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1 SHAPING AN IMMUNE RESPONSE 

The immune system is composed of many interdependent cell types that collectively 

protect the body from bacterial, parasitic, fungal and viral infections. This large 

variety of danger signals presents different challenges to the immune system in 

terms of recognition and mounting appropriate immune responses. Many of the 

immune cell types involved have specialized functions to optimally defend the body 

against foreign pathogens. 

To establish an infection, the pathogen must first overcome numerous surface 

barriers. Any organism that breaks through these first barriers leads immediately or 

within hours after antigen exposure to the induction of an innate immune response 

(Figure 1). Innate (natural) responses are general defense mechanisms that are 

antigen-nonspecific. Cells of the innate immune system are designed to recognize a 

few highly conserved structures, called ‘pathogen-associated molecular patterns’ 

(PAMPs) such as LPS, peptidoglycan, lipotechoic acids, mannose, bacterial DNA, 

double-stranded viral RNA and glycans. These PAMPs are common in many 

different micro-organisms and are recognized by ‘pattern recognition receptors’ 

(PRRs) present on most cells of the innate immune sytem. PAMPs can also be 

recognized by a series of proteins in the blood that initiate the complement pathways. 

The innate response uses phagocytic cells (neutrophils, monocytes and 

macrophages), cells that release inflammatory mediators (basophils, mast cells and 

eosinophils), and natural killer cells. The molecular components of the innate 

responses include complement, acute-phase proteins and cytokines such as 

interferons. However, innate immune cells alone cannot always eliminate infectious 

organisms. B and T lymphocytes, which are cells of the acquired (adaptive) immune 

system, have evolved to mount a stronger and more effective immune response 

against any pathogen. Acquired immune responses are antigen-specific and need 

some time to develop but are improved upon repeated exposure to a given pathogen, 

which is called immunological memory. (for review see [1,2])  

Acquired immune responses are generated in the lymph nodes, spleen and 

mucosa-associated lymphoid tissues. Two types of acquired immune responses 

exist: cellular and humoral immune responses. CD4+ T cells and CD8+ T cells, which 

are part of the cellular immune response, have evolved to eliminate intracellular 

pathogens and to provide help to B cells, which are part of the humoral immune 

response. T cells can eradicate intracellular pathogens by activating macrophages 

and by killing virally infected cells. B cells secrete immunoglobulins, antigen-specific 
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antibodies responsible for eliminating extracellular micro-organisms.  To be activated, 

T cells need to recognize antigens presented by specialized cells, called 

antigen-presenting cells (APCs), in the context of major histocompatibility complex 

(MHC) molecules through interaction with their T cell receptor (TCR). In addition, 

APCs provide co-stimulatory signals necessary to fully activate T cells. In the 

absence of co-stimulation T cell anergy is induced. However, in addition to eradicate 

harmful pathogens, the acquired immune response is also responsible for the 

induction of allergies and autoimmune responses. (Figure 1) 

A key cellular component of innate immunity is the dendritic cell (DC), a professional 

APC. These cells constantly but quietly endocytose antigens in the periphery. When 

antigens are encountered, they are activated and migrate to the draining lymph node 

where they efficiently activate naive T cells and prime an immune response for which 

immunological memory has not been established. DCs also determine the character 

of the activated T cells that mediate the effect against a specific pathogen.  
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Figure 1 Immunity to infection. 
Innate immune effector cells, including macrophages, dendritic cells (DCs), neutrophils and 
natural killer (NK) cells (not shown), together with various protein components of the 
complement system, provide the first line of defense against invading micro-organisms. 
Binding of conserved pathogen-derived molecules to pattern-recognition receptors (PRRs), 
such as Toll-like receptors (TLRs), on the cell surface of macrophages and DCs activates the 
production of pro-inflammatory cytokines and chemokines, which help to attract other effector 
cells to the site of infection. Pathogen-activated DCs present pathogen-derived antigens to 
T cells and promote the differentiation of naive T cells to various subtypes of effector CD4+ 
and CD8+ T cells. CD4+ T helper 1 (Th1) cells secrete interferon-γ (IFN-γ), which activates the 
anti-microbial activity of macrophages and helps B cell production of IgG2a antibodies, 
whereas Th2 cells provide help for B cell production of IgG1, IgA and IgE. CD8+ T cells lyse 
host cells infected with viruses, intracellular bacteria or parasites. In normal individuals, 
regulatory T cells (both natural regulatory T cells circulating in the periphery and those 
induced by infection) help to control these effector functions and the associated damage to 
host tissues. IL: interleukin; TCR: T cell receptor; TNF: tumor necrosis factor. Source: [3] 
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1.1 T cell subsets 

The thymus is central to establish a functioning immune system. In the thymus, 

T cells mature from hematopoietic progenitors, driven by mutual interactions of 

stromal cells and the developing thymocytes. As a result, different types of T cells are 

generated, all of which have been carefully selected for their ability to mount an 

immune response to non-self without driving pathogenic self-reactive autoimmune 

responses.  

As the emphasis of this work relates to the outcome of the DC-T cell interaction, I will 

further focus on CD4+ T cells of which some different subsets have been identified 

over the last decades. 

1.1.1 Effector T cells: Th1, Th2 and Th17 

A major breakthrough was the classification of CD4+ T cells into T helper 1 (Th1) and 

T helper 2 (Th2) subsets based on cytokine secretion in vitro [4,5].  

The cytokine typical for Th1 responses is interferon γ (IFNγ). Besides increasing 

phagocytic activity, IFNγ also supports the development of cytotoxic CD8+ T cells that 

are required for killing virus infected host cells. In contrast, Th2 cells produce mainly 

interleukin 4 (IL-4), IL-5 and IL-13, favoring humoral responses (Figure 2). Because 

Th2 cells secrete the anti-inflammatory cytokine IL-10 as well as IL-4, these cells 

might also have regulatory functions as well as effector functions. They are 

distinguished from the later described regulatory T cells (see 1.1.2) by the production 

of large amounts of IL-4 and smaller amounts of IL-10 as well as the lack of 

transforming growth factor β (TGFβ) production. 

Appropriate responses against micro-organisms require selective forms of specific 

immunity mediated by these functionally polarized subsets of effector Th cells. For 

example, Th1 cells are necessary for immune responses against intracellular 

bacteria and viruses, promoting the production of opsonizing and 

complement-binding antibodies by plasma cells. They also activate macrophages 

and neutrophils. Immune responses against helminthes are dependent on Th2 cells, 

switching antibody production towards neutralizing immunoglobulin G (IgG) 

antibodies as well as IgE and lead to activation of eosinophils [5]. Conversely, 

deregulated Th responses promote several pathological conditions as in the case of 

allergy and asthma, which are characterized by excessive Th2 responses [6]. 

Th1-dominated responses may be involved in the pathogenesis of human diseases 
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characterized by granuloma formation, such as organ-specific autoimmune disorders, 

Crohn’s disease and atherosclerosis [7,8]. 

 

 

Figure 2 CD4+ T helper subsets.  
A CD4+ naive T cell can develop into different effector cell subsets that can be recognized by 
their specific cytokine profile and are each responsible for a specific type of immune 
response. Next to pathogen elimination, deregulated T helper (Th) responses can also lead to 
several pathological conditions (in red). IFNγ: interferon γ; IL: interleukin; Mφ: macrophages; 
CTL: cytotoxic T lymphocytes; Ab: antibodies. 

Until recently the Th1 and Th2 subtypes were the only two CD4+ effector cell types 

described since their discovery two decades ago. But a new type of CD4+ effector 

cell has been added, the Th17 cells. These cells are characterized by their secretion 

of IL-17, IL-17F and IL-6, and have probably evolved to enhance host clearance of a 

range of pathogens distinct from those targeted by Th1 and Th2 (Figure 2). IL-17 is 

the founding member of a small family of cytokines that is generally thought to 

increase inflammation by recruiting other immune cells, like eosinophils, to peripheral 

tissues. The breakthrough leading to discovery of the Th17 lineage came from 

murine models of autoimmunity. The link with IL-12 and induction of Th1 responses 

in these models was questioned with the discovery that a new IL-12 family member, 

IL-23, shares with IL-12 the p40 subunit [9]. Given that key experimental data, linking 
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experimental autoimmune encephalitis and collagen induced arthritis to Th1 

autoimmunity, were based on protection associated with manipulations that targeted 

the IL-12p40 subunit, the question arose whether protective effects might not involve 

inhibition of IL-23 instead of IL-12. After a range of studies it became indeed clear 

that IL-23 and not IL-12 is critically linked to autoimmunity in these models [10-12]. 

There is now plenty of evidence that IL-23, a cytokine produced by APCs, elicits 

production of IL-17 from a CD4+ effector T cell that causes the harmful effects in 

autoimmune disorders [13-18].  

1.1.2 Regulatory T cell subsets 

Homeostasis in the immune system depends on a balance between the responses 

that control infection and the reciprocal responses that prevent inflammation and 

autoimmune diseases. It is now recognized that regulatory T cells (Treg cells) have a 

crucial role in suppressing immune responses to self-antigens and in preventing 

autoimmune diseases. Evidence is also emerging that Treg cells control immune 

responses to bacteria, viruses, parasites and fungi, preventing severe inflammation 

and collateral tissue damage. 

The group of Treg cells can be further divided into naturally occurring (or constitutive) 

and inducible (or adaptive) Treg cells [3,19]. Both have complementary and 

overlapping functions in the control of immune responses. However the lineage 

relationship, if any, between these subsets remains to be defined. 

The naturally occurring subset of CD4+ Treg cells is characterized by its continuous 

expression of the α chain of the IL-2 receptor, CD25 [20]. They also express the 

transcription factor Foxp3 [21], the only phenotypic marker unique to this subset. 

Naturally occurring Treg cells represent 5-10% of the CD4+ T cell pool in healthy 

adult humans and mice and are thought to be important for keeping auto-reactive 

T cells, which have escaped negative selection in the thymus, in check. Furthermore, 

they have been shown to induce tolerance to allo-antigens [22] and inhibit 

development of colitis in the T cell transfer SCID model [23,24].  

A unique cytokine-production profile, rather than the expression of cell surface 

markers, has been used to define at least 2 populations of inducible Treg cells. 

These are not selected for in the thymus during T cell maturation, but are generated 

from naive T cells in the periphery during infection or can be induced by 

tolerance-inducing antigen administration regimens [3,25]. For experimental use, this 

cell population can also be derived from in vitro culture systems [26]. Both human 
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and mouse CD4+ T cells, repeatedly stimulated in the presence of IL-10, differentiate 

into a new subset of CD4+ T cells, termed Tr1 cells [26]. This subset is defined by its 

poor proliferative response, its ability to produce high levels of IL-10 and suppression 

of Th1 and Th2 responses in vitro and in vivo [26,27]. These cells may play a 

beneficial role in the tolerance to allo-antigens but also to allergens and self-antigens 

[28]. Weiner and co-workers showed that the induction of oral tolerance and the 

prevention of Th1-mediated autoimmune disease by feeding self-antigens were 

associated with the generation of TGFβ secreting T cells in the gut [29]. These 

T cells, which were distinct of Th2 cells in that they produce large amounts of TGFβ 

and varying amounts of IL-4 and IL-10, were named Th3. TGFβ promotes an isotype 

switch in B cells from IgM to IgA [30]. So Th3 cells help to explain the unique 

phenomena recognized in the gastro-intestinal tract; selective production of secretory 

IgA, suppression of IgG and IgM secretion and the induction of oral tolerance. 

The exact mechanism by which natural and inducible T cells exert their suppressive 

effects is still subjected to speculations (Figure 3). Studies in animal models provide 

strong evidence for a role of cytokines in the effector function of Treg cells in vivo. 

Both IL-10 and TGFβ, produced by T cells, are important in providing protection from 

colitis in the SCID model [23,31]. Many studies have shown that using antibodies 

specific for IL-10 and TGFβ can reverse the suppression mediated by Tr1 and 

Th3 cells. Furthermore, mechanisms requiring cell-cell contact have been described 

for CD4+ CD25+ T cells [32], presumably via cytotoxic T lymphocyte associated 

antigen 4 (CTLA4) signaling [23], glucocorticoid-induced tumor necrosis factor 

receptor (GITR) [33] and/or membrane bound TGFβ [34,35]. Finally, it has been 

proposed that naturally occurring Treg cells might inhibit pathogenic effector T cells 

by competing for shared resources in the normal immune system [36]. So, although 

the mechanisms of suppression by Tr1 and Th3 cells seem to be mediated mainly by 

cytokines, CD4+CD25+ Treg cells might use many and as-yet-unidentified 

mechanisms to mediate suppression. 
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Figure 3 Targets of regulatory T cells and mechanisms of suppression. 
CD4+ CD25+ FOXP3+ (forkhead box P3) natural regulatory T cells (Treg cells) inhibit the 
proliferation of CD25– T cells. The mechanism of suppression seems to be multifactorial and 
includes cell–cell contact. CD4+ CD25+ Treg cells express cytotoxic T lymphocyte antigen 4 
(CTLA4), which interacts with CD80 and/or CD86 on the surface of antigen-presenting cells 
(APCs) such as dendritic cells (DCs), and this interaction delivers a negative signal for T cell 
activation. There is also some evidence that secreted or cell surface TGF-β or secreted IL-10 
might have a role in suppression mediated by natural Treg cells. Inducible populations of Treg 
cells, which include T regulatory 1 (Tr1) cells, T helper 3 (Th3) cells (and CD8+ regulatory 
T cells), secrete IL-10 and/or TGF-β. These immunosuppressive cytokines inhibit the 
proliferation of and cytokine production by effector T cells, including Th1 cells, Th2 cells and 
CD8+ cytotoxic T lymphocytes (CTLs), either directly or through their inhibitory influence on 
the maturation and activation of DCs or other APCs. The TGF-β producing Th3 cells are also 
important effector cells in mucosal immunity, inducing B cells to switch from immunoglobulin 
(Ig)M to an IgA isotype (not shown). TCR, T cell receptor. Source: [3] 

1.2 Dendritic cells 

DCs were first described in 1973 by Ralph Steinman [37] and are now recognized as 

crucial cells of the immune system, involved in T cell activation and differentiation. 

They are professional APCs that form a link between the adaptive and innate 

immune system. DCs originate from hematopoietic stem cells (HSCs) derived from 

the bone marrow. These precursors seed the blood and give rise to immature DCs, 
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which in the periphery act as sentinels, continuously sampling the environment for 

the presence of foreign antigens. ‘Danger signals’ induce activation of 

antigen-bearing DCs and migration into secondary lymphoid organs such as draining 

lymph nodes and the spleen. Mature DCs can initiate an immune response by 

efficiently presenting the sampled antigen to naive T cells. The interaction between 

the DC and a naive T cell will determine the outcome of T cell priming into either 

tolerance or immunity and the emergence of T cells carrying a Th1, Th2 or Th17 

phenotype.  

DCs were originally considered to be of myeloid origin and closely related to 

monocytes, macrophages and granulocytes. Recent studies, however, suggest that 

DCs can be generated along distinct developmental pathways and can originate from 

precursors of different hematopoietic lineages.  

Furthermore, several DC types with different biological features have been identified 

in different tissues, including Langerhans cells in the epidermis, interstitial DCs in 

various tissues, thymic DCs and DC populations found in lymphoid organs. 

Differences in the tissue distribution, phenotype and function indicate the existence of 

a heterogeneous population of DCs. Another cell type, which belongs to the DC 

system, is the so-called plasmacytoid DC, originally identified as plasmacytoid T cells 

or plasmacytoid monocytes due to their morphological similarity to plasma cells and 

expression of certain T cell markers and MHC II molecules. 

The development of DCs, their role in immunity and tolerance together with the 

existence of specific subsets and their functional differences will be described in this 

chapter, with specific emphasis on a population of DCs with special characteristics, 

namely the mucosal DCs. 

1.2.1 Origin and differentiation of dendritic cells 

DCs have been identified in lymphoid as well as non-lymphoid organs but their 

relationship and origin remain unclear and controversial. DCs were originally thought 

to be derived from myeloid precursors due to their functional, phenotypic and 

morphological similarities with macrophages and monocytes [38]. However, an initial 

study of DC reconstitution in bone marrow irradiated chimaeras showed that thymic 

DCs can be derived from CD4low early thymic precursors, which are devoid of 

myeloid reconstitution potential, and led to the concept that some DCs could be of 

lymphoid origin [39]. Furthermore, it has been shown that all DCs can develop from 

clonogenic bone marrow-derived common myeloid precursors (CMP) as well as from 
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clonogenic bone marrow-derived common lymphoid precursors (CLP) suggesting 

that all DCs can be generated along both myeloid and lymphoid pathways [40-42].  

The fact that both CMP and CLP can generate all the DC populations suggests 

plasticity in developmental potentials of these early precursors [43]. It also suggests 

that the CMP and CLP that can give rise to DCs may share some common features. 

Moreover, it was demonstrated that most DC and plasmacytoid DC precursor activity 

was within the bone marrow hematopoietic precursors expressing FMS-like tyrosine 

kinase 3 (Flt3) [44,45]. The majority of mouse bone marrow CLP express high levels 

of Flt3 and these are the most efficient precursors of both DCs and plasmacytoid 

DCs [45]. In contrast, only a small proportion of the CMP express Flt3, yet the 

precursor activity for both DCs and plasmacytoid DCs resides in this minor Flt3+ CMP 

fraction [45]. These findings demonstrate that the early precursors for all DC 

subtypes and for plasmacytoid DCs are within the bone marrow Flt3+ precursor 

populations, regardless of their lymphoid or myeloid lineage orientation, and Flt3 

signaling is required for the development of both DCs and plasmacytoid DCs. 

However, it remains unclear whether DCs are generated from CMP and CLP within 

the bone marrow from where they migrate to the periphery, or alternatively, from 

circulating DC precursors that home to the peripheral lymphoid organs where they 

differentiate. Some recent reports support the concept that precursor DCs are 

recruited to the lymph nodes during infection where they differentiate into DCs 

[46-48]. 

A definition of DC-committed precursors has remained elusive both in humans and 

mice. Most articles on this subject either describe precursor populations with a 

differentiation potential not restricted to the DC lineage or describe immediate 

precursors of defined DC subsets such as plasmacytoid cells or monocytes, with 

limited DC differentiation potential. However, a CD11c+MHC II- DC restricted 

precursor population which can fully reconstitute splenic CD8α-, CD8α+ and 

plasmacytoid B220+ DC subpopulations and is devoid of lymphoid- or 

myeloid-differentiation potential, has recently been identified in mouse blood [46] 

(Figure 4). Whether this pre-DC is a common precursor for all DC subpopulations or 

an environmentally regulated DC precursor that is involved in the generation of only 

certain DC subpopulations, remains to be addressed. 

 

 



General Introduction 

 13

 

Figure 4 Theoretical model of the developmental origin of mouse dendritic cells.  
The differentiation of dendritic cells (DCs) — including CD8α-, CD8α+, plasmacytoid 
B220+ DCs and Langerhans cells — has been proposed to proceed directly through myeloid- 
and lymphoid-derived DC precursors [40], and through circulating common DC precursors 
(pre-DCs) [46]. On the basis of the relative DC differentiation potential and the absolute 
number of common lymphoid progenitors (CLP) and common myeloid progenitors (CMP), it 
has been established that thymic DC differentiation results from an equal contribution of both 
precursors, whereas peripheral DCs are derived mainly from CMP [41,42]. Myeloid-derived 
DC precursors have been shown to be derived from the fraction of CMP that express 
fms-related tyrosine kinase 3 (Flt3+) [45]. Lymphoid-derived DC precursors could derive from 
CLP that are located in the bone marrow or from thymic lymphoid precursors, which give rise 
to T cells, thymic DCs and B cells. Pre-DCs and monocytes have been proposed to be 
involved in the generation of DCs after recruitment to reactive sites [46]. The origin of 
pre-DCs from myeloid and/or lymphoid progenitors, and their relative contribution to the 
generation of DCs in relation to CMP and CLP under steady state conditions have also to be 
determined. HSC: hematopoietic stem cell; NK: natural killer. Source: [49] 
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1.2.2 DC subsets 

As mentioned before, a large variety of DC subsets have been described in lymphoid 

and non-lymphoid organs of humans as well as mouse. The distinction of these 

subsets has been made, depending on both functional and phenotypical differences 

but as explained before both the origin and development of these different subsets 

remain under investigation.  

Several factors have made this field complex. First, considerable heterogeneity exist 

in the antibody panels used to characterize DC subsets, especially in the mouse 

where the ready availability of tissues and reagents has led to numerous studies. In 

humans, the lack of CD8α expression by any subset makes comparison with mouse 

DC subsets difficult [50]. Second, it is still a matter of debate whether the different 

subsets described represent different activation states of a single lineage or whether 

the distinguishable DC phenotypes are all products of separate developmental 

lineages. Reality probably is a mixture of these two models and furthermore a large 

degree of functional plasticity is a general feature of all DCs. 

Murine subsets 

Despite the use of different antibody panels, several common markers have been 

used in most studies so far, enabling some comparison between the described 

subsets and have lead to the identification of six distinct populations (Figure 5), some 

of which are only present in specific tissues.  

Conventional DCs are characterized by the expression of high levels of CD11c. In 

lymphoid tissues they can be divided into CD8α+ and CD8α- subpopulations, which 

have been extensively studied over the past few years [51]. These subsets were 

previously known as lymphoid and myeloid DCs respectively. In the meantime it has 

been recognized that myeloid committed cells as well as lymphoid committed cells 

can give rise to both lymphoid (CD8α+) and myeloid (CD8α-) subsets. Moreover, until 

now it is still not clear whether CD8α expression on DCs indeed means an 

independent DC development pathway, or if it is merely a DC activation marker. 

Nevertheless, the terms myeloid and lymphoid DC subsets are still used in 

connection to their expression of myeloid versus lymphoid markers (CD11b versus 

CD8α) [49].  

In the spleen, three conventional DC subsets can be found (Figure 5). A CD8α 

positive (lymphoid) subset is present in the T cell area with the following phenotype: 

CD8α+ CD11b- CD4- CD205+. This is also the dominant subtype of thymic DCs. 
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Furthermore two CD8α negative (myeloid) subsets can be defined, with differences in 

their CD4 expression: CD8α- CD11b+ CD4+ CD205- and 

CD8α- CD11b+ CD4- CD205-. Both subsets are found in the marginal zones but 

migrate into T cell zones on stimulation with microbial products [52-54]. The 

functional relevance of the differential CD4 expression between those 2 subtypes 

remains controversial as it also is uncertain if CD8α- CD4+ and CD8α- CD4- are two 

developmentally and functionally independent DC subsets or if the CD8α- CD4- 

subset might constitute a more activated or differentiated form of the CD8α- CD4+ DC 

[51,55,56].  

 

 

Figure 5 Murine dendritic cell subsets in spleen and lymph nodes.  
Differentiation markers: (CD)11c; (CD)8α; (CD)11b; (CD)4; (CD)205; Lgr: langerin; Int: 
intermediate. 

Plasmacytoid B220+ cells are a fourth subtype of DCs present in mouse spleen. 

Plasmacytoid DC precursors have been first described in humans as cells with a 

plasma cell-like morphology in T cell areas of lymphoid organs. They were 

recognized not to be classical plasma cells, but their true function remained 

unknown. As a consequence, they were called plasmacytoid monocytes or 

plasmacytoid T cells [57]. Recently, it has been discovered that plasmacytoid DC 

precursors produce massive amounts of type I IFN upon activation with viruses 

[58,59]. Moreover, once activated, these cells develop into genuine DCs that can 

potentially stimulate T cells [58]. Therefore they were renamed plasmacytoid DC 
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precursors. The precursor cell is characterized by the expression of low levels of 

CD11c and MHC II. In addition they stain positive for Ly-6G/C (Gr-1) and B220 [60].  

Lymph nodes (LN) have been shown to harbor the same four DC subsets as the 

spleen does. Moreover, LN contain additional DC subtypes (Figure 5). The 

mesenteric LN, which belong to the intestine-draining LN, harbor one additional DC 

subset, whereas all skin draining LN harbor two additional DC subsets. The 

CD8α- CD11b+ CD4- subset with moderate expression of CD205, in contrast to the 

spleen CD8α- DC, is found in all LN. These cells are believed to be the mature form 

of tissue interstitial DCs that gain access to the LN through the lymphatics. And, only 

present in skin draining LN, expressing high levels of langerin, is the mature form of 

Langerhans cells, CD8αlow CD11b+ CD4low CD205+ [61].  

In addition to these main DC subpopulations, other DC subsets have been described 

in specific organs of the mouse, including the gut, lung, heart and kidney. The 

available functional and phenotypic data regarding these DCs have not yet allowed 

them to be ascribed to any of the DC subpopulations listed in Figure 5.  

Human subsets 

Relatively few studies have been performed on human DCs freshly isolated from 

tissues. The only readily available source of DCs is blood and although heterogenous 

in expression of markers, many of the differences in human blood DCs reflect other 

maturation or activation states rather than separate subsets. Therefore most of the 

data acquired are derived from several in vitro culture systems. As mentioned before, 

the lack of CD8α by human DCs makes comparison with mouse DC subsets 

difficult [50]. 

