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veel gezever. Er is een human-beatbox-team, een cabaretduo, een gregoriaans koor
en een stel Vlaamse zangers aan ons verloren gegaan. Aan iedereen op de gang die
last had van geluidoverlast uit 13.B, sorry daarvoor. Bedankt Ignace om mij te doen
volhouden tot het einde. Kristof, ik stond vaak zonder echt goede reden aan je bureau



ii DANKWOORD - ACKNOWLEDGMENT

in 13.A. Bedankt voor de oneindigheid aan interessante en grappige weetjes en op-
merkingen die je mij dan iedere keer toestak. Roald, bedanktvoor je goedgemutsheid
en relativerende kijk op de dingen en voor de vele discussiestijdens de middagpauze.
Lieven, jij bent al even weg uit de groep, maar dat maakt niet dat je geen dankwoordje
verdient. Integendeel. De korte tijd in de HFHS meetruimte was hilarisch. Maar u
moet ik vooral bedanken voor zaken die niets met mijn doctoraat te maken hebben en
dus hier niet thuishoren. Sara, bedankt voor het gezelschapen de leuke gesprekken
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Samenvatting
De term elektromagnetische inverse verstrooiing verwijstnaar de technieken en pro-
cessen die men gebruikt om informatie te winnen over bepaalde objecten uit de manier
waarop ze elektromagnetische straling verstrooien. Elektromagnetische inverse ver-
strooiing is dus een voorbeeld van elektromagnetische beeldvorming. Wanneer hier-
voor microgolfstraling wordt gebruikt, spreekt men van microgolfbeeldvorming, dat
toepassingen heeft als medische beeldvorming, niet-destructief testen, geofysische
exploratie, enzovoort. In een elektromagnetisch verstrooiingsexperiment wordt het
studieobject belicht met een aantal gekende invallende elektromagnetische golven,
waarbij de positie van de bron en vaak ook de frequentie gevarieerd wordt. Voor
elk van deze belichtingen worden de verstrooide elektromagnetische velden gemeten
in een aantal waarnemingspunten. Als de invallende velden en de meetpunten goed
gekozen zijn, bevat deze vertrooiingsdata voldoende informatie om de vorm, de lo-
catie en elektromagnetische materiaalparameters van het studieobject te bepalen.

Een elektromagnetische beeldvormingstechniek die deze objecteigenschappen uit
de data haalt op een kwantitatieve manier, dus onder de vorm van hun numerieke waar-
den, wordt een kwantitatieve elektromagnetische beeldvormingstechniek genoemd.
Over het algemeen is het een iteratieve methode die het niet-lineaire elektromagneti-
sche inverse verstrooiingsprobleem oplost door het te formuleren als een optimalisa-
tievraagstuk, waarbij een numeriek verstrooiingsmodel gefit wordt aan de data door
de objectparameters te variëren. In de praktijk zal men een onderzoeksdomein be-
dekken met een rooster van voxels (een voxel is een 3D pixel) en zal men de mate-
riaalparameters – in deze thesis de complexe permittiviteit – in elke voxel als optima-
lisatieveranderlijke beschouwen. Hoewel er andere methodes bestaan die enkel een
lineair probleem oplossen in plaats van een niet-lineair optimalisatievraagstuk, zijn
zulke methodes vaak gebaseerd op vereenvoudigingen van hetverstrooiingsmodel en
in elk geval geven ze alleen kwalitatieve informatie over destudieobjecten, meestal
enkel over de vorm, de afmetingen en de positie. In deze thesis worden 3D kwanti-
tatieve microgolfbeeldvormingsalgoritmes ontwikkeld met de nadruk op efficïentie en
reconstructiekwaliteit.

Een belangrijk onderdeel van de meeste kwantitatieve reconstructie-algoritmes is
een voorwaartse simulator, die de verstrooiing van de gekende invallende golven aan
een gegeven 3D complexe-permittiviteitsprofiel in het onderzoeksdomein berekent.
Door de herhaalde oplossingen van het voorwaartse verstrooiingsprobleem en het
grote aantal onbekenden daarin, is het oplossen van het elektromagnetische inverse
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verstrooiingsprobleem een rekenintensieve taak en is er nood aan efficïente voor-
waartse simulatoren. In deze thesis werd een snelle simulator, die gebruik maakt van
een volumeintegraalvergelijking, geı̈mplementeerd om het voorwaartse verstrooiings-
probleem op te lossen. Het oplossen van het resulterende lineaire stelsel gebeurt ite-
ratief, omdat het stelsel teveel onbekenden heeft om het metdirecte inversiemethodes
op te lossen. Om de iteratieve oplossing efficiënt te maken, worden twee strategieën
gecombineerd. Enerzijds worden de matrix-vector-vermenigvuldigingen in elke stap
van de iteratieve oplossing versneld door een combinatie van de Fast Fourier Trans-
form (FFT) en het Multilevel Fast Multipole Algoritme (MLFMA) te gebruiken. Het
wordt aangetoond dat deze hybride MLFMA-FFT methode het meest geschikt is voor
verstrooiing aan geometrieën die groot zijn, maar veel lege ruimte bevatten. Ander-
zijds wordt het aantal benodigde iteraties gereduceerd door middel van een extrapo-
latietechniek die gepaste beginschattingen bepaalt, welke reeds dicht bij de oplossing
liggen. Deze techniek combineert een stapschema in de bronpositie met een lineaire
extrapolatie over de permittiviteit onder de vorm van een Born benadering. Zoals
blijkt uit dit proefschrift, vertoont deze voorwaartse simulator inderdaad een verbe-
terde efficïentie.

De snelle voorwaartse simulator werd geı̈ncorporeerd in een optimalisatietechniek
die het verschil tussen gemeten data en gesimuleerde data minimaliseert door het per-
mittiviteitsprofiel aan te passen. In dit proefschrift wordt een Gauss-Newton methode
met lijnoptimalisatie gebruikt om een kleinste kwadraten datafout-kostfunctie te mini-
maliseren waaraan een regularisatiemechanisme werd toegevoegd. Dit laatste is nodig
door het slecht gesteld zijn van het inverse verstrooiingsprobleem, wat zich uit in het
feit dat sommige aanzienlijke veranderingen in het permittiviteitsprofiel, meestal met
hoge spatiale frequentie, enkel kleine afwijkingen in de verstrooiingsdata veroorzaken
die niet kunnen geresolveerd worden als er meetruis op de data zit. Hierdoor kunnen
zulke sterk oscillerende perturbaties de reconstructie van de permittiviteit verstoren en
dit moet worden tegengegeaan met regularisatie. Een regularisatiemethode verwerkt
bepaalde a priori informatie over het studieobject in de optimalisatie, bijvoorbeeld de
afwezigheid van rimpels met hoge spatiale frequentie. Zo wordt het verlies aan infor-
matie in de data gecompenseerd en de vervorming van de reconstructie vermeden.

Twee verschillende regularisatiemethodes werden ontwikkeld in dit onderzoek.
De eerste regularisatietechniek straft sterke fluctuatiesin de permittiviteit af door een
gladheidsvoorwaarde op te leggen. Dit is een veel gebruikteaanpak voor inverse
verstrooiing. Echter, in dit proefschrift wordt deze voorwaarde opgelegd op een mul-
tiplicatieve manier in plaats van op de gewoonlijke additieve manier. Dat wil zeggen
dat het gewicht van de regularisatie in de totale kostfunctie afneemt als de data fit
verbetert. Hierdoor past de regularisatie zichzelf aan aanhet ruisniveau en wordt
de keuze van een regularisatieparameter minder kritisch. De tweede regularisatieme-
thode is Value Picking (VP) regularisatie, een nieuwe methode ontwikkeld in dit on-
derzoek. Deze techniek is ontworpen om stuksgewijs homogene permittiviteitsprofie-
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len te reconstrueren. Zulke profielen zijn moeilijk te reconstrueren omdat scherpe
overgangen tussen gebieden met verschillende permittiviteit moeten bewaard blijven,
terwijl andere sterke fluctuaties moeten onderdrukt worden. In plaats van hiervoor te
werken op de ruimtelijke verdeling van de permittiviteit, zoals bestaande methodes
voor het behoud van randen in de reconstructie, legt VP regularisatie de beperking
op dat slechts een klein aantal verschillende permittiviteitswaarden in de reconstructie
mogen voorkomen. Dit vermijdt een aantal problemen met de keuze van een glad-
heidsdrempel die voorkomen in andere methodes. De permittiviteitswaarden waarvan
sprake moeten echter niet op voorhand gekend zijn en hun aantal wordt eveneens
geoptimaliseerd in een stepwise relaxed VP (SRVP) regularisatieschema.

Beide regularisatietechnieken werden geı̈ncorporeerd in het raamwerk van de Gauss-
Newton minimalisatie en resulteren in sterk verbeterde kwaliteit van de reconstruc-
ties. De efficïentie van het minimalisatiealgoritme kan ook worden verbeterd. In elke
stap van de iteratieve optimalisatie moet er een lineair Gauss-Newton stelsel worden
opgelost om de aanpassing van het permittiviteitsprofiel teberekenen. Dit is typisch
een groot stelsel en daarom wordt het iteratief opgelost. Deze stelsels zijn echter
slecht geconditioneerd ten gevolge van het slecht gesteld zijn van het inverse ver-
strooiingsprobleem. Gelukkig laten de vermelde regularisatiemethodes het gebruik
toe van een LSQR methode met conditionering met behulp van deelruimtes, waarmee
de Gauss-Newton stelsels efficiënt kunnen worden opgelost. Dit wordt in deze thesis
aangetoond. Tenslotte werden grenzen op de permittiviteitswaarden in het algoritme
opgenomen door het wijzigen van het pad in de lijnoptimalisatie, wat ervoor zorgt
dat de voorwaarste problemen goed geconditioneerd blijvenen het aantal voorwaarste
iteraties beperkt.

Een andere bijdrage van dit onderzoek is het voorstel van eennieuwe methode,
genaamd Consistentie Inversie (CI), die gebaseerd is op dezelfde principes als een
andere goed gekende reconstructiemethode, de Constrast Source Inversion (CSI) me-
thode. Deze laatste techniek beschouwt de contraststromen- equivalente stroombron-
nen die een veld veroorzaken dat identiek is aan het verstrooide veld - als fundamentele
onbekenden naast de permittiviteit. In de CI methode wordende permittiviteitsonbe-
kenden echter geëlimineerd uit de optimalisatie en worden ze slechts bepaald in een
laatste stap. Dit vermijdt afwisselende updates van permittiviteit en contraststromen
en kan daardoor resulteren in een snellere convergentie. DeCI methode werd ook
uitgerust met VP regularisatie, wat resulteert in de VPCI methode.

De kwantitatieve elektromagnetische beeldvormingsmethodes ontwikkeld in dit
werk werden gevalideerd op zowel synthetische data als op experimentele data, voor
zowel homogene als inhomogene objecten en in al deze gevallen is de kwaliteit van de
reconstructies hoog. De succesvolle, volledig blinde reconstructie van een onbekend
object uitgaande van gemeten data, ons geleverd door het Institut Fresnel in Marseille,
Frankrijk, demonstreert ińeén klap de geldigheid van de voorwaartse simulator, de
performantie van het reconstructiealgoritme en de kwaliteit van de metingen. De re-



xii SAMENVATTING

constructie van een numeriek borstfantoom, gebaseerd op MRI beelden, is bemoedi-
gend voor de verdere ontwikkeling van biomedische microgolfbeeldvorming en in het
bijzonder borstkankerdetectie met microgolven.



Summary
The term electromagnetic inverse scattering refers to the techniques and processes
used to obtain information about certain objects from the way in which they scatter
electromagnetic radiation. Electromagnetic inverse scattering thus is an example of
electromagnetic imaging. Microwave imaging is the specialcase of electromagnetic
imaging that employs microwave radiation and has applications in medical imaging,
non-destructive testing, geophysical exploration, etc. In an electromagnetic scattering
experiment, the target under study is illuminated with a number of known incoming
electromagnetic waves with varying position of the source antenna and often also
with varying frequency. For each such illumination, the scattered electromagnetic
fields are measured in a number of observation points. When theincident waves and
measurement positions are properly chosen, these scattering data contain sufficient
information to retrieve the shape, location and electromagnetic material parameters of
the target.

An electromagnetic imaging method that extracts these object properties from the
data in a quantitative way, i.e. it obtains their numerical values, is termed a quan-
titative electromagnetic imaging method. It generally is an iterative method which
solves the non-linear electromagnetic inverse scatteringproblem by recasting it as an
optimization problem, where a numerical scattering model is fitted to the data by tun-
ing the object properties. In practice, the electromagnetic inverse scattering problem
is most often solved by discretizing an investigation domain with a 3D voxel grid (a
voxel is a 3D pixel) and by considering the electromagnetic material parameters – the
complex permittivity in this thesis – in each voxel as optimization variables. Although
other imaging methods exist which solve only a linear systeminstead of a non-linear
optimization problem, such methods often rely on approximations of the scattering
model and in any case they only give qualitative informationon the targets, mostly
only of its shape, size and location. In this thesis, 3D quantitative microwave imaging
algorithms are developed with emphasis on efficiency of the algorithms and quality of
the reconstruction.

An important part of most quantitative reconstruction algorithms is a forward sim-
ulator, which calculates the scattering of the known incident waves from a certain
3D profile of the complex permittivity in the investigation domain. Because of the
repeated forward scattering problem solutions during the optimization and the large
number of unknowns in this problem, solving the electromagnetic inverse scattering
problem is a computationally challenging task and there is aneed for efficient forward
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simulators. In this thesis a fast simulation tool has been implemented which makes
use of a volume integral equation (VIE) to solve the forward scattering problem. The
solution of the resulting linear system is done iteratively, since it is a system with too
many unknowns to solve it directly through matrix inversion. To do this efficiently,
two strategies are combined. First, the matrix-vector multiplications needed in every
step of the iterative solution are accelerated using a combination of the Fast Fourier
Transform (FFT) method and the Multilevel Fast Multipole Algorithm (MLFMA). It
is shown that this hybrid MLFMA-FFT method is most suited forlarge, sparse scatter-
ing problems. Secondly, the number of iterations is reducedby using an extrapolation
technique to determine suitable initial guesses, which arealready close to the solution.
This technique combines a marching-on-in-source-position scheme with a linear ex-
trapolation over the permittivity under the form of a Born approximation. It is shown
that this forward simulator indeed exhibits a better efficiency.

The fast forward simulator is incorporated in an optimization technique which
minimizes the discrepancy between measured data and simulated data by adjusting
the permittivity profile. A Gauss-Newton optimization method with line search is
employed in this dissertation to minimize a least squares data fit cost function with
additional regularization. The latter is needed because ofthe ill-posedness of the in-
verse scattering problem, which is reflected in the fact thatcertain significant changes
in the permittivity profile, mostly with high spatial frequency, yield only small devia-
tions in the scattering data which cannot be resolved when the data is corrupted with
measurement noise. As a result, such strongly oscillating perturbations can distort the
permittivity reconstruction and this has to be remedied by regularization. A regular-
ization method incorporates some a priori information on the target – for instance the
absence of ripples with high spatial frequency in the permittivity profile – in the opti-
mization process to compensate for the loss of information and to avoid distortion of
the reconstruction.

Two different regularization methods were developed in this research. The first
regularization method penalizes strong fluctuations in thepermittivity by imposing a
smoothing constraint, which is a widely used approach in inverse scattering. How-
ever, in this thesis, this constraint is incorporated in a multiplicative way instead of
in the usual additive way, i.e. its weight in the cost function is reduced with an im-
proving data fit. As a result, the regularization adapts itself automatically to the noise
level, which renders the determination of a regularizationparameter less critical. The
second regularization method is Value Picking regularization, which is a new method
proposed in this dissertation. This regularization is designed to reconstruct piece-
wise homogeneous permittivity profiles. Such profiles are hard to reconstruct since
sharp interfaces between different permittivity regions have to be preserved, while
other strong fluctuations need to be suppressed. Instead of operating on the spatial
distribution of the permittivity, as certain existing methods for edge preservation do,
it imposes the restriction that only a few different permittivity values should appear in



xv

the reconstruction. This avoids some problems with the determination of a smoothing
threshold that occur in other methods. The permittivity values just mentioned do not
have to be known in advance, however, and their number is alsoupdated in a stepwise
relaxed VP (SRVP) regularization scheme.

Both regularization techniques have been incorporated in the Gauss-Newton op-
timization framework and yield significantly improved reconstruction quality. The
efficiency of the minimization algorithm can also be improved. In every step of the
iterative optimization, a linear Gauss-Newton update system has to be solved. This
typically is a large system and therefore is solved iteratively. However, these systems
are ill-conditioned as a result of the ill-posedness of the inverse scattering problem.
Fortunately, the aforementioned regularization techniques allow for the use of a sub-
space preconditioned LSQR method to solve these systems efficiently, as is shown
in this thesis. Finally, the incorporation of constraints on the permittivity through a
modified line search path, helps to keep the forward problem well-posed and thus the
number of forward iterations low.

Another contribution of this thesis is the proposal of a new Consistency Inversion
(CI) algorithm. It is based on the same principles as anotherwell known reconstruction
algorithm, the Contrast Source Inversion (CSI) method, which considers the contrast
currents – equivalent currents that generate a field identical to the scattered field – as
fundamental unknowns together with the permittivity. In the CI method, however, the
permittivity variables are eliminated from the optimization and are only reconstructed
in a final step. This avoids alternating updates of permittivity and contrast currents,
which may result in a faster convergence. The CI method has also been supplemented
with VP regularization, yielding the VPCI method.

The quantitative electromagnetic imaging methods developed in this work have
been validated on both synthetic and measured data, for bothhomogeneous and in-
homogeneous objects and yield a high reconstruction quality in all these cases. The
successful, completely blind reconstruction of an unknowntarget from measured data,
provided by the Institut Fresnel in Marseille, France, demonstrates at once the valid-
ity of the forward scattering code, the performance of the reconstruction algorithm
and the quality of the measurements. The reconstruction of anumerical MRI based
breast phantom is encouraging for the further development of biomedical microwave
imaging and of microwave breast cancer screening in particular.
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CHAPTER1

Introduction

1.1 Situation and history

Microwave imaging aims at characterizing an unknown objectthrough electromag-
netic scattering experiments. In such an experiment, the target is illuminated with dif-
ferent microwaves and the scattered electromagnetic fieldsare measured for each such
illumination. From these scattering data one tries to determine certain object proper-
ties, such as shape, location and the distribution of electromagnetic material proper-
ties, such as the complex permittivity, inside the object. Possible applications include
non-destructive testing, biomedical imaging and geophysical exploration. A variety
of microwave imaging methods exist and the most distinctivedifferences among them
can be found in the algorithms that extract unknown object properties from the scat-
tering data. Based on the output of such an algorithm, one candistinguish two major
classes of electromagnetic imaging methods. The methods inthe first class are termed
qualitative, because they do not provide quantitative information on the electromag-
netic properties of the object under study. Instead they only give some idea about
the support of the object, i.e. its shape and location and in case of multiple objects
also their number. Microwave Diffraction Tomography [1–9], DORT (decomposi-
tion of the time reversal operator) [10–12], radar based techniques [13–16] includ-
ing Confocal microwave imaging [17–19] and, more recently,the Linear Sampling
method [20, 21] are examples of qualitative methods. The second class of methods is
quantitative. They provide detailed information about allthe relevant parameters that
determine the interaction of an object with electromagnetic fields, i.e. its shape and
location but also the values of its electromagnetic material parameters. The qualita-
tive methods just mentioned are based on a linear or linearized model that relates the
data and the reconstruction parameters (e.g. reflectivity,induced currents, permittiv-
ity,...), while quantitative methods solve the exact non-linear electromagnetic inverse
scattering problem. Because the latter requires the solution of a system of non-linear
equations, an iterative optimization procedure is generally applied. Therefore, quan-
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titative imaging is both mathematically and computationally more challenging than
qualitative imaging.

During the last two decades quantitative microwave imagingtechniques were mainly
developed for two-dimensional (2D), mostly Transverse Magnetic (TM)- polarized
configurations [22–37]. In this 2D scalar framework variousiterative reconstruction
algorithms for different application-specific configurations [31, 32] as well as some
experimental issues have been investigated [33,34,37]. Although an early implemen-
tation of the Newton-Kantorovich algorithm was applied to asimple 3D configuration
by Joachimowicz et al. [23] in 1991, three-dimensional (3D)quantitative microwave
imaging has not really been considered until the beginning of the new millennium.
Bulyshev et al. [38] developed a 3D microwave tomography approach in a scalar ap-
proximation and Abubakar et al. [39] presented full-vectorial 3D inversion results
using a multiplicative regularized contrast source inversion method, in both cases for
biomedical applications. Other recent work on 3D inversionis reported in [40–47] and
in [48], where 3D quantitative inversion is performed in thetime domain. However,
one can say that we only stand at the dawn of 3D quantitative microwave imaging and
that a lot of ground has to be covered before such techniques can be successfully used
in practical applications.

1.2 Problem formulation

It is the goal of this doctoral thesis to investigate and develop 3D complex permittivity
reconstruction algorithms. The two main challenges associated with quantitative mi-
crowave imaging are the ill-posedness of the electromagnetic inverse scattering prob-
lem and its non-linearity. The former jeopardizes the robustness of the reconstruction
algorithms and the quality of the results and the latter results in a high computational
cost because it requires iterative optimization. A good algorithm for quantitative mi-
crowave imaging thus reduces the computational burden as much as possible and in-
cludes a proper regularization strategy to stabilize the reconstruction.

The type of quantitative microwave imaging algorithms thatis considered in this
dissertation attempts to recover the value of the complex permittivity in every point
of an investigation domain. In the optimization approach tomicrowave imaging, a
cost function, which depends on the permittivity distribution, is defined and then iter-
atively minimized. Most authors employ a least squares datafit cost function, which
measures the difference between the measured field data and the scattered field com-
puted for any given permittivity profile. Since the scattered field depends on two
types of unknowns, the complex permittivity and the total field inside the object, two
approaches for defining the cost function have been reported. In the first, “conven-
tional”, approach, the total field unknown is eliminated by substitution, such that the
cost function only depends on the complex permittivity. This approach involves the
solution of a full forward scattering problem in each iteration of the optimization, i.e.
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the numerical simulation of the scattering experiment for agiven permittivity profile.
Various Newton-type schemes [22,23,26,29,32] and a few global optimization tech-
niques [24, 28] have been applied here. The Newton-based methods can be made to
converge in a few iterations, but the forward problem solutions in each iteration can
lead to long computation times. A second approach was presented by van den Berg
et al. [27] and is called the contrast source inversion method (CSI). The method is
a modification of the modified gradient method [25] and has been improved and ex-
tended [30, 39, 49, 50] since its introduction. With this kind of methods, the solution
of the forward problems is eliminated by introducing a set ofauxiliary variables – the
contrast currents for the CSI method and the electric fields in the investigation domain
for the modified gradient method – in a reformulated cost function. The larger number
of unknowns, however, implies that efficient Newton-type optimization methods can
no longer be used in this approach, because of memory limitations, and this results
in a larger number of iterations. It is not clear yet whether and when the CSI and
related methods outperform the conventional methods, but they have been applied by
many authors during the last decade. In this thesis we investigate ways to improve the
efficiency of both approaches.

Ill-posedness is typical for many inverse problems. Of the three criteria in Ha-
damard’s definition of ill-posedness [51], non-uniquenessand instability are the two
major burdens. The first problem stems from the combination of a limited information
content in the data with a desire to reconstruct the complex permittivity profile with
a high spatial resolution, which can introduce more reconstruction parameters than
there are degrees of freedom in the data. The instability issue is the result of a low
sensitivity of the scattered field to some fluctuations in thepermittivity profile with
high spatial frequency. Without precautions, such unwanted fluctuations can be am-
plified in the reconstruction, without noticeably degrading the data fit. To cope with
these problems, a regularization strategy is indispensable. The purpose of regulariza-
tion is to use some a priori information on the target to select a proper permittivity
profile from the many that fit the data within the uncertainty introduced by noise. This
is achieved by imposing extra constraints on the permittivity. This dissertation also
studies new regularization methods.

1.3 Results of the research

The major part of this dissertation is devoted to 3D inversion algorithms that belong
to the conventional approach. The basis of these methods is the Gauss-Newton min-
imization algorithm with line search, which is a variant of the Newton optimization
algorithms. It exploits the specific form of the least squares cost function and requires
no second order derivatives of the scattered fields with respect to the permittivity un-
knowns. The Gauss-Newton method has been modified in this work to include reg-
ularization by adding a regularizing function to the data fitfunction, which results
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in reconstruction algorithms that provide high reconstruction quality and which con-
verge rapidly. In this dissertation we propose two regularization strategies. The first
one is a multiplicative smoothing (MS) regularization, which penalizes strong local
variations in the permittivity profile by demanding that thereconstructed permittivity
be sufficiently smooth. MS regularization operates on the spatial distribution of the
permittivity in the investigation domain and adapts itselfautomatically to the level of
noise on the data, i.e. there are no regularization parameters which strongly depend on
this noise level. The MS regularization strategy is inspired by the work of mainly van
den Berg and Abubakar [39, 49, 52, 53]. The second regularization method proposed
in this thesis is a new type of regularization, which we have named Value Picking
regularization or VP regularization. This regularizationis most suited for permittivity
profiles which are piecewise homogeneous or approximately so. Unlike most regular-
ization methods, it does not operate on the spatial distribution of the permittivity, but
imposes the constraint that the permittivity profile shouldconsist of a limited number
of different permittivity values. These values do not have to be known in advance,
since they act as auxiliary optimization variables. Their number is also updated in a
stepwise relaxed VP (SRVP) regularization strategy. To this end a new regularizing
function is proposed and its properties are discussed. An extension of the VP regular-
ization scheme to a Region Picking (RP) regularization scheme is finally suggested.

To reduce the computational cost, an efficient code has been developed to solve the
forward problem iteratively. It is based on a combination ofthe Fast Fourier Transform
(FFT) method [54–58] and the High Frequency Multilevel FastMultipole Algorithm
(HF MLFMA) [59–62], two methods that lower the memory use andthe computation
time in every iteration of the forward simulation. Moreover, since the forward problem
has to be solved for varying source positions and permittivity profiles, an extrapola-
tion procedure over these quantities can be used to determine a suitable initial guess
for the iterative solution algorithm, which results in lessforward iterations and thus
also in an overall speed-up of the reconstruction [29,63]. Apart from the forward sim-
ulation, there is another time-consuming component in Newton-based conventional
reconstruction algorithms. That is the part where the Hessian matrix, or an approx-
imate Hessian matrix, needs to be inverted. Since the dimensions of this matrix can
become large in 3D inversion, it is not inverted directly. Rather, the associated lin-
ear system is again solved iteratively. However, due to the typical ill-conditioning
of that system, its iterative solution converges very slowly. Therefore, in this thesis,
a subspace preconditioning has been employed to solve theseupdate systems more
efficiently.

The resulting 3D inverse scattering algorithm has been validated extensively on
both synthetic examples, where the data is generated through numerical simulation,
and real world targets, where the data is actually measured in an experimental setup.
The most popular future application of microwave imaging ismedical imaging [64,
65]. Therefore, we present reconstructions of a number of biomedical phantoms from
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synthetic data to examine the feasibility of microwave medical imaging. The most im-
portant of these examples is the reconstruction of a numerical breast phantom, which
is encouraging for the use of microwave imaging in breast cancer detection. The
implementation of a 3D Linear Sampling algorithm to find tumors in known breast
tissue is also presented in this context. Since the most challenging test for recon-
struction algorithms is their application to real measureddata, we present numerous
reconstructions from data which has been gathered in the bi-static polarimetric free-
space measurement facility of Institut Fresnel, Marseille, France [66–68], and even a
completely blind reconstruction of a mystery target. We were invited to contribute to
a special issue in Inverse Problems on the testing of 3D reconstruction algorithms on
experimental data, which is organized by the people of Institut Fresnel. Note that the
successful inversion from measured data validates not onlythe reconstruction algo-
rithm, but also the forward scattering code.

In the last part of this dissertation, an alternative, contrast source based approach
is explored, which we denote as Consistency Inversion (CI).This method employs the
same ideas as the CSI method, but the cost function is modifiedin order to eliminate
the permittivity unknowns from the problem. In the originalCSI method [27,49,50],
the contrast currents and the permittivity unknowns are updated alternatingly, while in
the CI method the contrast currents are the only optimization variables and hence the
alternating updates of two sets of physically different quantities are avoided. Since
it is known that alternating variable optimization methodscan exhibit slow conver-
gence [69], we think that the CI method may yield faster convergence than the CSI
method. To test whether this is true, we tried both formulations in ideal circumstances
on two test cases and conclude that the CI method indeed yields faster convergence
on these examples and might do so in general. Finally, the VP regularization has also
been incorporated in the CI method, yielding the VPCI method. This again greatly
improves the reconstruction quality for piecewise constant permittivity profiles. The
VPCI method has only been implemented so far for 2D TM reconstructions.

The organization of this thesis is as follows. In Chapter 2, inverse problems in gen-
eral and the electromagnetic inverse scattering problem inparticular are defined and
some concepts and notations, necessary to understand the rest of the text, are intro-
duced. Chapter 3 discusses the numerical solution of the forward scattering problem
using a Volume Integral Equation (VIE). This chapter introduces the hybrid MLFMA-
FFT method and the extrapolation procedure to determine theinitial guesses for the
iterative forward solutions. In Chapter 4 our 3D inverse scattering algorithms based on
Gauss-Newton optimization are presented. Both types of regularization are proposed
and discussed and various examples illustrate the performance of the algorithm. Fur-
ther improvements to the general framework, namely the incorporation of constraints
on the optimization variables by means of an adapted line search path and the use of
subspace preconditioning, are also proposed. Chapter 5 is devoted to applications of
the 3D reconstruction algorithm, i.e. biomedical imaging and reconstructions from
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the Fresnel data. Finally, Chapter 6 explores the contrast source based approach to
the inverse scattering problem by introducing the VPCI method for 2D TM inverse
scattering problems.
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CHAPTER2

The electromagnetic inverse
scattering problem

This chapter defines inverse problems in general and the electromagnetic inverse scat-
tering problem in particular. Inverse problems are notorious for their ill-posedness.
This concept is explained and the notions of regularizationand optimization are briefly
introduced. In order to clarify matters, a simple linear inverse problem is discussed,
namely the volumetric inverse source problem in two dimensions. Next, the electro-
magnetic inverse problem is fully defined (in the form that will be used throughout
this dissertation) and the relevant equations from electromagnetic theory are given.

2.1 Inverse problems in general

One of the major objectives of science is to build models of physical phenomena
in order to understand these phenomena. With such a model oneis able to make
predictions, to foresee the consequences of a given cause. The cause, which is the
input of the model, can be described as a collection of specific values of themodel
parametersand the consequences, the output of the model, are termed thedata. The
simulation of data using a certain model and starting from known model parameters is
termed theforward problem. On the other hand, a model can also be used to determine
the cause of a certain physical phenomenon, given its consequences. In such case, one
starts from measured or observed data and tries to determinethe model parameters
that yield such data when the model is evaluated. This is commonly referred to as
solving theinverse problem.

Inverse problems are typically ill-posed. Following the definition of Jacques Ha-
damard [1], this means that existence of a solution, uniqueness of the solution and sta-
bility cannot be simultaneously guaranteed. This makes theinverse problem far more
challenging than the corresponding forward problem, whichis typically well-posed.
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The inverse scattering problem treated in this dissertation is also non-linear, which
means that the data depends on the model parameters in a non-linear fashion. Unlike
the linear case, not much general theory is available on non-linear inverse problems,
which renders a rigorous mathematical treatment of such a problem very difficult and
often impossible for practical applications.

Let us introduce a general notation

d = F (u), (2.1)

whered represents the data vector (in general a complex vector), whereu represents
a vector containing the model parameters (also possibly complex) and whereF (u) is
the (non-linear) model, evaluated inu. The inverse problem then consists of deter-
mining u from knowledge ofd andF . Problems with existence can occur whend

is corrupted by measurement noise or when the modelF contains certain (e.g. nu-
merical) approximations, such that an exact data fit is not possible for anyu, in other
words,d does not lie in the range of the operatorF . This problem can be eliminated
by recasting (2.1) as an optimization problem where one tries to minimize the least
squares data error

‖d − F (u)‖2 (2.2)

and defines the minimizer as the solution to the inverse problem. This way, aleast
squares solutionis defined. Moreover, in case of non-linear inverse problems, iterative
minimization of (2.2) is often the only way to solve them. Non-uniqueness is a more
difficult problem for general non-linear inverse problems.Generally, this problem is
related to overfitting, i.e. the situation that the degrees of freedom in parameter se-
lection exceed the information content of the data. Providing as much non-redundant
information as possible in the data is the common strategy toavoid problems with
non-uniqueness. The stability condition, finally, is most often violated and occurs
when the model output is not very sensitive to certain (possibly significant) changes in
the model parameters, such that the subtle effects due to these changes are exceeded
by the measurement noise and can no longer be resolved. In other words, informa-
tion is lost in noise on the data and this again results in problems with overfitting.
To solve the instability problem, regularization techniques are employed. This means
that additional a priori information about the model parameters is incorporated in the
optimization problem to compensate for the loss of information. Regularization often
helps to counter non-uniqueness as well.
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2.2 A linear example: the volumetric inverse source
problem

To illustrate the general concepts outlined above, let us consider a simple two-dimensional
(2D) linear inverse problem. The notations and concepts introduced in this section will
furthermore be of use in the rest of this work.

Consider a time-harmonic (frequencyf , angular frequencyω) current distribution,
represented by its vectorial phasor [2]J(ρ)ẑ, which only depends on the coordinates
x andy (ρ = xx̂ + yŷ) and which is oriented along thez-axis. Suppose furthermore
that J(ρ) is embedded in a homogeneous and isotropic background medium with
complex permittivityǫb and permeabilityµ0 (the permeability of vacuum) and that
it is only non-zero inside a cylinder parallel to thez-axis with bounded cross section
S in thexy-plane (Figure 2.1). This is a two-dimensional (2D) transverse magnetic
(TM) problem, sinceJ(ρ)ẑ only generates an electric field along thez-axis and a
magnetic field parallel to thexy-plane [2]. In any pointρ outsideS, the electric field
E(ρ) = E(ρ)ẑ is given by the integral equation

E(ρ) = jω

∫

S

Gb(ρ − ρ′)J(ρ′)dρ′, (2.3)

where the 2D Green functionGb of the background medium is given byGb(ρ−ρ′) =
j
4H

(2)
0 (kb‖ρ−ρ′‖2), in whichH

(2)
0 is the zeroth order Hankel function of the second

kind andkb = ω
√

µ0ǫb is the wave number of the background medium [2].

ǫb

ρ1

ρ2

ρL

ρL−1

J(ρ)

S

Figure 2.1: The configuration of the 2D volumetric inverse source problem.
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The volumetric inverse source problem for the 2D TM case consists of determining
the currentJ(ρ) with supportS that generates a measured fieldEmeas(ρl) in a number
of observation pointsρl, l = 1 . . . L, that lie, for example, on a circle aroundS (Figure
2.1). This problem is numerically solved after discretization of (2.3) (see Section 6.1),
i.e. we have to solve the matrix system

emeas = Aj, (2.4)

where theL-dimensional vectoremeas contains the measured field values, where the
N -dimensional vectorj represents the discretized current and whereA is a discretized
Green operator (Section 6.1). Since typically the observation points lie on a curve
aroundS, while the current unknowns are distributed over the surface S, the vector
j contains much more elements than the vectoremeas (prior to discretization, there
even is an infinitely large number of current unknowns, whilethere is only a finite
numberL of measurement points)1. As a consequence, the matrixA has less rows
than columns, hence it has a null space, i.e. currents exist that do not generate a field in
the measurement points. These currents are called invisible currents. It can be proven
in general that continuous currents exist inS which generate a zero field everywhere
outsideS [2,4]. These are called non-radiating currents.

Unless the field is heavily over-sampled on the measurement curve aroundS, the
rank of A is equal toL and there is no problem with existence of a solution, since
anyL-dimensional vectoremeas will lie in the range ofA. The existence of invisible
currents, however, generates a problem with uniqueness: the currentj2 = j1 +jINV ,
with jINV an invisible current vector, yields the same field vector asj1. To restore
uniqueness, one is forced to reformulate the problem. We could for example look
for the currentjMN , the unique current that yields the measured fieldemeas and has
minimal norm. This solution is given by

jMN = V S−1UHemeas, (2.5)

where the matricesU , S andV form the thin Singular Value Decomposition (SVD)
of A, i.e.

A = USV H . (2.6)

The dimensions of the matricesU , V andS are (L × L), (N × L) and (L × L)

respectively. BothU and V have orthonormal columns that span the range ofA

and the range ofAH respectively.S is a diagonal matrix that contains the non-zero
singular values ofA, denoted as{σ1, . . . , σL} with σ1 ≥ σ2 ≥ . . . ≥ σL.

1Electric fields outside a bounded source region are quasi-bandlimited, i.e. only a finite number of
samples is needed to represent the field on any curve (in the 2D case) or surface (in the 3D case) outside
the source region for a given numerical precision [3]. Typically the optimal sampling rate of the field (order
half of a wavelength) is much lower than the sampling rate needed to represent the current distribution inS
(order one tenth of a wavelength).
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Finally there is the stability problem. In the inverse source problem, the Green
operator has a low-pass effect [5]. Certain currents which vary over the domainS
with high spatial frequencies can generate very small fieldsin the observation points.
This typically is reflected in a rapid decrease of the singular value spectrum ofA
without sudden jumps in the spectrum. Since it is easily derived from (2.5) that

‖jMN‖2 =

L
∑

l=1

1

σ2
l

|uH
l emeas|2, (2.7)

whereul is the l-th column ofU , we see that the norm ofjMN can only remain
reasonably small if the projections|uH

l emeas| follow the rapid decrease of the cor-
responding singular values. This is the case, for example for the ideal, noise free
data vectoreideal. An arbitraryL-dimensional vectorv can have projections|uH

l v|
of comparable size for alll. Suppose now that the data is corrupted by noise, i.e.
emeas = eideal + enoise. Then the projections|uH

l emeas| = |uH
l eideal + uH

l enoise|
will generally not decrease systematically, since it cannot be expected that the noise
has smaller projectionsuH

l enoise for larger l. This will cause the terms in (2.7) for
largel to blow up, such that the norm ofjMN becomes much larger than in the case
without noise. The reconstructed current will thus deviatemuch from the actual min-
imal norm current due to noise amplification. To counteract this noise amplification,
a regularization strategy is employed. A frequently adopted regularization method is
Tikhonov regularization [6]. Instead of looking for the exact minimum norm solution,
which is a solution to the minimization problem

jMN = argmin
j

‖emeas − Aj‖2, under the condition (2.8)

‖jMN‖2 is minimal, (2.9)

a Tikhonov regularized solution satisfies

jTI = argmin
j

‖emeas − Aj‖2 + α‖j‖2, (2.10)

whereα is the positive regularization parameter. This allows for atrade-off between
data fit and minimization of the norm. The idea is that the datais not perfect anyway,
due to the noise, such that a perfect fit is not needed and thereis some freedom which
can be used to keep the norm small. Let us now first examine the solution to (2.10).
First note that (2.10) can be rewritten as

jTI = argmin
j

‖Kj − y‖2, (2.11)
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where

K =

[

A√
αIN

]

, y =

[

emeas

0

]

, (2.12)

with IN theN ×N unit matrix. Since the dimensions ofK are(L + N)×N , (2.11)
corresponds to an over-determined least squares problem (with rankN ), the solution
of which can be found by solving the normal equations

KHKj = KHy (2.13)

or, equivalently
(

AHA + αIN

)

j = AHemeas. (2.14)

Using the SVD decomposition (2.6) ofA in this expression, one obtains

(

S2 + αIN

)

V Hj = SUHemeas (2.15)

V Hj =
(

S2 + αIN

)−1
SUHemeas. (2.16)

One solution of this last equation is given by

j = V
(

S2 + αIN

)−1
SUHemeas, (2.17)

since the columns ofV are orthonormal. This solution has no component in the null-
space ofA, since it is a linear combination of the columns ofV . Since an invisible
component inj has no influence on the first term in the right hand side of (2.10) and
only increases the second term, (2.17) isthesolution to (2.10). It is a visible current
vector that more or less fits the data and has reasonable norm.Indeed, instead of (2.7),
we obtain

‖jTI‖2 =

L
∑

l=1

σ2
l

(σ2
l + α)2

|uH
l emeas|2, (2.18)

where we see that the noise amplification is avoided, since the factorsσ2
l /(σ2

l + α)2

approachσ2
l /α2 for smallσl. For largeσl, they become1/σ2

l , which is the same as
in (2.7).

Note that forα → 0 the minimum norm solution and thus a perfect data fit is
again obtained. When the regularization parameterα is too large, however, too much
emphasis will be put on a small solution norm, which will degrade the data fit too
much. In order to choose a quasi-optimal value forα, the discrepancy principle can
be used [6, 7]. This states thatα is chosen as large as possible, and such that the data
error is equal to the error introduced by the noise, which is the maximal acceptable
error. This means thatα is chosen such that

‖emeas − AjTI‖2 = ‖emeas − eideal‖2 = ‖enoise‖2. (2.19)
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This, of course, requires an estimate of the noise level‖enoise‖2. Using the explicit
expression forjTI , given by (2.17), (2.19) is transformed into

L
∑

l=1

α2

(σ2
l + α)2

|uH
l emeas|2 = ‖enoise‖2, (2.20)

which is a rational equation inα and can be quite easily solved using standard root
finding algorithms.

2.3 The quantitative electromagnetic inverse scatter-
ing problem

2.3.1 Problem formulation

Consider an isotropic inhomogeneous, possibly lossy, dielectric object embedded in
an isotropic homogeneous background with permittivityǫb and permeabilityµ0 (Fi-
gure 2.2). This background extends to infinity in all directions. Since the object is
non-magnetic, its interaction with time harmonic electromagnetic fields is entirely de-
termined by its complex permittivityǫ, which is a function of the 3D position vector
r and of the angular frequencyω:

ǫ(r, ω) = ǫ0ǫr(r, ω) − j
σ(r, ω)

ω
, (2.21)

whereǫr is the (real) dielectric permittivity of the object andσ is the conductivity.
In the rest of this dissertation, only single frequency scattering will be regarded and
the ω-dependency of the permittivity and the conductivity as well as theejωt time
dependency of all phasors (electromagnetic fields, currents, charges, etc.) will be
omitted.
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Figure 2.2: The 3D scattering configuration: general notations and definitions.

