, needed 3 iterations to reach the
stopping criterionF S < 1073, At this point the reconstruction error was:-#MS5 —
0.19 and further iterations yielded no improvements. Imagesgilihe orthogonal
cross sections of the reconstructions at 2 GHz are givengar€i4.12. The total
execution time was abowt® minutes and a total df multiview forward problems was
solved. Next, this result was used as an initial estimata fubsequent reconstruction
at 4 GHz (Figuré 4.13), which took only 1 iteration to reacleeanstruction error of
AefMS — (.17 and the stopping criterioF™“® < 5 - 10~3, which again proved to
be sufficient since further iterations did not reduke’* . This time, because of
the greater number of field unknowns, the execution time washntonger: about 1
hour and 50 minutes for three multiview forward problemsguee/ 4.14 shows the
relative permittivity profiles along the-axis and Figuré 4.15 displays the evolution
of the reconstruction error along the complete reconstmctAlthough only limited
experimental data is used in this example, the modified Glesgon method yields
an encouraging result.
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Figure 4.10: Source positions (a) and range of receiver positions in grey for thresaty = 0
(b) used to collect the experimental data.

Figure 4.11: Antenna configuration used for the inversion from experimental ddta.efcir-
cled antennas act as both emitter and receiver.
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0.3

(a) Real part (b) Imaginary part

Figure 4.12: Reconstructed relative permittivity of a polyethylene cube=(2.4¢,) with side
8 cm from experimental data atGHz, after3 iterations witha = 10~°. The white contour

shows the boundaries of the actual polyethylene cube.

(a) Real part (b) Imaginary part

Figure 4.13: Reconstructed relative permittivity, starting from the result of Figure atter1
iteration at4 GHz and witha = 10~°. The white contour shows the boundaries of the actual

polyethylene cube.
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Figure 4.14: Profiles of the relative permittivity along the-axis for the reconstructions of a
homogeneous dielectric cube from experimental dataGitlz (a) andt GHz (b).
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Reconstruction & GHz

Reconstruction a GHz

0.21

! Number of iteratidns

Figure 4.15: Evolution of the reconstruction error for the inversion, correspontbrigigures

4.12 and 4.18.

4.3 Value picking regularization

The multiplicative regularization strategy of the prevd@ection reduces the freedom
in the optimization space, but it does so by keeping the &tcoction smooth, which
is not very suitable for piecewise homogeneous permigtpibfiles such as the ones
presented above, since the sharp interfaces in such praféesmoothed away. The
level of smoothness depends on the noise level — lower neigsds| allow for less
smooth profiles — but for realistic noise levels, the recatsions, by their smooth-
ness, deviate relatively much from the actual permittipitgfile.

Regularization methods that allow edges in the reconstrugthile still mitigat-
ing unwanted fluctuations in homogeneous regions have beezlaped for image
processing and can be applied to the electromagnetic ensaattering problem as
well. Total variation (TV) regularization [6, 7,22, 23] ine example. It satisfies a set
of unifying criteria, proposed by Charbonnier et al. [24hieh determine whether a
regularization function is edge preserving. Such edgespveyy regularization meth-
ods are closely related to Markov Random field approachdsafb have been used
in microwave imaging [26,27]. Also methods based on levetesghniques are used in
inverse scattering [28, 29]. Both approaches effectivibmafor piecewise constant
reconstructions, but achieve this in different ways. Edgs@rving regularization, for
example, penalizes pixel-to-pixel differences unlesy #re large enough, in which
case it is assumed that they correspond to edges in the praofiere is no distinct
threshold below which differences are smoothed out and @ldvch they are al-
lowed to exist, but rather there is a transitional regionolitis encoded in potential
functions. Level set techniques on the other hand implicitily optimize for permit-
tivity profiles that consist of regions of constant permaityi and therefore naturally



4.3 Value picking regularization 87

allow for edges in the profile. Both methods have been used suitcess, but some
possible disadvantages may be noted. On the one hand, thiidefof the potential
functions in edge preserving regularization generallyliegthe choice of some free
parameter which tunes the aforementioned transitionaémeguch as) in the TV
scheme of [6],8 in [23], § in [24] anddg andd; in [27]. On the other hand, it ap-
pears to us that the use of level set methods in situatiofismdatre than two different
permittivities is somewhat complicated.

In this dissertation, we propose a new regularization sehahat we call Value
Picking (VP) regularization. It combines simplicity of itenentation with an ability
to reconstruct piecewise constant, or approximately piesseconstant permittivity
profiles. Moreover, there is no need to determine additipaedmeters apart from the
regularization parameter. The idea is to provide a limitechber of reference permit-
tivity values, the VP values, from which the regularizattoas to pick one for each
permittivity unknown in the inverse problem. The choice particular VP values is
made through the minimization of a choice function for eveeymittivity unknown,
constrained by the simultaneous minimization of a cla$féest squares data fit cost
function. This basic idea also has been explored in [30-@2)ihary objects [30,31]
or for one extra permittivity value [32]. However, the cheitinction in this disserta-
tion is different from the one used in those previous workeré is no limitation on
the number of permittivity values and we do not assume theal&es to be known in
advance. Rather, they act as auxiliary variables whichlapeagtimized for. Even the
number of VP values is updated in the course of the iteratiBtesrting from a severe
restriction with only one VP value, more VP values are gréigwalded in a stepwise
relaxed VP (SRVP) regularization scheme until a numberashied which allows for
both a good data fit and a reconstruction which is close teepiese constant. Because
the VP regularizing function is “less than quadratic”, indze elegantly incorporated
in the Gauss-Newton algorithm through a sequence of quadgroximations. This
yields a simple half quadratic minimization algorithm, 8anto the one in [24]. It will
be shown that the VP regularization scheme yields accueatmstructions. Further
research is needed to find out how it compares with variousstyh edge preserving
regularization, but an advantage may be that it relies ortaiyalifferent principle.
Indeed, VP regularization does not operate on the spasitiiflition of the permittiv-
ity. Instead it clusters permittivity values in the compjalane. Therefore, it might
also be useful in cases where one applies a different, nei-pased parameterization
of the permittivity. Moreover, the framework naturally@iis for the incorporation of
a priori knowledge on the permittivity values.

4.3.1 Modification of the cost function

The VP regularized cost function proposed in this work is

FVP(e,e¢) = FL9e) +vFF (e, ¢), (4.39)
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where~ is a positive regularization parameter. The Value Pickegutarizing func-
tion 7 is given by

FPe,e) ==Y ffle—al, . .la—cp ), (4.40)

where f* is the P-dimensional P < N°¢) choice function and where the auxiliary
variablesc, are denoted the VP values. One of these VP values, more saéyitip,
is fixed to the known relative background permittivity, ic@. = €5, /¢, and theP — 1
other VP values are collected in the vectoiThe cost function is minimized for both
€ ande.

The choice function of dimensior, f” : RY — R, (Ry is the set of non-
negative real numbers), is defined as

fp(ul,...,uP):FP(ul,...,up;O), (4.41)

whereF'” is defined and evaluated through the recursion formula

FP(uy,...,up;z) = (up + x)FPZif(ullﬁl.Ll_i W:ji_;:l = (4.42)
and
F'(uy;z) = uy + . (4.43)
For example, the cases with= 1, P = 2 and P = 3 yield:
ffu) = w (4.44)
uiu
Fug,ug) = ™ 122 (4.45)

—|—u2—|—u3)
3(uy, ug, u = s (tn . 4.46
Pluus,us) = S+ ) (ua + wg) (4.48)

The definition of the choice function is discussed in morailiet Appendix B, where
its relevant properties are also proven.

As is readily seen from expressions (4.44)-(4.46) and foega P from Theo-
rem/B.4 of Appendix B, the VP functio&”" is minimal when VP values, can be
found such that every optimization variakleis equal to one of these VP values, i.e.
FP = 0 for permittivity profiles with at mostP different permittivity values. The
minimization of (4.39) thus favors this kind of permittiyiprofiles. To our knowl-
edge, the choice functioh (4.41)-(4.43) has not been usstvlkre. Its definition is
the result of three major demands: (i) it should be zero if @amlg if one or more of
its arguments are zero, (ii) it should be symmetric in itauargnts and (iii), for ease
of use in optimization algorithms, its order should not gase for increasing, i.e.
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the function should be bounded by a polynomial function vaitfixed degree, inde-
pendent ofP. A function like f© = w1 -us ... - up, as is used in [8], does not satisfy
the third demand. Because of Conjecture B.1, the funcfidndefined in((4.41), is
less than linear and hence the functiBfi is less than quadratic.

When approaching the minimum of (4.39) during the optim@atia specific VP
value is picked from{cy, ..., cp} for every permittivity unknowre, and the differ-
ence| €, — ¢, |*> between the considered permittivity unknown and the cha&en
value ¢, is minimized. Thanks to the particular form of the choicediion, these
choices are made in an intuitively attractive way. To iniggge this, the VP function
(4.40) is rewritten using Theorem B/11:

N° P
1
FPe,e) = N ZZbiV(s,c) e —cp % (4.47)

v=1p=1

which can be seen as a weighted sum of the penalty functiens- ¢, |* where the
weightsb!”,, are calculated with the weight functions defined in (B.39)

bh(e,e) =Bl (e, —c1 ... | ew —cp [?). (4.48)
Following observations can be made:

o Every time the differencee, — ¢, | between the permittivity unknows, and
the VP valuec, becomes much larger than the differentes — ¢,/ | between
€, and the other VP values, (p’ # p), the corresponding terbfu | e, —cp |?
vanishes in (4.47). Thisis a direct result/of (B.25). It diaplies that the weight
bﬁ , approaches zero and thatdoes not contribute to the regularizationepf

o If | e, — ¢, |[<| & — ¢y |, Vp' # p, only the termb]”, | €, — ¢, |* is retained
in (4.47) and we havé/, ~ b}, = 1andb), , ~ 0, forp’ # p, which is
compatible with Theorem Bl9. This means that the regulddamawill try to
forcee, = c,.

o If k differences ¢, — ¢, |, forp € I C {1,..., P}, are of comparable size,
but much smaller than the differencesefwith the other VP values, only
termsb , | €, — ¢, |* will remain in the summation (4.47) with weight§ ,
somewhere betwedhandl. Moreover, it can be derived from Theorém B.10
that

Db, lew—cy P<|e,—cp |’ Vpel, (4.49)
p'el
which means that the sum of all the penalty terms correspgntdi ¢, con-
tributes less tao (4.47) than a single penalty term with urgtghit does. This
way, the regularization will not force a decision too sooth# data fit does not
provide enough driving force for it.
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e Itis possible that two or more VP values merge in the courdbefninimiza-
tion. P thus can be larger than the actual number of different péwitigs.

Summarizing, whenever a permittivity variable becomeseaido one specific VP
value than to the other VP values in course of the optiminatite regularization will
try to force equality with this VP value. When there is no clpeference, no choice
will be made apart from disregarding VP values that are bidfar away from the
considered optimization variable. The 3D plot of the weiagiﬁy on the permittivity
grid can be considered aghoice mapwhere values close tbindicate a choice for
the VP valuec, and values close t0 indicate thatc, has been disregarded in that
position on the grid.

4.3.2 Incorporation in the Gauss-Newton framework

The minimization of the cost functioh (4.39) is performedaiernately updating the
permittivity profile and the VP values. To update the perimiiit vector e, an approx-
imate line search [1] is performed along a modified Gaussibiewescent direction.
The VP values, subject to upper and lower bounds on real aadiimary parts, are
then updated using a sequence of active set minimizatiogeaafratic functions that
bound the VP functio¥” from above.

The Gauss-Newton Descent Direction for the permittivity

Starting from the permittivity profile; and the VP vectory, in iteration & of the
minimization process, a search directigpis calculated fog, by applying a Gauss-
Newton method. This search direction, however, is not tiyemmputed from the
cost function[(4.39), but from a modified cost function

FC e c;ien, c) = FF¥(e) +vQ" (e, cien, c1), (4.50)
with
1 N¢ P
oF (e, ¢ e, c1) = EZszﬁy(sk,ck) e, —cp 2. (4.51)
v=1p=1

The difference between (4.51) and (4.47) is that in (4.5&)wheightsb”, are com-
puted in(eg, ¢x) and then kept fixed whefz, c) changes. Because of Theorem B.11
and Conjecture B.1QF boundsF* from above and touches with” in (e, cz).
Therefore, taking a reduction step (iay, c;) based onF? will also reducer"”.
The use of (4.50) instead of (4.39) facilitates the incoaion of the VP regulariza-
tion in the Gauss-Newton framework. The gradight and Hessian matridH @ of
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FQ are given by

g? = g"¥+4g" (4.52)

HY = HY +~HPT, (4.53)

where the gradient vectgr™S and Hessian matrid ©¥ of the least squares data fit
are given by[(4.4) and (4.5). The gradient vegjérand Hessian matri¥ ” of the
function QF are given by

QP
P
g = (P> (4.54)
Q
p [0 XF
H= {zP 0] (4.55)
with
o0F 1 E
Q7] = T (ecenen) = = S b (ener) (6 —¢p) . (4.56)
P 0?QFf 1 E
{2 } = S (e,c;smczc):5U,vﬁ2bﬁy(sk7ck). (4.57)

p=1

Applying Newton’s method yields an equation for the seailichation sy, in iteration
k

HY [Sk} =g, (4.58)

where the subscrigtindicates quantities evaluated(i, ¢) = (e, i ). In the Gauss-
Newton approximation, Newton's formula (4.58) is appliéea linearization of the
scattered fields®* as a function ok, i.e. the matrixB in (4.5) is neglected. This
yields the Gauss-Newton update system

(THT5+ 225 ) s = — (TH [erea — eme=s] + A7 (Q,f)) . (459)

where the trade-off paramet&? is given by\? = ~|le™s||2 = VL5, SinceJ ' J;,
is at least positive semi-definite, and sirEg is a diagonal matrix with strictly posi-
tive diagonal entriess;, again is a strict descent direction. Moreover, towards titk e
of the minimization, when VP choices have been made for gremnittivity variable,
the matrix>1 approache¢l /N¢)I y-, wherel is the N¢ x N¢ unity matrix.

Note that, although the search direction is derived fronftinetion 7, the line
search along this direction is performed on the actual eosttfonF.
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Updating the VP values

After updatinge, to €411 as described above, an optimization éto obtaincy, 1 is
conducted. This step reduces the VP regularizing functiga.B9) without modifying
the data fit75. The optimization forc is done by generating a sequence of VP
vectors{c; }, starting fromey = ¢, wherec; is the solution of the constrained
guadratic minimization problem

cL41 = argmin QP (ert1, ¢ E011, 1), (4.60)

subject to the upper and lower bounds

(p,7,u) : R(ep) <cpuy p=1,...,P—1, (4.61)
(p,m,1): R(cp) >cpyy, p=1,...,P—1, (4.62)
(pyi,u) : S(ep) < c;u, p=1,...,P—1, (4.63)
(p,3,1) : S(ep) Zc;’l, p=1,...,P—1. (4.64)

SinceQF (ex41,¢; x4 1, ¢;) touchesF? in the point(ex. 1, ¢;) and since

OF (ep11,¢ €841, ¢1) > FF(er11,c), every step in this scheme will reduce’.
The iterations are terminated for= L, such that|cy, — c;_;|| < T¢, some small
threshold. We then conclude with +; = cr..

The minimization problen (4.60)-(4.64) for evdris solved using a simple active
set method which is a problem-specific reformulation of teaegal quadratic active
set method described in [1]. The iterations of this methategate a sequende,,, }
which starts fromey = ¢;_; and the associated vectmf o and matrix'E.f , which for
generalm are defined as

oQr

P
|:Alm:| = (€k+17 Cm; €k+1, Cl)
| D 801,

1 X

= _ﬁ Z biy(€k+1, Cl) (€k+1,y — Cm)p>* s (4.65)

v=1

20P
=, = s

= W(Ekﬂrh Cm; €k+1, Cl)
P~ q

N
1
= 5p,qﬁ Z biu(Ek-i-l; ). (4.66)

v=1

The iterations proceed as follows:

1. Determine the set of active constraifis A constraint is said to be active if it
yields an equality in (4.61)-(4.64).
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2. Calculatee,,, with

{All?mj|
P

Acm, e (4.67)
N

L

R(Acpm,p) =0, if (p,r,u)€la or (prl)els, (4.68)
S(Ackp) =0, if (pd,u)€la or (p,i,l)€ls, (4.69)

where [(4.68) and (4.69) possibly overwrite the resulf 067%. The first line
returns the updatéc,, such that the VP vectar = ¢;_; + Ac,, withm =0
is the solution to the optimization problem (4.60) if no coamts are imposed.

3. Determine the smallest positive valueifiet it be3,,, such that the line
c(f) = cm + fAC, (4.70)

violates a presently inactive constraint and determinectireesponding con-
straint(p, a,b), witha =rora =diandb =wuorb = 1.

4. If B, < 1, pUtemy1 = cm+BmAcy,. Then calculate!xferl and addp, a, b)
to 4. Return to2.

5. If B, > 1 (including infinity), putc,,+1 = ¢, + Ae,, and calculateAme.
Then, for every constraint ify, calculate the projection of(Ame)* on the
direction in the complex plane, which is perpendicular tattbonstraint and
pointing outward from the constrained optimization domafrthe smallest of
these projection values is positive or equal to zero, teateiwithc; 11 = ¢y 1.
Else, remove the corresponding constraint frhprand return t@.

Note that the VP values can be initialized at random with@irtbonstraints (4.61)-
(4.64). The only limitation is that their initial values akid not coincide. The pre-
sented algorithm treats identical VP values (with the saomstraints) in an identical
fashion, so once merged, two coinciding VP values will remdentical during the
rest of the reconstruction.

Further analysis

In this work, the assumption that the desired permittiviéggtors? consists of only a
few different permittivity values is used to regularize theerse scattering problem
and is not strictly imposed throughout the minimizationjsathe case, for example,
in inverse scattering algorithms using level set methods.aAesult, the condition
FP = 0 generally is not satisfied exactly for the final reconstarcti Indeed, it is
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possible to prove the following statement (see Appendiy B.3
VFP(e,e)=0 < FP(e,c)=0, (4.71)

which means that a stationary pointBf’ always is a global minimum ofF”. There-
fore, in a minimum of the cost function (4.39) wh&¥erV ¥’ = VFLS +AVFF =0,
there are two possibilities:

a) VFP =0 and therefor& L5 = 0 andF¥ = 0.
b) VFP #£ 0 and therefor&/ 725 #£ 0 and F¥ £ 0.

Case a) implies that the minimum of the total cost functioal$® a minimum of the
least squares data fit and exactly consists of at mRodifferent permittivity values.
This is not very likely to happen when the data is noisy, eglgavith P < N€. The
resulting reconstruction thus is a trade-off between dagati the conditio” = 0,
as is expressed by case b). As a result the permittivity umkeowill not perfectly
coincide with the VP values, but will rather be clustereduaiehthose VP values in
the complex plane.

4.3.3 Stepwise relaxed VP regularization

The algorithm described in sectibn 4.3.2 can become trajgpldtal minima above
the noise level. Such spurious minima are likely to be inficei in the cost function
since the VP regularizing functia” has multiple (global) minimizers: every per-
mittivity profile consisting of onlyP different permittivity values that lie within the
constraints imposed anandec yields 7 = 0. To avoid this problem, one could use
the VP regularization as a post processing step which dtartsa reasonable initial
estimate, obtained for example with the multiplicative sithing regularization as de-
scribed in Section 4/2. In such approach it is crucial thattta fit which corresponds
to this initial estimate is sufficiently larger than the reolsvel such that the data fit
cost function can guide the value picking process duringftinher minimization.
However, it is then necessary to find a good criterion for glwitg from smoothing to
VP regularization.

We propose a different strategy. Let us first consider theeme case®® = N¢
and P = 1, where the optimization foe is straightforward. The case = N°¢ yields
¢, = €, for everyy, which results inF” = 0, @ = 0 andx” = (1/N)Iy-. Asa
result, the update system (4/59) is reduced to

2

A
(Jf Ji+ N61N6> sp = —Ji et — emer]. (4.72)

This update equation has been used by many authors, e.§, [F]1 It results from
minimizing the non-regularized least squares cost funcfié® instead of(4.39) and
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applying a regularization only to the linear Gauss-Newtahpsoblems. This ap-
proach can be regarded as a Levenberg-Marquardt minimizatgorithm [1, 3] ap-
plied to F5. Since the minimum ofF%* generally is not well defined, the perfor-
mance of this algorithm is significantly reduced in the pneseof noise. We could
say that this approach does not yield an actual regularigledien. The casé® = 1
requires no optimization fat, because the only VP valug is kept fixed and equal to
en/€o. It results in the cost function

F'P(e,0) = F5(e) + Ll — v, (4.73)

where the second term is a classical Tikhonov regulariadfi6] and where, is the
Ne¢-dimensional vector witley,],, = e,/€0, V. The corresponding update system is

2 2

(JkH Jr + ]LING) sk =— (JkH e — ™™ + 2,— (ex — eb)> . (474)
The regularization (4.73) imposes a strong restriction hen germittivity vectore.
From these two extreme casBs= 1 (strong restriction) an@® = N€ (no restriction)
and from Theorem B.10 of Appendix B, we can conclude thatgiasing the number
of VP values relaxes the regularization.

Since, according to the discrepancy principle, it is dédérdo have as much reg-
ularization as possible without preventing the least segidata fit from reaching the
noise level, we propose the following strategy. The iteratistart with? = 1 and
a fairly large value of the regularization parametesind proceed until a local mini-
mum is reached, i.e. the gradient of the cost function is semaiugh, or untilF
increases again. The latter case implies that the VP reégalizm is making decisions
that are not guided by the data fit. Wheis large enough, this first step is terminated
with 715 above the noise level. Then, the regularization is relaxeddaling an ex-
tra VP value and the optimization continues until the saroppshg criterion is met.
New VP values are added this way umfif> reaches the noise level or a threshold
derived from an estimate of the noise level. Ofcourse, whenattual permittivity
profile consists of?, different permittivity values, the algorithm should idigaieach
the noise level whe® = P,. To this endy has to be chosen properly. When it is
too large, the algorithm typically stops with > Py, since the large weight given to
the regularization term has to be compensated by adding ¥®realues, such that
the regularization is sufficiently relaxed and allows foraadfit on the noise level.
When it is too small, there is no strong restriction on therojtation andz = will
easily reach the noise level, even with a few VP values. Tloécehof v has been
done by numerical experimentation so far. However, thisdu# require knowledge
of the object. When the algorithm stops, i.e. whiER® ~ T, we check for suffi-
cient clustering of the permittivity unknowns around the Ydfues. We try to achieve
this with as few VP values as possible. If the final reconsibacshows insufficient
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clustering, we restart with larger. If, on the other hand the clustering is sufficient,
we try a smallery too see if we can achieve a comparable clustering with fewer V
values. The addition of an extra VP value in every step of tepwvgise relaxed VP
scheme is performed by randomly initializing the VP valueking sure it does not
coincide with already present VP values) and performingiirémization of section
[4.3.2 before proceeding with the updates of the permigtivit

Finally, note that the stepwise relaxed VP (SRVP) regudion strategy can be
seen as a minimization of the fixed cost functidn= F.5 + vFN°, where in a
step with P VP valuesN¢ — P VP values are frozen at infinity. This is a result of
Theorem B.2. In this perspective the cost function thus mesnanaltered, but the
optimization domain is restricted initially and gradualhgreased. We want to stress
that the VP regularization assumes that a reconstructipogsible withP << N¢.
If P approachesVe, there is no real regularization, as pointed out earlier.