Four different mature subsets have been identified so far. Analogous to the murine 

homologue, Langerhans DCs have been described which express, in addition to 

CD11c, also langerin, E-cadherin and contain Birbeck granules in their cytoplasm. 

Interstitial, or ‘dermal’ DCs, are a second lineage which are CD11c+, and can be 

further identified by CD68 and the coagulation factor XIIIa. Blood monocytes, termed 

pDC1, are the precursor cells for monocyte-derived DCs. After six days in the 

presence of granulocyte/macrophage-colony-stimulating factor (GM-CSF) and IL-4 

they will generate DCs, called DC1 [62]. These cells are positive for CD11c and upon 

maturation induced by pro-inflammatory cytokines such as tumor necrosis factor 

(TNF) or microbial products (e.g. LPS), acquire a CD14- CD83+ CD86+ MHC IIhi 

phenotype. The final subset described in humans is the type I IFN producing 

plasmacytoid DC, termed pDC2. This subset of DCs was recognized well before their 
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murine counterpart, initially by their plasma-cell-like morphology and their unique 

surface phenotype. Typical for these cells are low levels of CD11c expression and 

the unique expression of IL-3 receptor α [63,64].  

1.2.3 DC activation, migration and T cell activation 

Immature DCs are spread throughout the periphery, especially at portals of pathogen 

entry such as the skin, airway and gastro-intestinal mucosa. In this immature state 

DCs are continuously sampling the microenvironment via three major mechanisms: 

receptor-mediated endocytosis, macropinocytosis and phagocytosis. 

Receptor-mediated uptake is accomplished via a myriad of receptors, including 

C-type lectin receptors (such as langerin, DC-SIGN, dectin, CD205), the mannose 

receptor for glycoproteins and Fc receptor for immune complexes [65,66].  

Upon exposure to a pathogen, maturation of the immature DC is triggered. 

Maturation comprises a multi-step process that enables the DC to initiate both innate 

and adaptive effector cells (Figure 6). Initially DCs secrete cytokines and chemokines 

that recruit other innate effector cells, such as neutrophils and macrophages, to the 

site of infection. These phagocytic cells exert potent anti-microbial activities and 

control the pathogen. Toll-like receptor (TLR) mediated signaling leads to 

down-regulation of the chemokine receptor CCR6 and up-regulation of CCR7 [67] 

together with the enhancement of adhesion molecules, which allow the DC to enter 

the lymphatic system and govern the migration to the draining lymph nodes. During 

this transition phase DCs lose their endocytic capacity so that only antigens engulfed 

at the site of infection are processed and presented. In addition the DCs dramatically 

increase their levels of antigen-loaded MHC I and MHC II expression [68] together 

with their expression of co-stimulatory molecules, notably CD80 (B7.1) and CD86 

(B7.2) but also CD40, OX40 ligand, 4-1BB ligand and SLAM.  

In the lymphoid organs these mature DCs migrate to T cell areas and act as 

professional APCs by providing signal 1 (TCR crosslinking) and signal 2 

(co-stimulation) to pathogen-specific, naive T cells, thereby inducing their activation 

and clonal expansion. Whereas signal 1 determines the antigen-specificity of the 

response, signal 2 is required to prevent T cell anergy (see also Figure 7). After 

expansion these activated T cells migrate back to the site of inflammation, clear the 

infection and give rise to memory. The character of the immune response is 

determined by the nature of the activated effector cells and the role of DCs herein will 

be discussed in the next section (1.3).  
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Figure 6 Pathogen triggered maturation of a peripheral dendritic cell (DC).  
Upon exposure to a pathogen in the periphery, immature DCs are activated and migrate to 
the draining lymph nodes, thereby down-regulating their antigen (Ag) processing machinery 
but increasing their T cell activation capacities. Upon activation, the DC also secretes 
chemokines and cytokines to attract other cells of the innate immune system to the site of 
infection. TLR: Toll-like receptor, CCR7: chemokine C-C receptor 7 

1.3 Polarization of the immune response 

It has been well established that DCs have a pivotal role in the differentiation of naive 

CD4+ T cells into Th1, Th2 or Th17 cells and evidence is accumulating that DCs are 

also able to induce T cell anergy or direct the development of Treg cells [69,70] 

(see 1.4). The final outcome of the differentiation process and thus the character of 

the immune response is determined by several factors, with the type of pathogen, the 

subset of DCs stimulated and the cytokine milieu at sites of inflammation being the 

major determinants. 

1.3.1 DC subsets and polarization of the immune response 

The existence of phenotypically distinct subsets of DCs that are located in distinct 

microenvironments raises the question whether they too, like distinct subsets of 

lymphocytes, may have evolved to serve distinct functions. Traditionally it was indeed 
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thought that the different human DC subsets had fixed instructive capacities, hence 

the DC1/DC2 nomenclature [71]. This view implies that myeloid DCs (DC1) induce 

IFNγ producing Th1 cells and thus pro-inflammatory responses whereas 

plasmacytoid DCs (DC2) mediate the more tolerogenic Th2 polarization. Studies on 

CD8α+ (or formerly lymphoid-derived) and CD8α- DCs (or formerly myeloid-derived) 

populations in mice also showed Th1 and Th2 priming capacities respectively 

[72,73]. In addition, it has been shown that CD8α- DCs induce Th17 cells much more 

efficiently than other subsets in experimental autoimmune encephalomyelitis [74]. 

Nevertheless, in recent years it has become increasingly clear that DC subsets may 

not have an intrinsic capacity to direct either Th1 or Th2 cell development, but rather 

might be modified by environmental factors [75-77]. Colonna and co-workers showed 

that human blood plasmacytoid DCs stimulated with CD40 ligand or influenza virus 

matured and became potent stimulators of a Th1 response, driven by type I IFN and 

IL-12 production [77]. Another study showed that both mouse conventional and 

plasmacytoid DCs generated from bone marrow, as well as lymphoid tissue DCs can 

direct Th1 or Th2 responses depending on the dose of antigen presented [75].  

All together the conclusion from these seemingly contradictory findings and theories 

might be that developmentally preprogrammed functions can be fine-tuned by 

environmental factors, leading to some degree of functional plasticity of the different 

DC subsets. 

In spite of this plasticity in polarizing T cells, it is clear that, following stimulation, each 

DC subset secretes a lineage specific array of cytokines [78] and chemokines [79]. 

Stimulating human plasmacytoid DCs and myeloid DCs with a TLR7 ligand 

demonstrated the association of specific cytokine profiles with DC lineages. Although 

both subsets undergo similar phenotypic changes upon maturation, they show a 

different pattern of cytokine secretion. Specifically, myeloid DCs release IL-12 but no 

type I IFN and plasmacytoid DCs produce type I IFN but no IL-12. However, both 

subsets promoted the differentiation of T cells into Th1 effectors [78], indicating that 

the character of an adaptive immune response is ultimately determined by which 

PAMPs trigger immature DCs.  

1.3.2 PAMPs, TLRs and polarization of the immune response 

How do different DC subsets discriminate between pathogens when simultaneously 

present at the site of infection and ensure a proper type of immune response? The 

recognition of TLRs as main PRRs partially solved this question. The human myeloid 
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DC1 subset expresses all 10 TLRs with the exception of TLR9 and – according to 

some publications - TLR7 and therefore recognizes an abundant variety of PAMPs 

[80-82]. The plasmacytoid subset DC2 possesses a repertoire of TLRs (TLR1, TLR6, 

TLR7 and TLR9), which complements the TLRs expressed by DC1, enabling the two 

subsets of DCs to respond to distinct sets of PAMPs [80-82]. In mice the distribution 

pattern of TLR members shows more overlap between different subsets. While all 

subsets express TLR1, 2, 4, 6, 8 and 9, murine plasmacytoid DCs do not express 

TLR3 and CD8α+ DCs lack TLR5 and TLR7 expression [83].  

TLRs may be expressed as homodimers or heterodimers (TLR2 plus TLR1 or TLR6) 

and have broad specificity for conserved molecular structures of pathogens [84,85]. 

LPS from Escherichia coli signals through TLR4, whereas TLR2 appears to have 

several ligands including peptidoglycan from gram-positive bacteria, lipoproteins from 

Mycobacterium tuberculosis and zymosan from yeast as well as LPS from 

Porphyromas gingivalis. TLR3 recognizes dsRNA, TLR5 recognizes flagellin, TLR7 

can be triggered by single stranded RNA and may thus be important for viral 

recognition; TLR9 recognizes certain types of CpG rich DNA found in some viruses 

and bacteria. TLR3, 7, 8 and 9 are located in the endosomes and require an acidic 

environment for activation. TLR1, 2, 4, 5 and 6 are expressed on the cell surface. 

The former TLRs are thus ideal for the detection of internalized viruses and bacteria 

whereas the latter recognize bacterial products.  

A given DC population will only respond to the pathogen for which they have the 

appropriate TLRs. Transcriptional profiling by microarray analysis of human 

monocyte derived DCs treated with different classes of pathogens (bacteria, viruses 

and fungi) revealed the existence of common and pathogen specific genes [86]. 

Common genes respond to the presence of all pathogens and express proteins that 

are used in responses against all microbes, such as inflammatory cytokines and 

adhesion molecules necessary for the migration of maturing DCs to the lymphoid 

organs. In addition, distinct sets of genes are regulated in response to a specific 

pathogen, allowing for the generation of an adaptive immune response directed 

towards elimination of the eliciting pathogen. For example, activation of DCs with 

virus-derived dsRNA, a TLR3 ligand, but not with bacterial LPS, the prototypic TLR4 

ligand, up-regulates the level of type I IFN, essential for anti-viral responses, as well 

as pro-apoptotic genes that may induce early cell death of infected cells.  
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Figure 7 T cell stimulation and T helper 1 (Th1)/Th2-cell polarization   
Signal 1 is the antigen-specific signal that is mediated through T cell receptor (TCR) triggering 
by MHC II-associated peptides processed from pathogens after internalization through 
specialized pattern recognition receptors (PRRs). Signal 2 is the co-stimulatory signal, mainly 
mediated by triggering of CD28 by CD80 and CD86 that are expressed by dendritic cells 
(DCs) after ligation of PRRs, such as Toll-like receptors (TLRs) that are specialized to sense 
infection through recognition of pathogen-associated molecular patterns (PAMPs). Signal 3 is 
the polarizing signal that is mediated by various soluble or membrane-bound factors (see 
1.3.4), such as interleukin-12 (IL-12) and CC-chemokine ligand 2 (CCL2), that promote the 
development of Th1 or Th2 cells, respectively. The nature of signal 3 depends on the 
activation of particular PRRs by PAMPs but can also be influenced by the DC 
microenvironment (tissue factors: TFs) as discussed in 1.3.3. Type 1 and type 2 PAMPs can 
be defined as those that selectively prime DCs for the production of high levels of 
Th1 cell-polarizing or Th2 cell-polarizing factors. Whereas, the profile of T cell-polarizing 
factors is primed by recognition of PAMPs, optimal expression of this profile often requires 
feedback stimulation by CD40 ligand (CD40L) expressed by T cells after activation by signals 
1 and 2. IFN-γ: interferon-γ; TNF-β: tumor necrosis factor-β. Source: [70] 

These findings have been extended by several groups, showing that although 

PAMPs that stimulate different TLRs induce similar changes in surface phenotype, 

they often induce distinct patterns of cytokines, resulting in a Th1/Th2 polarization 

assumed to be the most appropriate attack towards the specific pathogen (signal 3 in 

Figure 7). For example LPS, CpG DNA, Poly(I:C) and TLR7 agonists induce 

IL-12p70 and/or IFNα and stimulate Th1 responses [55,78,87-90]. In contrast, other 

findings suggest that certain TLR ligands also mediate Th2 responses [88,91-97]. For 

instance, the TLR2 ligand zymosan promotes the release of IL-10 and the generation 

of Th2 effector cells in mouse splenic DCs, an effect also observed when using intact 

yeast [95,96]. In vivo studies also revealed that LPS from P. gingivalis causes DCs to 

prime a Th2 response [88,97], contrasting with the Th1 polarizing activities of DCs 

activated with E. coli LPS.  
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Not much is known concerning TLR ligands that mediate the induction of a Th17 

response. Nevertheless it was shown in both human monocyte-derived and murine 

bone marrow-derived DCs that the TLR2 agonist peptidoglycan is a strong inducer of 

IL-23p19 mRNA [98,99]. IL-23 secreted by DCs is considered to be important in the 

induction of Th17 responses. 

1.3.3 Conditioning of DCs in the peripheral microenvironment 

The specific anatomical compartment where an immature DC resides and 

encounters a pathogen also profoundly impacts the character of the immune 

response generated by the DC after it has migrated to the lymph nodes. CD11c+ DCs 

isolated from mouse mucosa such as Peyer’s patches or respiratory tracts 

preferentially induce Th2 differentiation [100,101]. In contrast CD11c+ DCs isolated 

from mouse spleen preferentially induce Th1 differentiation. DCs derived from 

bone marrow precursors or from liver precursors also displayed different effector 

functions in polarizing Th cells. While liver-derived DCs produced high IL-10 and 

induced allogeneic T cells to undergo Th2 differentiation, bone marrow-derived DCs 

produced low IL-10 and induced allogeneic T cells to undergo Th1 differentiation 

during primary mixed leukocyte reaction cultures or in allogeneic recipient mice after 

DC transfer [102].  

A recent report showed that CD8α+ and CD8α- subsets from the liver secrete similar 

amounts of IL-12 when stimulated with CD40 ligand, whereas in the spleen, only the 

CD8α+ subset secretes IL-12 [103]. As the two subsets are located in different areas 

of the spleen (CD8α- DCs in the marginal zone and CD8α+ DCs in the T cell area 

[89]) it was hypothesized that these distinct microenvironments might differentially 

condition DCs to release IL-12 [103]. The functional differences between DCs 

originating from different tissues may thus result from differences in tissue cytokine 

microenvironments as well as in the lineage origin of different tissue DCs (Figure 8). 
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Figure 8 The origin of tissue specific dendritic cell functions.  
DCs from mouse mucosal sites or liver (illustrated in light grey) and spleen (dark grey) have 
different T cell polarizing capacities after migration to the draining lymph node. These tissue 
specific functions of dendritic cells might result from the action of local microenvironmental 
factors on a common precursor (A) or from migration of distinct functionally committed 
precursors to the different tissues (B) or a combination of both mechanisms. BM: Bone 
marrow. Source: [104] with adaptations 

1.3.4 DC-derived effector molecules polarizing the immune response 

The conditions under which DCs are primed (microenvironment and pathogen 

derived compounds) thus strongly influence the Th balance. The T cell polarizing 

signal expressed by these primed DCs can be either cytokines or cell surface 

molecules. Some but not all of these DC-derived molecules have been identified. 

One of the best documented is IL-12p70, a powerful inducer of effector Th1 cells 

[105]. Recently IL-23 and IL-27, which are closely related to IL-12, have also been 

implicated to drive Th1 differentiation [105,106]. IL-18 has also a Th1-promoting 

ability, amplifying the effects of IL-12, but not capable of Th1 differentiation [105]. 

Another group of important Th1-driving factors in humans, but not in mice, are type I 

IFNs (e.g IFNα/β). In both man and mice, type I IFN production is strongly associated 

with virus infection and may be crucial in the development of protective Th1 immunity 
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as they can induce IFNγ secretion from CD4+ cells in humans [107]. Several 

cell surface molecules have also been shown to have a Th1-polarizing effect, among 

them intercellular adhesion molecule 1 (ICAM-1) and the Notch family ligand Delta 

[108,109]. 

A number of molecules implicated in Th2 differentiation have been identified up till 

now but no clear-cut picture has emerged yet. Some recently identified secreted 

mediators with Th2 inducing properties include the chemokine CCL2 (MCP-1), IL-25 

and IL-6 [110,111]. IL-18 has been reported to be able to drive Th2 development in 

the absence of IL-12 [112]. Cell surface molecules with Th2-driving properties are 

OX40 ligand and Jagged family members [70,109].  

Not much is known concerning DC-derived factors inducing the recently discovered 

Th17 lineage. The idea that IL-23 is the initiator of Th17 differentiation has been put 

to rest, although there is definitely a role for this cytokine in expanding and 

maintaining the Th17 population. TGFβ has recently been found to be a potent 

inducer of Th17 cells [113-115]. Analysis of DC-derived factors that act in concert 

with TGFβ led to the identification of IL-6, elicited by TLR-mediated signaling, as a 

critical cofactor. The combination of IL-6 in conjunction with TGFβ favors Th17 cells 

but inhibits the expression of Foxp3, a gene transcription factor essential for Treg cell 

differentiation [113,115]. Furthermore, both IL-1β and TNF were found to amplify the 

Th17 response but were not able to substitute for TGFβ or IL-6. 

1.4 Dendritic cells and tolerance 

The induction of antigen specific tolerance in the periphery is critical for the 

prevention of autoimmunity and maintenance of immune homeostasis. The role of 

DCs herein includes induction of T cell apoptosis, T cell anergy and generation of 

Treg cells.  

In order to explain the role of DCs in the establishment of peripheral tolerance, the 

existence of “steady-state” migrating DCs has been suggested. These DCs migrate 

to the regional lymph nodes in the absence of infection and inflammation, loaded with 

tissue antigens. In this way self-antigens are transported to the lymph nodes and 

presented to autoreactive T cells for the induction of peripheral tolerance [116].  

1.4.1 Induction of T cell apoptosis 

DCs in the steady-state are capable of inducing apoptosis in T cells for the 

maintenance of immune homeostasis. This concept was derived from observations of 
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a Fas-ligand expressing DC subset, resident in murine lymph nodes. These DCs are 

able to mediate apoptosis in allogeneic CD4+ T cells in a mixed leukocyte reaction 

[117]. In vivo, this seemed to be a mechanism to remove potentially self-reactive 

T cells from the periphery [118]. Treg cells appear to be rather resistant to 

Fas-ligand-mediated apoptosis [119] indicating that both DCs and Treg cells can act 

together to terminate a T cell response. Another apoptosis-inducing ligand, TRAIL, is 

expressed by human CD11c+ blood DCs after stimulation with IFNγ or TNF. TRAIL 

confers the ability to kill TRAIL sensitive targets, including activated T cells [120].  

1.4.2 Induction of T cell anergy 

T cell anergy is yet another mechanism by which auto-reactive T cells are neutralized 

in the periphery. When T cells encounter antigen (self peptides) presented by resting 

APCs, not only do they fail to become optimally activated but they are also 

hyporesponsive upon rechallenge; they are anergic. The induction of T cell anergy by 

DCs might be due to incomplete maturation, blockade of the B7 family of 

co-stimulatory molecules or the influence of specific non-inflammatory molecules 

such as IL-10 and TGFβ.  

The induction of T cell anergy by immunosuppressive mediators might be a 

mechanism to inhibit auto-reactive T cell responses by converting immature DCs into 

tolerance-inducing cells. It has been demonstrated that immature IL-10-treated 

human DCs release reduced amounts of inflammatory cytokines such as IL-1β, IL-6 

and TNF and do not produce IL-12 [121-123]. As a result such DCs are not only less 

efficient at stimulating Th1 responses but can induce a state of antigen-specific 

tolerance due to the induction of T cell anergy [123,124]. The anergic T cells induced 

by IL-10-modulated DCs are characterized by inhibited antigen-specific proliferation, 

a reduced production of IL-2 and IFNγ, and a down-regulated expression of CD25 

[123,125]. Induction requires direct cell–cell contact between T cells and DCs as well 

as soluble factors produced by the IL-10-treated DCs.  

One way for DCs to promote and maintain anergy is through the presence of the cell 

surface receptor “Programmed Death Ligand 1” (PD-L1) or B7-H1 [126]. This 

inhibitory signaling molecule is overruled on mature DCs that express high levels of 

MHC II and co-stimulatory molecules. But when those signals are low, as is the case 

for IL-10-treated DCs, B7-H1 signaling may become critical. The finding that B7-H1 

signaling might enhance IL-10 production in T cells, but inhibits IL-2 production, could 

explain how B7-H1 controls T cell anergy [126]. 
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1.4.3 Induction of regulatory T cells 

Finally, DCs may also control peripheral tolerance by inducing the differentiation of 

Treg cells (see 1.1.2). As discussed before, the activation status of the DC and local 

cytokine environment appear to play an important role in the outcome of T cell 

responses. This is also true for their function in Treg cell differentiation. Although 

T cells induced by immature DCs are anergic rather than regulatory, there is some 

evidence that immature DCs can selectively activate CD4+CD25+ Treg cells [127]. In 

contrast to the anergic T cells, the suppressive activity of these Treg cells seems to 

be antigen non-specific and can be partially inhibited by the addition of exogenous 

IL-2 in vitro [127]. Furthermore, it has been shown that DCs after treatment with 

vitamin D3 display an immature phenotype and are prone to induce CD4+CD25+ 

Treg cells, which are able to mediate transplantation tolerance [128].  

DCs that direct the induction of IL-10 secreting Tr1 cells seem to have an 

intermediate phenotype, including increased expression of MHC II molecules and 

CD86 but low levels of expression of CD40 and ICAM-1 [129,130]. This is supported 

by studies showing that DCs lacking surface expression of CD40 can suppress a 

primed immune response and induce IL-10-secreting CD4+ Treg cells [130]. 

Furthermore, the interaction between ICAM-1 and leukocyte function-associated 

antigen 1 (LFA-1) is thought to promote the induction of Th1 cells independently of 

IL-12 [108]. So, DCs in which CD40 and ICAM-1 expression is suppressed but CD80 

and CD86 expression is increased might promote the induction of Tr1 cells but block 

the differentiation of Th1 cells.  

Wakkach and colleagues [131] recently identified a subset of dendritic cells in the 

spleen and lymph node that appear to be a natural tolerizing dendritic cell subset. 

The cells have plasmacytoid morphology and remain immature even after in vitro 

activation with LPS or CpG, they have an unusual cell-surface phenotype 

(CD11clowCD45RBhigh), and they produce large amounts of IL-10 when stimulated. 

These cells are capable of directly generating Tr1 cells in vitro and in vivo, and may 

represent a naturally occurring dendritic cell subset involved in eliciting tolerance 

in vivo. 

Th3 cells are a unique mucosal T cell subset with down-regulatory properties for Th1 

and other immune cells [29]. In contrast to the other Th cell subsets, Th3 cells 

provide help for IgA production and primarily secrete TGFβ. The mechanism by 

which Th3 cells are induced remains unknown. It is also not known to what degree 
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the generation of these regulatory cells is related to unique APCs in the gut, the 

cytokine milieu, or other factors.  

Many results support the concept that DCs are the inducers of Treg cells under 

certain circumstances. On the other hand, recent results imply that Treg cells also 

affect DC functions. For instance it has been shown that a subset of CD8+ CD28- 

regulatory T cells induces up-regulation in DCs of the inhibitory receptors ILT3 and 

ILT4, which are responsible for DC-induced hyporesponsiveness of alloreactive 

CD4+ T cells [132]. Similarly, anergic CD4+ T cells have been shown to modify APCs 

that subsequently induce tolerance in naive T cells [133]. In vitro, human 

CD4+ CD25+ Treg cells also strongly suppressed TLR-triggered DC maturation, as 

judged by the blocking of co-stimulatory molecule up-regulation and the inhibition of 

pro-inflammatory cytokines secretion that resulted in poor antigen presentation 

capacity [134,135]. However, the exact mechanisms by which DCs induce Treg cells 

and vice versa remain to be defined. 

Presently, microbial products that polarize DCs towards a Treg cell-inducing 

phenotype are beginning to be identified. Well-documented examples include: 

filamentous hemagglutinin (FHA) and adenylate cyclase toxin from 

Bordetella pertussis, Schistosoma mansoni lyophosphatidylserine, cholera toxin 

β-subunit, and hepatitis C virus glycoprotein NS4 (all reviewed in [3]). Through the 

generation of Treg cells, these pathogens are able to prevent the generation of 

protective Th1 or Th2 immune responses. In the case of FHA it has been shown 

in vitro that the induction of IL-10 and the inhibition of IL-12 production by DCs 

promotes the clonal expansion of IL-10 producing T cells. There is also evidence that 

some pathogens block DC maturation, leading to Treg cell development in order to 

protect themselves against detrimental effects of the immune response [70].  

1.5 Dendritic cells in the gastro-intestinal immune system 

The gastro-intestinal mucosa is the largest and most complex part of the immune 

system. It is in constant interaction with the luminal microenvironment, which 

contains an ever-changing commensal microflora as well as a variety of bacterial, 

viral and protozoan pathogens. Strong immune responses to these pathogens are 

required to prevent uncontrolled infections in the host. By contrast, active immunity 

against harmless antigens, such as food proteins or the commensal microflora, would 

not only be wasteful but more importantly would trigger hypersensitivity responses 

against these antigens and can lead to inflammatory disorders such as 
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Celiac disease and Crohn’s disease, respectively. As a result, the usual response to 

harmless gut antigens is the induction of local and systemic immunological tolerance, 

known as oral tolerance. This physiological response is most often characterized by 

IgA production and the induction of Th2 responses, rather than Th1, next to other 

specific features. Specialized cells and organs that are involved in the uptake of 

antigens, distinctive subsets of APCs and several unusual populations of B and 

T cells might contribute to this tolerance-favoring environment. 