In this setting, it is the goal of the electromagnetic inverse scattering problem to re-
constructǫ(r) within a bounded investigation domainD (which includes the unknown
object) from multi-view scattering data. These data are collected as follows. The do-
mainD is illuminated with a number of different incident fieldsEinc

i (i = 1, . . . , N I ).
An incident field is a field that would be present in the homogeneous background if
the scattering object were absent. For each such illumination i, the scattered field,
i.e. the difference between the total fieldEi and the incident field, is measured in a
number of measurement positionsrl,i (l = 1, . . . , NR

i ) which are possibly different
for different i (Figure 2.2). More specifically, we will restrict ourselvesin this work
to incident fields generated by elementary dipole current densitiesJδ,i at positionsri

and oriented alonĝui:
Jδ,i(r) = δ(r − ri)ûi, (2.22)

whereδ is the dirac distribution. On the other hand the measurementprocedure for
the scattered fields will be modelled simply by taking the component ofEscat

i along
the directionŝul,i in the pointsrl,i, i.e. Escat

i (rl,i) · ûl,i. The position-orientation
pairs(ri, ûi) and(rl,i, ûl,i), respectively, will be frequently denoted as transmitting
dipoles and receiving dipoles, respectively. The completeconfiguration of transmit-
ting and receiving dipoles is referred to as the dipole configuration.

2.3.2 The scattering model

As mentioned in Section 2.1, an inverse problem is associated to a model. In the case
of the electromagnetic inverse scattering problem, this model simulates the scattering
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of an incident fieldEinc
i from a given complex permittivity functionǫ(r) inside a

domainD. To build the model, we start from Maxwell’s equations in an isotropic
inhomogeneous dielectric medium, with a source currentJδ,i (2.22)

∇× Ei = −jωµ0Hi, (2.23)

∇× Hi = jωǫEi + Jδ,i, (2.24)

∇ · (ǫEi) = ρδ,i, (2.25)

µ0∇ · Hi = 0, (2.26)

whereρδ,i is the charge density corresponding toJδ,i. Equations (2.24) and (2.25)
can be rewritten as

∇× Hi = jωǫbEi + Jδ,i + jω(ǫ − ǫb)Ei (2.27)

ǫb∇ · Ei = ρδ,i −
1

jω
∇ · [jω(ǫ − ǫb)Ei] . (2.28)

From this and the law of charge conservation

ρ = − 1

jω
∇ · J (2.29)

it can be seen that a solution(Ei,Hi) to (2.23)-(2.26) is also a solution to Maxwell’s
equations in a homogeneous backgroundǫb with an additional source currentJ scat

i ,
given by

J scat
i (r) = jω(ǫ(r) − ǫb)Ei(r) = jωχ(r)Ei(r), (2.30)

which is denoted as thecontrast current. The functionχ is called thecontrast function.
Using the superposition principle, the total fieldEi can be obtained as [2]

Ei(r) = −jωµ0

[

I +
1

k2
b

∇∇
]

·
∫

R3

Gb(r− r′)
[

Jδ,i(r
′) + J scat

i (r′)
]

dr′, (2.31)

whereI is the3 × 3 identity dyadic and

Gb(r − r′) =
e−jkb‖r−r′‖

4π‖r − r′‖ (2.32)

is the scalar Green’s function of homogeneous space, which satisfies

∇2Gb(r − r′) + k2
bGb(r − r′) = −δ(r − r′). (2.33)

To simplify the notations we introduce an operatorGV
b that acts on a vector func-
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tion p with supportV:

[

GV
b (p)

]

(r) = −jωµ0

[

I +
1

k2
b

∇∇
]

·
∫

V

Gb(r − r′)p(r′)dr′. (2.34)

Using this operator notation and the fact that the support ofthe contrast current is
contained withinD (the contrast functionχ is zero outsideD) and that the source
currentJδ,i is non-zero only inri, we can rewrite (2.31) as

Ei(r) = Einc
i (r) +

[

GD
b (jωχEi)

]

(r), (2.35)

where the incident fieldEinc
i is given by

Einc
i (r) =

[

GSi

b (Jδ,i)
]

(r), (2.36)

with Si an arbitrary volume which containsri. Apparently, (2.35) is a second kind in-
tegral equation for the total fieldEi insideD for fixed contrastχ. Once this equation,
which is called thedomain equation, has been solved and the field insideD is known,
the contrast current (2.30) is known and (2.31) can be evaluated to yield the field
everywhere in space. More specifically, the scattered fieldEscat

i is obtained through

Escat
i (r) =

[

GD
b

(

J scat
i

)]

(r), (2.37)

which is termed thedata equation. Chapter 3 discusses the numerical solution of the
domain equation and the evaluation of the data equation, in other words the solution
of the forward problem. In Chapters 4 to 6, the inverse problem is solved.

Note that the data equation is a non-linear function of the permittivity. Indeed,
although the relation (2.37) betweenEscat

i andJ scat
i is linear,J scat

i itself is a product
of the permittivity contrast and the total fieldEi (2.30), which itself depends on the
permittivity through (2.35). In some early attempts to solve the inverse scattering
problem, the data equation was often linearized by puttingEi = Einc

i in (2.30). This
linearization is called the Born approximation [8, 9] and isvalid if the contrast is
small. In this work we attempt to solve the full non-linear inverse scattering problem
and make no approximations in the forward scattering model.

2.3.3 The inverse problem

To obtain the complex permittivityǫ(r) or, equivalently, the contrastχ(r) from knowl-
edge of the scattered field measurementsEmeas

i (rl,i) · ûl,i, for i = 1, . . . , N I and
l = 1, . . . , NR

i , the inverse scattering problem (2.35),(2.37) is reformulated as an op-
timization problem in which a cost functional has to be minimized. The data equation
(2.37) depends on the product of two unknowns, the contrastχ and the total fieldEi,
which are related by the domain equation (2.35). Without considering regularization,
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mainly two different approaches for defining the cost functional have been employed.
The first one considers only the permittivity as the optimization variable in the cost
functional. The field unknownsEi are eliminated by substituting the solution to (2.35)
into (2.37). This yields the least squares data fit cost functional

FLS(ǫ) =
NI
∑

i=1

NR
i
∑

l=1

| Escat
i (rl,i) · ûl,i − Emeas

i (rl,i) · ûl,i |2, (2.38)

which is evaluated for a given permittivity functionǫ(r) by solving the domain equa-
tion (2.35) forEi, i = 1, . . . , N I , and by using the data equation (2.37) to calculate
the scattered fieldsEscat

i . An optimization algorithm is used to update the permittiv-
ity until (2.38) is minimized. Since this is historically the first approach, we call it the
conventionalapproach to inverse scattering. It involves the solution ofa multi-view
forward scattering problem to calculate the total fields in every step of the optimization
process.

In the second approach both the permittivity and the total fieldsEi are considered
as optimization variables. The cost functional then typically takes the following form

FMG(ǫ) =
∑NI

i=1

∑NR
i

l=1 | Escat
i (rl,i) · ûl,i − Emeas

i (rl,i) · ûl,i |2

+λ
∑NI

i=1

∫

D
dr | Ei − Einc

i −
[

GD
b (jωχEi)

]

(r) |2, (2.39)

where an extra term has been added to the data fit cost functional, which expresses
the constraint (2.35). Whenλ is the correct Lagrange multiplier [10], the minimizer
of (2.39) exactly satisfies (2.35). Unfortunately, the Lagrange multiplier is not known
in advance and is not easily obtained in this case where both the objective functional
and the constraint are non-linear in the optimization variables. Although optimiza-
tion schemes exist that iteratively update the lagrange multiplier [10], it is simpler to
consider the second term in (2.39) as a penalty term andλ as a normalization con-
stant which is either fixed or is adjusted heuristically throughout the minimization.
Because of the large number of optimization variables (the permittivity and the field
for each illumination in every point in the investigation domain), a conjugate gradi-
ent minimization [10] is usually employed to minimize (2.39), since this method is
very memory efficient. The resulting approach is known as theModified Gradient ap-
proach [11]. It avoids the solution of multi-view forward scattering problems, but due
to the increased number of optimization variables, the optimization generally requires
many iterations to converge. As an alternative to the Modified Gradient approach, van
den Berg et al. [12] later proposed the Contrast Source Inversion (CSI) method, which
considers the contrast currentsJ scat

i instead of the total fields as auxiliary variables
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by using the cost functional

FCSI(ǫ) =
∑NI

i=1

∑NR
i

l=1 | Escat
i (rl,i) · ûl,i − Emeas

i (rl,i) · ûl,i |2

+λ
∑NI

i=1

∫

D
dr | J scat

i − jωχEinc
i − jωχ

[

GD
b

(

J scat
i

)]

(r) |2, (2.40)

which results from multiplying the domain equation (2.35) with jωχ and by using the
definition (2.30) for the contrast currents. Whereas, both (2.39) and (2.40) are mini-
mized using a conjugate gradient approach (see Chapter 6), (2.38) can be minimized
with the faster converging, but less memory efficient Newtontype methods, since it
involves less optimization variables (see [13] for an earlyapplication of the Newton-
Kantorovich algorithm to inverse scattering). Chapter 4 isdevoted to the conventional
approach. It is the only approach we employ to solve the 3D electromagnetic inverse
scattering. In Chapter 6, a modification of the CSI method is proposed, which is called
the CI method.

2.3.4 Discretization of the inverse problem

Since a solution to the optimization problem has to be soughtnumerically, a parameter
representation of the complex permittivity functionǫ(r) is needed to obtain a finite
number of optimization variables. To formulate the discrete inverse scattering problem
in a most general and simple way, we employ a cubic grid discretization. In Figure
2.3 this idea is illustrated: a permittivity gridDǫ with F × G × H cubic cells in the
x-, y- andz-directions is laid over the investigation domainD and the value of the
permittivity is assumed constant in each grid cell. The permittivity function is then
approximated by

ǫ(r) ≈
F−1
∑

f=0

G−1
∑

g=0

H−1
∑

h=0

ǫf,g,hǫ0Φf,g,h(r), (2.41)

whereΦf,g,h is a 3D pulse function that assumes the value 1 in cell(f, g, h) and is zero
elsewhere. The unknown coefficientsǫf,g,h represent relative complex permittivity
values.

When some a priori information on the permittivity function is available, for ex-
ample the knowledge of some region where the permittivity isconstant, the cells in
this region can be collected in a cell group with indexν. All cells (f, g, h) in this
cell group then have the same relative permittivityǫf,g,h = ǫν , which is the actual
optimization variable. In general, the permittivity unknowns thus are denoted asǫν

(the relative permittivity in cell groupCν , which can be a single cell) and they are
collected in theN ǫ-dimensional (N ǫ ≤ FGH) permittivity vectorε. From the per-
mittivity vectorε, the relative permittivityǫf,g,h in cell (f, g, h) is simply obtained by
determining to which cell group this cell belongs.
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Figure 2.3: The piecewise constant approximation for the permittivity function of Figure 2.2.

The discretization of the electromagnetic field quantitieswhich appear in the so-
lution of the forward problem is discussed in Chapter 3.

2.3.5 Derivatives of the scattering model

In the optimization algorithms described in Chapter 4, which belong to the conven-
tional approach, the derivatives of the forward scatteringmodel with respect to the
permittivity variables are needed. In this section it is shown that these derivatives are
known when the domain equation (2.35) has been solved for illuminations with dipole
sourcesJδ,k(r) = δ(r−rk)ûk, where the position-orientation pairs(rk, ûk) include
all illuminating dipole positions and orientations(ri, ûi) (i = 1, . . . , N I ) andall mea-
surement positions and orientations(rl,i, ûl,i) (i = 1, . . . , N I , l = 1, . . . , NR

i ). In
most cases, large portions of the illuminating dipole configuration coincide with mea-
surement position-orientation pairs and therefore the number of additional forward
solutions (with respect to those already conducted to evaluate the scattered field for
every illuminationi = 1, . . . , N I ) is limited.

We first define the Green’s dyadicGinh of the total inhomogeneous dielectric
space, such that−jωµ0Ginh(r, r′)·û is the total field inr due to an elementary dipole
sourceδ(r − r′)û in the presence of both the homogeneous background medium and
the scattering object. By linearity, the total field (2.35) then also is given by

Ei(r) = −jωµ0

∫

Si

Ginh(r, r′) · Jδ,i(r
′)dr′. (2.42)

Taking the derivative of (2.37) — or equivalently of (2.35),since the incident field



28 THE ELECTROMAGNETIC INVERSE SCATTERING PROBLEM

Einc
i does not depend on the permittivity of the scattering object, by definition —

with respect to the permittivity parameterǫν yields

∂Escat
i (r)

∂ǫν
=
[

GD
b (jωǫ0ΦνEi)

]

(r) +

[

GD
b

(

jωχ
∂Escat

i

∂ǫν

)]

(r), (2.43)

where we have used (2.30) and (2.41) and whereΦν is the function which is 1 in the
cell groupν and zero elsewhere (Φν is the support function of cell groupν). It follows
from (2.43) and (2.36) that∂Escat

i /∂ǫν satisfies an equation as (2.35) corresponding
to a source currentjωǫ0ΦνEi in cell groupν. Following (2.42), the derivative of the
scattered field thus can be written as

∂Escat
i

∂ǫν
(r) = k2

0

∫

D

Φν(r′)Ginh(r, r′) · Ei(r
′)dr′. (2.44)

The derivative of one measured scattered field valueEscat
i (rl,i) · ûl,i thus is given by

∂Escat
i

∂ǫν
(rl,i) · ûl,i = k2

0

∫

D

Φν(r′) ûl,i · Ginh(rl,i, r
′) · Ei(r

′)dr′. (2.45)

Since it can be proven by reciprocity [2] thatGinh(rl,i, r
′) = GT

inh(r′, rl,i) and with
the definition

El,i(r
′) = −jωµ0Ginh(r′, rl,i) · ûl,i, (2.46)

which is the field caused by a dipole currentδ(r−rl,i)ûl,i in the measurement position
rl,i, it follows that

∂Escat
i

∂ǫν
(rl,i) · ûl,i = jωǫ0

∫

D

Φν(r′)Ei(r
′) · El,i(r

′)dr′. (2.47)
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CHAPTER3

Solving the forward problem

In this chapter, the numerical solution of the domain equation (2.35) is discussed.
A Hybrid MLFMA-FFT solver is proposed to do this efficiently.The method is a
hybridization of the FFT method and the High Frequency Multilevel Fast Multipole
algorithm (HF MLFMA), which is especially useful for sparseinhomogeneous scat-
tering configurations. These are configurations in which theinvestigation domainD
contains much background medium and where the remainder is strongly inhomoge-
neous. This situation can be encountered in some specific inverse scattering problems,
e.g. the reconstruction of an unknown object in an environment which contains a num-
ber of other, known objects that are scattered over a large area. Although the hybrid
code has been incorporated in the 3D inverse solver of chapter 4, it is actually always
used as a regular FFT solver in the chapters about inversion,since we did not treat
sparse inverse scattering configurations in this thesis.

3.1 Introduction

Because the unknown of the domain equation (2.35) is a field quantity and because we
wish to solve this equation numerically, a Method of Momentsdiscretization of (2.35)
is employed, yielding an algebraic linear system. In relation to the 3D electromagnetic
inverse scattering problem, this system has a large dimension and a solution through
direct methods is not feasible. Indeed, direct solution of an N -dimensional linear sys-
tem has aO(N3) computational complexity. Moreover, the memory needed to store
the system’sN × N -matrix can easily exceed the available computer memory. Solv-
ing the system iteratively using, for example, a conjugate gradient (CG) or stabilized
bi-conjugate gradient (BICGSTAB) solver reduces the computational complexity to
O(NF N2), with NF the number of iterations, but the system’s matrix still has to be
stored in this approach.

Two classes of methods that reduce the storage requirementsand speed up the
matrix-vector multiplications needed in every step of the iterative solver are the Fast
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Fourier transform (FFT) based techniques and the Multilevel Fast Multipole algo-
rithms (MLFMA’s). The first class [1–5] uses the FFT to exploit the convolutional
structure of the integral operator in the domain equation and has a computational com-
plexity (for one matrix-vector multiplication) ofO(N log N) and a memory use of
O(N). The methods in the second class, such as the High Frequency (HF) MLFMA
[6–9], the Low Frequency MLFMA [10] and the Inhomogeneous orStable Plane wave
method [11,12], are based on efficient decompositions of theGreen function. The ma-
jor advantages of the FFT methods are their speed and easy implementation, thanks
to the fast, reliable and widespread codes for calculating FFTs [13]. The MLFMA’s
on the other hand allow a more flexible meshing of the scattering geometry, since they
can be applied to arbitrary meshes. For moderate to large volumetric problems with
densely distributed mesh elements, the FFT methods are usually faster, thanks to their
small prefactor, despite the lower computational complexity of MLFMA’s (O(N)) on
such dense geometries.

In this chapter, a hybrid MLFMA-FFT method is proposed, which is particularly
suited for large scattering configurations that show some sparsity. The method is a
modification of the HF MLFMA that treats the interactions between nearby mesh
elements using FFTs and the interactions between well-separated elements as in a
regular HF MLFMA. It can also be regarded as a hybridization of the subdomain
FFT method, which is proposed here as an FFT method for a collection of cubic
subdomains. The subdomain meshing avoids the extension of the FFT grid over empty
space between scatterers, as is necessary in the classical FFT method. It will be shown
that the MLFMA-FFT method outperforms both the regular HF MLFMA and the FFT
method on large sparse geometries and that it can have lower memory requirements
even on large dense geometries.

The outline of this chapter is as follows. In section 3.2 the domain equation (2.35)
is reformulated using a mixed potential approach and discretized with a MoM scheme.
Section 3.3 proposes a subdomain FFT method to speed up the matrix-vector products
needed for the iterative solution of the linear system. Section 3.4 starts by shortly re-
visiting the HF MLFMA. For a more thorough treatment, the reader is referred to [9].
Next, some improvements to the general MLFMA framework are presented. Specifi-
cally, the exploitation of symmetries in the subdomain meshallows for a reduction of
the memory cost of the MLFMA and the application of an FFT interpolation scheme
for the vectorial MLFMA together with the use of vector spherical harmonics to rep-
resent the radiation patterns on the lowest level results inaccurate and efficient ag-
gregation and disaggregation stages. Section 3.5 presentsthe hybrid MLFMA-FFT
method and discusses its relation to the FFT method and the HFMLFMA and in sec-
tion 3.6 this hybrid method is validated and its performancetested. Finally, Sections
3.7 and 3.8 discuss the choice of the initial guess for the iterative solution of the MoM
system and the discretization of the data equation (2.37) and its derivatives (2.47),
respectively.
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3.2 Problem reformulation and discretization

3.2.1 Mixed potential formulation

First, the normalized contrast functionξ is defined:

ξ(r) =
ǫ(r) − ǫb

ǫ(r)
. (3.1)

Using this normalized contrast, the contrast current (2.30) and its associated charge
density can be rewritten as (in this chapter, the illumination indexi is mostly omitted)

J scat(r) = jωξ(r)D(r), (3.2)

ρscat(r) =
−1

jω
∇ · J scat(r), (3.3)

whereD represents the electric flux densityD = ǫE. Next, the mixed potential
formulation [14] is employed to rewrite (2.37) as

Escat(r) = −jωAscat(r) −∇ϕscat(r), (3.4)

whereAscat andϕscat, respectively, represent the vector and scalar potentials, given
by

Ascat(r) = µ0

∫

D

Gb(r − r′)J scat(r′)dr′ (3.5)

ϕscat(r) =
1

ǫb

∫

D

Gb(r − r′)ρscat(r′)dr′. (3.6)

Finally, the domain equation (2.35) is recast as an integralequation forD, which is
called themixed potential domain equation(MPDE)

Einc(r) =
D(r)

ǫ(r)
+ jωAscat(r) + ∇ϕscat(r). (3.7)

The choice for the mixed potential formulation is motivatedby the fact that the weak
singularity inGb allows for a simple numerical treatment, as opposed to the stronger
singularity in the Green dyadic.
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3.2.2 MoM discretization

To solve (3.7) numerically, a Galerkin Method of Moments (MoM) is applied. The
electric flux density is expanded as

D(r) ≈
N
∑

α=1

dαΨα(r), ∀r ∈ D (3.8)

whereΨα are vectorial basis functions anddα are the unknown expansion coeffi-
cients. To define the functionsΨα, the domainD is built from a number of identical
cubic subdomainsDa, a = 1, . . . , NS , which belong to a uniform cubic grid with
grid parameter∆. Each subdomain that contains only background medium is re-
moved fromD and every remaining subdomainDa is divided inNC = P 3 cubic
cells with sideδ (Figure 3.1). The resulting MoM grid is termed theforward gridand
denoted byDF . The cell sizeδ and the position of the forward grid are chosen such
that it is a subdivision of the permittivity gridDǫ, such that every cell has a constant
permittivity. To every cell facetFα in this grid, one basis functionΨα = Ψαûα is
assigned, wherêuα is the normal toFα (ûα = x̂, ŷ or ẑ) andΨα is a 3D rooftop
function that assumes the value1 onFα and linearly tends to zero along the directions
±ûα over the two cellsS+

α andS−
α that shareFα (Figure 3.2). Such basis functions

are also reported in [3,15] and a similar formulation on tetrahedral meshes is proposed
in [16]. The support ofΨα is denotedSα = S+

α ∪ S−
α . With this choice for the ba-

sis functions, the normal component ofD is continuous across all facets of the grid,
as required by the boundary conditions. Furthermore, because the forward grid is a
subdivision of the permittivity grid, the normalized contrast functionξ is a piecewise
constant function which assumes one value per cell. In cellS+

α (respectivelyS−
α ) this

value is denoted asξ+
α (respectivelyξ−α ).

D

∆ = Pδ

∆

δ

Da

Figure 3.1: The construction of the domainD from a number of identical cubic subdomains
Da, meshed with a uniform cubic grid.
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uα

vα

wα

δ

δ

δ

S+
αS−

α Fα

(a)

uα

vα

δ

δ

Ψα

1

(b)

Figure 3.2: Graphical representation of the rooftop functionΨα associated to facetFα: (a)
definition of the support cellsS+

α andS−

α and a local reference system(ûα, v̂α, ŵα), where
ûα is the normal toFα, and (b)Ψα as a function ofuα andvα for everywα: 0 ≤ wα ≤ δ.

After substituting the expansion (3.8) in the domain equation (3.7), the same vec-
torial rooftop functions are used to test the equation. To illustrate the MoM procedure,
considerAscat

α , φscat
α andEα, respectively the potentials due to and the total electric

field corresponding to one termdαΨα(r) in (3.8). TestingAscat
α and∇φscat

α with Ψβ

yields

∫

Sβ

Ψβ(r) · Ascat
α (r)dr

= jωµ0 dα

[

ξ+
α

∫

Sβ

drΨβ(r) ·
∫

S+
α

dr′Gb(r − r′)Ψα(r′)

+ ξ−α

∫

Sβ

drΨβ(r) ·
∫

S−
α

dr′Gb(r − r′)Ψα(r′)

]

(3.9)

and
∫

Sβ

Ψβ(r) · ∇φscat
α (r)dr = −

∫

Sβ

φscat
α (r)∇ · Ψβ(r)dr, (3.10)

where we have used Gauss’ theorem and the fact thatΨβ is zero outsideSβ . The
expression forφscat

α in (3.10) is given by

φscat
α (r) = − 1

ǫb
dα

[

ξ+
α

∫

S+
α

Gb(r − r′)∇′ · Ψα(r′)dr′

+ξ−α

∫

S−
α

Gb(r − r′)∇′ · Ψα(r′)dr′

+
(

ξ−α − ξ+
α

)

∫

Fα

Gb(r − r′)dr′

]

, (3.11)
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where the last term represents the contribution of the surface charges that arise from
the discontinuities in the discretized contrast currents across the facets of the grid. The
testing ofEα with Ψβ results in

∫

Sβ

Ψβ(r) · Eα(r)dr =
dα

ǫb

[

(1 − ξ+
α )

∫

Sβ∩S+
α

drΨβ(r) · Ψα(r)

+ (1 − ξ−α )

∫

Sβ∩S−
α

drΨβ(r) · Ψα(r)

]

. (3.12)

Note that we use complete rooftop functionsΨβ in (3.9), (3.10) and (3.12) to test
the MPDE. Strictly speaking this generates a problem in (3.12) when the facetsFβ

andFα coincide on the boundary ofD. In this caseS+
α (= S+

β ) or S−
α (= S−

β ) lies
outsideD, where the expansion (3.8) is not defined. We therefore extend the validity
of (3.8) over one cell-width exterior toD by replacing the half rooftopΨα outside
D with the constant unity function, i.e.Ψα(r) = ûα. This means we assume that
keepingD(r) · ûα constant and equal to its value onFα is a good approximation over
a distanceδ outsideD.

Collecting the tested incident field in theN -dimensional vectoreinc and intro-
ducingN -dimensional vectorsd±

ξ with elementsξ±α dα andd with elementsdα, we
finally obtain the following set ofN linear equations inN unknownsdα

einc = W ξd + Z+d+
ξ + Z−d−

ξ (3.13)

or, in short,
einc = Lξd (3.14)

The elements of theN × N matricesZ± consist of double integrals with the Green
function and at most two linear functions in the integrand, as appears from (3.9)-
(3.11). These integrals are computed numerically using Gaussian quadrature and the
1/r-singularity of the Green function is handled by singularity subtraction [17]. The
sparse matrixW ξ is derived from (3.12). The integrals involved in this are easily
obtained analytically. Note that the elements of the dense matricesZ± do not depend
on the contrast. This way, they need to be calculated only once for a series of scattering
simulations with varying contrast, for example in an inverse scattering problem, where
the voxel permittivities are iteratively updated until thesimulated forward scattering
matches the measured data.

3.3 The subdomain FFT method

SinceN is usually quite large, we solve (3.13) iteratively with a stabilized bi-conjugate
gradient (BICGSTAB) routine [18]. To speed up the evaluations of the matrix-vector



3.4 The HF MLFMA 37

multiplications in (3.13), we focus on the most time consuming part, i.e. the multi-
plications withZ±. By denoting withva the part of anN -dimensional vectorv that
corresponds to basis or testing functions in the subdomainDa, we can write

(

Z+d+
ξ + Z−d−

ξ

)

b
=
∑

a

Z+
bad+

ξ,a +
∑

a

Z−
bad−

ξ,a, ∀b ∈ {1, . . . , NS}, (3.15)

where the matricesZ±
ba describe the interaction between two subdomainsDa and

Db. The matrix-vector productsZ+
bad+

ξ,a and Z−
bad−

ξ,a can be cast as 3D discrete
convolutions, since the convolutional symmetry in (3.5) - (3.6) is conserved thanks
to the chosen discretization. Therefore, the indexα and the notationFα are replaced
by the quintet(p, q, r; a;u) and the notationF a,u

p,q,r. The indicesp, q andr determine
the position ofS−

α , or equivalentlySa,−
p,q,r, in thex-, y- andz-direction respectively

within the subdomainDa and the superscriptu = 1, 2 or 3 discriminates between
the three facesFα′ for which S−

α′ = S−
α . With this labelling we write[Z+

ba]βα =

Z+
ba(p − p′, q − q′, r − r′;u;u′) and

[

Z+
bad+

ξ,a

]

β
=
∑

u′

∑

p′

∑

q′

∑

r′

Z+
ba(p − p′, q − q′, r − r′;u;u′) ξa,u′,+

p′,q′,r′d
a,u′

p′,q′,r′ .

(3.16)
After performing a 3D FFT of size(2P + 1) × (2P + 1) × (2P + 1), the discrete
convolution in this expression is transformed into a simplediagonal multiplication,
as is well known. We denote this method, where the total mesh consists of cubic
subdomainsDa, as the subdomain FFT method. The computational complexityof an
evaluation of (3.13) in the subdomain FFT method (Figure 3.3) is dominated by the
calculation of the FFTs ofd±

ξ,a for every subdomain and the diagonal multiplications
for every combination of subdomains. Thus it isO(c1N

SNC log NC +c2(N
S)2NC)

and the memory use is bounded above byO(d1(N
S)2NC + d2N

SNC) (for storing
the spectra ofZ+

ba, which are calculated in the setup time of the algorithm, andof
d±

ξ,a), wherec1, c2, d1 andd2 are constant prefactors. In practice the memory use is
smaller, because some interactionsZ+

ba are identical due to translation symmetry.

3.4 The HF MLFMA

3.4.1 Basic equations

The Multilevel Fast Multipole Algorithm (MLFMA) is a multilevel extension of the
Fast Multipole Method (FMM). In this thesis, a vectorial FMMis employed. This
means that the mixed potential formulation (3.4) is replaced by the electric field inte-
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FFT FFT−1multiplication

Da Db

O(NC log NC)O(NC log NC)

O(NC)

1
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3

NS

Figure 3.3: Illustration of the computational complexity of the subdomain FFT method.

gral formulation

Escat(r) = −jωµ0

∫

D

(

I +
1

k2
b

∇∇
)

Gb(r − r′) · J scat(r′)dr′ (3.17)

and the diagonal addition theorem for the Green dyadic is used (see [9], chapter 3,

and [19]). Note that we have put the operator
(

I + 1
k2

b
∇∇

)

under the integral sign

(compare with (2.31)). This is, strictly speaking, only valid if the point r does not
belong to the integration domain1. Since it will become clear in a moment that the
self-interaction (the interaction ofr with the points in its immediate surroundings)
will not be calculated with (3.17), there is no problem here.

The FMM requires a division of the basis functions in a numberof non-overlapping
FMM-groups. In our implementation the FMM-groups conveniently coincide with the
cubic subdomainsDa, which are introduced in section 3.2.2. LetEscat

a be the scat-
tered electric field, caused by the contrast currents in subdomainDa. The HF FMM
computesEscat

a , tested with a basis functionΨβ belonging to subdomainDb as

∫

D

Ψβ(r) · Escat
a (r)dr

≈ − jk3
b

(4π)2ǫb

∫ π

0

dθ

∫ 2π

0

dφV β,b(θ, φ) · Tba(θ, φ) sin θ Ua(θ, φ). (3.18)

1In the other case, adepolarizing dyadicmust be added, as outlined in [14]
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Note that (3.18) represents one element of−(Z+
bad+

ξ,a + Z−
bad−

ξ,a) in (3.15). The
diagonal translation operatorTba is calculated as

Tba(θ, φ) =
L
∑

l=0

(−j)l(2l + 1)h
(2)
l (kbrba)Pl(k̂(θ, φ) · r̂ba), (3.19)

whereh
(2)
l is the spherical Hankel function of the second kind and orderl, Pl is the

Legendre function of orderl, rba = ‖rba‖ = ‖rb
c − ra

c‖ is the distance between the
centers of the subdomains,r̂ba = rba/rba andk̂(θ, φ) = x̂ sin θ cos φ+ŷ sin θ sin φ+

ẑ cos θ is a vector on the unit sphere. The radiation patternsUa andV β,b are given
by

Ua(θ, φ) =
∑

α∈I+
a

ξ+
α dα

∫

S+
α

ejkb·(r′−ra
c )
(

I − k̂k̂
)

· Ψα(r′)dr′

+
∑

α∈I−
a

ξ−α dα

∫

S−
α

ejkb·(r′−ra
c )
(

I − k̂k̂
)

· Ψα(r′)dr′ (3.20)

V β,b(θ, φ) =

∫

Sβ

e−jkb·(r−rb
c)
(

I − k̂k̂
)

· Ψβ(r)dr, (3.21)

wherekb = kbk̂. The setI±a in (3.20) contains indicesα of basis functionsΨα

for which S±
α lies in Da. Note that these patterns only have transverse components

Uu
a = Ua · û andV u

β,b = V β,b · û with u = φ or u = θ. Equation (3.18) can be shown
to be valid up to arbitrary precision as long asrba is sufficiently large, i.e.Da andDb

have to be well-separated [9]. In general, this is expressedasrab > βR, whereβ is
the separation parameter andR is the radius of the subdomains.

3.4.2 Numerical implementation

Integration and interpolation

To evaluate the integrals in (3.18) numerically and to perform the interpolations needed
to extend the FMM to the MLFMA, we follow an approach, similarto that of Sar-
vas [20]. In this approach, the radiation patterns are presented in a Fourier basis rather
than with the usual spherical harmonics and interpolationsare done with FFTs. The
difference is that the FMM in [20] is scalar, while ours is vectorial. We use the trans-
verse components of the radiation patterns, which are not bandlimited in terms of
spherical harmonics, in contrast to the cartesian components. However, the functions
Uu

a and V u
β,b do have exponentially decaying Fourier spectra when their definition

domain is extended from[0, π] ⊗ [0, 2π] to [0, 2π] ⊗ [0, 2π] using the formula

F (θ, φ) = −F (2π − θ, φ + π) (3.22)
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for F = Uu
a or F = V u

β,b, as can easily be verified. The integral in (3.18) then is
replaced by

∫

D

Ψβ(r) · Escat
a (r)dr

≈ −1

2

jk3
b

(4π)2ǫb

∫ 2π

0

dθ

∫ 2π

0

dφV β,b(θ, φ) · Tba(θ, φ)| sin θ|Ua(θ, φ),(3.23)

where the definition domain of the spherical functionTba is extended with

Tba(θ, φ) = Tba(2π − θ, φ + π). (3.24)

Formula (3.22) thus allows the extension of the FFT approachof [20] to the vectorial
case. In the Fourier representation,N0(2M0 + 1) samples of the radiation patterns,
uniformly spaced inθ andφ within the domain[0, π]⊗ [0, 2π], are needed to perform
the integration in (3.23). The numbersM0 andN0 depend on the subdomain radiusR

and the desired accuracy. We choseM0 = L0, N0 = L0 + 1 whereL0 is determined
numerically together withL in (3.19) on a worst case scenario in such a way that the
desired accuracy is achieved with the minimum number of samples. L0 turns out to
be much smaller thanL, usually somewhat larger thanL2 . Further differences with
the implementation of [20] involve the recursive calculation of the truncated Fourier
spectrum ofTba(θ, φ)| sin θ| using a recursion formula for the Legendre function (see
Appendix A) and the use of a (trivial) 2D extension of Theorem4.1 in [20] to anter-
polate the productTba(θ, φ)| sin θ|Ua(θ, φ).

More efficient aggregation and disaggregation

The evaluation of (3.20) inN0(2M0 + 1) uniformly spaced sample points, referred to
as aggregation towards the lowest level, can be cast into a matrix operation:

U
u
a = A

+,ud+
ξ,a + A

−,ud−
ξ,a, u = θ or φ. (3.25)

U
u
a is aN0(2M0+1)-dimensional vector containing the samples ofUu

a andA
+,u and

A
−,u are the aggregation matrices. After interpolation, translation and anterpolation,

the incoming patternRb(θ, φ) =
∑

a Tba(θ, φ)Ua(θ, φ)| sin θ| of every groupDb is
multiplied in (3.23) withV β,b and integrated for everyΨβ in Db. Since the integra-
tion is performed numerically by a summation over samples, this can also be written
as a matrix operation:

escat
b,FMM = D

θ
R

θ
b + D

φ
R

φ
b (3.26)

whereescat
b,FMM contains the weighted scattered field in subdomainDb, due to all well-

separated subdomainsDa andR
u
b contains the samples ofRb(θ, φ) · û. The matrices

D
θ andD

φ are the disaggregation matrices and this step in the algorithm is denoted
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as disaggregation from the lowest level.
Again the contributions ofS+

α andS−
α are separated in (3.25) in order to make

the aggregation matrices independent of the contrast. Because of this and because of
the identical geometry of all subdomains, the aggregation and disaggregation matrices
are the same for every subdomain and have to be stored only once. This saves a lot of
memory compared to a HF MLFMA applied to arbitrary meshes, where these matrices
have to be stored per FMM-group or subdomain.

Although using uniform samples inθ andφ allows for an elegant FFT interpola-
tion, combining global exact interpolation with efficiency, it is suboptimal with respect
to the aggregation toward and disaggregation from the lowest level. The cost of these
stages can be reduced by choosing the samples more optimally[21] or by temporar-
ily switching to another, more economic representation of the radiation patterns. The
latter approach has been employed in [22], where the cartesian components of the radi-
ation patterns are represented in a spherical harmonics basis on the lowest level. After
aggregation to this basis, the uniform samples are still needed to proceed with the
diagonal translations and the interpolations towards higher levels, where the patterns
are stored in the usual k-space representation. In this dissertation a similar strategy
is adopted, but we use vector spherical harmonics to represent only the transverse
components of the radiation patterns. For example:

Ua(θ, φ) =

L0
∑

l=0

l
∑

m=−l

(γa)lm X lm(θ, φ) +

L0
∑

l=0

l
∑

m=−l

(κa)lm Φlm(θ, φ). (3.27)

Here,X lm andΦlm = k̂ × X lm are vector spherical harmonics as defined in [23].
The multipole coefficients(γa)lm and(κa)lm are determined as

(γa)lm = 4πjl
∑

α∈I+
a

ξ+
α dα

∫

S+
α

drΨα(r) · m(1)∗
lm (r − ra

c )

+ 4πjl
∑

α∈I−
a

ξ−α dα

∫

S−
α

drΨα(r) · m(1)∗
lm (r − ra

c ) (3.28)

(κa)lm = 4πjl−1
∑

α∈I+
a

ξ+
α dα

∫

S+
α

drΨα(r) · n(1)∗
lm (r − ra

c )

+ 4πjl−1
∑

α∈I−
a

ξ−α dα

∫

S−
α

drΨα(r) · n(1)∗
lm (r − ra

c ) (3.29)

wherem
(1)
lm(r) = jl(k0r)X lm(r̂) andn

(1)
lm(r) = 1

k0
∇×m

(1)
lm(r), with jl the spher-

ical Bessel function of orderl, are the standing wave vector solutions with zero di-
vergence of the Helmholtz equation as defined in [23].m

(1)∗
lm andn

(1)∗
lm denote the

complex conjugate ofm(1)
lm andn

(1)
lm respectively. The advantage of this approach is
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that we only need to calculate2 × (L0 + 1)2 multipole coefficients to representUa,
which is half the amount of uniform samples that are needed,2× (2L0 + 1)(L0 + 1).
The matrix version of (3.28) and (3.29) which now replaces (3.25) is

γa = M
+d+

ξ,a + M
−d−

ξ,a (3.30)

κa = N
+d+

ξ,a + N
−d−

ξ,a (3.31)

whereγa andκa are vectors containing the multipole coefficients ofUa. M
± and

N
± are the new aggregation matrices, which are still independent of the domain index

a. Since these matrices are only half as large as the original aggregation matrices in
(3.25), the aggregation to multipole coefficients will be twice as fast. The overall gain
factor, however, will be smaller than2, because we still have to evaluate the multipole
expressions for the radiation patterns in theN0(2M0 +1) uniform sample points with
(3.27). However, this can be done efficiently. First of all note thatΦlm ·θ̂ = −X lm ·φ̂
andΦlm · φ̂ = X lm · θ̂. Then let us rewrite (3.27) using a block matrix notation:

[

U
θ
a

U
φ
a

]

=

[

X θ −X φ

X φ X θ

] [

γa

κa

]

. (3.32)

It appears that four matrix-vector multiplications (with matrices of much smaller di-
mension than the aggregation matrices) have to be carried out. This can be avoided,
however, since (3.32) can be diagonalized:

[

U
θ
a

U
φ
a

]

=
1

2

[

I0 I0

jI0 −jI0

] [

X θ − jX φ 0

0 X θ + jX φ

] [

γa − jκa

γa + jκa

]

,

(3.33)
whereI0 represents the unit matrix of dimensionN0(2M0 + 1). This way, only two
matrix-vector products and some simple recombinations remain. Note that in [22]
three matrix-vector products are required to calculate thethree cartesian components
of the radiation patterns. Furthermore the summations overm in (3.27) can be carried
out efficiently by using FFTs. It can be shown thatX lm · θ̂ andX lm · φ̂ depend onφ
only through a factorejmφ, such that the typical summation is of the form

L0
∑

l=0

l
∑

m=−l

Flm(θ)ejmφqγlm =

L0
∑

m=−L0

L0
∑

l=|m|

Flm(θ)ejmφqγlm (3.34)

=

L0
∑

m=−L0

ejm 2π
2L0+1 q





L0
∑

l=|m|

Flm(θ)γlm



 ,(3.35)

where we have assumed the formφq = q 2π
2L0+1 = q 2π

2M0+1 for the samples in the
φ-direction. The outer summation in (3.35) is a discrete Fourier transform and hence
can be calculated by an FFT.
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V β,b is also expanded in multipoles and by substituting this expansion in (3.18)
and by interchanging the integration and the summation in the multipole expansion,
a disaggregation procedure with multipoles is readily obtained similar to the aggre-
gation procedure outlined above. The gain in speed obtainedby the aggregation and
disaggregation via multipoles will be discussed in Section3.6.2.

A last improvement to the aggregation towards and disaggregation from the lowest
level is a purely technical one. The matrix operations (3.30) and (3.31) have to be
carried out for every subdomain. Since the aggregation and disaggregation matrices
are the same for all the groups, the vectorsd+

ξ,a for all a, for example, can be stored
columnwise in a large matrix withNS columns. This matrix can be multiplied as a
whole with the appropriate aggregation matrix using Level 3Basic Linear Algebra
Subprograms (BLAS) [24, 25], which reduces the CPU time considerably. This will
also be illustrated in Section 3.6.2.

3.5 The hybrid MLFMA-FFT method

The hybrid MLFMA-FFT method consists of applying the HF MLFMA of Section
3.4 to the cubic mesh of Section 3.2.2 and treating the interactions (3.15) between
subdomains that are not well-separated – the near interactions – with the use of FFTs
(3.16). The resulting method is an improvement with respectto both the HF MLFMA
and the subdomain FFT method. With regard to the MLFMA, treating the near in-
teractions with FFTs is rewarding, because theO((NC)2) near interactions of the HF
MLFMA are replaced by more efficientO(NC) diagonal multiplications (Figure 3.4).
With regard to the subdomain FFT method, the hybrid MLFMA-FFT method replaces
the diagonal multiplication in the Fourier domain with the diagonal translation of the
FMM for well-separated subdomains. Because the dimension of the former is pro-
portional toNC and thus to the volume of the subdomains, while the dimensionof
the latter is generally smaller (only proportional to the surface area of the subdomains
when these are large enough), this can reduce the computation time and memory use,
even in a two-level FMM. Furthermore, in the multilevel scheme, the computational
complexity of the MLFMA-FFT method isO(N) to O(N log2 N), while the subdo-
main FFT method scales as(NS)2NC = N2/NC for a fixed size of the subdomains.

For a more in depth study of the method, the subdomain size is the most important
parameter. For a fixed separation parameterβ (which determines the reachable accu-
racy) it determines the height of the MLFMA tree (we add levels until there are no
more far interactions on the level to add) and the efficiency of the multilevel scheme.
To investigate the influence of the subdomain size, considerfirst a very large dense
scattering configuration. In such a situation, the number ofnear interactions for a
given subdomain (i.e. the number of subdomains with a centerthat lies within a
radiusβR from the center of the considered subdomain) is independentof the sub-
domain size. To see what happens when the subdomain size is increased, consider a



44 SOLVING THE FORWARD PROBLEM
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Figure 3.4: Illustration of the computational complexity of the MLFMA-FFT method.

doubling of this size:

• The number of cellsNC per subdomain is multiplied by8.