4.3.4 Examples

To validate the proposed stepwise relaxed VP regularizatigorithm, some recon-
structions from synthetic data are presented. Throughmutdst of the section all
targets are embedded in free space (eg.= ¢y) and the operating frequency s
GHz, which yields a background wavelength = 0.0375 m.

The first target is a numerical phantom consisting of a culif wide 0.6\,
(0.0225 m) and permittivity(2.5 — j)eo, which is embedded in a sphere with ra-
dius0.75A;, (0.0281 m) and permittivityt.8¢;. The sphere and cube are centered at
the origin and at the poir{t-0.15\,, —0.15)\;,, —0.15A;,) or (-0.0056 m, -0.0056 m,
-0.0056 m), respectively, in a reference system with axesllphto the edges of the
cube. The dipole configuration for the reconstruction of thrget is depicted in Fi-
gure 4.16. The dipole positions and orientations are ineitavith dots and arrows,
respectively. All144 dipoles in the configuration are distributed o@aneridional cir-
cles on a sphere with radids, (0.1125 m) that is centered at the origin. One half of
the dipoles is oriented along tlgedirection, while the other half is oriented along the
0 direction. For this first example each dipole is used to ilhate the target and the
scattered field is measured in every dipole position andgaéath dipole direction.
This yields a total ofV? = 20736 data points.

The investigation domaif® is a cube with sidd.5)\;, (0.0562 m), centered at
the origin and with edges parallel to the coordinate axegufiei 4.16), and the per-
mittivity grid on this domain has a cell siz2075\;, (0.0028 m), which yield20
cells in each direction and thus a total 8F = 8000 permittivity unknowns. The
synthetic data are obtained by solving the forward scatjgproblem with the same
FFT-accelerated volume integral equation technique ased in the inverse scatter-
ing algorithm. Since the discretization grids for the fietah&l the permittivity in this
forward simulation coincide with the grids used in the irsien algorithm, it is possi-



4.3 Value picking regularization 97

ble in principle to exactly reconstruct the target from thdata and therefore this first
reconstruction is a test under ideal circumstances. Gaussiise with an SNR df0
dB is added to the data, which results in a noise &&= 10~3.

Figures 4.17 (a) and (b) show the exact permittivity prafflén two slices through
the investigation domain and the reconstructions of thidilerare depicted in Figures
[4.18 (a)-(f). For all these reconstructions, the optimirastarts from the background
permittivity in D using the following physical constraints on the VP values:

R(cp) 1.0, Vp (4.75)
S(ep) 0.0, Vp (4.76)

IN IV

Figures 4.18 (a) and (b) show a reconstruction with the ipiidéitive smoothing reg-
ularization of [5], which is obtained in 7 iterations. Figsr4.18 (c) and (d) show
the reconstruction with SRVP regularization£ 0.1) after the step with? = 3 and

9 iterations in total. The iterations in each step of the wtep relaxed VP scheme
are terminated iflg?|| < v/2 - 10~* or when the data fit increases again. The final
reconstruction yields a data fit on the noise level, see Eigut9 (a), and a permit-
tivity profile which is close to piecewise constant. Therefahe algorithm can be
terminated withP = 3 with a result that is clearly very close to the actual petimifst
profile (the final VP values arf2.45 —0.944,1.79 —0.014, 1}). Figure 4.19 (b) shows
the reconstruction errake(e), defined as

°l

Ac(e) = le=¢

=1 4.77)
[l

which is smallest for the reconstruction with VP regulatiza.

When an extra VP value is adde® (= 4), the result of Figures 4.18 (e) and (f)
is obtained, which visually hardly can be distinguishedrfrthe result withP = 3.
The VP values now aré2.48 — 0.974,1.80,1.73 — 0.014,1}. The third VP value
is close to the second one and mainly corresponds to celtg dle surface of the
sphere. The data fit for this result, which is obtained aftdy one additional itera-
tion, has decreased negligibly (a reductiorbefl0—*). This justifies a posteriori the
termination with 3 VP values. Figure 4]20 shows the “swarat’mf the complex per-
mittivity values in the complex permittivity plane for ali¢ reconstructions of Figure
[4.18. The clustering in the reconstructions with VP regaédion is apparent in these
plots as opposed to the spreading of the permittivity valuesn using multiplicative
smoothing.

Next, two more challenging targets are considered. The ittty profiles are
shown in Figures 4.21 (a) and (b) and in Figures 4.22 (a) apdTbe investigation
domain is now a cuboid with dimensiodg,, x 2X;, x 2\, (0.15 x 0.075 x 0.075
m) and there are three objects with different permittigiti@ cube with sid@.6\,,
(0.0225 m), embedded in a sphere with radiug\;, (0.0281 m) and an additional
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cube with side), (0.0375 m). For the target of Figure 4121, the permittiitizf
these objects ar@ — j)eo, 1.5¢9 and1.8¢p, respectively, and for the target of Figure
[4.22, these permittivities beconie.5 — j)eo, 2¢g and1.6¢q, respectively. The dipole
configuration is the same as the one used for the first exaexdept that the radius

of the sphere on which the dipoles are located is Aay (0.15 m). Again, Gaussian
noise with an SNR 080 dB is added to the data and the grid for the data generation
is now twice as fine as the inversion grid. The cell size of tiveiision grid i0.1\,
(0.0037 m) and the number of permittivity unknowns\is = 16000.

The reconstructions with multiplicative smoothing andhw&RVP regularization
of the target of Figurels 4.21 (a) and (b) are shown in Figur2$ 4c) and (d) and
Figures 4.21 (e) and (f), respectively. The VP regularoratisesy = 0.5 and
reaches the noise level witR = 4 and 13 iterations. The final VP values are
{1.95 — 1.005,1.82,1.56,1.0}. Both reconstructions yield almost exactly the same
data fit, but from the reconstructions and from the swarmspddtFigure 4.23, it is
clear that the VP reconstruction yields a better defined amiet mccurate estimation
of the permittivity values and the shape of the objects. Duhé misfit between the
grids for the data generation and the inversion algorithra,dphere cannot be per-
fectly reconstructed and this apparently results in a sbghrestimation of its permit-
tivity and in the introduction of some stray cells with baokgnd permittivity inside
it.

The reconstructions of the target of Figures 4.22 (a) anau@yshown in Figures
[4.22 (c)-(f). This time, the SRVP regularization, with= 1.0, reaches the noise level
with P = 5 and 25 iterations. The final VP values g201 — 0.015,1.64,1.54 —
1.014,1.45,1.0}. The extra VP value apparently has to be added to define an inte
mediate permittivity level along the outside of the sphdrewering the regulariza-
tion parameter, does not remedy this. Probably, the intdiate permittivity level is
needed to compensate for the staircasing error in the gaamenstruction grid. In-
deed, no such intermediate level occurs around the lardmr icuFigure 4.21, which
also has a relatively high permittivity. However, from Figs 4.22 and 4.24, it can be
concluded once more that the VP result provides more qasimétinformation on the
original permittivity profile than the result obtained wittultiplicative smoothing.
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Figure 4.16: A view of the dipole configuration and the investigation doniwhich are used

in the first reconstruction from simulated datfial4 dipoles are placed on a sphere with radius
11.2 cm and are oriented along theand¢ directions. For each illumination, the scattered field
is measured in all the dipole positions along éhend¢ directions.
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Figure 4.17: Real (a) and imaginary (b) part of the permittivity of the first synthetigeain
two slices through the investigation dom&dn
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Figure 4.18: Reconstruction of the first synthetic target at 8 GHz: Real (left) and iimaag
(right) part of the permittivity in two slices through the investigation domRin(a) and (b):
reconstruction with multiplicative smoothing regularization. (c) and (dgonstruction with
SRVP regularization withP = 3. (e) and (f): reconstruction with SRVP regularization with
P=4.
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Figure 4.19: The data fit cost functiotF-S (a) and the reconstruction errdve (b) versus the
number of iterations during the reconstructions of the first syntheticttarge end of each step
in the stepwise relaxed VP regularization scheme is indicated with an arroextfa VP value
is added whetig®?|| < v/2- 10~* or when the data fit cost functiagA’* increases again.
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Figure 4.20: Swarm plot of theN complex permittivity values on the grid, represented with
dots in the complex plane, for the reconstructions of the target of Reconstructions:
(a) of Figure 4.18 (c),(d) with multiplicative smoothing; (b) of Figlré & (e),(f) with SRVP
regularization and® = 3; (c) of Figuré 4.18 (g) and (h) with SRVP regularization afd= 4.
The VP values are indicated as the intersections of the solid horizontakaichVlines marked
by arrows and the exact permittivity values lie at the nearby intersectfdhe dashed lines.
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Figure 4.21: Reconstruction of the second synthetic target at 8 GHz: Real (left) aagimary
(right) part of the permittivity in two slices through the investigation donfair(a) and (b): ex-
act permittivity profile. (c) and (d): reconstruction with multiplicative sridig regularization.
(e) and (f): reconstruction with SRVP regularization.
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Figure 4.22: Reconstruction of the third synthetic target at 8 GHz: Real (left) and inaagin
(right) part of the permittivity in two slices through the investigation donfair(a) and (b): ex-
act permittivity profile. (c) and (d): reconstruction with multiplicative sriiog regularization.
(e) and (f): reconstruction with SRVP regularization.
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Figure 4.23: Swarm plot of theN complex permittivity values on the grid, represented with
dots in the complex plane, for the reconstructions of the target of Reconstructions:
(a) of Figure 4.211 (c),(d) with multiplicative smoothing; (b) of Figlr@ (e),(f) with SRVP
regularization. The VP values are indicated as the intersections of the soimbtal and
vertical lines marked by arrows and the exact permittivity values lie at¢hehy intersections
of the dashed lines.
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Figure 4.24: Swarm plot of theN complex permittivity values on the grid, represented with
dots in the complex plane, for the reconstructions of the target of Figge Reconstructions:
(a) of Figure 4.22 (c),(d) with multiplicative smoothing; (b) of Fighr@2 (e),(f) with SRVP
regularization. The VP values are indicated as the intersections of the soiimbttal and
vertical lines marked by arrows and the exact permittivity values lie ateélehy intersections
of the dashed lines.
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4.4 Further improvements to the algorithm

4.4.1 Constraints on the permittivity

In order to improve the convergence of the optimization mésphe, but mainly to pre-

vent the permittivity and conductivity values from becomimon-physical or too high

to handle with the chosen forward discretizatifnit is recommended to include a
priori knowledge concerning the expected upper and lowends on the complex

permittivity by means of constraints. If the optimizatioariables violate these con-
straints, the conditioning of the forward problem can beegmoblematic. Let us

denote the upper and lower boundseiy, andemm, respectively, for the real part of
the optimization variables and kY, ande® respectively, for the imaginary part,
ie.

min ?

€rin < R(€)) < €hass Vv (4.78)

ehin < S (6) < € axs Y. (4.79)

Such constraints can be incorporated in the Gauss-Newannefvork using a non-
linear transformation that maps the constrained perniittivalues on new, uncon-
strained optimization variables [9]. Here, we follow an aggzh which is inspired
by the use of parameter transformations, but which is ongédus the line search.
More specifically, we propose to replace the search patteitink search (4.9) with a
smooth, constrained path that entirely lies within the t@msts, if the starting point
ey, does so, and which starts along a descent direction. Wishctimistrained path, it
is sure that the cost function will be reducedjf is not a local minimizer, and that
the constraints will not be violated. The path is defined as

Ek+1(ﬁk) = f(ﬁk? ( ) (Ek)ﬂ €min» max)+].f (ﬁ/ﬁ ( ) (Ek)v fnuvénax)’
(4.80)

wheres is the solution ofl (4.36) or (4.59) and where the vector fiamcif is defined
as

fl/ (5a €T, £> gmina gmax)

- gmax - (fmax - gv) €xXp ( ﬁgmaf 51/) Ty > 0 (481)
= fmin + (gu - gmin) exp (ﬂf xg > , Ty < 0. (482)

The path[(4.80) only considers the constraints that can blateid along the path
(4.9) with 3, > 0, hence the distinction between the casgs> 0 andz, < 0

in (4.81)-(4.82). For smalB; (4.9) and[(4.80) coincide, but in the vicinity of the
constraints, the path (4.80) is bent away from |(4.9) and st &dimit point on the
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constraints, as is illustrated in Figure 4.25 (a) for a peablith only one complex
optimization variable. Although theoretically the optaation variables can never
reach their bounds with this procedure and the path alwartssalong a descent
direction, it is possible that no progress is made if one oremariables are very
close to one or more of their bounds (in finite precision, tbay actually ben their
bounds). Indeed, in such a situation, the line search patfatds from its initial
directions already for very smalB-values and starts to run along the projectiors of
on the nearest boundaries of the constrained optimizatiomath as is illustrated in
Figure[4.25 (b). It is possible that althoughcalculated with[(4.36) or (4.59), is a
descent direction, its projection on these boundariestisme the cost function starts
to increase again for very small values®fin this case the line search is terminated
after only a negligible reduction of the cost function, waitih necessarily implying
that a local minimum is reached. 4fis the steepest descent direction, it can easily be
shown that its projection on boundaries like the ones cemsitihere (i.e. upper and
lower bounds on the optimization variables) remains a destirection. Therefore, in
our implementation it is possible to switch temporarily lhe steepest descent update
when the above mentioned problems with the constraintsrareuatered.

Note that the use of the new search path implements the eoretiroptimization
in an elegant way, without requiring any adjustments to théate systems and the
line search algorithm. It also avoids sequences of timewirgy minimizations of
reduced problems, as is needed in active set methods. Howiesenapping/ (4.80)
is highly non-linear and a large step hcan correspond to a negligible step in the
actual optimization domain and a corresponding negligibtiziction of the cost func-
tion when a lot of optimization variables are close to theinhdaries. Therefore, the
line search algorithm can require many steps and many fdrpablem simulations
before a local minimum along the search path is reachedoAdth the extrapolation
over the permittivity provided by the Born approximationSectiori 3.7 will result
in a rapid solution of the additional forward problems whba permittivity profile
changes little (eventually only one iteration per solutfig3.13) will be needed), the
large number of forward problem solutions can increase dked tomputation time
significantly. Together with the fact that local optimizatican get trapped against
the constraints even if they are handled in an ideal way, wemenend to avoid con-
straints as much as possible. For example, instead of deéngatitht the imaginary
part of the permittivity is not positive, as required by tresgivity condition, we will
only require that it does not become too positive, becausenbuld prevent conver-
gence in the forward problem. Note finally that we could usfedint upper and lower
bounds per permittivity unknown, if that would be approf®jdor instance if some
region-specific a priori information on the permittivityasailable.
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Figure 4.25: lllustration of the constrained line search path: (a) the starting pqiries far

from the boundaries of the optimization domain, such that the new line rs@att [(4.80)
coincides with the original path (4.9) up to largg; (b) the starting point;, lies close to a
boundary of the optimization domain, such that the new line search[p&®) @arts running
along the projection of (4.9) on this boundary already for srfall
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4.4.2 Subspace preconditioning of the update systems

The solution of systen (4.86) dr (4.59) for the Gauss-Newtotates by means of a
direct inversion method would requit@((N€)?) operations and since the number of
unknownsN ¢ easily grows large in a 3D inverse problem, this would be aatatjion-
ally very demanding. Moreover, the calculation of the pmidii”’ J would require
O(NP(N¢)?)) operations. It is therefore more efficient to solve (4.36) £4.59)
iteratively, which requires per iteration one multiplicet of an N <-dimensional vec-
tor with J, followed by one multiplication of advP-dimensional vector with/ .
The computational complexity then@(PN¢NP), which is much less than a direct
inversion provided that the number of iteratioRscan be kept small. However, the
condition number off — and therefore of7/ J — generally is very large. Even
with the well-conditioned regularization terd? in (4.36) orA2x” in (4.59), the
conditioning of the system matrix remains problematic arghevorsens towards the
end of the optimization in case of multiplicative smoothiegularization, since\?
then is proportional to the least squares data error.

We therefore propose to solve (4.36) and (4.59) with thexiitez subspace pre-
conditioned LSQR algorithm (SPLSQR) of Jacobsen, et al}, [@Bich is specifi-
cally designed for regularized linear least squares preblsuch as (4.36) and (4]59).
Since this algorithm has been conceived for real systemiceatrthe problem (4.36)
or (4.59) is first reformulated (dropping the subsctidor convenience) as the mini-
mization problem

x =argmin ||[Kz' —y|? =argmin || J 2’ —y, ||+ \?||L "z —y,|?, (4.83)
x x

where
R(J) —S(J) R (Aeme)
_ S R®RG) | _ [ I | S(Aeme) |y
K=\ 0 L\Lr}’ | SALT'R(Q) le]
0 AL AL (Q)

whereR and<$y stand for the real and imaginary parts, respectively, aneted is the
Cholesky factor o2 = LLT or =¥ = LLT andAe™ess = emeas _ gscat . As can be
seen in Figure 4.26 for a generic (but relatively small) iseeproblem, the singular
value spectrum of the matrik” with A = 0, i.e. without regularization, generally
decreases over a wide range of values without showing a theashold were this
spectrum could be truncated. Pote£ 0, on the other hand, the spectrumigfshows
a platform at the lower end, which is introduced by the regzddion. Nonetheless
the conditioning ofK clearly is still not very good, because of the rapidly desieg
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singular values in the first part of the spectrum.
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Figure 4.26: The singular value spectra of the mat#i& without regularization X = 0) and
with regularization § # 0) for a generic inverse scattering problem w00 permittivity
unknowns. The spectrum of the mat#&kV" whereV contains the truncated 3D discrete cosine
basis corresponding V" = 432.

The key idea of the subspace preconditioned LSQR algorithi $plitting of
the solution spacé into two orthogonally complementary subspacg¥,and S*,
respectively spanned by the columns of the orthogonal et and W. This
means we look for a solutios = Vv + Ww. It is furthermore desirable th&”
has a small dimensioiV” and that the conditioning dK' W is much better than the
conditioning of K. Indeed, introducing the QR factorization

R

KVQRpfzﬂo

]YR, (4.84)

whereQ@ is orthogonal andR is square and upper triangular, it easily can be shown
that

|Kz—y|]>=|[Rv-YT (y - KWw)|?+ || Z"KWw — ZTy|?. (4.85)

BecauseK has full rank, the same holds fét and the first term in the RHS df (4.85)
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can be made zero for every. Therefore, (4.83) is equivalent to

w = argmin || ZTKWw' — ZTy|?, (4.86)
w/

v=R YT (y— KWw). (4.87)

Since((4.87) is a smalV¥ x N*- dimensional and upper-triangular system, it is solved
conveniently forv by back substitution. The solution of (4/86) far is done with
the LSQR algorithm [34], which, although mathematicallyieglent, is numerically
more stable than the CGLS method. Moreover, this iteratigersdhm can be for-
mulated directly in terms op = Ww, thereby avoiding the construction of and
multiplications with the large matri¥¥ [33]. Calculating the QR factorization (4./84)
and performing the multiplications witlf or Z” is relatively cheap if done with
Householder transformations, becadégis small.

With an appropriate choice 8f (andW) the number of LSQR iterations to solve
(4.86) can be kept small. If, for instand&, consists of theV? principal right singular
vectors of K, then the spectrum aK'V', denoted aspec(K V'), will coincide with
spec(K) up too v, the N¥-th singular value oK. On the other hand, sindd is
orthogonal toV/, the subspac8™ is spanned by the/N¢ — N least significant right
singular vectors of andspec(K W) will coincide with (o xvy1,...,09n¢). It can
be seen from Figure 4.26 that, N is large enoughspec(K W) will practically
completely lie within the plateau ispec(K), introduced by the regularization. This
means that the conditioning & W in this situation will be very good. It also implies
that K’V inherits the ill-conditioning ofK, but since[(4.87) is solved directly, this
does not pose any problem. However, it is computationatiyetqensive to construct
this SVD subspace, and therefore a subspace that ‘reséntlideshosen. It is well-
known that for most applications the right singular vectofsn ill-posed problem
become more oscillatory as the corresponding singulaegalecrease. Therefore, we
propose in this thesis a truncated 3D discrete cosine ihsi®CT-II basis from [35]),
defined on the cubic gri@¢, which is used for the real and imaginary part of the
complex update vectar separately, i.e. the matri has the form

Ve O
-l oo

where V. contains per column one of th&” DCT basis vectors with the lowest
spatial frequencies im-, y- andz-directions. In this case the multiplication &f with

V can be evaluated efficiently by performing 3D discrete aosiansforms [35] on

the rows of K (actually on the first and the second half of these rows stgdgyand
retaining only theV¥ components with the lowest spatial frequencies. This sad¥sp
can be considered as a coarse grid approximation to thel gouéion space. Figure
14.26 showsspec(K V') for this subspace and it can be seen that it indeed coincides
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with spec(K) for large singular values. The reduction in computatioretiobtained
with this subspace preconditioned LSQR algorithm for thietam of (4.36), when
compared with standard iterative solvers, such as the C&adets considerable, as
will be demonstrated in Section 5.1.2.

4.5 Region picking regularization

In this section, the concept of Value Picking regularizati® extended to the more
abstract concept dRegion Picking(RP) regularization. VP regularization assumes
that the permittivity is piecewise constant. One could khifi such a permittivity
profile as built from a number of homogeneous regions. Suegiam does not have
to be simply connected or compact, but is just charactebyele value of its complex
permittivity. The differencée, —c,| between the permittivity, of a certain cell group
C, and the permittivity (or VP value), of regionp then is a measure of how much
belongs to regiom.

A more general permittivity profile could consist of diffatetypes ofregions
which are areas in the optimization domain with certain abgaristics and for which
adistancebetween a given cell group and the region can be defined. Berarape:

e the homogenous region with index already used in VP regularization. This
region is solely characterized by a VP valygand the distance between cell
groupC, and the region is given bygy = le, — cp?.

¢ the small-scatterer region with index This region is characterized by a per-
mittivity value d; and a position vectaR,. The distance between cell grodp
and the small-scatterer region is given by

/\SS

58

upy =l e, —di > + N > lrren— Rl (4.89)
(f.9,h)€Cy

where A5 is a normalization constant, wherg , ;, is the midpoint of cell

(f, g, h) and whereN" is the number of cells in cell grouf),. This definition

thus also includes a physical distance to the small scattere

e the smooth region with index This region is characterized by some parameter
representation;(r, a1, ..., aps) of the complex permittivity on the investigation
domain, which depends linearly on a limited numbéiof parameters,,,. This
representation could be the expansion of the permittivity fruncated Fourier
or cosine basis, such that it can only represent smooth figmitgiprofiles. The
distance of cell groug,, to this smooth region then is

1
us, = N Yo lepgn—es(rignan,an) . (4.90)
(.fvgvh)ecu
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The idea behind RP regularization is that in the course ofrélsenstruction, a
choice for a certain region is made for every permittivitknowne,,. As in VP reg-
ularization, the characteristics of the regionsd:,R:,an,,...) are considered as aux-
iliary variables, which are included in the optimizatioropess. Figure 4.27 shows a
2D permittivity profile, consisting of a homogeneous badkmd region, a smooth
region and a small-scatterer region. During the reconstmicsome permittivity
cells are assigned the background permittivity and formpla¢eau in the profile.
The profile of the smooth region results from a fitting of theapaeter representation
e1(r,as, ..., apr) (Figure 4.27 (b)) to the permittivities of the cells that eehosen to
belong the the smooth region. Finally, cells in the vicirdfythe small scatterer take
on the permittivity of that small scatterer. The permitivand position of the small
scatterer again are the result of a fitting to the permiiéigiand the positions of the
corresponding permittivity cells.