The gut associated lymphoid tissues (GALT) can be divided into effector sites, which 

consist of lymphocytes scattered throughout the epithelium and lamina propria, and 

organized tissues responsible for the inductive phase of the immune response. 

These are the small intestinal Peyer’s patches (PP) and mesenteric lymph nodes 

(MLN), as well as smaller, isolated lymphoid follicles, which have the appearance of 

microscopic PP and are distributed throughout the wall of small and large intestines. 

As discussed in the previous sections, DCs play a pivotal role in decision between 

tolerance and immunity. Here we will discuss more specifically the role of mucosal 

DCs in the induction of oral tolerance. Diverse DC lineages with specific 

morphological characteristics have been recognized in the different GALT. Some of 

these subpopulations have unique functions when compared to DCs from 

non-mucosal sites, both with regard to the induction of Treg cells in the resting, or 

“steady-state”, and in the sampling, processing and presentation of antigens 

following mucosal infection. It remains however unclear whether they work 

synergistically, as alternatives, or have distinct functions in the recognition of the 

intestinal microflora and the regulation of inflammation. 

1.5.1 Antigen sampling 

Fundamental to understanding how mucosal immune responses are induced and 

regulated is where different types of antigen are processed and presented by DCs to 

T and B cells. Primary sites for the induction of intestinal T and B cell responses are 

PP and MLN. Less clear are the mechanisms of antigen uptake and processing by 

intestinal DCs. Distinct dendritic cell subtypes may utilize diverse mechanisms to 

sample antigen in the intestine.  

Antigenic material may interact directly with DCs in underlying tissue. This may occur 

in particular following intestinal epithelial barrier disruption, as occurs in inflammatory 

bowel disease (IBD). The population of DCs, identified within the lamina propria 

epithelium, may be the first APCs to come into contact with luminal antigens that 

cross the epithelial cell barrier. 
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Four other mechanisms have been described allowing for the uptake of antigens by 

mucosal DCs under normal physiological conditions, thereby remaining an intact 

epithelial cellbarrier (Figure 9). Firstly, luminal antigens are shuttled into the PP via 

the M cells, overlying the dome of the PP. Compared to absorptive epithelial cells, 

M cells have poorly developed brush borders, reduced enzymatic activity and a thin 

overlying glycocalyx. These features, possibly combined with a unique cytoskeleton 

and a pronounced capacity to form endocytic vessels, facilitate the ability of M cells 

to transport micro-organisms and macromolecules from the mucosal lumen to the 

subepithelial dome (SED) of the PP where DCs can take up the antigen. M cells are 

also scattered among the absorptive epithelium, where they could potentially 

transport antigens to the lamina propria [136].  

 

 

 

Figure 9 The uptake of antigens across mucosal surfaces.  
M cells can transport antigens directly to underlying DCs. DCs can also extend dendrites 
between epithelial cells (EC) to directly sample antigens from the intestinal lumen. Neonatal 
Fc receptors (FcRn) mediate the bidirectional transport of IgG, resulting in transport into the 
lumen and trafficking back to the lamina propria (LP) of antigen-antibody complexes. Antigens 
associated with apoptotic epithelial cells can be taken up by DCs either in the steady state or 
after viral infection. PP, Peyer's patch; IC, immune complex. Source: [137] 

Secondly, in the lamina propria, DCs have been described to sample bacteria from 

the gut lumen by extending their dendrites through the epithelial cell layer of the gut 

barrier [138,139]. The barrier integrity remains conserved by the expression and 

modulation of tight junction proteins, including occludin, claudin and 

zonula occludens [139]. This mechanism appears to require signals from the bacteria 

in the lumen. Recently, bacterial sampling was demonstrated in the steady-state 
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[140], indicating that DCs can sample commensal as well as pathogenic organisms 

from the lumen.  

An alternative mechanism for antigen entry across a mucosal surface, that also 

targets DCs, was proposed [141]. It is mediated by neonatal Fc receptors expressed 

by adult human (but not mouse) intestinal epithelial cells that transport IgG across 

the intestinal epithelial barrier and, after binding with cognate antigen in the lumen, 

recycle the immune complexes back to the lamina propria [141] where this neonatal 

Fc receptor delivers the antigens in the form of immune complexes to DCs.  

DCs in the SED of PP may take up antigen-bearing exosomes, shed from the 

basolateral surface of epithelial cells [142] or may internalize apoptotic epithelial cells 

both in the steady-state [116] and after reovirus infection [143], which constitutes a 

fourth mechanism that directly involves interaction of DCs with the epithelium. 

1.5.2 Regulation of immune responses by intestinal DCs 

Intestinal DCs have properties distinct from their non-mucosal counterparts, probably 

as a result of their association with the external environment. Based on the current 

information on intestinal DC subsets, a model was proposed of how mucosal DCs 

may play a role in the induction of oral tolerance [144] (Figure 10).  

Under steady-state conditions, precursor DCs continuously enter the mucosal lamina 

propria, PP and colonic isolated lymphoid follicles, develop into immature DCs and 

localize to different regions due to the differential constitutive expression of specific 

chemokines, as there are CCL9, CCL19, CCL20 and CCL21. After uptake of 

antigens, via one of the described mechanisms, DCs migrate from the lamina propria 

to the MLN, or from the SED of PP to the interfollicular regions. This migration is 

accompanied by an up-regulation of chemokine receptors for T cell zone 

chemokines, such as CCR7, but does not affect the levels of co-stimulatory 

molecules and cytokines. Following migration of these antigen-loaded ‘quiescent’ 

DCs to T cell zones, the DCs stimulate T cells to differentiate into tolerizing T cells 

(Tr1 or Th3) or induce clonal deletion of T cells. These DCs could also interact with 

B cells and induce IgA responses to commensal bacteria [145].  

The induction of regulatory T cells may involve one or more DC populations. 

CD8α- CD11b+ DCs are ideally located for antigen capture in the PP SED and lamina 

propria, produce IL-10 and induce T cells that produce IL-4, IL-10 and most likely 

also TGFβ [53,100,146]. In addition to CD11b+ DCs, another candidate for Treg cell 

induction is the plasmacytoid DC. In particular, CD8α+ B220+ plasmacytoid DCs from 
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the PP and MLN were shown in vitro to induce the differentiation of IL-10 producing 

Treg cells that could mediate suppression [147].  

The phenotype of PP, and lamina propria DCs that induce Treg cells may be 

influenced by local stromal factors, such as prostaglandin E2 (PGE2) and TGFβ 

[148-150]. Furthermore, it seems that epithelial cells may have a chief function in 

‘instructing’ mucosal anti-inflammatory DCs. It was demonstrated in co-culture 

studies of epithelial cell monolayers, DCs and bacteria, that products of epithelial 

cells condition DCs to release IL-6, which drives the development of IgA producing 

plasma cells [151], and to prime Th2 responses in an allogeneic proliferation assay 

[152]. This process was mediated by a combination of thymic stromal lymphopoetin 

and other factors that are constitutively expressed by epithelial cells. Thus it is 

possible that the mucosal environment ‘educates’ DCs to mount non-inflammatory 

responses to preserve gut homeostasis. 

 

 
Figure 10 Mucosal dendritic cells (DCs) during steady-state and inflammatory 
conditions.  
See text for details. CTL: Cytotoxic T-lymphocyte; Ig: Immunoglobulin; IL: interleukin; LP: 
lamina propria; MLN: mesenteric lymph nodes; pDC: plasmacytoid DC; PP: Peyer’s Patches; 
TGFβ: Transforming Growth Factor β; Treg: regulatory T cell. Source: [144] 
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In contrast to tolerogenic responses to innocuous antigens, DCs become activated 

during infection or inflammation, migrate more rapidly and induce both innate and 

adaptive immune responses (Figure 10). In the mouse, CD11b+ DCs or 

CD8α- CD11b- DCs in the SED of PP or lamina propria are, due to their localization, 

most likely involved in the initial interaction and uptake of invading pathogens. As for 

peripheral DCs, the induction or expansion of specific T cell responses by mucosal 

DCs following infection will depend on the subset of DCs involved, the signals to 

which they are exposed during their activation and subsequent interaction with 

T cells and the combined effects of antigen dose and duration and/or frequency of 

T cell-DC contacts. 

1.5.3 Probiotics and intestinal DCs 

Probiotic bacteria, mainly belonging to the lactic acid group of bacteria, are well 

known for their health-promoting properties [153]. Regular intake of probiotic bacteria 

contributes to immune homeostasis by altering microbial balance or by interacting 

with the gut immune system, explaining their therapeutic effect in IBD [154-156] 

(see also 2.3). Although there is a considerable amount of information concerning the 

protective efficacy of probiotics, little is known about the precise mechanisms of 

action by which such bacteria may exert their beneficial effects. Evidence that 

intestinal DC populations can interact with luminal organisms is discussed above. As 

DCs are equipped with a myriad of receptors to recognize microbial structures 

(C-type lectins, TLRs…), it is likely that these DCs can be modulated by orally 

administered micro-organisms such as probiotics. Furthermore, the effect of 

probiotics may also result from soluble factors that mediate their effects on DCs.  

Most studies on the probiotic effects on DCs were performed on murine in vitro 

generated bone marrow-derived DCs or on peripheral blood derived human DCs. 

Therefore one can only hypothesize as to the effects on gut-associated DCs. Oral 

administration of VSL#3, a probiotic formulation, has been described to ameliorate 

Th1-mediated murine colitis by the induction of Treg cells [157]. This mixture was 

also used with some success in clinical trials [156,158]. Incubation of 

bone marrow-derived DCs with VSL#3 induced some degree of maturation and 

increased levels of IL-10 production. Furthermore, this combination of strains also 

inhibits the generation of pro-inflammatory Th1 cells in vitro [159,160]. For single 

probiotic strains, different effects on DCs have been described. Bifidobacteria reduce 

the expression of co-stimulatory molecules CD40 and CD80 and up-regulate IL-10 

production by human blood DCs [160]. This increase in IL-10 production may act 
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both by having direct anti-inflammatory effects and by enhancing the generation of 

Treg cells. On the other hand, some Lactobacillus strains appear to generate a 

semi-mature DC phenotype, characterized by increased co-stimulatory expression 

but low production of pro-inflammatory cytokines [160-162]. For specific Lactobacillus 

strains, the in vitro induction of Treg cells through the targeting of the C-type lectin 

DC-SIGN in human DCs has been shown [163]. Another study showed that the 

tolerization of DCs by probiotic lactic acid bacteria was dependent on MyD88, 

nuclear type binding oligomerization domain 2 (NOD2) and TLR2 signaling whereas 

the in vivo protective effect of these tolerized DCs in murine colitis required 

CD4+ CD25+ regulatory T cells in an IL-10 independent pathway [162]. All these 

studies show a pleiotropy of possible effects of probiotic strains on DCs. This 

capacity is however not restricted to lactic acid or even gram-positive bacteria, as it 

was observed that e.g. Bordetella pertussis and Vibrio cholerae compounds can 

selectively commit DCs to induce polarizing signals via different mechanisms [76] 

(and also discussed in 1.4.3). As most of the effects of probiotics were obtained from 

in vitro studies, the results should be interpreted with great caution. Indeed, not only 

are many potential players of the mucosal regulatory response lacking in vitro but, 

possibly more importantly, in an in vivo situation the DC receives signals from the 

patients entire microflora and thus any DC modulation by the probiotics will ultimately 

be dependent on variation of strains and concentrations present in the gut.  
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2 INFLAMMATORY BOWEL DISEASE 

IBD is a group of chronic intestinal inflammatory diseases, of which the most 

common forms are ulcerative colitis (UC), an inflammation of the large intestine, and 

Crohn’s disease (CD), which can affect any part of the gastro-intestinal tract. IBD 

affects 1-2 in every 1000 individuals in Western societies and is a significant public 

health problem mainly because of its poorly understood etiology. Clinically, IBD is 

characterized by chronic inflammation, resulting in diarrhea, abdominal pain, weight 

loss, rectal bleeding and nausea. If left untreated the disease can be fatal due to 

malnutrition, dehydratation and anemia. Although many patients are managed 

successfully with anti-inflammatory medication, some stay refractory to treatment, 

most will have recurrent activity and two-thirds will require surgery.  

2.1 The pathogenesis of IBD 

IBD is a multi-factorial disorder involving genetic and environmental elements. It is 

now widely accepted that the pathogenesis of IBD is due to a dysfunctional 

interaction between bacterial microflora of the gut and the mucosal immune system. 

In one version of this view, the disease defect lies within the mucosal immune 

system, reacting against a normal microflora. In this case, the normal state of 

immunological tolerance to microbial antigens in the gastro-intestinal tract is 

disturbed. The second major hypothesis regarding the pathogenesis of IBD views the 

disease as resulting from one or more causative agents present in the gut microflora, 

which induce a pathological response from a normal mucosal immune system. 

(for review see [164]). 

Many data support the hypothesis that an aberrant immune response to intestinal 

bacteria seems to be crucial in the pathogenesis of IBD [165]. Important evidence 

comes from the identification of the first CD susceptibility gene. The caspase 

recruitment domain protein 15 gene (CARD15), which encodes NOD2, is located on 

chromosome 16, associated with the IBD1 locus [166-168]. NOD2 belongs to a 

family of intracellular proteins possessing a NOD linked at its carboxy terminus by a 

leucine-rich repeat domain (LRR). NOD2, expressed mainly by APCs, is intimately 

involved in intracellular bacterial sensing and generation of the innate immune 

response as its LRR domain recognizes muramyl dipeptide, derived from 

peptidoglycan, present in the cell wall of most bacteria. Through its CARD domain 

NOD2 activates NF-κB [169]. The 3 NOD2 polymorphisms associated with CD are 

located in and around of the LRR domain and are all loss-of-function mutations, 
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preventing binding of the muramyl dipeptide. How this loss of NF-κB activity can be 

linked to excessive inflammation is still a matter of debate. Additional studies have 

led to the hypothesis that signaling through NOD2 normally causes an overall 

down-regulation of the inflammatory response through dampening of 

NOD2-independent NF-κB activation e.g. the peptidoglycan-induced activation of the 

TLR2 [170]. In the absence of effective NOD2 signaling, this TLR2 dependent NF-κB 

activation can thus results in downstream activation of IL-12 and subsequent 

inflammation. Regardless of the mechanism, the association of CD with a defect in a 

microbial receptor defines a role for innate immunity and recognition of the microflora 

in disease pathogenesis. 

Animal models of colitis have provided essential clues to the role of luminal flora in 

the pathogenesis of IBD. The list of genetic and acquired aberrations that lead to 

intestinal inflammation is strikingly long and diverse [171]. These models include 

animals with disturbed immune regulation such as the IL-2, IL-10 and TCR α 

knock-outs as well as models whit a disruption of the epithelial barrier function, such 

as the G2αi knockout mouse. In every model thus far explored, it has been shown 

that gnotobiotic conditions greatly diminish or prevent the onset of gut inflammation. 

With the introduction of non-pathogenic bacteria, each of these models then 

proceeds to maintain their typical phenotype of colonic inflammation.  

Some studies, however, support the hypothesis suggesting that IBD is associated 

with pathological organisms that establish a low-grade infection of the mucosa and in 

doing so evoke the inflammatory response that characterizes the disease. One of 

the leading infectious candidates is Mycobacterium avium paratuberculosis [172], 

but also Listeria monocytogenes and Helicobacter hepaticus have been linked to 

IBD. However, so far there is no compelling evidence for an absolute requirement 

for any of the proposed causative agents in the onset of IBD. 

Taken together these results suggest that the fundamental basis of IBD is the 

presence of one or more genetically determined defects that result in a mucosal 

immune system that overreacts to normal constituents of the intestinal microflora. 

These defects can be accompanied by genetically determined alterations in gut 

epithelial barrier functions that enhance exposure of the mucosal immune system to 

microflora components. For instance, recently it has been shown that CD patients 

exhibit decreased secretion of cationic peptides with antibacterial properties, known 

as defensins [173,174]. 
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2.2 Intestinal dendritic cells in IBD 

The fact that IBD is related to deregulated immune responses against intestinal flora, 

has elicited a closer examination of the role of the DC as a central mediator.  

DCs from inflamed lamina propria of Crohn’s patients show enhanced expression of 

TLR2 and TLR4, which may contribute to altered microbial recognition [175]. These 

DCs also express higher levels of CD40 than DCs from non-inflamed lamina propria 

or from healthy control tissue. Also an increased proportion of them release 

inflammatory cytokines. The up-regulation of CD40 on isolated cells is consistent with 

immunohistological studies showing increased numbers of DCs expressing CD80 

and CD83 in mucosal tissue from CD and UC patients [176]. These altered DCs are 

likely to contribute to the initiation or perpetuation of intestinal inflammation, either as 

a local effector cell population active in innate immunity or by modifying the response 

of lymphocytes that the DCs activate as part of the immune response. 

Other groups studying DC phenotype and expansion in murine colitis models have 

demonstrated expansion of colonic lamina propria DCs that exhibit up-regulated 

expression of co-stimulatory molecules, such as CD40, CD80 and CD86 [177]. 

Recent experiments suggest that DCs play an early and fundamental role in the 

disease. DC aggregates were identified under the basal crypt epithelium of immune 

deficient mice. When pathogenic T cells were transferred to these mice, they 

clustered and proliferated in these aggregates 5-10 days before colitis could be 

detected, suggesting that the DCs were involved in the initial activation or 

restimulation of pathogenic T cells [178]. Furthermore, in the SCID model, activated 

(OX40 ligand+) DCs were increased in the MLN, after induction of colitis by the 

transfer of CD45RBhi T cells [179]. Anti-OX40 ligand blocked the development of 

colitis, supporting an important role for activated DCs.  

These studies suggest a role for activation of intestinal DCs in the initiation and 

possibly continuation of IBD, both in mouse and humans. Identifying a means to 

interrupt the activation of DCs in vivo may be a key to controlling the disease. 

2.3 Current and potential therapies for IBD 

Regardless of the particular defects, IBD finally results in a common 

immunopathological pathway comprised of either a Th1-mediated inflammation (CD) 

or a Th2-mediated inflammation (UC) [180]. This implies that, regardless of the 

nature of the fundamental defects, one could potentially treat IBD with therapies that 
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address an essential element of the final common pathway. Existing conventional 

treatments, such as corticosteroids, mesalamine and immunosuppressants are good 

examples as they aim to block downstream inflammatory events such as the 

secretion of cytokines and the expansion of immune cells and neutrophils regardless 

of the nature of the underlying T cell responses that generate these events. Despite 

their shortcomings and toxicities these agents have long been the main drugs for 

treatment of IBD. 

Understanding the role of cytokines along with the development of monoclonal 

antibodies targeting specific disease related cytokines has led to a major advance in 

the development of IBD therapeutics. The greatest advance in this area has been the 

introduction of anti-TNF therapy. TNF is a pro-inflammatory cytokine, which is 

abundantly expressed in the gut of CD. As a result, this cytokine was considered to 

be an attractive target for the treatment of IBD and several anti-TNF reagents have 

thus been developed. These reagents include infliximab, CDP571, CDP870, 

etanercept, onercept and adalimumab (for a review see [181]). Infliximab is a 

mouse/human chimeric IgG1 monoclonal antibody against TNF, which was created 

in late 1980s, and it has been demonstrated to be effective in reducing intestinal 

inflammation in CD. Most of the other anti-TNF reagents are modified by a reduction 

of the mouse peptide sequence or are completely humanized in order to reduce the 

immunogenicity. Not all of these anti-TNF reagents have been proven to be as 

effective in the treatment of CD as infliximab. The efficacy seems to be dependent, 

not only on the ability to neutralize soluble TNF, but also on the capacity to bind to 

membrane-bound TNF, thereby mediating the apoptosis of the effector cells [182]. 

Since UC is characterized by a Th2-mediated inflammation, TNF was not initially 

thought to play an important role in the pathogenesis. However, next to the excess of 

Th2 cytokines IL-5 and IL-13, increased levels of TNF were found in the colonic 

mucosa, serum and stool of UC patients [183-185] and infliximab was shown to be 

extremely efficacious in two randomized placebo controlled clinical trials (for review 

see [186]). Although successful, the anti-TNF strategy has also been associated with 

significant complications [187-189].  

Other cytokine-directed therapies are at earlier stages of development. Early studies 

with anti-IL-12p40 show some activity in active CD [190]. This antibody may also bind 

to the IL-12p40 subunit as a component of the heterodimeric pro-inflammatory 

cytokine IL-23. In support of this, polymorphisms in the IL-23 receptor gene appear to 

confer protection against the CD [191]. Furthermore, administration of a monoclonal 

antibody against the IL-23 specific subunit IL-23p19 was effective in both prevention 
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and treatment of active colitis in a mouse model [192]. This suggests that specific 

inhibition of IL-23, and not IL-12, may be an effective treatment of IBD. Also under 

investigation are anti-IFNγ [193] and targeting of IL-6 [194]. While the 

above-mentioned therapies aim at correcting the immune balance in IBD by 

interfering with the action of pro-inflammatory cytokines, IL-10 treatment tends to 

exploit the anti-inflammatory properties of the product itself. Intravenous 

administration of recombinant IL-10 initially resulted in reduced CD activity scores 

and increased remission [195]. However, larger trials could not confirm these positive 

effects [196]. Furthermore, many patients developed systemic side effects such as 

headache, fever and the induction of IFNγ [197]. It is possible that the 

pharmacodynamics of daily systemic IL-10 delivery do not lead to sufficient mucosal 

penetration while causing negative systemic effects. Therefore, alternative methods 

for the delivery of IL-10 might be a solution. Experiments in our department showed 

that topical delivery of IL-10 by means of intragastric administration of a recombinant 

Lactococcus lactis strain, secreting murine IL-10, prevented onset of colitis in IL-10 

knockout mice and caused a 50% reduction of the inflammation in dextran sulfate 

sodium (DSS)-induced chronic colitis [198] (see also 4.2.1). Furthermore, in a phase 

I trial, the use of these genetically modified (GM) bacteria for mucosal delivery of 

IL-10 was shown to be a feasible strategy in human beings [199]. As this novel 

strategy avoids systemic side effects and is biologically contained [200], it is suitable 

for long-term treatments of chronic intestinal diseases. More details about L. lactis 

and its use as a live topical delivery system will be discussed in the chapter 4. 

A second area where understanding of the pathogenesis has lead to novel therapies 

is the area of cellular adhesion and recruitment. The use of an anti-integrin antibody 

could prevent accumulation of leukocytes at areas of inflammation by inhibiting its 

binding to cellular adhesion molecules on the endothelial surface, such as VCAM, 

ICAM and MAdCAM. Although effective in clinical trials, the use of the humanized 

anti-α4 integrin has been associated with a fatal infection of the central nervous 

system [201]. 

A third area of interest for therapeutic intervention is the process of T cell activation. 

Both the antigen specific interaction between a T cell and the APC and co-stimulatory 

signaling offer opportunities for therapeutic intervention. Current therapies in 

progress are the administration of αCD3 antibodies for TCR targeting [202] or the 

inhibition of co-stimulation by binding of CD28 to B7 with Abatacept, an approved 

treatment for rheumatoid arthritis [203]. Unexploited as a therapy is the induction of 
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Treg cells to restore tolerance, as these can prevent and even cure colitis in various 

experimental models [24,204]. 

In parallel to the growing importance of the innate immune system came the first 

study of therapies intended to enhance the innate immune responses rather than to 

suppress adaptive immune responses. In this context, treatment with GM-CSF, for 

stimulation of neutrophils, shows promising results in CD [205]. 

Given the critical role for the luminal flora in IBD, it is not surprising that antibiotics 

seem useful as a treatment for CD with colonic localization or have a prophylactic 

effect for disease recurrence after ileal resection [206,207]. In addition, elemental diet 

has been demonstrated to be an effective therapy for CD [208]. This diet contains all 

essential nutrients but is free of proteins. Effects of elemental diet may be complex 

but are thought to include a favorable effect on the bowel flora composition and may 

minimize immunologic stimulation of the host immune response. Finally, the potential 

use of probiotics to restore immune regulation, enhance the epithelial barrier or 

change the composition of the microflora, is currently under investigation. The 

influence of certain probiotics on dendritic cells and thus on immune regulation has 

been described earlier (see 1.5.3). Some preparations seem to have beneficial 

effects in both UC and CD (for reviews see [154,155]). 
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3 INTERLEUKIN-10 AND THE TREFOIL FACTOR FAMILY 

The focus of this work will be on the modulation of (mucosal) dendritic cell function by 

L. lactis delivered murine IL-10 or trefoil factor family 3 (TFF3). Both strains have 

healing effects in mouse models for chronic and/or acute colitis albeit with an entirely 

different functional basis. On the one hand we have IL-10, an anti-inflammatory 

cytokine with an important role in regulating the immune response. On the other 

hand, TFF peptides are mainly known for their epithelial repair function and only 

recently, attention is given on possible immune-modulating effects. 