• The number of subdomains is divided by8.

• The cost of calculating the FFTs for every subdomain increases slightly from
NC ln(NC) to NC ln(8NC).

• The cost of the diagonal multiplications in the Fourier domain for the near inter-
actions is unaltered, since the increase in cells per subdomain and the decrease
in number of subdomains balance each other.

• The cost of the translations and interpolations/anterpolations is seriously re-
duced, because we lose a level and nothing changes for the remaining levels.

• The cost of the aggregation toward and disaggregation from the lowest level is
increased, becauseL0 is increased. For subdomain sizes of about one wave-
length or less, the increase is practically negligible, butfor larger subdomains,
L0 increases linearly with the subdomain size.

One can conclude that unless the subdomains become very large (kbR ≫ 1), an in-
crease in subdomain size reduces the cost and memory usage. For sparse configura-
tions, the behaviour is less predictable, but apart from some exotic configurations the



3.6 Validation and performance analysis 45

same conclusion stands. This is an important difference with the original MLFMA,
where the cost of the near interactions is multiplied by8 when the subdomain size
is doubled. Therefore, in the MLFMA there generally is an optimal subdomain size,
smaller than the background wavelength, which balances theload between near and
far interactions optimally, but the use of FFTs shifts this optimum in the MLFMA-FFT
method to much larger subdomains.

Our main goal is to examine for which type of configurations the MLFMA-FFT
method outperforms the FFT method in terms of CPU time or memory consumption.
On dense problems it is well known that the MLFMA, and thus also the MLFMA-
FFT method, isO(N). However, it appears from numerical tests that despite this
lower computational complexity, the MLFMA-FFT method is slower than the FFT
method even for fairly large problems, due to the small prefactor of the FFT method.
It will be shown in section 3.6, though, that it uses substantially less memory. An-
other situation is encountered when considering sparse scattering configurations, such
as the one in Figure 3.5(a). When the FFT method is used to calculate the scatter-
ing from this geometry, the cubic grid has to be extended to the bounding boxDC of
the domainD as in Figure 3.5(b). This implies that the CPU time and the memory
needed for the calculation of (3.13) are the same as for a dense configuration inDC.
In this case the MLFMA-FFT or even the subdomain FFT method can yield a faster
matrix-vector multiplication because they discretize thegeometry more economically
(Figure 3.5(c)). If we do not want the grid to extend over regions of empty space,
the maximal subdomain size is dictated by the sparsity of theconfiguration. Combin-
ing this with the main conclusion of the previous paragraph,we state the following
rule of thumb: if the maximal subdomain size, determined by the sparsity of the ge-
ometry, is not much larger then a wavelength, use this maximal subdomain size and
the MFLMA-FFT method. For very large maximal subdomain sizes, the aggregation
and disaggregation steps become unwieldy and it might be appropriate to use the sub-
domain FFT on the maximal subdomains or the MLFMA-FFT methodwith smaller
subdomains, depending on the specific geometry. In general,however, the MLFMA-
FFT method will consume less memory on any large problem, as will be demonstrated
in Section 3.6.

3.6 Validation and performance analysis

In this section the proposed MLFMA-FFT method is validated and its performance
is investigated and compared to that of the FFT-method and the HF MLFMA on a
number of test cases. All computations are carried out in double precision arithmetics
on a 64 bit computer with 2GHz Dual Core AMD Opteron processorand 8GB RAM.
All FFTs are computed using FFTW, the Fastest Fourier Transform in the West, a
collection of fast C routines for computing the discrete Fourier transform [13]. No
parallelizing or multi-threading of any kind are used.
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(a) (b)

(c)

Figure 3.5: Two ways of handling a sparse cubic mesh (a): extension to the boundingboxDC

(b), and division in identical cubic subdomains (c).

3.6.1 Validation

The scattering from a homogeneous sphere is considered to first validate the subdo-
main FFT method. The sphere has a radiusR = λb of one background wavelength
and a permittivityǫ = (2 − 2j)ǫb and is illuminated with anx-polarized plane wave
traveling in the+z-direction:

Einc(r) = e−jkbzx̂. (3.36)

The sphere is contained in a cubic domainD with side2λb. The grid on this domain
has a cell sizeδ = 0.05λb, which results in196800 unknowns. Such a fine grid is
chosen to reduce the staircasing error. We solve the MPDE in two ways: firstly we
considerD as one cubic subdomain, which means that we employ a classical FFT
method, and secondly we divideD in 64 subdomains and apply the subdomain FFT
method. Both methods needed39 BICGSTAB iterations to converge to an accuracy
of 10−6. Figure 3.6 compares the scattered fields with the analytical solution provided
by the MIE series [14]. The agreement is very good.

We now compare the scattered fields computed by the MLFMA-FFTmethod and



3.6 Validation and performance analysis 47

the subdomain FFT-method for the sparse scattering configuration of Figure 3.7. A
homogeneous sphere with a radiusR = 2λb and a permittivityǫ = (2 − 2j)ǫb is
surrounded by50 cubes with sideλb and permittivityǫ = 1.5ǫb, that are randomly
distributed in a cubic domainD with side10λb. The cell size is0.1λb. This problem
yields344100 unknowns and is solved by both methods in67 iterations to an accuracy
of 10−6. The results are shown in Figure 3.8. The parameters for the MLFMA are
chosen such that the relative error on the FMM-formula (3.18) is less than10−5 and
Figure 3.8 (b) shows that the relative difference between both solutions stays below
this value.
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Figure 3.6: Scattering from a homogeneous sphere with radiusR = λb and permittivityǫ =

(2 − 2j)ǫb: comparison between MIE series and results from the FFT and subdomain FFT
methods. Figure (a) shows thex-component of the scattered field on a semicircleS = {r : r =

Rm sin θx̂ + Rm cos θẑ}, with Rm = 4λb andθ ∈ [0, π[. Figure (b) shows the error defined
asεx(r) = ‖es

x(r) − es
x,MIE(r)‖/ maxr∈S ‖es

x,MIE(r)‖ for both the FFT and subdomain
FFT methods.



3.6 Validation and performance analysis 49

(a) (b)

Figure 3.7: A homogeneous sphere withR = 2λb andǫ = (2 − 2j)ǫb, surrounded by50

particles with sideλb andǫ = 1.5ǫb, randomly distributed over a cubic domainDC with side
10λb. Figure (a) shows the actual scatterers and Figure (b) represents themesh used by the
MLFMA-FFT and subdomain FFT methods. The cell size isδ = 0.1λb.



50 SOLVING THE FORWARD PROBLEM

0 0.5 1 1.5 2 2.5 3

−1.5

−1

−0.5

0

0.5

1

1.5

θ

e
s x
[V

/
m

]

|es
x| subd. FFT

ℜ(es
x) subd. FFT

ℑ(es
x) subd. FFT

|es
x| MLFMA-FFT

ℜ(es
x) MLFMA-FFT

ℑ(es
x) MLFMA-FFT

(a)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−7

θ

ε x

(b)

Figure 3.8: Scattering from the scatterers depicted in Figure 3.7. Figure (a) shows the x-
component of the scattered field on a semicircleS = {r : r = Rm sin θx̂ + Rm cos θẑ},
with Rm = 10λb andθ ∈ [0, π[. Figure (b) shows the error defined asεx(r) = ‖es
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x,1(r)‖ between the subdomain FFT method (es

x,1) and the hybrid MLFMA-FFT
method (es

x,2).
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3.6.2 Performance analysis

We first demonstrate the acceleration of the aggregation towards and the disaggrega-
tion from the lowest level, introduced by the techniques of section 3.4.2, in Table 3.1.
Three sizes of the subdomains (0.5λb, 0.8λb andλb) are considered. The values of
L0 andNa determine the size of the aggregation and disaggregation matrices.Na is
the number of basis functions in a subdomain if it is filled with a uniform cubical grid
with δ = 0.1λb. L0 is determined together withL (not shown in Table 3.1) such that
the relative error on the FMM-formula (3.18) does not exceed10−5 when the separa-
tion parameterβ is set to4. It can be seen that by performing the aggregation towards
and disaggregation from the lowest level via multipoles (M)instead of with uniform
samples (US), the CPU time for these stages can be reduced by40% to 45%. More-
over, with the use of Level 3 BLAS routines (MB) the total reduction factor ranges
from 3 for a subdomain size of0.5λb to 5 for a subdomain size ofλb. The number of
subdomainsNS , once it is large enough, does not seem to have a significant influence
on these gain factors.

subdomain size (inλb) L0 Na NS US M MB
0.5 11 450 1000 5.00 3.16 1.66
0.5 11 450 500 2.62 1.61 0.85
0.8 15 1728 1000 45.88 24.64 9.32
0.8 15 1728 500 17.74 10.03 4.70
1.0 17 3300 1000 112.34 61.25 21.29
1.0 17 3300 500 56.26 30.77 10.79

Table 3.1: Comparison of CPU times (in seconds) for the aggregation and disaggregation to-
wards and from the lowest level using uniform samples (US), multipoles (M) and multipoles
and Level 3 BLAS (MB). Results are given for different subdomain sizes and for two values of
ND, the number of subdomains. The values ofL0 yield an FMM-accuracy of10−5.

Next, the performances in terms of CPU time and storage requirements of all the
methods described in this chapter are investigated and compared. Table 3.2 shows the
CPU time for one evaluation of (3.13) and the memory needed tosolve the MPDE for a
number of test geometries. These geometries are all contained in a cubic bounding box
DC with side10λb and are meshed with a uniform cubic grid with cell sizeδ = 0.1λb.
For the FFT method, the complete bounding boxDC has to be discretized, irrespective
of the actual permittivity profile and geometry insideDC . This yields the test grid
“full”. The subdomain FFT method and the MLFMA-FFT method can be used on
sparse subdomain grids. The test grid “clutNP” thus refers to grids like the one of
Figure 3.7(b), whereNP is the number of particles that surround a central cube of
side4λb. All particles are cubes with sideλb and coincide with one subdomain each
in all test grids, except for “clut45/2”. The test grid “clut45/2” is identical to “clut45”,
but the size of its subdomains is twice as small (0.5λb) and hence their number is eight
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times larger than with “clut45”. Finally the test grid “corner” indicates a mesh like
the one in Figure 3.5(a) with a wall thickness ofλb and outer dimensions of10λb.
The subdomains for the test grids “full” and “corner”, when using MLFMA-FFT or
subdomain FFT, also have a sizeλb.

problem method fV N CPU-time memory
full FFT 1.0 3, 030, 000 38.92 s +7 GB

MLFMA-FFT 1.0 3, 030, 000 310.88 s 2951 MB
clut45 MLFMA-FFT 0.07 343, 900 12.91 s 940 MB

subdomain FFT 0.07 343, 900 29.87 s > 7.3 GB
clut45/2 MLFMA-FFT 0.07 343, 900 32.04 s 720 MB

MLFMA 0.07 343, 900 142.89 s 1570 MB
clut87 MLFMA-FFT 0.11 487, 300 20.83 s 1059 MB
clut127 MLFMA-FFT 0.15 610, 700 25.12 s 1156 MB
clut173 MLFMA-FFT 0.19 758, 400 34.38 s 1267 MB
corner MLFMA-FFT 0.18 591, 900 19.33 s 943 MB

Table 3.2: Comparison between the different methods in terms of memory requirements and
CPU-time per evaluation of (3.13).fV is the volume fraction of the scatterers in the surround-
ing cubeDC with side10λb. Whenever the MLFMA or the subdomain FFT method is not
mentioned for one of the test cases, this means that the available memory was not sufficient for
that method.

We first note that the subdomain FFT method is less efficient than the FFT method
in case of dense geometries like the test grid “full”, due to ahigher complexity. In fact,
on the test grid “full” and on all other test grids except for “clut45”, the subdomain
FFT method could not even be used, because it required more memory than the avail-
able8 GB. On the sparse test grid “clut45”, the subdomain FFT method yields a faster
matrix vector product than the FFT method, but even here the memory requirements
are close to the limit.

When we compare the MLFMA-FFT method with the subdomain FFT method
on the test grid “clut45”, the gain in CPU time and especiallyin memory use of the
hybrid method is obvious. In comparison to the FFT method (test grid “full”), the
MLFMA-FFT method clearly performs better on all sparse testgrids. The matrix-
vector multiplication is faster and the reduction of the storage needs is even more
explicit. Even on the dense problem of test grid “full” the MLFMA-FFT method
requires less memory than the FFT-method, but it is defeatedin terms of CPU time.
Note that most of the+7 GB used by the FFT-method is needed to store the FFT-
vectors and is therefore not affected by how sparse the actual permittivity profile on the
grid is. Because of theO(N) storage complexity of both the MLFMA-FFT method
and the FFT method on dense problems like the test grid “full”, the hybrid method
will always require less memory than the FFT method on electrically large problems.

Finally the MLFMA-FFT method and the MLFMA are compared on the same
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cubic mesh and using the same parameters. The MLFMA exploitsthe symmetry to
reuse the aggregation and disaggregation matrices. When notdoing so, the aggrega-
tion and disaggregation matrices of only78 subdomains with sideλb could be stored
in the available8 GB of RAM. However, even the symmetry adjusted MLFMA could
only be used on the sparsest test grid “clut45/2” with the smallest subdomains, since
the other test grids required too much memory to store the near interaction matrices.
For this test grid, the hybrid MLFMA-FFT is almost5 times as fast as the MLFMA
and memory requirements are less than half. It follows that the hybrid MLFMA-FFT
method is applicable to a much wider range of volumetric problems than the MLFMA
and that it also performs better. The test case “clut45/2” illustrates that dividing the
mesh in smaller subdomains beyond what is necessary to account for the sparsity of
the scatterers is not beneficial in terms of CPU time of the MLFMA-FFT method. On
this example it does reduce the memory use, but this behaviorstrongly depends on the
geometry and is not a fundamental property.

3.7 Choice of the initial guess

Since the total solution time is also proportional to the number of iterations needed to
solve (3.14), it is important that this numberNF is kept low. Often in computational
electromagnetics, a large number of iterations results from the ill-conditioning of the
forward problem. A remedy in such a case is the use of some kindof preconditioning.
The domain equation (3.7) is an integral equation of the second kind and as a result
is reasonably well-conditioned in general (if the contrastin permittivity is not too
extreme) and it is not so much the large number of iterations for one solution of (3.14)
that is the problem as the fact that solving the inverse scattering problem requires the
solution of a large number of forward problems (for a varyingpermittivity vectorε
and with each of those for varying illuminationi).

Therefore, a more appropriate strategy makes use of the repeated forward problem
solutions. In [26,27] it is shown that the number of iterationsNF to solve (3.14) can
be significantly reduced by means of a “marching-on-in-anything-technique” provided
that the desired accuracy is not much lower than the relativeerror introduced by noise
and the discretization [28]. This technique proposes an adequate choice for the initial
guessd0

i for the solution corresponding to illuminationi based on available solutions
which correspond to slightly different illumination and/or object configurations.

Suppose we have a few vectorsxm, m = 1 . . . M , that can be regarded as approx-
imations fordi. The initial guessd0

i then is calculated as the linear combination

d0
i =

M
∑

m=1

am xm (3.37)

which minimizes the error‖Lξd
0
i − einc

i ‖2 between the LHS and RHS of (3.14). The
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coefficientsam thus are a solution of the linear system

M
∑

m=1

[Lξ xm′ ]
H

Lξ xm am = [Lξ xm′ ]
H

einc
i m′ = 1, . . . ,M. (3.38)

which is a small system, sinceM = 3 or M = 4 is usually sufficient.
In this thesis we propose to use as the approximationsxm to di on the one

hand a few solutionsdi′ , that were computed for the same permittivity vector but
for nearby transmitter positions—so-called “marching-on-in-illumination” [28]—and
on the other hand a Distorted Born approximationdDB

i , which is calculated as

dDB
i = W−1

ξ

(

einc
i − Z+j

DB,+
i − Z−j

DB,−
i

)

, (3.39)

where the vectorsjDB,±
i have elements

jDB,±
i,α = ξDB,±

α d′i,α (3.40)

=
ǫ±α − ǫb
(

ǫ±α
)′ d′i,α. (3.41)

The Distorted Born approximationdDB
i thus is the discretized flux density which cor-

responds to the total fieldEDB
i (r) in the investigation domain, generated by the source

current and the contrast current

JDB
i (r) = jωχ(r)E′

i(r) = jω
χ(r)

ǫ′(r)
D′

i(r) = jωξDB(r)D′
i(r), (3.42)

which is the product of the new contrast functionχ (corresponding to the new permit-
tivity ǫ) and the total fieldE′

i obtained for a previous contrast functionχ′ (correspond-
ing to a previous permittivityǫ′) and for the same illuminationi. This approximation
actually represents a linearization of scattering model asa function of the permittivity
around the permittivity profileǫ′. Since the matrixW ξ is sparse and since the mul-
tiplicationsZ±j

DB,±
i can be done with FFT’s, the calculation ofdDB

i is fast. Note
further that in (3.38) only the multiplication ofLξ with dDB

i needs to be done, since
the other productsLξdi′ = einc

i′ are just the incoming field vectors which are readily
available. The inclusion of the Distorted Born solution in the marching-on scheme al-
lows for a simple extrapolation over the permittivity without having to store multiple
solution vectors for a number of different permittivity profiles as would be the case in
a “marching-on-in-permittivity” scheme.
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3.8 Numerical evaluation of the scattered field

So far the focus was on solving the domain equation (2.35) or (3.7) for the total field
inside the domainD. After this, the scattered field still has to be computed in a number
of observation points outsideD, i.e. the data equation (2.37) has to be evaluated. Since
there is no problem with the singularity in the Green’s dyadic, we can use (3.17) for
this task. Using the expression (3.2) for the contrast current and the expansion (3.8)
in (3.17), we can write down the scattered field, due to one term dαΨα(r) in (3.8):

Escat
α (rl,i) = ω2µ0dα

[

ξ+
α

∫

S+
α

dr′Gb(rl,i, r
′) · Ψα(r′) (3.43)

+ ξ−α

∫

S−
α

dr′Gb(rl,i, r
′) · Ψα(r′)

]

, (3.44)

where we have used the notationGb for the electric Green’s dyadic of the background
medium

Gb(r, r′) =

(

I +
1

k2
b

∇∇
)

Gb(r − r′). (3.45)

Gb(r, r′) can be conveniently computed as

Gb(r, r′) = Gb(r − r′)

[(

2j

kbR
+

2

(kbR)2

)

R̂R̂ (3.46)

+

(

1 − 1

kbR
− 1

(kbR)2

)

(I − R̂R̂)

]

, (3.47)

whereR = ‖r − r′‖ andR̂ = (r − r′)/R.
When the scattered field has to be evaluated in a lot of observation points, the

MLFMA can be used to do this. It is easy to see that the evaluation of Escat(rl,i)a ·
û, the component alonĝu of the scattered field caused by the contrast currents in
subdomainDa, can be obtained with (3.18) ifΨβ(r) is replaced byδ(r − rl,i)û and
the integration domainD in the left hand side byR3. The same has to be done in
(3.21). To make the process more efficient, the observation pointsrl,i should also be
organized in an FMM-tree and a multilevel scheme should be adopted. This ensures
that a minimal number of translations have to be carried out.

Finally, the expression (2.47) for the derivatives of the scattered fields, can be
discretized by noting that

E(r) =
D(r)

ǫ(r)
(3.48)

≈
N
∑

α=1

dα

ǫb

[

(1 − ξ+
α )Ψ+

α (r) + (1 − ξ−α )Ψ−
α (r)

]

, (3.49)
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whereΨ±
α is the half ofΨα on S±

α . Since the forward gridDF is a subdivision of
the permittivity gridDǫ, the integration withΦν in (2.47) becomes particularly simple
and can be done analytically.

3.9 Conclusions

In this chapter the numerical solution of (2.35) has been discussed. To this end, a new
hybrid MLFMA-FFT method was presented. The method combinesthe advantages of
the HF MLFMA and the FFT method on volumetric scattering problems which can be
meshed using a uniform grid. A flexible subdomain meshing of sparse scatterers was
introduced and the symmetry in this mesh was exploited to make some of the more
time and memory consuming stages in the HF MLFMA more efficient. Also, a novel
approach employing vector spherical harmonics to represent the radiation patterns on
the lowest level in combination with an FFT interpolation scheme for the vectorial
MLFMA was introduced. It was finally shown that the resultinghybrid method is
a valuable supplement to the existing fast methods, becauseit is more efficient on
sparse scattering configurations and it can easily be used asa regular FFT solver on
dense problems. Furthermore, when memory is an issue, the method’s low storage
requirements provide a means to tackle very large problems which would otherwise
be out of reach.

Although the MLFMA-FFT method reduces the computational and memory costs
of one matrix-vector multiplication in the iterative solution of the forward problem,
it is desirable to also keep the number of iterations low. To this end, the hybrid
MLFMA-FFT method was supplemented with a marching-on scheme to determine
an initial guess for the iterative solution of the MoM-system. This scheme is based on
a marching-on-in-source-position strategy, combined with a Distorted Born approxi-
mation to allow for a simple (linear) extrapolation over thepermittivity.
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CHAPTER4

Newton-based inverse
scattering

This chapter presents quantitative reconstruction algorithms for the 3D inverse scat-
tering problem, which belong to the conventional approach (Section 2.3.3). The algo-
rithms in this chapter are based on the Gauss-Newton minimization of a cost func-
tion which includes both the least squares data fit cost function and a regulariza-
tion term. Quasi-Newton optimization using the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) update formula is also investigated, but it is concluded that this method is
outperformed by the Gauss-Newton method.

Two different regularization strategies are proposed. Thefirst one is a multiplica-
tive smoothing (MS) constraint, which is appropriate when little a priori information is
available on the scatterers and on the amount of noise on the data. It is also suited for
the reconstruction of strongly inhomogeneous objects, such as the ones encountered
in biomedical applications. The second regularization method is the newly developed
value picking (VP) regularization, which is very effectivefor the reconstruction of
piecewise (quasi-) homogeneous scatterers, such as man-made objects in industrial or
security applications of inverse scattering.

The rest of the chapter is devoted to two important improvements on the basic
algorithm: the incorporation of constraints on the permittivity with minimal changes
to the algorithm and the use of a subspace preconditioned LSQR algorithm to solve
the ill-conditioned Gauss-Newton update systems.
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4.1 The basic optimization problem

4.1.1 The least squares cost function

Let escat(ε) be the vector that contains the simulated scattered field components
Escat

i (rl,i)·ûl,i (see Section 2.3.1) for all combinations of illuminations (i = 1, . . . , N I )
and measurements (l = 1, . . . , NR

i ) and for a given permittivity vectorε. This vector

has dimensionND =
∑NI

i=1 NR
i . Furthermore, let theND-dimensional vectoremeas

contain the measured data. The least squares data fit cost function then is defined as

FLS(ε) =
1

NLS
‖escat(ε) − emeas‖2, (4.1)

whereNLS = ‖emeas‖2 is a normalization constant, such thatFLS = 1 for ǫν =

ǫb/ǫ0, ∀ν. Note that, due to the non-linear relation between the permittivity and the
scattered fields,FLS is not quadratic inε. Note further that, to evaluateFLS for a
given permittivity vectorε, a multi-view forward problem has to be solved, i.e. one
has to solve the domain equation (2.35) for each transmitting dipole. To calculate
derivatives ofFLS , (2.35) possibly has to be solved for a number of additional exci-
tations by receiving dipoles (see Section 2.3.5).

A straightforward approach to the inverse scattering problem would be to mini-
mize the bare least squares cost function (4.1). Because thenumber of optimization
variables can become large in 3D inverse scattering problems and because the evalu-
ation of the cost functionFLS is computationally expensive, a global minimization
approach is not feasible, since it would require too many cost function evaluations.
Therefore, we have to resort to a local minimization approach, i.e. a minimization
method that relies on local derivatives, although this introduces the risk of getting
trapped in local minima in addition to the risk of ending up inthe wrong global mini-
mum in case of non-uniqueness.

4.1.2 Newton and Gauss-Newton minimization

Newton’s iterative method for local optimization approximates a non-linear cost func-
tion with a quadratic model based on the function’s first and second order derivatives
(the gradient and the Hessian matrix) at the current iterateand chooses the stationary
point of this model as the next iterate. It has the attractivefundamental property of
super-linear convergence if the initial guess is close enough to the solution [1]. How-
ever, when starting further away from the solution, the Newton correction may lead
to an increase in the cost function, if at its stationary point the model is no longer a
good approximation to the function or if the Hessian matrix is not positive definite (i.e.
the quadratic approximation does not have positive curvature and hence no (unique)
minimum). Furthermore, for large optimization problems the computation of second
order derivatives is usually very expensive. A variety of Newton-type methods that
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try to deal with these issues are described in the literature, but in this dissertation we
focus on one of these: the Gauss-Newton method with line search.

Let us first give a few definitions. Consider a general cost function F(ε). This
function is a real-valued function of theN ǫ complex variablesǫν = ǫ′ν − jǫ′′ν . We
define a gradient

g =

[

∂F
∂ǫν
∂F
∂ǫ∗ν

]

=

[

gc

gcc

]

(4.2)

with gc = g∗
cc, becauseF is real, and a Hessian matrix

H =

[

∂2F
∂ǫν∂ǫυ

∂2F
∂ǫν∂ǫ∗υ

∂2F
∂ǫ∗ν∂ǫυ

∂2F
∂ǫ∗ν∂ǫ∗υ

]

(4.3)

with derivatives with respect toǫν and its complex conjugateǫ∗ν . These definitions are
equivalent with the use ofǫ′ν andǫ′′ν as independent variables [2], and lead to simplified
notations in the following. For sums of squares the gradientand Hessian matrix take
particular forms. For the least-squares data errorFLS the gradient is

gLS =
1

NLS

[

JT [escat − emeas]
∗

JH [escat − emeas]

]

, (4.4)

whereJ is theND × N ǫ Jacobian matrix containing the first order derivatives of the
scattered field components,Jdν = ∂escat

d /∂ǫν . The Hessian matrix is

HLS =
1

NLS

[

B JT J∗

JHJ B∗

]

, (4.5)

whereB is aN ǫ × N ǫ matrix containing products of second order derivatives of the
scattered field with the data residues,

Bνυ =

(

∂2escat

∂ǫν∂ǫυ

)T
[

escat − emeas
]∗

(4.6)

In a Newton optimization scheme the complex permittivity vector is iteratively
updated as

εk+1 = εk + sk, (4.7)

wheresk is the permittivity correction at iteratek, given by

[

sk

s∗
k

]

= −H−1
k gk. (4.8)

To enlarge the convergence domain, it is better to use this correction as a search direc-



64 NEWTON -BASED INVERSE SCATTERING

tion along which the next iterate is located as

εk+1 = εk + βksk, (4.9)

where the positive line parameterβk is determined with an approximate line search,
i.e. βk is chosen such thatF(εk + βksk) is close to a local minimum ofF along the
search directionsk. In this work, the line search is performed with the algorithm de-
scribed in [1]. This algorithm requires that the search direction is a descent direction,
i.e.

∂F
∂βk

∣

∣

∣

∣

βk=0

=
Nǫ
∑

ν=1

(

∂F
∂ǫν

sν,k +
∂F
∂ǫ∗ν

s∗ν,k

)

∣

∣

∣

∣

∣

βk=0

=
[

sT
k sH

k

]

gk

= 2ℜ
(

sT
k gc,k

)

< 0 (4.10)

In [1] it is proven that an optimization method that searchessuccessively along dif-
ferent descent paths using the aforementioned approximateline search converges to
a (local) minimizer provided that the search directions areuniformly bounded away
from orthogonality with the steepest descent direction−gk.

A widely used alternative for the Newton method in case of sums of squares of
non-linear functions, such as the data errorFLS , is the Gauss-Newton method. It
consists of linearizing the functionescat in (4.1) around the current iterate as

∆escat
k = escat (εk + sk) − escat (εk) ≈ Jksk. (4.11)

From (4.11), by identifyingescat (εk + sk) = emeas and by solving the resulting
system in the least squares sense, the Gauss-Newton correction forFLS is given by

sk = −
(

JH
k Jk

)−1

JH
k

[

escat
k − emeas

]

. (4.12)

Equation (4.12) is obtained as well from the Newton correction (4.8) by neglecting
the matrixB in the Hessian matrix (4.5). No second order derivatives of the scattered
fields thus are needed. Also, the hermitian matrixJHJ is at least positive semi-
definite, hence the update direction (4.12) is never uphill.Indeed, (4.12) is of the
form

sk = −Agcc,k = −Ag∗
c,k, (4.13)

which satisfies
sT

k gc,k = −gH
c,kAT gc,k ≤ 0, (4.14)

becauseA is hermitian and positive semi-definite. Therefore the condition (4.10) for a



4.1 The basic optimization problem 65

descent direction is either satisfied or the search direction sk lies along a level contour
of the cost functionF .

However, the linearization (4.11) may be too bad an approximation far from the
solution, possibly resulting in an increase of the cost function when the update is done
with (4.7). Also, the condition number ofJHJ typically is large, because the sin-
gular value spectrum ofJ decays rapidly. This is a symptom of the ill-posedness of
the inverse scattering problem (see Section 4.1.4). In somecasesJHJ is even sin-
gular. This situation occurs when the inverse problem is under-determined, i.e. when
the dimensionND of the data vector is smaller than the number of unknownsN ǫ.
Even whenND ≥ N ǫ, the system can be under-determined with respect to the phys-
ically independent data due to redundancy in the data vectorcaused by reciprocity,
i.e. if both Escat

i (rl,i) · ûl,i andEscat
l,i (ri) · ûi occur in the data vector. Theoreti-

cally, both numbers should be equal and although their measured values are probably
different due to noise on the data (or due to modelling errorswhen the data is simu-
lated), the corresponding rows of the jacobian matrixJ areidentical, as can be seen
from (2.47) (by interchangingi and (l, i)). This rank deficiency can prevent con-
vergence, because update-directions can be orthogonal to the steepest descent vector
(sT

k gc,k = 0). In [3] the convergence of the Gauss-Newton method was improved
with a Levenberg-Marquardt trust-region approach, which ensures a positive definite
and better conditioned approximate Hessian matrix and which keeps the step size‖sk‖
sufficiently small. The use of a line search, as in this dissertation, also remedies the
problem of a step size which is too large (even if the linearization is no longer valid in
εk + βksk, we know that the cost function will be reduced), but it does not solve the
problem of a rank-deficient Hessian matrix. The regularization strategies, proposed in
Sections 4.2 and 4.3 will take care of that.

Finally, what is meant by aniteration in the rest of the text, is the calculation
of an update direction and the execution of a line search along this search direction,
regardless of the iterative algorithm that is used.

4.1.3 Quasi-Newton minimization

The quasi-Newton method consists in approximating the Hessian matrix in the New-
ton correction (4.8) with a matrix that does not involve the explicit computation of
second order derivatives. In each iteration this approximated Hessian matrix is up-
dated based on the change in the gradient with respect to the previous iteration. In this
thesis we consider the Broyden-Fletcher-Goldfarb-Shanno(BFGS) update formula for
the inverse Hessian matrixH−1

k ,

H̃k+1 = H̃k +

(

1 +
γT

k H̃kγk

δT
k γk

)

δkδT
k

δT
k γk

−
(

δkγT
k H̃k + H̃kγkδT

k

δT
k γk

)

, (4.15)
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whereδk = εk+1 − εk, γk = gk+1 − gk and whereH̃k is a symmetric matrix for
whichgT

k H̃kgk > 0, which means that the updates

[

sk

s∗
k

]

= −H̃kgk (4.16)

are descent directions. For the first iteration we chooseH̃ equal to the identity matrix.
It is expected that after a sufficient number of iterations the matricesH̃k become close
approximations toH−1

k [1]. Since (4.15) directly approximates the inverse Hessian
matrix, only one matrix-vector multiplication is needed tocompute the quasi-Newton
correction (4.16). This could be an advantage over the Gauss-Newton method, where
the solution of a linear system of orderN ǫ (see (4.12)), even if this is done iteratively,
can increase the computation time substantially. Unfortunately, we observed a much
slower rate of convergence with this BFGS quasi-Newton implementation than with
the modified Gauss-Newton implementation. This will be illustrated in Section 4.2.3.

4.1.4 The necessity of regularization

Basically, all problems with the ill-posedness of the inverse scattering problem are
related to overfitting. Since electromagnetic fields, measured on any surface outside
the source region, essentially have a limited number of degrees of freedom in finite
precision [4], the information content of the data vector isalways limited and cannot
be increased beyond a certain point by adding more illuminations and measurement
positions. On the other hand, the requirement of a high resolution in the reconstruction
results in a small cell size for the permittivity gridDǫ and therefore a high number of
optimization variables or model parameters. It is clear that increasing the resolution
will eventually result in overfitting. On top of this, as already mentioned in Section
2.1, noise on the data results in an extra loss of information, which already leads
to overfitting with a smaller number of unknowns. In practice, mainly changes in
the permittivity function with high spatial frequencies cannot be well resolved and
therefore such fluctuations can grow almost unbounded in thereconstruction. This
results in instability and should be remedied by proper regularization.

To illustrate the seriousness of the problem, we consider a 2D permittivity profile
in a setting which will be treated more extensively in Chapter 6. The target under study
is a circular cylinder parallel to thez-axis with radius0.5λb (λb is the background
wavelength) and permittivity2ǫ0, which is enclosed in a larger circular cylinder with
radiusλb and permittivity1.5ǫ0. The background medium is air (ǫb = ǫ0). This object
is illuminated with 29 line sources parallel to thez-axis, evenly distributed on a circle
with radius3λb around the target and for each illumination, the TM-field is measured
in the same positions. The scattering from such a 2D object can be simulated using
a volume integral equation, much like the one used in 3D (see Section 6.1). After
simulating the data, Gaussian noise is added to simulate measurement noise. Let us
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define the signal-to-noise ratio (SNR) as

SNR = 10 log10

‖emeas‖2

2NDσ2
dB, (4.17)

whereσ2 is the variance of the Gaussian white noise, which is calculated as

σ2 =
1

2ND − 1
‖escat(ε0) − emeas‖2. (4.18)

Here, ε0 is the discrete relative permittivity distribution which,within the applied
discretization, yields the closest approximation to the true relative permittivity dis-
tribution. We also define thenoise levelTN as the data fit error obtained forε0:
TN = FLS(ε0) (this definition thus encompasses both measurement noise and dis-
cretization errors). In the present example the SNR is 20 dB,which corresponds to
a noise levelTN ≈ 0.01 (approximately10% error on the data). Figures 4.1 and
4.2 show two discretized permittivity profiles. Figure 4.1 shows the ideal profileε0

(FLS = 0.0104) and Figure 4.2 shows a profile which deviates significantly from ε0

but yields an almost identical data fit (FLS = 0.0108). The difference between the
two permittivity profiles is a radially symmetric ripple of the formsin(aρ)/ρ, where
ρ is the distance to the origin anda is some constant. It is clear that this perturbation
with high spatial frequency goes almost unnoticed in the scattering measurements. In
order to exclude such large pixel-to-pixel fluctuations we need regularization.

The purpose of regularization can be formulated as follows.It adds information to
compensate for the information that is lost due to noise or just to increase the overall
information content. By doing this, it reduces the freedom in the optimization space
and prevents overfitting. The overall result of regularization is the choice of (ideally)
one profile among the many that fit the data within the uncertainty introduced by the
noise. A good regularization then yields a permittivity profile close toε0.
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ℜ(ǫ/ǫ0)

Figure 4.1: A permittivity profileε0.

ℜ(ǫ/ǫ0)

Figure 4.2: A profile that yields the same data fit as the profile of Figure 4.1, but exhibits a
perturbation with high spatial frequency.

4.2 Multiplicative smoothing regularization

We proposed the multiplicative smoothing regularization in [5] as a regularization
which adapts itself to the amount of noise on the data, without knowledge of the
noise level. The idea is related to the work of van den Berg andAbubakar [6–8]
on multiplicative regularization for the contrast source inversion method. Habashy
and Abubakar also also incorporated a multiplicative regularizer in the Gauss-Newton
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framework [9], but not in exactly the same manner as the one presented below.

4.2.1 Modification of the cost function

When using multiplicative smoothing regularization, the solution of the inverse prob-
lem is sought by minimizing the cost function

FS (ε) = FLS (ε)
[

1 + αFR (ε)
]

, (4.19)

whereFR is a smoothing function, given by

FR (ε) =

F
∑

f=0

G−1
∑

g=0

H−1
∑

h=0

|ǫf,g,h − ǫf−1,g,h|2

+
F−1
∑

f=0

G
∑

g=0

H−1
∑

h=0

|ǫf,g,h − ǫf,g−1,h|2

+

F−1
∑

f=0

G−1
∑

g=0

H
∑

h=0

|ǫf,g,h − ǫf,g,h−1|2, (4.20)

which is proportional to a discrete version of the expression

1

ǫ20

∫

D

|∇ǫ(r)|2 dr. (4.21)

Whenever the triplet(f, g, h) in (4.20) indicates a cell outsideDǫ (i.e. f = −1,
f = F , g = −1, g = G, h = −1 or h = H), the corresponding value ofǫf,g,h is
equal to some fixed relative permittivity valueǫR. The most logical choice in most
applications isǫR = ǫb/ǫ0.

The addition of a smoothing term to the least squares data fit cost function as in

FLS (ε) + αFR (ε) , (4.22)

has the result that the reconstruction algorithm will favorsmooth profiles over non-
smooth profiles, much like the extra term‖j‖2 in (2.10) favors current vectors with a
small norm. Therefore such a regularization reduces the number of degrees of freedom
in the optimization space, since strongly fluctuating permittivity perturbations, which
would otherwise distort the reconstruction, are excluded.However, as explained in
Section 2.2, the regularization parameterα has to be chosen carefully in (4.22) to pro-
vide an optimal trade-off between data fit and smoothness of the permittivity profile.
The discrepancy principle, as used in Section 2.2, could be used here as well, in which
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caseα is determined such that the corresponding minimumεα of (4.22) satisfies

FLS (εα) = TN . (4.23)

However, since the inverse scattering problem is non-linear and the solutionεα has
to be determined through an iterative minimization technique, a simple equation as
(2.20) is no longer available and the value forα given by the discrepancy principle
can only be obtained via a lot of experimentation. Moreover,an estimate of the noise
level TN has to be available for this. Other methods for choosing the regularization
parameter exist, such as Generalized cross validation [10–12] and the L-curve crite-
rion [13], which do not assume knowledge of the noise level. However, these methods
still use some a posteriori criteria to determine whether a certain choice for the regular-
ization parameter is suitable and hence it is not clear how toavoid repetitive solution
of full optimization problems in their application to non-linear inverse problems (see
for example [14]), which increases the computation time.

The incorporation of the smoothing function in a multiplicative way as in (4.19),
avoids these problems. In (4.19), the weight of the regularization term is proportional
toFLS , the effect of which is twofold:

• An adaptive regularization scheme is obtained, where the choice of the positive
regularization parameterα is less critical than with additive regularization. With
additive regularization, the weight of the regularizing term has to be chosen
large enough to provide enough smoothing in the final reconstruction, but small
enough to allow for a data fit on the noise level, i.e.FLS ≈ TN , according
to the discrepancy principle. With multiplicative smoothing, the probability of
overregularization is reduced, because the regularization is relaxed as long as
FLS is reduced during the minimization of (4.19). It has been observed in all
our numerical experiments involving inversion of noise-corrupted synthetic data
thatFLS is allowed to reach the noise level for choices ofα in a wide range of
values and that this function is not much further minimized once this happens.
The weight of the regularization thus stays practically constant from this point
on and ifα is chosen rather large, an appropriately smoothed reconstruction is
obtained.

• The optimization space is restricted initially to very smooth profiles and grad-
ually increased to allow for more and more detail in the reconstruction. When
the optimization is started from a smooth profile (e.g. a domain D filled with
background medium),FR has to be increased to obtain less smooth profiles,
which restricts the step size in the initial stages of the non-linear iterative mini-
mization when the weight of the regularization is still large. This improves the
convergence (the Gauss-Newton linearization becomes morevalid).

Note that, in the extreme case of no noise and no discretization errors (TN = 0), the
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cost functionFS can be reduced to zero and in such case the regularization completely
vanishes, as required by the discrepancy principle.

4.2.2 Incorporation in the Gauss-Newton framework

To incorporate the multiplicative smoothing regularization in the Gauss-Newton mini-
mization framework, we start again from Newton’s method. The gradient and Hessian
of the smoothing functionFR are given by

gR =

[

Ω

Ω∗

]

, (4.24)

with Ων = ∂FR/∂ǫν and

HR =

[

0 Σ

Σ 0

]

, (4.25)

whereΣ is a real and constant matrix withΣνυ = ∂2FR/∂ǫν∂ǫ∗υ. The explicit
expressions for the elements ofΩ andΣ are

∂FR

∂ǫν
=

∑

(f,g,h)∈Cν

∂FR

∂ǫf,g,h
(4.26)

∂2FR

∂ǫν∂ǫ∗υ
=

∑

(f,g,h)∈Cν

∑

(f ′,g′,h′)∈Gυ

∂2FR

∂ǫf,g,h∂ǫ∗f ′,g′,h′

(4.27)

with

FR

∂ǫf,g,h
= 6ǫ∗f,g,h −

∑

(f ′,g′,h′)∈Bf,g,h

ǫ∗f ′,g′,h′ (4.28)

∂2FR

∂ǫf,g,h∂ǫ∗f ′,g′,h′

=















6 if (f, g, h) = (f ′, g′, h′),

−1 if (f ′, g′, h′) ∈ Bf,g,h,

0 else.

(4.29)

Bf,g,h in these expressions represents the set of neighboring cells of cell(f, g, h), i.e.
the cells that share a face with cell(f, g, h). These also include the virtual neighboring
cells just outsideDǫ when(f, g, h) is on the border ofDǫ. As mentioned before, the
permittivity value for those cells isǫR.