(b)

Figure 4.27: The principle of RP regularization. Left: a real permittivity profile afteeaan-
struction with RP regularization with three different regions: a homogesesgion, a smooth
region and a small-scatterer region. Right: a visual representation oh#tracteristics of the
three regions: the position-independent permittivity value of the honemgexregion (red), the
smooth parameter representation of the smooth region (blue) and thétpéy of the small
scatterer, which corresponds to one position only (green).

This whole adaptive mechanism can again be contained witigirdefinition of
one cost function. If there at& = P + T + S regions, i.e.P homogeneous regions,
T small scatterers anfl smooth regions, the RP cost function is defined as

FRE = FES 4 yFK, (4.91)
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whereF¥ is defined as
1 X
K K/ H H SS SS . S s
FH = NG Z f (uLV7 e UP s UT e U UT s ,usﬁy). (4.92)
v=1

Again, f¥ is the K-dimensional choice function. The same techniques of Secti
[4.3.2 can be used to obtain a half-quadratic minimizatidvesw, both for updating
the permittivity unknowns with a Gauss-Newton scheme, asifolating the charac-
teristics of the regions in repeated quadratic minimizasteps, which alternate with
the permittivity updates.

Finally, a stepwise relaxed scheme is again expected td thel best results. In
such a scheme, different regions are gradually added toettenstruction in order
to relax the regularization. One could for example starhwibly the homogeneous
background region. This would again be equivalent to a Toaegularization of
the cost function. Then one could add one or more homogermegiens or smooth
regions and finally the small scatterers.

The stepwise relaxed RP (SRRP) regularization could beeiuen reconstruct-
ing biomedical targets, such as the ones presented in G@apt& human breast,
for example, consists of a skin layer, which more or less ismdgeneous region;
generally a larger volume of adipose-based tissue, whishdva permittivity but is
not entirely homogeneous and could be modelled by a smogibrreand finally
some scattered fibro-glandular inhomogeneities and dgdgsiimors that are small-
scale scatterers with high permittivity. The SRRP regadion has not been imple-
mented yet and it remains to be investigated how feasildesgtyproach really is.

4.6 Conclusion

In this Chapter, novel 3D microwave imaging algorithms weegeloped. These al-
gorithms consist of the Gauss-Newton minimization of ttestesquares data fit cost
function with additional regularization. Two regularizat strategies were proposed
in this Chapter. The multiplicative smoothing regularigatimposes a smoothness
constraint on the permittivity, but does that in an adaptwg. Less smoothing is au-
tomatically applied if the noise level is low. Knowledge bétnoise level is therefore
not needed for multiplicative smoothing. The new stepwilaxed Value Picking
regularization allows for the very accurate reconstructibpiecewise homogeneous
permittivity profiles with minimal a priori information expt for the piecewise ho-
mogeneity itself. This property is exploited by clusterithg permittivity values in
the complex plane around a number of VP values, which aréettess auxiliary op-
timization variables. The number of VP values is also adgish a stepwise relaxed
VP regularization scheme. VP regularization can be easilgrporated in the Gauss-
Newton framework thanks to a half-quadratic updating sahelxtension of the VP
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regularization to a Region Picking regularization is aleegible and is expected to be
a flexible regularization tool for the reconstruction ofsdrts of permittivity profiles.

The combination of Gauss-Newton updates with an approxifivet search proves
to be an efficient and reliable minimization scheme. AltHotlge Gauss-Newton up-
date systems are generally ill-conditioned, they can beieffily solved using a sub-
space preconditioned LSQR algorithm. This algorithm eitplthe specific form of
the singular value spectrum of the system matrix that arngesn the Gauss-Newton
method is supplemented with the above regularization nasthdhe SPLSQR algo-
rithm relies on a splitting of the solution space in a coatgespace and its orthogonal
complement. The system, projected on the coarse subspat#,iil-conditioned, but
has small dimension. Therefore it can be solved directlauit being affected by the
ill-conditioning. The component of the solution in the remiag subspace is obtained
through the iterative solution of a larger, but better ctindied system. Finally, when
constraints have to be imposed on the permittivity varigfitee line search path can be
modified as described in Sectibn 4.4.1, a feature which reguinimal adjustments
to the core of the algorithm.
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CHAPTERD

Applications of the 3D
reconstruction algorithm

In this chapter some applications of the reconstructiooritlyns developed in Chap-
ter'4 are discussed, which are more realistic than the exerppésented so far. In Sec-
tion[5.1, the added realism comes from the application tmbitical imaging. This
is not to say that the presented examples are entirely tiealdue to the simplifica-
tions in our model — the homogeneous background mediumattidgtat the antenna
configuration is idealized by only considering non-int¢irag elementary dipoles — it
is not yet applicable to real-world applications and thespreed results are simula-
tion studies. However, they are encouraging the furtheeldgwment of microwave
medical imaging, which is gaining interest as an altereativsupplement to existing
modalities, such as X-ray imaging, mainly because of theianizing nature of mi-
crowaves and because the interaction of microwaves witbdimal tissue is governed
by other material parameters. In Section 5.2, the realismesdrom the data: in this
section, real measurement data from the Fresnel Institutarseille are inverted.

Because biomedical targets are usually highly inhomogesigbe multiplicative
smoothing regularization is employed/in 5.1. In contrasg teal world targets of
the Fresnel Institute are perfect examples of piecewiseolgemeous profiles with a
small number of different permittivity values and the bestults for these targets are
obtained with SRVP regularization.

5.1 Biomedical examples

5.1.1 Synthetic arm phantom

The first example consists of a simplified model of a childism &mmersed in water.
The phantom, together with the investigation domRimand the dipole configuration
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is depicted in Figure 5.1. It consists of an oblique cylindémuscle material with
radius3 cm and permittivity(49.6 — 40.45)¢o in which a simple bone structure with
permittivity (8.0—3.25)¢q is contained. The bone is modelled with a cylinder of radius
1 cm and a sphere with radig@sm. For simplicity, we only consider the portion of this
arm model that falls within the domaid, which is a cube with sidé0 cm. The rest of
the arm is simply neglected. We want to reconstruct this f@mmnsing microwaves
with a frequency oft GHz. We chose a permittivity ¢fr7.3 — 21.25)¢, for the water,
which yields a background wavelength bf = 3.38 cm. All the permittivities are
adopted from [1].

For the data generation, the domahis discretized using0 x 30 x 30 cells inz-,

y andz-directions both for the permittivity grid>¢ and for the forward field grid¥,
which yields a cell size 08.33 mm or0.0987\,,. The phantom is illuminated by 120
elementary dipole fields, radiated by elementary dipoles éine evenly distributed
over 5 horizontal circles with radiug).14 cm or 3\, which have a vertical spacing
of 2.36 cm or0.7)\, (Figure[5.1). One half of the dipole orientatiofis is oriented
along the positive-direction and the other half is oriented along theirection (the
azimuthal direction). For all these illuminations, thetseed field is calculated in the
same dipole positions, along the same polarization doesti;. In the notations of
Section 2.3.1, we hawy'! = 120, NF = 120, Vi, which results inN® = 14400.

For the reconstruction of the phantom, the domBirns discretized with25 x
25 x 25 cells in order to avoid committing an inverse crime. Thisresponds to a
total of N¢ = 15625 permittivity unknowns. The problem thus is under-detesdin
(N€ > NP), even more so when the redundancy in the data due to rettipimtaken
into account. The regularization thus has the additionlal ob keeping the problem
solvable, since without it, the update systéem (4.36) woelddme singular. Indeed,
the rank of the jacobian matrid is smaller thanV¢. When the iterations proceed,
the parametek,, in (4.36) becomes smaller and the system evolves towardjalain
system, which provides extra motivation for the use of tHespace preconditioning
of Section 4.4.2. Note that in practice, due to noise on tha da— in our simula-
tion study — due to the misfits of the simulation grids for tla¢adgeneration and the
reconstruction, a perfect data fit is not possible and thiesy$4.36) never becomes
singular. The SPLSQR algorithm is used witif = 512, which is the result of re-
taining only the discrete cosine basis vector with ghewest spatial frequencies in
thex-, y- andz-directions.

The inversion is started from a domdirfilled with background medium and with
avaluea = 1076 for the regularization parameter in (4.19). The result giFes 5.2
and 5.3 is obtained if iterations (i.e. 7 solutions of the update system (4.36¥y af
total excecution time of about 5 hours and 45 minutes (on omputing modalities:
a 64 bit computer with 2 GHz Dual Core AMD Opteron processal &&B RAM) if
the relative accuracy of the forward solver is sed@0)1. The data fit at this point is
FLS =2.1-10~* and is not significantly reduced by proceeding with the tterss.
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The constraints that were imposed on the permittivity umkmowerel .0 < R(e,,) <
85.0 and—50.0 < &(e,,) < 1.0. The fact that we allow for slightly positive imaginary
parts is motivated by the observation that too severe aginsircan stall or even stop
the convergence by introducing local minima. From Figlrésdnd 5.3 it can be
concluded that a nice reconstruction is obtained, wheratiiuetures in the arm are
clearly visible in the correct permittivity ranges. It daigs from the actual profile by
its smoother appearance, which is due to the type of regakish we employed and
the large influence of this regularization when the systeamder-determined.

The marching-on technique of Section 3.7 has been used smexaimple with
M = 4, i.e. the initial guess for a forward problem solution isaibed as a linear
combination of the Born approximation (3.39) and the sohsifor three previous
transmitter positions on the same horizontal circle in Féfhil. There is no extrapo-
lation over different dipole circles. Without the marchiag scheme, the total solution
for the present example increases to about 8 hours, an seoéaboutt0%.

Figure 5.1: A view on the numerical Arm phantom, the investigation donfithe cube in
the figure) and the dipole configuration. Dipole positions are indicated lok dists and dipole
orientations by arrows. All dipoles act as transmitter and receiver. mistare expressed in
background wavelengths.
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Figure 5.2: Reconstruction of the synthetic arm phantom witk= 10~¢ in two planes through
the center of the investigation domaih one parallel to thery-plane and one parallel to the
yz-plane. The left column shows the real part of the permittivity profiledusesimulate the
data and the right column shows the real part of the reconstructedtiddtynon the coarser
reconstruction grid.
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Figure 5.3: Reconstruction of the synthetic arm phantom wite= 10~ in two planes through
the center of the investigation domalih one parallel to thery-plane and one parallel to the
yz-plane. The left column shows the imaginary part of the permittivity profied to simulate
the data and the right column shows the imaginary part of the reconstietmittivity on the
coarser reconstruction grid.

5.1.2 MRI-based breast phantom

The second example is a numerical breast phantom, whichojsted from the on-
line repository of the Department of Electrical and Compéegineering at the Uni-
versity of Wisconsin-Madison (UWCEM). This online repositqsee the web site
http://uwcem.ece.wisc.edu/home.htm) provides a datab&sinatomically realistic
MRI-based numerical breast phantoms, which capture thetstal heterogeneity of
normal breast tissue and incorporate the realistic digmedielectric properties of
normal breast tissue from 0.5 to 20 GHz reported by Lazehnak |2, 3]. The phan-
tom we consider in this thesis is Phantom 1 from ACR class Ichvig a mostly

fatty breast phantom with some glandular and fibro-conmedtihomogeneities. The
complex permittivity in a slice through the breast phantdra &equency o2 GHz

is depicted in Figure 5l4. As background medium in which theabt is immersed,
we chose a material with permittivit§10.0 — 2.05)eg, which yields a background
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wavelength\, = 4.72 cm.

Figure 5.4: A view of the permittivity in a slice through the full-resolution MRI-based Istea
phantom from the online UWCEM repository at 2 GHz: (a) real part &dhfaginary part.

Since the resolution of the MRI-based breast phantom ishigty(it has a cell size
of 0.5 mm) and since such a high resolution is not needed attigidered frequency,
nor desirable due to the high memory needs and computatisestiwe derived a
coarser permittivity model with cell size 2.5 mr.({53\,) from this phantom by
local averaging. This coarser model is depicted in Figubeirbthe same slice. An
artificial spherical tumor with permittivity50.0—10.05)€p and a radius of 1 cm is also
added and rather close to the chest wall to make its deteetiem more challenging.
We also removed the muscle layer from the original phantémegsin our free-space
measurement setup this thin high-contrast layer wouldectagsmuch scattering at its
(non-realistic) interfaces with the background mediunthéligh the present example
is not entirely realistic due to the fact that it is a freensliag breast, not attached to a
human body, the problem is challenging as it is.

0.06 0.04 002 0 -0.02-0.04-0.06 0.06 0.04 002 0 -0.02-0.04-0.06
y y

Figure 5.5: A view of the permittivity in a slice through the discretized breast phantorthfor
data generation. The cell size is 2.5 mm, an artificial tumor has beexd &altfee phantom and
the muscle layer has been removed: (a) real part and (b) imagiagry p

The dipole configuration which is used to generate the dadapécted in Figure
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[5.6. It consists of 168 dipoles on an ellipsoidal surfacaiadothe front side of the
breast with polarizations in two orthogonal directionsgantial to this surface. All
these dipoles are used to sample the field, but only 48 of thedicated with the
larger black dots) are used to illuminate the phantom becatimemory limitations
(increasing the number of illuminations increases the sfz@e jacobian matrix too
much). This yields a total aN” = 8064 data points.

0.1~

0.05-

-0.05

- -0.05

Figure 5.6: A view of the dipole configuration used to reconstruct the breast pharidipole
positions are indicated by black dots and dipole orientations by arrows. igdle$ act as
receiver and transmitting dipoles are indicated with larger black dots. fElyesgape represents
the outline of the breast phantom. Distances are in meters.

The permittivity gridD¢ for the reconstruction as well as the forward field gnfi
has cell size 5 mn0(106\;,) with 25 x 30 x 21 cells, which yields 15 750 permittivity
unknowns. This means the problem is heavily under-detexthand the regulariza-
tion and subspace preconditioning are indispensable.Hoekample, the subspace
dimension isNY = 560, using the cosine base with respectively the 8, 10 and 7 low-
est spatial frequencies in the, y- andz-directions, thus a coarse grid approximation
with roughly one third of the resolution of the full permifity grid. To test the abil-
ities of the method, we perform a complete blind reconsioact.e. we do not use
knowledge of the breast contour, as is sometimes suggestihd literature about mi-
crowave breast cancer imaging, and the initial estimatesidgackground medium. To
keep the forward problems well-conditioned, the constsaim the permittivity were
1.0 < R(e,) < 55.0 and—50.0 < J(ey,) < 1.0. The result after 13 iterations and 18
hours and 25 minutes using a regularization parameter10—° is depicted in Figure
[5.7. The marching-on scheme is again used with the same ptanas for the pre-
vious example. After 13 iterations the changes in the p¢iityt profile are less than
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1 percent. The shape of the breast and the overall strucfute anhomogeneities

are clearly visible in the reconstruction. The tumor is tedacorrectly as well. Even
the small lump of fibro-glandular tissue near the nipple carrdsolved. However,

the reconstructed permittivity and conductivity valuedhs inhomogeneities are too
low. This is probably the result of the strong smoothing eftat is present in the
reconstruction. The fact that the inverse problem is soiheander-determined gives
a lot of importance to the smoothing regularization. Noektbks, despite its limita-
tions, this reconstruction is a promising result for micas& imaging in biomedical

applications.

0.06 0.04 0.02 0 -0.02-0.04-0.06 0.06 0.04 0.02 0 -0.02-0.04-0.06
y y

Figure 5.7: A view of the reconstructed permittivity in a slice through the investigation doma
(a) real part and (b) imaginary part.

Finally, we employ this example to illustrate the effect lod tsubspace precondi-
tioning. We compare the efficiency of the SPLSQR algorithnthto efficiency of a
conventional iterative solver without preconditioningsiolving (4.36). The conven-
tional solver is the Stabilized Bi-Conjugate Gradient noettliBICGSTAB) [4]. For
the first ¢ = 0) and the final ¥ = 12) Gauss-Newton iteration, we let the SPLSQR
algorithm, with the same parameters as mentioned eartibre $4.86) to a relative
accuracy ofl0~* and calculate the resulting accuracy on the original sy$teB86).
We then let BICGSTAB solve (4.36) to that accuracy and comphe number of
iterations and the time needed by both methods. The congpaisssummarized in
Tablg 5.1. In the beginning of the optimization, the SPLS@frithm is more then 4
times faster then BICGSTAB and towards the end of the opttion, when the pre-
conditioning becomes more crucial due to the decrease qfah@meter\ in (4.36),
the speed-up factor approaches 20. The reduction in spltitize is less then the
reduction in the number of iterations in the c&se- 0, since the computation of the
QR factorization/(4.84) is also included in the former. Ntitat the time needed to
solve (4.36) a single timeithout preconditioning i990% of the total reconstruction
timewith preconditioning! Note furthermore that we use the BICGSTA#Btine from
the PIM library [4], which is an optimized fortran library,hite we implemented the
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SPLSQR ourselves in C, thus the speedup might even be moarificsigt with an
optimized implementation.

k method f iterations | time (s) | relative error in[(4.36)

0 SPLSQR 30 630 8.3-10°
BICGSTAB 285 2631 5.8-107°

12 | SPLSQR 317 2991 9.0-10°
BICGSTAB 6472 59705 8.5-107°

Table 5.1: A comparison between the SPLSQR algorithm and the BICGSTAB iteratitieade
for the solution of((4.36) in case of the numerical breast phantomntilvber of iterations, the
solution time and the resulting accuracy are given for the firs&(0) and the lastf = 12)
step in the reconstruction algorithm.

5.1.3 The linear sampling method for breast imaging

Although quantitative microwave imaging is probably mogited for biomedical

imaging, as far as reconstruction quality and informationtent of the images is
concerned, it is very time consuming, as is apparent fromptiegious examples.
Although the computational burden will without doubt beueéd in the future, for

example by parallelization of the algorithms and by inciegsomputer resources, it
is profitable to explore alternative imaging methods fomniéalical imaging.

The recently developed linear sampling method [5, 6] candwel io detect scat-
tering objects in a much cheaper way. It combines the adgastaf solving a linear
problem without introducing simplifications in the derivats of its equations and a
very simple implementation. However, with the linear sangplmethod, it is only
possible to infer information about the shape of the objadttae image is only qual-
itative. It can however be useful when one is only interestedetecting anomalies
against a known background. This could be the case whentihgtdreast cancer,
where the tumor is the anomaly. The 3D vectorial linear sargpihethod for ho-
mogeneous backgrounds was proposed in [6, 7] and in [5, 8&lardmear sampling
implementation for 2D inhomogeneous backgrounds is dsgmlisIn this work, the
3D vectorial linear sampling method has been implementedsalapted to look for
anomalies in general, 3D inhomogeneous backgrounds. Aaflodemonstration of
the applicability of the linear sampling method to such feabis not yet available in
literature at present and also not in this dissertation. e liestricted ourselves to
an application of the basic principles of the linear samgpfimethod.

Linear sampling principle

The terminology when using the linear sampling method diffeom the terminol-
ogy used so far for the quantitative inverse scatteringlprob The “scatterer” now
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refers to the unknown anomaly and the “background” can benargé inhomoge-
neous dielectric environment and encompasses everythiting iconfiguration which
is known in advance. The incident field caused by the elemgdipole current/; ;
is now defined with respect to this inhomogeneous backgrotiagvoid confusion,
we will denote this field as£™™*’. In the terminology of Chaptér| 2E“ is the
total electric field, in the presence of the known inhomogesebackground, but in
absence of the anomaly. This field cannot be measured, bah ibe simulated us-
ing the technigues of Chapter 3. The scattered field is nowdifference of the total
field E; (the field due taJ 5; in the inhomogeneous backgrouwith tumor) and the
incident field E" and it is denoted a&:**""’. The collection of data for the lin-
ear sampling method is the same as for quantitative inveiaesing, except that it
is required in our implementation that the same receivippldis are used for every
transmitting dipole. The position-orientation pairs ;, i, ;) for the receiving dipoles
thus are simply denoted &8;, ;) in the linear sampling method and their number as
NE. Itis finally assumed thav * > N,

In order to detect an anomaly in the breast, the discretinedi sampling method
scans the investigation domdih i.e. for each point( on a testgrid that covef® the
following system of linear equations is solved for the unkneg; 1 (ro):

NI
> (- B () gix(ro) = —jwnoin - Gian(rimo) - o, ¥k, (5.2)

i=1

wherevy, is the direction of a test dipole which is placedrinandGin, (r;, 7o) is the
Green dyadic of the inhomogeneous background (the breast)dource iy and a
receiver inr;. The indexk labels 3 orthogonal directions on the test grid. According
to linear sampling theory, the indicator functiét{r,), defined as

3 NI

F(ro) =Y > llgik(ro)l?, (5.2)

k=11i=1

should become very large whep approaches the boundary of the anomaly from the
inside or lies outside the anomaly. Again, this has not beemdlly demonstrated in
the configuration under study.

A simulation of the incident dipole fieldB"“ (7;) = —jw o Gian (71, 74) - @t; i
presence of the breast with the VIE solver of Chapter 3 alslilyithe incident fields
on the gridE}"*" () = —jwoGinn (70, 71) - i, Which can be used in the right hand
side of (5.1) after an application of the reciprocity prdper

Vi - Ginh (70, 71) - W = ;- Ginn (71, 70) - Vg (5.3)

A simulation of the incident field thus also yields the nuroafrivalues of the inhomo-
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geneous Green dyadic that are needed by the Linear Sampditigpch

Implementation

In order to compute the solution of the systém (5.1), we wifpress it in a matrix
notation:
A%?'g = B, (5.4)

where the V7 x N7) - matrix A*** contains the scattered field for every transmitter-
receiver combination, the colums of the maigiXN! x 3N¢) contain the unknown
coefficientsy; i (ro) for every one of theV< test pointsr, on the grid and for every
test directiony,,. The matrixB (N x 3N %) contains the fields due to the test dipoles
at the receiver locations. The system (5.4) is an ill-poystesn. Consider the singular
value decomposition (SVD) of the matria**** = USVH  whereV#V = I'y: and
UU = I y:, with Iy: being theN! x N identity matrix, ands a diagonal matrix
containing the singular values of*“** in decreasing order. The spectrum.4f¢*
rapidly decreases and therefore the smallest singulaesand the corresponding
singular vectors are corrupted by noise on the measuremaAatm [6], a Tichonov
regularization is used to calculate a regularized solujitn

(AT At aly | g = (4)" B (5.5)
and using the SVD oAA*“**, we obtain
a2 X a; Hp2
g1, = ; Wllui B, (5.6)

whereg; is the i-th singular value aA*** andu; the i-th right singular vector, where
|| - || represents the two-norm for a vector and whiegé?, = >, ||g,||?, with g,, the
k-th column ofg. In order to calculate the regularization parametgethe discrep-
ancy principle is again employed (the error on the sysie#) (5.equal to the error
introduced by the noise):

HAscatga _ Ban — 62 HgO(HEn (57)

with ¢ the largest singular value of the noise matd%™" — A%  where A" is

the ideal, noise free data matrix. (b.7) can be reformulatédg (5.6) and the SVD
factorization, resulting in

o — 620'-2
fla) = Zfa)gnu{anQ =0. (5.8)
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The chosen regularization parameter thus is the rogta and f(«) has a unique
root in the interval0, eo; ] sincef(0) < 0, f(eo1) > 0, f(«) is continuous forx > 0
anddf /da > 0 for a. > 0.