3.1 Interleukin-10 

The immune system’s inflammatory response is essential to protect the host from 

infection, injury and neoplasia. However, the immune response has to be of the 

appropriate amplitude and duration to prevent unnecessary destruction of healthy 

tissue. Excessive production of inflammatory factors can result in diseases such as 

rheumatoid arthritis, septic shock and, as described above, IBD. The immune system 

has developed multiple anti-inflammatory mediators to prevent such “out-of-control” 

inflammatory responses. One of the most potent of these anti-inflammatory factors is 

IL-10. IL-10 was originally described in 1989 as a cytokine synthesis inhibitor factor 

produced by Th2 cells that inhibited the production of cytokines such as IL-2, TNF, 

IFNγ and GM-CSF by Th1 cells, in response to antigens presented by APCs [209]. 

However its expression profile has now been widened and expression in various 

subsets of T cells, macrophages, monocytes, dendritic cells, mast cells, B cells, 

eosinophils, keratinocytes and epithelial cells has been shown [210]. Here, I will 

briefly review the IL-10 structure, its receptor, the signaling pathway and the main 

biological functions of IL-10 on cells of the immune system. 

3.1.1 IL-10 protein, gene and expression 

IL-10 belongs to the class II family of α-helical cytokines that is composed of the type 

I interferons, IFNγ and IL-10. The main structural feature is a left-handed anti-parallel 

four-helix bundle [211]. Recently five novel cytokines that display structural similarity 

to IL-10 have been identified from the human genome: IL-19, IL-20, IL-22, IL-24 and 

IL-26 [211,212], together comprising the cellular IL-10 subfamily. Similar to IL-10 

these IL-10 related cytokines are α-helical proteins, whose amino acid sequences 

are 20-30% identical. These new IL-10 family members are strongly involved in 

immune regulation and inflammatory responses but further studies are needed to 
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provide a better understanding. The viral (v)IL-10 subfamily includes IL-10 gene 

homologues found in the Epstein-Barr virus, equine virus type 2, poxvirus Orf and 

human cytomegalovirus genomes [212]. Although the in vivo roles of vIL-10 in the 

viral life cycle remain to be defined, it is nevertheless sensible to speculate that these 

viral homologues play a key role in suppressing the host immune system, allowing 

the growth of virus induced tumors and survival of the viruses in the host. Members 

of this subfamily have sequence homologies with human (h)IL-10 ranging from 

20%-80%.  

The hIL-10 molecule consists of 160 amino acids, has a molecular weight of 

18.5 kDa and shows 73% amino acid homology with murine (m)IL-10 that has 

157 amino acids with a molecular weight of 18.5 kDa. Both are synthesized as 

monomers but form homodimers in biological fluids. Although an engineered human 

monomeric IL-10 molecule can bind to the IL-10 receptor, the homodimer that forms 

spontaneously has 60-fold greater affinity for the receptor and 10-fold higher 

biological activity [213]. hIL-10 and vIL-10 are not glycosylated, whereas mIL-10 

appears to be heterogeneously N-glycosylated at a site near the N-terminus. 

Nevertheless, glycosylation of mIL-10 has no known influence on biological activity 

[210]. Furthermore, hIL-10 is active on both mouse and human cells, whereas mIL-10 

is effective only on mouse cells.  

Both mIL-10 and hIL-10 genes are encoded by 5 exons on the respective 

chromosomes 1. Activation of IL-10 gene expression results in +2 kb (hIL-10) and 

+1.4 kb (mIL-10) mRNAs. IL-10 can be expressed by a variety of cells, usually in 

response to an activation stimulus and its expression is regulated by different 

mechanisms in different cell types. In contrast to other cytokines, IL-10 transcription 

can be regulated by transcription factors Sp1 and Sp3, which are expressed 

constitutively by many different cell types [214]. Combined with control of mRNA 

stability at the post-transcriptional level [215], this suggests that the IL-10 gene is 

transcribed to some degree constitutively and subject to control by alteration of 

post-transcriptional RNA degradation mechanisms. This situation results in a more 

rapid induction of IL-10 expression than can be achieved by activation of 

transcription.  

3.1.2 The IL-10 receptor: structure and expression 

The IL-10 receptor (IL-10R) is a heterotetramer comprised of two molecules of the 

IL-10Rα (or IL-10R1) and two molecules of the IL-10Rβ (or IL-10R2) chain. 

(for reviews see [210,211]) 
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IL-10R1 is the ligand binding subunit to which IL-10 binds with high affinity. 

Consistent with the observed species-specificity of IL-10, mIL-10R1 binds both 

mIL-10 and hIL-10, while hIL-10R1 does not bind mIL-10. Most hematopoietic cells 

express this R1 chain, although generally at very low levels. Upon activation of 

T cells its expression is down-regulated both at the mRNA and protein levels. In 

contrast, activation of monocytes is associated with up-regulation of IL-10R1 

expression, consistent with the inhibitory function that IL-10 exerts on these cells. 

IL-10R1 expression has also been observed on non-hematopoietic cells, although it 

is more often induced rather than constitutive. Nevertheless constitutive IL-10R1 

expression has been described in colonic epithelium.  

The IL-10R utilizes an accessory subunit for signaling, IL-10R2. This chain was 

originally described as an orphan IFNR family member, located in the IFNR 

gene complex of both mouse and human. Several lines of evidence support 

IL-10R2’s role in the IL-10R complex. First it can be crosslinked with IL-10/IL-10R1 in 

IL-10 responsive cells. Moreover, IL-10R2-/- mice, like IL-10-/- animals develop severe 

chronic enterocolitis and cells from these mice are unresponsive to IL-10. Finally, 

anti-hIL-10R2 monoclonal antibodies block IL-10 responses. IL-10R2 contributes little 

to IL-10 binding affinity and its principal function appears to be recruitment of a Janus 

kinase (Tyk2) to the signaling complex. Most cells and tissues examined 

constitutively express IL-10R2 and there is no evidence for significant 

activation-associated regulation of IL-10R2 expression in immune cells. Thus, any 

stimulus activating IL-10R1 expression should be sufficient to render most cells 

responsive to IL-10. 

3.1.3 Signaling pathway 

Binding of IL-10 to its receptor causes the activation of the receptor associated Janus 

tyrosine kinases, Jak1 and Tyk2 [216]. These kinases are responsible for the 

phosphorylation of tyrosine residues within the intracellular domain of IL-10R1 that 

serve as docking sites for STAT molecules [217]. IL-10 was initially shown to activate 

STAT1, STAT5 and STAT3 [218] but only STAT3 signaling seems to be required for 

the anti-inflammatory effects of IL-10 [219,220]. Homodimers of STAT3 form and 

translocate to the nucleus where they drive the transcription of STAT3 responsive 

genes. The obligate role of STAT3 in IL-10 signaling raised the issue of pathway 

redundancy and specificity as many receptors use STAT3. For example IL-6 

signaling also activates the Jak1-STAT3 pathway yet is incapable of activating the 

anti-inflammatory response. An explanation involves the effects of suppressor of 
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cytokine signaling (SOCS)3 on the IL-6R. SOCS3 expression is strongly induced by 

both IL-10 and IL-6 stimulated cells and is required to regulate STAT3 signaling. It 

binds to specific phosphorylated tyrosine residues on cytokine receptors thereby 

rendering them sensitive for degradation. In contrast to the IL-6R, the IL-10R appears 

refractory to the effects of all members of the SOCS family [221]. Binding of IL-10 to 

the receptor thus rapidly activates STAT3 and it remains phosphorylated over a 

sustained period. 

Perhaps the most complex aspect of IL-10 signaling involves the selective reduction 

of pro-inflammatory gene transcription in APCs. Microarray analysis revealed that 

expression of most LPS-induced genes was unaffected in the presence of IL-10. 

Only 15-20% of the genes were reduced by IL-10 and these genes predominantly 

encoded proteins crucial to inflammation, including cytokines, chemokines and 

cell surface receptors [222]. IL-10 therefore inhibits only subsets of genes activated 

by TLR stimulation. The exact mechanisms underlying this process are unknown but 

are dependent on de novo gene transcription induced by STAT3. These unknown 

STAT3 induced molecules then target the transcription of inflammatory genes [223]. 

3.1.4 Anti-inflammatory functions 

The main biological functions of IL-10 seem to be to limit and terminate the 

inflammatory responses, block pro-inflammatory cytokine secretion and regulate the 

differentiation and proliferation of several immune cells such as T cells, B cells, 

natural killer cells and mast cells. The IL-10 gene homologues found in viral genomes 

are also thought to act as virulence factors to manipulate the immune system. 

Furthermore, many tumors also acquire an IL-10 secreting phenotype that may 

permit malignant cells to evade cell-mediated immune defenses [224,225]. The 

convergence of these evolutionary distinct mechanisms for immune evasion 

underscores the importance of IL-10 as a central immune modulator. 

The major physiological function of IL-10 is to suppress the functions of APCs, such 

as monocytes/macrophages and DCs. Pathogens can stimulate these APCs to 

produce a variety of inflammatory mediators through activation of their PRRs 

(see 1.3.2 for DC). IL-10 modulates expression of cytokines, soluble mediators and 

cell surface molecules by these cells with important consequences for their ability to 

activate and sustain immune and inflammatory responses.  

IL-10 potently reduces expression of TNF, IL-1, IL-12, IL-6 and GM-CSF by activated 

monocytes/macrophages [226-229]. The inhibitory effect of IL-10 on IL-1 and TNF 

are crucial to its anti-inflammatory activities because these cytokines often have 
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synergistic effects on inflammatory pathways and processes, and amplify these 

responses by inducing secondary mediators such as chemokines, prostaglandins 

and platelet activating factor. Furthermore IL-10 also inhibits the production by 

activated monocytes of the CC chemokines MCP-1, MCP-5, MIP-1α, MIP-1β, 

MIP-3α, MIP-3β, MDC and RANTES as well as the CXC chemokines IL-8, IP10, 

MIP-2 and Gro-α. These chemokines are implicated in the recruitment of monocytes, 

dendritic cells, neutrophils and T cells. Thus IL-10 inhibits expression of most 

inducible chemokines that are involved in inflammation [210]. Next to this IL-10 also 

reduces expression of inflammatory enzymes such as cyclooxygenase 2 (COX-2) 

and inducible nitric oxide synthase (iNOS), resulting in reduced prostaglandin and 

nitric oxide (NO) levels [210,230-232].  

IL-10 not only inhibits production of effector molecules but also further augments its 

inhibitory activity by enhancing the release of natural antagonists such as soluble 

TNF receptor and the IL-1R antagonist [210]. Similarly, the potential destructive 

activities of matrix metalloproteinases (MMP) are limited by IL-10 as it not only 

inhibits the production of MMP-1 and MMP-9 through decreased PGE2 expression 

but also induces the production of tissue inhibitor of MMP (TIMP) [233,234].  

IL-10 also induces apoptosis of human plasmacytoid DCs and alters DC migration by 

modulating the expression of chemokine receptors [210]. In a recent study it was 

shown that both externally added and activation induced autocrine IL-10 production 

reduce the lifespan of mature myeloid DCs [235]. The mechanism behind this is likely 

associated with the down-regulation of anti-apoptotic Bcl-2 proteins. 

Another key function of IL-10’s immune suppressive capabilities is its effectiveness in 

disabling antigen presentation and subsequent T cell activation by inhibiting the 

expression of MHC II, CD80 and CD86 on macrophages and DCs thus effectively 

blocking antigen presentation to T cells [236-239].  

Somewhat contradictory seems the up-regulation of activatory CD16 and CD64 FcγR 

expression by IL-10 on macrophages, which correlates with an enhanced capacity of 

macrophages/monocytes to phagocytose opsonized particles, bacteria or fungi 

[240,241]. However, as the increased uptake is accompanied with reduced antigen 

presentation and reduced co-stimulation, it rather serves to clear inflammatory stimuli 

from the site of infection. In fact, IL-10 induces the differentiation of monocytes into a 

type of macrophage prone to resolve inflammation by clearing bacteria without 

triggering the release of inflammatory mediators [242]. This phenotype is also seen 
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upon addition of IL-10 during GM-CSF/IL-4 driven differentiation of monocytes into 

DCs or during LPS-stimulated maturation of DCs [243-245].  

Most of the inhibition of T cell activation by IL-10 seems to be caused indirectly via 

suppressing crucial APC functions. However, direct effects of IL-10 on T cells also 

have been described. IL-10 shows inhibitory activities towards Th1 and Th2 cells via 

the suppression of IL-2, IFNγ, IL-4 and IL-5 [246,247]. IL-10 can also inhibit 

expression of the chemokine receptor CXCR4, induced on activated T cells, and the 

chemotactic response to its ligand stromal-derived factor-1 [248]. 

3.1.5 Induction of tolerogenic DCs by IL-10 

As mentioned above, the immunosuppressive properties of IL-10 on DCs result in a 

reduced expression of MHC II as well as co-stimulatory and adhesion molecules. 

Furthermore, DCs matured in the presence of IL-10 showed a reduced production of 

inflammatory cytokines and a lack of IL-12 synthesis [121-123]. The induction of 

T cell anergy by these IL-10-treated DCs has been described before (see 1.4.2). 

Briefly, IL-10 induced anergy is characterized by an antigen-specific inhibition of 

T cell proliferation and reduced production of IL-2 and IFNγ [125]. In contrast to Treg 

cells, anergic T cells induced by IL-10-treated DCs are characterized by a markedly 

reduced expression of the IL-2 receptor α-chain (CD25), and anergic T cells produce 

no immunomodulatory cytokines, such as IL-10 or TGF-β [123,125]. The presence of 

IL-10 during DC maturation thus favors the emergence of anergy-inducing APCs. 

However, the immunosuppressive activity of IL-10 is limited to IL-10 sensitive 

immature DCs. During terminal differentiation, DCs down-regulate the IL-10R. 

Therefore mature DCs are IL-10 resistant [210,242].  

It has been shown in vitro that IL-10 plays an indirect role in the differentiation of 

Tr1 cells, through the induction of a specific tolerogenic DC subset [131]. DCs from 

the mucosal system, which are known to be more tolerogenic than systemic DCs 

derived from lymph nodes and spleen, also participate in the generation of Treg cells 

by expressing high levels of IL-10 upon stimulation and priming naive T cells to 

differentiate in Th2 and Tr1 directions and to secrete high levels of IL-4 and IL-10 

[116]. This T cell derived IL-10 can then in turn further augment tolerance through 

converting DCs into a tolerogenic phenotype.  
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3.2 Trefoil factor family of peptides 

The TFF is a family of peptides that plays an important role in mucosal defense and 

repair of the gastro-intestinal tract. This family consists of three members: the gastric 

peptides pS2, now called TFF1 and Spasmolytic Polypeptide or TFF2 together with 

the intestinal trefoil factor TFF3. They are small (7-12 kDa) protease-resistant 

proteins that are abundantly secreted onto the mucosal surface by mucus-secreting 

cells of the gastro-intestinal tract. Trefoil factor peptides have been shown both 

in vivo and in vitro to have major effects on such physiological processes as epithelial 

restitution, wound healing, apoptosis and cell motility. Here we will describe the 

region specific expression, structure, regulation and known biological effects of the 

TFF with some proposed mechanisms. As will become apparent, most mechanisms 

are still not completely understood.  

3.2.1 TFF expression and gene regulation 

Mammalian TFF peptides were originally detected as secretory products of the gut. 

Expression of the TFF in the gastro-intestinal tract is abundant and is second, in 

weight of protein, after the mucins. The trefoil peptides reside on a 50 kb section of 

the human chromosome 21q23 and on the murine chromosome 17 and likely share 

5’ regulatory sequences which suggests a common or connected regulation 

[249,250].  

Under normal conditions, TFF1 and TFF2 show complementary cellular localization 

in the stomach: TFF1 is mostly restricted to the gastric pits and TFF2 to the mucous 

neck cells of the gastric gland. TFF3 has a quite different localization pattern being 

minimally expressed in the stomach, but massively produced by goblet cells 

throughout the intestine [251] where its local concentration on the gastro-intestinal 

surface is estimated at 1-5 mg/ml [252]. Nowadays a number of other human mucous 

epithelia have been identified as TFF secreting organs e.g. the conjunctiva, the 

salivary glands, the respiratory tract and the uterus [253-256]. Some reports also 

mention the expression of TFF peptides at less expected places than the 

mucosa-associated expression sites. First of all expression of the TFF has been 

shown in the brain [257,258], with again a differential localization for the different 

trefoil peptides. Furthermore, both TFF2 and monomeric TFF3 are expressed in rat 

lymphoid tissue [259]. The expression levels are much lower than in the stomach and 

intestine. 
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Next to the homeostatic expression, inflammation induces rapid and sustained, TFF 

expression with loss of the tight control over regional specificity [260]. Aberrant 

expression of TFF peptides was observed during various chronic inflammatory 

diseases; for example in ileal CD, in colon mucosa of patients with UC, in gastric 

glands during gastric ulcer disease and in various types of metaplasia [254,261-263]. 

The discovery that all three TFF peptides are typically secreted by a specific 

gland-like structure termed the ulcer-associated cell line was certainly a major 

hallmark [254,264,265]. This mucin-secreting glandular structure appears during a 

variety of chronic inflammatory conditions. It develops from stem cells, most 

commonly in the small intestine and is thought to represent a natural repair kit, which 

is activated after mucosal damage [265]. 

The differential expression pattern in health and inflammation can be explained by an 

epigenetic mechanism, DNA methylation of the TFF promoters. In tissues where the 

respective TFF is normally expressed, the CCGG sites in its promoter are not 

methylated. In other mucosal tissues, where expression might be induced upon 

damage or inflammation, the CCGG sites are partially demethylated. In contrast, in 

organs that do not express the TFF, the promoters of the three genes are methylated 

[250].  

Current knowledge of basal activities largely derives from TFF3 promoter studies in 

transgenic animals. It has been found that high specific basal transcription of murine 

TFF3 is provided by 6.35 kb of the promoter and that goblet-cell specific transcription 

is partly conferred through a nine base pair ‘goblet cell responsive element’ present 

in the proximal promoter [266,267]. Adjacent positive and negative elements also 

contribute to this selective transcription [268]. Another element designated 

‘goblet-cell silencer inhibitor’, located further upstream of the transcriptional start site, 

enables human and murine goblet cell-like cell lines to override the silencing effect of 

more proximal elements. Goblet cells but not non-goblet cells possess a nuclear 

protein that binds to the ‘goblet-cell silencer inhibitor’ regulatory element. 

Analysis of human and murine TFF genes has also led to the identification of 

consensus binding sequences of known transcription factors: HNF-3, a member of 

the forkhead or winged helix transcription factors, is activated during the acute-phase 

response after injury. The consensus HNF-3’ binding motif lies within 100 base pairs 

of the transcriptional start site of all three human and murine TFF genes [250,269]. 

The GATA transcription factors are zinc finger proteins and constitute a family of six 

related members. Consensus binding sites for GATA transcription factors are present 

in TFF promoters and indeed GATA 6 expression resulted in activation of TFF1 and 
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TFF2, but not TFF3 [270]. Furthermore, the promoters of the three trefoil genes 

contain binding sites for the helix-loop-helix leucine zipper USF, in a region known as 

the E-box [270]. USF proteins are associated with growth inhibition, as are certain 

TFF peptides, suggesting that activation of USF by certain endogenous stimuli may 

contribute to inhibition of cell proliferation.  

Furthermore, it has been shown that low concentrations of trefoils can stimulate their 

own release as well as that of the other family members by binding cis-regulatory 

elements of their respective promoters. This cross-induction is dependent on the 

ERKs/MAPKs 1 and 2 and requires epidermal growth factor (EGF) receptor 

phosphorylation [271]. 

Considering their up-regulation during inflammation, it is not surprising that TFF 

peptides can be regulated by pro-inflammatory cytokines. Both IL-1β and IL-6 are 

important regulators of trefoil gene expression. Dossinger et al. showed that these 

cytokines repress TFF promoter activity and gene expression synergistically via 

inhibition of NF-κB and C/EBPβ factors, respectively [272]. Like IL-1β and IL-6, TNF 

also negatively regulates TFF3 gene expression in a NF-κB dependent fashion [273]. 

On the other hand, in vivo data, using mice with a defective IL-6/IL-11 signaling 

receptor gp130, have demonstrated that TFF1 gene expression is positively 

regulated by IL-6 via SHP2/ERK/AP-1 activation [274]. Furthermore, IL-6 signaling 

via STAT3 strongly induces TFF3 [274]. These apparently conflicting data may 

simply reflect the complexity and timing of initiation of IL-6, IL-1β and TNF signaling 

cascades.  

A role for the anti-inflammatory Th2 cytokines, IL-4 and IL-13, in TFF2 induction has 

first been shown in the lung. TFF2 is regulated by these cytokines in a STAT6 

dependent fashion during the acute phase and by IL-4 in a STAT6 independent 

fashion during the chronic phase of experimental asthma [275]. In the gut, the goblet 

cells are an important target for these Th2 cytokines. Furthermore, the induction of 

both TFF3 and mucin 2 by IL-4 and IL-13 in a STAT6 dependent fashion was shown 

in colon cancer cell lines [276]. The TFF3 gene has a STAT6 binding site, which 

suggests direct regulation by IL-4 and IL-13 [276].  

3.2.2 TFF structure 

The trefoil factor family peptides all possess a characteristic three-loop structure (the 

trefoil domain). This trefoil domain is defined as a sequence of 38 or 39 amino acid 

residues wherein three disulfide linkages occur between 6 paired cysteine residues 
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to form the three loops. This structure is essential for the protease resistance of the 

TFF in the gut milieu [277]. 

In vivo, the predominant form of each TFF comprises two trefoil domains that are 

formed either through inter-chain disulfide bonding through a seventh cysteine 

residue, as occurs in TFF1 and TFF3, or by genomic duplication of the trefoil domain, 

as in TFF2. Recombinant TFF1 and TFF3 can thus be produced both as monomers 

or disulphide-linked dimers, whereas TFF2 consist of two trefoil domains in its 

monomeric form. Dimerization of TFF1 and TFF3 is necessary for some but probably 

not all TFF functions.  

3.2.3 TFF receptor and signaling 

Despite numerous reports on the signaling cascades triggered by the TFF, 

convincing evidence for a TFF-receptor or binding partner, unambiguously shown to 

take part in any of the known TFF functions, is still lacking. TFF3 has been shown to 

elicit a luminal chloride secretory event in vitro only when applied to the basolateral 

site of epithelial monolayers [278]. In vivo it has been demonstrated that 

intravenously infused radioactive labeled TFF2 binds to mucus producing cells of the 

rat stomach, a binding that could be displaced by unlabeled TFF2 in a 

dose-dependent matter [279]. Furthermore transcriptional regulation [280], cell 

motility [281,282] and other effects are all rapid events following TFF stimulation. 

These and many other reports strongly suggest that cellular responses to TFF 

peptides are likely mediated by a receptor-ligand interaction. Because TFF peptides 

are able to phosphorylate the EGF-receptor, it was considered that they are an 

alternative ligand for this receptor. However, no TFF-binding to the EGF-receptor 

could be demonstrated until now. Several TFF-binding proteins have been described, 

including the small-intestinal CRP-ductin (muclin), which binds TFF2 and the gastric 

proteins TFIZ1 (TFF1-binding) and blottin (TFF2-binding). But binding to these 

proteins does not lead to activation of signal transduction pathways or downstream 

target activation. Therefore, they cannot be considered as TFF-receptors. 

Multiple signaling pathways appear to be linked to the biological actions of the TFF 

including the PI3K/Akt pathway, the Rho-ROCK cascade, COX-2/TXA2-R/Gαq 

signaling, PLC/PKC, MAPK and EGF-receptor signaling [283]. Nuclear magnetic 

resonance spectroscopy revealed that human trefoils have significant structural and 

electrostatic differences, which suggests that each trefoil peptide has a specific target 

or group of target molecules [284]. This finding is consistent with other data that 

suggest different functions for the structurally similar TFF peptides.  
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3.2.4 TFF functions 

Although the integrity of the mucosa is dependent on the presence of a monolayer of 

epithelial cells joined by tight junctions, it is the mucus layer on the apical surface of 

this population that occupies the real interface between lumen and mucosa. This 

mucus layer is a viscous elastic coat, formed mainly by the large molecular weight 

mucin glycoproteins that are secreted by intestinal goblet cells or mucous cells in the 

stomach. TFF peptides are co-secreted with mucins and are intimate constituents of 

mucus gels. It is therefore widely accepted that the TFF plays a key role in 

maintenance of the surface integrity of mucosal epithelia.  