Combined with (4.4) and (4.5), the gradient and Hessian matrix of the regularized
cost-functionFS can be written as

gS = gLS(1 + αFR) + FLSαgR (4.30)
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and

HS =
1

NLS

[

B′ A∗

A B′∗

]

, (4.31)

whereHS is a complex symmetric matrix with

B′ = B(1 + αFR) + αJT
[

escat − emeas
]∗

ΩT

+αΩ
[

escat − emeas
]H

J , (4.32)

A = JHJ(1 + αFR) + αJH
[

escat − emeas
]

ΩT

+αΩ∗
[

escat − emeas
]H

J + αNLSFLSΣ. (4.33)

Applying the Newton formula (4.8) toFS yields (the indexk is omitted in the
following)

As + B′∗s∗ = −JH
[

escat − emeas
]

(1 + αFR) − αNLSFLSΩ∗. (4.34)

Using (4.32) and (4.33) and introducing the linearization (4.11), we obtain for the left
hand side of (4.34)

As + B′∗s∗ = JHJ(1 + αFR)s + αJH
[

escat − emeas
]

[

ΩT s + ΩHs∗
]

+ αΩ∗
{

[

escat − emeas
]H

∆escat +
[

escat − emeas
]T

∆escat∗
}

+ αNLSFLSΣs. (4.35)

The optimization is usually started from a constant initialpermittivity ǫR, i.e. ǫf,g,h =

ǫR ∀f, g, h. This permittivity vector is the minimizer ofFR and yields zero forΩ.
Consequently, the second and third terms in the right hand side of (4.35) are zero in the
first iteration (and may remain small in a few subsequent iterations). The data residu
∆emeas = [emeas − escat] eventually becomes small due to the minimization, such
that all terms except the first one in the right hand side of (4.35) become negligible.
Given this behavior at the beginning and end of the optimization, we choose to keep
only the first and the last terms. The modified Gauss-Newton correction thus is a
solution of the linear system

(

JHJ + λ2Σ
)

s = −
(

JH
[

escat − emeas
]

+ λ2Ω∗
)

, (4.36)

with λ2 = αNLSFLS/(1 + αFR).
The matrixJHJ + λ2Σ in (4.36) is always positive definite forλ2 6= 0, since

Σ can be proven to be strictly positive definite, and the right hand side of (4.36) is
proportional to−

(

gS
c

)∗
. The presence ofλ2Σ thus ensures a strict descent direction.

Therefore, the algorithm will converge towards a minimum ofthe regularized cost
function, whether the approximations that led to (4.36) were good approximations or
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not.
Some additional insight in the effect of the regularizationcan be obtained by ob-

serving that the update (4.36) is the solution to the following regularized linear least
squares problem:

min
s

‖Js − ∆emeas‖2 + λ2‖LT s + L−1Ω∗‖2, (4.37)

where L is the Cholesky factor ofΣ = LLT . The second term in (4.37) can
be interpreted as a generalized Tikhonov regularization term [15] (see Section 2.2).
It is minimized whenΣs = −Ω∗(ε), hence also whenΩ∗(ε + s) = 0, since
Σs = Ω∗(ε + s) − Ω∗(ε) (FR is a quadratic function). This term thus tries to
minimizeFR, or fluctuations in the permittivityε, which seems to be more appro-
priate than smoothing the corrections, as was done by several authors with regular
Tikhonov regularization, e.g. [3, 16, 17]. The regularization parameterλ2 in (4.37) is
proportional to the data errorFLS — see [17] for a similar strategy in case of regular
Tikhonov regularization — hence the regularization term has a larger influence in the
beginning of the minimization.

4.2.3 Examples

In this section some early 3D reconstructions from simulated and measured data are
shown, which were presented in [5]. In Chapter 5, some more realistic and more
challenging reconstructions will be presented.

Reconstruction of a heterogeneous lossy dielectric cube

We consider a lossless dielectric cube in air, henceǫb = ǫ0, at a frequencyf =

47, 7 MHz (λ0 = 2π m). It has side0.6λ0 (3.77 m) and permittivityǫ = 1.5ǫ0 and
contains a smaller, lossy cube with side0.3λ0 (1.89 m) and permittivityǫ = (2−2j)ǫ0.
The origin of the reference system coincides with the centerof the larger cube and
the center of the smaller cube has coordinates (−0.05λ0, −0.05λ0, −0.05λ0) or (-
0.31 m, -0.31 m, -0.31 m). For the inversion domainD we choose a cube with side
λ0 (6.28 m), that is centered on the origin. Figure 4.3 shows therelative complex
permittivity in three orthogonal slices throughD. We perform reconstructions for
two dipole configurations: one yielding many and one yielding few data. In the first,
“many data”, configuration, shown in Figure 4.4 (a), there are 12 dipole positions
regularly spaced on each of 6 meridional circles with radiiR = 2λ0 (12.57 m). In each
position, a transmitter is oriented along two polarizations, theθ- andϕ-polarizations,
and for each illumination the scattered field is measured along these two polarizations
on receivers in all positions. In the second, “few data”, configuration, shown in Figure
4.4 (b), only 3 meridional circles and only theθ-polarization are used. This results
in ND

1 = 20736 data for the first andND
2 = 1296 data for the second configuration.
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In this paragraph, these data are simulated using the same forward solver as the one
employed in the reconstruction algorithm, and the discretization grids for the inverse
and forward problems coincide. This allows us to test the convergence behavior in
ideal conditions. We chooseF = G = H = 10, and consider the permittivity in
each cell as an unknown, hence the number of reconstruction variables isN ǫ = 1000

and the number of field-unknowns in the forward problem isN = 3300. With the
“few data” configuration the number of data thus is barely larger than the number
of unknowns,ND

2 ≈ N ǫ. Moreover, there is some redundancy in the data due to
reciprocity, so the “few data” configuration is actually under-determined. The “many
data” configuration is well over-determined,ND

1 ≫ N ǫ. For all reconstructions in
this paragraph, the regularization parameter isα = 10−4 and the initial guess is air
(ǫR = 1).

(a) Real part (b) Imaginary part

Figure 4.3: The exact relative permittivity along orthogonal cross-sections of the heterogeneous
lossy dielectric cube.
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Figure 4.4: The dipole configurations for the heterogeneous lossy dielectric cube.

Figure 4.5 shows the root mean square relative reconstruction error∆ǫRMS , de-
fined as

∆ǫRMS =

√

√

√

√

1

N ǫ

Nǫ
∑

ν=1

|ǫν − ǫ0ν |2
|ǫ0ν |2

, (4.38)

and the regularized cost functionFS as a function of the number of iterations. Let
us first discuss the reconstructions from noise-free data. The threshold for the for-
ward iterative solver BICGSTAB is set to a relative accuracyof 10−6, both for the
computation of the simulated data and for the reconstructions. The reconstruction it-
erations are stopped when the cost function is very small,FS ≤ 10−8. It can be seen
on Figure 4.5(b) that the cost function rapidly decreases when applying the modified
Gauss-Newton method, for both the “many data” (plain line) and “few data” (dashed
line) configurations . However, Figure 4.5(a) shows that thereconstruction error de-
creases more slowly for the “few data” configuration. After as few as11 iterations, the
“many data” configuration yields an almost exact reconstruction (∆ǫRMS < 0.01) of
both the real and imaginary parts of the complex permittivity. This is illustrated with
images along the three orthogonal slices in Figures 4.6(a)-(b). With the “few data”
configuration the images and profile show small artifacts, see Figures 4.6(c)-(d) and
the profiles along thex-axis in Figure 4.7, respectively.

Let us now consider data with 30dB additive Gaussian noise, which corresponds
to a realistic SNR. The threshold for the forward iterative solver BICGSTAB is now
increased to10−3, since it would be a waste of effort to solve the forward problem
to an accuracy far beyond the noise level. With the modified Gauss-Newton method,
the reconstruction error∆ǫRMS decreases and then starts to increase again at a cer-
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tain point, as shown by the plain and dashed curves with crosses in Figure 4.5. This
happens when the data error (or least-squares cost function) reaches the noise level,
i.e. FLS ≈ 10−3. The regularized cost functionFS hardly decreases from this point
on and the tiny reductions are accompanied by an increase in the regularizing function
FR. This behavior is often called “semi-convergence”. In the presence of noise on the
data, we thus conclude that the stopping criterium should bebased on the least squares
cost function and the noise level or on the loss of convergence when considering the
regularized cost function, since this allows for the detection of the semi-convergence
point during the reconstruction. In the examples presentedhere, the reconstructions
thus are achieved after 3 iterations only. From the images and profile in Figures 4.6(e)-
(h) and Figure 4.7, respectively, it appears that the noise does degrade the reconstruc-
tions, but the boundaries of the outer and inner cubes are still well reconstructed and
valuable quantitative information on both the real and imaginary parts of the complex
permittivity can still be retrieved. Note again that in Figure 4.5 the cost functions of
both dipole configurations coincide, and that the reconstruction error behaves better
for the “many data” than for the “few data” configuration.

Figure 4.5 also shows a result obtained with the BFGS quasi-Newton algorithm,
applied to the regularized cost functionFS , for exact data and the “few data” configu-
ration. The algorithm converges very slowly in comparison with the modified Gauss-
Newton method: after 100 iterations the reconstruction error is still 10% and the cost
function is reduced to10−4 only. Such behavior was noticed in all our inversions with
the BFGS-method, as well as in earlier 2D work [18]. The advantage of not having to
solve a linear system to obtain an update direction thus is completely annihilated by
the large number of iterations required to converge to the desired accuracy.
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Figure 4.5: The RMS relative reconstruction error (a) and the regularized cost function (b)
versus the number of iterations for the reconstructions of the heterogeneous lossy dielectric
cube, for the “many data” (Conf. 1) and “few data” (Conf. 2) dipole configurations, with the
modified Gauss-Newton (GN) and the BFGS quasi-Newton (BFGS) methods using exact or
noisy (SNR =30 dB) data.
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(a) Conf. 1, GN, no noise, real part (b) Conf. 1, GN, no noise, imaginary part

(c) Conf. 2, GN, no noise, real part (d) Conf. 2, GN, no noise, imaginary part

(e) Conf. 1, GN, noise, real part (f) Conf. 1, GN, noise, imaginary part

Figure 4.6: Reconstructed relative permittivity corresponding to the curves in Figure4.5.
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(h) Conf. 2, GN, noise, real part (i) Conf. 2, GN, noise, imaginary part

Figure 4.6: Reconstructed relative permittivity corresponding to the curves in Figure4.5, con-
tinued.
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Figure 4.7: Profiles of the relative permittivity along thex-axis for the reconstructions of Figure
4.6.

Reconstruction of a homogeneous dielectric sphere

We now consider a lossless homogeneous dielectric sphere inair with a radius0.25λ0

or 1.57 m (againf = 47, 7 MHz) and permittivityǫ = 2ǫ0. The origin of the ref-
erence system and the center of the sphere coincide. For the inversion domainD we
again choose a cube with sideλ0 (6.28 m), that is centered on the origin. A dipole
configuration identical to the “many data” configuration 1 from the previous para-
graph is used, except that the radius of the meridional circles now is divided by a
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factor 2,R = λ0 (6.28 m). The total number of scattered field data thus is again
ND = 20736. These data are now simulated using the full-vectorial analytic MIE
solution, thus avoiding “inverse crime”1. We choose again the same discretization
grids for the forward and inverse problems withF = G = H = 20, hence the number
of reconstruction variables isN ǫ = 8000 and the number of field-unknowns in the
forward problem isN = 25200. This discretization is actually too fine in terms of
the wavelength, asδ = λ

10 usually is recommended for a forward solution, but we
did so to reduce the discretization noise introduced by the spherical boundary. This
discretization noise was estimated by comparing the analytic and discretized scattered
field solutions, yielding a SNR of 27dB. The threshold for theforward iterative solver
BICGSTAB is set to10−3 and the stopping criterion for the modified Gauss-Newton
optimization is chosen asFLS ≤ 2 · 10−3. The regularization parameter again is
α = 10−4 and the initial guess is air.

Figure 4.8 shows the reconstructed images along the orthogonal cross sections, ob-
tained after as few as 3 iterations, comprising a total of 6 multi-view forward problem
solutions, including the line-search iterations. The shape, dimensions and real part
of the permittivity are well reconstructed and the imaginary part of the permittivity is
small, as expected. This also appears from the profiles alongthex-axis in Figure 4.9.

(a) Real part (b) Imaginary part

Figure 4.8: Reconstructed relative permittivity after3 iterations of a homogeneous dielectric
sphere (ǫ = 2ǫ0) with radius0.25λb from analytic data. The white contour shows the bound-
aries of the actual sphere.

1The term “inverse crime” is used to describe a numerical inversion experiment where the data is gener-
ated with the same forward model (same formulation, same discretization, etc.) as is used in the inversion
algorithm. Such an experiment might not reveal systematic errors in de forward model.
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Figure 4.9: Profiles of the relative permittivity along thex-axis for the reconstruction of Figure
4.8.

A homogeneous cube: reconstructions from experimental dat a

We now present reconstruction results from experimental data for a homogeneous
polyethylene cube with permittivityǫ = 2.4ǫ0 and side 8 cm, surrounded with air. The
scattered fields were measured in the bi-static polarimetric free-space measurement
facility of Institut Fresnel, Marseille, France, as part ofa first measurement campaign
conducted on 3D objects, after the successful completion ofan experimental data-
base for quasi-2D objects [19]. We refer the reader to [20] for a detailed description
of the Fresnel measurement set-up. In this section, the available data are limited to
measurements of thez-component of the scattered field along an arc of a circle in
the xy-plane with radiusR = 167 cm and centered on the center of the cube. The
z-polarized transmitting antenna also moves on this circle.Figure 4.10 (a) shows the
5 transmitter positions, at anglesϕT,k = kπ/8 for k ∈ {−2,−1, 0, 1, 2} and Figure
4.10 (b) shows the receiving arc for a transmitter atϕT,0. For a transmitter atϕT,k,
the receiver positions range fromϕT,k + π/3 to ϕT,k + 4π/3 in steps of 1 degree, or
∆ϕR = π/180.

In earlier work [21] we found a good agreement between these measured data
and simulations obtained with a 3D-BICGSTAB-FFT solver fordifferent frequencies.
The transmitter was modeled as an elementary dipole and a calibration factor for each
frequency was derived from the comparison of the simulated and measured incident
fields in one point, i.e. in the receiver positionϕR = π opposite to the transmitter
positionϕT = 0. Also, a SNR≈ 30 dB at 2 GHz and SNR≈ 23 dB at 4 GHz was
determined by comparing the calibrated measured and simulated scattered fields.

The limited data on a circle in one plane as described above are not sufficient
for a successful 3D inversion. However, since we know that the scatterer is a cube,
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we have exploited symmetries to extend the measurements by rotation with respect
to the origin to two additional circles in thexz- andyz-planes, and for each of the
circles to extend the illuminations to 16 transmitter positions with∆ϕT = π/8. Of
course the polarization of the dipoles is rotated together with the circles. Also, for
every transmitter position, we use only 43 receiver positions, with ∆ϕR = π/32.
The resulting antenna configuration is shown in Figure 4.11,whereN I = 48 and
N I

i = 43, ∀i.
The inversion domainD is a cube with side 15 cm and it is discretized into cells

with side1 cm, henceF = G = H = 15. The number of reconstruction variables
thus isN ǫ = 3375. Since the number of data is onlyND = 2064, the problem is
under-determined. Therefore data at two different frequencies, at 2 GHz and 4 GHz,
are used. At2 GHz the grid for the forward problem coincides with the permittivity
grid, resulting inN = 10800 field unknowns, but at4 GHz the grid for the forward
problem is twice as fine, withδ = 0.5 cm. This givesN = 83700 field unknowns.
The threshold of the BICGSTAB iterative solver for the forward problem is set to
10−3. The initial estimate is again air.

At 2 GHz the algorithm, now withα = 10−5, needed 3 iterations to reach the
stopping criterionFLS ≤ 10−3. At this point the reconstruction error was∆ǫRMS =

0.19 and further iterations yielded no improvements. Images along the orthogonal
cross sections of the reconstructions at 2 GHz are given in Figure 4.12. The total
execution time was about10 minutes and a total of6 multiview forward problems was
solved. Next, this result was used as an initial estimate fora subsequent reconstruction
at 4 GHz (Figure 4.13), which took only 1 iteration to reach a reconstruction error of
∆ǫRMS = 0.17 and the stopping criterionFLS ≤ 5 · 10−3, which again proved to
be sufficient since further iterations did not reduce∆ǫRMS . This time, because of
the greater number of field unknowns, the execution time was much longer: about 1
hour and 50 minutes for three multiview forward problems. Figure 4.14 shows the
relative permittivity profiles along thex-axis and Figure 4.15 displays the evolution
of the reconstruction error along the complete reconstruction. Although only limited
experimental data is used in this example, the modified Gauss-Newton method yields
an encouraging result.
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Figure 4.10: Source positions (a) and range of receiver positions in grey for the source atϕ = 0

(b) used to collect the experimental data.

Figure 4.11: Antenna configuration used for the inversion from experimental data. The encir-
cled antennas act as both emitter and receiver.
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(a) Real part (b) Imaginary part

Figure 4.12: Reconstructed relative permittivity of a polyethylene cube (ǫ = 2.4ǫ0) with side
8 cm from experimental data at2 GHz, after3 iterations withα = 10−5. The white contour
shows the boundaries of the actual polyethylene cube.

(a) Real part (b) Imaginary part

Figure 4.13: Reconstructed relative permittivity, starting from the result of Figure 4.12, after1
iteration at4 GHz and withα = 10−5. The white contour shows the boundaries of the actual
polyethylene cube.
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Figure 4.14: Profiles of the relative permittivity along thex-axis for the reconstructions of a
homogeneous dielectric cube from experimental data, at2 GHz (a) and4 GHz (b).
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Figure 4.15: Evolution of the reconstruction error for the inversion, correspondingto Figures
4.12 and 4.13.

4.3 Value picking regularization

The multiplicative regularization strategy of the previous section reduces the freedom
in the optimization space, but it does so by keeping the reconstruction smooth, which
is not very suitable for piecewise homogeneous permittivity profiles such as the ones
presented above, since the sharp interfaces in such profilesare smoothed away. The
level of smoothness depends on the noise level – lower noise levels allow for less
smooth profiles – but for realistic noise levels, the reconstructions, by their smooth-
ness, deviate relatively much from the actual permittivityprofile.

Regularization methods that allow edges in the reconstruction while still mitigat-
ing unwanted fluctuations in homogeneous regions have been developed for image
processing and can be applied to the electromagnetic inverse scattering problem as
well. Total variation (TV) regularization [6,7,22,23] is one example. It satisfies a set
of unifying criteria, proposed by Charbonnier et al. [24], which determine whether a
regularization function is edge preserving. Such edge preserving regularization meth-
ods are closely related to Markov Random field approaches [25] and have been used
in microwave imaging [26,27]. Also methods based on level set techniques are used in
inverse scattering [28, 29]. Both approaches effectively allow for piecewise constant
reconstructions, but achieve this in different ways. Edge preserving regularization, for
example, penalizes pixel-to-pixel differences unless they are large enough, in which
case it is assumed that they correspond to edges in the profile. There is no distinct
threshold below which differences are smoothed out and above which they are al-
lowed to exist, but rather there is a transitional region which is encoded in potential
functions. Level set techniques on the other hand implicitly only optimize for permit-
tivity profiles that consist of regions of constant permittivity and therefore naturally
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allow for edges in the profile. Both methods have been used with success, but some
possible disadvantages may be noted. On the one hand, the definition of the potential
functions in edge preserving regularization generally implies the choice of some free
parameter which tunes the aforementioned transitional region, such asδ in the TV
scheme of [6],β in [23], δ in [24] andδR andδI in [27]. On the other hand, it ap-
pears to us that the use of level set methods in situations with more than two different
permittivities is somewhat complicated.

In this dissertation, we propose a new regularization scheme, that we call Value
Picking (VP) regularization. It combines simplicity of implementation with an ability
to reconstruct piecewise constant, or approximately piecewise constant permittivity
profiles. Moreover, there is no need to determine additionalparameters apart from the
regularization parameter. The idea is to provide a limited number of reference permit-
tivity values, the VP values, from which the regularizationhas to pick one for each
permittivity unknown in the inverse problem. The choice forparticular VP values is
made through the minimization of a choice function for everypermittivity unknown,
constrained by the simultaneous minimization of a classical least squares data fit cost
function. This basic idea also has been explored in [30–32] for binary objects [30,31]
or for one extra permittivity value [32]. However, the choice function in this disserta-
tion is different from the one used in those previous works, there is no limitation on
the number of permittivity values and we do not assume the VP values to be known in
advance. Rather, they act as auxiliary variables which are also optimized for. Even the
number of VP values is updated in the course of the iterations. Starting from a severe
restriction with only one VP value, more VP values are gradually added in a stepwise
relaxed VP (SRVP) regularization scheme until a number is reached which allows for
both a good data fit and a reconstruction which is close to piecewise constant. Because
the VP regularizing function is “less than quadratic”, it can be elegantly incorporated
in the Gauss-Newton algorithm through a sequence of quadratic approximations. This
yields a simple half quadratic minimization algorithm, similar to the one in [24]. It will
be shown that the VP regularization scheme yields accurate reconstructions. Further
research is needed to find out how it compares with various types of edge preserving
regularization, but an advantage may be that it relies on a totally different principle.
Indeed, VP regularization does not operate on the spatial distribution of the permittiv-
ity. Instead it clusters permittivity values in the complexplane. Therefore, it might
also be useful in cases where one applies a different, non-pixel-based parameterization
of the permittivity. Moreover, the framework naturally allows for the incorporation of
a priori knowledge on the permittivity values.

4.3.1 Modification of the cost function

The VP regularized cost function proposed in this work is

FV P (ε, c) = FLS(ε) + γFP (ε, c), (4.39)
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whereγ is a positive regularization parameter. The Value Picking regularizing func-
tionFP is given by

FP (ε, c) =
1

N ǫ

Nǫ
∑

ν=1

fP (| ǫν − c1 |2, . . . , | ǫν − cP |2), (4.40)

wherefP is theP -dimensional (P ≪ N ǫ) choice function and where the auxiliary
variablescp are denoted the VP values. One of these VP values, more specifically cP ,
is fixed to the known relative background permittivity, i.e.cP = ǫb/ǫ0, and theP − 1

other VP values are collected in the vectorc. The cost function is minimized for both
ε andc.

The choice function of dimensionP , fP : RP
+ → R+ (R+ is the set of non-

negative real numbers), is defined as

fP (u1, . . . , uP ) = FP (u1, . . . , uP ; 0), (4.41)

whereFP is defined and evaluated through the recursion formula

FP (u1, . . . , uP ;x) = (uP + x)
FP−1(u1, . . . , uP−1;x)

FP−1(u1, . . . , uP−1;uP + x)
, (4.42)

and
F 1(u1;x) = u1 + x. (4.43)

For example, the cases withP = 1, P = 2 andP = 3 yield:

f1(u1) = u1 (4.44)

f2(u1, u2) =
u1u2

u1 + u2
(4.45)

f3(u1, u2, u3) =
u1u2u3(u1 + u2 + u3)

(u1 + u2)(u1 + u3)(u2 + u3)
. (4.46)

The definition of the choice function is discussed in more detail in Appendix B, where
its relevant properties are also proven.

As is readily seen from expressions (4.44)-(4.46) and for generalP from Theo-
rem B.4 of Appendix B, the VP functionFP is minimal when VP valuescp can be
found such that every optimization variableǫν is equal to one of these VP values, i.e.
FP = 0 for permittivity profiles with at mostP different permittivity values. The
minimization of (4.39) thus favors this kind of permittivity profiles. To our knowl-
edge, the choice function (4.41)-(4.43) has not been used elsewhere. Its definition is
the result of three major demands: (i) it should be zero if andonly if one or more of
its arguments are zero, (ii) it should be symmetric in its arguments and (iii), for ease
of use in optimization algorithms, its order should not increase for increasingP , i.e.
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the function should be bounded by a polynomial function witha fixed degree, inde-
pendent ofP . A function likefP = u1 · u2 . . . · uP , as is used in [8], does not satisfy
the third demand. Because of Conjecture B.1, the functionfP , defined in (4.41), is
less than linear and hence the functionFP is less than quadratic.

When approaching the minimum of (4.39) during the optimization, a specific VP
value is picked from{c1, . . . , cP } for every permittivity unknownǫν and the differ-
ence| ǫν − cp |2 between the considered permittivity unknown and the chosenVP
value cp is minimized. Thanks to the particular form of the choice function, these
choices are made in an intuitively attractive way. To investigate this, the VP function
(4.40) is rewritten using Theorem B.11:

FP (ε, c) =
1

N ǫ

Nǫ
∑

ν=1

P
∑

p=1

bP
p,ν(ε, c) | ǫν − cp |2, (4.47)

which can be seen as a weighted sum of the penalty functions| ǫν − cp |2 where the
weightsbP

p,ν are calculated with the weight functions defined in (B.39)

bP
p,ν(ε, c) = BP

p (| ǫν − c1 |2, . . . , | ǫν − cP |2). (4.48)

Following observations can be made:

• Every time the difference| ǫν − cp | between the permittivity unknownǫν and
the VP valuecp becomes much larger than the differences| ǫν − cp′ | between
ǫν and the other VP valuescp′ (p′ 6= p), the corresponding termbP

p,ν | ǫν −cp |2
vanishes in (4.47). This is a direct result of (B.25). It alsoimplies that the weight
bP
p,ν approaches zero and thatcp does not contribute to the regularization ofǫν .

• If | ǫν − cp |≪| ǫν − cp′ |, ∀p′ 6= p, only the termbP
p,ν | ǫν − cp |2 is retained

in (4.47) and we havebP
p,ν ≈ b1

p,ν = 1 andbP
p′,ν ≈ 0, for p′ 6= p, which is

compatible with Theorem B.9. This means that the regularization will try to
forceǫν = cp.

• If k differences| ǫν − cp |, for p ∈ I ⊂ {1, . . . , P}, are of comparable size,
but much smaller than the differences ofǫν with the other VP values, onlyk
termsbk

p,ν | ǫν − cp |2 will remain in the summation (4.47) with weightsbk
p,ν

somewhere between0 and1. Moreover, it can be derived from Theorem B.10
that

∑

p′∈I

bk
p′,ν | ǫν − cp′ |2≤| ǫν − cp |2, ∀p ∈ I, (4.49)

which means that the sum of all the penalty terms corresponding to ǫν con-
tributes less to (4.47) than a single penalty term with unit weight does. This
way, the regularization will not force a decision too soon ifthe data fit does not
provide enough driving force for it.
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• It is possible that two or more VP values merge in the course ofthe minimiza-
tion. P thus can be larger than the actual number of different permittivities.

Summarizing, whenever a permittivity variable becomes closer to one specific VP
value than to the other VP values in course of the optimization, the regularization will
try to force equality with this VP value. When there is no clearpreference, no choice
will be made apart from disregarding VP values that are clearly far away from the
considered optimization variable. The 3D plot of the weights bP

p,ν on the permittivity
grid can be considered as achoice map, where values close to1 indicate a choice for
the VP valuecp and values close to0 indicate thatcp has been disregarded in that
position on the grid.

4.3.2 Incorporation in the Gauss-Newton framework

The minimization of the cost function (4.39) is performed byalternately updating the
permittivity profile and the VP values. To update the permittivity vectorε, an approx-
imate line search [1] is performed along a modified Gauss-Newton descent direction.
The VP values, subject to upper and lower bounds on real and imaginary parts, are
then updated using a sequence of active set minimizations ofquadratic functions that
bound the VP functionFP from above.

The Gauss-Newton Descent Direction for the permittivity

Starting from the permittivity profileεk and the VP vectorck in iterationk of the
minimization process, a search directionsk is calculated forε, by applying a Gauss-
Newton method. This search direction, however, is not directly computed from the
cost function (4.39), but from a modified cost function

FQ(ε, c; εk, ck) = FLS(ε) + γQP (ε, c; εk, ck), (4.50)

with

QP (ε, c; εk, ck) =
1

N ǫ

Nǫ
∑

ν=1

P
∑

p=1

bP
p,ν(εk, ck) | ǫν − cp |2 . (4.51)

The difference between (4.51) and (4.47) is that in (4.51) the weightsbP
p,ν are com-

puted in(εk, ck) and then kept fixed when(ε, c) changes. Because of Theorem B.11
and Conjecture B.1,QP boundsFP from above and touches withFP in (εk, ck).
Therefore, taking a reduction step in(εk, ck) based onFQ will also reduceFV P .
The use of (4.50) instead of (4.39) facilitates the incorporation of the VP regulariza-
tion in the Gauss-Newton framework. The gradientgQ and Hessian matrixHQ of
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FQ are given by

gQ = gLS + γgP (4.52)

HQ = HLS + γHP , (4.53)

where the gradient vectorgLS and Hessian matrixHLS of the least squares data fit
are given by (4.4) and (4.5). The gradient vectorgP and Hessian matrixHP of the
functionQP are given by

gP =

[

ΩP

(

ΩP
)∗

]

(4.54)

HP =

[

0 ΣP

ΣP 0

]

, (4.55)

with

[

ΩP
]

ν
=

∂QP

∂ǫν
(ε, c; εk, ck) =

1

N ǫ

P
∑

p=1

bP
p,ν(εk, ck) (ǫν − cp)

∗
, (4.56)

[

ΣP
]

νv
=

∂2QP

∂ǫν∂ǫ∗v
(ε, c; εk, ck) = δν,v

1

N ǫ

P
∑

p=1

bP
p,ν(εk, ck). (4.57)

Applying Newton’s method yields an equation for the search directionsk in iteration
k

H
Q
k

[

sk

s∗
k

]

= −g
Q
k , (4.58)

where the subscriptk indicates quantities evaluated in(ε, c) = (εk, ck). In the Gauss-
Newton approximation, Newton’s formula (4.58) is applied after a linearization of the
scattered fieldescat as a function ofε, i.e. the matrixB in (4.5) is neglected. This
yields the Gauss-Newton update system

(

JH
k Jk + λ2ΣP

k

)

sk = −
(

JH
k

[

escat
k − emeas

]

+ λ2
(

ΩP
k

)∗)

, (4.59)

where the trade-off parameterλ2 is given byλ2 = γ‖emeas‖2 = NLS . SinceJH
k Jk

is at least positive semi-definite, and sinceΣP
k is a diagonal matrix with strictly posi-

tive diagonal entries,sk again is a strict descent direction. Moreover, towards the end
of the minimization, when VP choices have been made for everypermittivity variable,
the matrixΣP

k approaches(1/N ǫ)INǫ , whereI is theN ǫ × N ǫ unity matrix.
Note that, although the search direction is derived from thefunctionFQ, the line

search along this direction is performed on the actual cost functionF .
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Updating the VP values

After updatingεk to εk+1 as described above, an optimization forc to obtainck+1 is
conducted. This step reduces the VP regularizing function in (4.39) without modifying
the data fitFLS . The optimization forc is done by generating a sequence of VP
vectors{cl}, starting fromc0 = ck, wherecl+1 is the solution of the constrained
quadratic minimization problem

cl+1 = argmin
c

QP (εk+1, c; εk+1, cl), (4.60)

subject to the upper and lower bounds

(p, r, u) : ℜ(cp) ≤ cr
p,u, p = 1, . . . , P − 1, (4.61)

(p, r, l) : ℜ(cp) ≥ cr
p,l, p = 1, . . . , P − 1, (4.62)

(p, i, u) : ℑ(cp) ≤ ci
p,u, p = 1, . . . , P − 1, (4.63)

(p, i, l) : ℑ(cp) ≥ ci
p,l, p = 1, . . . , P − 1. (4.64)

SinceQP (εk+1, c; εk+1, cl) touchesFP in the point(εk+1, cl) and since
QP (εk+1, c; εk+1, cl) ≥ FP (εk+1, c), every step in this scheme will reduceFP .
The iterations are terminated forl = L, such that‖cL − cL−1‖ ≤ TC , some small
threshold. We then conclude withck+1 = cL.

The minimization problem (4.60)-(4.64) for everyl is solved using a simple active
set method which is a problem-specific reformulation of the general quadratic active
set method described in [1]. The iterations of this method generate a sequence{cm}
which starts fromc0 = cl−1 and the associated vectorΛP

l,0 and matrixΞP
l , which for

generalm are defined as

[

ΛP
l,m

]

p
=

∂QP

∂cp
(εk+1, cm; εk+1, cl)

= − 1

N ǫ

Nǫ
∑

ν=1

bP
p,ν(εk+1, cl) (ǫk+1,ν − cm,p)

∗
, (4.65)

[

ΞP
l

]

pq
=

∂2QP

∂cp∂c∗q
(εk+1, cm; εk+1, cl)

= δp,q
1

N ǫ

Nǫ
∑

ν=1

bP
p,ν(εk+1, cl). (4.66)

The iterations proceed as follows:

1. Determine the set of active constraintsIA. A constraint is said to be active if it
yields an equality in (4.61)-(4.64).
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2. Calculate∆cm with

∆cm,p = −

[

ΛP
l,m

]∗

p
[

ΞP
l

]

pp

, (4.67)

ℜ(∆cm,p) = 0, if (p, r, u) ∈ IA or (p, r, l) ∈ IA, (4.68)

ℑ(∆ck,p) = 0, if (p, i, u) ∈ IA or (p, i, l) ∈ IA, (4.69)

where (4.68) and (4.69) possibly overwrite the result of (4.67). The first line
returns the update∆cm such that the VP vectorc = cl−1 + ∆cm with m = 0

is the solution to the optimization problem (4.60) if no constraints are imposed.

3. Determine the smallest positive value ofβ, let it beβm, such that the line

c(β) = cm + β∆cm (4.70)

violates a presently inactive constraint and determine thecorresponding con-
straint(p, a, b), with a = r or a = i andb = u or b = l.

4. If βm < 1, putcm+1 = cm +βm∆cm. Then calculateΛP
l,m+1 and add(p, a, b)

to IA. Return to2.

5. If βm ≥ 1 (including infinity), putcm+1 = cm + ∆cm and calculateΛP
l,m+1.

Then, for every constraint inIA, calculate the projection of−(ΛP
l,m+1)

∗ on the
direction in the complex plane, which is perpendicular to that constraint and
pointing outward from the constrained optimization domain. If the smallest of
these projection values is positive or equal to zero, terminate withcl+1 = cm+1.
Else, remove the corresponding constraint fromIA and return to2.

Note that the VP values can be initialized at random within their constraints (4.61)-
(4.64). The only limitation is that their initial values should not coincide. The pre-
sented algorithm treats identical VP values (with the same constraints) in an identical
fashion, so once merged, two coinciding VP values will remain identical during the
rest of the reconstruction.

Further analysis

In this work, the assumption that the desired permittivity vectorε0 consists of only a
few different permittivity values is used to regularize theinverse scattering problem
and is not strictly imposed throughout the minimization, asis the case, for example,
in inverse scattering algorithms using level set methods. As a result, the condition
FP = 0 generally is not satisfied exactly for the final reconstruction. Indeed, it is
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possible to prove the following statement (see Appendix B.3)

∇FP (ε, c) = 0 ⇔ FP (ε, c) = 0, (4.71)

which means that a stationary point ofFP always is a global minimum ofFP . There-
fore, in a minimum of the cost function (4.39) where∇FV P = ∇FLS +γ∇FP = 0,
there are two possibilities:

a) ∇FP = 0 and therefore∇FLS = 0 andFP = 0.

b) ∇FP 6= 0 and therefore∇FLS 6= 0 andFP 6= 0.

Case a) implies that the minimum of the total cost function isalso a minimum of the
least squares data fit and exactly consists of at mostP different permittivity values.
This is not very likely to happen when the data is noisy, especially with P ≪ N ǫ. The
resulting reconstruction thus is a trade-off between data fit and the conditionFP = 0,
as is expressed by case b). As a result the permittivity unknowns will not perfectly
coincide with the VP values, but will rather be clustered around those VP values in
the complex plane.

4.3.3 Stepwise relaxed VP regularization

The algorithm described in section 4.3.2 can become trappedin local minima above
the noise level. Such spurious minima are likely to be introduced in the cost function
since the VP regularizing functionFP has multiple (global) minimizers: every per-
mittivity profile consisting of onlyP different permittivity values that lie within the
constraints imposed onε andc yieldsFP = 0. To avoid this problem, one could use
the VP regularization as a post processing step which startsfrom a reasonable initial
estimate, obtained for example with the multiplicative smoothing regularization as de-
scribed in Section 4.2. In such approach it is crucial that the data fit which corresponds
to this initial estimate is sufficiently larger than the noise level such that the data fit
cost function can guide the value picking process during thefurther minimization.
However, it is then necessary to find a good criterion for switching from smoothing to
VP regularization.

We propose a different strategy. Let us first consider the extreme casesP = N ǫ

andP = 1, where the optimization forc is straightforward. The caseP = N ǫ yields
cν = ǫν , for everyν, which results inFP = 0, ΩP = 0 andΣP = (1/N ǫ)INǫ . As a
result, the update system (4.59) is reduced to

(

JH
k Jk +

λ2

N ǫ
INǫ

)

sk = −JH
k

[

escat
k − emeas

]

. (4.72)

This update equation has been used by many authors, e.g. [3, 16, 17]. It results from
minimizing the non-regularized least squares cost functionFLS instead of (4.39) and
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applying a regularization only to the linear Gauss-Newton subproblems. This ap-
proach can be regarded as a Levenberg-Marquardt minimization algorithm [1, 3] ap-
plied toFLS . Since the minimum ofFLS generally is not well defined, the perfor-
mance of this algorithm is significantly reduced in the presence of noise. We could
say that this approach does not yield an actual regularized solution. The caseP = 1

requires no optimization forc, because the only VP valuec1 is kept fixed and equal to
ǫb/ǫ0. It results in the cost function

FV P (ε, c) = FLS(ε) +
γ

N ǫ
‖ε − εb‖2, (4.73)

where the second term is a classical Tikhonov regularization [15] and whereεb is the
N ǫ-dimensional vector with[εb]ν = ǫb/ǫ0, ∀ν. The corresponding update system is

(

JH
k Jk +

λ2

N ǫ
INǫ

)

sk = −
(

JH
k

[

escat
k − emeas

]

+
λ2

N ǫ
(εk − εb)

)

. (4.74)

The regularization (4.73) imposes a strong restriction on the permittivity vectorε.
From these two extreme casesP = 1 (strong restriction) andP = N ǫ (no restriction)
and from Theorem B.10 of Appendix B, we can conclude that increasing the number
of VP values relaxes the regularization.

Since, according to the discrepancy principle, it is desirable to have as much reg-
ularization as possible without preventing the least squares data fit from reaching the
noise level, we propose the following strategy. The iterations start withP = 1 and
a fairly large value of the regularization parameterγ and proceed until a local mini-
mum is reached, i.e. the gradient of the cost function is small enough, or untilFLS

increases again. The latter case implies that the VP regularization is making decisions
that are not guided by the data fit. Whenγ is large enough, this first step is terminated
with FLS above the noise level. Then, the regularization is relaxed by adding an ex-
tra VP value and the optimization continues until the same stopping criterion is met.
New VP values are added this way untilFLS reaches the noise level or a threshold
derived from an estimate of the noise level. Ofcourse, when the actual permittivity
profile consists ofP0 different permittivity values, the algorithm should ideally reach
the noise level whenP = P0. To this endγ has to be chosen properly. When it is
too large, the algorithm typically stops withP > P0, since the large weight given to
the regularization term has to be compensated by adding moreVP values, such that
the regularization is sufficiently relaxed and allows for a data fit on the noise level.
When it is too small, there is no strong restriction on the optimization andFLS will
easily reach the noise level, even with a few VP values. The choice of γ has been
done by numerical experimentation so far. However, this does not require knowledge
of the object. When the algorithm stops, i.e. whenFLS ≈ TN , we check for suffi-
cient clustering of the permittivity unknowns around the VPvalues. We try to achieve
this with as few VP values as possible. If the final reconstruction shows insufficient
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clustering, we restart with largerγ. If, on the other hand the clustering is sufficient,
we try a smallerγ too see if we can achieve a comparable clustering with fewer VP
values. The addition of an extra VP value in every step of the stepwise relaxed VP
scheme is performed by randomly initializing the VP value (making sure it does not
coincide with already present VP values) and performing theminimization of section
4.3.2 before proceeding with the updates of the permittivity.

Finally, note that the stepwise relaxed VP (SRVP) regularization strategy can be
seen as a minimization of the fixed cost functionF = FLS + γFNǫ

, where in a
step withP VP valuesN ǫ − P VP values are frozen at infinity. This is a result of
Theorem B.2. In this perspective the cost function thus remains unaltered, but the
optimization domain is restricted initially and graduallyincreased. We want to stress
that the VP regularization assumes that a reconstruction ispossible withP << N ǫ.
If P approachesN ǫ, there is no real regularization, as pointed out earlier.

4.3.4 Examples

To validate the proposed stepwise relaxed VP regularization algorithm, some recon-
structions from synthetic data are presented. Throughout the rest of the section all
targets are embedded in free space (i.e.ǫb = ǫ0) and the operating frequency is8
GHz, which yields a background wavelengthλb = 0.0375 m.

The first target is a numerical phantom consisting of a cube with side 0.6λb

(0.0225 m) and permittivity(2.5 − j)ǫ0, which is embedded in a sphere with ra-
dius0.75λb (0.0281 m) and permittivity1.8ǫ0. The sphere and cube are centered at
the origin and at the point(−0.15λb,−0.15λb,−0.15λb) or (-0.0056 m, -0.0056 m,
-0.0056 m), respectively, in a reference system with axes parallel to the edges of the
cube. The dipole configuration for the reconstruction of this target is depicted in Fi-
gure 4.16. The dipole positions and orientations are indicated with dots and arrows,
respectively. All144 dipoles in the configuration are distributed over6 meridional cir-
cles on a sphere with radius3λb (0.1125 m) that is centered at the origin. One half of
the dipoles is oriented along theφ direction, while the other half is oriented along the
θ direction. For this first example each dipole is used to illuminate the target and the
scattered field is measured in every dipole position and along each dipole direction.
This yields a total ofND = 20736 data points.

The investigation domainD is a cube with side1.5λb (0.0562 m), centered at
the origin and with edges parallel to the coordinate axes (Figure 4.16), and the per-
mittivity grid on this domain has a cell size0.075λb (0.0028 m), which yields20

cells in each direction and thus a total ofN ǫ = 8000 permittivity unknowns. The
synthetic data are obtained by solving the forward scattering problem with the same
FFT-accelerated volume integral equation technique as is used in the inverse scatter-
ing algorithm. Since the discretization grids for the fieldsand the permittivity in this
forward simulation coincide with the grids used in the inversion algorithm, it is possi-
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ble in principle to exactly reconstruct the target from these data and therefore this first
reconstruction is a test under ideal circumstances. Gaussian noise with an SNR of30

dB is added to the data, which results in a noise levelTN = 10−3.
Figures 4.17 (a) and (b) show the exact permittivity profileε0 in two slices through

the investigation domain and the reconstructions of this profile are depicted in Figures
4.18 (a)-(f). For all these reconstructions, the optimization starts from the background
permittivity inD using the following physical constraints on the VP values:

ℜ(cp) ≥ 1.0, ∀p (4.75)

ℑ(cp) ≤ 0.0, ∀p. (4.76)

Figures 4.18 (a) and (b) show a reconstruction with the multiplicative smoothing reg-
ularization of [5], which is obtained in 7 iterations. Figures 4.18 (c) and (d) show
the reconstruction with SRVP regularization (γ = 0.1) after the step withP = 3 and
9 iterations in total. The iterations in each step of the stepwise relaxed VP scheme
are terminated if‖gQ‖ ≤

√
2 · 10−4 or when the data fit increases again. The final

reconstruction yields a data fit on the noise level, see Figure 4.19 (a), and a permit-
tivity profile which is close to piecewise constant. Therefore, the algorithm can be
terminated withP = 3 with a result that is clearly very close to the actual permittivity
profile (the final VP values are{2.45−0.94j, 1.79−0.01j, 1}). Figure 4.19 (b) shows
the reconstruction error∆ǫ(ε), defined as

∆ǫ(ε) =
‖ε − ε0‖
‖ε0‖ , (4.77)

which is smallest for the reconstruction with VP regularization.
When an extra VP value is added (P = 4), the result of Figures 4.18 (e) and (f)

is obtained, which visually hardly can be distinguished from the result withP = 3.
The VP values now are{2.48 − 0.97j, 1.80, 1.73 − 0.01j, 1}. The third VP value
is close to the second one and mainly corresponds to cells along the surface of the
sphere. The data fit for this result, which is obtained after only one additional itera-
tion, has decreased negligibly (a reduction of5 · 10−4). This justifies a posteriori the
termination with 3 VP values. Figure 4.20 shows the “swarm plot” of the complex per-
mittivity values in the complex permittivity plane for all the reconstructions of Figure
4.18. The clustering in the reconstructions with VP regularization is apparent in these
plots as opposed to the spreading of the permittivity valueswhen using multiplicative
smoothing.