Application

As an example, consider the same breast phantom as in Sécti@n The goal is to
locate the tumor when the permittivity distribution in trest of the breast phantom
is known or approximately known. The operating frequencggain 2 GHz, but the
dipole configuration is slightly different. The same dip@lesitions are used, but
there is only one polarization per dipole position. Howewdr dipoles are used to
illuminate the phantom (Figure 5.8). This yield8 = N = 84. Apart from the 2.5
mm phantom of Figure 5.5, we derived a second, coarser gptbajmation to the
full-resolution phantom of Figure 5.4 with cell size 5 mm.

Two linear sampling solutions were calculated. For the éirst, the measurement
data (i.e.w; - E;(r;)) were generated with the mm model with tumor, and the in-
cident dipole fields (i.ew, - Ei“c’l(rl)) as well as the Green dyadic were calculated
for the5 mm model without a tumor. To make this example somewhat nealistic,
additive Gaussian noise corresponding to SNR €B is added to the data, before the
scattered fieldd; - BV (r)) = @, - E;(r;) — @, - E™“'(r})) is calculated. The in-
dicator functionf in a slice through the tumor center is depicted in Figurez§.9(he
tumor is clearly visible as the region with minimal indicat@lues. For the second
example, the data were generated using2thenm model with tumor, while the inci-
dent fields and the Green dyadic are calculated wittbthem model without tumor,
thus creating a mismatch between the actual and estimatddjfomnd. Although
the linear sampling image is not as clear as the previoustbegumor can still be
detected, as appears from Figure 5.9(b).

The linear sampling method thus might provide a computatigrcheap means
to detect breast cancer. However, it requires an estimateeobreast permittivity
without a tumor. From the presented example it can be coadltitat the background
does not need to be rigorously known. An estimate is suffickart it remains yet to
be investigated how much this estimate can deviate fromdtumbbackground for the
tumor to be detectable. Maybe the linear sampling methodbearsed for monitoring
purposes, where one is interested in following the evatutiba tumor. In such case
it might be possible to perform a detailed, quantitativensgbthe breast in an initial
stage and use the information obtained from that to estith&tdackground, which
can then be used in subsequent rapid scans with the linegtingmethod.



(a) (b)

Figure 5.9: A slice through the indicator functioR' for the two linear sampling reconstruc-
tions: (a) for data obtained with the coarse model and using the coardel fioo the back-
ground, (b) for data obtained with the fine model and using the coardelrfow the background.
Values are in a logarithmic scale.
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5.2 Inversion of experimental data

The data used in this section were gathered in the bi-staterimetric free-space
measurement facility of Institut Fresnel, Marseille, FranThe data for the first target,
an inhomogeneous cube, was made available to us exclusivelyhe data for the
homogeneous targets which follow is part of a 3D database.wéfe invited by
the SEMO group at Institut Fresnel to process these data @nigsp the results in a
special section in Inverse Problems, together with a nurobether researchers.

In an anechoic chamber, the target is illuminated by a plameswgenerated by
a parabolic antenna (Figure 5/10). To obtain a good agreeedween the incident
dipole fields in our simulations and the actual incident ffeddn the parabolic antenna
in the measurement setup, the source dipoles are positfané@m the target, such
that they approximate a plane wave in the center of the meamsnt setup. To allow
for a comparison between simulation and measurements,dhsured scattered field
has been normalized by the people of the Fresnel Institute that it corresponds to
an incident field with amplitudé and zero phase at the origin. Th& transmitting
dipoles are depicted in Figure 5.11(a). The dipole directiare evenly distributed
over thef) and¢ directions to match the orientation of the plane waves imikasure-
ment setup. The scattered field is collecte@d6rpoints on a circle with radiu.796
m in the horizontal plane and along the negativdirection, as depicted in Figure
’5.11(b). Note that, due to technical limitations, only iieees that are further away
than50° from the source meridian are used. The dimensidh of the data vector
will not be the same in all reconstructions to follow, be@ssme measurements are
excluded due to saturation of the equipment. More detaitsiathe measurement
setup and methodology can be found in [9—-11]. Throughoutektof the section all
targets are embedded in free space @,e= ¢o).
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Figure 5.10: The experimental setup of Institut Fresnel. Two parabolic transmittingiaate
move on a vertical arc, while a receiving horn antenna moves on eonteizarc. The target is
positioned on top of the white cone in the center of the setup, which can ledati@und its
axis to illuminate the target from different azimuthal angles.
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Figure 5.11: The dipole configuration used for the reconstructions from the Frelstal 162
transmitting dipoles are placed on a sphere with radium and are oriented along tifeand
¢ directions (a) and6 receiving dipoles are placed on a circle with radiug896 m in the
horizontal plane and are oriented along the negatia&is (b). A typical investigation domain
D is also depicted in (b).
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5.2.1 Reconstruction of an inhomogeneous cube

We consider the reconstruction of a first real world targetreabperational frequency
of 8 GHz, which yields a background wavelength = 0.0375 m. The target con-
sists of a cube with sidé.67)\, and permittivity 2.35¢y, which is embedded in a
larger cube with side .33\, and permittivity 1.45¢q (Figure[5.12). Within the un-
certainty introduced by positioning errors, the smalleloecis centered at the point
(—0.33X4,0.33)4,0.33),) and the larger cube at the po{pt0.27),, 0.27X;, 0.40);).
The dimension of the data vector for this reconstructioN 3 = 4365.

The investigation domaif® in this example is a cube with side00),, centered
at(—0.27Xp,0.27);,0.40);,) and with edges parallel to the coordinate axes. The per-
mittivity grid has a cell size 00.08\; (= 3 mm), which results ir25 cells in each
direction and a total oiN¢ = 15625 permittivity unknowns. Considering the limited
number of data, this inverse problem thus is heavily unégesnined, hence without
regularization, problems can arise with the uniqueneslesoblution. Moreover, the
update systenm (4.59) would be singular whegr- 0, a problem which has been en-
countered before. Thanks to the VP regularization, howevgood result can still
be obtained. As far as noise is concerned, there are the idaéV® measurement
noise and also the discretization errors of the forward madpecially since no at-
tempt has been made to align the permittivity grid with theialcpermittivity profile
of the target, i.e. the faces in the permittivity grid do noincide with the interfaces
in the scatterer. From a number of reconstructions with théipticative smoothing
regularization with different regularization parametehe noise level is estimated as
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TV ~ 1072,

The reconstruction shown in Figure 5.13 is obtained witk 5.0, a rather large
regularization parameter because of the high amount okrmisthe data. To com-
pensate for the high noise level and the fact that the systeimder-determined, some
additional a priori information of the scatterer is empldy¢he VP values are kept
real, satisfying the physical constrait > 1.0. A new VP value is added each time
the criterion||g@|| < v/2-10~* (see|(4.52)) is met or when the least squares data fit
increases again. Starting from the background permittivitD, this yieldsé6 itera-
tions with P = 1, 3 iterations withP = 2 and8 iterations withP = 3. The position
and dimensions of both cubes are quite accurately recamstrwithin the resolution
offered by the permittivity grid, although the inner cubeslghtly too large. The
reduced accuracy in the vertical direction is due to therar@econfiguration, where
the receiving antenna positions all are in the horizont@heland where the transmit-
ting dipoles are spaced further apart and span a smallenamdhe receiving dipoles.
From the final VP value$1.42,2.01, 1} it can be concluded that the permittivity of
the outer cube is accurately reconstructed and that theitpigity of the inner cube
is a bit too low. However, the profile is almost piecewise ¢ansand yields a data fit
on the noise level, as can be seen from the swarm plot in Figdre(a) and the data
fit curves in Figuré 5.15.

The present example can be used to illustrate that the \VVRarization allows for
the introduction of a priori knowledge on the scatterer ineasy manner. Suppose
we know that one of the permittivities in the profile is likalybe larger thar2. The
lower bound on the last added VP value then can be getThe result of this assump-
tion is depicted in Figure 5.16. Again the data fit is on thesadevel (Figure 5.15)
and the profile is close to piecewise homogeneous (Figure (b)) with VP values
{1.46,2.26,1}. The additional bound thus is not restrictive in the finalorestruc-
tion, since the corresponding VP value has moved away fronCdnsidering only
the data fit and the amount of clustering in the permittivejues, the reconstructions
of Figure[5.13 and Figure 5.16 are hardly distinguishalethé second reconstruc-
tion, however, the permittivities are much better estimasdthough the inner cube is
somewhat smaller.

Finally, again for comparison, a reconstruction with nplitiative smoothing reg-
ularization is shown in Figurie 5.17. The noise level is regch only 4 iterations
as can be seen in Figure 5.15, but the result is not as goodtlas/Riregulariza-
tion. The overall structure of the target is present, but tduhe smoothness of the
reconstruction, the dimensions of the cubes as well asylemittivity cannot be eas-
ily estimated. This becomes very apparent in a swarm plofufiei 5.14 (c)), where
no clusters of permittivity values can be detected. Moreawe imaginary parts are
spread out too far from the real axis.
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(b)

Figure 5.12: The inhomogeneous cube target. A small cube with 8ideym and permittivity
1.45¢0 is embedded in a larger cube with siglemm and permittivity2.35¢,. Sketch (a) and a
photograph of the actual target (b).
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Figure 5.13: Reconstruction e& GHz with SRVP regularizatiom(= 5.0 and real VP values)
of the target of Figure 5.12. The initial guess is- ¢; everywhere. Real part of the permittivity
in two orthogonal cuts (leftzy-plane, right:yz-plane) through the center of the investigation
domain forP = 1 after6 iterations (a),(b)P = 2 after3 iterations (c),(d) and® = 3 after8
iterations (e),(f). The solid white lines indicate the contours in the actuattarg
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Figure 5.14: Swarm plot of theV complex permittivity values on the grid, represented with
dots in the complex plane, for the reconstructions of the target of Figa&ffom measured
data. Reconstructions: (a) of Figlire 5.13 (e),(f) using SRVP reigation with real VP values;
(b) of Figure 5.16 using SRVP regularization with real VP values andaa eower bound of

2 on the highest permittivity value; (c) of Figure 5117 with multiplicative smaagh The VP
values are indicated as the intersections of the solid horizontal line andliti&edical lines
and the exact permittivity values are indicated with dashed lines.
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Figure 5.15: The data fit cost functiotF“* versus the number of iterations for the reconstruc-
tions from measured data using VP regularization with real VP values y®&arization 1),
using SRVP regularization with real VP values and a lower bouritiasf the largest VP value
(VP regularization 2) and using multiplicative smoothing regularization. &riteof each step

in the stepwise relaxed VP regularization scheme is indicated with an arroextfa VP value

is added whetfig?|| < v/2 - 10~* or when the data fit cost functigA“* increases again.

(@) (b)

Figure 5.16: The same as Figure 5.13 (e),(f) but with an additional lower bourtifof the
highest permittivity value.
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(@) (b)

Figure 5.17: Reconstruction & GHz with multiplicative smoothing regularization of the target
of Figure/ 5.12 from measured data. The initial guess is ¢, everywhere. Real part of the
permittivity in two orthogonal cuts through the center of the investigation dmma

5.2.2 Reconstructions of homogeneous objects

The rest of the reconstructions in this chapter involve hpemeous objects, i.e. only
two permittivity values are present in the permittivity files, the background permit-
tivity and the permittivity of the target. To compensatetfoe high noise levels of the
Fresnel data, this information will be explicitly used frevow on. This means the the
SRVP regularization scheme will be terminated after thp sitith P = 2. The study
of every target starts with a first reconstruction using Mftarization to get an idea
of the noise level. Remember that in Section 4.2.1 it is erplathat the optimization
with multiplicative smoothing usually stagnates wh&h® reaches the noise level,
at which point an appropriate level of regularization isomwitically selected. In the
second step, the stepwise relaxed VP regularization (SK8&R)Section 4.3.3) is em-
ployed. In all the following reconstructions, the permitiy variables are constrained
as

R(e,) > 0.5 (5.9)
S(e,) < 0.3 (5.10)

which are only used to prevent ill-conditioning of the fordigoroblems. The VP
values are kept real and we impose an additional physicaitiint:

¢, > 1.0. (5.11)

Although the VP regularization yields excellent results symthetic data with
moderate noise levels (an SNR of about 30 @B, ~ 10~?) (see Section 4.3.4),
we noticed in Section 5.2.1 that there are some difficultiBermusing it on the mea-
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sured data of the Fresnel Institute, which turn out to haveenlevels about ten times
higher "V > 1072; estimated using the multiplicative smoothing reconstoun.
For such noise levels a strong regularization (i.e. a laggelarization parametey)
is needed to obtain profiles that are close to piecewise henemus with only two
permittivity values. In the following examples, it will béoserved, however, that this
can result in reconstructions in which the dimensions obtbjects are overestimated,
while their permittivity is underestimated, although tregalfit is on the noise level
and the reconstruction is close to piecewise homogenediis.ca@n be explained as
follows: in the first step of the SRVP scheme with= 1, the regularization keeps
the permittivities close to the background permittivity.the second step, a VP value
is initialized at random and immediately updated (as oatlim Section 4.3/3), based
on the permittivity profile after step 1. Its initial value liiherefore be rather low.
Apparently, due to the high noise level, the data does nda@oenough information
to force this second VP value sufficiently up the real axiobethe data fit reaches
the noise level. Extra information could be added by usingiifrequency data, e.qg.
by including the measured scattered field for different dieseries in the data vec-
tor e™¢2s in (4.1) and by accordingly extendirg©®* through forward simulations at
these different frequencies (in case of the non-dispefSiesnel targets, no adjust-
ments would have to be made to the regularization functiddisce we only consider
single-frequency inversion, however, we have to add othpeiaai information.
Fortunately, the VP regularization scheme allows for theilile introduction of
such extra problem specific a priori information. In Sectto®.1, a lower bound on
the last added VP value is used. The obvious difficulty witls th where to put it
without a priori information on the target. Here, a differepproach is taken: an
extra term is added to the cost function in the step viAte= 2, which only depends
onc, (the only VP value that is optimized for, sincgis kept fixed), i.e. we minimize

FYP +ymller — da)?, (5.12)

whered; is some relative permittivity value which is expected to bmewhat larger
then the largest permittivity in the actual profile. Thislvwihcourage the VP valug

to take on higher values when it is too far away frém Note that the extra (quadratic)
term in [5.12) does not interfere with the updating scheméhfe permittivity vector,

it only matters in the updating of the VP valug where it is simply incorporated in
the iterated quadratic minimization outlined in SectioB.2. The determination of
the parameters, n andd; in the following is done by numerical experimentation, but
is based on a set of criteria that does not use a priori infooman the target. The
strategy will become clear in the following paragraphs.
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Two Spheres

The Two Spheres target consists of two spheres with a diarmEs mm and a per-
mittivity 2.6¢p. We employ 4 GHz data to reconstruct this target. The ingattn
domainD is a cuboid with dimensions5.0cm x 7.5cm x 7.5cm (or, in background
wavelengths\y: 2\g x A\g X \g) which is centered at the origin. 40 x 20 x 20 permit-
tivity grid is used to discretize this domain with a cell s&e3.7 mm or0.05X¢. This
yields 16000 permittivity unknowns for a total of 4322 datarpts. The problem thus
is heavily under-determined. For all reconstructions @nésd in the rest of this chap-
ter, the uniform discretization grid for the fields in thei@rd scattering simulation
coincides with the permittivity grid.

For the initial reconstruction with multiplicative smoatl, the smoothing para-
metera is set toar = 1073, After 9 iterations, the result of Figures 5.19 (a) and (b)
is obtained. The data fit cost function throughout the mination is given in Figure
[5.18. We conclude that the noise level is somewhere arbuidd The reconstruction
clearly shows the spheres, but there is a very smooth timm$iom the background
to the object. In the swarm plot of Figure 5,20 (a) the peiwitijt values are very
much spread out, whereas in the swarm plots of the SRVP r&aotiens in Figures
(b)-(e) they are clustered around the VP values. FeetB&VP reconstructions,
the regularization parameter is chosen toybe- 1.0, a value which is obtained by
experimentation: it should be small enough to allow reaghitomparable data fit as
with multiplicative smoothing and yet it has to be high enlotig get nice clustering.
This experimentation can be done with= 0 in (5.12), because the size of the clusters
with other values of) is comparable, as can be seen in Figure 5.20, wiiere 3.
With n = 0, the reconstructed spheres are too large while their pirityitis too low
(1 = 2.22) (Figures 5.19 (c) and (d)), as anticipated.

The question remaining is: how can one chogse prevent this without knowing
the target? Typically, incorrect choices made by the VP le@ation are compen-
sated to keep the data fit cost function small. If, for a cergsrmittivity cell v the
largest VP value is chosen (i.e, =~ c;), while it should be a background cell (i.e.
€, =~ co = 1), often the surrounding background cells have too low a pgvity,
such that the local spatial permittivity average arounddireneous cell (on a sub-
wavelength scale) is approximately the same as in the idedlguration, yielding
approximately the same data fit. From Figure 5.18 it can iddeeseen that all re-
constructions yield an almost identical data fit. This congaging behavior can be
detected in the swarm plots of Figure 5.20, for example irafig (c), since a num-
ber of permittivity values from the cluster around the baokmd permittivity spread
reasonably far to the left. This indicates that the valug sfiould be increased. How-
ever wheny is increased too much, the permittivity values inside thigdatatend to
be too high and this is again compensated by introducing edth a permittivity
value that is lower than the background permittivity, as lbarseen in Figure 5.20 (e)
where a few permittivity values are pressed against therltwweand on the real part
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of the permittivity, and in Figure 5.19 (g) and (h) where tleresponding cells can
be located inside the spheres. Looking only at the swarns pthe reconstruction
with n = 0.025 exhibits least of this compensating behavior and therafotiee best
reconstruction among the presented ones according to ibeniar It turns out that it
is also the best reconstruction when considering the ataugét: the shape is accu-
rately reconstructed within the resolution offered by teenpittivity grid (bearing in
mind possible positioning errors in the measurements; éhenstructions suggest a
small offset, mainly in the vertical direction) and the pétivity of the reconstructed
spheres is fairly close to the permittivity of the actual es@s.

Finally, the clustering of the permittivity values whenngiVP regularization al-
lows for the definition of “the surface of the reconstructdyet”; it is the surface that
separates low permittivity values from high ones. The s@faf the reconstruction
with » = 0.025 is presented in Figure 5.21.

The computation time to solve the inverse scattering probdth multiplicative
smoothing for this example is about 4 hours and 20 minutes oraghine with 2
quadcore AMD Opteron 2350 processors (2GHz) with 32 GBytenefory. For
the reconstructions of the homogeneous Fresnel targetajdbrithms use the multi-
threading functions of the FFTW library [12] to distributeet computation of the
FFT's needed by the forward solver over the 8 processorseofrtachine.63% of
this time goes to the iterative solution of the MoM-systerfishe forward problem
and aboutl3% goes to the solution of the complex update systems (4.36¢. rést
of the time largely goes to the computation of the scattereld fon the receivers
from the internal field distributions and to the calculatafrthe Jacobian matriy in
each iteration. The total solution time for the SRVP recartiton of Figures 5.19
(e) and (f) is about 6 hours and 30 minuté8% of which is spent on the forward
problems and% on the solution of the update systems (4.59). Note thatalgtd 2
iterations were performed for the reconstruction of Figlsel9 (e) and (f), although
only 11 iterations are depicted in Figlre 5.18. That is beeaiter iteration 6, the least
squares data fit in the SRVP step with= 1 increased and the algorithm restarted
from iteration 6 withP = 2. The reconstruction with SRVP regularization seems to
need a bit more forward problem solutions per iteration lfim line search) than the
reconstruction with multiplicative smoothing, which eajps why the computation
time has increased more than the number of iterations. Tamge time for every
update system i8 minutes and6 seconds for the reconstruction with multiplicative
smoothing and abow minutes for the reconstruction with SRVP regularizatioheT
SPLSQR algorithm thus seems to perform slightly better tighVP regularization.
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Figure 5.18: The evolution of the least squares data fit cost func#drt over the iterations
for the reconstructions of the Two Spheres target using multiplicativeodrimy and SRVP
regularization withy = 1, d; = 3 and values of the weight: » = 0 (SRVP 0.0), = 0.01
(SRVP 0.01)5 = 0.025 (SRVP 0.025) angy = 0.05 (SRVP 0.05).
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Figure 5.19: Reconstructions of the Two Spheres target at 4 GHz. The real ptm oélative
permittivity is depicted in thez-plane on the left and in they-plane on the right. From top to
bottom: reconstruction with multiplicative smoothing & 10~3) (a) and (b); reconstruction
with SRVP ¢ = 1) regularization withy = 0 (c) and (d); reconstruction with SRVP regular-
ization withn = 0.025 andd; = 3 (e) and (f); reconstruction with SRVP regularization with

n = 0.05 andd; = 3 (g) and (h). The black circles indicate the outline of the actual spheres in
the considered slices through the permittivity profile.
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Figure 5.20: A plot of the N° complex permittivity values on the grid, represented in the
complex plane for the reconstructions of the Two Spheres target. Begactions: (a) using
multiplicative smoothing regularization with = 10~3; (b) using SRVP4 = 1) regularization
with n = 0; (c) using SRVP regularization with = 0.01 andd; = 3; (d) using SRVP
regularization withy = 0.025 andd; = 3; (e) using SRVP regularization with = 0.05 and

d1 = 3. The VP values are indicated as the intersections of the solid horizontalnthéha
solid vertical lines and the exact permittivity values are indicated with dagtes]

0.05

Figure 5.21: A 3D view of the surface of the reconstructed Two Spheres targegsmmonding
to Figure 5.19 (e) and (f). The semi-transparent spherical mespessent the actual bound-
aries of the spheres.
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Two Cubes

The Two Cubes target consists of two cubes with permitti2iB¢, and with side 25
mm. Because this target is approximately half as big as the Spheres target, the
operating frequency is doubled, i.e. we yse= 8 GHz. The investigation domain
now is a cube with side 7 cm 87)), centered at the poirfd, 0,0.05m). The cell
size of the permittivity grid is 2.8 mm0(0747 o), which results in 25 cells in each
direction and thugvV¢ = 15625. The number of data points 4365.

The initial reconstruction with multiplicative smoothimggularization again uses
a = 1072 and yields the result of Figurés 5.22 (a) and (b) after 8 fimma and 3
hours and 20 minutes. The data fit then is reduced to 0.05@ig23). The cubes
are located at the correct position and have more or lessattieat size. However,
the permittivity values are a bit too low and their spreadimghe complex plane
(Figure[5.24 (a)) renders the determination of one penwitittivalue for the cubes
rather difficult.

Figures 5.22 (c) and (d) show the SRVP reconstruction, nbtaafter 4 hours,
with v = 5, d; = 3 andn = 0.01. These parameter values are obtained in the same
way as before, using the criteria of (a) a data fit close to tieewith multiplicative
smoothing (Figure 5.23) and (b) a good clustering (Figuglf)) to determiney
and (c) the absence of compensating behavior (Figure 5|24 Figures 5.22 (c)
and (d)) to determing. The cubes are nicely reconstructed, with approximatedy th
correct permittivity ¢; = 2.27) and the reconstructed target is almost homogeneous.
The surface of the reconstruction is depicted in Figure 5.25
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(©) (d)

Figure 5.22: Reconstructions of the Two Cubes target at 8 GHz. The real part otthéve
permittivity is depicted in two slices parallel to the-plane on the left and parallel to they-
plane on the right. From top to bottom: reconstruction with multiplicative smogtfin=
10™?) (a) and (b); reconstruction with SRVR & 5) regularization withy = 0.01 andd; = 3
(c) and (d). The black squares in (a) and (b) and the white square} amd (d) indicate the
outline of the actual cubes in the considered slices.
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Figure 5.23: The evolution of the least squares data fit cost func#ign’ over the iterations
for the reconstructions of the Two Cubes target using multiplicative srmapénd SRVP reg-
ularization withy = 5, d; = 3 andn = 0.01.
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Figure 5.24: A plot of the N¢ complex permittivity values on the grid, represented in the
complex plane for the reconstructions of the Two Cubes target. Reugotistrs: (a) using
multiplicative smoothing regularization with = 10~3; (b) using SRVP regularization with

v = 5,d; = 3andn = 0.01. The VP values are indicated as the intersections of the solid
horizontal line and the solid vertical lines and the exact permittivity valuesralicated with
dashed lines.
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Figure 5.25: A 3D view of the surface of the reconstructed Two Cubes target, qunekng
to Figure 5.22 (c) and (d). The semi-transparent cubes repragseattual boundaries of the
cubes.