There is some evidence to suggest that TFF peptides are involved in mucus 

polymerization. Some mucin regions are only sparsely glycosylated and these 

domains are shown to be responsible for oligomer formation and possibly for trefoil 

binding [285]. TFF peptide interaction with mucin probably influences the viscosity of 

the mucus. As each of the mucous epithelia secretes its own characteristic 

mucin/TFF combination, this could be a physiological mechanism to provide the 

optimal viscosity of the biopolymer on a specific epithelium. Furthermore, it has been 

suggested that the interaction between TFF2 and mucins inhibits, both in vitro and 

in vivo, proton permeation through the mucus layer [286] and a change in viscosity 

was observed when TFF2 was added to stomach mucin [287]. Another report shows 

enhanced protection of human T84 colon cancer cell monolayers from several insults 

when incubated with TFF3 or TFF2 in combination with human colonic mucin, 

compared to TFF3 or TFF2 alone [252].  

The functional integrity of the gastro-intestinal mucosa is maintained through the 

constant renewal of the epithelium. In addition, the epithelium is constantly exposed 

to a wide spectrum of potentially injurious factors (pathogenic bacteria and their 

products, toxic dietary factors, etc.), which can induce mucosal damage. One of the 

first steps in mucosal wound healing is a shift in cell shape towards a specialized 

migratory phenotype, whereby cell-cell contacts are reduced, the cytoskeleton 

reorganizes and cells acquire a flattened appearance (cell spreading). The next key 

step is migration of the cells in order to cover the denuded basal lamina. In a final 

step, the monolayer of flattened cells re-establishes tight junction structure and cell 

polarity and thus barrier function is restored. This initial phase, which does not 

require cell proliferation is termed restitution and appears sufficient to reseal 

superficial injuries in vivo. Fast repair is required to restore epithelial continuity, limit 

fluid and electrolyte loss and prevent mucosal inflammation. When mucosal damage 
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extends deeper and requires regeneration, additional repair steps including 

angiogenesis and proliferation will take place within days. The final, often overlooked, 

stage is remodeling which can take months and is necessary to regain a 

normal-looking mucosa.  

In contrast to other epithelial growth factors, TFF expression is rapidly up-regulated 

in response to mucosal injury [280,288]. All three TFF peptides have been shown in 

a variety of in vitro models to be involved in the different steps of restitution and 

regeneration particularly by modulating cell-cell contacts, cell migration, apoptosis 

and angiogenesis although the understanding of mechanisms through which the TFF 

peptides promote restitution is still incomplete. Consistent with all this, colonic 

restitution is absent in TFF3-null mice, resulting in lethality of even minor colonic 

injury [289]. Indeed, of the many proteins that have been described to augment and 

induce restitution, TFF3 is the only factor that has been shown to be essential [289].  

Cell-cell adherens junctions are established and maintained by the adhesion 

molecule E-cadherin. The intracellular domain of E-cadherin binds directly to 

β-catenin and through association with α-catenin, linkage with the cytoskeleton 

occurs. TFF3 has been shown to induce phosphorylation of β-catenin [290], thereby 

disrupting adherens junctions. Furthermore, TFF3 also reduces E-cadherin, α- and 

β-catenin levels, leading to increased motility [291]. One report described Van Gogh 

like protein 1 (Vangl1) as a downstream factor required for TFF3-induced migratory 

response in intestinal epithelial cell lines (IEC) [292]. In these IEC, Vangl1 protein 

normally co-localizes with E-cadherin at the cell membrane and this association 

decreases by increased Vangl1 phosphorylation after TFF3 stimulation.  

In contrast to other motogens, TFF2 and TFF3 are non-mitogenic when added to a 

variety of IEC [282]. However, in an in vitro wounding model, the addition of TFF2 or 

TFF3 resulted in a three- to six-fold increase in the rate of epithelial migration in the 

wound. Furthermore, the actions of TFF peptides as motogenic factors have been 

shown to be synergistic with EGF [281] and, in contrast to cytokine and growth factor 

mediated migration, independent of TGFβ [282]. TFF2 and 3 also rapidly activate 

intracellular signal transduction pathways and motogenic activity has been shown to 

depend on ERK 1 and ERK 2 activation [293,294]. The exact mechanisms 

downstream of ERK activation involved in migration still have to be elucidated.  

As detachment of cells from cell-cell and cell-substratum contacts normally results in 

apoptosis (anoikis), there must be a mechanism that protects cells from dying during 

migration. Numerous studies on the anti-apoptotic effect of TFF peptides are in 
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agreement with their motogenic function during restitution [293,295-299]. TFF1 was 

found to protect cells from anoikis, chemical- or Bad-induced apoptosis by partially or 

completely blocking caspase-3, -6, -8 and -9 activities [295]. TFF2 reduces apoptosis 

induced by serum starvation and anoikis in the breast cancer cell line MCF-7 The 

anti-apoptotic effect of TFF3 has been reported to require intact TFF3 dimer, 

EGF-receptor activation and the PI3K pathway [293,299]. Another group described 

inhibition of anoikis by TFF3 via a PI3K/Akt/NF-κB pathway [297].  

Restitution in vivo is dependent upon continuous mucosal blood flow and 

angiogenesis is a typical process observed when mucosal damage extends deeper 

than the superficial epithelium. Consequently, the pro-angiogenic activity of the TFF 

[300] perfectly supports restitution, particularly during the later stages of remodeling. 

Whereas all three TFF peptides act as pro-angiogenic factors through COX-2 and 

EGF-receptor dependent pathways, expression of vascular endothelial growth factor 

(VEGF) could also be induced by TFF3 via Src and activation of STAT3. Furthermore 

TFF3 is involved in NO formation through iNOS. NO is an endothelial growth factor 

important in inflammation and tumor vascularization [301].  

3.2.5 TFF modulating the immune system 

Trefoils are strongly induced after epithelial damage and facilitate repair processes 

by stimulating cell migration, inhibiting apoptosis and reducing antigen access to the 

healing epithelium by augmenting the barrier function of the mucus, as explained in 

the previous section. Since they are regulated by both pro-inflammatory and 

anti-inflammatory cytokine expression (see 3.2.1), an additional role for these 

peptides in regulation of immune responses can be postulated.  

Both TFF2 and the monomeric form of TFF3 are found to be expressed in rat spleen 

and thymus and, to a lesser extend, in lymph nodes and bone marrow [259]. The 

expression levels are much lower than in the stomach and intestine, but LPS 

treatment could transiently induce higher TFF levels in the spleen. TFF1 mRNA was 

also detected in mouse spleen [302,303] and thymus [303]. At present, the function 

of trefoil peptides in lymphoid organs has not been fully elucidated. Since Cook et al 

co-localized TFF in spleen to cells with a plasma-like phenotype, they hypothesized 

that trefoils interact with immunoglobulins that are, like mucins, variably glycosylated. 

However, this interaction could not be confirmed [259]. A more recent study in TFF2-/- 

mice demonstrates that TFF2 deficiency is associated with increased cytokine 

secretion by macrophages and enhanced proliferative responses of splenic T cells in 

response to IL-1β [303]. 
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Migration of various leukocyte subpopulations from the bloodstream into inflamed 

tissues or recirculation into lymphoid tissues is controlled by adhesion receptors and 

chemo-attractants, which direct them to the site of injury. The cell adhesion 

molecules and integrins are among the first adhesion molecules acting in this 

process. They aid in the docking of leukocytes to endothelial surfaces and participate 

in leukocyte rolling. GlyCAM-1, VCAM-1 and MAdCAM-1 are glycoproteins that may 

be classified as mucins on the base of their O-glycosylation pattern and proline- 

serine- and threonine-rich domains [304]. Whether or not the trefoils interact with 

these mucin-like glycoproteins to facilitate leukocyte adhesion and migration remains 

to be elucidated. However their induction by LPS in immune organs and the finding 

that both recombinant human TFF2 and TFF3 stimulate human monocyte migration 

at concentrations similar to those found in gastro-intestinal secretions [259], suggest 

a potential role for the trefoil peptides in the immunological response to tissue injury 

by regulating leukocyte recruitment. On the other hand, TFF treatment reduced the 

expression of the cell adhesion molecule VCAM-1 in colonic endothelium in an 

in vivo model of colitis [305]. Reduced VCAM-1 expression could thus lead to 

reduced infiltration of inflammatory cells at the site of infection, which would 

ameliorate inflammation. 

Another important regulator of gut inflammatory responses is NO. Acute production 

of NO via the constitutively active nitric oxide synthase (cNOS) has beneficial effects 

on the mucosa by increasing gut blood flow and releasing local repair mediators 

[306,307]. Conversely, chronic production of NO, driven by iNOS and produced by 

infiltrating macrophages and neutrophils [307], leads to the production of reactive 

nitrogen species, including peroxynitrite and NO2 [308]. These free radical species 

are highly damaging and induce further inflammation, leading to ongoing tissue injury 

[309]. Giraud et al. reported that the increased TFF2 concentrations induced in 

epithelial damage and inflammation might limit tissue damage in part by inhibiting this 

chronic NO production. In vitro, TFF2 indeed reduced LPS-induced NO and iNOS 

expression in monocytes [310]. This was verified in vivo in a model for experimental 

colitis, where TFF2-treated rats show less nitrated protein levels and a significantly 

reduced infiltration compared to control-treated mice. Thus, TFF2 can reduce 

inflammation by inhibiting inducible NO production, thereby likely down-regulating 

reactive nitrogen species and downstream pro-inflammatory targets. 

TFF2 deficient mice show a mild phenotype but are more susceptible to nonsteroidal 

anti-inflammatory drug-induced colitis [311]. More evidence for an immunoregulatory 

role of TFF2 came from recent microarray analysis studies with these knockout mice 
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[312]. Out of 12,000 analyzed genes, 128 genes had significantly modulated 

expression when compared to wild-type mice, and the majority was implicated in 

immune regulation. The most prominent up-regulated genes belong to the cryptdin 

family (mouse orthologues of the human α-defensins), which have been shown to 

play a crucial role in innate immunity [313]. In addition to these antimicrobial 

peptides, another Paneth cell product was found to be up-regulated namely CRIP, 

which has a significant role in the regulation of cytokine balance and the immune 

response [314]. The other group of immune response-relevant genes whose 

expression was altered in the setting of TFF2 deficiency includes genes involved in 

MHC I presentation such as the immunoproteasomal subunit genes LMP2 and 

LMP7, BAG2, a member of the BAG family regulating chaperone activity, and the 

TAP1 transporter of peptides. Furthermore Cathepsin C, important for MHC II 

presentation was also up-regulated in intestine of TFF2-/- mice. In summary, TFF2 

deficiency causes specific modulations of immune system relevant genes, 

demonstrating an indirect interplay of TFF2 with the immune response. 

Indirect evidence for TFF3 in regulating immune responses also exists. First, TFF3 

can induce the expression of decay accelerating factor in IEC [315]. This protein 

blocks complement activation and has also been described as a negative regulator of 

T cell immunity [316]. Also in IEC, it has been shown that TFF3 not only induces 

activation of NF-κB but also expression of TWIST, a negative regulator of NF-κB 

activity. Consequently, up-regulation in TFF3-treated IEC is only transient and 

probably results in an anti-inflammatory response since this NF-κB activation is not 

associated with IL-8 induction [317]. Furthermore TFF3 can induce COX-2, a key 

enzyme for the biosynthesis of prostaglandins both in vitro, in IEC, and in vivo in a 

mouse model of acute DSS-induced colitis [297,318,319]. COX-2 is normally 

expressed at a low or even undetectable level in unstimulated cells or tissues but is 

rapidly induced by cytokines, mitogens and other inflammatory stimuli. Moreover, the 

cytoprotective PGE2 and PGI2 are synthesized by COX-2 in the gastro-intestinal tract 

after inflammation. In IEC the TFF3 dependent up-regulation of COX-2 also leads to 

PGE2 and PGI2 production. The effects of these prostaglandins are pleiotropic. Next 

to the role of PGE2 in the promotion of epithelial cell restitution and maintenance of 

the intestinal barrier function in the gastro-intestinal tract [320,321], the 

anti-inflammatory effects of this molecule on DCs have been extensively documented 

[322-325]. Furthermore PGE2 is also able to inhibit NF-κB in macrophages thereby 

preventing iNOS protein expression [326]. All these data strongly suggest at least an 

indirect role for TFF3 in immune regulation. 
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4 L. LACTIS AS A DELIVERY TOOL IN THE GASTRO-INTESTINAL TRACT 

Lactococcus lactis is a member of the Lactic Acid Bacteria (LAB), a taxonomically 

diverse group of gram-positive bacteria that share the property of converting 

fermentable carbohydrates primarily to lactic acid, thus acidifying the growth medium. 

Members of the LAB group are best known for their use in food industry, mainly for 

the preparation of fermented food and feed products such as preparation of dairy 

products and meat. One intrinsic advantage of food-grade LAB therefore lies in the 

knowledge that they have never been associated with any pathogenic effects. Even 

when given overt opportunity, as would be the case following LAB consumption 

during an ongoing intestinal disease, food-grade LAB display no health risk. 

Therefore, several LAB species have been granted a “Generally Regarded As Safe” 

(GRAS) status by the US Food and Drug Administration.  

Many LAB species are members of the resident microflora of the gastro-intestinal 

tract of vertebrates. Over the past decades interest in the study of LAB has 

dramatically increased due to their application as so called “probiotics”, i.e. strains 

with particular health benefits to the host, next to their nutritional value [153]. The fact 

that selected probiotic strains, which may or may not be natural residents of the 

human gastro-intestinal tract, can influence the intestinal physiology through 

modulation of the endogenous flora or the immune system (see also 1.5.3) is 

presently well recognized. In particular members of the genera Lactobacillus and 

Bifidobacterium (this genus does not belong to the LAB group) have received much 

attention and their beneficial effect in reducing tissue damage in patients with IBD or 

in animal models for this disease is well documented [154-156]. 

L. lactis is a non-colonizing, non-invasive species that was originally isolated from 

cow’s udder. The species has been used in industry for many years in particular in 

the production of cheeses. Although some commercial formulations claim 

health-promoting properties, L. lactis is not generally considered a true probiotic 

strain. Mainly because it was the first LAB species to be characterized in great detail 

at the molecular and genetic level, L. lactis has enjoyed an increasing interest as a 

production host for heterologous proteins and in a later stage as in situ delivery 

vehicle of biologically active molecules. 
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4.1 Production and secretion of heterologous proteins 

Many efforts have been made to better understand the molecular basis of LAB’s 

technological properties and to obtain better control of industrial processes involving 

LAB. This knowledge has led to the investigation of their potential use for new 

applications, such as the production of heterologous proteins in bioreactors, in 

fermented food products or directly in the digestive tract of humans and other 

animals. L. lactis, as a model organism, can nowadays be genetically engineered 

quite efficiently. Many elaborate and highly effective genetic tools, i.e. 

well-characterized plasmids as well as an efficient transformation procedure, have 

become available over the last 15 years [327-329]. Moreover, the genomes of 

L. lactis ssp. lactis strains IL1403 and MG1363 are entirely sequenced [330,331]. 

Many expression- and targeting-systems have also been designed for L. lactis 

[332,333], allowing the intra- or extra-cellular production of a great variety of proteins 

of viral, bacterial or eukaryotic origins, and with molecular mass ranging from 9.8 kDa 

to 165 kDa (for review see [334]). 

To produce a protein of interest in fermentors, secretion is generally preferred to 

cytoplasmic production because it allows continuous culture and simplifies 

purification. L. lactis has some characteristics that make it a very good candidate for 

heterologous protein secretion. First, relatively few homologous proteins are secreted 

by this bacterium, Usp45 (an unknown secreted protein of 45 kDa) being the most 

prominent one [335]. Second, laboratory strains do not produce any extracellular 

proteases and thus the secreted proteins are not prone to extracellular degradation, 

as would be the case in the natural industrial strains [336,337].  

In general, the homologous Usp45 signal peptide has been most successfully used 

for high-level secretion of a variety of heterologous proteins. In a search for other 

homologous secretion signals a panel of signal peptides was evaluated for 

heterologous secretion, but none was found to be superior to the Usp45 signal 

peptide [338,339]. Notwithstanding this general observations, Lindholm et al. used a 

Lactobacillus brevis signal peptide for secretion of the E. coli FedF fimbrial adhesin 

by L. lactis and found it to be more efficient than the Usp45 secretion signal [340].  

Not unexpectedly and in line with the observations in other bacterial species, high 

secretion efficiency most likely requires that (i) the composite precursor polypeptide 

assumes a configuration that allows efficient cleavage by the lactococcal signal 

peptidase, and (ii) the mature part of the heterologous protein is properly escorted by 

the secretion machinery. It is, therefore, not surprising that some heterologous 
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proteins are poorly, if at all, secreted [339,341]. Notably, charges at the N-terminal 

part of the mature moiety may greatly affect the translocation efficiency across the 

cytoplasmic membrane [342]. Le Loir and co-workers were first to show that the 

introduction of negative charges, trough the insertion of a nine-residue synthetic 

peptide in between the ultimate amino acid residue of the signal peptide and the first 

residue of the mature heterologous polypeptide, improved secretion efficiency and 

production yields of several heterologous proteins in L. lactis [343], an observation 

that was later confirmed by other workers for different proteins [344]. 

Our department was the first to obtain efficient synthesis and secretion of eukaryotic 

proteins in L. lactis. We used the Usp45 signal peptide to secrete bioactive cytokines, 

such as murine and human interleukins IL-2, IL-6 and IL-10, in quantities ranging 

from 50 μg (mIL-2) to 100 μg (mIL-6, mIL-10) per liter of culture [198,345-347]. The 

continuous secretion of these bioactive cytokines did not affect the growth rate of 

L. lactis. Cytokines in general display fairly simple structures. Their biological activity 

does not depend on complex glycosylation or other secondary modifications and in 

most cases, binding and activation of their receptors is straightforward. However, 

many of them critically depend on the correct formation of disulfide bridges in order to 

be biologically active. That lactococci are capable of correct disulfide bridge 

formation in the processing of heterologous proteins was proven by in vitro and 

in vivo bioactivity of recombinant mIL-2, mIL-6, mIL-10 and TFF peptides 

[198,318,346].  

4.2 Local delivery of heterologous proteins 

There exists a vast body of literature (over 2000 published papers) on the use of live 

bacteria, recombinant or not, as tools for vaccination via a non-parenteral route 

(recently reviewed in [348]). By far the most extensively explored are attenuated 

strains of pathogenic species belonging to the genera, Salmonella, Shigella, Yersinia 

and Listeria. Today, live vaccines based on attenuated S. typhi and Vibrio cholerae 

are available [349]. The development of bacterial vaccine vehicles carrying a 

heterologous gene is more problematic and none has yet reached the market.  

Because of their GRAS status LAB are attractive for use as vaccine vehicles. 

However, LAB are non-invasive and the vaccine delivery to APCs may be less 

effective. Still, antigen specific immune responses have been obtained with several 

LAB (for reviews see [350,351]). Wells and co-workers were first to show that oral as 

well as intranasal inoculation with GM L. lactis that had accumulated intracellular 
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tetanus toxin fragment C (TTFC) led to the induction of high IgG serum titers and 

could protect mice against a lethal challenge with tetanus toxin [352-354]. A similar 

antibody titer was induced using dead or alive Lactococcus suggesting that in situ 

antigen synthesis is not essential [353]. In a recent study the efficacy of L. lactis as a 

vehicle for intestinal delivery of antigens for the induction of antigen specific 

peripheral tolerance was evaluated [355]. Therefore, OVA-immunized DO11.10 mice, 

which bear transgenic OVA-specific CD4+ TCR, were fed with OVA-secreting 

L. lactis. The results suggest that this GM L. lactis strain induces OVA-specific 

tolerance through the induction of CD4+CD25- Treg cells that exert their function in a 

TGFβ specific manner. 

The first indication for the importance of active in situ delivery of a bioactive 

substance was obtained in a study, in which it was shown that intranasal 

administration of L. lactis that had accumulated intracellular TTFC and secreted 

either mIL-2 or mIL-6 produced significantly higher antibody titers than did the 

parental strain expressing TTFC alone [346]. The boosting effect was completely lost 

when the bacteria were killed prior to immunization, indicating that in situ secretion of 

the cytokines by viable bacteria is essential.  

4.2.1 Intestinal IL-10 delivery by genetically modified L. lactis 

As discussed before, IBD most likely occurs as a consequence of the breakdown of 

immune tolerance towards the intestinal microflora. IL-10 is a powerful 

anti-inflammatory cytokine and is a central factor in induction and maintenance of 

immune tolerance (see 3.1). Furthermore, the pivotal role played by IL-10 within the 

mucosal immune system is demonstrated by the chronic ileocolitis that develops in 

gene-targeted IL-10 knock-out mice [356]. This makes IL-10 a very attractive 

therapeutic for intestinal inflammation, which was confirmed in animal models of 

colitis [357-359]. The clinical results after systemic administration of recombinant 

IL-10 to IBD patients were however mostly disappointing with moderate side effects 

[196,360] and injection of high doses even lead to the systemic induction of 

pro-inflammatory IFNγ [197]. Therapeutic targeting at the site of inflammation, e.g. 

the intestine, could solve this problem but oral administration is hampered by the 

extreme acid sensitivity of IL-10 and, to date, no oral formulation of IL-10 is known.  

Van Deventer and co-workers presented a novel method of IL-10 delivery to 

intestinal mucosal tissue by the use of ex vivo transduced CD4+ T cells [361,362]. In 

these studies, the authors demonstrated that both human and mouse T lymphocytes 

could be engineered by retroviral transduction to express high levels of biologically 
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active IL-10 upon activation. In the classic CD45RBhigh model, these IL-10 

transduced CD4+ cells successfully prevented the development of colitis without 

interfering with systemic immune activation. Furthermore, the development of 

immune-suppressive Treg cells in the area of inflammation may be induced. This 

approach can thus be considered as a clinically viable approach to the treatment of 

CD.  

Another alternative that requires fewer techniques and allows for oral treatment is the 

use of an L. lactis strain, constructed to secrete IL-10 [198]. The therapeutic effect of 

L. lactis-mediated delivery of IL-10 on inflammation of the colon was first evaluated in 

two murine models for IBD, (i) a model in which colitis is induced by chemical 

treatment, namely DSS and (ii) IL-10-/- mice in which colitis develops spontaneously 

[356]. Daily intragastric administration of these bacteria efficiently cured chronic 

DSS-induced colitis in mice (Figure 11A). The observed healing was comparable to 

systemic treatment with prominent anti-inflammatory drugs such as dexamethasone 

and anti-IL-12. When given systemically, recombinant IL-10 also decreases 

inflammation to the same level as IL-10 producing L. lactis but the amount of IL-10 

required to achieve this effect is a 1,000-fold higher. This indicates that greatly 

improved IL-10 delivery has been achieved by using GM L. lactis. Daily treatment 

with IL-10 producing L. lactis also prevented spontaneous enterocolitis in IL-10-/- mice 

(Figure 11B). More recently the L. lactis IL-10 treatment was also validated in 

trinitrobenzene sulphonate (TNBS)-induced colitis [363].  

Killing the IL-10 producing bacteria by UV-irradiation prior to inoculation abrogated 

their curative effects [356]. This shows that in situ production of IL-10 is an essential 

feature of the mechanism of action. Because of the localized production and since no 

IL-10 could be found in the systemic circulation one can speculate that side effects 

associated with systemic administration of IL-10 can be reduced or even avoided. 
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Figure 11 Treatment of murine colitis by L. lactis secreting IL-10 (LL-mIL10). 
Bars represent the mean + SEM. *P < 0.025; **P = 0.0151. (A) Histological scores (sum of 
epithelial damage and lymphoid infiltrate, both ranging from 0 to 4) for the distal colon of 
groups (n = 10) of control female Balb/c mice (white bar) and of female Balb/c mice with 
DSS-induced colitis that were untreated (hatched bar), treated with the indicated L. lactis 
cultures (black bars), or treated with five daily intraperitoneal injections of the compounds 
indicated (gray bars) (mIL-10: 5 mg per mouse per day; anti–IL-12: 1 mg per mouse per day; 
dexamethasone: 5 mg per mouse per day; rat IgG: 5 mg per mouse per day). Mice treated 
daily for 2 or 4 weeks (wk) with 2 x 107

 mIL-10 producing LL-mIL10 showed significantly 
reduced inflammation when compared with untreated or control-treated (LL or LL-TREX1) 
mice. This effect was not observed when LL-mIL10 cultures were UV-killed (+ UV).  
(B) Histological scores (sum of the degrees of inflammation in the proximal, middle, and distal 
colon, all ranging between 0 and 4) obtained after blinded interpretation of groups (n = 5) of 
7-week-old untreated (hatched bar), LL-TREX1–treated, or LL-mIL10–treated female 
129 Sv/Ev IL-10-/- mice (black bars). LL-mIL10–treated mice showed significantly less 
inflammation than untreated mice. Source: [198] 

4.2.2 Intestinal delivery of TFF by genetically modified L. lactis 

One of the characteristics that are similar between CD and UC is that they are 

relapsing diseases, characterized by silent episodes and acute active episodes. 