Next, two more challenging targets are considered. The permittivity profiles are
shown in Figures 4.21 (a) and (b) and in Figures 4.22 (a) and (b). The investigation
domain is now a cuboid with dimensions4λb × 2λb × 2λb (0.15 × 0.075 × 0.075

m) and there are three objects with different permittivities: a cube with side0.6λb

(0.0225 m), embedded in a sphere with radius0.75λb (0.0281 m) and an additional



98 NEWTON -BASED INVERSE SCATTERING

cube with sideλb (0.0375 m). For the target of Figure 4.21, the permittivities of
these objects are(2 − j)ǫ0, 1.5ǫ0 and1.8ǫ0, respectively, and for the target of Figure
4.22, these permittivities become(1.5 − j)ǫ0, 2ǫ0 and1.6ǫ0, respectively. The dipole
configuration is the same as the one used for the first example,except that the radius
of the sphere on which the dipoles are located is now4λb (0.15 m). Again, Gaussian
noise with an SNR of30 dB is added to the data and the grid for the data generation
is now twice as fine as the inversion grid. The cell size of the inversion grid is0.1λb

(0.0037 m) and the number of permittivity unknowns isN ǫ = 16000.
The reconstructions with multiplicative smoothing and with SRVP regularization

of the target of Figures 4.21 (a) and (b) are shown in Figures 4.21 (c) and (d) and
Figures 4.21 (e) and (f), respectively. The VP regularization usesγ = 0.5 and
reaches the noise level withP = 4 and 13 iterations. The final VP values are
{1.95 − 1.00j, 1.82, 1.56, 1.0}. Both reconstructions yield almost exactly the same
data fit, but from the reconstructions and from the swarm plots of Figure 4.23, it is
clear that the VP reconstruction yields a better defined and more accurate estimation
of the permittivity values and the shape of the objects. Due to the misfit between the
grids for the data generation and the inversion algorithm, the sphere cannot be per-
fectly reconstructed and this apparently results in a slight overestimation of its permit-
tivity and in the introduction of some stray cells with background permittivity inside
it.

The reconstructions of the target of Figures 4.22 (a) and (b)are shown in Figures
4.22 (c)-(f). This time, the SRVP regularization, withγ = 1.0, reaches the noise level
with P = 5 and 25 iterations. The final VP values are{2.01 − 0.01j, 1.64, 1.54 −
1.01j, 1.45, 1.0}. The extra VP value apparently has to be added to define an inter-
mediate permittivity level along the outside of the sphere.Lowering the regulariza-
tion parameter, does not remedy this. Probably, the intermediate permittivity level is
needed to compensate for the staircasing error in the coarser reconstruction grid. In-
deed, no such intermediate level occurs around the larger cube in Figure 4.21, which
also has a relatively high permittivity. However, from Figures 4.22 and 4.24, it can be
concluded once more that the VP result provides more quantitative information on the
original permittivity profile than the result obtained withmultiplicative smoothing.
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Figure 4.16: A view of the dipole configuration and the investigation domainD which are used
in the first reconstruction from simulated data.144 dipoles are placed on a sphere with radius
11.2 cm and are oriented along theθ andφ directions. For each illumination, the scattered field
is measured in all the dipole positions along theθ andφ directions.

(a) (b)

Figure 4.17: Real (a) and imaginary (b) part of the permittivity of the first synthetic target in
two slices through the investigation domainD.



100 NEWTON -BASED INVERSE SCATTERING

(a) (b)

(c) (d)

(e) (f)

Figure 4.18: Reconstruction of the first synthetic target at 8 GHz: Real (left) and imaginary
(right) part of the permittivity in two slices through the investigation domainD. (a) and (b):
reconstruction with multiplicative smoothing regularization. (c) and (d): reconstruction with
SRVP regularization withP = 3. (e) and (f): reconstruction with SRVP regularization with
P = 4.
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Figure 4.19: The data fit cost functionFLS (a) and the reconstruction error∆ǫ (b) versus the
number of iterations during the reconstructions of the first synthetic target. The end of each step
in the stepwise relaxed VP regularization scheme is indicated with an arrow. An extra VP value
is added when‖gQ‖ ≤

√
2 · 10−4 or when the data fit cost functionFLS increases again.
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Figure 4.20: Swarm plot of theN complex permittivity values on the grid, represented with
dots in the complex plane, for the reconstructions of the target of Figure 4.18. Reconstructions:
(a) of Figure 4.18 (c),(d) with multiplicative smoothing; (b) of Figure 4.18 (e),(f) with SRVP
regularization andP = 3; (c) of Figure 4.18 (g) and (h) with SRVP regularization andP = 4.
The VP values are indicated as the intersections of the solid horizontal and vertical lines marked
by arrows and the exact permittivity values lie at the nearby intersections of the dashed lines.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.21: Reconstruction of the second synthetic target at 8 GHz: Real (left) and imaginary
(right) part of the permittivity in two slices through the investigation domainD. (a) and (b): ex-
act permittivity profile. (c) and (d): reconstruction with multiplicative smoothing regularization.
(e) and (f): reconstruction with SRVP regularization.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.22: Reconstruction of the third synthetic target at 8 GHz: Real (left) and imaginary
(right) part of the permittivity in two slices through the investigation domainD. (a) and (b): ex-
act permittivity profile. (c) and (d): reconstruction with multiplicative smoothing regularization.
(e) and (f): reconstruction with SRVP regularization.
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Figure 4.23: Swarm plot of theN complex permittivity values on the grid, represented with
dots in the complex plane, for the reconstructions of the target of Figure 4.21. Reconstructions:
(a) of Figure 4.21 (c),(d) with multiplicative smoothing; (b) of Figure 4.21 (e),(f) with SRVP
regularization. The VP values are indicated as the intersections of the solid horizontal and
vertical lines marked by arrows and the exact permittivity values lie at the nearby intersections
of the dashed lines.
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Figure 4.24: Swarm plot of theN complex permittivity values on the grid, represented with
dots in the complex plane, for the reconstructions of the target of Figure 4.22. Reconstructions:
(a) of Figure 4.22 (c),(d) with multiplicative smoothing; (b) of Figure 4.22 (e),(f) with SRVP
regularization. The VP values are indicated as the intersections of the solid horizontal and
vertical lines marked by arrows and the exact permittivity values lie at the nearby intersections
of the dashed lines.
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4.4 Further improvements to the algorithm

4.4.1 Constraints on the permittivity

In order to improve the convergence of the optimization technique, but mainly to pre-
vent the permittivity and conductivity values from becoming non-physical or too high
to handle with the chosen forward discretizationδ, it is recommended to include a
priori knowledge concerning the expected upper and lower bounds on the complex
permittivity by means of constraints. If the optimization variables violate these con-
straints, the conditioning of the forward problem can become problematic. Let us
denote the upper and lower bounds byǫr

max andǫr
min, respectively, for the real part of

the optimization variables and byǫi
max andǫi

min , respectively, for the imaginary part,
i.e.

ǫr
min < ℜ (ǫν) < ǫr

max, ∀ν (4.78)

ǫi
min < ℑ (ǫν) < ǫi

max, ∀ν. (4.79)

Such constraints can be incorporated in the Gauss-Newton framework using a non-
linear transformation that maps the constrained permittivity values on new, uncon-
strained optimization variables [9]. Here, we follow an approach which is inspired
by the use of parameter transformations, but which is only used in the line search.
More specifically, we propose to replace the search path in the line search (4.9) with a
smooth, constrained path that entirely lies within the constraints, if the starting point
εk does so, and which starts along a descent direction. With this constrained path, it
is sure that the cost function will be reduced ifεk is not a local minimizer, and that
the constraints will not be violated. The path is defined as

εk+1(βk) = f (βk,ℜ (s) ,ℜ (εk) , ǫr
min, ǫr

max)+ jf
(

βk,ℑ (s) ,ℑ (εk) , ǫi
min, ǫi

max

)

,

(4.80)
wheres is the solution of (4.36) or (4.59) and where the vector function f is defined
as

fν (β,x, ξ, ξmin, ξmax)

= ξmax − (ξmax − ξν) exp

(

−β
xν

ξmax − ξν

)

, xν ≥ 0 (4.81)

= ξmin + (ξν − ξmin) exp

(

β
xν

ξν − ξmin

)

, xν < 0. (4.82)

The path (4.80) only considers the constraints that can be violated along the path
(4.9) with βk > 0, hence the distinction between the casesxν ≥ 0 and xν < 0

in (4.81)-(4.82). For smallβk (4.9) and (4.80) coincide, but in the vicinity of the
constraints, the path (4.80) is bent away from (4.9) and it has a limit point on the
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constraints, as is illustrated in Figure 4.25 (a) for a problem with only one complex
optimization variable. Although theoretically the optimization variables can never
reach their bounds with this procedure and the path always starts along a descent
direction, it is possible that no progress is made if one or more variables are very
close to one or more of their bounds (in finite precision, theycan actually beon their
bounds). Indeed, in such a situation, the line search path deviates from its initial
directions already for very smallβ-values and starts to run along the projection ofs

on the nearest boundaries of the constrained optimization domain as is illustrated in
Figure 4.25 (b). It is possible that althoughs, calculated with (4.36) or (4.59), is a
descent direction, its projection on these boundaries is not and the cost function starts
to increase again for very small values ofβ. In this case the line search is terminated
after only a negligible reduction of the cost function, without necessarily implying
that a local minimum is reached. Ifs is the steepest descent direction, it can easily be
shown that its projection on boundaries like the ones considered here (i.e. upper and
lower bounds on the optimization variables) remains a descent direction. Therefore, in
our implementation it is possible to switch temporarily to the steepest descent update
when the above mentioned problems with the constraints are encountered.

Note that the use of the new search path implements the constrained optimization
in an elegant way, without requiring any adjustments to the update systems and the
line search algorithm. It also avoids sequences of time consuming minimizations of
reduced problems, as is needed in active set methods. However, the mapping (4.80)
is highly non-linear and a large step inβ can correspond to a negligible step in the
actual optimization domain and a corresponding negligiblereduction of the cost func-
tion when a lot of optimization variables are close to their boundaries. Therefore, the
line search algorithm can require many steps and many forward problem simulations
before a local minimum along the search path is reached. Although the extrapolation
over the permittivity provided by the Born approximation inSection 3.7 will result
in a rapid solution of the additional forward problems when the permittivity profile
changes little (eventually only one iteration per solutionof (3.13) will be needed), the
large number of forward problem solutions can increase the total computation time
significantly. Together with the fact that local optimization can get trapped against
the constraints even if they are handled in an ideal way, we recommend to avoid con-
straints as much as possible. For example, instead of demanding that the imaginary
part of the permittivity is not positive, as required by the passivity condition, we will
only require that it does not become too positive, because this would prevent conver-
gence in the forward problem. Note finally that we could use different upper and lower
bounds per permittivity unknown, if that would be appropriate, for instance if some
region-specific a priori information on the permittivity isavailable.
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Figure 4.25: Illustration of the constrained line search path: (a) the starting pointεk lies far
from the boundaries of the optimization domain, such that the new line search path (4.80)
coincides with the original path (4.9) up to largeβk; (b) the starting pointεk lies close to a
boundary of the optimization domain, such that the new line search path (4.80) starts running
along the projection of (4.9) on this boundary already for smallβk.
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4.4.2 Subspace preconditioning of the update systems

The solution of system (4.36) or (4.59) for the Gauss-Newtonupdates by means of a
direct inversion method would requireO((N ǫ)3) operations and since the number of
unknownsN ǫ easily grows large in a 3D inverse problem, this would be computation-
ally very demanding. Moreover, the calculation of the product JHJ would require
O(ND(N ǫ)2)) operations. It is therefore more efficient to solve (4.36) and (4.59)
iteratively, which requires per iteration one multiplication of anN ǫ-dimensional vec-
tor with J , followed by one multiplication of anND-dimensional vector withJH .
The computational complexity then isO(PN ǫND), which is much less than a direct
inversion provided that the number of iterationsP can be kept small. However, the
condition number ofJ — and therefore ofJHJ — generally is very large. Even
with the well-conditioned regularization termλ2Σ in (4.36) orλ2ΣP in (4.59), the
conditioning of the system matrix remains problematic and even worsens towards the
end of the optimization in case of multiplicative smoothingregularization, sinceλ2

then is proportional to the least squares data error.
We therefore propose to solve (4.36) and (4.59) with the iterative subspace pre-

conditioned LSQR algorithm (SPLSQR) of Jacobsen, et al. [33], which is specifi-
cally designed for regularized linear least squares problems such as (4.36) and (4.59).
Since this algorithm has been conceived for real system matrices, the problem (4.36)
or (4.59) is first reformulated (dropping the subscriptk for convenience) as the mini-
mization problem

x = argmin
x′

‖Kx′−y‖2 = argmin
x′

‖Jrx′−y1‖2 +λ2‖Lrx′−y2‖2, (4.83)

where

K =









ℜ (J) −ℑ (J)

ℑ (J) ℜ (J)

λL 0

0 λL









=

[

J r

λLr

]

, y =









ℜ (∆emeas)

ℑ (∆emeas)

−λL−1ℜ (Ω)

λL−1ℑ (Ω)









=

[

y1

y2

]

,

x =

[ℜ (s)

ℑ (s)

]

,

whereℜ andℑ stand for the real and imaginary parts, respectively, and whereL is the
Cholesky factor ofΣ = LLT orΣP = LLT and∆emeas = emeas−escat. As can be
seen in Figure 4.26 for a generic (but relatively small) inverse problem, the singular
value spectrum of the matrixK with λ = 0, i.e. without regularization, generally
decreases over a wide range of values without showing a clearthreshold were this
spectrum could be truncated. Forλ 6= 0, on the other hand, the spectrum ofK shows
a platform at the lower end, which is introduced by the regularization. Nonetheless
the conditioning ofK clearly is still not very good, because of the rapidly decreasing
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singular values in the first part of the spectrum.
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Figure 4.26: The singular value spectra of the matrixK without regularization (λ = 0) and
with regularization (λ 6= 0) for a generic inverse scattering problem with2000 permittivity
unknowns. The spectrum of the matrixKV whereV contains the truncated 3D discrete cosine
basis corresponding toNν = 432.

The key idea of the subspace preconditioned LSQR algorithm is a splitting of
the solution spaceS into two orthogonally complementary subspaces,Sv andSw,
respectively spanned by the columns of the orthogonal matricesV and W . This
means we look for a solutionx = V v + Ww. It is furthermore desirable thatSv

has a small dimensionNv and that the conditioning ofKW is much better than the
conditioning ofK. Indeed, introducing the QR factorization

KV = QR =
[

Y Z
]

[

R

0

]

= Y R, (4.84)

whereQ is orthogonal andR is square and upper triangular, it easily can be shown
that

‖Kx − y‖2 = ‖Rv − Y T (y − KWw) ‖2 + ‖ZT KWw − ZT y‖2. (4.85)

BecauseK has full rank, the same holds forR and the first term in the RHS of (4.85)
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can be made zero for everyw. Therefore, (4.83) is equivalent to

w = argmin
w′

‖ZT KWw′ − ZT y‖2, (4.86)

v = R−1Y T (y − KWw) . (4.87)

Since (4.87) is a smallNv×Nv- dimensional and upper-triangular system, it is solved
conveniently forv by back substitution. The solution of (4.86) forw is done with
the LSQR algorithm [34], which, although mathematically equivalent, is numerically
more stable than the CGLS method. Moreover, this iterative algorithm can be for-
mulated directly in terms ofp = Ww, thereby avoiding the construction of and
multiplications with the large matrixW [33]. Calculating the QR factorization (4.84)
and performing the multiplications withZ or ZT is relatively cheap if done with
Householder transformations, becauseNv is small.

With an appropriate choice ofV (andW ) the number of LSQR iterations to solve
(4.86) can be kept small. If, for instance,V consists of theNv principal right singular
vectors ofK, then the spectrum ofKV , denoted asspec(KV ), will coincide with
spec(K) up toσNv , theNv-th singular value ofK. On the other hand, sinceW is
orthogonal toV , the subspaceSw is spanned by the2N ǫ − Nv least significant right
singular vectors ofK andspec(KW ) will coincide with (σNv+1, . . . , σ2Nǫ). It can
be seen from Figure 4.26 that, ifNv is large enough,spec(KW ) will practically
completely lie within the plateau inspec(K), introduced by the regularization. This
means that the conditioning ofKW in this situation will be very good. It also implies
that KV inherits the ill-conditioning ofK, but since (4.87) is solved directly, this
does not pose any problem. However, it is computationally too expensive to construct
this SVD subspace, and therefore a subspace that ‘resembles’ it is chosen. It is well-
known that for most applications the right singular vectorsof an ill-posed problem
become more oscillatory as the corresponding singular values decrease. Therefore, we
propose in this thesis a truncated 3D discrete cosine basis (the DCT-II basis from [35]),
defined on the cubic gridDǫ, which is used for the real and imaginary part of the
complex update vectors separately, i.e. the matrixV has the form

V =

[

V c 0

0 V c

]

, (4.88)

whereV c contains per column one of theNv DCT basis vectors with the lowest
spatial frequencies inx-, y- andz-directions. In this case the multiplication ofK with
V can be evaluated efficiently by performing 3D discrete cosine transforms [35] on
the rows ofK (actually on the first and the second half of these rows separately) and
retaining only theNv components with the lowest spatial frequencies. This subspace
can be considered as a coarse grid approximation to the actual solution space. Figure
4.26 showsspec(KV ) for this subspace and it can be seen that it indeed coincides
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with spec(K) for large singular values. The reduction in computation time obtained
with this subspace preconditioned LSQR algorithm for the solution of (4.36), when
compared with standard iterative solvers, such as the CG method, is considerable, as
will be demonstrated in Section 5.1.2.

4.5 Region picking regularization

In this section, the concept of Value Picking regularization is extended to the more
abstract concept ofRegion Picking(RP) regularization. VP regularization assumes
that the permittivity is piecewise constant. One could think of such a permittivity
profile as built from a number of homogeneous regions. Such a region does not have
to be simply connected or compact, but is just characterizedby the value of its complex
permittivity. The difference|ǫν−cp| between the permittivityǫν of a certain cell group
Cν and the permittivity (or VP value)cp of regionp then is a measure of how muchCν

belongs to regionp.
A more general permittivity profile could consist of different types ofregions,

which are areas in the optimization domain with certain characteristics and for which
adistancebetween a given cell group and the region can be defined. Examples are:

• the homogenous region with indexp, already used in VP regularization. This
region is solely characterized by a VP valuecp and the distance between cell
groupCν and the region is given byuH

p,ν = |ǫν − cp|2.

• the small-scatterer region with indext. This region is characterized by a per-
mittivity valuedt and a position vectorRt. The distance between cell groupCν

and the small-scatterer region is given by

uSS
t,ν =| ǫν − dt |2 +

λSS

Nν

∑

(f,g,h)∈Cν

‖rf,g,h − Rt‖2, (4.89)

whereλSS is a normalization constant, whererf,g,h is the midpoint of cell
(f, g, h) and whereNν is the number of cells in cell groupCν . This definition
thus also includes a physical distance to the small scatterer.

• the smooth region with indexs. This region is characterized by some parameter
representationǫs(r, a1, ..., aM ) of the complex permittivity on the investigation
domain, which depends linearly on a limited numberM of parametersam. This
representation could be the expansion of the permittivity in a truncated Fourier
or cosine basis, such that it can only represent smooth permittivity profiles. The
distance of cell groupCν to this smooth region then is

uS
s,ν =

1

Nν

∑

(f,g,h)∈Cν

| ǫf,g,h − ǫs(rf,g,h, a1, ..., aM ) |2 . (4.90)
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The idea behind RP regularization is that in the course of thereconstruction, a
choice for a certain region is made for every permittivity unknownǫν . As in VP reg-
ularization, the characteristics of the regions (cp,dt,Rt,am,...) are considered as aux-
iliary variables, which are included in the optimization process. Figure 4.27 shows a
2D permittivity profile, consisting of a homogeneous background region, a smooth
region and a small-scatterer region. During the reconstruction, some permittivity
cells are assigned the background permittivity and form theplateau in the profile.
The profile of the smooth region results from a fitting of the parameter representation
ǫ1(r, a1, ..., aM ) (Figure 4.27 (b)) to the permittivities of the cells that were chosen to
belong the the smooth region. Finally, cells in the vicinityof the small scatterer take
on the permittivity of that small scatterer. The permittivity and position of the small
scatterer again are the result of a fitting to the permittivities and the positions of the
corresponding permittivity cells.

ℜ(ǫ)

(a) (b)

Figure 4.27: The principle of RP regularization. Left: a real permittivity profile after a recon-
struction with RP regularization with three different regions: a homogeneous region, a smooth
region and a small-scatterer region. Right: a visual representation of thecharacteristics of the
three regions: the position-independent permittivity value of the homogeneous region (red), the
smooth parameter representation of the smooth region (blue) and the permittivity of the small
scatterer, which corresponds to one position only (green).

This whole adaptive mechanism can again be contained withinthe definition of
one cost function. If there areK = P + T + S regions, i.e.P homogeneous regions,
T small scatterers andS smooth regions, the RP cost function is defined as

FRP = FLS + γFK , (4.91)
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whereFK is defined as

FK =
1

N ǫ

Nǫ
∑

ν=1

fK(uH
1,ν , . . . , uH

P,ν , uSS
1,ν , . . . , uSS

T,ν , uS
1,ν , . . . , uS

S,ν). (4.92)

Again, fK is theK-dimensional choice function. The same techniques of Section
4.3.2 can be used to obtain a half-quadratic minimization scheme, both for updating
the permittivity unknowns with a Gauss-Newton scheme, as for updating the charac-
teristics of the regions in repeated quadratic minimization steps, which alternate with
the permittivity updates.

Finally, a stepwise relaxed scheme is again expected to yield the best results. In
such a scheme, different regions are gradually added to the reconstruction in order
to relax the regularization. One could for example start with only the homogeneous
background region. This would again be equivalent to a Tichonov regularization of
the cost function. Then one could add one or more homogeneousregions or smooth
regions and finally the small scatterers.

The stepwise relaxed RP (SRRP) regularization could be of use when reconstruct-
ing biomedical targets, such as the ones presented in Chapter 5. A human breast,
for example, consists of a skin layer, which more or less is a homogeneous region;
generally a larger volume of adipose-based tissue, which has low permittivity but is
not entirely homogeneous and could be modelled by a smooth region; and finally
some scattered fibro-glandular inhomogeneities and possibly tumors that are small-
scale scatterers with high permittivity. The SRRP regularization has not been imple-
mented yet and it remains to be investigated how feasible this approach really is.

4.6 Conclusion

In this Chapter, novel 3D microwave imaging algorithms weredeveloped. These al-
gorithms consist of the Gauss-Newton minimization of the least squares data fit cost
function with additional regularization. Two regularization strategies were proposed
in this Chapter. The multiplicative smoothing regularization imposes a smoothness
constraint on the permittivity, but does that in an adaptiveway. Less smoothing is au-
tomatically applied if the noise level is low. Knowledge of the noise level is therefore
not needed for multiplicative smoothing. The new stepwise relaxed Value Picking
regularization allows for the very accurate reconstruction of piecewise homogeneous
permittivity profiles with minimal a priori information except for the piecewise ho-
mogeneity itself. This property is exploited by clusteringthe permittivity values in
the complex plane around a number of VP values, which are treated as auxiliary op-
timization variables. The number of VP values is also adjusted in a stepwise relaxed
VP regularization scheme. VP regularization can be easily incorporated in the Gauss-
Newton framework thanks to a half-quadratic updating scheme. Extension of the VP
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regularization to a Region Picking regularization is also possible and is expected to be
a flexible regularization tool for the reconstruction of allsorts of permittivity profiles.

The combination of Gauss-Newton updates with an approximate line search proves
to be an efficient and reliable minimization scheme. Although the Gauss-Newton up-
date systems are generally ill-conditioned, they can be efficiently solved using a sub-
space preconditioned LSQR algorithm. This algorithm exploits the specific form of
the singular value spectrum of the system matrix that ariseswhen the Gauss-Newton
method is supplemented with the above regularization methods. The SPLSQR algo-
rithm relies on a splitting of the solution space in a coarse subspace and its orthogonal
complement. The system, projected on the coarse subspace, is still ill-conditioned, but
has small dimension. Therefore it can be solved directly without being affected by the
ill-conditioning. The component of the solution in the remaining subspace is obtained
through the iterative solution of a larger, but better conditioned system. Finally, when
constraints have to be imposed on the permittivity variables, the line search path can be
modified as described in Section 4.4.1, a feature which requires minimal adjustments
to the core of the algorithm.
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CHAPTER5

Applications of the 3D
reconstruction algorithm

In this chapter some applications of the reconstruction algorithms developed in Chap-
ter 4 are discussed, which are more realistic than the examples presented so far. In Sec-
tion 5.1, the added realism comes from the application to biomedical imaging. This
is not to say that the presented examples are entirely realistic. Due to the simplifica-
tions in our model – the homogeneous background medium, the fact that the antenna
configuration is idealized by only considering non-interacting elementary dipoles – it
is not yet applicable to real-world applications and the presented results are simula-
tion studies. However, they are encouraging the further development of microwave
medical imaging, which is gaining interest as an alternative or supplement to existing
modalities, such as X-ray imaging, mainly because of the non-ionizing nature of mi-
crowaves and because the interaction of microwaves with biological tissue is governed
by other material parameters. In Section 5.2, the realism comes from the data: in this
section, real measurement data from the Fresnel Institute in Marseille are inverted.

Because biomedical targets are usually highly inhomogeneous, the multiplicative
smoothing regularization is employed in 5.1. In contrast, the real world targets of
the Fresnel Institute are perfect examples of piecewise homogeneous profiles with a
small number of different permittivity values and the best results for these targets are
obtained with SRVP regularization.

5.1 Biomedical examples

5.1.1 Synthetic arm phantom

The first example consists of a simplified model of a child’s arm immersed in water.
The phantom, together with the investigation domainD and the dipole configuration



122 APPLICATIONS OF THE 3D RECONSTRUCTION ALGORITHM

is depicted in Figure 5.1. It consists of an oblique cylinderof muscle material with
radius3 cm and permittivity(49.6 − 40.4j)ǫ0 in which a simple bone structure with
permittivity (8.0−3.2j)ǫ0 is contained. The bone is modelled with a cylinder of radius
1 cm and a sphere with radius2 cm. For simplicity, we only consider the portion of this
arm model that falls within the domainD, which is a cube with side10 cm. The rest of
the arm is simply neglected. We want to reconstruct this phantom using microwaves
with a frequency of1 GHz. We chose a permittivity of(77.3− 21.2j)ǫ0 for the water,
which yields a background wavelength ofλb = 3.38 cm. All the permittivities are
adopted from [1].

For the data generation, the domainD is discretized using30×30×30 cells inx-,
y andz-directions both for the permittivity gridDǫ and for the forward field gridDF,
which yields a cell size of3.33 mm or0.0987λb. The phantom is illuminated by 120
elementary dipole fields, radiated by elementary dipoles that are evenly distributed
over 5 horizontal circles with radius10.14 cm or3λb, which have a vertical spacing
of 2.36 cm or0.7λb (Figure 5.1). One half of the dipole orientationsûi is oriented
along the positivez-direction and the other half is oriented along theφ-direction (the
azimuthal direction). For all these illuminations, the scattered field is calculated in the
same dipole positions, along the same polarization directionsûi. In the notations of
Section 2.3.1, we haveN I = 120, NR

i = 120, ∀i, which results inND = 14400.
For the reconstruction of the phantom, the domainD is discretized with25 ×

25 × 25 cells in order to avoid committing an inverse crime. This corresponds to a
total of N ǫ = 15625 permittivity unknowns. The problem thus is under-determined
(N ǫ > ND), even more so when the redundancy in the data due to reciprocity is taken
into account. The regularization thus has the additional role of keeping the problem
solvable, since without it, the update system (4.36) would become singular. Indeed,
the rank of the jacobian matrixJ is smaller thanN ǫ. When the iterations proceed,
the parameterλk in (4.36) becomes smaller and the system evolves toward a singular
system, which provides extra motivation for the use of the subspace preconditioning
of Section 4.4.2. Note that in practice, due to noise on the data or – in our simula-
tion study – due to the misfits of the simulation grids for the data generation and the
reconstruction, a perfect data fit is not possible and the system (4.36) never becomes
singular. The SPLSQR algorithm is used withNv = 512, which is the result of re-
taining only the discrete cosine basis vector with the8 lowest spatial frequencies in
thex-, y- andz-directions.

The inversion is started from a domainD filled with background medium and with
a valueα = 10−6 for the regularization parameter in (4.19). The result of Figures 5.2
and 5.3 is obtained in7 iterations (i.e. 7 solutions of the update system (4.36)) after a
total excecution time of about 5 hours and 45 minutes (on our computing modalities:
a 64 bit computer with 2 GHz Dual Core AMD Opteron processor and 8 GB RAM) if
the relative accuracy of the forward solver is set to0.001. The data fit at this point is
FLS = 2.1 · 10−4 and is not significantly reduced by proceeding with the iterations.
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The constraints that were imposed on the permittivity unknowns were1.0 < ℜ(ǫn) <

85.0 and−50.0 < ℑ(ǫn) < 1.0. The fact that we allow for slightly positive imaginary
parts is motivated by the observation that too severe constraints can stall or even stop
the convergence by introducing local minima. From Figures 5.2 and 5.3 it can be
concluded that a nice reconstruction is obtained, where thestructures in the arm are
clearly visible in the correct permittivity ranges. It deviates from the actual profile by
its smoother appearance, which is due to the type of regularization we employed and
the large influence of this regularization when the system isunder-determined.

The marching-on technique of Section 3.7 has been used on this example with
M = 4, i.e. the initial guess for a forward problem solution is obtained as a linear
combination of the Born approximation (3.39) and the solutions for three previous
transmitter positions on the same horizontal circle in Figure 5.1. There is no extrapo-
lation over different dipole circles. Without the marching-on scheme, the total solution
for the present example increases to about 8 hours, an increase of about40%.

Figure 5.1: A view on the numerical Arm phantom, the investigation domainD (the cube in
the figure) and the dipole configuration. Dipole positions are indicated by black dots and dipole
orientations by arrows. All dipoles act as transmitter and receiver. Distances are expressed in
background wavelengths.
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Figure 5.2: Reconstruction of the synthetic arm phantom withα = 10−6 in two planes through
the center of the investigation domainD, one parallel to thexy-plane and one parallel to the
yz-plane. The left column shows the real part of the permittivity profile used to simulate the
data and the right column shows the real part of the reconstructed permittivity on the coarser
reconstruction grid.
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Figure 5.3: Reconstruction of the synthetic arm phantom withα = 10−6 in two planes through
the center of the investigation domainD, one parallel to thexy-plane and one parallel to the
yz-plane. The left column shows the imaginary part of the permittivity profileused to simulate
the data and the right column shows the imaginary part of the reconstructed permittivity on the
coarser reconstruction grid.

5.1.2 MRI-based breast phantom

The second example is a numerical breast phantom, which is adopted from the on-
line repository of the Department of Electrical and Computer Engineering at the Uni-
versity of Wisconsin-Madison (UWCEM). This online repository (see the web site
http://uwcem.ece.wisc.edu/home.htm) provides a database of anatomically realistic
MRI-based numerical breast phantoms, which capture the structural heterogeneity of
normal breast tissue and incorporate the realistic dispersive dielectric properties of
normal breast tissue from 0.5 to 20 GHz reported by Lazebnik et al [2, 3]. The phan-
tom we consider in this thesis is Phantom 1 from ACR class 1 which is a mostly
fatty breast phantom with some glandular and fibro-connective inhomogeneities. The
complex permittivity in a slice through the breast phantom at a frequency of2 GHz
is depicted in Figure 5.4. As background medium in which the breast is immersed,
we chose a material with permittivity(10.0 − 2.0j)ǫ0, which yields a background
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wavelengthλb = 4.72 cm.

Figure 5.4: A view of the permittivity in a slice through the full-resolution MRI-based breast
phantom from the online UWCEM repository at 2 GHz: (a) real part and (b) imaginary part.

Since the resolution of the MRI-based breast phantom is veryhigh (it has a cell size
of 0.5 mm) and since such a high resolution is not needed at theconsidered frequency,
nor desirable due to the high memory needs and computation times, we derived a
coarser permittivity model with cell size 2.5 mm (0.053λb) from this phantom by
local averaging. This coarser model is depicted in Figure 5.5 in the same slice. An
artificial spherical tumor with permittivity(50.0−10.0j)ǫ0 and a radius of 1 cm is also
added and rather close to the chest wall to make its detectioneven more challenging.
We also removed the muscle layer from the original phantom, since in our free-space
measurement setup this thin high-contrast layer would cause too much scattering at its
(non-realistic) interfaces with the background medium. Although the present example
is not entirely realistic due to the fact that it is a free-standing breast, not attached to a
human body, the problem is challenging as it is.

Figure 5.5: A view of the permittivity in a slice through the discretized breast phantom forthe
data generation. The cell size is 2.5 mm, an artificial tumor has been added to the phantom and
the muscle layer has been removed: (a) real part and (b) imaginary part.

The dipole configuration which is used to generate the data isdepicted in Figure
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5.6. It consists of 168 dipoles on an ellipsoidal surface around the front side of the
breast with polarizations in two orthogonal directions tangential to this surface. All
these dipoles are used to sample the field, but only 48 of them (indicated with the
larger black dots) are used to illuminate the phantom because of memory limitations
(increasing the number of illuminations increases the sizeof the jacobian matrix too
much). This yields a total ofND = 8064 data points.

Figure 5.6: A view of the dipole configuration used to reconstruct the breast phantom. Dipole
positions are indicated by black dots and dipole orientations by arrows. All dipoles act as
receiver and transmitting dipoles are indicated with larger black dots. The gray shape represents
the outline of the breast phantom. Distances are in meters.

The permittivity gridDǫ for the reconstruction as well as the forward field gridDF

has cell size 5 mm (0.106λb) with 25×30×21 cells, which yields 15 750 permittivity
unknowns. This means the problem is heavily under-determined and the regulariza-
tion and subspace preconditioning are indispensable. For this example, the subspace
dimension isNv = 560, using the cosine base with respectively the 8, 10 and 7 low-
est spatial frequencies in thex-, y- andz-directions, thus a coarse grid approximation
with roughly one third of the resolution of the full permittivity grid. To test the abil-
ities of the method, we perform a complete blind reconstruction, i.e. we do not use
knowledge of the breast contour, as is sometimes suggested in the literature about mi-
crowave breast cancer imaging, and the initial estimate is just background medium. To
keep the forward problems well-conditioned, the constraints on the permittivity were
1.0 < ℜ(ǫn) < 55.0 and−50.0 < ℑ(ǫn) < 1.0. The result after 13 iterations and 18
hours and 25 minutes using a regularization parameterα = 10−5 is depicted in Figure
5.7. The marching-on scheme is again used with the same parameters as for the pre-
vious example. After 13 iterations the changes in the permittivity profile are less than
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1 percent. The shape of the breast and the overall structure of the inhomogeneities
are clearly visible in the reconstruction. The tumor is located correctly as well. Even
the small lump of fibro-glandular tissue near the nipple can be resolved. However,
the reconstructed permittivity and conductivity values ofthe inhomogeneities are too
low. This is probably the result of the strong smoothing effect that is present in the
reconstruction. The fact that the inverse problem is so heavily under-determined gives
a lot of importance to the smoothing regularization. Nonetheless, despite its limita-
tions, this reconstruction is a promising result for microwave imaging in biomedical
applications.

Figure 5.7: A view of the reconstructed permittivity in a slice through the investigation domain.
(a) real part and (b) imaginary part.

Finally, we employ this example to illustrate the effect of the subspace precondi-
tioning. We compare the efficiency of the SPLSQR algorithm tothe efficiency of a
conventional iterative solver without preconditioning insolving (4.36). The conven-
tional solver is the Stabilized Bi-Conjugate Gradient method (BICGSTAB) [4]. For
the first (k = 0) and the final (k = 12) Gauss-Newton iteration, we let the SPLSQR
algorithm, with the same parameters as mentioned earlier, solve (4.86) to a relative
accuracy of10−4 and calculate the resulting accuracy on the original system(4.36).
We then let BICGSTAB solve (4.36) to that accuracy and compare the number of
iterations and the time needed by both methods. The comparison is summarized in
Table 5.1. In the beginning of the optimization, the SPLSQR algorithm is more then 4
times faster then BICGSTAB and towards the end of the optimization, when the pre-
conditioning becomes more crucial due to the decrease of theparameterλ in (4.36),
the speed-up factor approaches 20. The reduction in solution time is less then the
reduction in the number of iterations in the casek = 0, since the computation of the
QR factorization (4.84) is also included in the former. Notethat the time needed to
solve (4.36) a single timewithoutpreconditioning is90% of the total reconstruction
timewith preconditioning! Note furthermore that we use the BICGSTABroutine from
the PIM library [4], which is an optimized fortran library, while we implemented the
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SPLSQR ourselves in C, thus the speedup might even be more significant with an
optimized implementation.

k method ♯ iterations time (s) relative error in (4.36)
0 SPLSQR 30 630 8.3 · 10−6

BICGSTAB 285 2631 5.8 · 10−6

12 SPLSQR 317 2991 9.0 · 10−6

BICGSTAB 6472 59705 8.5 · 10−6

Table 5.1: A comparison between the SPLSQR algorithm and the BICGSTAB iterative method
for the solution of (4.36) in case of the numerical breast phantom. Thenumber of iterations, the
solution time and the resulting accuracy are given for the first (k = 0) and the last (k = 12)
step in the reconstruction algorithm.

5.1.3 The linear sampling method for breast imaging

Although quantitative microwave imaging is probably most suited for biomedical
imaging, as far as reconstruction quality and information content of the images is
concerned, it is very time consuming, as is apparent from theprevious examples.
Although the computational burden will without doubt be reduced in the future, for
example by parallelization of the algorithms and by increasing computer resources, it
is profitable to explore alternative imaging methods for biomedical imaging.

The recently developed linear sampling method [5, 6] can be used to detect scat-
tering objects in a much cheaper way. It combines the advantages of solving a linear
problem without introducing simplifications in the derivations of its equations and a
very simple implementation. However, with the linear sampling method, it is only
possible to infer information about the shape of the object and the image is only qual-
itative. It can however be useful when one is only interestedin detecting anomalies
against a known background. This could be the case when detecting breast cancer,
where the tumor is the anomaly. The 3D vectorial linear sampling method for ho-
mogeneous backgrounds was proposed in [6, 7] and in [5, 8] a scalar linear sampling
implementation for 2D inhomogeneous backgrounds is discussed. In this work, the
3D vectorial linear sampling method has been implemented and adapted to look for
anomalies in general, 3D inhomogeneous backgrounds. A formal demonstration of
the applicability of the linear sampling method to such problem is not yet available in
literature at present and also not in this dissertation. We have restricted ourselves to
an application of the basic principles of the linear sampling method.

Linear sampling principle

The terminology when using the linear sampling method differs from the terminol-
ogy used so far for the quantitative inverse scattering problem. The “scatterer” now
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refers to the unknown anomaly and the “background” can be a general, inhomoge-
neous dielectric environment and encompasses everything in the configuration which
is known in advance. The incident field caused by the elementary dipole currentJδ,i

is now defined with respect to this inhomogeneous background. To avoid confusion,
we will denote this field asEinc,I

i . In the terminology of Chapter 2,Einc,I
i is the

total electric field, in the presence of the known inhomogeneous background, but in
absence of the anomaly. This field cannot be measured, but it can be simulated us-
ing the techniques of Chapter 3. The scattered field is now thedifference of the total
field Ei (the field due toJδ,i in the inhomogeneous backgroundwith tumor) and the
incident fieldE

inc,I
i and it is denoted asEscat,I

i . The collection of data for the lin-
ear sampling method is the same as for quantitative inverse scattering, except that it
is required in our implementation that the same receiving dipoles are used for every
transmitting dipole. The position-orientation pairs(rl,i, ûl,i) for the receiving dipoles
thus are simply denoted as(rl, ûl) in the linear sampling method and their number as
NR. It is finally assumed thatNR ≥ N I .

In order to detect an anomaly in the breast, the discretized linear sampling method
scans the investigation domainD, i.e. for each pointr0 on a testgrid that coversD the
following system of linear equations is solved for the unknownsgi,k(r0):

NI
∑

i=1

(

ûl · Escat,I
i (rl)

)

gi,k(r0) = −jωµ0ûl · Ginh(rl, r0) · v̂k, ∀l, k, (5.1)

wherev̂k is the direction of a test dipole which is placed inr0 andGinh(rl, r0) is the
Green dyadic of the inhomogeneous background (the breast) for a source inr0 and a
receiver inrl. The indexk labels 3 orthogonal directions on the test grid. According
to linear sampling theory, the indicator functionF (r0), defined as

F (r0) =

3
∑

k=1

NI
∑

i=1

‖gi,k(r0)‖2, (5.2)

should become very large whenr0 approaches the boundary of the anomaly from the
inside or lies outside the anomaly. Again, this has not been formally demonstrated in
the configuration under study.

A simulation of the incident dipole fieldsEinc,I
i (rl) = −jωµ0Ginh(rl, ri) · ûi in

presence of the breast with the VIE solver of Chapter 3 also yields the incident fields
on the gridEinc,I

l (r0) = −jωµ0Ginh(r0, rl) ·ûl, which can be used in the right hand
side of (5.1) after an application of the reciprocity property

v̂k · Ginh(r0, rl) · ûl = ûl · Ginh(rl, r0) · v̂k. (5.3)

A simulation of the incident field thus also yields the numerical values of the inhomo-
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geneous Green dyadic that are needed by the Linear Sampling method.