Cube of Spheres

The Cube of Spheres target consists of 27 spheres with rafli@snm and permittiv-
ity 2.6¢, stacked in a cubig x 3 x 3 grid. The frequency used to reconstruct this target
is again® GHz. The investigation domain is covered witB@ax 20 x 23 permittivity
grid with cell size 3 mm@0801\,) which is centered at the poif®, 0,0.0145 m).
The number of permittivity unknowns thus 9200, while the dimension of the data
vector isNP = 4365.

The reconstruction with multiplicative smoothing & 10~3), obtained in 2 hours
and 55 minutes, is shown in Figures 5.26 (a), (c) and (e) ieetlarthogonal slices
through the center of the investigation domain. This resubtained in 9 iterations,
yielding a final data fit of 0.012 (Figure 5.27), which is rekwily low in comparison
to the data fits obtained with the previous examples. Howéaeking at Figures 5.26
(c) and (e), the reconstruction is not very good in the valtiedirection. The indi-
vidual spheres cannot be resolved in this direction, inre@to slices parallel to the
xy-plane, where the 3 by 3 stacking is clearly visible (Figu#65a)). This is prob-
ably due to the specific antenna configuration of the datalvasere only receiving
antennas in the horizontal plane are used.

The reconstruction with SRVP regularization, obtainedradt hours and 17 min-
utes, is depicted in Figures 5.26 (b), (d) and (f). The SRViRRipaters were chosen
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asvy = 0.5 andnp = 0.0. This means that, from all the parameter combinations we
tried, a reconstruction without the extra term (5.12) intbst function exhibited least
compensating behavior. In the horizontal cross-sectidfiguire 5.26(b), the spheres
can be resolved and are more clearly outlined than in thenstaaction with multi-
plicative smoothing (Figure 5.26(a)). The resolution ie tertical direction, however,

is again worse. Looking at the swarm plot of Figure 5.28(bg oan observe that the
clustering in the reconstruction is less than in the recansbns of the Two Spheres
target and the Two Cubes target, although still much beltt@n tvith multiplicative
smoothing (Figure 5.28(a)). When we tried a higher regudéion parameter, the
clustering did not improve, because a strong compensaghguor occurred for all
the values ofy we tried. The data fit also became worse. This is probably due t
the coarse grid spacing in comparison to the sphere sizehvgnevents an accurate
modelling of the sphere boundaries such that, to obtain d data fit, one cannot be
too strict in imposing homogeneity. The permittivity of tfagget is also less well pre-
dicted than beforec{ = 2.10). We think this mainly results from the lower resolution
in the vertical direction. The surface of the reconstrutimdepicted in the 3D plot

of Figure 5.29.
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Figure 5.26: Reconstructions of the Cube of Spheres target at 8 GHz. The raabfptue
relative permittivity is depicted in three orthogonal slices through the ceftle investigation
domain: parallel to the:y-plane (a) and (b); parallel to thez-plane (c) and (d); parallel to
yz-plane (e) and (f). The reconstruction with multiplicative smoothing=f 10~2) is on the
left side and the reconstruction with SRVAP+£ 0.5) regularization withy = 0.0 is on the right
side. The black circles in (a), (c) and (e) and the white circles in (b)afd) (f) indicate the
outline of the actual spheres in the considered slices. Since the ex#atrpo$the Cube of
Spheres target is not given in the Fresnel database, an offsetrefi¢hence target was derived
from the reconstruction.
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Figure 5.27: The evolution of the least squares data fit cost func#ig’ over the iterations
for the reconstructions of the Cube of Spheres target using multiplicatiesthing and SRVP
regularization withy = 0.5, d; = 3 andn = 0.0.
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Figure 5.28: A plot of the N¢ complex permittivity values on the grid, represented in the
complex plane for the reconstructions of the Cube of Spheres targain&euctions: (a) using
multiplicative smoothing regularization with = 10~>; (b) using SRVP regularization with

v = 0.5,d1 = 3 andn = 0.0. The VP values are indicated as the intersections of the solid
horizontal line and the solid vertical lines and the exact permittivity valuesralicated with
dashed lines.
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Figure 5.29: A 3D view of the surface of the reconstructed Cube of Spheres taare¢spond-
ing to Figure 5.26 (b), (d) and (f). The semi-transparent sphemesent the boundaries of the
actual spheres with the same comment on the position of the target dgtioe B.26.

Mystery target

This target is again reconstructed from the 8 GHz data, bigt fitot known what
the actual target is. The investigation domain is a cube sidle 100 mm Z.67),),
centered at the poirf0, 0, 20 mm). The permittivity grid has cell size 4 mm.( 1)),
which yields25 x 25 x 25 = 15625 permittivity cells. The dimension of the data
vector is againV? = 4365.

The reconstruction with multiplicative smoothing & 10~3) is depicted in Fig-
ures 5.30 (a), (c), (e) and (g) in four horizontal slices tigiothe investigation domain.
The data fit after 13 iterations and 7 hours and 5 minutes iim dgaer than with the
Two Spheres and Two Cubes targets (Figure 5.31).

The reconstruction with SRVP regularization, obtaineéradtoout 11 hours, this
time withy = 2.0, d; = 3 andn = 0.015, is given in Figures 5.30 (b), (d), (f)
and (h) and the corresponding data fit curve in Figure|5.3¥orBeve discuss the
target itself, note that in the swarm plot of Figlre 5.32 (@esal permittivity val-
ues are on the lower bound on the real part, thus the comegéethavior has not
been eliminated, and the cluster size is rather large. Q@th@ces of the regulariza-
tion parameters did not improve the result. Again we sustettthis is due to the
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rather large cell size with respect to the detail in the targéich again appears to
be composed out of small spheres. There is always a tradeetvfieen homogeneity

of the targets and data fit (Section 4]3.2) and in this case talthe large cell size,

better homogeneity in this permittivity grid apparentlyane a more drastic increase
of the data fit cost function than in the previous examples;assbe seen in Figure
[5.31. From all combinations we tried, the aforementioneplii@ization parameters
represent a quasi-optimal trade-off between data fit ancoigemeity.

Judging from the results, we believe that the target itsetfi aggregation of 12
identical spheres with radius of about 13 mm and a perntittiaiound 2.4 ¢, =
2.40). The midpoints of the spheres form the vertices of a regutasahedron such
that all the spheres touch the neighboring spheres. Tonig hypothesis, we plot-
ted the cross sections of such an object on the permittivitis @f Figure 5.30. The
radius of the spheres is determined as follows. Since in R\PSreconstructions
the surface of the reconstruction can be defined (see Hig883,5ts volume is also
known. This volume is calculated and divided by 12 to obtaia volume of one
sphere, from which the radius is then obtained. This yidids= 13.1 mm. The
position of the reference target is obtained by matchinbatycenter to that of the re-
construction and its orientation is determined by visuap@ttion. From Figurfe 5.80
and Figuré 5.33 we can conclude that the reconstructionshntlaé hypothesis very
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Figure 5.30: First part. For caption, see second part.
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Figure 5.30: Second part. Reconstructions of the Mystery target at 8 GHz. Thpaeabdf the
relative permittivity is depicted in four horizontal slices through the invesbgadomain: at

z =0.0359 m (a) and (b); at = 0.0159 m (c) and (d); at = 0 m (e) and (f); at = —0.0041

m (g) and (h). The reconstruction with multiplicative smoothing=¢ 10~%) is on the left side
and the reconstruction with SRVR & 2.0) regularization withy = 0.015 andd; = 3 ison
the right side. The black circles in (a), (c), (e) and (g) and the whitdesiiia (b), (d), (f) and
(h) indicate the outline of a stacking of spheres with radisid mm where these spheres are
placed on the vertices of a regular icosahedron.
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Figure 5.31: The evolution of the least squares data fit cost func#ign’ over the iterations
for the reconstructions of the Mystery target using multiplicative smoothmbhSRVP regular-
ization withy = 2.0, d; = 3 andn = 0.015.
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Figure 5.32: A plot of the N complex permittivity values on the grid, represented in the com-
plex plane for the reconstructions of the Mystery target. Reconstructi@hasing multiplica-

tive smoothing regularization with = 1073; (b) using SRVP regularization with = 2.0,

d1 = 3 andn = 0.015. The VP values are indicated as the intersections of the solid horizontal
line and the solid vertical lines and in (a) the known background permittivitydieated with
dashed lines.
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Figure 5.33: A 3D view of the surface of the reconstructed Mystery target, corredipg to
Figure/5.30 (b), (d), (f) and (h). The semi-transparent sphengssent the boundaries of a
stacking of spheres with radius.1 mm where these spheres are placed on the vertices of a
regular icosahedron.

5.3 Conclusion

In this Chapter, the algorithms of Chapter 4 were employaddonstruct biomedical
phantoms from simulated data and real-world targets fropeemental data. The
biomedical reconstructions are challenging, becausesdéitige contrast and the large
absolute values of the permittivity. Moreover, the amountiata is often limited,
because of limited accessibility of the biological targethile the desired resolution
is high. This leads to strongly under-determined inversblems and ill-conditioned
Gauss-Newton update systems. The use of MS regularizatierincorporation of
constraints on the permittivity, the marching-on-scheméhe forward problem and
the use of the SPLSQR algorithm are highly beneficial for éhegsplications. The
reconstructions from experimental data are very intargsthecause they validate all
the algorithms which have been developed in this dissertditir the 3D electromag-
netic scattering problem, both forward and inverse. The &fRikarization yields very
accurate reconstructions of the Fresnel targets, even ugieg only single-frequency
data. It was shown that some extra a priori information isle&scorporated in the
SRVP scheme to further improve the reconstruction qualitye completely blind re-
construction of an unknown target can be called successifide it provides a very
clear image of the scatterer and detailed quantitativetimédion about its properties.
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CHAPTERD

Contrast source based
Inversion

In the previous chapters, the inverse scattering probles seéved using the con-
ventional approach in which the optimization operates erpermittivity only and in
which a forward scattering simulation has to be performeaary step of the iterative
solution. Although this kind of methods can be made to caywém a few iterations,
as can be observed from the presented results, the forwalptepn solutions in each
iteration can lead to long computation times, even whenguie accelerating tech-
niques discussed in Chaptéer 3. The contrast source inwef€i8l) approach of van
den Berg et al. [1] (see Sectibn 2.3.3) avoids the solutidomfard problems in each
step of the minimization and therefore is an interestingraltive.

In this chapter two contributions are presented. First,rasistency inversion (CI)
method is introduced. This method employs the same ideaseasS$| method, but
the cost function is modified in order to eliminate the petinitty unknowns from the
problem. The contrast currents then are the only remainpignization variables.
In the CSI method of van den Berg et al. [1-3], the two sets gkjdlally different
optimization variables, i.e. the contrast currents andptrenittivity unknowns, are
updated alternatingly. Since it is known that alternatiagable optimization methods
can exhibit slow convergence [4], we think this should beida® as much as possi-
ble. A preliminary numerical study in noise-free inversemgr conditions supports
this hypothesis and forms a motivation for the Cl method.his study, the inverse
scattering problem is solved in two steps. First, the visthlrrents, i.e. currents that
generate a non-zero field at the detector positions, aras&cmted through a pseudo-
inverse of the scattering matrix and, secondly, the inlésilirrents are recovered with
a conjugate gradient (CG) optimization of a cost functionoihe case this latter cost
function is the domain cost function from the CSI method,akhis minimized by al-
ternatingly updating the contrast currents and the pexitjttontrast and in the other
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case, it is the new consistency cost function of the CI metlddch is minimized
by only updating the contrast currents. This two-step apgneliminates all normal-
ization and trade-off parameters and therefore avoids tlestipn of how to choose
these optimally. This is especially useful since thosenogttiparameters are likely to
be different for the Cl and CSI methods, which hampers anatilsgecomparison of
the two approaches. Note that CSl-like or modified-gradigetmethods exist which
do not use alternating updates for field unknowns and matetkaowns, see e.g. [5].
We do not make any statements in this chapter regarding satfouts.

The second contribution of this chapter is the applicatibthe stepwise relaxed
value picking (VP) regularization scheme, presented inti@eet.3 for the conven-
tional approach, to the Cl method, yielding the VPCI methiodthe CI method, the
permittivity is absent in the optimization problem and aegularization that oper-
ates on the spatial distribution of the permittivity is thf@re not applicable to the ClI
method. VP regularization, due to its completely diffeneature, can be applied here.
The incorporation of VP regularization in a contrast sourased method such as the
Cl method is somewhat more complicated than its use in a abioveal method, but
the quality of the reconstructions is again greatly imptbve

The implementation of the Cl method has so far only been don2D inverse
scattering problems with transverse magnetic (TM) pogdidn. Therefore, this chap-
ter starts with a reformulation of the inverse scatteringppgm for this configuration.
The Cl method and the incorporation of the VP regularizatiothis method are dis-
cussed subsequently.

6.1 Problem formulation and discretization

A 2D inhomogeneous scatterer with complex permittivifp) and magnetic perme-
ability o (the permeability of vacuum) is embedded in an infinite hoemagpus back-
ground with permittivitye,, and permeability,q and lies completely within a bounding
box D. The position vector in the plane spanned by the orthogamavactorsz and
y is denotedp = z& + yy. There arel equidistant source-detector positionsg
i = 1,...,1, on acircle with radiug® around the center dP. The source is a line
current parallel to the-axis, which illuminates the object from successive posgi
p,; and which is time-harmonic with angular frequengy In the following, the time
dependency’“* has been omitted (in all the examples of this chapter theuénecy
is fixed to1l GHz). In the TM situation considered here, the electric faity has a
z-component, i.eE(p) = E(p)Z, hence a scalar problem remains [6].

The incident fieldEi"“(p) due to a unit line current ip, is

E(p) = jwpoGu(p — py). (6.1)

The Green function, is given byGy,(p — p,) = 2HS” (ky | p— p; ), in which H”)
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is the zeroth order Hankel function of the second kind Bne= w. /1€y is the wave
number of the background medium. The corresponding totdl fig(p) is governed
by the contrast source volume integral equation

Ei(p) = E"(p) + jwpo /D Gu(p—p)jwx(p)Ei(p)dp’, Vp (6.2)

in which y = € — ¢, is the contrast function, which is zero outsif®e Once[(6.2)
is solved forE;(p) insideD, the scattered field:(p,) = Ei(p,) — E¢(p,) at the
detector positiong, can be calculated as

E3(p1) = jwpo /D Gv(p, — p')jwx(p')Ei(p")dp". (6.3)

The 2D inverse scattering problem consists of solving the dguation/ (6.3) for the
unknown functiony, starting from known values df$(p,;), 4, = 1...I, and subject
to the domain equatioh (6.2). Since the total field dependg(pi through((6.2), this
is a nonlinear problem.

For the discretization of (612)-(6.3), the investigatianthin D is divided in N
square cells and a Garlerkin Method of Moments is applied hicvthe total field
and the contrast function are expanded in pulse basis nggti.e. in cell, the field
E;(p) and the contrast(p) assume the constant valugs,, and x,, respectively.
This yields the following matrix equation:

e; =e" + jwZXe;, (6.4)
where the elements of th¥-dimensional vectorg; and el and of theN x N
matricesZ and X are given by

e, = Ein, (6.5)
[e] = / E"(p)dp, (6.6)
Zow = jom / / Gu(p — p)dpdp, (6.7)
X'n,n/ = 5TL,TL/X7L? (68)

in which é,,.,,» is the Kronecker delta. The integral signs|in (6.6) and (@éhote
integration over single cells and the interaction integial(6.7) are calculated as in
[7], where the two 2D numerical integrations are replaceti wisingle 1D quadrature
and some analytical integrations, also taking into accthmisingularity inGi, very
elegantly. Within the same discrete framework, the datatiomi (6.3) can be replaced
by a matrix equation

e} = jwAXe,;. (6.9)
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The entries of thd-dimensional vectors; and of thel x N matrix A are

€l = Ep). (6.10)
A = Jem [ Gulpy - p)dp (6.11)
(6.12)

Note that, thanks to the convolutional symmetry of (6.7, thultiplication ofZ with
the vectorX e; in (6.4) can be done very efficiently with the use of Fast Fenufrans-
forms (FFT’s) [8,9], which is also the case for the multiption of Z* (the conjugate
transpose o¥) with a vector (this is needed to calculate gradient vedtothe fol-
lowing).

6.2 Consistency inversion

6.2.1 Consistency cost function

In the discrete formulation, the inverse problem consistdetermining the diagonal
contrast matrixX from known scattered field vectoe$, such that (6.9) and (6.4) are
satisfied, for all illuminationg = 1,...,I. In the conventional approach, wheke
is updated iteratively until (6.9) is (approximately) sfi#d, the total field vectors;
in each iteration are calculated by solving the discrete alorequation[ (6.4). The
drawback of this approach is the necessity to solve sevenabfd problems, which
is computationally expensive, even with fast methods ad-fEmethod. The CSI
method does not solve any forward problem, but uses a caejggadient optimiza-
tion method that alternately calculates updates for thé&rastmatrixX and the set of
contrast current vectogs until following two equations are (approximately) satidfie
a data equation

e =Aj,; (6.13)

and a modified domain equation
Ji=jwXe;, (6.14)
where the field vectors; are a function of the contrast current vectors:
e;=en 4+ Zj,. (6.15)

It is well known that the contrast current vectors are noirelytdetermined by (6.13),
because in a realistic setup the matdxhas less rowsI{) than it has columnsi)
and hence has a null space [10]. The componentg, af this null-space have to

be determined by (6.14) and (6.15). In the conventional @qugr, [(6.14) and (6.15)
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are simultaneously satisfied at any time, while in the CSlhaetthis is gradually
achieved throughout the optimization. Typically, in a CBipiementation, a cost
function of the following form is minimized:

Fliroordn X) =9F G dn) #AF (G, dn X)), (6.16)
where the data fit cost functig” and the domain cost functiogR“°! are given by

I .
. . = effAJi2
FOUrrdy) = iz ” (6.17)

T
D1 e

I
> lds — jwXe*. (6.18)
=1

FOS(5,,...,4.,X)

The positive constant is a trade-off parameter andis a normalization constant,
which possibly varies over the iterations of the minimiaatalgorithm as in [1, 3],
where it is chosen in the:-th iteration as

1

A= - . 6.19
S loX ™ eine|2 (649

The meaning of (6.14) is that the ratio of the contrast curire@ certain cell of the
discretization grid and the total field in the same cell issipeindent of the illumina-
tion. We call this “consistency”. This consistency can beased in yet another way.
Indeed, the following statement can easily be proven:

If, for the generalNV-dimensional vectorg, ande;,i = 1,..., I, the condition
Vi : #n for which [e;],, = 0and [5,], #0, (6.20)

is satisfied, the following statements are equivalent:
i) a bounded diagonal matriX exists such that

j, = jwXe;, Vi (6.21)

j,oce=e; 03, Vil (6.22)

In (6.22), “” stands for element-wise multiplication of tw¥-dimensional vec-
tors. If (6.21) holds, then (6.22) immediately follows. hetother direction, condition
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(6.20) ensures that bounded diagonal matri¥gsexist such that
ji = ijiei, (623)

and then(6.22) implies that these diagonal matrices cahdsen equal to each other:
X, =X, Vi.

Because of the above property, we propose to replace theidaost function
FES1'in (6.16) by the consistency cost function

I
FlGrsndn) =D, Y lldiceik —diyoeil (6.24)

keK i1=1

whereK is a (random) set of numbers betweleand ! and periodic boundary condi-
tions for the indices are used, i.g. = j,, ; ande; = e;,, and wheree; is computed
with (6.15). The contrast matriX is then no longer an optimization unknown. We
furthermore choose to modify the data fit term:

. . . . 2 . .
FGr,--dn) =7 [FPG1, - dr) — b+ AF Gy, d0)- (6.25)

The constant. is an estimate of the noise level, i.e. the dataAf (59,...,59)
obtained for the contrast current$ that correspond to the discrete contrast profile
X" which best approximates the actual contrast profile. Witk ntodification, the
first term in [(6.25) can be minimized to zero (or close to zen@®n if the data are
noisy, thus avoiding a trade-off between data fit and cosiscst at the end of the
minimization.

Both cost functiong (6.16) and (6/25) are conveniently minéd using a conju-
gate gradient approach. In both the CSI and the Cl methodgahtrast currents are
updated by performing a line search along a Polak&é#search direction in each
iteration. Appendix C discusses this in more detail. In ti&4 @ethod, the contrast
matrix X also has to be updated in every iteration and this can be doing, 3] (for
the unregularized CSI method without upper and lower boondbe permittivity) by
taking

I m1 \* [sm
X?n _ .iZizll([ei ]Tb) [Ji }n (626)
T Yiallem™dal?

in iterationm, a choice which minimizes (6.18) for fixedf” andj;". The CSI method
thus alternatingly updates the contrast currents and theagi. By using the cost
function [6.25), the Cl method avoids these alternatingptgsl This may reduce the
number of iterations in the optimization. Indeed, in theibring of the optimization,
when the contrast currents are still far from the solutibe,&SI update of the contrast
(6.26) is based on incorrect contrast currents and is nelylilo be much closer to the
actual contrast. The subsequent update of the contragintsiyis again based on this
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incorrect contrast, such that it is possible that not mudgass is made.

The CI method only retrieves the contrast at the end of thémimation of {6.25)
by using [(6.26), wheren in this case denotes the final iteration of the Cl method.
If, at this point, condition[(6.20) is not satisfied, the Clthm, strictly speaking,
has not found a solutioiX to the inverse scattering problem, because then [(6.21)
does not follow from[(6.22). However, this situation has Ineén encountered in our
experiments with the method and even if it occurs, it is gtiksible to obtain an
estimate of the contrast using (6.26), as long as for evdtyncthere is a non-zero
[e"],, for some illuminatiory.

K3

6.2.2 Motivation for the Cl method

In this section we test wether the Cl method can indeed yasdtef convergence than
the CSI method. Because we cannot use the choicel (6.19)d@atametel in the
Cl method, since the contrast has been eliminated, it isleat evhich choice of the
normalization parameter allows for an objective comparisbthe two approaches.
Also, in our implementation of the Cl method, we use the medifilata term as in
(6.25) with an adjustable, while the CSI method in [1, 3] uses (6.16) with= 1.
In this dissertation a preliminary test under ideal circtanses is conducted using a
two-step procedure which avoids difficulties with the cleoid the normalization and
trade-off parameters as well as the form of the data termsdaeal circumstances
assume that a contrast maté and contrast currentg exist for which[(6.13), (6.14)
and [(6.15) are exactly satisfied, i.e. when there is no noish® data and when the
vectorse; have been generated with the same discretization as is mgkd inverse
problem.