These active episodes of IBD are diagnosed as acute colitis that is mainly dominated 

by a prominent epithelial damage and an intense inflammation that is the result of the 

influx of luminal bacteria. In the case of first presentation of acute colitis in CD, the 



General Introduction 

 63

inability to sense acute bacterial infection was shown to be a risk factor in the 

development of CD [167,168,364]. Therefore treatment of acute intestinal 

inflammation might be a means to prevent IBD, but the number of therapeutic 

strategies for acute colitis is rather limited.  

TFF peptides, as epithelial healing factors (see 3.2), are promising tools for treatment 

of acute colitis that is characterized by extensive epithelial ruptures. There is strong 

in vivo evidence for protective and healing functions of various forms of mucosal 

injury by TFF peptides in the gastro-intestinal tract when delivered orally, 

subcutaneously or rectally [281,365-375]. Most studies indicate that systemic 

subcutaneous administration of TFF peptides reaching the basolateral site of the 

mucosa seems to be more effective than oral application, despite their extreme 

protease resistance. The main reason for this is that orally administered TFF 

peptides stick to the mucus and so become metabolically inert or are removed from 

the lumen at the caecum or small bowel [370]. Thus in the context of colitis, orally 

delivered TFF peptides do not reach the site of injury. 

Topical and active delivery of TFF in the colon by localized synthesis from L. lactis 

provides an alternative approach to deliver trefoil peptides to the colonic mucosa and 

thus avoid the clinical disadvantages of rectal and intra-colonic administration [318]. 

Daily intragastric administration of the TFF-secreting strains, prior to or during 

disease induction, resulted in significant protection against DSS-induced acute colitis 

as observed by reduced mortality, reduced loss of body weight, substantial 

improvement of colon histology and the reduction of inflammatory infiltrate. The 

protective effect required de novo TFF synthesis by live L. lactis. Oral administration 

of high amounts of purified mTFF1 did not ameliorate acute colitis. Whereas rectal 

administration had some effect, it was much less effective than orally administered 

TFF-secreting L. lactis. Intimate basolateral contact between colon cells and L. lactis, 

as could occur following L. lactis transport by M cells or through ruptures in the 

epithelium, probably enable the TFF peptides to accumulate out of reach of 

complexing mucins and allow them to interact with the putative basolateral TFF 

receptors on enterocytes. Remarkably, L. lactis-mediated TFF treatment also 

ameliorated established chronic colitis in IL-10 knockout mice; a finding that 

broadens the potential therapeutic application of trefoil factors in IBD. 

COX-2, a known target of TFF signaling [300,319], is strongly induced in the 

intestines of mice treated with TFF-secreting L. lactis (Figure 12). This finding proves 

that the bacteria produced TFF peptides that were biologically active in situ in the 

colon. Inhibition of COX-2 by meloxicam substantially abrogated the prophylactic 
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effect on acute DSS-induced colitis. This indicates that, although COX-2 is probably 

not the only TFF-induced factor that is involved, its up-regulation is important in 

prevention of colitis through L. lactis-mediated topical delivery of TFF [318]. 

 

 

Figure 12 Induction of COX-2 expression by TFF-secreting L. lactis. 
Representative immunohistochemical images for COX-2 expression in the distal colon of 
healthy control mice and mice with DSS colitis, either mock-treated or treated with the empty 
expression vector (LL-pTREX1) or the different TFF-secreting strains (LL-mTFF1, LL-mTFF2 
and LL-mTFF3). Source: [318] 

 

4.3 Biological containment of genetically modified L. lactis 

When applicable in man, the technology of L. lactis-mediated topical delivery of 

therapeutic proteins may open a vast spectrum of new medical applications. The use 

of GM organisms in medicine, however, raises legitimate concerns on dissemination 

of antibiotic selection markers or transfer of the genetic modifications to other 

micro-organisms and on survival and propagation of GM organisms in the 

environment. There is therefore a need for an adequate containment system. 

Biological containment systems have been designed to act in an active or a passive 

way. The former essentially provide control through the conditional production of a 

toxic compound whose expression is tightly controlled by an environmentally 

responsive element or suppressed by an immunity factor. Many examples of such 

systems, particularly in E. coli, have been described [376-379]. Although active 
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containment systems provide actual killing of the host, they have important 

drawbacks. Firstly these systems often involve the introduction of a large amount of 

foreign DNA. Secondly, most of these systems are plasmid borne and therefore 

prone to horizontal transfer to other micro-organisms. 

Passive systems overcome these shortcomings. Here, growth is dependent on 

complementation of an auxotrophy or other gene defect, by supplementing either the 

intact gene or the essential metabolite. The lacF gene can be used as a selection 

marker in ΔlacF L. lactis [380]. A supD gene has been used as a selectable marker 

for plasmid maintenance to complement suppressible pyrimidine auxotrophs [381]. 

Passive systems, however, have the drawback that they are often bacteriostatic 

rather than bactericidal. 

Thymidylate synthase is an essential enzyme in the synthesis of the DNA 

constituents thymidine and thymine. The choice of thyA as a target gene combines 

the advantages of both passive and active containment systems. “Thymine less 

death” was described as early as 1954 [382] and involves activation of the SOS 

repair system and rapid DNA fragmentation, thereby essentially constituting an 

indigenous suicide system. Thymine and thymidine growth dependence is 

intrinsically different from other auxotrophies in that lack of the essential component 

is bacteriocidal rather than bacteriostatic [383]. Genetic exchange of the 

chromosomal thymidylate synthase gene thyA, for a gene of interest, human IL-10, 

thus provides a robust means for inheritable growth control of engineered L. lactis 

[200]. The resulting GM L. lactis strain Thy12, developed in our department, is strictly 

dependent on the presence of thymidine or thymine for its growth. Thy12 provides a 

satisfactory solution to concerns about biosafety for several reasons. First, only the 

absolute minimal amount of foreign DNA - the gene of interest, i.e. hIL-10 - is present 

in the GM organism and no resistance marker is required to guarantee stable 

inheritance of the transgene. Second, accumulation of the GM organism in the 

environment is very unlikely, as rapid death occurs upon thymidine starvation. In 

addition, no acquisition of thyA from other micro-organisms could be observed [200]. 

Third, whenever the intact thyA is acquired by homologous recombination, the 

transgene would be removed. Fourth, the risk of disseminating the genetic 

modification through lateral gene transfer is minimized because the gene of interest 

is integrated in the L. lactis chromosome. Furthermore, a number of mechanisms for 

lateral gene transfer are disabled in the Thy12 parental strain L. lactis ssp. cremoris 

MG1363. The strain has been cured of all natural resident plasmids [384]. It lacks a 

host factor required for conjugative transposition and also phage replication is 
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severely impaired, thereby disabling phage-mediated transduction of host genetic 

material [385,386]. This approach thus provides a simple and robust system for 

biological containment. 

Based on the above-described characteristics of L. lactis Thy12, the Medical Ethical 

Commission of the Academic Medical Center and the Dutch Administration of Public 

Health, Environment and Nature approved a limited clinical trial with this bacterium, 

in Crohn’s patients under physical containment. This Phase I, open label clinical trial 

demonstrated that treatment of humans with viable L. lactis secreting hIL-10 is 

clinically safe and biologically contained, and gave indications of its clinical efficacy. 

In total 10 patients with moderate to severe CD were included in the study and a 

clinical benefit was observed in 8 of them: five patients went into complete clinical 

remission and three patients showed a clinical response [199]. 
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Aim of the project 

DCs are bone-marrow derived professional antigen-presenting cells with 

immuno-regulatory functions. In the past years, it has become clear that DCs are 

likely to play a central role in the mucosal immune response to intestinal flora 

[139,140,144,152,387]. DCs are present in the intestine in the GALT and the lamina 

propria and lie in close proximity to the large and dynamic antigenic load in the gut 

lumen. Antigenic material may interact directly with DCs in underlying tissues. IBD is 

caused by a loss of tolerance against the normal enteric flora, due to a dysregulated 

mucosal immune response and/or a defective mucosal barrier function [164,388]. 

This has elicited a closer examination of the role of the DC as a central mediator in 

IBD and recent studies suggest a role for activation of intestinal DCs in the initiation 

and continuation of IBD [175-178]. Interrupting the activation of DCs in vivo may be a 

key to controlling the disease. 

The potential of genetically engineered L. lactis for specific therapeutic applications 

through in situ delivery of immunomodulatory proteins at the intestinal mucosa has 

previously been described [198,318,346]. In this study we focus on L. lactis-delivered 

mIL-10 or mTFF3. Both strains have healing effects in mouse models for chronic 

and/or acute colitis but immunological processes of the L. lactis-delivered proteins 

mIL-10 and mTFF3 that regulate the therapeutic effects are only partially understood 

[198,318,363]. We suggest that intestinal DCs are attractive targets for the 

recombinant proteins delivered by the orally administered L. lactis bacteria.  

We used an in vitro model to study modulation of DC function. For this, murine bone 

marrow cells were isolated and cultured with IL-4 and GM-CSF to generate DCs 

[389,390]. In some respects, DCs generated in vitro do not show the same behavior 

or capability as DCs isolated ex vivo. Nonetheless, they are often used for research, 

as they are still much more readily available than genuine DCs that constitute a 

heterogenous population, sparsely distributed throughout the body.  

The TFF peptides are mainly known for their epithelial repair function [289,366,367]. 

Their possible immune-modulating properties were investigated only recently 

[259,303,391]. In a first part of our study, we therefore explored the effect of 

recombinant mTFF3 on DCs. We aimed to investigate whether mTFF3 could directly 

regulate DC function by determining its effect on LPS-induced maturation of bone 

marrow-derived DCs (BM-DCs). For this, immature BM-DCs pretreated with 

recombinant mTFF3 were stimulated with LPS and compared to non-treated 

LPS-stimulated BM-DCs. We studied phenotype, cytokine secretion pattern and 
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T cell-stimulating capacity of the BM-DCs. Because mTFF3 is strongly expressed in 

the intestinal tract, we also investigated whether mTFF3 preferentially regulates 

mucosal DC function. Mucosal DCs from PP and MLN were compared to peripheral 

DCs isolated from spleen.  

The anti-inflammatory cytokine IL-10 is a well-known immune-modulator with 

inhibitory effects on maturation and cytokine production of immature DCs [210]. 

Furthermore, treatment of immature DCs with IL-10 leads to the induction of 

regulatory T cells, T cell tolerance or antigen specific T cell anergy [123-125,127]. In 

the second part of this work, we wanted to investigate the effect of L. lactis secreting 

murine IL-10 on DC function. Therefore, we determined the maturation phenotype, 

cytokine secretion profile and allogeneic T cell activating capacity of in vitro derived 

murine BM-DCs treated with the mIL-10 secreting L. lactis or treated with a L. lactis 

control strain. LPS-stimulated BM-DCs were used as control for maturation. Also, we 

were interested in the effect of this mIL-10 secreting strain on subsequent 

LPS-induced maturation of BM-DCs. Given the described effects of IL-10-treated 

DCs on the induction of regulatory or anergic T cells, we also aimed to study the 

induction of possible changes in T cell polarization by the BM-DCs treated with 

L. lactis secreting mIL-10.  
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1.1 Abstract 

Peptides of the trefoil factor family (TFF) are expressed along the gastro-intestinal 

tract. They protect mucous epithelia from damage and contribute to mucosal repair, 

which is essential for preventing inflammation. Moreover, it has been suggested that 

TFF2 and TFF3 in particular play a role in regulating immune responses. Depending 

on their activation status, dendritic cells (DCs) can initiate either tolerance or 

immunity. This study, by comparing LPS-induced maturation of mTFF3-treated DCs 

and non-treated DCs, aimed to investigate whether murine TFF3 directly regulates 

DC function. mTFF3-treated DCs and non-treated DCs did not differ phenotypically 

or functionally. Both populations expressed, both before and after LPS stimulation, 

similar levels of co-stimulatory molecules and cytokines, and were both efficient 

stimulators of T cells. Our results suggest that mTFF3 does not modulate immune 

responses on the level of DC function. 

1.2 Introduction 

The trefoil factor family (TFF) encompasses three small (7-12 kDa) protease resistant 

proteins with a characteristic three-loop structure (the trefoil domain), formed by three 

conserved cysteine disulfide bonds. TFF1 and TFF3, formerly called pS2 and 

intestinal trefoil factor respectively, contain a single trefoil domain and occur as 

homodimers. TFF2, formerly called Spasmolytic Polypeptide, is a monomer 

containing two trefoil domains (for review, see [392]). Under normal circumstances, 
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TFF peptides are expressed in several tissues, but are most abundant in the 

gastro-intestinal tract, where they are secreted onto the mucosal surface in a 

tissue-specific manner [392].  

The TFF plays an important protective role by promoting restitution and repair of 

epithelial cells [289,366,367]. In contrast to other epithelial growth factors, TFF 

expression is rapidly up-regulated in response to mucosal injury [280,288]. In vivo 

studies have suggested that TFF peptides play a major role in protecting the 

intestinal mucosa from various insults [318,373,374,393]. Mechanisms that mediate 

these responses are unique and only partially understood. Despite extensive studies 

no receptor has yet been identified [394].  

Recent publications propose a role for TFF in regulating immune responses 

[259,391]. Both TFF2 and the monomeric form of TFF3 are expressed in rat lymphoid 

tissue [259]. The expression levels are much lower than in the stomach and intestine, 

but LPS treatment can transiently induce higher levels in the spleen. Also, both 

recombinant human TFF2 and TFF3 are chemotactic for human monocytes [259]. In 

addition, TFF2 has been shown to modulate the expression of several 

immunoregulatory genes, which are important for MHC I and MHC II presentation, 

such as cathepsin C, the immunoproteasomal subunit genes LMP2 and LMP7, and 

the TAP1 transporter [391]. Furthermore, in intestinal epithelial cells (IECs) TFF3 can 

induce the expression of decay accelerating factor, which blocks complement 

activation and can act as a negative regulator of T cell immunity [315,316]. In IECs it 

has also been shown that TFF3 not only induces activation of NF-κB but also 

expression of TWIST, a negative regulator of NF-κB activity. Consequently, NF-κB 

up-regulation in TFF3-treated IECs is only transient and probably results in an 

anti-inflammatory response [317]. Finally, we demonstrated a potential 

immune-regulatory function of TFF, in that intestinal delivery of TFF cures 

Th1-mediated colitis [318]. 

Dendritic cells (DCs) are bone marrow-derived professional antigen-presenting cells 

connecting innate and adaptive immunity [395,396]. Depending on the DC subset, its 

activation status or environment (mucosal versus peripheral [100,397]), the 

interaction between DC and naive T cell will lead to T cell priming towards either 

immunity or tolerance. This results in the emergence of T cells carrying a Th1 or Th2 

phenotype, T cell anergy or regulatory T cells (Treg cells). 

Although a role for TFF in modulating immune responses has been suggested, there 

is no conclusive data showing that TFF has a direct role in regulating cells of the 
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immune system. Therefore, we investigated whether murine TFF3 (mTFF3) can 

directly regulate DC function by determining its effect on the maturation of bone 

marrow-derived DCs (BM-DCs). Because BM-DCs are likely different from in vivo 

DCs, and mTFF3 is strongly expressed in the intestinal tract, we also investigated 

whether mTFF3 regulates mucosal DC function. Mucosal DCs from Peyer’s patches 

(PP) and mesenteric lymph nodes (MLN) were compared to peripheral DCs isolated 

from spleen. Our results suggest that mTFF3 had no direct effect on LPS-induced 

maturation of BM-DCs or ex vivo isolated mucosal and peripheral DCs. Furthermore, 

mTFF3 did not alter the pattern of cytokines secreted by the different DC populations, 

or the DC’s capacity to activate naive T cells.  

1.3 Materials and Methods 

1.3.1 Animals 

Balb/c (H2Kd) and C57BL/6 (B6; H2Kb) female mice, 6-8 weeks old were purchased 

from Charles River, Italy. They were housed in a specific pathogen-free animal 

facility and treated according to the institutional guidelines of Ghent University.  

1.3.2 Media, reagents and antibodies 

Complete medium is RPMI-1640 medium supplemented with 10% heat 

inactivated FCS, L-glutamine, nonessential amino acids, sodium pyruvate, 100 IU/ml 

penicillin, 100 μg/ml streptomycin, 50 μM β-mercaptoethanol (all from Gibco 

BRL/Invitrogen, Gaithersburg, MD, USA). 

The gene encoding murine TFF3 [398] was inserted into a yeast expression plasmid 

and the dimer form of TFF3 was expressed and purified essentially as previously 

described for human and rat TFF3 [399]. Purified murine TFF3 is routinely being 

analyzed by amino acid sequence analysis and mass spectrometry. The purity was 

determined by analytical HPLC and quantified by amino acid analysis. These 

analyses prove purity and presence of the dimer. 

Purified LPS (Escherichia coli serotype O111b4) was obtained from Sigma-Aldrich, 

St. Louis, MO, USA. Recombinant murine IL-10 (mIL-10), mGM-CSF and mIL-4 were 

purchased from Peprotech, Rocky Hill, NJ, USA.  

Monoclonal antibodies (mAbs) used for flow cytometry were hamster 

anti-mouse CD11c (clone HL3; FITC-conjugated), rat anti-mouse CD80 (clone 

16-10A1; PE-conjugated), rat anti-mouse CD86 (clone GL1; PE-conjugated), rat 
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anti-mouse CD40 (clone 3/23, PE-conjugated), rat anti-mouse PD-L1 (B7-H1; 

CD274) (clone MIH5, PE-conjugated), and rat anti-mouse IAd (clone AMS-32.1, 

PE-conjugated). All mAbs were from BD Pharmingen, San Diego, CA, USA. Isotype 

controls used were FITC-conjugated Armenian Hamster IgG1 (anti-TNP) and 

PE-conjugated rat IgG2a/IgG2b κ from BD Pharmingen. Before cell-staining, 

non-antigen-specific binding of IgG to the mouse Fcγ receptors was blocked with a 

rat anti-mouse CD16/CD32 mAb (Fc block; BD Pharmingen). 

1.3.3 Bioassay for mTFF3 

The murine cancer cell line with rectal epithelial phenotype CMT-93 was obtained 

from the American Type Culture Collection. Cells were maintained in DMEM 

supplemented with 10% FCS, 4 mM L-glutamine, 100 IU/ml penicillin, and 100 μg/ml 

streptomycin in 5% CO2 at 37°C.  

CMT-93 cells were plated in 35 mm wells of a six-well culture plate and grown to 

confluence. Fresh medium with different concentrations of mTFF3 (0-10 μg/ml) was 

added to the cells. After 4 h cells were washed with PBS and total RNA was 

extracted from cells using the RNeasy mini kit (Qiagen, Westburg BV, The 

Netherlands), with on column DNase treatment (Qiagen). One μg of total RNA was 

converted to single stranded complementary DNA by reverse transcription 

(Superscript, Gibco) with oligo dT priming. Subsequently, real time PCR for COX-2 

was performed using the SYBR green kit (Eurogentec, Seraing, Belgium) and 

300 nM of each primer. A two-step program was run on the iCycler (Biorad 

Laboratories, Hercules, CA, USA). Cycling conditions were 95°C for 10 min and 40 

cycles of 95°C for 15 sec and 60°C for 1 min. Melting curve analysis confirmed 

primer specificities. All reactions were run in triplicate and normalized to ribosomal 

protein L13A (RPL13A) levels. RPL13A was chosen after checking the expression 

stability of a set of housekeeping genes in CMT-93 cells using the Genorm software 

[400]. The level of the normalized COX-2 mRNA is shown relative to the control 

sample without mTFF3. Data are expressed as mean +SD. Primers were designed 

using the Beacon Designer software (PREMIER Biosoft International, Palo Alto, CA, 

USA). For murine COX-2 (reference sequence NM_011198) forward and reverse 

primers were 5’-AACAAAAGCTTCTACAAAGGAACTAA-3’ and 

5’-CCAGCACAAAACCAGGATCA-3’ respectively. For murine RPL13A (reference 

sequence NM_009438) forward and reverse primers were 

5’-CCTGCTGCTCTCAAGGTTGTT-3’ and 5’-TGGTTGTCACTGCCTGGTACTT-3’. 
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1.3.4 Generation of bone marrow-derived DCs 

A modified version of a published procedure was used to generate BM-DCs 

[389,390]. Briefly, bone marrow cells from femurs and tibias of Balb/c mice were 

depleted of red blood cells by lysis with ammonium chloride. Granulocytes, erythroid 

precursors, and B cells were killed by labeling with a cocktail of mAbs (anti-Gr-1, 

anti-TER-119/erythroid cells, and anti-CD45R/B220; all from BD Pharmingen), 

followed by incubation with low-toxicity rabbit complement (Cedarlane, Ontario, 

Canada). These cells were cultured in complete medium supplemented with 

1000 U/ml mGM-CSF and 500 U/ml mIL-4. Medium was replaced on days 2 and 

4. On day 6, nonadherent cells were removed, and fresh medium with cytokines was 

added. Two days later 60 to 90% of the new population of nonadherent cells were 

CD11c+ BM-DCs. DCs were further purified to >90% using anti-CD11c magnetic 

microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany). Purified DCs were 

re-plated at 1 x 106 cells/ml and pre-incubated at 37°C for 6 h with different 

concentrations of mTFF3 ranging from zero to 250 µg/ml or with 10 ng/ml mIL-10 

(positive control) in complete medium. For maturation, 10 ng/ml LPS was added after 

6 h and cells were incubated overnight at 37°C. Supernatants were collected and 

stored at -70°C. Cells were harvested, washed, counted and added at the 

appropriate concentration for subsequent analysis. 

1.3.5 Preparation of ex vivo DCs 

DCs were prepared from spleen, MLN and PP of 20 naive Balb/c mice. To remove 

epithelial cells, PP were treated for 60 min at 37°C with media containing 145 µg/ml 

dithiothreitol (Sigma-Aldrich, St. Louis, MO, USA), 25 mM HEPES (Sigma-Aldrich), 

10% FCS (Gibco), 5 mM EDTA (Sigma-Aldrich) and 2.5 mM β-mercaptoethanol 

(Gibco) in HBSS (Sigma-Aldrich). Then they were washed extensively with HBSS. 

Spleens, PP and MLN were digested with collagenase (1 mg/ml, Sigma-Aldrich) and 

DNase (2 mg/ml, Boehringer Mannheim, Germany) for 45 min at 37°C and incubated 

in the presence of 5 mM EDTA at 37°C for 5 min. Spleen cells were depleted of red 

blood cells by treatment with ammonium chloride, and PP cells were purified on 

Lympholyte-M gradient (Cedarlane). Single cell suspensions of the three lymphoid 

organs were prepared and incubated with anti-mouse CD11c-coated magnetic beads 

(Miltenyi Biotech) and selected on MACS separation columns. After purification we 

obtain 10-15 x 106 CD11c+ cells from MLN and PP of 20 naive Balb/c mice. For the 

spleen, only 10% of total cells were purified to obtain about 25 x 106 CD11c+ cells. 

Purified DCs were then plated and treated as described above for BM-DCs. 
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1.3.6 Phenotypic analysis of DCs 

For phenotypic analysis, DCs were double-stained with FITC-anti-CD11c and either 

PE-anti-CD80, -CD86, -CD40, -PD-L1 or -IAd. The incidence of positive cells and 

mean fluorescence intensity (MFI) were determined by flow cytometry using a 

FACSCalibur flow cytometer (Beckton Dickinson) equipped with an argon laser 

(488 nm) and a helium neon laser (540 nm). The CellQuest software program 

(Becton Dickinson) was used for data acquisition and analysis. Propidium iodide (PI) 

(2 μg/ml) was added to the cells just before flow cytometry analysis. Gating was done 

on PI-negative cells to exclude dead cells. 

1.3.7 Measuring cytokine concentrations with cytometric bead array 

Supernatants were stored at –70°C. Cytokines were quantified using the Mouse 

Inflammation Cytometric Beads Array (CBA) kit (BD Pharmingen) according to the 

manufacturer’s instructions. Briefly, six bead populations with distinct fluorescence 

intensities were coated with capture antibodies specific for IL-6, IL-10, MCP-1, IFNγ, 

TNF, and IL-12p70. The capture beads, sample lysates, and PE-conjugated 

detection reagent were incubated together to obtain sandwich complexes. The beads 

were washed and run through a flow cytometer. The MFI data were analyzed with 

Becton Dickinson CBA Analysis Software. Sample data were normalized with specific 

cytokine standards to quantify the proteins of interest. 

1.3.8 Mixed lymphocyte reaction 

C57BL/6 splenic CD4 positive T cells were purified by negative selection using 

magnetic bead separation (Miltenyi Biotec). They were stimulated with graded 

numbers of purified Balb/c DCs in round-bottomed 96-well plates (BD Falcon). 