Implementation

In order to compute the solution of the system (5.1), we will express it in a matrix
notation:

Ascatg = B, (5.4)

where the (NR ×N I ) - matrixAscat contains the scattered field for every transmitter-
receiver combination, the colums of the matrixg (N I × 3NG) contain the unknown
coefficientsgi,k(r0) for every one of theNG test pointsr0 on the grid and for every
test direction̂vk. The matrixB (NR×3NG) contains the fields due to the test dipoles
at the receiver locations. The system (5.4) is an ill-posed system. Consider the singular
value decomposition (SVD) of the matrixAscat = USV H , whereV HV = INI and
UHU = INI , with INI being theN I ×N I identity matrix, andS a diagonal matrix
containing the singular values ofAscat in decreasing order. The spectrum ofAscat

rapidly decreases and therefore the smallest singular values and the corresponding
singular vectors are corrupted by noise on the measurements. As in [6], a Tichonov
regularization is used to calculate a regularized solutiongα:

[

(

Ascat
)H

Ascat + αINI

]

gα =
(

Ascat
)H

B (5.5)

and using the SVD ofAscat, we obtain

‖gα‖2
m =

NI
∑

i=1

σ2
i

(σ2
i + α)

2 ‖uH
i B‖2, (5.6)

whereσi is the i-th singular value ofAscat andui the i-th right singular vector, where
‖ · ‖ represents the two-norm for a vector and where‖g‖2

m =
∑

k ‖gk‖2, with gk the
k-th column ofg. In order to calculate the regularization parameterα, the discrep-
ancy principle is again employed (the error on the system (5.4) is equal to the error
introduced by the noise):

∥

∥Ascatgα − B
∥

∥

2

m
= ǫ2 ‖gα‖2

m (5.7)

with ǫ the largest singular value of the noise matrixAscat − Ascat
clean, whereAscat

clean is
the ideal, noise free data matrix. (5.7) can be reformulatedusing (5.6) and the SVD
factorization, resulting in

f(α) =
NI
∑

i=1

α2 − ǫ2σ2
i

(σ2
i + α)

2 ‖uH
i B‖2 = 0. (5.8)
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The chosen regularization parameter thus is the root off(α) andf(α) has a unique
root in the interval]0, ǫσ1] sincef(0) < 0, f(ǫσ1) ≥ 0, f(α) is continuous forα ≥ 0

anddf/dα > 0 for α ≥ 0.

Application

As an example, consider the same breast phantom as in Section5.1.2. The goal is to
locate the tumor when the permittivity distribution in the rest of the breast phantom
is known or approximately known. The operating frequency isagain 2 GHz, but the
dipole configuration is slightly different. The same dipolepositions are used, but
there is only one polarization per dipole position. However, all dipoles are used to
illuminate the phantom (Figure 5.8). This yieldsN I = NR = 84. Apart from the 2.5
mm phantom of Figure 5.5, we derived a second, coarser grid approximation to the
full-resolution phantom of Figure 5.4 with cell size 5 mm.

Two linear sampling solutions were calculated. For the firstone, the measurement
data (i.e.ûl · Ei(rl)) were generated with the5 mm model with tumor, and the in-
cident dipole fields (i.e.̂ul · Einc,I

i (rl)) as well as the Green dyadic were calculated
for the5 mm model without a tumor. To make this example somewhat more realistic,
additive Gaussian noise corresponding to SNR =30 dB is added to the data, before the
scattered field (̂ul ·Escat,I

i (rl) = ûl ·Ei(rl)− ûl ·Einc,I
i (rl)) is calculated. The in-

dicator functionF in a slice through the tumor center is depicted in Figure 5.9(a). The
tumor is clearly visible as the region with minimal indicator values. For the second
example, the data were generated using the2.5 mm model with tumor, while the inci-
dent fields and the Green dyadic are calculated with the5 mm model without tumor,
thus creating a mismatch between the actual and estimated background. Although
the linear sampling image is not as clear as the previous one,the tumor can still be
detected, as appears from Figure 5.9(b).

The linear sampling method thus might provide a computationally cheap means
to detect breast cancer. However, it requires an estimate ofthe breast permittivity
without a tumor. From the presented example it can be concluded that the background
does not need to be rigorously known. An estimate is sufficient, but it remains yet to
be investigated how much this estimate can deviate from the actual background for the
tumor to be detectable. Maybe the linear sampling method canbe used for monitoring
purposes, where one is interested in following the evolution of a tumor. In such case
it might be possible to perform a detailed, quantitative scan of the breast in an initial
stage and use the information obtained from that to estimatethe background, which
can then be used in subsequent rapid scans with the linear sampling method.
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Figure 5.8: The dipole configuration for the Linear Sampling application.
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Figure 5.9: A slice through the indicator functionF for the two linear sampling reconstruc-
tions: (a) for data obtained with the coarse model and using the coarse model for the back-
ground, (b) for data obtained with the fine model and using the coarse model for the background.
Values are in a logarithmic scale.



134 APPLICATIONS OF THE 3D RECONSTRUCTION ALGORITHM

5.2 Inversion of experimental data

The data used in this section were gathered in the bi-static polarimetric free-space
measurement facility of Institut Fresnel, Marseille, France. The data for the first target,
an inhomogeneous cube, was made available to us exclusivelyand the data for the
homogeneous targets which follow is part of a 3D database. Wewere invited by
the SEMO group at Institut Fresnel to process these data and publish the results in a
special section in Inverse Problems, together with a numberof other researchers.

In an anechoic chamber, the target is illuminated by a plane wave, generated by
a parabolic antenna (Figure 5.10). To obtain a good agreement between the incident
dipole fields in our simulations and the actual incident fieldfrom the parabolic antenna
in the measurement setup, the source dipoles are positionedfar from the target, such
that they approximate a plane wave in the center of the measurement setup. To allow
for a comparison between simulation and measurements, the measured scattered field
has been normalized by the people of the Fresnel Institute such that it corresponds to
an incident field with amplitude1 and zero phase at the origin. The162 transmitting
dipoles are depicted in Figure 5.11(a). The dipole directions are evenly distributed
over theθ andφ directions to match the orientation of the plane waves in themeasure-
ment setup. The scattered field is collected in36 points on a circle with radius1.796

m in the horizontal plane and along the negativez-direction, as depicted in Figure
5.11(b). Note that, due to technical limitations, only receivers that are further away
than50◦ from the source meridian are used. The dimensionND of the data vector
will not be the same in all reconstructions to follow, because some measurements are
excluded due to saturation of the equipment. More details about the measurement
setup and methodology can be found in [9–11]. Throughout therest of the section all
targets are embedded in free space (i.e.ǫb = ǫ0).
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Figure 5.10: The experimental setup of Institut Fresnel. Two parabolic transmitting antennas
move on a vertical arc, while a receiving horn antenna moves on a horizontal arc. The target is
positioned on top of the white cone in the center of the setup, which can be rotated around its
axis to illuminate the target from different azimuthal angles.
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Figure 5.11: The dipole configuration used for the reconstructions from the Fresneldata.162

transmitting dipoles are placed on a sphere with radius20 m and are oriented along theθ and
φ directions (a) and36 receiving dipoles are placed on a circle with radius1.796 m in the
horizontal plane and are oriented along the negativez axis (b). A typical investigation domain
D is also depicted in (b).

5.2.1 Reconstruction of an inhomogeneous cube

We consider the reconstruction of a first real world target atan operational frequency
of 8 GHz, which yields a background wavelengthλb = 0.0375 m. The target con-
sists of a cube with side0.67λb and permittivity2.35ǫ0, which is embedded in a
larger cube with side1.33λb and permittivity1.45ǫ0 (Figure 5.12). Within the un-
certainty introduced by positioning errors, the smaller cube is centered at the point
(−0.33λb, 0.33λb, 0.33λb) and the larger cube at the point(−0.27λb, 0.27λb, 0.40λb).
The dimension of the data vector for this reconstruction isND = 4365.

The investigation domainD in this example is a cube with side2.00λb, centered
at (−0.27λb, 0.27λb, 0.40λb) and with edges parallel to the coordinate axes. The per-
mittivity grid has a cell size of0.08λb (= 3 mm), which results in25 cells in each
direction and a total ofN ǫ = 15625 permittivity unknowns. Considering the limited
number of data, this inverse problem thus is heavily under-determined, hence without
regularization, problems can arise with the uniqueness of the solution. Moreover, the
update system (4.59) would be singular whenλ = 0, a problem which has been en-
countered before. Thanks to the VP regularization, however, a good result can still
be obtained. As far as noise is concerned, there are the unavoidable measurement
noise and also the discretization errors of the forward model, especially since no at-
tempt has been made to align the permittivity grid with the actual permittivity profile
of the target, i.e. the faces in the permittivity grid do not coincide with the interfaces
in the scatterer. From a number of reconstructions with the multiplicative smoothing
regularization with different regularization parameters, the noise level is estimated as
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TN ≈ 10−2.
The reconstruction shown in Figure 5.13 is obtained withγ = 5.0, a rather large

regularization parameter because of the high amount of noise on the data. To com-
pensate for the high noise level and the fact that the system is under-determined, some
additional a priori information of the scatterer is employed: the VP values are kept
real, satisfying the physical constraintcp ≥ 1.0. A new VP value is added each time
the criterion‖gQ‖ ≤

√
2 · 10−4 (see (4.52)) is met or when the least squares data fit

increases again. Starting from the background permittivity in D, this yields6 itera-
tions withP = 1, 3 iterations withP = 2 and8 iterations withP = 3. The position
and dimensions of both cubes are quite accurately reconstructed within the resolution
offered by the permittivity grid, although the inner cube isslightly too large. The
reduced accuracy in the vertical direction is due to the antenna configuration, where
the receiving antenna positions all are in the horizontal plane and where the transmit-
ting dipoles are spaced further apart and span a smaller arc than the receiving dipoles.
From the final VP values{1.42, 2.01, 1} it can be concluded that the permittivity of
the outer cube is accurately reconstructed and that the permittivity of the inner cube
is a bit too low. However, the profile is almost piecewise constant and yields a data fit
on the noise level, as can be seen from the swarm plot in Figure5.14 (a) and the data
fit curves in Figure 5.15.

The present example can be used to illustrate that the VP regularization allows for
the introduction of a priori knowledge on the scatterer in aneasy manner. Suppose
we know that one of the permittivities in the profile is likelyto be larger than2. The
lower bound on the last added VP value then can be set to2. The result of this assump-
tion is depicted in Figure 5.16. Again the data fit is on the noise level (Figure 5.15)
and the profile is close to piecewise homogeneous (Figure 5.14 (b)) with VP values
{1.46, 2.26, 1}. The additional bound thus is not restrictive in the final reconstruc-
tion, since the corresponding VP value has moved away from it. Considering only
the data fit and the amount of clustering in the permittivity values, the reconstructions
of Figure 5.13 and Figure 5.16 are hardly distinguishable. In the second reconstruc-
tion, however, the permittivities are much better estimated, although the inner cube is
somewhat smaller.

Finally, again for comparison, a reconstruction with multiplicative smoothing reg-
ularization is shown in Figure 5.17. The noise level is reached in only4 iterations
as can be seen in Figure 5.15, but the result is not as good as with VP regulariza-
tion. The overall structure of the target is present, but dueto the smoothness of the
reconstruction, the dimensions of the cubes as well as theirpermittivity cannot be eas-
ily estimated. This becomes very apparent in a swarm plot (Figure 5.14 (c)), where
no clusters of permittivity values can be detected. Moreover, the imaginary parts are
spread out too far from the real axis.
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(a) (b)

Figure 5.12: The inhomogeneous cube target. A small cube with side25 mm and permittivity
1.45ǫ0 is embedded in a larger cube with side50 mm and permittivity2.35ǫ0. Sketch (a) and a
photograph of the actual target (b).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.13: Reconstruction at8 GHz with SRVP regularization (γ = 5.0 and real VP values)
of the target of Figure 5.12. The initial guess isǫ = ǫ0 everywhere. Real part of the permittivity
in two orthogonal cuts (left:xy-plane, right:yz-plane) through the center of the investigation
domain forP = 1 after6 iterations (a),(b),P = 2 after3 iterations (c),(d) andP = 3 after8
iterations (e),(f). The solid white lines indicate the contours in the actual target.
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Figure 5.14: Swarm plot of theN ǫ complex permittivity values on the grid, represented with
dots in the complex plane, for the reconstructions of the target of Figure 5.12 from measured
data. Reconstructions: (a) of Figure 5.13 (e),(f) using SRVP regularization with real VP values;
(b) of Figure 5.16 using SRVP regularization with real VP values and an extra lower bound of
2 on the highest permittivity value; (c) of Figure 5.17 with multiplicative smoothing. The VP
values are indicated as the intersections of the solid horizontal line and the solid vertical lines
and the exact permittivity values are indicated with dashed lines.
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Figure 5.15: The data fit cost functionFLS versus the number of iterations for the reconstruc-
tions from measured data using VP regularization with real VP values (VP regularization 1),
using SRVP regularization with real VP values and a lower bound of2 on the largest VP value
(VP regularization 2) and using multiplicative smoothing regularization. Theend of each step
in the stepwise relaxed VP regularization scheme is indicated with an arrow. An extra VP value
is added when‖gQ‖ ≤

√
2 · 10−4 or when the data fit cost functionFLS increases again.

(a) (b)

Figure 5.16: The same as Figure 5.13 (e),(f) but with an additional lower bound of2 for the
highest permittivity value.
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(a) (b)

Figure 5.17: Reconstruction at8 GHz with multiplicative smoothing regularization of the target
of Figure 5.12 from measured data. The initial guess isǫ = ǫ0 everywhere. Real part of the
permittivity in two orthogonal cuts through the center of the investigation domain.

5.2.2 Reconstructions of homogeneous objects

The rest of the reconstructions in this chapter involve homogeneous objects, i.e. only
two permittivity values are present in the permittivity profiles, the background permit-
tivity and the permittivity of the target. To compensate forthe high noise levels of the
Fresnel data, this information will be explicitly used fromnow on. This means the the
SRVP regularization scheme will be terminated after the step with P = 2. The study
of every target starts with a first reconstruction using MS regularization to get an idea
of the noise level. Remember that in Section 4.2.1 it is explained that the optimization
with multiplicative smoothing usually stagnates whenFLS reaches the noise level,
at which point an appropriate level of regularization is automatically selected. In the
second step, the stepwise relaxed VP regularization (SRVP)(see Section 4.3.3) is em-
ployed. In all the following reconstructions, the permittivity variables are constrained
as

ℜ(ǫν) > 0.5 (5.9)

ℑ(ǫν) < 0.3 (5.10)

which are only used to prevent ill-conditioning of the forward problems. The VP
values are kept real and we impose an additional physical constraint:

cp > 1.0. (5.11)

Although the VP regularization yields excellent results onsynthetic data with
moderate noise levels (an SNR of about 30 dB,TN ≈ 10−3) (see Section 4.3.4),
we noticed in Section 5.2.1 that there are some difficulties when using it on the mea-
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sured data of the Fresnel Institute, which turn out to have noise levels about ten times
higher (TN > 10−2; estimated using the multiplicative smoothing reconstruction).
For such noise levels a strong regularization (i.e. a large regularization parameterγ)
is needed to obtain profiles that are close to piecewise homogeneous with only two
permittivity values. In the following examples, it will be observed, however, that this
can result in reconstructions in which the dimensions of theobjects are overestimated,
while their permittivity is underestimated, although the data fit is on the noise level
and the reconstruction is close to piecewise homogeneous. This can be explained as
follows: in the first step of the SRVP scheme withP = 1, the regularization keeps
the permittivities close to the background permittivity. In the second step, a VP value
is initialized at random and immediately updated (as outlined in Section 4.3.3), based
on the permittivity profile after step 1. Its initial value will therefore be rather low.
Apparently, due to the high noise level, the data does not contain enough information
to force this second VP value sufficiently up the real axis before the data fit reaches
the noise level. Extra information could be added by using multi-frequency data, e.g.
by including the measured scattered field for different frequencies in the data vec-
tor emeas in (4.1) and by accordingly extendingescat through forward simulations at
these different frequencies (in case of the non-dispersiveFresnel targets, no adjust-
ments would have to be made to the regularization functions). Since we only consider
single-frequency inversion, however, we have to add other apriori information.

Fortunately, the VP regularization scheme allows for the flexible introduction of
such extra problem specific a priori information. In Section5.2.1, a lower bound on
the last added VP value is used. The obvious difficulty with this is where to put it
without a priori information on the target. Here, a different approach is taken: an
extra term is added to the cost function in the step withP = 2, which only depends
onc1 (the only VP value that is optimized for, sincec2 is kept fixed), i.e. we minimize

FV P + γη‖c1 − d1‖2, (5.12)

whered1 is some relative permittivity value which is expected to be somewhat larger
then the largest permittivity in the actual profile. This will encourage the VP valuec1

to take on higher values when it is too far away fromd1. Note that the extra (quadratic)
term in (5.12) does not interfere with the updating scheme for the permittivity vector,
it only matters in the updating of the VP valuec1, where it is simply incorporated in
the iterated quadratic minimization outlined in Section 4.3.2. The determination of
the parametersγ, η andd1 in the following is done by numerical experimentation, but
is based on a set of criteria that does not use a priori information on the target. The
strategy will become clear in the following paragraphs.
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Two Spheres

The Two Spheres target consists of two spheres with a diameter of 50 mm and a per-
mittivity 2.6ǫ0. We employ 4 GHz data to reconstruct this target. The investigation
domainD is a cuboid with dimensions15.0cm × 7.5cm × 7.5cm (or, in background
wavelengthsλ0: 2λ0×λ0×λ0) which is centered at the origin. A40×20×20 permit-
tivity grid is used to discretize this domain with a cell sizeof 3.7 mm or0.05λ0. This
yields 16000 permittivity unknowns for a total of 4322 data points. The problem thus
is heavily under-determined. For all reconstructions presented in the rest of this chap-
ter, the uniform discretization grid for the fields in the forward scattering simulation
coincides with the permittivity grid.

For the initial reconstruction with multiplicative smoothing, the smoothing para-
meterα is set toα = 10−3. After 9 iterations, the result of Figures 5.19 (a) and (b)
is obtained. The data fit cost function throughout the minimization is given in Figure
5.18. We conclude that the noise level is somewhere around0.04. The reconstruction
clearly shows the spheres, but there is a very smooth transition from the background
to the object. In the swarm plot of Figure 5.20 (a) the permittivity values are very
much spread out, whereas in the swarm plots of the SRVP reconstructions in Figures
5.20 (b)-(e) they are clustered around the VP values. For these SRVP reconstructions,
the regularization parameter is chosen to beγ = 1.0, a value which is obtained by
experimentation: it should be small enough to allow reaching a comparable data fit as
with multiplicative smoothing and yet it has to be high enough to get nice clustering.
This experimentation can be done withη = 0 in (5.12), because the size of the clusters
with other values ofη is comparable, as can be seen in Figure 5.20, whered1 = 3.
With η = 0, the reconstructed spheres are too large while their permittivity is too low
(c1 = 2.22) (Figures 5.19 (c) and (d)), as anticipated.

The question remaining is: how can one chooseη to prevent this without knowing
the target? Typically, incorrect choices made by the VP regularization are compen-
sated to keep the data fit cost function small. If, for a certain permittivity cellν the
largest VP value is chosen (i.e.ǫν ≈ c1), while it should be a background cell (i.e.
ǫν ≈ c2 = 1), often the surrounding background cells have too low a permittivity,
such that the local spatial permittivity average around theerroneous cell (on a sub-
wavelength scale) is approximately the same as in the ideal configuration, yielding
approximately the same data fit. From Figure 5.18 it can indeed be seen that all re-
constructions yield an almost identical data fit. This compensating behavior can be
detected in the swarm plots of Figure 5.20, for example in (b)and (c), since a num-
ber of permittivity values from the cluster around the background permittivity spread
reasonably far to the left. This indicates that the value ofη should be increased. How-
ever whenη is increased too much, the permittivity values inside the target tend to
be too high and this is again compensated by introducing cells with a permittivity
value that is lower than the background permittivity, as canbe seen in Figure 5.20 (e)
where a few permittivity values are pressed against the lower bound on the real part
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of the permittivity, and in Figure 5.19 (g) and (h) where the corresponding cells can
be located inside the spheres. Looking only at the swarm plots, the reconstruction
with η = 0.025 exhibits least of this compensating behavior and thereforeis the best
reconstruction among the presented ones according to our criteria. It turns out that it
is also the best reconstruction when considering the actualtarget: the shape is accu-
rately reconstructed within the resolution offered by the permittivity grid (bearing in
mind possible positioning errors in the measurements; the reconstructions suggest a
small offset, mainly in the vertical direction) and the permittivity of the reconstructed
spheres is fairly close to the permittivity of the actual spheres.

Finally, the clustering of the permittivity values when using VP regularization al-
lows for the definition of “the surface of the reconstructed target”; it is the surface that
separates low permittivity values from high ones. The surface of the reconstruction
with η = 0.025 is presented in Figure 5.21.

The computation time to solve the inverse scattering problem with multiplicative
smoothing for this example is about 4 hours and 20 minutes on amachine with 2
quadcore AMD Opteron 2350 processors (2GHz) with 32 GByte ofmemory. For
the reconstructions of the homogeneous Fresnel targets, the algorithms use the multi-
threading functions of the FFTW library [12] to distribute the computation of the
FFT’s needed by the forward solver over the 8 processors of the machine.63% of
this time goes to the iterative solution of the MoM-systems of the forward problem
and about13% goes to the solution of the complex update systems (4.36). The rest
of the time largely goes to the computation of the scattered field on the receivers
from the internal field distributions and to the calculationof the Jacobian matrixJ in
each iteration. The total solution time for the SRVP reconstruction of Figures 5.19
(e) and (f) is about 6 hours and 30 minutes,63% of which is spent on the forward
problems and9% on the solution of the update systems (4.59). Note that, actually, 12
iterations were performed for the reconstruction of Figures 5.19 (e) and (f), although
only 11 iterations are depicted in Figure 5.18. That is because after iteration 6, the least
squares data fit in the SRVP step withP = 1 increased and the algorithm restarted
from iteration 6 withP = 2. The reconstruction with SRVP regularization seems to
need a bit more forward problem solutions per iteration (in the line search) than the
reconstruction with multiplicative smoothing, which explains why the computation
time has increased more than the number of iterations. The average time for every
update system is3 minutes and36 seconds for the reconstruction with multiplicative
smoothing and about3 minutes for the reconstruction with SRVP regularization. The
SPLSQR algorithm thus seems to perform slightly better withthe VP regularization.
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Figure 5.18: The evolution of the least squares data fit cost functionFLS over the iterations
for the reconstructions of the Two Spheres target using multiplicative smoothing and SRVP
regularization withγ = 1, d1 = 3 and values of the weightη: η = 0 (SRVP 0.0),η = 0.01

(SRVP 0.01),η = 0.025 (SRVP 0.025) andη = 0.05 (SRVP 0.05).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.19: Reconstructions of the Two Spheres target at 4 GHz. The real part ofthe relative
permittivity is depicted in thexz-plane on the left and in thexy-plane on the right. From top to
bottom: reconstruction with multiplicative smoothing (α = 10−3) (a) and (b); reconstruction
with SRVP (γ = 1) regularization withη = 0 (c) and (d); reconstruction with SRVP regular-
ization withη = 0.025 andd1 = 3 (e) and (f); reconstruction with SRVP regularization with
η = 0.05 andd1 = 3 (g) and (h). The black circles indicate the outline of the actual spheres in
the considered slices through the permittivity profile.
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Figure 5.20: A plot of the N ǫ complex permittivity values on the grid, represented in the
complex plane for the reconstructions of the Two Spheres target. Reconstructions: (a) using
multiplicative smoothing regularization withα = 10−3; (b) using SRVP (γ = 1) regularization
with η = 0; (c) using SRVP regularization withη = 0.01 and d1 = 3; (d) using SRVP
regularization withη = 0.025 andd1 = 3; (e) using SRVP regularization withη = 0.05 and
d1 = 3. The VP values are indicated as the intersections of the solid horizontal line and the
solid vertical lines and the exact permittivity values are indicated with dashedlines.
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Figure 5.21: A 3D view of the surface of the reconstructed Two Spheres target, corresponding
to Figure 5.19 (e) and (f). The semi-transparent spherical meshesrepresent the actual bound-
aries of the spheres.
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Two Cubes

The Two Cubes target consists of two cubes with permittivity2.3ǫ0 and with side 25
mm. Because this target is approximately half as big as the Two Spheres target, the
operating frequency is doubled, i.e. we usef = 8 GHz. The investigation domain
now is a cube with side 7 cm (1.87λ0), centered at the point(0, 0, 0.05m). The cell
size of the permittivity grid is 2.8 mm (0.0747λ0), which results in 25 cells in each
direction and thusN ǫ = 15625. The number of data points is4365.

The initial reconstruction with multiplicative smoothingregularization again uses
α = 10−3 and yields the result of Figures 5.22 (a) and (b) after 8 iterations and 3
hours and 20 minutes. The data fit then is reduced to 0.05 (Figure 5.23). The cubes
are located at the correct position and have more or less the correct size. However,
the permittivity values are a bit too low and their spreadingin the complex plane
(Figure 5.24 (a)) renders the determination of one permittivity value for the cubes
rather difficult.

Figures 5.22 (c) and (d) show the SRVP reconstruction, obtained after 4 hours,
with γ = 5, d1 = 3 andη = 0.01. These parameter values are obtained in the same
way as before, using the criteria of (a) a data fit close to the one with multiplicative
smoothing (Figure 5.23) and (b) a good clustering (Figure 5.24(b)) to determineγ
and (c) the absence of compensating behavior (Figure 5.24(b) and Figures 5.22 (c)
and (d)) to determineη. The cubes are nicely reconstructed, with approximately the
correct permittivity (c1 = 2.27) and the reconstructed target is almost homogeneous.
The surface of the reconstruction is depicted in Figure 5.25.
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Figure 5.22: Reconstructions of the Two Cubes target at 8 GHz. The real part of therelative
permittivity is depicted in two slices parallel to thexz-plane on the left and parallel to thexy-
plane on the right. From top to bottom: reconstruction with multiplicative smoothing (α =

10−3) (a) and (b); reconstruction with SRVP (γ = 5) regularization withη = 0.01 andd1 = 3

(c) and (d). The black squares in (a) and (b) and the white squares in (c) and (d) indicate the
outline of the actual cubes in the considered slices.
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Figure 5.23: The evolution of the least squares data fit cost functionFLS over the iterations
for the reconstructions of the Two Cubes target using multiplicative smoothing and SRVP reg-
ularization withγ = 5, d1 = 3 andη = 0.01.
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Figure 5.24: A plot of the N ǫ complex permittivity values on the grid, represented in the
complex plane for the reconstructions of the Two Cubes target. Reconstructions: (a) using
multiplicative smoothing regularization withα = 10−3; (b) using SRVP regularization with
γ = 5, d1 = 3 andη = 0.01. The VP values are indicated as the intersections of the solid
horizontal line and the solid vertical lines and the exact permittivity values are indicated with
dashed lines.
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Figure 5.25: A 3D view of the surface of the reconstructed Two Cubes target, corresponding
to Figure 5.22 (c) and (d). The semi-transparent cubes representthe actual boundaries of the
cubes.

Cube of Spheres

The Cube of Spheres target consists of 27 spheres with radius15.9 mm and permittiv-
ity 2.6ǫ0, stacked in a cubic3×3×3 grid. The frequency used to reconstruct this target
is again8 GHz. The investigation domain is covered with a20× 20× 23 permittivity
grid with cell size 3 mm (0.0801λ0) which is centered at the point(0, 0, 0.0145m).
The number of permittivity unknowns thus is9200, while the dimension of the data
vector isND = 4365.

The reconstruction with multiplicative smoothing (α = 10−3), obtained in 2 hours
and 55 minutes, is shown in Figures 5.26 (a), (c) and (e) in three orthogonal slices
through the center of the investigation domain. This resultis obtained in 9 iterations,
yielding a final data fit of 0.012 (Figure 5.27), which is remarkably low in comparison
to the data fits obtained with the previous examples. However, looking at Figures 5.26
(c) and (e), the reconstruction is not very good in the vertical z-direction. The indi-
vidual spheres cannot be resolved in this direction, in contrast to slices parallel to the
xy-plane, where the 3 by 3 stacking is clearly visible (Figure 5.26 (a)). This is prob-
ably due to the specific antenna configuration of the database, where only receiving
antennas in the horizontal plane are used.

The reconstruction with SRVP regularization, obtained after 4 hours and 17 min-
utes, is depicted in Figures 5.26 (b), (d) and (f). The SRVP parameters were chosen
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asγ = 0.5 andη = 0.0. This means that, from all the parameter combinations we
tried, a reconstruction without the extra term (5.12) in thecost function exhibited least
compensating behavior. In the horizontal cross-section ofFigure 5.26(b), the spheres
can be resolved and are more clearly outlined than in the reconstruction with multi-
plicative smoothing (Figure 5.26(a)). The resolution in the vertical direction, however,
is again worse. Looking at the swarm plot of Figure 5.28(b), one can observe that the
clustering in the reconstruction is less than in the reconstructions of the Two Spheres
target and the Two Cubes target, although still much better than with multiplicative
smoothing (Figure 5.28(a)). When we tried a higher regularization parameter, the
clustering did not improve, because a strong compensating behavior occurred for all
the values ofη we tried. The data fit also became worse. This is probably due to
the coarse grid spacing in comparison to the sphere size, which prevents an accurate
modelling of the sphere boundaries such that, to obtain a good data fit, one cannot be
too strict in imposing homogeneity. The permittivity of thetarget is also less well pre-
dicted than before (c1 = 2.10). We think this mainly results from the lower resolution
in the vertical direction. The surface of the reconstruction is depicted in the 3D plot
of Figure 5.29.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.26: Reconstructions of the Cube of Spheres target at 8 GHz. The real part of the
relative permittivity is depicted in three orthogonal slices through the centerof the investigation
domain: parallel to thexy-plane (a) and (b); parallel to thexz-plane (c) and (d); parallel to
yz-plane (e) and (f). The reconstruction with multiplicative smoothing (α = 10−3) is on the
left side and the reconstruction with SRVP (γ = 0.5) regularization withη = 0.0 is on the right
side. The black circles in (a), (c) and (e) and the white circles in (b), (d)and (f) indicate the
outline of the actual spheres in the considered slices. Since the exact position of the Cube of
Spheres target is not given in the Fresnel database, an offset of thereference target was derived
from the reconstruction.
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Figure 5.27: The evolution of the least squares data fit cost functionFLS over the iterations
for the reconstructions of the Cube of Spheres target using multiplicativesmoothing and SRVP
regularization withγ = 0.5, d1 = 3 andη = 0.0.
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Figure 5.28: A plot of the N ǫ complex permittivity values on the grid, represented in the
complex plane for the reconstructions of the Cube of Spheres target. Reconstructions: (a) using
multiplicative smoothing regularization withα = 10−3; (b) using SRVP regularization with
γ = 0.5, d1 = 3 andη = 0.0. The VP values are indicated as the intersections of the solid
horizontal line and the solid vertical lines and the exact permittivity values are indicated with
dashed lines.
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x

y

z

Figure 5.29: A 3D view of the surface of the reconstructed Cube of Spheres target, correspond-
ing to Figure 5.26 (b), (d) and (f). The semi-transparent spheres represent the boundaries of the
actual spheres with the same comment on the position of the target as for Figure 5.26.

Mystery target

This target is again reconstructed from the 8 GHz data, but itis not known what
the actual target is. The investigation domain is a cube withside 100 mm (2.67λ0),
centered at the point(0, 0, 20mm). The permittivity grid has cell size 4 mm (0.11λ0),
which yields25 × 25 × 25 = 15625 permittivity cells. The dimension of the data
vector is againND = 4365.

The reconstruction with multiplicative smoothing (α = 10−3) is depicted in Fig-
ures 5.30 (a), (c), (e) and (g) in four horizontal slices through the investigation domain.
The data fit after 13 iterations and 7 hours and 5 minutes is again lower than with the
Two Spheres and Two Cubes targets (Figure 5.31).

The reconstruction with SRVP regularization, obtained after about 11 hours, this
time with γ = 2.0, d1 = 3 andη = 0.015, is given in Figures 5.30 (b), (d), (f)
and (h) and the corresponding data fit curve in Figure 5.31. Before we discuss the
target itself, note that in the swarm plot of Figure 5.32 (b) several permittivity val-
ues are on the lower bound on the real part, thus the compensating behavior has not
been eliminated, and the cluster size is rather large. Otherchoices of the regulariza-
tion parameters did not improve the result. Again we suspectthat this is due to the
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rather large cell size with respect to the detail in the target, which again appears to
be composed out of small spheres. There is always a trade-offbetween homogeneity
of the targets and data fit (Section 4.3.2) and in this case, due to the large cell size,
better homogeneity in this permittivity grid apparently means a more drastic increase
of the data fit cost function than in the previous examples, ascan be seen in Figure
5.31. From all combinations we tried, the aforementioned regularization parameters
represent a quasi-optimal trade-off between data fit and homogeneity.

Judging from the results, we believe that the target itself is an aggregation of 12
identical spheres with radius of about 13 mm and a permittivity around 2.4 (c1 =

2.40). The midpoints of the spheres form the vertices of a regularicosahedron such
that all the spheres touch the neighboring spheres. To verify this hypothesis, we plot-
ted the cross sections of such an object on the permittivity plots of Figure 5.30. The
radius of the spheres is determined as follows. Since in the SRVP reconstructions
the surface of the reconstruction can be defined (see Figure 5.33), its volume is also
known. This volume is calculated and divided by 12 to obtain the volume of one
sphere, from which the radius is then obtained. This yieldsR = 13.1 mm. The
position of the reference target is obtained by matching itsbarycenter to that of the re-
construction and its orientation is determined by visual inspection. From Figure 5.30
and Figure 5.33 we can conclude that the reconstructions match the hypothesis very
well.

(a) (b)

Figure 5.30: First part. For caption, see second part.
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(c) (d)

(e) (f)

(g) (h)

Figure 5.30: Second part. Reconstructions of the Mystery target at 8 GHz. The realpart of the
relative permittivity is depicted in four horizontal slices through the investigation domain: at
z = 0.0359 m (a) and (b); atz = 0.0159 m (c) and (d); atz = 0 m (e) and (f); atz = −0.0041

m (g) and (h). The reconstruction with multiplicative smoothing (α = 10−3) is on the left side
and the reconstruction with SRVP (γ = 2.0) regularization withη = 0.015 andd1 = 3 is on
the right side. The black circles in (a), (c), (e) and (g) and the white circles in (b), (d), (f) and
(h) indicate the outline of a stacking of spheres with radius13.1 mm where these spheres are
placed on the vertices of a regular icosahedron.
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Figure 5.31: The evolution of the least squares data fit cost functionFLS over the iterations
for the reconstructions of the Mystery target using multiplicative smoothingand SRVP regular-
ization withγ = 2.0, d1 = 3 andη = 0.015.
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Figure 5.32: A plot of theN ǫ complex permittivity values on the grid, represented in the com-
plex plane for the reconstructions of the Mystery target. Reconstructions: (a) using multiplica-
tive smoothing regularization withα = 10−3; (b) using SRVP regularization withγ = 2.0,
d1 = 3 andη = 0.015. The VP values are indicated as the intersections of the solid horizontal
line and the solid vertical lines and in (a) the known background permittivity isindicated with
dashed lines.
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x
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Figure 5.33: A 3D view of the surface of the reconstructed Mystery target, corresponding to
Figure 5.30 (b), (d), (f) and (h). The semi-transparent spheresrepresent the boundaries of a
stacking of spheres with radius13.1 mm where these spheres are placed on the vertices of a
regular icosahedron.

5.3 Conclusion

In this Chapter, the algorithms of Chapter 4 were employed toreconstruct biomedical
phantoms from simulated data and real-world targets from experimental data. The
biomedical reconstructions are challenging, because of the large contrast and the large
absolute values of the permittivity. Moreover, the amount of data is often limited,
because of limited accessibility of the biological targets, while the desired resolution
is high. This leads to strongly under-determined inverse problems and ill-conditioned
Gauss-Newton update systems. The use of MS regularization,the incorporation of
constraints on the permittivity, the marching-on-scheme in the forward problem and
the use of the SPLSQR algorithm are highly beneficial for these applications. The
reconstructions from experimental data are very interesting, because they validate all
the algorithms which have been developed in this dissertation for the 3D electromag-
netic scattering problem, both forward and inverse. The VP regularization yields very
accurate reconstructions of the Fresnel targets, even whenusing only single-frequency
data. It was shown that some extra a priori information is easily incorporated in the
SRVP scheme to further improve the reconstruction quality.The completely blind re-
construction of an unknown target can be called successful,since it provides a very
clear image of the scatterer and detailed quantitative information about its properties.
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CHAPTER6

Contrast source based
inversion

In the previous chapters, the inverse scattering problem was solved using the con-
ventional approach in which the optimization operates on the permittivity only and in
which a forward scattering simulation has to be performed inevery step of the iterative
solution. Although this kind of methods can be made to converge in a few iterations,
as can be observed from the presented results, the forward problem solutions in each
iteration can lead to long computation times, even when using the accelerating tech-
niques discussed in Chapter 3. The contrast source inversion (CSI) approach of van
den Berg et al. [1] (see Section 2.3.3) avoids the solution offorward problems in each
step of the minimization and therefore is an interesting alternative.

In this chapter two contributions are presented. First, a consistency inversion (CI)
method is introduced. This method employs the same ideas as the CSI method, but
the cost function is modified in order to eliminate the permittivity unknowns from the
problem. The contrast currents then are the only remaining optimization variables.
In the CSI method of van den Berg et al. [1–3], the two sets of physically different
optimization variables, i.e. the contrast currents and thepermittivity unknowns, are
updated alternatingly. Since it is known that alternating variable optimization methods
can exhibit slow convergence [4], we think this should be avoided as much as possi-
ble. A preliminary numerical study in noise-free inverse crime conditions supports
this hypothesis and forms a motivation for the CI method. In this study, the inverse
scattering problem is solved in two steps. First, the visible currents, i.e. currents that
generate a non-zero field at the detector positions, are reconstructed through a pseudo-
inverse of the scattering matrix and, secondly, the invisible currents are recovered with
a conjugate gradient (CG) optimization of a cost function. In one case this latter cost
function is the domain cost function from the CSI method, which is minimized by al-
ternatingly updating the contrast currents and the permittivity contrast and in the other
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case, it is the new consistency cost function of the CI method, which is minimized
by only updating the contrast currents. This two-step approach eliminates all normal-
ization and trade-off parameters and therefore avoids the question of how to choose
these optimally. This is especially useful since those optimal parameters are likely to
be different for the CI and CSI methods, which hampers an objective comparison of
the two approaches. Note that CSI-like or modified-gradient-like methods exist which
do not use alternating updates for field unknowns and material unknowns, see e.g. [5].
We do not make any statements in this chapter regarding such methods.

The second contribution of this chapter is the application of the stepwise relaxed
value picking (VP) regularization scheme, presented in Section 4.3 for the conven-
tional approach, to the CI method, yielding the VPCI method.In the CI method, the
permittivity is absent in the optimization problem and any regularization that oper-
ates on the spatial distribution of the permittivity is therefore not applicable to the CI
method. VP regularization, due to its completely differentnature, can be applied here.
The incorporation of VP regularization in a contrast sourcebased method such as the
CI method is somewhat more complicated than its use in a conventional method, but
the quality of the reconstructions is again greatly improved.

The implementation of the CI method has so far only been done for 2D inverse
scattering problems with transverse magnetic (TM) polarization. Therefore, this chap-
ter starts with a reformulation of the inverse scattering problem for this configuration.
The CI method and the incorporation of the VP regularizationin this method are dis-
cussed subsequently.

6.1 Problem formulation and discretization

A 2D inhomogeneous scatterer with complex permittivityǫ(ρ) and magnetic perme-
ability µ0 (the permeability of vacuum) is embedded in an infinite homogeneous back-
ground with permittivityǫb and permeabilityµ0 and lies completely within a bounding
boxD. The position vector in the plane spanned by the orthogonal unit vectorsx̂ and
ŷ is denotedρ = xx̂ + yŷ. There areI equidistant source-detector positionsρi,
i = 1, . . . , I, on a circle with radiusR around the center ofD. The source is a line
current parallel to thez-axis, which illuminates the object from successive positions
ρi and which is time-harmonic with angular frequencyω. In the following, the time
dependencyejωt has been omitted (in all the examples of this chapter the frequency
is fixed to1 GHz). In the TM situation considered here, the electric fieldonly has a
z-component, i.e.E(ρ) = E(ρ)ẑ, hence a scalar problem remains [6].

The incident fieldEinc
i (ρ) due to a unit line current inρi is

Einc
i (ρ) = jωµ0Gb(ρ − ρi). (6.1)

The Green functionGb is given byGb(ρ−ρi) = j
4H

(2)
0 (kb‖ρ−ρi‖), in whichH

(2)
0



6.1 Problem formulation and discretization 165

is the zeroth order Hankel function of the second kind andkb = ω
√

µ0ǫb is the wave
number of the background medium. The corresponding total field Ei(ρ) is governed
by the contrast source volume integral equation

Ei(ρ) = Einc
i (ρ) + jωµ0

∫

D

Gb(ρ − ρ′)jωχ(ρ′)Ei(ρ
′)dρ′, ∀ρ (6.2)

in which χ = ǫ − ǫb is the contrast function, which is zero outsideD. Once (6.2)
is solved forEi(ρ) insideD, the scattered fieldEs

i (ρl) = Ei(ρl) − Einc
i (ρl) at the

detector positionsρl can be calculated as

Es
i (ρl) = jωµ0

∫

D

Gb(ρl − ρ′)jωχ(ρ′)Ei(ρ
′)dρ′. (6.3)

The 2D inverse scattering problem consists of solving the data equation (6.3) for the
unknown functionχ, starting from known values ofEs

i (ρl), i, l = 1 . . . I, and subject
to the domain equation (6.2). Since the total field depends onχ(ρ) through (6.2), this
is a nonlinear problem.