Under such assumption, the first step of the two-step proeedtrieves the visible
currents;j! , i.e. the components of the contrast currefjtehat do not lie in the null
space ofA, by solving [(6.13) for its minimum norm solution:

il =vsTlutes, (6.27)

where the matrice¥/, S andV form the thin Singular Value Decomposition (SVD)
of A, i.e.
A=USVH, (6.28)

The dimensions of the matricd$, V and S are (I x I), (N x I) and (I x I)
respectively. BotlU andV have orthonormal columns that span the rangd @ind
the range ofA”” respectively.S is a diagonal I x I)-matrix that contains the non-zero
singular values ofA. Note that, even for large inverse scattering problemsrevhe
becomes very largd,generally remains relatively small and the thin SVD4€an be
computed quite efficiently. The projections of the contrastentsj, on the null space
of A,ie. 5}V =34, — 3} = j, — VV¥j,, are denoted the invisible current vectors
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and have to be determined by minimizing (6.18)/or (6.24). e\that, historically, a
number of attempts have been made to only use the pseudséns@ution[(6.27) to
reconstruct the contrast curregtsand from those the permittivity in the investigation
domain [11,12]. In [10] it is shown that this is not a viablepagach and that the
invisible currents have to be taken into account.

Since the visible currents have been determined exac#yjaia fit cost function
(6.17) is zero irrespective of the invisible current vestand if we further only opti-
mize for the invisible currents in the second step of the shap procedure, it remains
zero. The minimization of (6.18) and (6.24) with respecttte invisible currents is
achieved by performing line searches along conjugate gnadipdate directions for
the invisible current vectorg, ¥ only. In Appendix C it is shown how these steps can
be taken in the null space of without constructing a basis for this null space. The
line search in both methods simply consists of finding thésroba polynomial which
is linear in the CSI formulation and cubic in the CI formutati The gradient vectors
needed by the conjugate gradient method are given in Apphdhfter every update
of the contrast sources in the CSI formulation, the contrestix X has to be updated
and this is achieved in our implementation with (6.26).

Figurel 6.1 shows two discretized real permittivity profilelsich are used as test
cases for the comparison. Test case 1 (Figure 6.1 (a)) ¢en$ia larger cylinder with
a diameteR )\, (0.60 m) ¢, = 0.30 m is the wavelength in the background medium)
and permittivity1.5¢, with inside it a smaller cylinder with diametér8\; (0.24 m)
and permittivity2¢o. Test case 2 (Figure 6.1 (b)) consists of two non overlapping
cylinders with diameten.8); (0.24 m), one with permittivityl.7¢; and one with
permittity 2¢q. In both cases the permittivity grid is2a x 25 grid with cell size0.1),
(0.03 m) and the background medium is ajy € ¢;). To simulate the scattering data,
40 line sources are placed on a circle with raditis= 3\, (0.9 m) (Figuré 6.2) and for
each such illumination (6.4) is solved and (6.9) evaluateddetectors in all source
positions. For these test cases, we plot (6.18) after etengtion in the CSI approach
and after every iteration in the CI method, we calculXtewith (6.26) and then also
plot (6.18) (note that the calculation & is only performed here for visualization
purposes and is not included in a normal iteration of the Ghiod). We are therefore
comparing two ways of minimizing the CSI cost function (.18

Figuréd 6.3 shows the result ov&0 iterations. Different, randomly chosen séfs
in the definition ofF¢! are considered and apparently, for all the sets except thk-sm
est one (lk-value), the CI formulation yields faster convergence ahbetter overall
consistency than the CSI formulation in both test caseseésing the sek yields a
longer computation time per iteration, although this iaseis limited, since no extra
multiplications withZ (to calculate the field vectors in (6.15)) Bt (to calculate the
gradient vectors, see Appendix D) are introduced. Howaviemger sef< apparently
also reduces the number of iterations needed to reach dnceotasistency, although
there is not much difference between the cases Svéthd5 k-values. The real part of
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the permittivity after200 iterations of the CSI formulation and of the CI formulation
with K = {34,19, 16} is shown in Figure 6.4 for test case 1 and in Figure 6.5 for test
case 2. Apparently both methods yield similar reconstomsti The CI reconstruc-
tions are slightly better than the CSI reconstructions noatsignificantly. Indeed, let
the reconstruction error be defined as

S e — )2

Zr]:[ZI er’|?

err, =

, (6.29)

where ¢”0 is the ideal relative permittivity in celh, corresponding taX . This
reconstruction error for test cadeis err, = 0.052 for the CI reconstruction and
err. = 0.071 for the CSI reconstruction, while for the test casdhese values are
0.077 and0.080 respectively.

In these idealized circumstances, the Cl approach thugdhglields faster con-
vergence, i.e. needs less iterations to obtain the samlediwensistency, and when
lower values fotF“3! are required, this difference seems to grow. However, the co
putation time per iteration is longer in the ClI method. Fa éxamples above, one
iteration of the CSI method takes 0.12 s in our MATLAB implertation. The CI
method requires 0.15 s, 0.20 s, 0.24 s and 0.33 s, respgdiived setK with 1, 2, 3
and 5 values, respectively. However, it can be seen fronr€iG8 that, depending on
the desired level of consistency, the Cl method can stildlsesf than the CSl approach
in the considered circumstances. For example, to reachraatiaed consistency of
10~ for test case 1, the CSI method needs 200 iterations, whél€thmethod with
K = {34,19,16} only needs 30, which yields a total speedup factor of 3.33esh
case 2, the CSI method achieves a normalized consistengy o> in 200 itera-
tions, while the same consistency is reached in 80 itersiiiothe Cl method with the
same sef(. The Cl method then is still 1.25 times faster. To determithétvone of
the methods is preferred in general circumstances withyrdata, or in cases where
regularization is applied to the cost functions, more redes needed.

R(e/eg)

Figure 6.1: The (real) permittivity profiles of test case 1 (a) and test case 2 (b).
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0.6

0.4 ‘ . .

Figure 6.2: The permittivity grid and line source configuration for the reconstructairsst
case 1 (Figure 6.1 (a)) and test case 2 (Figure 6.1 (b)). The griphézs with side.5), (0.75

m) and has cell siz@.1); (0.03 m) and 40 line sources are distributed over a circle with radius
3\ (0.9 m), which is centered at the center of the permittivity grid.
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Figure 6.3: The domain cost functiofF©>7 for the reconstructions of test case 1 (a) and test
case 2 (b) from noiseless data using the CSI method and the Cl methodiffetbrt setskK’

in the definition[(6.24). The curves have been normalized with a singleaimation factor,
common to all curves.
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R(e/eo)

Figure 6.4: Reconstructions after 200 iterations of test case 1 from noiseless dagultRR
obtained with the CSI method (a) and with the CI method (b).

R(e/e0)

Figure 6.5: Reconstructions after 200 iterations of test case 2 from noiseless dagultRR
obtained with the CSI method (a) and with the CI method (b).

6.3 Value picking regularization

It is clear from Figures 6/4 and 6.5 that both unregulariz&d &d CI formulations
do not succeed in obtaining perfect reconstructions evelerumoise free conditions.
This conclusion stands even after continued minimizatiafter 1000 iterations the
permittivity profiles still look much like Figure 6.4 and kitg' 6.5 and the reconstruc-
tion errors are).05 and0.071, respectively, for the Cl and CSI reconstructions of test
casel and0.076 and0.080, respectively, for the Cl and CSI reconstructions of test
case2. The reconstructions thus have hardly improved or have slightly deteri-
orated. Therefore regularization needs to be added, ngttomhitigate the effect of
noise on the data, but even to make the inverse crime probétteriposed.

For the CSI method, several regularization approaches lheswe applied. Since
they all act directly on the contrast, they cannot be appbetie Cl method, in which
the contrast is absent during the optimization. Value RigkiVP) Regularization,
however, can be modified and applied to the Cl method, withedmtroducingNV
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contrast unknowns. This yields the VP regularized consisténversion or VPCI
method. We show that this method is especially suited tongcact piecewise con-
stant permittivity profiles, for example the ones of Figure. 6

6.3.1 The VPCI cost function

The idea is to enforce the property that the contrast m&rignly contains a small
numberP of different values:, with p € {1, ..., P}, which act as auxiliary variables
and are denoted the VP values. This is done by minimizingakéfanction

. . . . 2 . .
FGro--ndne) =v[FPGy 30— b+ MF Gy, dn0),  (6.30)

where the VPCI functiotF” is given by

N
FPGrrdne) =Y P Un+ AaVaa,. ., Un + Vi p), (6.31)
n=1
with
! 2
Un(Gro--d30) = D) |lGilnleimtln — Fiilnleda| . (6.32)
i=1keK
I
V’L»P(jlv . dpe) = Z H;pn |[.7Jn - jwcp[ei}nﬁ ) (6.33)
i=1
ini 2
Hin = > |l (6.34)
keK
1
A= (6.35)

P ( :init -init _init)
F (Jl yeenJdI acmlt)

In (6.31),c is the vector of VP values anff’ is the P-dimensional choice function,
defined in[(4.41). The functioli,, expresses consistency for celbf the permittivity
grid and the functiorV/,, , expresses the error in (6/14) for celwhenX,, ,, = ¢,.
The positive parametey determines the trade-off between data fit and regularized
consistency and the parameter is a regularization parameter. The normalization
constants\; and H; ,, are computed for initial estimatg'$nit for the contrast current
vectors,eit for the field vectors and™™* for the VP values. Note that the last VP
value cp is fixed to zero (the contrast of the background medium), bezave are
certain that this value will occur iX.

The three most important properties of the choice functiensee Appendix B for an
extensive list of properties and their proofs):

i) the positive choice functiori” is zero (and thus minimal) if and only if at least
one of its arguments is zero (see Theorem B.4),
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ii) when P, arguments off” are much larger then the oth& = P — P, argu-
ments,f* reduces tof > evaluated in the smaller arguments (see (B.25)),

i) when all its arguments are equal and change in an idahtiay, f* is a scaled
version of f1,i.e. f¥(u,...,u) o< f1(u) = u (see Theorem B|5).

In (6.30), the consistency requirement and the regulaoizaire both incorporated

in the functionF*. According to property i), this function is zero if and onlfy i
consistency is reached for every cell(i.e. U, = 0, Vn) and if this consistency

is realized withX,, ,, = ¢,, for somep € {1,...,P} (i.e. V,, = 0). In other
words, minimization of 7 imposes consistency as well as the choice of one VP
value for each cell to represent the contrast in that cetimrFproperties ii) and iii), it

is furthermore observed that whén (6.30) is minimized

e initially only consistency is enforced since with propedyosen), the opti-
mization starts wittl/,, > A2V, ,. All the arguments thus are of comparable
size and therefore they are simultaneously minimized, Umcaf property iii).

o after awhile, when some consistency is already presentjffieeences between
the arguments of the choice functions introduced by thetfonsV/, ,, become
important. Gradually, the larger arguments will be disrdgd and the smaller
arguments will be further minimized, because of propeity ii

o finally, the VP regularization picks one VP valugfor each celln to enforce
(6.14) through the minimization of the corresponding fimts V,, , andU,,.

Note that it is possible that VP values merge in the coursbefinimization.

6.3.2 The minimization

The algorithm for the minimization of the cost function @)Zonsists of alternately
updating the contrast currents and the VP values. The updathe contrast currents
are still obtained with a line search along a conjugate gradiearch direction (see
Appendix D for the expressions of the gradient vectors)c&the cost function (6.30)
is no longer polynomial in the line parameter (because toéelfunction is not linear
for P > 1) the line search can no longer be performed by polynomialfioding and

it might seem at first glance that more general line seardrigthgns have to be used,
which would probably increase the computation time consloly. However, this
can be avoided by using Theorem B.11 and Conjecture B.1 o&Aqig B. Indeed,
consider the fourth order function

N P
QP (G1sdr € =D Wiy (Un 4 AaVay) (6.36)

n=1p=1
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where thelV,, , represent constant weight factors with< W,, ,, < 1. In iteration
m of the iterative minimization, which starts from the esttesg37", . .., j7*) for the
current vectors and™ for the VP vector, these weights are calculated initially as

Wi = BEU + V5, UL+ AV, (6.37)

where the functionsB;f are defined in Appendix|B and where the superserigh-
dicates quantities evaluated fof7", ..., 7", ¢™). Because of Theorem B.11 and
Conjecturé B.1, the modified cost function

. . . . 2 . .
F s ndpe) =7 [FPG1 i) — b +MQ (G- G ) (6.38)

touches withZF in (51°,...,37,¢™) and lies aboveF in all other points. There-
fore, minimizing F< along a descent direction starting fragi”, ..., 7", ™) will
also reduceF. After this initial line search o7 @ yielding (7', ..., 47", ¢™),
the weightsiV,, ,, are updated using (6.37) evaluated(j*"', ..., 57", ¢™), such
that 7 and < touch again in this point. Then the procedure is repeatedtairo

(j’1”’2, e ,jT’Q,cm) etc. When, afteg cycles no improvements are made in this
rapid sequence of polynomial line searches, the curreetsmtated fronfs 1", . .., 57°)
to (57, LAt = G ).

To subsequently update the VP values, the same fourth-apgeoximation/(6.36)
of the choice function is employed. It can be observed fror8qpand((6.33) thaf @
is quadratic in the VP values. This means that, to mininfizefor fixed weightsiv, ,,
and for fixed contrast current vectdeg"**, ..., j7), a simple quadratic program-
ming method can be used [4]. Moreover, it is very simple tooithtice constraints on
the VP values in such a method, yielding a quadratic activens¢hod (see Section
[4.3.2 or [4]). Again this quadratic minimization can be rafeel in a sequence where
the weightsV,, ,, are updated until no further progress is made. At this posheve

completed iteratiom» and have obtainegi" ", ... 7 ¢mth).

6.3.3 Stepwise relaxed VP regularization

An issue unmentioned until now is the choice of the number@fdluesP. It might

be that the ideal value aP is known in advance, but certainly this is not always
the case. In theory the value &f can be larger than the actual number of different
permittivity values in the profile, since the VP regulariaatalgorithm allows for the
merging of two or more VP values. In practice however, it istlie let P be as smalll
as possible, since a larger number of VP values introducesgerl freedom in the
optimization space, which is not always beneficial, espigciet in the beginning

of the minimization. Indeed, when still far from the solutjadhe VP regularization
might make incorrect choices, i.e. choices that prevenukémeous satisfaction of
the requirements of data fit and consistency. Although shoites may be corrected
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by further minimization of the cost function, they may alsad to local minima in the
cost function in which the local optimization algorithm cget trapped. Therefore we
choose to adopt a stepwise relaxed VP regularization, whi€haptef 4 has proven
to be a good strategy to avoid the problem of incorrect ctsoéeel which can also be
seen as an extra updating scheme for the auxiliary disceeizble P.

In the stepwise relaxed VP regularization strategy, themiation is started from
an initial estimate (see Section 6.3.4) with= 1 and a sufficiently large regularization
parameten,. When the convergence rate has decreased below a predefiestiaia,
an extra VP value is introduced. This relaxes the VP requdéion, as can be seen
from Theorem B.10 in Appendix|B. Witf? = 2 the minimization is continued until
again stagnation occurs. Each time a VP value is added thyismtd this introduces
no further progress. The addition of a VP value is done byaiiing it at random
(making sure it does not coincide with an already presentaBey and applying the
repeated quadratic minimization algorithm which is memgid at the end of Section

6.3.2.

6.3.4 Initial estimate

Before the iterations with VP regularization are startefitsh estimate of the contrast
currents is obtained using unregularized consistencyrsie, i.e. by minimizing
(6.25). These first iterations are stopped quite early, isedigh accuracy is not
needed. To initialize this initial consistency inversitseif, an estimate of the visible
currents is first obtained from (6.13). However, whereasdati®n 6.2.2 the visible
parts of the current vectors were obtained exactly using#eeido-inverse aofl, this
is no longer possible due to noise on the data: the minimum saiution to[(6.13)
fits the data perfectly, including the noise, which is not¢hse for the actual visible
current vectors. MoreoveH is typically ill-posed and the minimum norm solutions
can be very different from the actual visible current vegtdue to noise amplification.
Therefore we consider a Tikhonov regularized solution ta3p(see Section 2.2):

it =V (S?+al)  SU e (6.39)

The regularization parametaris obtained using the discrepancy principle [13], &e.
is such that

Sicaller — AP _

iz Nl

As a consequence the initial contrast currents alreadyl etlata fit on the noise
level. The first term in[(6.25) and (6.30) thus simply keepes dlata fit around the
noise level during the optimization and is squared to keepctst function positive.
This is a generalization of the strategy we employ in theeless case, where the data
fit is satisfied exactly after the visible currents have beeteminined by[(6.27) and

(6.40)
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where the further optimization only looks for the invisilolerrents and leaves the data
fit unaltered. The normalization paramefem the initial minimization of[(6.25) is

chosen as .

A= .
FO(GTar s d1a)

(6.41)

6.4 Numerical examples

To illustrate the effect of the VP regularization on the Gldrsion method, the same
test cases as in Sectibn 6/2.2 are first considered. For éstltdses, we start with
an inversion from noiseless data. As mentioned above, tregutarized Cl and CSI

methods do not succeed in obtaining a quasi-perfect recmtisin even under such
inverse crime conditions. If the VP regularization is ugéd,result is improved dras-
tically. For all the following reconstructions with VP rdguzation, the regularization

parameter is\2 = 0.001 and we impose physical constraints on the VP values:

R(cp)

S(ep)

0.0, Yp (6.42)

>
< 0.0, Vp. (6.43)
The following stopping criteria are used for the differet@ps in the stepwise relaxed
VPCI scheme (an iteration in the following refers to a cortglepdate of the opti-
mization variables, i.e. a line search along a CG directimh @ossibly an update of
the VP values):

e The initial Cl iterations (minimizing (6.25)) are stoppetienF < 0.01, when
the relative differenc@AF|/F between two subsequent iterates is smaller then
0.001 or after500 iterations

e Every step in the stepwise relaxed VPCI scheme (minimiZ&80Q) for fixed
P) is stopped whetf < 10-5, when|AF|/F < 0.001 or after500 iterations

e When adding a new VP value leads to only one additional i@matiefore the
minimization is stopped by the above stopping criteriois thst step in the
stepwise relaxed VP regularization scheme is disregamédiee complete al-
gorithm is stopped.

Using these criteria, the result in Figure 6.6 is obtainethe fiumber of iterations
which the algorithm performed during the initial Cl inversiand the subsequent
VPCI inversions with increasing number of VP values is giirefiable 6.1. For both
test cases the correct number of VP values is obtained ancktloastruction error
is only 4.6 - 10~ for test casd and2.9 - 10~ for test case, two virtually perfect
reconstructions.
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Test casd

Cl | P=1|P=2|P=3|P=
noiseless| 12 28 140 418 /

30dB | 72 43 61 500 15
/

20 dB 57 46 81 474
Test cas@
noiseless| 14 44 258 350 /

30dB | 60 a7 262 439 /
20dB | 56 38 300 353 /

Table 6.1: The number of iterations in every step (initial Clinversion and the sulesegteps
with increasing number of VP valudd) of the stepwise relaxed VPCI reconstructions of the
targets of Figure 6]1 for different values of the SNR.

Figure 6.6: Reconstructions of test case 1 (a) and test case (2) from noisetasssiteg the
stepwise relaxed VPCI method witz = 0.001.

Next the data is corrupted with noise. We add Gaussian noideetdata of both
test cases, once with an SNR3t9fdB and once with an SNR @b dB. As mentioned
before the data fit term in (6.30) must keep the data fit on @ecto the noise levéi,
while the second term is minimized to yield consistencyhé hoise leveh is exactly
known, the proposed cost function (6.30) can in principleri@mized to zero, since
it is zero for the actual permittivity profile. Therefore,ttwithis cost function there is
no real trade-off between data fit and consistency in thermim of the cost function
as is the case, for example, for CSl inversion with the costtion (6.16). Ifh is
only an approximation of the actual noise level, howevesrdhs a trade-off, which
is regulated by the parameter To make sure that the degree of consistency is high
enough when convergence is reached in such a situatiomntskgical to give more
weight to the consistency term when there is more noise oddte since more noise
also implies a larger uncertainty on the noise level. It @yéver, not clear that the
regularization parametey, should be modified in case of noisy data, since it merely
determines the level of consistency where the VP regul@oizastarts picking VP
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values. Therefore, we try keeping it fixed to the valge= 0.001 which is also used
for the noiseless data. The parameteendh are chosen as = 10° andh = 0.001
in case of the30 dB data and as = 10* andh = 0.01 in case of th&0 dB data.

The reconstructions witB0 dB noise are shown in Figure 6.7. From Table] 6.1
it follows that the algorithm overestimates the number of YARues in test casg,
probably because the iterations with= 3 are terminated when the maximum number
of iterations is reached and not when convergence has eccukowever, two VP
values are close to each other(74-10~ ! and0.443-10~ !, corresponding to relative
permittivities 1.535 and 1.500) and the reconstructioorag0.015. With respect to
the exact profile, some incorrect choices were made by thely#Harization along the
contour of the largest object (close to the leftmost corrig¢he smaller inclusion as
seen in Figure 6.7 (a)). For test casie correct number of VP values is obtained and
the reconstruction error £022. An incorrect choice has been made for the pixel on
the lefmost corner of the object with permittividy,. The reconstructions with0 dB
noise are shown in Figure 6.8. This time the correct numb#Rotalues is obtained
for both test cases, as can be seen in Table 6.1, and the trectios errors aré.02
and0.044, respectively, for test cadeand test cas®. Again the main causes of error
are some incorrect VP choices along the outline of the olébtlowest permittivity
in test case 1 and the object with the highest permittivitijest case 2. However, it
is clear that, even with noise on the data the VPCI resultsnaeh better than the Cl
and CSl reconstructions of the noiseless data.

R(e/eg) R(e/eg)

(a) (b)
Figure 6.7: Reconstructions of test case 1 (a) and test case (2) from noisy dat8MRE- 30
dB using the stepwise relaxed VPCI method with= 0.001, » = 0.001 and~y = 10°.
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R(e/eo) R(e/eg)

(@) (b)
Figure 6.8: Reconstructions of test case 1 (a) and test case (2) from noisy dat8MRh- 20
dB using the stepwise relaxed VPCI method with= 0.001, » = 0.01 andy = 10%.

The last example is adopted from literature, more spedyidadm [2], where
a CSI method with both smoothing and total variation regeddion is used. The
target is a square cylinder with sidg (0.3 m) and permittivity(1.6 — 0.25)eo which
is enclosed in a larger square with sigle, (0.6 m) and permittivity(1.3 — 0.45)eg
(Figurel6.9). The discretization grid is28 x 29 grid with side3)\, (0.9 m). Both
squares and the grid are centered at the origin. The illuingdine sources are
evenly distributed over a circle with radiug = 3\, (0.9 m) and/ = 29. For this
third example, denoted test case 3, the inversion paraseatethe same as before, i.e.
A2 = 0.001 and depending on the SNB) dB or 20 dB respectively, the parameters
andh are chosen ag = 105 andh = 0.001 or asy = 10* andh = 0.01, respectively.
The setK, however, is different, because the number of line soursedifierent.
This set is nowK = {7,17,27}. Figure 6.10 shows the result for a reconstruction
of noiseless data. The reconstruction is again almost ge(efer. = 6.2 - 10~%) and
from Table 6.2 we conclude that the correct number of pefntitivalues is estimated.
When noise is added to the data, we obtain the results fromérgytl for SNR= 30
dB and Figure 6.12 for SNR= 20 dB. In both cases the number of VP values is
overestimated. However, for SNR 30 dB two VP values are very close to each other
(relative permittivitieg1.307 — 0.3995) and(1.307 — 0.4004)) and the reconstruction
error is only7.3 - 10~2, which is less than% and thus also almost perfect. Only in
the reconstruction with SNR- 20 dB does the noise have a noticeable influence on
the reconstruction. Here, some incorrect choices are nmladg &e outline of both
squares and the algorithm only terminates o= 5, but the reconstruction error is
still only 0.041 and the VP values fall apart in two pairs of close values (jittixities
(1.297 — 0.393;) and(1.299 — 0.3904) on the one hand and.520 — 0.2675) and
(1.550—0.2285) on the other hand). To appreciate this result more, Figdr@ hows
the reconstruction for SNR 20 dB obtained by the ClI method without regularization
after192 iterations (to reach the stopping criterigh< 10~°), which is clearly worse
than the reconstruction with the VPCI method. Not only is theonstruction error
larger err. = 0.093), the boundaries of the squares cannot easily be distingdis
and two permittivity values for the squares are not readibntified, in contrast to
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the result of Figuré 6.12. The reconstructions of test casbtained with the VPCI
method are of comparable quality as those obtained in [2,i8] the CSI method
with TV regularization. To conclude, Figure 6]14 shows tleewergence of both
unregularized Cl and CSI methods in the inverse crime ciumditof Section 6.2.2.
Under these circumstances, the Cl approach again yielts faanvergence.