Cultures were maintained at 37°C in a humidified incubator (5% CO2). After 

three days, 1 μCi [3H]thymidine (Amersham GE Healthcare, Buckinghamshire, UK) 

was added. [3H]thymidine incorporation was determined after 18 h using a 96-well 

Topcount scintillation counter (Packard Instrument, Meriden, CT). The incorporated 

radioactivity is expressed as counts per minute (cpm) means ± SD. 

1.3.9 Statistical analysis 

SPSS was used to analyze MLR results. Statistical analysis was performed using the 

general linear model for repeated measurements and the Bonferroni post-hoc test. 

P-values < 0.05 were considered as significant. 
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1.4 Results 

1.4.1 mTFF3 induces COX-2 mRNA expression in CMT-93 IECs 

COX-2 has previously been described to mediate mTFF3 cytoprotective actions 

in vitro in IECs [319] and this was, more recently confirmed in vivo [318]. Biological 

activity of recombinant mTFF3 was confirmed by determining its ability to induce 

COX-2 expression in IECs. Murine CMT-93 cells were grown to confluence and 

treated for 4 h with different concentrations of mTFF3. COX-2 mRNA expression was 

quantified by real-time quantitative PCR (Figure 13). The cells that were treated with 

0.1 μg/ml mTFF3 showed a 5-fold increase in COX-2 mRNA levels relative to the 

medium control (0 μg/ml mTFF3). A higher induction is reached with 1-10 μg/ml 

mTFF3. These results clearly show that mTFF3 used in these experiments is 

biological active. 

 

 

Figure 13 Induction of COX-2 mRNA expression in CMT-93 by mTFF3.  
CMT-93 cells were grown to confluence and were then cultured for 4 h in the presence of 0, 
0.1, 1 and 10 μg/ml mTFF3. Shown are the fold changes in RPL13A normalized COX-2 
mRNA expression levels of every condition relative to the condition without mTFF3 addition. 
Bars represent the mean + SD. 
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1.4.2 mTFF3 does not inhibit LPS-induced phenotypic maturation of DCs. 

In order to investigate whether mTFF3 can modulate DC maturation, we purified 

in vitro generated CD11c+ BM-DCs and pretreated them for 6 h with mTFF3. They 

were then stimulated overnight in the presence of 10 ng/ml LPS. Because 

LPS-induced maturation of BM-DCs is inhibited by IL-10 [121,125,401], BM-DCs 

pretreated with mIL-10 were used as positive control for inhibition of maturation. 

BM-DCs cultured in medium were used as non-treated control cells. The phenotype 

of the different BM-DC groups was determined by flow cytometry. Mature DCs are 

known to express higher levels of MHC II, CD80, CD86 and CD40 than immature 

DCs. In the absence of LPS, non-treated (control) and mTFF3-treated BM-DCs 

expressed similar levels of co-stimulatory molecules (Figure 14A). mIL-10 treatment 

led only to reduced expression of MHC II. After LPS stimulation, mTFF3-treated 

BM-DCs up-regulated the expression of CD80, CD86, CD40 and MHC II to the levels 

expressed by control BM-DCs stimulated with LPS (Figure 14B). As expected, when 

10 ng/ml of mIL-10 was added 6 h before LPS stimulation, the expression of CD80, 

CD86, CD40 and MHC II was inhibited compared to the other LPS-stimulated BM-DC 

groups. On the other hand, no difference in PD-L1 up-regulation after LPS 

stimulation was observed between non-treated, mTFF3-treated and mIL-10-treated 

BM-DCs (Figure 14B). These results indicate that mTFF3 treatment of BM-DCs does 

not alter their maturation in response to LPS. In contrast to mIL-10, mTFF3 cannot 

inhibit the expression of co-stimulatory molecules on BM-DCs. In addition, our data 

show that, unlike its effect on CD80, CD86, CD40 and MHC II, mIL-10 could not 

inhibit PD-L1 expression. This observation is consistent with the possibility that 

PD-L1 acts as a negative signal for T cell activation [126]. 

BM-DCs are useful for studying DCs in vitro, but given the complex biology of DCs 

in vivo and the postulated existence of different subsets, it is clear that in vitro results 

have to be evaluated carefully. In particular, emerging data show that mucosal DCs 

have unique functions that are not shared by DCs from other tissues [100,397]. Since 

TFF peptides are expressed mainly in the gastro-intestinal tract, it is possible that 

intestinal mucosal DCs are responsive to TFF whereas DCs from other origins are 

not. To test this hypothesis we isolated mucosal DCs from PP and MLN and 

compared their responses to LPS with or without mTFF3 pretreatment. As a control, 

we used peripheral DCs isolated from spleen. After LPS stimulation, mTFF3-treated 

DCs from the three different lymphoid organs up-regulated the expression of CD86, 

CD40, MHC II and PD-L1 to the same extent as non-treated DCs (data not shown). 

This result is in agreement with that obtained for BM-DCs. 
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Figure 14 Phenotypic analysis of BM-DCs after LPS-induced maturation.  
CD11c+ BM-DCs (1 x 106 cells/ml) were cultured for 6 h in the presence of mIL-10 (10 ng/ml) 
or mTFF3 (10 μg/ml). After culturing the cells overnight without (A) or with LPS (10 ng/ml) (B), 
they were harvested and analyzed by flow cytometry using anti-CD11c, anti-CD80, 
anti-CD86, anti-CD40, anti-MHC II and anti-PD-L1 mAbs. Gating was done on CD11c+ cells. 
Bars represent MFI, the mean fluorescence intensity of the indicated mAb. Results are 
representative of three (A) and five (B) experiments. 
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1.4.3 mTFF3 does not alter LPS-induced cytokine secretion by DCs. 

LPS is prone to induce a Th1 response [75], and cytokines secreted by DCs are 

important to determining whether the outcome of an immune reaction is Th1, Th2, or 

induction of Treg cells. To further evaluate the effect of mTFF3 on DCs, we 

determined the cytokine expression profile after LPS stimulation. As expected, LPS 

induced the secretion of pro-inflammatory cytokines and chemokines: IL-12p70, TNF, 

IL-6 and MCP-1, as well as of the anti-inflammatory cytokine IL-10 (Figure 15). 

Treatment of BM-DCs with mTFF3 did not influence any of the secreted proteins 

(Figure 15), whereas mIL-10 strongly inhibited the LPS-induced secretion of IL-12p70 

and MCP-1, but only partially of IL-6 and TNF. These results indicate that, unlike 

mIL-10, mTFF3 cannot modulate the amount of cytokines secreted by BM-DCs. 

The intrinsic difference between peripheral and mucosal DCs in their secretion of 

cytokines such as IL-10 is reported to be partially responsible for the different 

immune responses induced by mucosal and peripheral DCs [100,397]. To evaluate 

whether mTFF3 can differentially modulate cytokines expressed by mucosal DCs 

and peripheral DCs, we compared cytokines secreted by PP-, MLN- and spleen-DCs 

after LPS stimulation (data not shown). No significant difference was observed for 

secretion of IL-12p70, IL-10, IL-6, MCP-1 or TNF in response to LPS, for both 

mucosal and peripheral non-treated DCs compared to mTFF3-treated mucosal and 

peripheral DCs. 
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Figure 15 Cytokine production by BM-DCs after LPS-induced maturation.  
CD11c+ BM-DCs (1 x 106 cells/ml) were cultured for 6 h in the presence of mIL-10 (10 ng/ml) 
or mTFF3 (10 μg/ml). After overnight culture without or with LPS (10 ng/ml), supernatants 
were collected and cytokines were quantified with the Mouse Inflammation CBA kit. Results 
for IL-12p70, IL-10, MCP-1, TNF and IL-6 from 3 experiments are shown as 
mean pg/ml + SEM.  

1.4.4 mTFF3 does not alter the capacity of DCs to stimulate allogeneic 

T cells. 
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BM-DCs were co-cultured with allogeneic bead-purified CD4+ T cells. mTFF3-treated 

BM-DCs stimulated with LPS were as effective at activating allogeneic CD4+ T cells 

as non-treated control BM-DCs stimulated with LPS (Figure 16). Consistent with both 

cytokine secretion and phenotypic profile after LPS stimulation, mIL-10-treated 

BM-DCs stimulated with LPS were less effective in activating allogeneic CD4+ T cells 

than non-treated LPS-stimulated BM-DCs (Figure 16). Similar results were obtained 

when BM-DCs were pretreated with up to 250 µg/ml of mTFF3 (data not shown). 

 

 

Figure 16 T cell-stimulating capacity of BM-DCs after LPS-induced maturation.  
CD11c+ BM-DCs (1 x 106 cells/ml) were cultured for 6 h in the presence of mIL-10 (10 ng/ml) 
or mTFF3 (10 μg/ml). After culturing the cells overnight with LPS (10 ng/ml), they were 
harvested. Graded numbers of LPS-stimulated BM-DCs were co-cultured with 150,000 naive 
allogeneic C57/BL6 splenic T cells. After three days of culture, [3H]thymidine was added. 
[3H]thymidine incorporation was measured after another 18 h. LPS-stimulated DCs, both 
mTFF3-treated and non-treated, show a significantly more potent allo-stimulatory activity than 
control DCs (P<0.005). LPS-stimulated DCs (pre)treated with mIL-10 do not stimulate T cell 
proliferation as compared to LPS matured DCs (P<0.005). Shown are mean values + SD of 
triplicates from one experiment; data are representative for 3 experiments. 
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Analogous to BM-DCs, mTFF3-treated mucosal and splenic DCs stimulated with LPS 

were as efficient in activating allogeneic CD4+ T cells as non-treated control DCs 

stimulated with LPS (data not shown).  

In conclusion, our data show that mTFF3 does not inhibit LPS-induced activation of 

DCs, because mTFF3 treatment does not affect the capacity of LPS-stimulated DCs 

to activate naive allogeneic CD4+ T cells. The absence of a difference between 

mTFF3-treated and non-treated cells is in agreement with the expression levels 

found for CD80, CD86, CD40, MHC II and PD-L1 and the secretion of 

pro-inflammatory cytokines. Furthermore, our experiments with ex vivo derived DCs 

confirm that regardless of whether DCs were retrieved from mucosal or peripheral 

sources, mTFF3 does not inhibit LPS-induced activation of DCs.  

1.5 Discussion 

Our results indicate that the presence of biologically active mTFF3 has no direct 

effect on LPS-induced maturation of in vitro generated BM-DCs. No difference was 

observed in expression of the co-stimulatory molecules CD40, CD86, CD80 and 

MHC II, and the negative stimulator of T cells, PD- L1 between mTFF3-treated and 

non-treated BM-DCs after LPS stimulation. Also for both groups we observed no 

difference in secretion of the pro-inflammatory cytokines IL-12p70, TNF, IL-6 and 

MCP-1, as well as the anti-inflammatory cytokine IL-10. Furthermore, they were 

equally effective in stimulating naive allogeneic CD4+ T cells in vitro.  

The maturation stimulus is a major factor that influences the pattern of cytokines 

released by DCs, and accordingly the Th balance. For stimulating DCs we used LPS, 

which is generally a Th1 inducing factor. As we could not determine any differences 

in DC profile, it is more than likely that the Th balance is not influenced by 

mTFF3-treatment. Furthermore, high IFNγ levels were measured during T cell 

proliferation when DCs, both mTFF3-treated and non-treated, were stimulated with 

LPS, suggesting the induction of a Th1 response (data not shown). 

Although in vitro cultured BM-DCs are a useful tool, they may not be representative 

of all the different in vivo DC populations. As mTFF3 is secreted mainly in the small 

and large intestines, it may have evolved to preferentially modulate mucosal immune 

cells. However, our results suggest that mTFF3 does not specifically target mucosal 

DCs as no differences could be detected between mucosal and splenic DCs with 

respect to LPS-mediated maturation, cytokine secretion and capacity to stimulate 

T cells. 
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DCs determine the character of the immune response by secreting cytokines that 

drive the development of T cells into Th1, Th2, or T reg cells. Although 

Pathogen Associated Molecular Patterns that stimulate different Toll-Like Receptors 

induce similar changes in surface phenotype in DCs, they often induce distinct 

patterns of cytokines, resulting in a Th1/Th2 polarization that favors the pathogen 

[402]. Therefore it is plausible that mTFF3 can modulate DC functions if another 

maturation stimulus, such as αCD40, flagellin, zymosan or peptidoglycan, is used 

instead of LPS.  

Alternatively, it is possible that mTFF3 showed no effect in our experimental setup 

due to the absence of the appropriate microenvironment or inflammatory mediators. 

After all, in vivo DC activation following infection is complex, and besides maturation 

stimulus and DC subset, inflammatory mediators at the site of infection also influence 

this process. 

Since the TFF receptor is unknown [394], mTFF3 responsive cells have not been 

characterized. Nevertheless, as mTFF3 treatment did not alter the activation status, 

cytokine profile, and T cell-stimulating capacity of both in vitro cultured and ex vivo 

derived DC populations, we hypothesize that none of these DCs expresses the 

receptor for mTFF3. However, it is still possible that TFF peptides in the spleen or 

other lymphoid organs modulate immune functions by affecting other cells of the 

immune system and not through direct interaction with DCs. As suggested by Cook 

et al, plasma cells may secrete TFF peptides, which then interact with secreted 

immunoglobulins to modulate humoral immune responses [259]. 

Though we observed no direct modulation of DCs by purified recombinant mTFF3, it 

is possible that in vivo mTFF3 activates other cells to secrete molecules that can 

modulate DC function. Crosstalk between epithelial cells and DCs is considered to be 

very important to regulate intestinal mucosal immunity [152,403]. It has been shown 

that TFF induces COX-2 expression in epithelial cells [318,319], leading to the 

secretion of prostaglandin PGE2 whose anti-inflammatory effects on DCs have been 

extensively documented [322-325]. In an in vivo model of colitis, TFF reduced 

VCAM-1 expression in colonic endothelium [305]. Reduced VCAM-1 expression 

could lead to reduced infiltration of inflammatory cells at the site of infection, which 

would ameliorate inflammation and affect DC stimulation. Furthermore, Giraud et al 

reported that TFF2 can reduce LPS-induced NO expression in monocytes [310], 

which may lead to inhibition of immune cell recruitment, thereby changing the 

microenvironment of DCs. As this effect on monocytes has been described only for 
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TFF2, it is possible that the effect of TFF2 on DCs is different from what we show for 

mTFF3. 

In conclusion, our results demonstrate that recombinant mTFF3 does not influence 

LPS-induced DC maturation suggesting that mTFF3 does not affect immune 

responses on the level of DC functions directly. However, it remains possible that 

mTFF3 regulates DC maturation when other maturation stimuli or inflammatory 

mediators are present or that mTFF3 regulates DC function through modulation of 

other cells. 
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2.1 Abstract 

Oral delivery of murine IL-10 by genetically modified Lactococcus lactis (LL-pTmIL10) 

has been shown to efficiently reduce intestinal inflammation in mice with chronic 

colitis but the mechanism(s) involved have not been elucidated. It has been 

suggested that IL-10 controls intestinal inflammation by inhibiting microbe-induced 

activation of dendritic cells (DCs). We therefore investigated whether LL-pTmIL10 

can modulate the functions of bone marrow-derived DCs (BM-DCs) responding to 

LPS. Incubation of these cells with LL-pTmIL10 or with the control strain LL-pTREX 

reduced their ability to activate allogeneic T cell proliferation. These L. lactis-treated 

LPS-stimulated BM-DCs also significantly inhibited the capacity of fully matured 

BM-DCs to activate CD4+ T cells. However, in contrast to LL-pTREX, LL-pTmIL10 

inhibited the LPS-stimulated secretion of MCP-1 by BM-DCs and reduced the 

synergistic up-regulation of IL-12/IL-23p40. In addition, LL-pTmIL10 treatment of 

LPS-stimulated BM-DCs significantly inhibited their capacity to induce strong 

secretion of IL-17 by CD4+ T cells. Our data suggest that the beneficial effects of 

LL-pTmIL10 treatment during chronic colitis might involve inhibition of 

CD4+ Th17 cells and a reduced accumulation of these cells as well as other immune 

cells at the site of inflammation. 
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2.2 Introduction 

The mucosal immune system of the gastro-intestinal tract is responsible for inducing 

tolerance to commensal bacteria and food antigens and for providing protection 

against pathogenic micro-organisms. Ineffective immune regulation can result in 

dysregulated T cell responses to intestinal microflora and break-down of tolerance. 

Uncontrolled intestinal inflammation can ensue, as in chronic inflammatory diseases, 

such as Inflammatory Bowel Disease (IBD) [404,405]. IBD encompasses Crohn’s 

Disease (CD) and ulcerative colitis, which are caused by a complex interaction 

between environmental, genetic and immuno-regulatory factors [168,388]. 

Steidler and co-workers [198] demonstrated that oral administration of recombinant 

Lactococcus lactis - a non-pathogenic, non-colonizing gram-positive bacteria - 

secreting murine IL-10 reduced inflammation in the chronic dextran sodium sulfate 

model by 50%, and prevented the onset of colitis in IL-10-/- mice. More recently this 

treatment was also validated in trinitrobenzene sulphonate induced colitis [363]. 

Furthermore, a biologically contained L. lactis strain secreting human IL-10 was 

constructed [200] and used in a phase I, open label clinical trial [199]. That trial 

demonstrated that treating CD patients with this strain is realistic and safe. However, 

the mechanisms mediating the therapeutic effects of L. lactis-mediated topical 

delivery of IL-10 in murine or human colitis remain unknown.  

Studies have suggested that intestinal DCs could be involved in the initiation and 

possibly continuation of IBD in mouse and man [175-179]. It has been suggested that 

DCs, probably due to dysfunctional or exaggerated pattern recognition receptor 

responses, incorrectly recognize commensal bacteria and induce Th1 and possibly 

Th17 pro-inflammatory responses normally directed against pathogens [406]. Indeed, 

DCs are activated in IBD and up-regulate expression of TLR2 and TLR4, which might 

enhance responses to bacterial products and render CD4+ T cells resistant to 

Treg cell-mediated suppression [407]. Furthermore, DCs in IBD produce increased 

amounts of pro-inflammatory cytokines, such as IL-12 and IL-6 [175]. Moreover, 

recent studies indicated that IL-23, which like IL-12 is produced by APCs such as 

DCs, has an important function in the local initiation of gut inflammation [408].  

IL-10 has profound anti-inflammatory effects on the immune system, including 

inhibition of cytokine production by DCs, T cells and macrophages, and inhibition of 

maturation and antigen-presentation by DCs [210]. The spontaneous development of 

IBD in IL-10-/- mice highlights the physiological importance of IL-10. IL-10 also 

appears to control intestinal inflammation by inhibiting TLR-mediated 
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pro-inflammatory responses, and DCs obtained from CD patients with NOD2 

mutations showed impaired IL-10 production [409-411]. Kobayashi and co-workers 

showed that TLR-induced myeloid IL-12/IL-23 production is an important target of 

IL-10-mediated anti-inflammatory effects [409]. Based on these data, a model for the 

role of IL-10 and LPS in IBD has been proposed. This model hypothesizes that LPS 

induces APCs to produce IL-12/IL-23, which drive Th1/Th17 type immune responses. 

Normally, inflammation is controlled by APC- or lymphocyte-derived IL-10, which 

blocks further production of IL-12/IL-23 and other pro-inflammatory cytokines. This 

suppressive IL-10 signal might be important in the gut, were immune cells are 

continuously in close contact with LPS and other microbial products. 

We hypothesized that IL-10 secreted by genetically modified L. lactis can modulate 

DC responses to TLR ligands such as LPS, partially explaining the anti-inflammatory 

effect in murine models for IBD. We show that L. lactis, independently of mIL-10 

secretion, was less effective than LPS in inducing bone marrow-derived DC (BM-DC) 

maturation, demonstrated by their reduced capacity to activate naive T cells. 

Furthermore, we show that in the presence of LPS, mIL-10 secreted by L. lactis could 

specifically inhibit secretion of MCP-1 and IL-12p70. We also suggest that IL-10 

secreted by L. lactis could also lead to a reduced expression of IL-23 by mature 

BM-DCs, which could explain the differential Th17-polarizing capacity of L. lactis 

secreting mIL-10 compared to the L. lactis control strain in the presence of LPS.  

2.3 Materials and Methods 

2.3.1 Animals. 

Balb/c (H2Kd) and C57BL/6 (B6; H2Kb) female mice, 6-8 weeks old, were purchased 

from Charles River, Italy. They were housed in a specific pathogen-free animal 

facility and treated according to the institutional guidelines of Ghent University.  

2.3.2 Media, reagents and antibodies. 

The designation, RPMI-complete refers to RPMI-1640 medium supplemented with 

10% heat inactivated FCS, 2 mM L-glutamine, 0.1 mM nonessential amino acids, 

0.4 M sodium pyruvate, 10 IU/ml penicillin, 10 μg/ml streptomycin and 

50 μM β-mercaptoethanol (all from Gibco BRL/Invitrogen, Gaithersburg, MD, USA). 

RPMI-complete PS- is the above medium without antibiotics. 
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Purified LPS (Escherichia coli serotype O111b4) was obtained from Sigma-Aldrich, 

St. Louis, MO, USA. Recombinant murine IL-10 (rmIL-10), rmGM-CSF, rmIL-4 and 

rmIL-2 were purchased from Peprotech, Rocky Hill, NJ, USA.  

Monoclonal antibodies (mAbs) for flow cytometry were hamster anti-mouse CD11c 

(clone HL3; FITC-conjugated), rat anti-mouse CD80 (clone 16-10A1; PE-conjugated), 

rat anti-mouse CD86 (clone GL1; PE-conjugated), rat anti-mouse CD40 (clone 3/23, 

PE-conjugated), rat anti-mouse PD-L1 (B7-H1; CD274) (clone MIH5, 

PE-conjugated), and rat anti-mouse IAd (clone AMS-32.1, PE-conjugated). All mAbs 

were from BD Pharmingen, San Diego, CA, USA. Isotype controls were 

FITC-conjugated Armenian hamster IgG1 (anti-TNP) and PE-conjugated rat 

IgG2a/IgG2b κ from BD Pharmingen. Before cell-staining, non-antigen-specific 

binding of IgG to the mouse Fcγ receptors was blocked with a rat 

anti-mouse CD16/CD32 mAb (Fc block; BD Pharmingen). 

2.3.3 Bacterial strains. 

L. lactis subsp. cremoris strain MG1363 [384] was used throughout this study. 

Bacteria were cultured in GM17E medium, i.e. M17 (Difco Laboratories, Detroit, MI, 

USA) supplemented with 0.5% glucose and 5 µg/ml erythromycin. Stock solutions 

were stored at -20˚C in 50% glycerol in GM17E. Stock suspensions were diluted 

1000-fold in fresh GM17E and incubated as standing cultures at 30˚C for 16 h. They 

reached a density of 2 x 109 colony forming units (CFU) per ml.  

Plasmid pT1mIL10 is a derivative of pTREX1 [412] in which the coding region of 

mature murine IL-10 was fused to the lactococcal usp45 secretion leader [413], 

preceded by the coliphage T7 gene 10 ribosome binding site and the lactococcal 

P1 promoter [414]. Further in the text, L. lactis MG1363 transformed with plasmid 

pT1mIL10 is designated LL-pTmIL10. MG1363 harboring the empty control vector 

pTREX1 is designated LL-pTREX. 

Before addition to the DCs, bacteria were diluted 200-fold in RPMI-complete PS-, 

supplemented with 5 μg/ml erythromycin, and grown for 3 h at 37°C. The bacterial 

count reached ~1 x 108 CFU/ml. During co-culture the DC:bacterial CFU ratio was 

1:1. 

2.3.4 Generation of bone marrow derived DCs. 

A modified version of a published procedure was used to generate bone marrow 

derived DCs [389,390]. Briefly, bone marrow cells from femurs and tibias of Balb/c 
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mice were depleted of red blood cells by lysis with ammonium chloride. Granulocytes, 

erythroid precursors, and B cells were labeled with a cocktail of mAbs (anti-Gr-1, 

anti-TER-119/erythroid cells, and anti-CD45R/B220; all from BD Pharmingen), and 

killed by incubation with low-toxicity rabbit complement (Cedarlane, Ontario, 

Canada). These cells were cultured in RPMI-complete supplemented with 

1000 U/ml rmGM-CSF and 500 U/ml rmIL-4. Medium was replaced on days 2 

and 4. On day 6, nonadherent cells were removed, and fresh medium with cytokines 

was added. Two days later 60 to 90% of the new population of nonadherent cells 

were CD11c+ BM-DCs. DCs were further purified to >90% using anti-CD11c 

magnetic microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany). Purified DCs 

were re-plated at 1 x 106 cells/ml and pre-incubated at 37°C with approximately 

1 x 106 CFU/ml LL-pTmIL10 or LL-pTREX, or with 10 ng/ml rmIL-10 (positive control) 

in RPMI-complete PS-, supplemented with 5 μg/ml erythromycin. To prevent bacterial 

overgrowth, 75 μg/ml gentamycin was added after 5 h. For maturation, 10 ng/ml LPS 

was then added and the cells were incubated overnight at 37°C. Supernatants were 

collected and stored at -70°C. Cells were harvested, washed and counted before 

use. 