For the discretization of (6.2)-(6.3), the investigation domainD is divided inN

square cells and a Garlerkin Method of Moments is applied in which the total field
and the contrast function are expanded in pulse basis functions, i.e. in celln, the field
Ei(ρ) and the contrastχ(ρ) assume the constant valuesEi,n andχn respectively.
This yields the following matrix equation:

ei = einc
i + jωZXei, (6.4)

where the elements of theN -dimensional vectorsei and einc
i and of theN × N

matricesZ andX are given by

[ei]n = Ei,n, (6.5)
[

einc
i

]

n
=

∫

n

Einc
i (ρ)dρ, (6.6)

Zn,n′ = jωµb

∫

n

∫

n′

Gb(ρ − ρ′)dρdρ′, (6.7)

Xn,n′ = δn,n′χn, (6.8)

in which δn,n′ is the Kronecker delta. The integral signs in (6.6) and (6.7)denote
integration over single cells and the interaction integrals in (6.7) are calculated as in
[7], where the two 2D numerical integrations are replaced with a single 1D quadrature
and some analytical integrations, also taking into accountthe singularity inGb very
elegantly. Within the same discrete framework, the data equation (6.3) can be replaced
by a matrix equation

es
i = jωAXei. (6.9)
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The entries of theI-dimensional vectorses
i and of theI × N matrixA are

[es
i ]l = Es

i (ρl), (6.10)

Al,n = jωµb

∫

n

Gb(ρl − ρ)dρ. (6.11)

(6.12)

Note that, thanks to the convolutional symmetry of (6.7), the multiplication ofZ with
the vectorXei in (6.4) can be done very efficiently with the use of Fast Fourier Trans-
forms (FFT’s) [8,9], which is also the case for the multiplication ofZH (the conjugate
transpose ofZ) with a vector (this is needed to calculate gradient vectorsin the fol-
lowing).

6.2 Consistency inversion

6.2.1 Consistency cost function

In the discrete formulation, the inverse problem consists of determining the diagonal
contrast matrixX from known scattered field vectorses

i , such that (6.9) and (6.4) are
satisfied, for all illuminationsi = 1, . . . , I. In the conventional approach, whereX

is updated iteratively until (6.9) is (approximately) satisfied, the total field vectorsei

in each iteration are calculated by solving the discrete domain equation (6.4). The
drawback of this approach is the necessity to solve several forward problems, which
is computationally expensive, even with fast methods as theFFT-method. The CSI
method does not solve any forward problem, but uses a conjugate gradient optimiza-
tion method that alternately calculates updates for the contrast matrixX and the set of
contrast current vectorsji until following two equations are (approximately) satisfied:
a data equation

es
i = Aji (6.13)

and a modified domain equation

ji = jωXei, (6.14)

where the field vectorsei are a function of the contrast current vectors:

ei = einc
i + Zji. (6.15)

It is well known that the contrast current vectors are not entirely determined by (6.13),
because in a realistic setup the matrixA has less rows (I) than it has columns (N )
and hence has a null space [10]. The components ofji in this null-space have to
be determined by (6.14) and (6.15). In the conventional approach, (6.14) and (6.15)
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are simultaneously satisfied at any time, while in the CSI method this is gradually
achieved throughout the optimization. Typically, in a CSI implementation, a cost
function of the following form is minimized:

F(j1, . . . , jI ,X) = γFD(j1, . . . , jI) + λFCSI(j1, . . . , jI ,X), (6.16)

where the data fit cost functionFD and the domain cost functionFCSI are given by

FD(j1, . . . , jI) =

∑I
i=1 ‖es

i − Aji‖2

∑I
i=1 ‖es

i‖2
(6.17)

FCSI(j1, . . . , jI ,X) =

I
∑

i=1

‖ji − jωXei‖2. (6.18)

The positive constantγ is a trade-off parameter andλ is a normalization constant,
which possibly varies over the iterations of the minimization algorithm as in [1, 3],
where it is chosen in them-th iteration as

λm =
1

∑I
i=1 ‖ωXm−1einc

i ‖2
. (6.19)

The meaning of (6.14) is that the ratio of the contrast current in a certain cell of the
discretization grid and the total field in the same cell is independent of the illumina-
tion. We call this “consistency”. This consistency can be imposed in yet another way.
Indeed, the following statement can easily be proven:

If, for the generalN -dimensional vectorsji andei, i = 1, . . . , I, the condition

∀i : ∄ n for which [ei]n = 0 and [ji]n 6= 0, (6.20)

is satisfied, the following statements are equivalent:
i) a bounded diagonal matrixX exists such that

ji = jωXei, ∀i. (6.21)

ii)
ji ◦ el = ei ◦ jl, ∀i, l. (6.22)

In (6.22), “◦” stands for element-wise multiplication of twoN -dimensional vec-
tors. If (6.21) holds, then (6.22) immediately follows. In the other direction, condition
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(6.20) ensures that bounded diagonal matricesXi exist such that

ji = jωXiei, (6.23)

and then (6.22) implies that these diagonal matrices can be chosen equal to each other:
Xi = X, ∀i.

Because of the above property, we propose to replace the domain cost function
FCSI in (6.16) by the consistency cost function

FCI(j1, . . . , jI) =
∑

k∈K

I
∑

i=1

‖ji ◦ ei−k − ji−k ◦ ei‖2, (6.24)

whereK is a (random) set of numbers between1 andI and periodic boundary condi-
tions for the indices are used, i.e.ji = ji+I andei = ei+I , and whereei is computed
with (6.15). The contrast matrixX is then no longer an optimization unknown. We
furthermore choose to modify the data fit term:

F(j1, . . . , jI) = γ
[

FD(j1, . . . , jI) − h
]2

+ λFCI(j1, . . . , jI). (6.25)

The constanth is an estimate of the noise level, i.e. the data fitFD(j0
1, . . . , j

0
I)

obtained for the contrast currentsj0
i that correspond to the discrete contrast profile

X0 which best approximates the actual contrast profile. With this modification, the
first term in (6.25) can be minimized to zero (or close to zero)even if the data are
noisy, thus avoiding a trade-off between data fit and consistency at the end of the
minimization.

Both cost functions (6.16) and (6.25) are conveniently minimized using a conju-
gate gradient approach. In both the CSI and the CI methods, the contrast currents are
updated by performing a line search along a Polak-Ribière search direction in each
iteration. Appendix C discusses this in more detail. In the CSI method, the contrast
matrixX also has to be updated in every iteration and this can be done as in [1,3] (for
the unregularized CSI method without upper and lower boundson the permittivity) by
taking

Xm
n,n =

1

jω

∑I
i=1 ([em

i ]n)
∗
[jm

i ]n
∑I

i=1 |[em
i]n|2

(6.26)

in iterationm, a choice which minimizes (6.18) for fixedem
i andjm

i . The CSI method
thus alternatingly updates the contrast currents and the contrast. By using the cost
function (6.25), the CI method avoids these alternating updates. This may reduce the
number of iterations in the optimization. Indeed, in the beginning of the optimization,
when the contrast currents are still far from the solution, the CSI update of the contrast
(6.26) is based on incorrect contrast currents and is not likely to be much closer to the
actual contrast. The subsequent update of the contrast currents, is again based on this
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incorrect contrast, such that it is possible that not much progress is made.
The CI method only retrieves the contrast at the end of the minimization of (6.25)

by using (6.26), wherem in this case denotes the final iteration of the CI method.
If, at this point, condition (6.20) is not satisfied, the CI method, strictly speaking,
has not found a solutionX to the inverse scattering problem, because then (6.21)
does not follow from (6.22). However, this situation has notbeen encountered in our
experiments with the method and even if it occurs, it is stillpossible to obtain an
estimate of the contrast using (6.26), as long as for every cell n there is a non-zero
[em

i ]n for some illuminationi.

6.2.2 Motivation for the CI method

In this section we test wether the CI method can indeed yield faster convergence than
the CSI method. Because we cannot use the choice (6.19) for the parameterλ in the
CI method, since the contrast has been eliminated, it is not clear which choice of the
normalization parameter allows for an objective comparison of the two approaches.
Also, in our implementation of the CI method, we use the modified data term as in
(6.25) with an adjustableγ, while the CSI method in [1, 3] uses (6.16) withγ = 1.
In this dissertation a preliminary test under ideal circumstances is conducted using a
two-step procedure which avoids difficulties with the choice of the normalization and
trade-off parameters as well as the form of the data term. These ideal circumstances
assume that a contrast matrixX and contrast currentsji exist for which (6.13), (6.14)
and (6.15) are exactly satisfied, i.e. when there is no noise on the data and when the
vectorses

i have been generated with the same discretization as is used in the inverse
problem.

Under such assumption, the first step of the two-step procedure retrieves the visible
currentsjV

i , i.e. the components of the contrast currentsji that do not lie in the null
space ofA, by solving (6.13) for its minimum norm solution:

jV
i = V S−1UHes

i , (6.27)

where the matricesU , S andV form the thin Singular Value Decomposition (SVD)
of A, i.e.

A = USV H . (6.28)

The dimensions of the matricesU , V and S are (I × I), (N × I) and (I × I)

respectively. BothU andV have orthonormal columns that span the range ofA and
the range ofAH respectively.S is a diagonal(I×I)-matrix that contains the non-zero
singular values ofA. Note that, even for large inverse scattering problems, where N

becomes very large,I generally remains relatively small and the thin SVD ofA can be
computed quite efficiently. The projections of the contrastcurrentsji on the null space
of A, i.e. jNV

i = ji − jV
i = ji − V V Hji, are denoted the invisible current vectors
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and have to be determined by minimizing (6.18) or (6.24). Note that, historically, a
number of attempts have been made to only use the pseudo-inverse solution (6.27) to
reconstruct the contrast currentsji and from those the permittivity in the investigation
domain [11, 12]. In [10] it is shown that this is not a viable approach and that the
invisible currents have to be taken into account.

Since the visible currents have been determined exactly, the data fit cost function
(6.17) is zero irrespective of the invisible current vectors and if we further only opti-
mize for the invisible currents in the second step of the two-step procedure, it remains
zero. The minimization of (6.18) and (6.24) with respect to the invisible currents is
achieved by performing line searches along conjugate gradient update directions for
the invisible current vectorsjNV

i only. In Appendix C it is shown how these steps can
be taken in the null space ofA without constructing a basis for this null space. The
line search in both methods simply consists of finding the roots of a polynomial which
is linear in the CSI formulation and cubic in the CI formulation. The gradient vectors
needed by the conjugate gradient method are given in Appendix D. After every update
of the contrast sources in the CSI formulation, the contrastmatrixX has to be updated
and this is achieved in our implementation with (6.26).

Figure 6.1 shows two discretized real permittivity profileswhich are used as test
cases for the comparison. Test case 1 (Figure 6.1 (a)) consists of a larger cylinder with
a diameter2λb (0.60 m) (λb = 0.30 m is the wavelength in the background medium)
and permittivity1.5ǫ0 with inside it a smaller cylinder with diameter0.8λb (0.24 m)
and permittivity2ǫ0. Test case 2 (Figure 6.1 (b)) consists of two non overlapping
cylinders with diameter0.8λb (0.24 m), one with permittivity1.7ǫ0 and one with
permittity2ǫ0. In both cases the permittivity grid is a25×25 grid with cell size0.1λb

(0.03 m) and the background medium is air (ǫb = ǫ0). To simulate the scattering data,
40 line sources are placed on a circle with radiusR = 3λb (0.9 m) (Figure 6.2) and for
each such illumination (6.4) is solved and (6.9) evaluated for detectors in all source
positions. For these test cases, we plot (6.18) after every iteration in the CSI approach
and after every iteration in the CI method, we calculateX with (6.26) and then also
plot (6.18) (note that the calculation ofX is only performed here for visualization
purposes and is not included in a normal iteration of the CI method). We are therefore
comparing two ways of minimizing the CSI cost function (6.18).

Figure 6.3 shows the result over200 iterations. Different, randomly chosen setsK

in the definition ofFCI are considered and apparently, for all the sets except the small-
est one (1k-value), the CI formulation yields faster convergence and abetter overall
consistency than the CSI formulation in both test cases. Increasing the setK yields a
longer computation time per iteration, although this increase is limited, since no extra
multiplications withZ (to calculate the field vectors in (6.15)) orZH (to calculate the
gradient vectors, see Appendix D) are introduced. However,a larger setK apparently
also reduces the number of iterations needed to reach a certain consistency, although
there is not much difference between the cases with3 and5 k-values. The real part of
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the permittivity after200 iterations of the CSI formulation and of the CI formulation
with K = {34, 19, 16} is shown in Figure 6.4 for test case 1 and in Figure 6.5 for test
case 2. Apparently both methods yield similar reconstructions. The CI reconstruc-
tions are slightly better than the CSI reconstructions, butnot significantly. Indeed, let
the reconstruction error be defined as

errǫ =

√

√

√

√

∑N
n=1 |ǫr

n − ǫr,0
n |2

∑N
n=1 |ǫ

r,0
n |2

, (6.29)

where ǫr,0
n is the ideal relative permittivity in celln, corresponding toX0. This

reconstruction error for test case1 is errǫ = 0.052 for the CI reconstruction and
errǫ = 0.071 for the CSI reconstruction, while for the test case2, these values are
0.077 and0.080 respectively.

In these idealized circumstances, the CI approach thus indeed yields faster con-
vergence, i.e. needs less iterations to obtain the same level of consistency, and when
lower values forFCSI are required, this difference seems to grow. However, the com-
putation time per iteration is longer in the CI method. For the examples above, one
iteration of the CSI method takes 0.12 s in our MATLAB implementation. The CI
method requires 0.15 s, 0.20 s, 0.24 s and 0.33 s, respectively for a setK with 1, 2, 3
and 5 values, respectively. However, it can be seen from Figure 6.3 that, depending on
the desired level of consistency, the CI method can still be faster than the CSI approach
in the considered circumstances. For example, to reach a normalized consistency of
10−4 for test case 1, the CSI method needs 200 iterations, while the CI method with
K = {34, 19, 16} only needs 30, which yields a total speedup factor of 3.33. Intest
case 2, the CSI method achieves a normalized consistency of5 · 10−5 in 200 itera-
tions, while the same consistency is reached in 80 iterations in the CI method with the
same setK. The CI method then is still 1.25 times faster. To determine which one of
the methods is preferred in general circumstances with noisy data, or in cases where
regularization is applied to the cost functions, more research is needed.

ℜ(ǫ/ǫ0)

(a)

ℜ(ǫ/ǫ0)

(b)

Figure 6.1: The (real) permittivity profiles of test case 1 (a) and test case 2 (b).
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Figure 6.2: The permittivity grid and line source configuration for the reconstructionsof test
case 1 (Figure 6.1 (a)) and test case 2 (Figure 6.1 (b)). The grid is square with side2.5λb (0.75
m) and has cell size0.1λb (0.03 m) and 40 line sources are distributed over a circle with radius
3λb (0.9 m), which is centered at the center of the permittivity grid.
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Figure 6.3: The domain cost functionFCSI for the reconstructions of test case 1 (a) and test
case 2 (b) from noiseless data using the CSI method and the CI method with different setsK
in the definition (6.24). The curves have been normalized with a single normalization factor,
common to all curves.
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ℜ(ǫ/ǫ0)

(a)

ℜ(ǫ/ǫ0)

(b)

Figure 6.4: Reconstructions after 200 iterations of test case 1 from noiseless data. Results
obtained with the CSI method (a) and with the CI method (b).

ℜ(ǫ/ǫ0)

(a)

ℜ(ǫ/ǫ0)

(b)

Figure 6.5: Reconstructions after 200 iterations of test case 2 from noiseless data. Results
obtained with the CSI method (a) and with the CI method (b).

6.3 Value picking regularization

It is clear from Figures 6.4 and 6.5 that both unregularized CSI and CI formulations
do not succeed in obtaining perfect reconstructions even under noise free conditions.
This conclusion stands even after continued minimization:after 1000 iterations the
permittivity profiles still look much like Figure 6.4 and Figure 6.5 and the reconstruc-
tion errors are0.05 and0.071, respectively, for the CI and CSI reconstructions of test
case1 and0.076 and0.080, respectively, for the CI and CSI reconstructions of test
case2. The reconstructions thus have hardly improved or have evenslightly deteri-
orated. Therefore regularization needs to be added, not only to mitigate the effect of
noise on the data, but even to make the inverse crime problem better posed.

For the CSI method, several regularization approaches havebeen applied. Since
they all act directly on the contrast, they cannot be appliedto the CI method, in which
the contrast is absent during the optimization. Value Picking (VP) Regularization,
however, can be modified and applied to the CI method, withoutre-introducingN
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contrast unknowns. This yields the VP regularized consistency inversion or VPCI
method. We show that this method is especially suited to reconstruct piecewise con-
stant permittivity profiles, for example the ones of Figure 6.1.

6.3.1 The VPCI cost function

The idea is to enforce the property that the contrast matrixX only contains a small
numberP of different valuescp with p ∈ {1, . . . , P}, which act as auxiliary variables
and are denoted the VP values. This is done by minimizing the cost function

F(j1, . . . , jI , c) = γ
[

FD(j1, . . . , jI) − h
]2

+ λ1FP (j1, . . . , jI , c), (6.30)

where the VPCI functionFP is given by

FP (j1, . . . , jI , c) =
N
∑

n=1

fP (Un + λ2Vn,1, . . . , Un + λ2Vn,P ), (6.31)

with

Un(j1, . . . , jI) =

I
∑

i=1

∑

k∈K

∣

∣[ji]n[ei−k]n − [ji−k]n[ei]n
∣

∣

2
, (6.32)

Vn,p(j1, . . . , jI , c) =

I
∑

i=1

Hi,n |[ji]n − jωcp[ei]n|2 , (6.33)

Hi,n =
∑

k∈K

∣

∣[einit
i−k]n

∣

∣

2
, (6.34)

λ1 =
1

FP (jinit
1 , . . . , jinit

I , cinit)
. (6.35)

In (6.31),c is the vector of VP values andfP is theP -dimensional choice function,
defined in (4.41). The functionUn expresses consistency for celln of the permittivity
grid and the functionVn,p expresses the error in (6.14) for celln whenXn,n = cp.
The positive parameterγ determines the trade-off between data fit and regularized
consistency and the parameterλ2 is a regularization parameter. The normalization
constantsλ1 andHi,n are computed for initial estimatesjinit

i for the contrast current
vectors,einit

i for the field vectors andcinit for the VP values. Note that the last VP
valuecP is fixed to zero (the contrast of the background medium), because we are
certain that this value will occur inX.
The three most important properties of the choice function are (see Appendix B for an
extensive list of properties and their proofs):

i) the positive choice functionfP is zero (and thus minimal) if and only if at least
one of its arguments is zero (see Theorem B.4),
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ii) when Pl arguments offP are much larger then the otherPs = P − Pl argu-
ments,fP reduces tofPs evaluated in the smaller arguments (see (B.25)),

iii) when all its arguments are equal and change in an identical way,fP is a scaled
version off1, i.e. fP (u, . . . , u) ∝ f1(u) = u (see Theorem B.5).

In (6.30), the consistency requirement and the regularization are both incorporated
in the functionFP . According to property i), this function is zero if and only if
consistency is reached for every celln (i.e. Un = 0, ∀n) and if this consistency
is realized withXn,n = cp, for somep ∈ {1, . . . , P} (i.e. Vn,p = 0). In other
words, minimization ofFP imposes consistency as well as the choice of one VP
value for each cell to represent the contrast in that cell. From properties ii) and iii), it
is furthermore observed that when (6.30) is minimized

• initially only consistency is enforced since with properlychosenλ2 the opti-
mization starts withUn ≫ λ2Vn,p. All the arguments thus are of comparable
size and therefore they are simultaneously minimized, because of property iii).

• after a while, when some consistency is already present, thedifferences between
the arguments of the choice functions introduced by the functionsVn,p become
important. Gradually, the larger arguments will be disregarded and the smaller
arguments will be further minimized, because of property ii).

• finally, the VP regularization picks one VP valuecp for each celln to enforce
(6.14) through the minimization of the corresponding functionsVn,p andUn.

Note that it is possible that VP values merge in the course of the minimization.

6.3.2 The minimization

The algorithm for the minimization of the cost function (6.30) consists of alternately
updating the contrast currents and the VP values. The updates of the contrast currents
are still obtained with a line search along a conjugate gradient search direction (see
Appendix D for the expressions of the gradient vectors). Since the cost function (6.30)
is no longer polynomial in the line parameter (because the choice function is not linear
for P > 1) the line search can no longer be performed by polynomial root finding and
it might seem at first glance that more general line search algorithms have to be used,
which would probably increase the computation time considerably. However, this
can be avoided by using Theorem B.11 and Conjecture B.1 of Appendix B. Indeed,
consider the fourth order function

QP (j1, . . . , jI , c) =

N
∑

n=1

P
∑

p=1

Wn,p (Un + λ2Vn,p) , (6.36)
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where theWn,p represent constant weight factors with0 ≤ Wn,p ≤ 1. In iteration
m of the iterative minimization, which starts from the estimates(jm

1 , . . . , jm
I ) for the

current vectors andcm for the VP vector, these weights are calculated initially as

Wn,p = BP
p (Um

n + λ2V
m
n,1, . . . , U

m
n + λ2V

m
n,P ), (6.37)

where the functionsBP
p are defined in Appendix B and where the superscriptm in-

dicates quantities evaluated for(jm
1 , . . . , jm

I , cm). Because of Theorem B.11 and
Conjecture B.1, the modified cost function

FQ(j1, . . . , jI , c) = γ
[

FD(j1, . . . , jI) − h
]2

+ λ1QP (j1, . . . , jI , c) (6.38)

touches withF in (jm
1 , . . . , jm

I , cm) and lies aboveF in all other points. There-
fore, minimizingFQ along a descent direction starting from(jm

1 , . . . , jm
I , cm) will

also reduceF . After this initial line search onFQ yielding (jm,1
1 , . . . , jm,1

I , cm),
the weightsWn,p are updated using (6.37) evaluated in(jm,1

1 , . . . , jm,1
I , cm), such

thatF andFQ touch again in this point. Then the procedure is repeated to obtain
(jm,2

1 , . . . , jm,2
I , cm) etc. When, afterq cycles no improvements are made in this

rapid sequence of polynomial line searches, the currents are updated from(jm
1 , . . . , jm

I )

to (jm+1
1 , . . . , jm+1

I ) = (jm,q
1 , . . . , jm,q

I ).
To subsequently update the VP values, the same fourth-orderapproximation (6.36)

of the choice function is employed. It can be observed from (6.36) and (6.33) thatFQ

is quadratic in the VP values. This means that, to minimizeFQ for fixed weightsWn,p

and for fixed contrast current vectors(jm+1
1 , . . . , jm+1

I ), a simple quadratic program-
ming method can be used [4]. Moreover, it is very simple to introduce constraints on
the VP values in such a method, yielding a quadratic active set method (see Section
4.3.2 or [4]). Again this quadratic minimization can be repeated in a sequence where
the weightsWn,p are updated until no further progress is made. At this point we have
completed iterationm and have obtained(jm+1

1 , . . . , jm+1
I , cm+1).

6.3.3 Stepwise relaxed VP regularization

An issue unmentioned until now is the choice of the number of VP valuesP . It might
be that the ideal value ofP is known in advance, but certainly this is not always
the case. In theory the value ofP can be larger than the actual number of different
permittivity values in the profile, since the VP regularization algorithm allows for the
merging of two or more VP values. In practice however, it is best to letP be as small
as possible, since a larger number of VP values introduces a larger freedom in the
optimization space, which is not always beneficial, especially not in the beginning
of the minimization. Indeed, when still far from the solution, the VP regularization
might make incorrect choices, i.e. choices that prevent simultaneous satisfaction of
the requirements of data fit and consistency. Although such choices may be corrected
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by further minimization of the cost function, they may also lead to local minima in the
cost function in which the local optimization algorithm canget trapped. Therefore we
choose to adopt a stepwise relaxed VP regularization, whichin Chapter 4 has proven
to be a good strategy to avoid the problem of incorrect choices and which can also be
seen as an extra updating scheme for the auxiliary discrete variableP .

In the stepwise relaxed VP regularization strategy, the minimization is started from
an initial estimate (see Section 6.3.4) withP = 1 and a sufficiently large regularization
parameterλ2. When the convergence rate has decreased below a predefined threshold,
an extra VP value is introduced. This relaxes the VP regularization, as can be seen
from Theorem B.10 in Appendix B. WithP = 2 the minimization is continued until
again stagnation occurs. Each time a VP value is added this way until this introduces
no further progress. The addition of a VP value is done by initializing it at random
(making sure it does not coincide with an already present VP value) and applying the
repeated quadratic minimization algorithm which is mentioned at the end of Section
6.3.2.

6.3.4 Initial estimate

Before the iterations with VP regularization are started, afirst estimate of the contrast
currents is obtained using unregularized consistency inversion, i.e. by minimizing
(6.25). These first iterations are stopped quite early, because high accuracy is not
needed. To initialize this initial consistency inversion itself, an estimate of the visible
currents is first obtained from (6.13). However, whereas in Section 6.2.2 the visible
parts of the current vectors were obtained exactly using thepseudo-inverse ofA, this
is no longer possible due to noise on the data: the minimum norm solution to (6.13)
fits the data perfectly, including the noise, which is not thecase for the actual visible
current vectors. Moreover,A is typically ill-posed and the minimum norm solutions
can be very different from the actual visible current vectors due to noise amplification.
Therefore we consider a Tikhonov regularized solution to (6.13) (see Section 2.2):

jR
i,α = V

(

S2 + αI
)−1

SUHes
i . (6.39)

The regularization parameterα is obtained using the discrepancy principle [13], i.e.α

is such that
∑I

i=1 ‖es
i − AjR

i,α‖2

∑I
i=1 ‖es

i‖2
= h. (6.40)

As a consequence the initial contrast currents already yield a data fit on the noise
level. The first term in (6.25) and (6.30) thus simply keeps the data fit around the
noise level during the optimization and is squared to keep the cost function positive.
This is a generalization of the strategy we employ in the noiseless case, where the data
fit is satisfied exactly after the visible currents have been determined by (6.27) and
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where the further optimization only looks for the invisiblecurrents and leaves the data
fit unaltered. The normalization parameterλ in the initial minimization of (6.25) is
chosen as

λ =
1

FCI(jR
1,α, . . . , jR

I,α)
. (6.41)

6.4 Numerical examples

To illustrate the effect of the VP regularization on the CI inversion method, the same
test cases as in Section 6.2.2 are first considered. For both test cases, we start with
an inversion from noiseless data. As mentioned above, the unregularized CI and CSI
methods do not succeed in obtaining a quasi-perfect reconstruction even under such
inverse crime conditions. If the VP regularization is used,the result is improved dras-
tically. For all the following reconstructions with VP regularization, the regularization
parameter isλ2 = 0.001 and we impose physical constraints on the VP values:

ℜ(cp) ≥ 0.0, ∀p (6.42)

ℑ(cp) ≤ 0.0, ∀p. (6.43)

The following stopping criteria are used for the different steps in the stepwise relaxed
VPCI scheme (an iteration in the following refers to a complete update of the opti-
mization variables, i.e. a line search along a CG direction and possibly an update of
the VP values):

• The initial CI iterations (minimizing (6.25)) are stopped whenF < 0.01, when
the relative difference|∆F|/F between two subsequent iterates is smaller then
0.001 or after500 iterations

• Every step in the stepwise relaxed VPCI scheme (minimizing (6.30) for fixed
P ) is stopped whenF < 10−6, when|∆F|/F < 0.001 or after500 iterations

• When adding a new VP value leads to only one additional iteration before the
minimization is stopped by the above stopping criterion, this last step in the
stepwise relaxed VP regularization scheme is disregarded and the complete al-
gorithm is stopped.

Using these criteria, the result in Figure 6.6 is obtained. The number of iterations
which the algorithm performed during the initial CI inversion and the subsequent
VPCI inversions with increasing number of VP values is givenin Table 6.1. For both
test cases the correct number of VP values is obtained and thereconstruction error
is only 4.6 · 10−4 for test case1 and2.9 · 10−4 for test case2, two virtually perfect
reconstructions.
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Test case1
CI P = 1 P = 2 P = 3 P = 4

noiseless 12 28 140 418 /
30 dB 72 43 61 500 15
20 dB 57 46 81 474 /

Test case2
noiseless 14 44 258 350 /
30 dB 60 47 262 439 /
20 dB 56 38 300 353 /

Table 6.1: The number of iterations in every step (initial CIinversion and the subsequent steps
with increasing number of VP valuesP ) of the stepwise relaxed VPCI reconstructions of the
targets of Figure 6.1 for different values of the SNR.

ℜ(ǫ/ǫ0)

(a)

ℜ(ǫ/ǫ0)

(b)

Figure 6.6: Reconstructions of test case 1 (a) and test case (2) from noiseless data using the
stepwise relaxed VPCI method withλ2 = 0.001.

Next the data is corrupted with noise. We add Gaussian noise to the data of both
test cases, once with an SNR of30 dB and once with an SNR of20 dB. As mentioned
before the data fit term in (6.30) must keep the data fit on or close to the noise levelh,
while the second term is minimized to yield consistency. If the noise levelh is exactly
known, the proposed cost function (6.30) can in principle beminimized to zero, since
it is zero for the actual permittivity profile. Therefore, with this cost function there is
no real trade-off between data fit and consistency in the minimum of the cost function
as is the case, for example, for CSI inversion with the cost function (6.16). Ifh is
only an approximation of the actual noise level, however, there is a trade-off, which
is regulated by the parameterγ. To make sure that the degree of consistency is high
enough when convergence is reached in such a situation, it seems logical to give more
weight to the consistency term when there is more noise on thedata, since more noise
also implies a larger uncertainty on the noise level. It is, however, not clear that the
regularization parameterλ2 should be modified in case of noisy data, since it merely
determines the level of consistency where the VP regularization starts picking VP
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values. Therefore, we try keeping it fixed to the valueλ2 = 0.001 which is also used
for the noiseless data. The parametersγ andh are chosen asγ = 105 andh = 0.001

in case of the30 dB data and asγ = 104 andh = 0.01 in case of the20 dB data.
The reconstructions with30 dB noise are shown in Figure 6.7. From Table 6.1

it follows that the algorithm overestimates the number of VPvalues in test case1,
probably because the iterations withP = 3 are terminated when the maximum number
of iterations is reached and not when convergence has occurred. However, two VP
values are close to each other (0.474·10−11 and0.443·10−11, corresponding to relative
permittivities 1.535 and 1.500) and the reconstruction error is 0.015. With respect to
the exact profile, some incorrect choices were made by the VP regularization along the
contour of the largest object (close to the leftmost corner of the smaller inclusion as
seen in Figure 6.7 (a)). For test case2 the correct number of VP values is obtained and
the reconstruction error is0.022. An incorrect choice has been made for the pixel on
the lefmost corner of the object with permittivity2ǫ0. The reconstructions with20 dB
noise are shown in Figure 6.8. This time the correct number ofVP values is obtained
for both test cases, as can be seen in Table 6.1, and the reconstruction errors are0.02

and0.044, respectively, for test case1 and test case2. Again the main causes of error
are some incorrect VP choices along the outline of the objectwith lowest permittivity
in test case 1 and the object with the highest permittivity intest case 2. However, it
is clear that, even with noise on the data the VPCI results aremuch better than the CI
and CSI reconstructions of the noiseless data.

ℜ(ǫ/ǫ0)

(a)

ℜ(ǫ/ǫ0)

(b)

Figure 6.7: Reconstructions of test case 1 (a) and test case (2) from noisy data withSNR= 30

dB using the stepwise relaxed VPCI method withλ2 = 0.001, h = 0.001 andγ = 105.
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ℜ(ǫ/ǫ0)

(a)

ℜ(ǫ/ǫ0)

(b)

Figure 6.8: Reconstructions of test case 1 (a) and test case (2) from noisy data withSNR= 20

dB using the stepwise relaxed VPCI method withλ2 = 0.001, h = 0.01 andγ = 104.

The last example is adopted from literature, more specifically from [2], where
a CSI method with both smoothing and total variation regularization is used. The
target is a square cylinder with sideλb (0.3 m) and permittivity(1.6 − 0.2j)ǫ0 which
is enclosed in a larger square with side2λb (0.6 m) and permittivity(1.3 − 0.4j)ǫ0
(Figure 6.9). The discretization grid is a29 × 29 grid with side3λb (0.9 m). Both
squares and the grid are centered at the origin. The illuminating line sources are
evenly distributed over a circle with radiusR = 3λb (0.9 m) andI = 29. For this
third example, denoted test case 3, the inversion parameters are the same as before, i.e.
λ2 = 0.001 and depending on the SNR,30 dB or20 dB respectively, the parametersγ

andh are chosen asγ = 105 andh = 0.001 or asγ = 104 andh = 0.01, respectively.
The setK, however, is different, because the number of line sources is different.
This set is nowK = {7, 17, 27}. Figure 6.10 shows the result for a reconstruction
of noiseless data. The reconstruction is again almost perfect (errǫ = 6.2 · 10−4) and
from Table 6.2 we conclude that the correct number of permittivity values is estimated.
When noise is added to the data, we obtain the results from Figure 6.11 for SNR= 30

dB and Figure 6.12 for SNR= 20 dB. In both cases the number of VP values is
overestimated. However, for SNR= 30 dB two VP values are very close to each other
(relative permittivities(1.307− 0.399j) and(1.307− 0.400j)) and the reconstruction
error is only7.3 · 10−3, which is less than1% and thus also almost perfect. Only in
the reconstruction with SNR= 20 dB does the noise have a noticeable influence on
the reconstruction. Here, some incorrect choices are made along the outline of both
squares and the algorithm only terminates forP = 5, but the reconstruction error is
still only 0.041 and the VP values fall apart in two pairs of close values (permittivities
(1.297 − 0.393j) and(1.299 − 0.390j) on the one hand and(1.520 − 0.267j) and
(1.550−0.228j) on the other hand). To appreciate this result more, Figure 6.13 shows
the reconstruction for SNR= 20 dB obtained by the CI method without regularization
after192 iterations (to reach the stopping criterionF < 10−6), which is clearly worse
than the reconstruction with the VPCI method. Not only is thereconstruction error
larger (errǫ = 0.093), the boundaries of the squares cannot easily be distinguished
and two permittivity values for the squares are not readily identified, in contrast to
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the result of Figure 6.12. The reconstructions of test case 3, obtained with the VPCI
method are of comparable quality as those obtained in [2, 3] with the CSI method
with TV regularization. To conclude, Figure 6.14 shows the convergence of both
unregularized CI and CSI methods in the inverse crime conditions of Section 6.2.2.
Under these circumstances, the CI approach again yields faster convergence.

Test case3
CI P = 1 P = 2 P = 3 P = 4 P = 5

noiseless 12 56 148 293 / /
30 dB 70 72 279 500 104 /
20 dB 39 63 393 500 33 2

Table 6.2: The number of iterations in every step (initial CI inversion and the subsequent steps
with increasing number of VP valuesP ) of the stepwise relaxed VPCI reconstructions of the
target of Figure 6.9 for different values of the SNR.

ℜ(ǫ/ǫ0)

(a)

−ℑ(ǫr
n)

(b)

Figure 6.9: The (complex) permittivity profile of test case 3. Real part (a) and inverse of the
imaginary part (b).

ℜ(ǫ/ǫ0)

(a)

−ℑ(ǫ/ǫ0)

(b)

Figure 6.10: Reconstruction of test case 3 from noiseless data using the stepwise relaxed VPCI
method withλ2 = 0.001. Real part (a) and inverse of the imaginary part (b).
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ℜ(ǫ/ǫ0)

(a)

−ℑ(ǫ/ǫ0)

(b)

Figure 6.11: Reconstruction of test case 3 from noisy data with SNR= 30 dB data using the
stepwise relaxed VPCI method withλ2 = 0.001, h = 0.001 andγ = 105. Real part (a) and
inverse of the imaginary part (b).

ℜ(ǫ/ǫ0)

(a)

−ℑ(ǫ/ǫ0)

(b)

Figure 6.12: Reconstruction of test case 3 from noisy data with SNR= 20 dB data using the
stepwise relaxed VPCI method withλ2 = 0.01, h = 0.001 andγ = 104. Real part (a) and
inverse of the imaginary part (b).

ℜ(ǫ/ǫ0)

(a)

−ℑ(ǫ/ǫ0)

(b)

Figure 6.13: Reconstruction of test case 3 from noisy data with SNR= 20 dB data using
the unregularized CI method withh = 0.001 andγ = 104. Real part (a) and inverse of the
imaginary part (b).
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Figure 6.14: The domain cost functionFCSI for the reconstructions of test case 3 from noise-
less data using the CSI method and the CI method withK = [7, 17, 27] in the definition (6.24).
The curves have been normalized with a single normalization factor, common to both curves.

6.5 Conclusion

Two major conclusions can be drawn from this chapter. First,it is possible to refor-
mulate the contrast source inversion method such that the permittivity unknowns are
eliminated from the optimization problem. This consistency inversion method pro-
duces results, comparable to those of the CSI method, but, avoiding the alternating
updates of contrast currents and permittivity, it is expected to convergence faster. A
preliminary study under idealized circumstances confirms this, but more research is
required to validate this statement in general. Second, thevalue picking regularization,
which was recently proposed for use in the conventional approach to inverse scatter-
ing, can be incorporated in the CI method, whereas other regularization methods that
operate directly on the permittivity cannot. The resultingVPCI method is capable
of accurately reconstructing piecewise homogeneous permittivity profiles, conserving
edges and constant regions in the reconstruction with minimal a priori information. At
this point it is not clear whether or not the VPCI method outperforms other contrast
source based inversion schemes, such as the CSI method with TV regularization, either
in reconstruction quality or in computation time, but it certainly is a viable alternative.
Finally note that the VP regularization can also be incorporated in the CSI method,
either as this is done for the CI method, or operating directly on the permittivity as is
done in Chapter 4.
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CHAPTER7

Conclusions and
Perspectives

In this doctoral research, algorithms for quantitative microwave imaging, or electro-
magnetic inverse scattering, have been developed. The emphasis was on 3D imaging,
a field of research which has only recently been given the fullattention of the in-
verse scattering community. Our numerical experiments with the CI method have
been conducted in 2D, but with the discretization techniques of Chapter 3, it is readily
extendable to three dimensions. This dissertation presented several improvements to
the forward and inverse scattering algorithms, aiming at both a better efficiency and
an improved reconstruction quality.

A first couple of improvements concerned the numerical solution of the forward
problem, which constitutes an important part of conventional inverse scattering algo-
rithms. In Chapter 3, a full-wave vectorial volume integralequation approach was
adopted to simulate the forward scattering from a given 3D complex permittivity pro-
file. The large linear systems that arise from the MoM discretization of the VIE are
solved iteratively and two improvements were proposed to dothis more efficiently. A
first improvement is the hybrid MLFMA-FFT method, which combines the strengths
of the Multilevel Fast Multipole Algorithm and the FFT-method to speed up the indi-
vidual matrix-vector multiplications in the iterative solution. A second improvement
is the use of an extrapolation technique, based on the marching-on-in-source-position
scheme and the Born approximation, to reduce the number of iterations by choosing
a better initial estimate. Although the full potential of the MLFMA-FFT method has
not been further exploited in our inversion experiments, the method can be useful in
future applications with sparser scattering configurations as illustrated in Chapter 3.
In contrast source based inversion methods, such as the CSI method or the CI method
presented in Chapter 6, the solution of a multi-view forwardscattering is not neces-
sary, but even here the MLFMA-FFT method is applicable, since it can be used to
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evaluate the fields in the investigation domain generated bythe contrast currents.
We explored two approaches to solve the inverse scattering problem in this work.

The conventional approach eliminates the electric fields (or equivalently the contrast
currents) from the optimization problem and retains only the permittivity as unknown
quantity, whereas the CI method eliminates the permittivity and only optimizes for the
contrast currents. The major part of this dissertation is devoted to 3D microwave re-
construction algorithms which employ a Gauss-Newton optimization strategy to solve
the inverse scattering problem in the conventional approach (Chapters 4 and 5). The
Gauss-Newton optimization algorithm is well known and widely used for minimizing
sums of squares cost functions, such as the least squares data fit cost function. In
this work, the Gauss-Newton framework has been modified to minimize regularized
cost functions. Two different regularization strategies were proposed: multiplicative
smoothing and Value Picking regularization.

Multiplicative smoothing regularization is a flexible, adaptive tool which allows
for reconstructions of objects on which not much a priori information is available. It
reduces the ill-posedness of the inverse scattering problem by limiting the optimiza-
tion space to profiles that are sufficiently smooth and therefore do not suffer from
high frequency perturbations. Although this regularization smooths away the sharp
interfaces in objects with piecewise constant permittivity profiles, it provides useful
reconstructions in any case and is very suitable for reconstructing permittivity profiles
without very sharp edges and a wide range of permittivity values, such as some bio-
logical phantoms. Moreover, the multiplicative nature of this regularization renders
the choice of a regularization parameter less critical.

VP regularization is a new regularization method, more suited for imaging piece-
wise homogeneous objects and also easily incorporated in the Gauss-Newton frame-
work via a half-quadratic optimization scheme. It is based on the knowledge that only
a few different permittivity values occur in such profiles, the values of which need not
be known in advance. The VP regularization is introduced in the solution of the inverse
problem by adding a choice function to the data fit cost function for every permittivity
unknown. When minimized, the VP regularizing function clusters the complex per-
mittivity values in the complex plane around a number of VP values, which are treated
as auxiliary optimization variables. The stepwise relaxation of VP regularization, re-
sulting in the SRVP regularization strategy, introduces anupdating scheme for the
number of VP values. The Gauss-Newton method with SRVP regularization provides
very good reconstruction quality even when it is applied to experimental data.

Both regularization methods allow for the use of the SPLSQR method to solve the
Gauss-Newton update systems iteratively, which results inless iterations and hence
a lower computational cost and a wider application range of the inverse scattering
algorithm. This algorithm extracts from the original Gauss-Newton update system
a smaller system, which inherits the ill-conditioning, butcan be rapidly solved in a
direct manner. The remainder of the system is better conditioned and can be solved
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iteratively with much less iterations than the original system. Finally, the use of upper
and lower bounds on the real and imaginary parts of the permittivity has been made
possible through the use of a constrained line search path. This approach requires
little adaptations of the unconstrained Gauss-Newton algorithm while offering more
control over the optimization process.

The developed reconstruction algorithms were tested on both synthetic and ex-
perimental data. Biomedical objects are challenging test cases for inverse scattering
methods, because of the high permittivities and large contrasts involved. Some numer-
ical biological phantoms were considered in this dissertation and illustrate the applica-
bility of our general inverse scattering algorithms to biomedical microwave imaging.
In particular, the reconstruction of a numerical breast phantom supports the interna-
tional efforts made to develop practical microwave imagingmethods for breast cancer
screening and monitoring. The successful inversion of the experimental Fresnel data
with our algorithms demonstrates the validity of the algorithms for both the forward
and inverse problems. Moreover, we showed that, even with single frequency data and
despite the high noise levels, very accurate reconstructions can be obtained by using
suitable regularization, in our case SRVP regularization.