Test case
Cl|P=1|P=2|P=3|P=4|P=5
noiseless| 12 56 148 293 / /
30dB | 70 72 279 500 104 /
20dB | 39 63 393 500 33 2

Table 6.2: The number of iterations in every step (initial Cl inversion and the sulesgctieps
with increasing number of VP valudB) of the stepwise relaxed VPCI reconstructions of the
target of Figuré 6.9 for different values of the SNR.

R(e/eg) ¥

04

(@) (b)

Figure 6.9: The (complex) permittivity profile of test case 3. Real part (a) andrgevef the
imaginary part (b).

- ~3(e/<0) |,

R(e/eg)

@) (b)

Figure 6.10: Reconstruction of test case 3 from noiseless data using the stepwissdrgRRLI
method withA; = 0.001. Real part (a) and inverse of the imaginary part (b).
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—S(e/€0)

R(e/eq)

(@) (b)

Figure 6.11: Reconstruction of test case 3 from noisy data with SNR0 dB data using the
stepwise relaxed VPCI method witty = 0.001, » = 0.001 andy = 10°. Real part (a) and
inverse of the imaginary part (b).

4 = 03
—S(e/e0) |,

@ (b)

Figure 6.12: Reconstruction of test case 3 from noisy data with SNR0 dB data using the
stepwise relaxed VPCI method with, = 0.01, » = 0.001 andy = 10%. Real part (a) and
inverse of the imaginary part (b).

R(e/eq)

(@) (b)

Figure 6.13: Reconstruction of test case 3 from noisy data with SNR0 dB data using
the unregularized Cl method with = 0.001 andy = 10*. Real part (a) and inverse of the
imaginary part (b).
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—Csl

——CI,K=[7,17,27]

FCOSI (normalized)
5

0 2‘0 A‘U 6‘0 li‘zmberlggnerau%%s 1lA0 1éD 1&‘20 200
Figure 6.14: The domain cost functiof > for the reconstructions of test case 3 from noise-
less data using the CSI method and the Cl method Witk [7, 17, 27] in the definition|(6.24).
The curves have been normalized with a single normalization factor, contwrboth curves.

6.5 Conclusion

Two major conclusions can be drawn from this chapter. Firss, possible to refor-
mulate the contrast source inversion method such that thmitigity unknowns are
eliminated from the optimization problem. This consistieimversion method pro-
duces results, comparable to those of the CSI method, boiiag the alternating
updates of contrast currents and permittivity, it is expddb convergence faster. A
preliminary study under idealized circumstances confiris but more research is
required to validate this statement in general. Secondiatue picking regularization,
which was recently proposed for use in the conventional @y to inverse scatter-
ing, can be incorporated in the Cl method, whereas othetaggation methods that
operate directly on the permittivity cannot. The resultMigCl method is capable
of accurately reconstructing piecewise homogeneous p@rityi profiles, conserving
edges and constant regions in the reconstruction with nailérpriori information. At
this point it is not clear whether or not the VPCI method otfiprens other contrast
source based inversion schemes, such as the CSI methodwidgtilarization, either
in reconstruction quality or in computation time, but ittaénly is a viable alternative.
Finally note that the VP regularization can also be incoapent in the CSI method,
either as this is done for the Cl method, or operating diyamtl the permittivity as is
done in Chapter|4.
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CHAPTER/

Conclusions and
Perspectives

In this doctoral research, algorithms for quantitative nmicave imaging, or electro-
magnetic inverse scattering, have been developed. Theasisplias on 3D imaging,
a field of research which has only recently been given thediiéntion of the in-
verse scattering community. Our numerical experiments wie Cl method have
been conducted in 2D, but with the discretization techréqpfeChapter B, it is readily
extendable to three dimensions. This dissertation predesgveral improvements to
the forward and inverse scattering algorithms, aiming & laobetter efficiency and
an improved reconstruction quality.

A first couple of improvements concerned the numerical souof the forward
problem, which constitutes an important part of convergtionverse scattering algo-
rithms. In Chapter 3, a full-wave vectorial volume integegjuation approach was
adopted to simulate the forward scattering from a given 3mmex permittivity pro-
file. The large linear systems that arise from the MoM diszagibn of the VIE are
solved iteratively and two improvements were proposed tthitomore efficiently. A
first improvement is the hybrid MLFMA-FFT method, which coimés the strengths
of the Multilevel Fast Multipole Algorithm and the FFT-meithto speed up the indi-
vidual matrix-vector multiplications in the iterative stibn. A second improvement
is the use of an extrapolation technique, based on the nmagram-in-source-position
scheme and the Born approximation, to reduce the numbeermaftibns by choosing
a better initial estimate. Although the full potential oBtMLFMA-FFT method has
not been further exploited in our inversion experiments, rilethod can be useful in
future applications with sparser scattering configuratias illustrated in Chapter 3.
In contrast source based inversion methods, such as the &8bdor the Cl method
presented in Chapter 6, the solution of a multi-view forwsedttering is not neces-
sary, but even here the MLFMA-FFT method is applicable, esihcan be used to
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evaluate the fields in the investigation domain generatetidgontrast currents.

We explored two approaches to solve the inverse scatterotggm in this work.
The conventional approach eliminates the electric fielde¢uivalently the contrast
currents) from the optimization problem and retains onéyglermittivity as unknown
guantity, whereas the Cl method eliminates the permigtivitd only optimizes for the
contrast currents. The major part of this dissertation i@tial to 3D microwave re-
construction algorithms which employ a Gauss-Newton ogtiion strategy to solve
the inverse scattering problem in the conventional apr¢@hapters 4 and 5). The
Gauss-Newton optimization algorithm is well known and vydesed for minimizing
sums of squares cost functions, such as the least squaee$itdadst function. In
this work, the Gauss-Newton framework has been modified tomize regularized
cost functions. Two different regularization strategiesr@vproposed: multiplicative
smoothing and Value Picking regularization.

Multiplicative smoothing regularization is a flexible, gdi@e tool which allows
for reconstructions of objects on which not much a prioromfiation is available. It
reduces the ill-posedness of the inverse scattering probielimiting the optimiza-
tion space to profiles that are sufficiently smooth and tloeeefio not suffer from
high frequency perturbations. Although this regularimatsmooths away the sharp
interfaces in objects with piecewise constant permittiyitofiles, it provides useful
reconstructions in any case and is very suitable for recoctitg permittivity profiles
without very sharp edges and a wide range of permittivityi@al such as some bio-
logical phantoms. Moreover, the multiplicative nature luktregularization renders
the choice of a regularization parameter less critical.

VP regularization is a new regularization method, moreesbfibr imaging piece-
wise homogeneous objects and also easily incorporate@iG#uss-Newton frame-
work via a half-quadratic optimization scheme. It is basedhe knowledge that only
a few different permittivity values occur in such profildse tvalues of which need not
be known in advance. The VP regularization is introducetiésblution of the inverse
problem by adding a choice function to the data fit cost fumctor every permittivity
unknown. When minimized, the VP regularizing function clustthe complex per-
mittivity values in the complex plane around a number of VRIgg, which are treated
as auxiliary optimization variables. The stepwise relexabf VP regularization, re-
sulting in the SRVP regularization strategy, introducesupdating scheme for the
number of VP values. The Gauss-Newton method with SRVP agigation provides
very good reconstruction quality even when it is applieddpezimental data.

Both regularization methods allow for the use of the SPLSQfhid to solve the
Gauss-Newton update systems iteratively, which resultess iterations and hence
a lower computational cost and a wider application rangehefitiverse scattering
algorithm. This algorithm extracts from the original Gaddmwton update system
a smaller system, which inherits the ill-conditioning, lmaih be rapidly solved in a
direct manner. The remainder of the system is better camditi and can be solved
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iteratively with much less iterations than the originalteys. Finally, the use of upper
and lower bounds on the real and imaginary parts of the ptvityithas been made
possible through the use of a constrained line search patis approach requires
little adaptations of the unconstrained Gauss-Newtonridhgo while offering more
control over the optimization process.

The developed reconstruction algorithms were tested ohn $gtthetic and ex-
perimental data. Biomedical objects are challenging tasés for inverse scattering
methods, because of the high permittivities and large ast#iinvolved. Some numer-
ical biological phantoms were considered in this dissiemand illustrate the applica-
bility of our general inverse scattering algorithms to besfital microwave imaging.
In particular, the reconstruction of a numerical breastnpdra supports the interna-
tional efforts made to develop practical microwave imagimgthods for breast cancer
screening and monitoring. The successful inversion of #peemental Fresnel data
with our algorithms demonstrates the validity of the altjoris for both the forward
and inverse problems. Moreover, we showed that, even witliesfrequency data and
despite the high noise levels, very accurate reconstngtan be obtained by using
suitable regularization, in our case SRVP regularization.

The other approach to inverse scattering, which is based@introduction of
contrast currents as auxiliary optimization variables, &lao been investigated in this
work. It has been shown that it is possible to eliminate theniéivity unknowns from
the optimization problem in the CSI method, resulting in ahod which we named
consistency inversion. This method optimizes for one tyfjgghgsical quantities only,
the contrast currents, and is expected to yield faster eganee than the CSI method,
where both contrast currents and the permittivity are wgatlatternatingly. This be-
havior indeed has been observed in a number of test casetsstuodid be investigated
whether it occurs systematically. The SRVP regularizasicineme has been incorpo-
rated in the Cl method as well. Like in the conventional apphy the reconstruction
quality in case of piecewise constant permittivity profiegreatly improved because
of this.

Despite the advances made in solving the 3D inverse sacajtproblem, several
improvements are still possible and should probably berpaated in a practical
microwave imaging algorithm. As far as the forward scatigproblem is concerned,
following suggestions can be made.

a) The forward scattering algorithms can be parallelizeafimal efficiency, i.e.
the workload can be distributed over different computingessimultaneously.
This is possible in two ways. First of all, several forwarthaglations, corre-
sponding to different illuminations, can run in paralleleddwuse of this, it is
often said that the conventional approach to inverse soaités embarrass-
ingly parallel. Second of all, the routines to calculate FFT’s tredlMLFMA
are parallelizable on themselves. Recently, a lot of effag been put in the
development of parallel MLFMA codes that can run on ordinanputer net-



192

CONCLUSIONS AND PERSPECTIVES

b)

d)

works [1,2]. A large speed-up can be expected from a comibimatf paral-
lelization of the forward problem with the extrapolatiorpapach presented in
Chapter 3.

It has been observed that the VIE of Chapter 3 is not alwayge#i-conditioned
as one would like, for example when inverting biomedicalregkes with large
contrast and especially when the background permittigitpnuch higher than
the average permittivity in the biomedical phantom. Therefit might be prof-
itable to look for better conditioned formulations of theBvir for suitable pre-
conditioning techniques for the forward problem.

In measurement configurations where the antennas aestoltise investigation
domain and where the complete setup is electromagnetishigfded from its
surroundings, for example in medical imaging, the VIE migbt be the best
choice to solve the forward problem. Indeed, in such situti it loses its
largest assets, which are not having to discretize largesayEempty space in
the measurement setup and not having to truncate the mé#tiadly. In those
circumstances, a finite element (FE) approach might be ttterlwhoice [3].

Finally, for real world applications, it may be necesdarinclude more realistic
antenna models in the reconstruction algorithm. It sholdd be investigated
to which extent mutual coupling between the antennas of a fagenna ar-
ray, as will be used in microwave biomedical imaging, anddbgpling of the

antennas with the object under study influence the imaginipmpeance. Pos-
sibly, this should be taken into account. Also, the forwambtem code could
be extended to include inhomogeneous backgrounds. Thid beuachieved
by using embedding techniques [4], possibly employing gling of a finite

element system in the investigation domain with a boundategral approach
to account for the radiation condition or the interactiorthathe surrounding
known environment [5, 6].

Concerning the Gauss-Newton approach to microwave imafyinge work might
include:

a) a comparison between SRVP regularization and other pdgerving tech-

nigues.

b) the generalization of the VP regularization scheme togid®ePicking regular-

ization strategy, as suggested in Section 4.5.

¢) the development of procedures to determine the regalésiz parameter for

SRVP regularization in an a priori or adaptive way.

d) the extension of the SPLSQR algorithm to situations wimerteevery cell in

the permittivity grid is included in the optimization presh or where several
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cells are clustered in cell groups. In such a situation thedated 3D discrete
cosine base can no longer be used and should be replaced figrardicoarse
subspace.

e) the search for more rigorous yet efficient ways to incafmconstraints on the
permittivity.

f) the reduction of storage requirements of Gauss-Newtsedaversion. Mainly
the storage of the jacobian mattk(or K when using the SPLSQR algorithm)
is limiting for the application to larger inverse scatteriproblems.

Finally there is some work to do to further validate the Cl lneget Its convergence
rate should be compared more extensively with that of then@&S$hod and it should be
tested on experimental data. The choice of the parametéhs ofiethod also requires
some further investigation and, obviously, the Cl methoousth be extended to the
3D case and compared to the conventional approach.
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APPENDIXA

Recursive calculation of the
truncated translation
operator

As mentioned in Section 3.4 of Chapter 3, the integration3ii23) is based on a
Fourier-representation of the radiation pattefils and V3. Since the Fourier-
spectra olU, (0, ¢) andV g ,(0, ¢) are exponentially decaying, as mentioned in Sec-
tion[3.4.2, they can be represented by a finite amount of ssiph and¢ with any
desired accuracy. The product of the translation opef@idif, ¢) (3.19) and| sin 6]
is not bandlimited and can therefore not be representedatety by a finite number
of samples. However, since it is integrated in (3.23) witliasi-bandlimited function,
it can be smoothed (i.e. its Fourier spectrum can be trudp#dethe total bandwidth
of the remainder of the integrand. This truncated versioffi,{6, ¢)| sin 6| can be
represented by a finite number of samples. The followingve&dn was done by Dr.
Ignace Bogaert.

To obtain the smoothed translation operator, we need to ateripe Fourier spec-
trum of Ty, (0, @) |sin 6|:

1 2m 2T .
bm" = A2 / / Tba(ea (b) ‘SIH9| e_](m9+n¢)d9d¢' (Al)
a2 Jo 0
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Upon substituting (3.19) in this expression, we get

L

14 (2 1

bon = (21 +1)] lhl”(kbmm)m
=0

~

2w 27
X / P(k(0,$) - ) [sin 0] eI M40 d0dg  (A.2)
0 0

L
1. (2 1
= Y @+1);7'n >(kbmm)m - (A.3)
=0
with
27 27 R )
o = / / Pi(k(6,¢) - i*bq) |sin 0] e (M1 49d . (A.4)
0 0

To calculate these coefficients numerically, we derive aington. To this end we
make use of a recursion formula for the Legendre function

(4 1) P (z) = 2+ )z P(x) — 1P -1 (x) (A.5)

which, together with the identity

12:(9, @) - Tpa = €08 0 cos Oy + sin 0 sin Oy, cos(d — Ppa) (A.6)
leads to
20 +1 l
fwlrjnl = 1 —:1 (COS abaa?mn + sin aba COS stabinn + sin eba sin ¢bacinn) - li fr;nl
(A.7)
with, by definition
2 27 R )
Uy = / / cos 0P (k(6, ¢) - Tq) |sin O] e 7m0+ dhd g, (A.8)
0 0
27 27 . )
b = / / sin @ cos g P, (k(0, §) - *bq) |sin 0] e I 0H9) d0dp, (A.9)
0 0
2 27 R )
i / / sin@sin ¢, (k(0, @) - 54 |sin ] e I MPF1®)dhdp(A.10)
0 0
These coefficients in turn satisfy the recursion formulas
1
ainn = § [ 1ﬁ717n + f'fn+17n} (All)
1
Vo = 5 [ 7ln—1,n—1 +f7ln—1,n+1 - Tln+1,n—1 - 7ln+l,n+1} (A.12)
-1
o = T [ 7ln—1,n—1 +f'rln+1,n+l - 7ln+1,n—1 - 1ln—1,n+1] (A.13)
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as can easily be verified. To start the recursion, somelinélaes are needed. These
are given by

2 27
0 = / / |sin 6] e~/ (M) 49 d ¢ (A.14)
0 0

L+ (-1

- 4
i

Sno- (A.15)
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APPENDIXB

Definition and properties of
the Choice Function for VP
Regularization

In this appendix, the choice function used in Value Pickiegularization is defined
and its relevant properties are proven.

B.1 Definitions

Definition B.1 The choice function of dimensidh, f¥ : RY — R, (Ry is the set
of non-negative real numbers), is defined as

KP
]._.[k::l (chcgle S[(U/l, e ,’LLP)>

e (B.1)
L2 (HJCCQ{ZP} Sy(ui,... ,up))
I Ph () o
HZLZPl P§(U17 e 7UP)
TP(Ul, . ,uP)
~ NP(uy,. . up)’ (B.3)

where { P} is short for {1,..., P}, whereK* = [P/2] and LY = |P/2], and
WhereC,EP} is the set of all combinations df different indices, chosen frofP}.
Sr(uq,...,up) is given by

Si(ur,...,up) =3 u;. (B.4)

i€l
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To see more clearly what this definition means, considerltioéce functionin 1, 2, 3
and 4 dimensions:

fHu) = w (B.5)
FPlur,ug) = uffi@ (B.6)
Flur,ug,ug) = urtzts(tn £ U2 + us) (B.7)

(u1 + u2)(u1 + uz)(us + us)
uugustg(ug + ug + ug)
(u1 +u2)(ur + ug)(ur + ua)(uz + us)(uz + ua)(us + ua)
y (u1 4 ug + ug)(ur + us + ug)(ug + usz + uy)
(u1 + uo + usz + U4)

f4(U17U2,U37U4)

(B.8)

In the numerator, sums over all combinations of odd numbEesguments can be
found. De denominator contains sums over all the combinatad even numbers of
arguments. From this observation, it is easily realized tha Choice Function is
invariable under arbitrary permutations of its arguments lzence

Theorem B.1 f¥ is a fully symmetric function.
To gain in generality, we define the auxiliary functiéi’

Definition B.2 F¥ : RVt — R, is defined as

ol [H,C%{k{’_}l (Sr(uy,...,up) + x)}

FP(uy,...,up;x) = 5 (B.9)
=1 {HJCcZ{p (Ss(ur,...,up) +I)}
It follows that

fPur,..up) = FP(uy,... up;0) (B.10)

and it can be observed thBt satisfies the recursion formula

FP_l(ul oo, UPp_1; .%‘)

FP(uy,...,up;z) = AR ’ ) B.11
(1o upi ) (uP+x)FP*1(u1,...,up—1;up+x) (B.11)

This formula allows for an elegant recursive calculationtlug choice function of
arbitrary dimensiorP. Finally, we introduce the functio”’

Definition B.3 G : RVt — R is defined as

G (uy,...,up;x) = (aamlnFP) (ug,...,up;x). (B.12)
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Using (B.11), and this definition, the recursion
1

GP(Ul,...,uP;.T) = up+$+GP_1(U1,...,’LLP,1;{E)
7GP71(U17"'7UP—1;$+UP)7 (813)
is obtained with )
GYur;z) = ) B.14
(Ul,IL') up + ( )

This function is not defined far = 0 whenever one of the arguments is zero, but

is always finite whem: # 0 or whenz = 0 andu,, > 0, Vp € {P}. SinceF?’ is fully
symmetric in the argumen{s:1, ...,up), G' is too and we can use the shorthand
notationupy = {u, : p € {P}} to write

FPuppy;e) = FP(ur,...,up;z), (B.15)
GP(u{p};x) = GP(ul,...,uP;:E). (B.16)

B.2 Properties of the choice function

B.2.1 Limits of f* and F*

It might seem at first glance that the domain of the choicetfandn Definition/B.1
has been chosen too large. Indeed, if more than one argurhtie function f¥ is
zero, zero factors appear in the denominatof of (B.3). Hewethe limit for one or
more arguments going to zero is always defined and is equattg as will be shown
in the following lemmas and theorems.

LemmaB.1 For u, > 0, V¥p € {P},

FP .
N Vot
r——+00 X

=1 (B.17)

Proof The proof uses arecursive argument. The Lemma clearly fald8' (u;; z) =
u; + z. If it holds for P — 1, we can deduce

FP?I(U{P—l};l”)

PN € EE B P z (B.18)
z5+o0 - . FP=Y(urp_1y;24+up) ’
T lim, 4 oo wiu;
= 1 0O (B.19)

As a direct result of this and the recursion formula (B.11)hage
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Corollary B.1 Foru, >0, Vp € {P},

lim FF cx) = FP Y ugp_1y;2). B.20
o (ugpy;x) (ugp_1y; ) (B.20)
Due to the symmetry in the argumentsy , the previous statement can be generalized
to

Corollary B.2 For u, > 0, Vp € {P},

uPEIEDO FP(u{p}; x) = FP_l(u{p}\p; x). (B.21)

In other words, whenever one of its arguments grows mucletatgen the other ar-
guments, the choice function reduces to the choice funcifaane dimension less,
evaluated in the remaining arguments. Suppose we let alhaggts approach infin-
ity, except the arguments; that belong to a sef C {P}. Suppose the number of
elements inl is N(I) = k. We can let the arguments go to infinity one by one and
every time the dimension of the choice function will redugeobe. Eventually, only
the k- dimensional choice function will remain, evaluated in #rguments.;, i € I.
This can be summarized in the following important theorem

Theorem B.2 For u, > 0, ¥p € {P}, for I C {P} with N(I) = %k and with
augpy g = {au, 1 p € {P}\ I}

lim Fp(u[,au{p}\j;x) = Fk(up; ). (B.22)

a— 400

Using also the following lemma

Lemma B.2 Foru, > 0, V¥p € {P}, and fora. > 0

FP(auy,...,oup;az) = ozFP(u{p}; x), (B.23)
1
GP(auy,...,oup;ax) = EGP(u{p};x), (B.24)

(The proof is trivial using (B.11)| (B.13) and a recursivgument)

one can conversely conclude thakibf its arguments are much smaller than the rest,
the P-dimensional choice function reduces to the choice functd dimensionk,
evaluated in the smaller arguments, i.e.

fPugpy) = f¥(ur), when w;<u,, Viel, Vpe{P}\I. (B.25)

Finally, whenk arguments,; with ¢ € I go to zero, the choice function reduces to
zero, as stated by the following theorem
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Theorem B.3 For u, > 0, Vp € {P}, for @ > 0 and withau; = {au; : i € I}
ii_}mo fP(OéU/[,U{P}\[) =0. (B.26)
Proof Using Lemma B.2 and Theorem B.2, we obtain
iiirbfp(auj,u{p}\f) = iiE})FP(ozuI,u{p}\I;O)
= lirrbaFP(uI, éU{p}\I;O)

a—

= hH})O[Fk(UI;O)

oa—

= 0 O (B.27)
Finally, from the properties above and from its definitior @an conclude
Theorem B.4 fP(U{p}) = 0 if and only if at least one of the argumenitg s zero.
B.2.2 The choice function for identical arguments
Theorem B.5 For any positive constant
FP(u,... ,u;cu) ocu (B.28)

Proof The theorem clearly holds fa? = 1 sinceF! (u; cu) = (c+ 1)u. If it hold for
P — 1, then we have

FP=(u, ... u;cu)
FPu,... u = AR B.29
(U, -, w5 cu) (u+cu) FP=Y(y, ... u;(c+ 1u) ( )
X u. (B.30)
A recursive argument concludes the prdaf.
As a special case we have
Fu,. .. u) <u, (B.31)

thus when all its arguments are identical, thelimensional choice function is a scaled
version of f1.