The other approach to inverse scattering, which is based on the introduction of
contrast currents as auxiliary optimization variables, has also been investigated in this
work. It has been shown that it is possible to eliminate the permittivity unknowns from
the optimization problem in the CSI method, resulting in a method which we named
consistency inversion. This method optimizes for one type of physical quantities only,
the contrast currents, and is expected to yield faster convergence than the CSI method,
where both contrast currents and the permittivity are updated alternatingly. This be-
havior indeed has been observed in a number of test cases and it should be investigated
whether it occurs systematically. The SRVP regularizationscheme has been incorpo-
rated in the CI method as well. Like in the conventional approach, the reconstruction
quality in case of piecewise constant permittivity profilesis greatly improved because
of this.

Despite the advances made in solving the 3D inverse scattering problem, several
improvements are still possible and should probably be incorporated in a practical
microwave imaging algorithm. As far as the forward scattering problem is concerned,
following suggestions can be made.

a) The forward scattering algorithms can be parallelized for optimal efficiency, i.e.
the workload can be distributed over different computing cores simultaneously.
This is possible in two ways. First of all, several forward simulations, corre-
sponding to different illuminations, can run in parallel. Because of this, it is
often said that the conventional approach to inverse scattering is embarrass-
ingly parallel. Second of all, the routines to calculate FFT’s andthe MLFMA
are parallelizable on themselves. Recently, a lot of efforthas been put in the
development of parallel MLFMA codes that can run on ordinarycomputer net-



192 CONCLUSIONS AND PERSPECTIVES

works [1, 2]. A large speed-up can be expected from a combination of paral-
lelization of the forward problem with the extrapolation approach presented in
Chapter 3.

b) It has been observed that the VIE of Chapter 3 is not always as well-conditioned
as one would like, for example when inverting biomedical examples with large
contrast and especially when the background permittivity is much higher than
the average permittivity in the biomedical phantom. Therefore, it might be prof-
itable to look for better conditioned formulations of the VIE or for suitable pre-
conditioning techniques for the forward problem.

c) In measurement configurations where the antennas are close to the investigation
domain and where the complete setup is electromagneticallyshielded from its
surroundings, for example in medical imaging, the VIE mightnot be the best
choice to solve the forward problem. Indeed, in such situations, it loses its
largest assets, which are not having to discretize large areas of empty space in
the measurement setup and not having to truncate the mesh artificially. In those
circumstances, a finite element (FE) approach might be the better choice [3].

d) Finally, for real world applications, it may be necessaryto include more realistic
antenna models in the reconstruction algorithm. It should also be investigated
to which extent mutual coupling between the antennas of a fixed antenna ar-
ray, as will be used in microwave biomedical imaging, and thecoupling of the
antennas with the object under study influence the imaging performance. Pos-
sibly, this should be taken into account. Also, the forward problem code could
be extended to include inhomogeneous backgrounds. This could be achieved
by using embedding techniques [4], possibly employing a coupling of a finite
element system in the investigation domain with a boundary integral approach
to account for the radiation condition or the interaction with the surrounding
known environment [5,6].

Concerning the Gauss-Newton approach to microwave imaging, future work might
include:

a) a comparison between SRVP regularization and other edge-preserving tech-
niques.

b) the generalization of the VP regularization scheme to a Region Picking regular-
ization strategy, as suggested in Section 4.5.

c) the development of procedures to determine the regularization parameter for
SRVP regularization in an a priori or adaptive way.

d) the extension of the SPLSQR algorithm to situations wherenot every cell in
the permittivity grid is included in the optimization problem or where several



193

cells are clustered in cell groups. In such a situation the truncated 3D discrete
cosine base can no longer be used and should be replaced by a different coarse
subspace.

e) the search for more rigorous yet efficient ways to incorporate constraints on the
permittivity.

f) the reduction of storage requirements of Gauss-Newton based inversion. Mainly
the storage of the jacobian matrixJ (or K when using the SPLSQR algorithm)
is limiting for the application to larger inverse scattering problems.

Finally there is some work to do to further validate the CI method. Its convergence
rate should be compared more extensively with that of the CSImethod and it should be
tested on experimental data. The choice of the parameters ofthe method also requires
some further investigation and, obviously, the CI method should be extended to the
3D case and compared to the conventional approach.
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APPENDIXA

Recursive calculation of the
truncated translation

operator

As mentioned in Section 3.4 of Chapter 3, the integration in (3.23) is based on a
Fourier-representation of the radiation patternsUa and V β,b. Since the Fourier-
spectra ofUa(θ, φ) andV β,b(θ, φ) are exponentially decaying, as mentioned in Sec-
tion 3.4.2, they can be represented by a finite amount of samples inθ andφ with any
desired accuracy. The product of the translation operatorTba(θ, φ) (3.19) and| sin θ|
is not bandlimited and can therefore not be represented accurately by a finite number
of samples. However, since it is integrated in (3.23) with a quasi-bandlimited function,
it can be smoothed (i.e. its Fourier spectrum can be truncated) to the total bandwidth
of the remainder of the integrand. This truncated version ofTba(θ, φ)| sin θ| can be
represented by a finite number of samples. The following derivation was done by Dr.
Ignace Bogaert.

To obtain the smoothed translation operator, we need to compute the Fourier spec-
trum ofTba(θ, φ) |sin θ|:

bmn =
1

4π2

∫ 2π

0

∫ 2π

0

Tba(θ, φ) |sin θ| e−j(mθ+nφ)dθdφ. (A.1)
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Upon substituting (3.19) in this expression, we get

bmn =

L
∑

l=0

(2l + 1)j−lh
(2)
l (kbrba)

1

4π2

×
∫ 2π

0

∫ 2π

0

Pl(k̂(θ, φ) · r̂ba) |sin θ| e−j(mθ+nφ)dθdφ (A.2)

=

L
∑

l=0

(2l + 1)j−lh
(2)
l (kbrba)

1

4π2
f l

mn (A.3)

with

f l
mn =

∫ 2π

0

∫ 2π

0

Pl(k̂(θ, φ) · r̂ba) |sin θ| e−j(mθ+nφ)dθdφ. (A.4)

To calculate these coefficients numerically, we derive a recursion. To this end we
make use of a recursion formula for the Legendre function

(l + 1)Pl+1(x) = (2l + 1)xPl(x) − lPl−1(x) (A.5)

which, together with the identity

k̂(θ, φ) · r̂ba = cos θ cos θba + sin θ sin θba cos(φ − φba) (A.6)

leads to

f l+1
mn =

2l + 1

l + 1
(cos θbaal

mn + sin θba cos φbabl
mn + sin θba sin φbacl

mn) − l

l + 1
f l−1

mn

(A.7)
with, by definition

al
mn =

∫ 2π

0

∫ 2π

0

cos θPl(k̂(θ, φ) · r̂ba) |sin θ| e−j(mθ+nφ)dθdφ, (A.8)

bl
mn =

∫ 2π

0

∫ 2π

0

sin θ cos φPl(k̂(θ, φ) · r̂ba) |sin θ| e−j(mθ+nφ)dθdφ, (A.9)

cl
mn =

∫ 2π

0

∫ 2π

0

sin θ sin φPl(k̂(θ, φ) · r̂ba) |sin θ| e−j(mθ+nφ)dθdφ.(A.10)

These coefficients in turn satisfy the recursion formulas

al
mn =

1

2

[

f l
m−1,n + f l

m+1,n

]

(A.11)

bl
mn =

1

4j

[

f l
m−1,n−1 + f l

m−1,n+1 − f l
m+1,n−1 − f l

m+1,n+1

]

(A.12)

cl
mn =

−1

4

[

f l
m−1,n−1 + f l

m+1,n+1 − f l
m+1,n−1 − f l

m−1,n+1

]

(A.13)
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as can easily be verified. To start the recursion, some initial values are needed. These
are given by

f0
mn =

∫ 2π

0

∫ 2π

0

|sin θ| e−j(mθ+nφ)dθdφ (A.14)

= −4π
1 + (−1)m

m2 − 1
δn0. (A.15)
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APPENDIXB

Definition and properties of
the Choice Function for VP

Regularization

In this appendix, the choice function used in Value Picking regularization is defined
and its relevant properties are proven.

B.1 Definitions

Definition B.1 The choice function of dimensionP , fP : RP
+ → R+ (R+ is the set

of non-negative real numbers), is defined as

fP (u1, . . . , uP ) =

∏KP

k=1

(

∏

I⊂C
{P}
2k−1

SI(u1, . . . , uP )
)

∏LP

l=1

(

∏

J⊂C
{P}
2l

SJ(u1, . . . , uP )
) (B.1)

=

∏KP

k=1 PP
2k−1(u1, . . . , uP )

∏LP

l=1 PP
2l(u1, . . . , uP )

(B.2)

=
T P (u1, . . . , uP )

NP (u1, . . . , uP )
, (B.3)

where{P} is short for {1, . . . , P}, whereKP = ⌈P/2⌉ and LP = ⌊P/2⌋, and
whereC{P}

k is the set of all combinations ofk different indices, chosen from{P}.
SI(u1, . . . , uP ) is given by

SI(u1, . . . , uP ) =
∑

i∈I

ui. (B.4)
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To see more clearly what this definition means, consider the choice function in 1, 2, 3
and 4 dimensions:

f1(u1) = u1 (B.5)

f2(u1, u2) =
u1u2

u1 + u2
(B.6)

f3(u1, u2, u3) =
u1u2u3(u1 + u2 + u3)

(u1 + u2)(u1 + u3)(u2 + u3)
(B.7)

f4(u1, u2, u3, u4) =
u1u2u3u4(u1 + u2 + u3)

(u1 + u2)(u1 + u3)(u1 + u4)(u2 + u3)(u2 + u4)(u3 + u4)

× (u1 + u2 + u4)(u1 + u3 + u4)(u2 + u3 + u4)

(u1 + u2 + u3 + u4)
(B.8)

In the numerator, sums over all combinations of odd numbers of arguments can be
found. De denominator contains sums over all the combinations of even numbers of
arguments. From this observation, it is easily realized that the Choice Function is
invariable under arbitrary permutations of its arguments and hence

Theorem B.1 fP is a fully symmetric function.

To gain in generality, we define the auxiliary functionFP

Definition B.2 FP : RP+1
+ → R+ is defined as

FP (u1, . . . , uP ;x) =

∏KP

k=1

[

∏

I⊂C
{P}
2k−1

(SI(u1, . . . , uP ) + x)
]

∏LP

l=1

[

∏

J⊂C
{P}
2l

(SJ(u1, . . . , uP ) + x)
] . (B.9)

It follows that
fP (u1, . . . , uP ) = FP (u1, . . . , uP ; 0) (B.10)

and it can be observed thatFP satisfies the recursion formula

FP (u1, . . . , uP ;x) = (uP + x)
FP−1(u1, . . . , uP−1;x)

FP−1(u1, . . . , uP−1;uP + x)
. (B.11)

This formula allows for an elegant recursive calculation ofthe choice function of
arbitrary dimensionP . Finally, we introduce the functionGP

Definition B.3 GP : RP+1
+ → R is defined as

GP (u1, . . . , uP ;x) =

(

∂

∂x
ln FP

)

(u1, . . . , uP ;x). (B.12)
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Using (B.11), and this definition, the recursion

GP (u1, . . . , uP ;x) =
1

uP + x
+ GP−1(u1, . . . , uP−1;x)

−GP−1(u1, . . . , uP−1;x + uP ), (B.13)

is obtained with

G1(u1;x) =
1

u1 + x
. (B.14)

This function is not defined forx = 0 whenever one of the argumentsup is zero, but
is always finite whenx 6= 0 or whenx = 0 andup > 0, ∀p ∈ {P}. SinceFP is fully
symmetric in the arguments(u1, . . . , uP ), GP is too and we can use the shorthand
notationu{P} = {up : p ∈ {P}} to write

FP (u{P};x) = FP (u1, . . . , uP ;x), (B.15)

GP (u{P};x) = GP (u1, . . . , uP ;x). (B.16)

B.2 Properties of the choice function

B.2.1 Limits of fP and F P

It might seem at first glance that the domain of the choice function in Definition B.1
has been chosen too large. Indeed, if more than one argument of the functionfP is
zero, zero factors appear in the denominator of (B.3). However, the limit for one or
more arguments going to zero is always defined and is equal to zero, as will be shown
in the following lemmas and theorems.

Lemma B.1 For up > 0, ∀p ∈ {P},

lim
x→+∞

FP (u{P};x)

x
= 1. (B.17)

Proof The proof uses a recursive argument. The Lemma clearly holdsfor F 1(u1;x) =

u1 + x. If it holds for P − 1, we can deduce

lim
x→+∞

FP (u{P};x)

x
=

limx→+∞
F P−1(u{P−1};x)

x

limx→+∞
F P−1(u{P−1};x+uP )

x+uP

(B.18)

= 1 � (B.19)

As a direct result of this and the recursion formula (B.11) wehave
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Corollary B.1 For up > 0, ∀p ∈ {P},

lim
uP →+∞

FP (u{P};x) = FP−1(u{P−1};x). (B.20)

Due to the symmetry in the argumentsu{P}, the previous statement can be generalized
to

Corollary B.2 For up > 0, ∀p ∈ {P},

lim
up→+∞

FP (u{P};x) = FP−1(u{P}\p;x). (B.21)

In other words, whenever one of its arguments grows much larger then the other ar-
guments, the choice function reduces to the choice functionof one dimension less,
evaluated in the remaining arguments. Suppose we let all arguments approach infin-
ity, except the argumentsui that belong to a setI ⊂ {P}. Suppose the number of
elements inI is N(I) = k. We can let the arguments go to infinity one by one and
every time the dimension of the choice function will reduce by one. Eventually, only
thek- dimensional choice function will remain, evaluated in theargumentsui, i ∈ I.
This can be summarized in the following important theorem

Theorem B.2 For up > 0, ∀p ∈ {P}, for I ⊂ {P} with N(I) = k and with
αu{P}\I = {αup : p ∈ {P} \ I}

lim
α→+∞

FP (uI , αu{P}\I ;x) = F k(uI ;x). (B.22)

Using also the following lemma

Lemma B.2 For up > 0, ∀p ∈ {P}, and forα > 0

FP (αu1, . . . , αuP ;αx) = αFP (u{P};x), (B.23)

GP (αu1, . . . , αuP ;αx) =
1

α
GP (u{P};x), (B.24)

(The proof is trivial using (B.11), (B.13) and a recursive argument)
one can conversely conclude that ifk of its arguments are much smaller than the rest,
the P -dimensional choice function reduces to the choice function of dimensionk,
evaluated in the smaller arguments, i.e.

fP (u{P}) ≈ fk(uI), when ui ≪ up, ∀i ∈ I, ∀p ∈ {P} \ I. (B.25)

Finally, whenk argumentsui with i ∈ I go to zero, the choice function reduces to
zero, as stated by the following theorem
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Theorem B.3 For up > 0, ∀p ∈ {P}, for α > 0 and withαuI = {αui : i ∈ I}

lim
α→0

fP (αuI , u{P}\I) = 0. (B.26)

Proof Using Lemma B.2 and Theorem B.2, we obtain

lim
α→0

fP (αuI , u{P}\I) = lim
α→0

FP (αuI , u{P}\I ; 0)

= lim
α→0

αFP (uI ,
1

α
u{P}\I ; 0)

= lim
α→0

αF k(uI ; 0)

= 0 � (B.27)

Finally, from the properties above and from its definition, we can conclude

Theorem B.4 fP (u{P}) = 0 if and only if at least one of the argumentsup is zero.

B.2.2 The choice function for identical arguments

Theorem B.5 For any positive constantc

FP (u, . . . , u; cu) ∝ u (B.28)

Proof The theorem clearly holds forP = 1 sinceF 1(u; cu) = (c+1)u. If it hold for
P − 1, then we have

FP (u, . . . , u; cu) = (u + cu)
FP−1(u, . . . , u; cu)

FP−1(u, . . . , u; (c + 1)u)
(B.29)

∝ u. (B.30)

A recursive argument concludes the proof.�

As a special case we have
fP (u, . . . , u) ∝ u, (B.31)

thus when all its arguments are identical, theP -dimensional choice function is a scaled
version off1.

B.2.3 Limits of GP

Lemma B.3 For up > 0, ∀p ∈ {P},

lim
x→+∞

GP (u{P};x) = 0. (B.32)
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Proof The proof is recursive. ForG1(u1, x) = 1/(u1 + x), the lemma holds. If it
holds forP − 1, then we obtain, using (B.13)

lim
x→+∞

GP (u{P};x) = lim
x→+∞

[

1

uP + x
+ GP−1(u{P−1};x)

−GP−1(u{P−1};x + uP ) ]

= 0 � (B.33)

As a result of this and the recursion formula (B.13) we obtain

Corollary B.3 For up > 0, ∀p ∈ {P},

lim
uP →+∞

GP (u{P};x) = GP−1(u{P−1};x), (B.34)

which can again be generalized to

Corollary B.4 For up > 0, ∀p ∈ {P},

lim
up→+∞

GP (u{P};x) = GP−1(u{P}\p;x) (B.35)

and

Theorem B.6 For up > 0, ∀p ∈ {P}, for I ⊂ {P} with N(I) = k and with
αu{P}\I = {αup : p ∈ {P} \ I}

lim
α→+∞

GP (uI , αu{P}\I ;x) = Gk(uI ;x). (B.36)

B.2.4 Derivatives of the choice function and their properties

From Definition B.3 and from the recursion formula (B.11), anexpression for the
derivative ofFP with respect touP can be derived:

(

∂FP

∂uP

)

(u1, . . . , uP ;x) = FP (u{P};x)

(

∂ ln FP

∂uP

)

(u1, . . . , uP ;x)

= FP (u{P};x)

[

1

uP + x

−GP−1(u{P−1};x + uP )

]

. (B.37)
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Because of the symmetry inFP , this can be generalized to

(

∂FP

∂up

)

(u1, . . . , uP ;x) = FP (u{P};x)

[

1

up + x

−GP−1(u{P}\p;x + up)

]

. (B.38)

Forx = 0, we obtain de derivatives of the choice functionfP

(

∂fP

∂up

)

(u1, . . . , uP ) = fP (u{P})

[

1

up

−GP−1(u{P}\p;up)

]

= BP
p (u1, . . . , uP ), (B.39)

where (B.39) defines theweight functionsBP
p . The choice for this name will become

clear later on. We will now prove that the range of the weight functions is the interval
[0, 1].

Lemma B.4 For up > 0, ∀p ∈ {P} and forx ≥ 0

(

∂kGP

∂xk

)

(u{P};x) =

{

> 0 for evenk

< 0 for oddk
(B.40)

Proof ForP = 1, the lemma holds, since

(

∂kG1

∂xk

)

(u1;x) = (−1)kk!(u1 + x)−(k+1). (B.41)

For generalP we have

(

∂kGP

∂xk

)

(u{P};x) = (−1)kk!(uP + x)−(k+1) +

(

∂kGP−1

∂xk

)

(u{P−1};x)

−
(

∂kGP−1

∂xk

)

(u{P−1};x + uP ). (B.42)

If the theorem holds forP − 1 and whenk is even, (B.42) is positive, because its first
term is positive and the difference between the second and third term is positive too.

Indeed, sincek is even,k + 1 is odd and
(

∂kGP−1

∂xk

)

(u{P−1};x) is a monotonously

decreasing function ofx. Whenk is odd, (B.42) is negative, because its first term is

negative and
(

∂kGP−1

∂xk

)

(u{P−1};x) is a monotonously increasing function ofx. A

recursive argument then concludes the proof.�

As a special case, we have
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Corollary B.5 For up > 0, ∀p ∈ {P} and forx ≥ 0

GP (u{P};x) > 0. (B.43)

Lemma B.5 For up > 0, ∀p ∈ {P} and forx ≥ 0

(

∂k

∂xk

[

1

x
− GP

])

(u{P};x) =

{

> 0 for evenk

< 0 for oddk
(B.44)

Proof ForP = 1, the lemma holds, since

(

∂k

∂xk

[

1

x
− G1

])

(u1;x) = (−1)kk!

[

x−(k+1) − (u1 + x)−(k+1)

]

. (B.45)

For generalP we have

(

∂k

∂xk

[

1

x
− GP

])

(u{P};x) =

(

∂k

∂xk

[

1

x
− GP−1

])

(u{P−1};x) (B.46)

−
(

∂k

∂xk

[

1

x + uP
− GP−1

])

(u{P−1};x + uP ).(B.47)

The proof is concluded with a similar argument as is used in the proof of Lemma
(B.4). �

As a result of Lemma B.5 and the definition (B.39) of the weightfunctionsBP
p , the

following theorem is obtained

Theorem B.7 For up > 0, ∀p ∈ {P}

BP
p (u1, . . . , uP ) > 0. (B.48)

In other words, away from the boundaries of their domain, thefunctionsBP
p are al-

ways strictly positive. We will now show that they are also bounded above by1.

Lemma B.6 For up > 0, ∀p ∈ {P},

fP (u{P}) < up, ∀p ∈ {P}. (B.49)
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Proof Consider first
(

∂FP−1

∂x

)

(u{P}\p;x) = FP−1(u{P}\p;x)

(

∂ ln FP−1

∂x

)

(u{P}\p;x)

= FP−1(u{P}\p;x)GP−1(u{P}\p;x)

> 0, (B.50)

where we have used the definition forGP−1 and Corollary B.5. Expression (B.50)
says thatFP−1 is monotonously increasing as a function ofx, which implies

FP−1(u{P}\p;x) < FP−1(u{P}\p;x + up), (B.51)

which in turn, using a straightforward generalization of (B.11), results in

FP (u{P}; 0) = up

FP−1(u{P}\p; 0)

FP−1(u{P}\p;up)

< up. (B.52)

This concludes the proof.�

Theorem B.8 For up > 0, ∀p ∈ {P},

BP
p (u1, . . . , uP ) < 1. (B.53)

Proof This follows immediately from the definition (B.39), the positivity of GP−1

and Lemma B.6:

BP
p (u1, . . . , uP ) = fP (u{P})

[

1

up
− GP−1(u{P}\p;up)

]

<
fP (u{P})

up

< 1. � (B.54)

It remains to be investigated what happens on the boundariesof the domain.

Lemma B.7 For up > 0, ∀p ∈ {P}, for α > 0, for αuI = {αui : i ∈ I} and for
p /∈ I,

lim
α→0

FP (αuI , u{P}\I ; 0)

[

1

up
− GP−1(αuI , u{P}\(I∪{p});up)

]

= 0 (B.55)

Proof Since up > 0, the expression between square brackets in (B.55) is finite
(GP (u{P};x) is always finite forx > 0). The first factor (B.55) approaches zero
because of Theorem B.3.�
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Lemma B.8 For up > 0, ∀p ∈ {P}, for α > 0, for I ⊂ {P} with N(I) = k, for
αuI = {αui : i ∈ I} and forj ∈ I,

lim
α→0

FP (αuI , u{P}\I ; 0)

[

1

αuj
− GP−1(αuI\j , u{P}\I ;αuj)

]

= F k(uI ; 0)

[

1

uj
− Gk−1(uI\j ;uj)

]

(B.56)

Proof We use Lemma B.2, Theorem B.2 and Theorem B.6 to derive

lim
α→0

FP (αuI , u{P}\I ; 0)

[

1

αuj
− GP−1(αuI\j , u{P}\I ;αuj)

]

= lim
α→0

αFP (uI ,
1

α
u{P}\I ; 0)

1

α

[

1

uj
− GP−1(uI\j ,

1

α
u{P}\I ;uj)

]

= F k(uI ; 0)

[

1

uj
− Gk−1(uI\j ;uj)

]

. � (B.57)

We can now formulate the following theorem which describes the range ofBP
p every-

where in the domainRP
+:

Theorem B.9 The weight functionsBP
p have range[0, 1], with

BP
p (u1, . . . , uP ) = 0 ⇔ ∃p′ 6= p : up′ = 0 and up 6= 0, (B.58)

BP
p (u1, . . . , uP ) = 1 ⇔ up = 0 and up′ 6= 0, ∀p′ 6= p. (B.59)

In the intersections of the hyperplaneup = 0 with other hyperplanesup′ = 0 (p′ 6= p),
BP

p is not uniquely defined. However, when approaching these intersections, a finite
limit value in the interval]0, 1[ always exists which depends on the approach path.

Proof To proof the theorem, we consider four possibilities for theargumentsup,
which encompass all argument configurations:

i) up′ > 0, ∀p′ ∈ {P}:
In this case, Theorems B.7 and B.8 show that the values ofBP

p (u1, . . . , uP ) lie
in the interval]0, 1[.

ii) up 6= 0 and∃p′ 6= p : up′ = 0:
Whenup 6= 0 and at least oneup′ with p′ 6= p approaches zero,BP

p approaches
zero, as a result of Lemma B.7. Therefore

BP
p (u1, . . . , uP ) = 0 ⇐ ∃p′ 6= p : up′ = 0 and up 6= 0. (B.60)
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iii) up = 0 andup′ 6= 0, ∀p′ 6= p:
To investigate the caseup → 0 andup′ 6= 0, ∀p′ 6= p, we can putI = {p} in
Lemma B.8 and obtain

lim
α→0

FP (αup, u{P}\p; 0)

[

1

αup
− GP−1(u{P}\p;αup)

]

= up

[

1

up

]

= 1, (B.61)

where we have putG0 equal to zero, as is consistent with the recursion formula
(B.13) and withG1(u1;x) = 1/(u1 + x). Therefore

BP
p (u1, . . . , uP ) = 1 ⇐ up = 0 and up′ 6= 0, ∀p′ 6= p. (B.62)

iv) up = 0 and∃p′ 6= p : up′ = 0:
consider Lemma B.8 whenI includesp, but also some other indices, and when
j = p. The setuI then defines the approach direction to the intersection of the
hyperplanesui = 0 with i ∈ I. The left hand side of (B.56) then is the limit of
BP

p (u1, . . . , uP ) along the approach path to the intersection and the right hand
side of (B.56) then equalsBk

1 (Pp(uI)), wherePp(uI) is a permutation of the
argumentsui, with i ∈ I, which putsup in the first position. This quantity lies
in ]0, 1[ because of Lemmas B.7 and B.8.

The value ofBP
p thus always lies in]0, 1[ except in the cases ii) and iii). This proves

the last statement in Theorem B.9. Only in case ii),BP
p equals zero. This, together

with (B.60) proves (B.58). Only in case iii),BP
p equals one. This, together with (B.62)

proves (B.59). All cases together prove the first statement in Theorem B.9.�

B.2.5 Relaxation of the choice function

Lemma B.9 For up > 0, ∀p ∈ {P} and forx > 0

FP (u{P};x)

x
> 1. (B.63)

Proof First, note thatFP /x is a monotonously decreasing function ofx. Indeed,

∂

∂x

FP

x
=

1

x
FP ∂

∂x
lnFP − 1

x2
FP

=
1

x
FP GP − 1

x2
FP

= −FP

x

[

1

x
− GP

]

< 0 (B.64)
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where we used Lemma B.5 in the final step. Using this property and the recursion
formula (B.11), we derive

FP (u{P};x)

x
=

(uP + x)

FP−1(u{P−1};uP + x)

FP−1(u{P−1};x)

x

> 1. (B.65)

As a result of this lemma, the following theorem is obtained:

Theorem B.10
fP (u{P}) ≤ fP−1(u{P}\p). (B.66)

Proof Whenup > 0, ∀p ∈ {P}, we obtain, by combining recursion formula (B.11)
with Lemma B.9,

FP (u1, . . . , uP ;x) < FP−1(u1, . . . , uP−1;x), (B.67)

which is valid for anyx ≥ 0 and which, due to the symmetry in the argumentsup,
leads to

fP (u{P}) < fP−1(u{P}\p). (B.68)

Whenever one or more argumentsup are zero, the left hand side of (B.66) is zero,
while the right hand side is non-negative, hence (B.68) can be generalized to (B.66).
�

The above property is important in the Stepwise Relaxed VP regularization scheme,
since it means a relaxation of the regularization when more VP values are added.

B.2.6 Touching hyperplane

Lemma B.10 For up > 0, ∀p ∈ {P},

P
∑

p=1

[

1

up + x
− GP−1(u{P}\p;x + up)

]

up + GP (u{P};x)x = 1. (B.69)

Proof Using the recursion formula (B.13) and some recombinations, the left hand
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side of (B.69) can be rewritten as

P
∑

p=1

up

up + x
−

P
∑

p=1

GP−1(u{P}\p;x + up)up +
x

uP + x

+GP−1(u{P}\P ;x)x − GP−1(u{P}\P ;x + uP )x

=
uP + x

uP + x
+

P−1
∑

p=1

up

up + x
−

P−1
∑

p=1

GP−1(u{P}\p;x + up)up

+GP−1(u{P}\P ;x)x − GP−1(u{P}\P ;x + uP )(x + uP )

= 1 +

P−1
∑

p=1

up

up + x
−

P−1
∑

p=1

GP−2(u{P}\{p,P};x + up)up

+

P−1
∑

p=1

GP−2(u{P}\{p,P};x + up + uP )up −
P−1
∑

p=1

up

up + uP + x

+GP−1(u{P}\P ;x)x − GP−1(u{P}\P ;x + uP )(x + uP ).

By regrouping the terms in this expression and by assuming that the Lemma holds for
P − 1, we obtain

1 +

{P−1
∑

p=1

[

1

up + x
− GP−2(u{P}\{p,P};x + up)

]

up + GP−1(u{P−1})x

}

−
{P−1
∑

p=1

[

1

up + uP + x
− GP−2(u{P}\{p,P};x + up + uP )

]

up

+GP−1(u{P−1};x + uP )(x + uP )

}

= 1 + 1 − 1 = 1.

By noting that the lemma holds forP = 1, the lemma is proven.�

As a result of the previous lemma, we obtain the important theorem

Theorem B.11 The hyperplane

QP (u1, . . . , uP ; v1, . . . , vP ) =

P
∑

p=1

BP
p (v1, . . . , vP )up (B.70)

for fixed(v1, . . . , vP ) ∈ RP
+ touches (i.e. coincides with and has the same gradient

vector as)fP in the point(v1, . . . , vP ).
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Proof Consider first the case wherevp > 0, ∀p ∈ {P}. Lemma B.10 then results in

QP (v1, . . . , vP ; v1, . . . , vP )

=
P
∑

p=1

BP
p (v1, . . . , vP )vp (B.71)

= FP (v{P}; 0)

P
∑

p=1

[

1

vp
− GP−1(v{P}\p; vp)

]

vp (B.72)

= fP (v{P}; 0). (B.73)

The functionsQP andfP thus coincide in(v1, . . . , vP ). Also, by definition (B.39),
the derivatives ofQP and those ofFP with respect toup are identical and equal to
BP

p (v1, . . . , vP ) in (v1, . . . , vP ). Consider next the case wherek argumentsvi with
i ∈ I are zero. The weights in (B.70) corresponding to these arguments will take on a
value in the interval[0, 1] and the weights corresponding to the other arguments will be
zero, as follows from Theorem B.9. Evaluated in the point(v1, . . . , vP ), QP will thus
be zero and sincefP also is zero in this point, both functions coincide. In an arbitrary
point (v1, . . . , vP ) on the boundaries of the domainRP

+, the weightsBP
p (v1, . . . , vP )

are not always uniquely defined as mentioned before, but along any approach path,
they coincide with the derivatives offP in BP

p (v1, . . . , vP ). Therefore, in every point
where the derivatives offP are defined, the hyperplaneQP defined in this point, will
touch withfP in the same point.�

Finally, there is a statement which has been extensively tested on numerical test
grids, but which we were unable to prove so far. Nevertheless, it plays an important
role in the development of VP regularization. We formulate it as a conjecture:

Conjecture B.1 The hyperplane

QP (u1, . . . , uP ; v1, . . . , vP ) =

P
∑

p=1

BP
p (v1, . . . , vP )up (B.74)

for fixed(v1, . . . , vP ) ∈ RP
+ satisfies

QP (u1, . . . , uP ; v1, . . . , vP ) ≥ fP (u{P}) (B.75)

for all u{P} in RP
+.

If one were to proof thatfP (u{P}) is concave, but not necessarily strictly concave
(we suspect that this is true), this fact, together with Theorem B.11 would prove the
conjecture. For the specific casesP = 1 andP = 2, the conjecture has been shown
to hold.
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We can now motivate the choice of the nameweight functionsfor BP
p . According

to Theorem B.11,fP (u{P}) can be written as

fP (u{P}) =

P
∑

p=1

BP
p (u1, . . . , uP )up, (B.76)

which has the form of a weighted sum of the argumentsup with weightsBP
p (u1, . . . , uP )

which lie between 0 and 1. Suppose that the weightsBP
p in the right hand side of this

expression are fixed at their values in(u1, . . . , uP ). We then write

fP (u{P}) =

P
∑

p=1

wpup, (B.77)

wherewp = BP
p (u1, . . . , uP ). Suppose furthermore that the arguments are updated

from (u1, . . . , uP ) to (u′
1, . . . , u

′
P ) and that this update entails a reduction of the right

hand side in this expression. Due to Conjecture B.1 we then have

fP (u′
{P}) ≤

P
∑

p=1

wpu
′
p <

P
∑

p=1

wpup, (B.78)

which means that the update also implies a reduction of the choice function. This
observation plays an important role in VP regularization, because it allows for a fixed
point iteration where the choice function in each step is temporarily replaced by a
weighted sum of the form (B.77) and where the update of the arguments is based on
this weighted sum.

B.3 Proof of (4.71)

Let us use the notations of Section 4.3 and state (4.71) as a theorem:

Theorem B.12

FP (ε, c) = 0 ⇔
{

∂FP

∂ǫν
= 0, ∀ν

∂FP

∂cp
= 0, c ∈ {P − 1}

(B.79)

Proof Consider first a point(ε′, c′) whereFP (ε′, c′) = 0. This means, due to The-
orem B.4 and the fact thatfP ≥ 0, that for every optimization variableǫ′ν there is
at least one VP valuec′q such that(ǫ′ν − c′q) = 0. Since the weightsbP

p,ν(ε′, c′), de-
fined in (4.48), always lie in[0, 1] due to Theorem B.9 and sincebP

p,ν(ε′, c′) = 0 if
|ǫ′ν − c′p| 6= 0 and if there is aq 6= p for which |ǫ′ν − c′q| = 0 due to the same theorem,
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we have

∂FP

∂ǫν
(ε′, c′) =

1

N ǫ

P
∑

p′=1

bP
p′,ν(ε, c)

(

ǫ′ν − c′p′

)∗
= 0, (B.80)

∂FP

∂cp
(ε′, c′) = − 1

N ǫ

Nǫ
∑

ν′=1

bP
p,ν′(ε′, c′)

(

ǫ′ν′ − c′p
)∗

= 0, (B.81)

for everyν and for everyp.
Consider next a point(ε′, c′) whereFP (ε′, c′) 6= 0. This means that at least

for one optimization variableǫ′υ we have|ǫ′υ − c′p| 6= 0, for all p. Therefore, due to
Theorem B.9,bP

p,υ(ε′, c′) lies in ]0, 1[, for all p. Now consider the quadratic function
of the arguments(ε, c) and depending on the parameters(ε′, c′),

QP (ε, c; ε′, c′) =
1

N ǫ

Nǫ
∑

ν=1

P
∑

p=1

bP
p,ν(ε′, c′) | ǫν − cp |2, (B.82)

which touches withFP in (ε′, c′) because of Theorem B.11. We therefore have
QP (ε′, c′; ε′, c′) = FP (ε′, c′) 6= 0. The choiceǫ′′ν = c′′p for all ν andp minimizes
QP , i.e. QP (ε′′, c′′; ε′, c′) = 0. Sincec′′P is fixed toǫb/ǫ0 (Section 4.3.1), this can
only be the case whenǫ′′ν = c′′p = ǫb/ǫ0, for all ν andp. It is now possible to prove
that(ε′′, c′′) is the unique minimizer ofQP . Indeed, we certainly have

QP (ε′′, c′′; ε′, c′) ≥ 1

N ǫ

P
∑

p=1

bP
p,υ(ε′, c′) | ǫ′′υ − c′′p |2, (B.83)

and thereforeQP = 0 requires

1

N ǫ

P
∑

p=1

bP
p,υ(ε′, c′) | ǫ′′υ − c′′p |2= 0, (B.84)

which, becausebP
p,υ(ε′, c′) > 0, ∀p, requiresǫ′′υ = c′′p = ǫb/ǫ0, for all p, thus all VP

valuesc′′p are identical. Since it can easily be deduced from Theorem B.9 that never all
weightsbP

ν,p(ε
′, c′) for a certainν can be zero simultaneously,QP (ε′′, c′′; ε′, c′) =

0 furthermore requires that there is at least one VP valuec′′q for every optimization
variableǫ′′ν such thatǫ′′ν = c′′q . As a result, the conditionǫ′′ν = ǫb/ǫ0, has to be
satisfied for allν. The point(ε′′, c′′) with ǫ′′ν = c′′p = ǫb/ǫ0 for all ν andp thus is
the unique minimizer ofQP (ε, c; ε′, c′). It can now be seen thatQP (ε, c; ε′, c′) has
non-zero derivatives with respect to bothǫν andcp, for all ν andp, in (ε′, c′), since it
has just been proven thatQP has a unique minimum(ε′′, c′′) whereQP = 0 and this
unique minimum has to be the only stationary point ofQP , becauseQP is a quadratic
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function.
Summarizing, we have

FP (ε, c) = 0 ⇒
{

∂FP

∂ǫν
= 0, ∀ν

∂FP

∂cp
= 0, c ∈ {P − 1}

(B.85)

and

FP (ε, c) 6= 0 ⇒
{

∂FP

∂ǫν
6= 0, ∀ν

∂FP

∂cp
6= 0, c ∈ {P − 1}

(B.86)

which proves the Theorem.�
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APPENDIXC

Conjugate gradient
optimization

Consider a real-valued functionF(j1, . . . , jI) of the complex contrast current vectors
ji and the gradient vectorsgi

[gi]n =
∂F

∂ [j∗
i ]n

. (C.1)

We first consider the minimization ofF with respect toji. Starting from an iterate
jm

i , the next estimation of the contrast current vectors is calculated as

jm+1
i = jm

i + αmpm
1,i, (C.2)

wherepm
1,i are the Polak-Ribière update vectors

pm
1,i = −gm

i + βm
1 pm−1

1,i , (C.3)

βm
1 =

ℜ
[

∑I
i=1

(

gm
i − gm−1

i

)H
gm

i

]

∑I
i=1

(

gm−1
i

)H
gm−1

i

, (C.4)

whereβ1
1 = 0 in the first iteration. The real-valued line parameterαm is determined

with a line search. Since all the cost functions in Chapter 6 are fourth or second or-
der polynomials in the contrast currentsji and their complex conjugatesj∗

i , they are
fourth or second order polynomials as a function of the line parameterαm. The line
search is then simply performed by determining the roots of the differentiated polyno-
mials, which can be done analytically or numerically by solving for the eigenvalues
of the companion matrix [1].

In case we want to optimizeF for the non-radiating current vectors only, we seek
for (N − I)-dimensional coefficient vectorsci that contain the projections ofji on
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the null space ofA:

ci = W Hji, (C.5)

jNR
i = Wci, (C.6)

whereW is a (N × (N − I))-matrix with orthonormal columns that span the null
space ofA and that are orthonormal to the columns of the matrixV of the truncated
SVD decomposition (6.28) ofA, i.e. W HV = 0. The gradient vectorsf i with
respect to these coefficient vectors, defined by

[f i]m =
∂F

∂ [c∗i ]m
. (C.7)

are obtained by an application of the chain rule:

f i = W Hgi. (C.8)

Therefore, the corresponding Polak-Ribière updates are

cm+1
i = cm

i + αmqm
i , (C.9)

qm
i = −fm

i + βm
2 qm−1

i = −W Hgm
i + βm

2 qm−1
i , (C.10)

βm
2 =

ℜ
[

∑I
i=1

(

fm
i − fm−1

i

)H
fm

i

]

∑I
i=1

(

fm−1
i

)H
fm−1

i

=
ℜ
[

∑I
i=1

(

gm
i − gm−1

i

)H
WW Hgm

i

]

∑I
i=1

(

gm−1
i

)H
WW Hgm−1

i

. (C.11)

Definingpm
2,i = Wqm

i and usingWW Hx = x−V V Hx, for everyN -dimensional
vectorx, we obtain following updates for the contrast current vectorsji directly:

jm+1
i = jm

i + αmpm
2,i, (C.12)

pm
2,i = −

(

gm
i − V V Hgm

i

)

+ βm
2 pm−1

2,i , (C.13)

βm
2 =

ℜ
[

∑I
i=1

(

gm
i − gm−1

i

)H
(

gm
i − V V Hgm

i

)]

∑I
i=1

(

g
C,m−1
i

)H (

gm−1
i − V V Hgm−1

i

)

. (C.14)

Note that multiplications of the formV V Hx can be evaluated relatively cheaply as
V (V Hx) sinceV only has a small number of columns.
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APPENDIXD

Expressions for the gradient
vectors in the CI method

In this appendix, the explicit expressions for the gradientvectors in the Consistency
Inversion method of Chapter 6 are given. We only consider theexpressions of the
gradient vectorsgD

i , gCSI
i , gCI

i andgP
i of FD, FCSI , FCI andFP respectively,

since all other gradient vectors are simple combinations ofthose.

• The gradient vectors ofFD:

gD
i =

1
∑I

i=1 ‖es
i‖2

AH (Aji − es
i ) (D.1)

• The gradient vectors ofFCSI :

gCSI
i = ji − jωXei + jωZHX∗ (ji − jωXei) (D.2)

• The gradient vectors ofFCI :

gCI
i =

∑

k∈K

[

ui,k ◦ e∗
i−k − ui+k,k ◦ e∗

i+k + ZH
(

ui+k,k ◦ j∗
i+k − ui,k ◦ j∗

i−k

)

]

,

(D.3)
with

ui,k = ji ◦ ei−k − ji−k ◦ ei (D.4)



226 EXPRESSIONS FOR THE GRADIENT VECTORS IN THE CI METHOD

• The gradient vectors ofFP :

gP
i =

(

P
∑

p=1

wp

)

◦
∑

k∈K

(

ui,k ◦ e∗
i−k − ui+k,k ◦ e∗

i+k

)

+λ2hi ◦
P
∑

p=1

wp ◦ (ji − jωcpei) (D.5)

+ZH

[

(

P
∑

p=1

wp

)

◦
∑

k∈K

(

ui+k,k ◦ j∗
i+k − ui,k ◦ j∗

i−k

)

+λ2jωhi ◦
P
∑

p=1

c∗pwp ◦ (ji − jωcpei)

]

, (D.6)

wherehi is anN -dimensional vector containing the normalization constants
Hi,n for a certain excitationi and where theN -dimensional vectorwp contains
the weightsWn,p, defined as

Wn,p = BP
p (Un + λ2Vn,1, . . . , Un + λ2Vn,P ), (D.7)

where the functionsBP
p are defined in (B.39).

Note that, in the linear combinations of the above gradient vectors which give the
gradient vectors of the total cost function, the matrixZH can be brought up front and
hence only one multiplication with this matrix has to be performed for every excitation
i.
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