B.2.3 Limits of G¥
Lemma B.3 For v, > 0, ¥p € {P},

lim GF(ugpy;2) = 0. (B.32)

r——+0o0
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Proof The proof is recursive. Fa&!(ui,z) = 1/(u; + z), the lemma holds. If it
holds forP — 1, then we obtain, using (B.13)

. P . _ . P—1 .
i G"(uria) =t [ 6 )
—GPfl(u{p_l};x +up) |
= 0 O (B.33)

As a result of this and the recursion formula (B.13) we obtain

Corollary B.3 For u, > 0, Vp € {P},

lim GP(U{p};I’) = G’Pil(u{p_l};x), (B.34)

up—-+00
which can again be generalized to

Corollary B.4 For u, > 0, Vp € {P},

lim Gp(u{p};x) = GPil(U{p}\p;,f) (B.35)

upgwi»oo
and

Theorem B.6 For u, > 0, ¥p € {P}, for I C {P} with N(I) = k and with
augpyg = {au, :p € {P}\ I}

lim GP(U[,OCU{P}\[;LU) = G*(ur; ). (B.36)

a—+00

B.2.4 Derivatives of the choice function and their properties

From Definition/ B.3 and from the recursion formula (B.11), expression for the
derivative of F'* with respect ta:» can be derived:

OF" dln FP
(81@) (ug,...,up;x) = FP(U{P};:E)< Jup )(ul,...,up;x)

1
up +x

— FPluryo) |

GPl(U{P_l};I+UP):|. (B.37)
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Because of the symmetry i, this can be generalized to

1

Up + X

<8FP

8Up>(“1,m,up;$) = FP(U{P};:C){

*Gpil(u‘{p}\p; T+ Up):| . (838)

Forz = 0, we obtain de derivatives of the choice functiph

(ﬁfp>(u17m7up) = fMlupy) {1

ou,, Up

—GgP-t (ugpy\ps up)}

= Bf(ul,...,uP), (B.39)

where|(B.39) defines theeight functionst. The choice for this name will become
clear later on. We will now prove that the range of the weiginictions is the interval
[0, 1].

Lemma B.4 Foru, > 0,¥p € {P} and forz > 0

8’“GP> >0 forevenk
— | (urpyix) = B.40
( Ox* (ugpyi) {< 0 foroddk (B.40)

Proof For P = 1, the lemma holds, since
OFGt
(W) (uy; ) = (—1)%E! (ug + 2)~*+D, (B.41)

For generalP we have

(9ka _ akGP—l
( w) (upyie) = (=1 klup +a)”*HY +< OaF >(“{P—1};w)
akGPfl
- <8xk> (ugp—1y;z +up). (B.42)

If the theorem holds foP — 1 and wherk is even,[(B.4R) is positive, because its first

term is positive and the difference between the second arditdrm is positive too.
Indeed, since: is even,k + 1 is odd and Bkg;ﬂ (ugp—1y; ) is @ monotonously
decreasing function of. Whenk is odd, [(B.42) is negative, because its first term is
negative an(%) (ugp—1y; ) is @ monotonously increasing function of A

recursive argument then concludes the praof.

As a special case, we have
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Corollary B.5 Foru, > 0,¥p € {P}andforz >0
GP(ugpy;z) > 0. (B.43)

LemmaB.5 Foru, > 0,¥p € {P} and forz >0

(i o Do =175 reses ©
Proof For P = 1, the lemma holds, since
oaF |z b '
For generalP we have
(-]
(o e

_ <$ { LI GPl} ) (ugpry; @+ up). (B.AT)

x4+ up

The proof is concluded with a similar argument as is used énpitoof of Lemma
(8.4).0

As a result of Lemma BI5 and the definition (B.39) of the weifyinictions B, the
following theorem is obtained

Theorem B.7 For u, > 0, Vp € {P}
Bl (uy, ... ,up) > 0. (B.48)

In other words, away from the boundaries of their domain,fmmtionst are al-
ways strictly positive. We will now show that they are alsabded above by.

Lemma B.6 For u, > 0, Vp € {P},

fP(ugpy) <up, Vpe{P} (B.49)
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Proof Consider first

OFP-1 . Oln FP-1
( o )(u{p}\p;x) = PP upy i) (E)x) (ugppp: @)

= F' M ugpyp: 2)GT (ugpy i @)
> 0, (B.50)

where we have used the definition 16"~ and Corollary B.5. Expressioh (B.50)
says that*""~! is monotonously increasing as a functiomofvhich implies

FP_l(u{p}\p;x) < FP_l(u{p}\p;x + up), (B.51)
which in turn, using a straightforward generalization ofi(B), results in
F7 (ugpyp3 0)

FPugpy;0) = w
B PEP (ugpypi up)
< (B.52)

This concludes the proofl]
Theorem B.8 For u,, > 0, Vp € {P},
Bl (uy,... ,up) < 1. (B.53)

Proof This follows immediately from the definition (B.39), the jtnsty of GF—!
and Lemma B.6:

1 _
Bf(ul,...,up) = fP(U{P}) ; —GP l(u{p}\p;up)
P

S (ugpy)
Up

< 1. O (B.54)
It remains to be investigated what happens on the boundzrtbe domain.

Lemma B.7 For u, > 0, Vp € {P}, fora > 0, for au; = {au; : i € I} and for
pél,

. 1
T F¥(aur,ugpy130) o= = 67 Hour ugppauppiup)| =0 (B.5S)
P

Proof Sincewu, > 0, the expression between square brackets in (B.55) is finite
(GP(u{p};x) is always finite forz > 0). The first factor[(B.55) approaches zero
because of Theorem B.B]
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LemmaB.8 For u, > 0, Vp € {P}, fora > 0, for I C {P} with N(I) = k, for
our = {au; : i € It andforj € I,

. 1 _
IIH})FP(O[UI,U{P}\I;O) { -GFf 1(au1\j,u{p}\1;au]’)}
a— Oéu]'

= F*(ur;0) {ul — G Hup; UJ)] (B.56)
i

Proof We use Lemma B]2, Theorem B.2 and Theorem B.6 to derive

. 1 _
lim FP(auI,u{p}\I;O) { -GF I(O[U[\j,U{P}\[;OéUj):|
a—0 Quj

1 171 1
: P . P-1 .
= hmoozF (UI,a’U,{p}\I,O)a I:u] -G (U[\j7QU{P}\[,Uj):|

1
= Fk(uI; 0) l: — Gk_l(ul\j; ’U/]):l .0 (857)
Uj
We can now formulate the following theorem which descrilbesrange 01811,’ every-
where in the domaii’:

Theorem B.9 The weight function®/” have rangg0, 1], with

B;,D(ul,...,uP):O & I #p:uy =0and u, #0, (B.58)
Bf(ul, oup)=1 & up, =0 and uy #0, Vp' #p.  (B.59)

In the intersections of the hyperplang = 0 with other hyperplanes,, = 0 (p’ # p),
Bff is not uniquely defined. However, when approaching thesesiettions, a finite
limit value in the interval0, 1] always exists which depends on the approach path.

Proof To proof the theorem, we consider four possibilities for #rgumentsu,,,
which encompass all argument configurations:

i) uy >0,Vp € {P}:
In this case, Theorems B.7 and B.8 show that the valuéﬁfc(hl, ..., up) lie
in the intervall0, 1].

i) up, #0and3p’ #p:uy =0:
Whenu,, # 0 and at least one,, with p’ # p approaches zeraB;f approaches
zero, as a result of Lemma B.7. Therefore

B;(ul,...,uP):O < ' #p:ruy =0andu, #0. (B.60)
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i) w, =0andu, #0,Vp' # p:
To investigate the case, — 0 andu, # 0, Vp' # p, we can putl = {p} in
Lemmd B.8 and obtain

. 1 _
hrrb Fp(aup,u{p}\p;()) { - GF 1(u{p}\p;o¢up)
a— aup
1
= Up [} =1, (B.61)
Up

where we have put’ equal to zero, as is consistent with the recursion formula
(B.13) and withG*! (uy; x) = 1/(uy + ). Therefore

Bl (uy,...,up) =1 <« w,=0anduy, #0, Vp' #p. (B.62)

V) up, =0and3dp’ #p:uy =0:
consider Lemma B.8 whehincludesp, but also some other indices, and when
j = p. The setu; then defines the approach direction to the intersectioneof th
hyperplanes:;; = 0 with i € I. The left hand side of (B.56) then is the limit of
B;,’(ul, ..., up) along the approach path to the intersection and the rigtd han
side of (B.56) then equalB} (P,(ur)), whereP,(u;) is a permutation of the
argumentsy;, with ¢ € I, which putsu,, in the first position. This quantity lies
in ]0, 1] because of Lemmas B.7 and B.8.

The value ofo thus always lies if0, 1[ except in the cases ii) and iii). This proves
the last statement in Theorem B.9. Only in caseﬂf, equals zero. This, together
with (B.60) proves (B.58). Only in case iz}’ equals one. This, together with (B/62)
proves|(B.59). All cases together prove the first statenmefiheorem B.90]

B.2.5 Relaxation of the choice function

LemmaB.9 Foru, > 0,Vp € {P} and forz >0

FP(ugpy; @)

> 1. (B.63)
X

Proof First, note that'”’ /2 is a monotonously decreasing functiomofindeed,

o FFP 1 50 1
—— = —F’—WmFr"-SFF
or x x Ox " x2
_ EFPGP_iFP
T 2
= fFip E_GP
T |x

<0 (B.64)
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where we used Lemma B.5 in the final step. Using this propertiythe recursion
formula [B.11), we derive

FP(U{P}; ) _ (up + ) FP?I(U{P—l};l')

x FP=Y(urp_1y;up + ) x
> 1 (B.65)

As a result of this lemma, the following theorem is obtained:

Theorem B.10
FP(ugpy) < 77 M upppg)- (B.66)

Proof Whenu, > 0, Vp € {P}, we obtain, by combining recursion formula (B.11)
with Lemmd B.9,
FP(uy,...,up;x) < F' Y uy, ... ,up_q;2), (B.67)

which is valid for anyz > 0 and which, due to the symmetry in the argumenys
leads to

FP(ugpy) < P M ugppy)- (B.68)

Whenever one or more argumenis are zero, the left hand side of (Bl66) is zero,
while the right hand side is non-negative, hence (B.68) eagdneralized to (B.66).
O

The above property is important in the Stepwise Relaxed gBlagization scheme,
since it means a relaxation of the regularization when md?ev&lues are added.

B.2.6 Touching hyperplane
Lemma B.10 For u, > 0, Vp € {P},

P
1 _
Z [u T Gr 1(u{p}\p;m +up) | up + Gp(u{p};x)x =1. (B.69)
p=1-"7

Proof Using the recursion formula (B.13) and some recombinatitims left hand
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side of (B.69) can be rewritten as

P P
X

Up P—1
p; Uup + p; (uppwi e )+

+GP N ugpy ps )z — GF N ugpp ps & + up)x

P-1 P-1
_up+x Up P_1 )
= st otz > G gy e+ up)uy
p=1 p=1
—I—prl(u{p}\p;x)x — GPfl(u{p}\p;x +up)(z+up)
Pl P-1
= 1+ Z - Z GP_Q(U{P}\{%P}; T+ up)uy
— Up + X —
p=1 p=1
P-1 P-1 u
+ZGp72(u{p}\{p)p};x+up—|—uP)up— Au +up —
p=1 p=1 P P
+G’P71(u{p}\p;m)x - prl(u{p}\p;x +up)(z+up).

By regrouping the terms in this expression and by assumgighie Lemma holds for
P — 1, we obtain

P-1
1
1+ {Z [ = G (ugpy\p,pyi e + “p)} Up + GPI(U{P—U)x}

s Uy + X
P—1 1
— - G i+ U, +u }u
{; [u,,+uP+x (W{Pp\(p, Py T+ Up +up)| Uy

_’_GP—l(u{P_l};x —‘y—’U,p)(fE +UP)}
= 141-1=1.

By noting that the lemma holds fd? = 1, the lemma is proveri]

As a result of the previous lemma, we obtain the importardréam

Theorem B.11 The hyperplane

P
Qp(uh cee,UPIULy .. ,’UP) = Z B;(Ul, ce ,Up)up (B70)
p=1
for fixed (vy,...,vp) € Ri touches (i.e. coincides with and has the same gradient

vector as)f” in the point(vy, ..., vp).
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Proof Consider first the case whesg > 0, Vp € {P}. Lemma B.10 then results in

QP(Ula" '7UP;U1a"'7UP)
P
= ZBf(vl, e UP)Up (B.71)
T
= ’U{p}, Z |:’U - GP U{p}\p;vp) Up (B72)
p=1+"P
= P (vgpy;0). (B.73)

The functionsQ” and f* thus coincide inv1,...,vp). Also, by definition(B.39),
the derivatives ofp” and those of” with respect tau, are identical and equal to
Bff(vl, ...,vp)in (vy,...,vp). Consider next the case wherearguments; with

i € I are zero. The weights in (B.70) corresponding to these aggtswill take on a
value in the interva)0, 1] and the weights corresponding to the other arguments will be
zero, as follows from Theorem B.9. Evaluated in the péint . . ., vp), QF will thus
be zero and sincg” also is zero in this point, both functions coincide. In aritaaiy
point (v, ..., vp) on the boundaries of the domait{’, the weightsB)” (vs, ..., vp)
are not always uniquely defined as mentioned before, bugaoy approach path,
they coincide with the derivatives ¢ in Bj,’(vl, ...,vp). Therefore, in every point
where the derivatives of” are defined, the hyperpladg” defined in this point, will
touch with £ in the same point]

Finally, there is a statement which has been extensivetgdesn numerical test
grids, but which we were unable to prove so far. Nevertheiegdays an important
role in the development of VP regularization. We formulatasi a conjecture:

Conjecture B.1 The hyperplane

P
QF (uy,...,up;vy,...,vp) = ZBf(vl, Ce e, UP)Up (B.74)
p=1
for fixed(vy, ..., vp) € RY satisfies
Q" (u1, ... upsvr,...,vp) > f¥(ugpy) (B.75)

for all ugpy in RY.

If one were to proof thaf” (upy) is concave, but not necessarily strictly concave
(we suspect that this is true), this fact, together with TeevB.11 would prove the
conjecture. For the specific casBs= 1 and P = 2, the conjecture has been shown
to hold.
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We can now motivate the choice of the nameight functiongor Bf. According
to Theorem B.11/” (u;p}) can be written as

P
fp(u{P}) :ZB;[I:(ul?"'auP)uIH (876)
p=1
which has the form of a weighted sum of the argumeptwith weightsB/” (u1, ..., up)
which lie between 0 and 1. Suppose that the Wei@ﬁsin the right hand side of this
expression are fixed at their valueg(in , . . ., up). We then write
U{p} z Wpllyp, (B.77)
wherew, = Bf(ul, ...,up). Suppose furthermore that the arguments are updated
from (uq,...,up) to (u},...,u’s) and that this update entails a reduction of the right

hand side in this expression. Due to Conjecture B.1 we thea ha

P P
Plulpy) < pru; < prup, (B.78)
p=1 p=1

which means that the update also implies a reduction of tléceHunction. This
observation plays an important role in VP regularizatietduse it allows for a fixed
point iteration where the choice function in each step isperarily replaced by a
weighted sum of the form (B.77) and where the update of themaemts is based on
this weighted sum.

B.3 Proof of (4.71)

Let us use the notations of Section|4.3 and state (4.71) aoaetm:

Theorem B.12

oFF
=0, Vv
FPle,e)=0< { Oe,

07" =0, ce{P-1}

(B.79)

Proof Consider first a pointe’, ¢’) whereF¥ (', ¢’) = 0. This means, due to The-
orem B.4 and the fact that” > 0, that for every optimization variablé, there is
at least one VP valué, such that(e], — ¢/) = 0. Since the weights!’ (¢’,c’), de-
fined in (4.48), always lie if0, 1] due to Theorem B!9 and siné§ , (¢’,¢') = 0 if
e, — ¢, # 0 and if there is @ # p for which |e], — ¢ | = 0 due to the same theorem,
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we have
OFF 1 & )
e (e',c) = Ve Z bl (e,c) (e, — )" =0, (B.80)
p'=1
OF” 1 -
9, (e',d) = e Z bl (e c) (e, —¢,) =0, (B.81)

v'=1

for everyv and for everyp.

Consider next a pointe’, ¢’) where F(¢’,¢’) # 0. This means that at least
for one optimization variable], we havele;, — c,| # 0, for all p. Therefore, due to
Theorem B.9p] ,(¢/, ') lies in]0, 1], for all p. Now consider the quadratic function
of the argumentse, ¢) and depending on the parametéss '),

Ne€

P
1
of(e,e;e', ) = e SN b (e ) lew—cp (B.82)

v=1p=1

which touches withF” in (&’,¢’) because of Theorem B.11. We therefore have
QP (¢/,cse’,¢') = FF(e',¢') # 0. The choicer], = ¢ for all v andp minimizes
oF ie. QF(e”,c";€',¢') = 0. Sincec’, is fixed toey, /e (Section 4.3.1), this can
only be the case whet§ = ¢ = e,/eo, for all v andp. It is now possible to prove
that(e”, ¢”) is the unique minimizer o@”. Indeed, we certainly have

P
1
QP (" " ) = 1 Y b€ e) el — ¢ I, (B.83)
p=1
and therefor®@” = 0 requires
1 P
N Z biv(s’, )| el — c;' °=0, (B.84)
p=1

which, becausé”’ (¢',¢') > 0, Vp, requirese, = ¢ = ey /¢, for all p, thus all VP
valuesc; are identical. Since it can easily be deduced from Theoreiit never all
weightsb] (', ¢) for a certainv can be zero simultaneousi@” (¢, ¢"; ¢, ¢) =

0 furthermore requires that there is at least one VP vajIUfDr every optimization
variablee; such thatey = c;. As a result, the condition;, = ¢,/ey, has to be
satisfied for allv. The point(e”, ") with ] = ¢ = e, /¢ for all v andp thus is
the unique minimizer o’ (e, c; €, ). It can now be seen th@” (e, c;¢’, ¢’) has
non-zero derivatives with respect to bethandc,, for all v andp, in (¢’, ¢’), since it
has just been proven th@" has a unique minimurte”, ¢”') whereQ” = 0 and this

unique minimum has to be the only stationary poin@f, becaus®’ is a quadratic
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function.
Summarizing, we have
oF”
= Y
FPe,e)=0={ 9% ’ B.85
( ) {68_7::: ) CG{P—l} ( )
and R
OF
0, Vv
FPle,e) 0= 0%, 70, W (B.86)
e, 70 ce{P-1}

which proves the Theoreml
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APPENDIXC

Conjugate gradient
optimization

Consider a real-valued functicf(j,, . . ., j;) of the complex contrast current vectors
J, and the gradient vectots

(C.1)

We first consider the minimization of with respect tgj,. Starting from an iterate
7, the next estimation of the contrast current vectors isutaled as

it ="+ ampl, (C.2)

wherep?"; are the Polak-Riléire update vectors

py = —gi"+ 87l (C.3)

P Sl (g —gr )" g ca
' Sl ) et

wheres] = 0 in the first iteration. The real-valued line parametét is determined
with a line search. Since all the cost functions in Chapteresfaurth or second or-
der polynomials in the contrast curreptsand their complex conjugatgs, they are
fourth or second order polynomials as a function of the limeametei™. The line
search is then simply performed by determining the rooth@flifferentiated polyno-
mials, which can be done analytically or numerically by sudvfor the eigenvalues
of the companion matrix [1].

In case we want to optimiz& for the non-radiating current vectors only, we seek
for (N — I)-dimensional coefficient vectoks that contain the projections gf on
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the null space ofa:

c;, = WHJza (CS)
it = We, (C.6)

whereW is a (N x (N — I))-matrix with orthonormal columns that span the null
space ofA and that are orthonormal to the columns of the ma¥fiof the truncated
SVD decomposition (6.28) op, i.e. WXV = 0. The gradient vectorg, with
respect to these coefficient vectors, defined by

oF

tim

are obtained by an application of the chain rule:
fi= WH9i~ (C.8)

Therefore, the corresponding Polak-Ritd updates are

et = el ol (C.9)
@' = —f+8a T =Wl 1 prg T (C10)
m m— H m
o R[S (- ]
2 =

S
R[Sl (g - g ) wwhgr]

— . C.11
S @) Wwign -

Definingpy’; = Wq!" and usingh Wz = o — VV ", for everyN-dimensional
vectorz, we obtain following updates for the contrast current vesjo directly:

ittt = gl +ampy (C.12)
P f(g ~-vvig; )+ﬂm ot (C.13)
- %{Z (g —gr )" ( _vvig )] 1

=L (o) o vy

Note that multiplications of the fori V* z can be evaluated relatively cheaply as
V (V¥ z) sinceV only has a small number of columns.
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APPENDIXD

Expressions for the gradient
vectors in the Cl method

In this appendix, the explicit expressions for the gradisrdtors in the Consistency
Inversion method of Chapter 6 are given. We only considerettpgessions of the
gradient vectorg?, g¢91, g¢T andg! of FP, FOSI FCI and FT respectively,
since all other gradient vectors are simple combinatiortbase.

e The gradient vectors oF”:

1
D H . s
9 = =LA (Aj; —ei) (D.1)
> i llegl?
¢ The gradient vectors of©57:
g% = j, — juXe; + jwZH X* (j;, — jwXe;) (D.2)

e The gradient vectors gF "

gt =>" {Uzk o€ — Uiskk o€+ 2 (Wiskpodiir — ik Ojlk)} ;
ke K
(D.3)
with
Uik =J;0€_k —J;_10€ (D.4)
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e The gradient vectors of ”:

P
P * *
g; = (E :wp> o E : (ui,k €, — WUitkk O ei+k)
p=1

keK
P
+Ash; 0 ) wy o (§; — jweye;) (D.5)
p=1
p
+2z" [(Z wp) 0 > (Witkk 0 Gipn — Wik 0 Gi_y)
p=1 keK
P
+Xojwh; o cpwp o (J; — jwcpei)} , (D.6)
p=1

whereh; is an N-dimensional vector containing the normalization contstan
H; ,, for a certain excitation and where theéV-dimensional vectotw,, contains
the weightsV, ,,, defined as

Wy =B (Un + AVi1, ... Un + A2Vi p), (D.7)
where the functionBsz are defined in (B.39).

Note that, in the linear combinations of the above gradiectars which give the
gradient vectors of the total cost function, the matZi¥ can be brought up front and
hence only one multiplication with this matrix has to be peried for every excitation
1.
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