2.3.5 Phenotypic analysis of DCs. 

For phenotypic analysis, DCs were double-stained with FITC-anti-CD11c and either 

PE-anti-CD80, -CD86, -CD40, -PD-L1 or -IAd. The incidence of positive cells and MFI 

were determined by flow cytometry using a FACSCalibur flow cytometer (Beckton 

Dickinson) equipped with an argon laser (488 nm) and a helium neon laser (540 nm). 

The CellQuest software program (Becton Dickinson) was used for data acquisition 

and analysis. PI (2 μg/ml) was added to the cells just before flow cytometry analysis. 

Gating was done on PI-negative cells to exclude dead cells. 

2.3.6 Mixed lymphocyte reaction. 

C57BL/6 splenic CD4 positive T cells were purified by negative selection using 

magnetic bead separation (Miltenyi Biotec). They were stimulated with graded 

numbers of purified Balb/c DCs in round-bottomed 96-well plates (BD Falcon) in a 

total volume of 200 μl RPMI-complete. Cultures were maintained at 37°C in a 

humidified incubator (5% CO2). After three days, 1 μCi/well [3H]thymidine 

(Amersham GE Healthcare, Buckinghamshire, UK) was added. [3H]thymidine 

incorporation was determined after 18 h using a 96-well Topcount scintillation 
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counter (Packard Instrument, Meriden, CT). The incorporated radioactivity is 

expressed as cpm means ± SD. 

2.3.7 Measuring cytokine concentrations with cytometric bead array. 

Supernatants were stored at –70°C. Cytokines were quantified according to the 

manufacturer’s instructions, using the Mouse Inflammation Cytometric Beads 

Array kit (CBA; BD Pharmingen). Briefly, for every cytokine a bead population with 

distinct fluorescence intensity was coated with capture antibodies specific for this 

cytokine. The capture beads for every cytokine to be measured, sample lysates, and 

PE-conjugated detection reagent were incubated together to obtain sandwich 

complexes. For the Mouse inflammation kit, IL-12p70, IL-10, IL-6, TNF, IFNγ and 

MCP-1 were analyzed in one sample. The beads were washed and run through a 

flow cytometer. The MFI data were analyzed with Becton Dickinson CBA Analysis 

Software. Sample data were normalized with specific cytokine standards to quantify 

the proteins of interest.  

2.3.8 Quantitative analysis of mRNA expression in DCs. 

Purified CD11c+ DCs were re-plated at 1 x 106 cells/ml and pre-incubated for 5 h at 

37°C with LL-pTmIL10 or LL-pTREX at 1 x 106 CFU/ml or with 10 ng/ml purified 

rmIL-10. Gentamycin (75 μg/ml) and LPS (10 ng/ml) were added after 5 h. After an 

additional 5 h, cells were washed with PBS and total RNA was extracted from cells 

using the RNeasy mini kit (Qiagen, Westburg BV, The Netherlands), with on-column 

DNase treatment (Qiagen). One μg of total RNA was converted to single stranded 

complementary DNA by reverse transcription (Superscript, Gibco) with oligo dT 

priming. Subsequently, real-time PCR for murine IL-12p35, IL-12p40 and IL-23p19 

was performed using the SYBR green kit (Eurogentec, Seraing, Belgium) and 

300 nM of each primer. A two-step program was run on the iCycler 

(Biorad Laboratories, Hercules, CA, USA). Cycling conditions were: 10 min 

incubation at 95°C followed by 40 cycles of 15 sec at 95°C and 1 min at 60°C. 

Melting curve analysis confirmed primer specificities. All reactions were run in 

triplicate and normalized to TATA box binding protein (TBP) levels. TBP was chosen 

after checking the expression stability of a set of housekeeping genes in BM-DCs 

cells using the Genorm software [400]. The level of the normalized mRNA is shown 

relative to the control sample incubated with medium alone. Data are expressed as 

mean + SD. Primers were designed using the Beacon Designer software (PREMIER 

Biosoft International, Palo Alto, CA, USA) (see table).  



Experiments and results 

 95

 

Gene 

symbol 

Reference 

sequence 

Forward primer Reverse primer 

mIL-12p35 NM_008351 ACTCTGCGCCAGAAACCTC CACCCTGTTGATGGTCACGAC 

mIL-12p40 NM_008352 ACCTGTGACACGCCTGAAGAAG TGTGGAGCAGCAGATGTGAGTG 

mIL-23p19 NM_031252 AGCAACTTCACACCTCCCTAC ACTGCTGACTAGAACTCAGGC 

mTBP NM_013684 TCTACCGTGAATCTTGGCTGTAAA TTCTCATGATGACTGCAGCAAA 

 

2.3.9 Re-stimulation of T cells for the detection of IL-17 secretion. 

Activated C57BL/6 splenic CD4 positive T cells were purified by negative selection 

using magnetic bead separation (Miltenyi Biotec). They were stimulated with purified 

Balb/c DCs at a ratio of 10:1 in round-bottom 96-well plates (BD Falcon). Cultures 

were maintained at 37°C in a humidified incubator (5% CO2). After five days, T cells 

were recovered by density gradient centrifugation using Lympholyte-M (Cedarlane), 

to remove dead cells. Recovered cells were re-plated at 1 x 106 cells/ml in 

flat-bottom 96-well plates at 37°C in RPMI-complete with 5 U/ml rmIL-2 for 72 h. 

These cells (150,000) were then re-stimulated with 1.5 x 105 Balb/c splenocytes 

treated with mitomycin C (50 μg/ml; Sigma-Aldrich). After 72 h, the concentration of 

IL-17 was assayed using a murine IL-17 ELISA (Bender Medsystems, Burlingame, 

CA, USA) with a detection limit of 1.6 pg/ml. ELISA was performed according to the 

manufacturer’s instructions.  

2.3.10 Statistical analysis. 

SPSS was used to analyze MLR results. Statistical analysis was performed using the 

general linear model for repeated measurements and the Bonferroni post-hoc test. 

For statistical analysis of DC regulatory activity and cytokine concentrations, we used 

a one-way ANOVA and the Bonferroni post-hoc test. P-values < 0.05 were 

considered as significant.  
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2.4 Results 

2.4.1 L. lactis treatment induces a semi-mature BM-DC phenotype. 

To determine whether LL-pTmIL10 can modulate DC maturation, CD11c+ BM-DCs 

generated in vitro and purified on immuno-beads were pretreated with LL-pTmIL10 or 

LL-pTREX at a DC:bacterial CFU ratio of 1:1. Co-cultures of BM-DCs and L. lactis 

were initially maintained in antibiotic-free medium to allow bacterial activity and thus 

mIL-10 secretion by LL-pTmIL10. After 5 h, gentamycin was added to inhibit bacterial 

protein synthesis and growth. BM-DCs stimulated in the presence of LPS were used 

as a positive control for maturation. BM-DCs cultured in medium alone were used as 

an untreated control for spontaneous maturation, and BM-DCs cultured in the 

presence of rmIL-10 were used as a control for inhibition of spontaneous maturation. 

After overnight culture, the BM-DCs were harvested and analyzed by flow cytometry 

for the expression of co-stimulatory molecules. Both LL-pTREX and LL-pTmIL10 

induced lower levels of MHC II and co-stimulatory molecules CD40, CD86 and CD80, 

than LPS-treated BM-DCs, but they expressed higher levels than rmIL-10-treated 

and untreated control BM-DCs (Figure 17). In contrast, expression levels of the T cell 

inhibitory molecule Programmed Death-1 ligand (B7-H1, PD-L1) in BM-DCs 

stimulated or with L. lactis or LPS were comparable.  

To test whether LL-pTREX or LL-pTmIL10 could modulate LPS-induced maturation, 

BM-DCs were pretreated for 5 h with L. lactis and then stimulated overnight with 

LPS. Pretreatment with LL-pTmIL10 could not prevent the LPS-induced up-regulation 

of maturation markers on BM-DCs. Similar results were obtained for LL-pTREX- and 

rmIL-10-pretreated BM-DCs, although the up-regulation of maturation markers was 

less pronounced for BM-DCs conditioned with rmIL-10. Furthermore, no difference in 

PD-L1 up-regulation after LPS stimulation was observed between non-treated, 

L. lactis-treated and rmIL-10-treated BM-DCs (Figure 17). 
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Figure 17 Phenotypic analysis of BM-DCs before and after LPS-induced maturation.  
CD11c+ BM-DCs were treated as described in the Materials and Methods section. After 
culturing overnight without or with LPS (10 ng/ml), they were harvested and analyzed by flow 
cytometry using anti-CD11c, anti-CD80, anti-CD86, anti-CD40, anti-MHC II and anti-PD-L1 
mAbs. Gating was done on CD11c+ cells. Bars represent MFI, the mean fluorescence 
intensity of the indicated mAb. Results are representative of four experiments. 

2.4.2 L. lactis treatment modulates the ability of BM-DCs to activate 

allogeneic T cells. 

To determine whether the maturation phenotype induced in BM-DCs by LL-pTREX or 

LL-pTmIL10 correlated with their functional maturation, BM-DCs were tested for their 

ability to stimulate allogeneic bead-purified naive CD4+ T cells. As expected, 

LPS-activated BM-DCs were effective in stimulating allogeneic CD4+ T cells, whereas 

LL-pTREX- or LL-pTmIL10-treated BM-DCs induced only weak T cell proliferation 

(P<0.001) (Figure 18). Although LPS stimulation of BM-DCs treated with LL-pTmIL10 

or with LL-pTREX increased their ability to stimulate allogeneic T cells, it was still 
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significantly less (P<0.05) than the ability of LPS-stimulated BM-DC controls. 

However, LL-pTmIL10 or LL-pTREX treatment was less effective in inhibiting the 

ability of LPS-stimulated BM-DCs to activate allogeneic CD4+ T cells compared to 

treatment of BM-DCs with rmIL-10 (P<0.001).  

 

 

Figure 18 T cell-stimulating capacity of activated BM-DCs. 
CD11c+ BM-DCs were treated, harvested and used in a mixed lymphocyte reaction 
(see Materials and Methods). LPS-stimulated DCs (pre)treated with rmIL-10 do not stimulate 
T cell proliferation as compared to LPS-matured DCs (P<0.001). LPS-stimulated DCs also 
show a significantly more potent allo-stimulatory activity than the L. lactis-treated groups 
(P<0.001) and the L. lactis-treated, LPS-stimulated groups (P<0.05). LL-pTmIL10 or 
LL-pTREX groups are not significantly different from each other. Shown are mean 
values + SD of triplicates from one experiment; data are representative of four experiments. 
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Our results show that, consistent with their maturation phenotype, LL-pTmIL10- or 

LL-pTREX-treated BM-DCs were less effective in stimulating naive allogeneic T cells 

than LPS-stimulated BM-DCs, and no difference was found in the T cell proliferating 

capacity of LL-pTmIL10- or LL-pTREX-treated BM-DCs. In contrast to treatment with 

rmIL-10, L. lactis-treated BM-DCs only partially diminished the capacity of 

LPS-induced BM-DCs to activate naive T cells. 

2.4.3 BM-DCs treated with L. lactis and stimulated with LPS inhibit the 

activation of allogeneic T cells by mature BM-DCs. 

We previously showed that BM-DCs treated with LL-pTREX or LL-pTmIL10 and 

stimulated with LPS were phenotypically as mature as LPS-stimulated control 

BM-DCs but less effective at stimulating naive T cells. Those results indicate that 

L. lactis alters the properties of BM-DCs to stimulate T cells independently of the 

expression of co-stimulatory molecules. To determine whether these LPS-stimulated 

BM-DCs treated with L. lactis can act as regulators, we investigated their ability to 

inhibit the capacity of control LPS-matured BM-DCs to activate naive T cells. 

Therefore, LPS-stimulated BM-DCs and naive T cells were co-cultured in the 

presence of graded numbers of LPS-stimulated BM-DCs pretreated with LL-pTREX 

or LL-pTmIL10. Untreated LPS-stimulated BM-DCs were used as negative controls. 

LPS-stimulated BM-DCs pretreated with LL-pTREX or LL-pTmIL10 significantly 

inhibited the capacity of mature BM-DCs to activate naive allogeneic T cells 

(Figure 19). At a regulator:stimulator ratio of 1:10 the inhibitory capacity was higher 

when LL-pTmIL10-treated BM-DCs were used as regulators compared to 

LL-pTREX-treated BM-DCs. 
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Figure 19 Modulation of T cell proliferation by the addition of regulator BM-DCs.  
CD11c+ BM-DCs were treated as described in the Materials and Methods section. After 
culturing the cells overnight with LPS (10 ng/ml), they were harvested. 150,000 naive 
allogeneic C57/BL6 splenic T cells (Responders) were stimulated with tenfold fewer 
LPS-stimulated BM-DCs (Stimulators), and to this mixed lymphocyte reaction graded 
numbers of the different pretreated and LPS-stimulated DCs were added to assess their 
regulatory capacity (Regulators). After three days of culture, [3H]thymidine was added. 
[3H]thymidine incorporation was measured after another 18 h. The black bar represents 
proliferation of the responders in the absence of regulators. *** and ** represent statistical 
significant differences in comparison with this condition of P < 0.001 and P < 0.01 
respectively. Shown are mean values + SD of triplicates from one experiment; data are 
representative of three experiments. 

2.4.4 BM-DCs treated with LL-pTmIL10 or LL-pTREX differ in their ability to 

secrete MCP-1 and IL-12p70 in response to LPS. 

Since cytokines expressed by DCs can influence the outcome of an immune 

response, we investigated whether mIL-10 secreted by LL-pTmIL10 could specifically 

modulate BM-DC function by modulating cytokine expression. As expected, 

LPS stimulation of BM-DCs induced strong expression of pro-inflammatory cytokines 

and chemokines, such as IL-12p70, MCP-1, TNF and IL-6, compared to the 

untreated and rmIL-10-treated BM-DCs (Figure 20 and data not shown). 

Furthermore, the expression levels for all cytokines examined after L. lactis treatment 

were increased compared to the non-treated and rmIL-10-treated control BM-DCs. 
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Figure 20 Cytokine production by activated BM-DCs. 
CD11c+ BM-DCs were treated as described in the Materials and Methods section. After 
overnight culture with or without LPS (10 ng/ml), supernatants were collected and cytokines 
were quantified with the mouse inflammation CBA kit. Results for (A) MCP-1 and 
(B) IL-12p70 from three experiments are shown as mean pg/ml + SEM. ***, ** and * denote 
significance of differences at P < 0.001, P < 0.01 and P < 0.05, respectively.  
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Treatment of BM-DCs with LL-pTREX or LL-pTmIL10 induced less secretion of 

MCP-1 than treatment with LPS (Figure 20A, LL-pTREX = P<0.01 or 

LL-pTmIL10 = P<0.001), whereas no difference was found for IL-12p70 (Figure 20B), 

TNF and IL-6 secretion (data not shown).  

Pretreatment of BM-DCs with LL-pTmIL10 (but not with LL-pTREX) significantly 

reduced LPS-induced MCP-1 up-regulation (P<0.01), but less effectively than 

treatment with rmIL-10 (P<0.001) (Figure 20A). Furthermore, we found that BM-DCs 

pretreated with L. lactis and stimulated with LPS expressed IL-12p70 more strongly 

than LPS-stimulated controls. LL-pTmIL10 pretreatment significantly inhibited this 

synergistically up-regulated expression of IL-12p70 (P<0.01) (Figure 20B). In some of 

the experiments performed we observed a similar pattern of LL-pTmIL10-induced 

inhibition of TNF (data not shown). No inhibition was observed for IL-6 secretion after 

LPS stimulation of BM-DCs pretreated with LL-pTmIL10 or LL-pTREX, whereas 

rmIL-10 treatment could partially inhibit LPS-induced expression of both IL-6 and 

TNF (data not shown).  

2.4.5 LPS-stimulated BM-DCs pretreated with LL-pTmIL10 express less 

IL-12/IL-23p40 mRNA than LL-pTREX-pretreated cells. 

IL-12 is a heterodimer formed by the subunits IL-12p35 and IL-12p40. The latter is 

also part of the pro-inflammatory cytokine IL-23 heterodimer produced by DCs. To 

test whether the difference in IL-12p70 expression by BM-DCs treated with 

LL-pTmIL10 could also lead to a difference in IL-23 expression, we investigated if 

LL-pTmIL10 treatment alters the expression of IL-12/IL-23p40, IL-12p35 or IL-23p19 

after LPS stimulation (Figure 21). LPS-stimulated LL-pTREX- or LL-pTmIL10-treated 

BM-DCs were harvested and gene-specific mRNA expression was quantified by 

real-time quantitative PCR. LL-pTREX- and LL-pTmIL10-pretreated BM-DCs 

stimulated with LPS showed similar levels of IL-12p35 mRNA expression, whereas 

LL-pTREX treatment induced a threefold higher expression of IL-12/IL-23p40 mRNA. 

These data suggest that the reduced protein secretion of IL-12p70 by LPS-stimulated 

BM-DCs treated with LL-pTmIL10, compared to LL-pTREX-treated BM-DCs, is 

reflected by a difference in IL-12/IL-23p40 induction. In contrast, the inhibition of 

IL-12p70 secretion in LPS-stimulated BM-DCs treated with rmIL-10 is accomplished 

by affecting transcription of both IL-12/IL-23p40 and IL-12p35, correlating with an 

efficient inhibition of LPS-induced IL-12 secretion (Figure 20B). LL-pTmIL10- and 

LL-pTREX-treated BM-DCs did not differ in IL-23p19 mRNA levels but given their 

differential expression of IL-12/IL-23p40 mRNA, which leads to a reduced expression 
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of IL-12p70 protein, it is likely that BM-DCs matured with LPS in the presence of 

LL-pTmIL10 secrete less IL-23 compared to their LL-pTREX-treated counterparts. 

 

 

Figure 21 IL-12p35, IL-12p40 and IL-23p19 mRNA expression in activated BM-DCs.  
CD11c+ BM-DCs were treated and harvested for mRNA isolation as described in the 
Materials and Methods section. Shown are the fold changes in TBP normalized mRNA 
expression levels of every condition relative to the control condition without stimulation. Bars 
represent the mean + SD. Results are representative of three experiments. 
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2.4.6 Allogeneic T cells stimulated by LL-pTREX- or LL-pTmIL10-treated 

BM-DCs differ in the ability to secrete IL-17.  

Expression of IL-23 by DCs participates in expanding and maintaining the Th17 

population in vivo. These recently discovered effector cells are identified by their 

secretion of IL-17 [13] and are probably involved in clearance of pathogens other 

than those targeted by Th1 and Th2 [415-417]. To further investigate 

immune-modulation by L. lactis and define the functional effect of 

LL-pTmIL10-specific modulation of IL-12/IL-23p40 expression by BM-DCs, we 

determined IL-17 expression by different activated T cells. Therefore, allogeneic 

bead-purified CD4+ T cells were isolated after co-culture with the different BM-DCs 

and subsequently re-stimulated with cytostatic Balb/c splenocytes. After 72 h the 

presence of IL-17 in the supernatants was assessed (Figure 22). Corresponding to 

the high induction of the IL-12/IL-23p40 subunit, T cells activated by LPS-stimulated, 

LL-pTREX-treated BM-DCs induced significantly stronger expression of IL-17 

(P<0.001) than LPS-stimulated, LL-pTmIL10-treated BM-DCs. Since DCs in the gut 

are confronted by both gram-negative and gram-positive bacteria, these data suggest 

that IL-10 secreted by LL-pTmIL10 could modulate DC cell function by regulating 

IL-23 expression during inflammation, thereby inhibiting Th17 development. 

 

 

Figure 22 IL-17 production of activated T cells. 
Re-stimulation of T cells was performed as described in the Materials and Methods section. 
Supernatants were collected after 72 h for IL-17 detection with a commercial IL-17 ELISA. 
Shown are mean pg/ml values + SD of triplicates from one experiment; results are 
representative of four experiments. *** denotes a significance of difference at P < 0.001. 
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2.5 Discussion 

Here we report on the ability of mIL-10 secreted by a genetically modified L. lactis 

strain to modulate BM-DC functions in response to LPS. We show that L. lactis, 

independently of mIL-10 secretion, was less effective than LPS in inducing BM-DC 

maturation, demonstrated by their reduced capacity to activate naive T cells. 

In addition, L. lactis-conditioned, LPS-stimulated DCs had a reduced ability to 

stimulate naive allogeneic T cell proliferation compared to untreated LPS-stimulated 

controls and could suppress the capacity of LPS-stimulated BM-DCs to activate 

naive T cells. Furthermore, mIL-10 secreted by L. lactis specifically inhibited 

LPS-induced MCP-1 secretion as well as the synergistic effect of LPS and L. lactis 

on secretion of IL-12p70. Compared to LL-pTREX, mIL-10 secreted by L. lactis 

inhibited the strong, synergistic LPS-induced expression of IL-12/IL-23p40 mRNA, 

which correlated with the reduced expression of IL-12p70. This inhibition of 

IL-12/IL-23p40 could also lead to reduced expression of IL-23 by mature BM-DCs, 

which would explain the different Th17 cell polarizing effect of LL-pTmIL10 and 

LL-pTREX in the presence of LPS.  

Previous studies have shown that both viable and killed probiotic LAB species 

display strain-specific effects on the phenotype of human and murine DCs [159-161] 

and on polarizing T helper responses via modulation of DC function [163,418,419]. 

Although some commercial formulations claim health-promoting properties, L. lactis 

is not generally considered a true probiotic strain and little is known about its effects 

on DCs. Comparison of the immunomodulatory effects of different LAB on human 

peripheral blood monocytes showed that L. lactis MG1363 has a pro-inflammatory 

profile with a very low IL-10/IL-12 ratio, compared to other LAB and a commensal 

E. coli strain [420]. Furthermore, this observation was validated in murine BM-DCs, in 

which L. lactis also strongly up-regulated co-stimulatory molecules [162]. The 

discrepancy between previous results and ours might be due to the different 

experimental setups. We used viable bacteria at a DC:bacterial CFU ratio of 1:1 to 

avoid acidification of the growth medium by lactic acid production. Foligne and 

co-workers used a ratio of 1:10. Furthermore, we added gentamycin after 5 h of 

bacterial activity whereas in the other study gentamycin was present at the start of 

the co-culture. It has also been reported that exposure of cord blood-derived DCs to 

L. lactis strain W58 lead to moderate up-regulation of co-stimulatory molecules but 

did not induce full maturation compared to LPS [421]. This resembles our results 

suggesting that L. lactis MG1363 induces a semi-mature phenotype compared to 
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LPS. In addition, no difference was found between LL-pTREX and LL-pTmIL10. This 

indicates that the effect on BM-DC maturation, in the absence of LPS, is independent 

of the secretion of mIL-10 by L. lactis; it is an intrinsic property of the bacterial strain.  

L. lactis treatment of BM-DCs induced lower levels of MHC II and co-stimulatory 

molecules, compared to treatment with LPS, but induction of the inhibitory molecule 

PD-L1 was similar. This might explain the difference between T cell activation 

capacities, as it has been shown that expression of alternative or inhibitory 

co-stimulatory molecules on DCs, such as PD-L1, can inhibit T cell activation when 

co-stimulation is sub-optimal [126]. This indicates that L. lactis induces an 

anti-inflammatory phenotype rather than the fully mature phenotype obtained with 

LPS.  

Unexpectedly, LPS-stimulated BM-DCs pretreated with LL-pTmIL10 or LL-pTREX 

were weaker stimulators of allogeneic T cells compared to LPS-stimulated BM-DCs. 

This could not be predicted from their maturation phenotype, which resembles that of 

untreated LPS-stimulated BM-DCs. One possible explanation might be the presence 

of large amounts of endogenous or exogenous mIL-10 during BM-DC maturation. 

Chang and co-workers showed that exposure of DCs to exogenous IL-10 upon 

maturation with LPS severely impaired their capacity to promote naive CD4+ T cell 

proliferation. Besides the effects of exogenous IL-10 on DC apoptosis, they also 

found that endogenous IL-10 acted as a suicidal factor for DCs in an autocrine 

fashion [235]. Because our findings showed that treatment with 10 ng/ml rmIL-10 

completely reduced the ability of LPS-stimulated BM-DCs to activate naive allogeneic 

CD4+ T cells, the induction of apoptosis in mature DCs by the presence of high 

concentrations of IL-10 might also explain the impaired capacity of LL-pTmIL10- or 

LL-pTREX-pretreated LPS-stimulated BM-DCs to promote T cell proliferation. We 

indeed showed for this study that LL-pTREX treatment significantly up-regulated the 

expression of endogenous mIL-10 in LPS-stimulated BM-DCs compared to untreated 

LPS-stimulated BM-DCs, whereas high concentrations of exogenous mIL-10 

(2-5 ng/ml) secreted by LL-pTmIL10 were present in the BM-DC cultures pretreated 

with LL-pTmIL10 (data not shown). In these cultures, endogenous mIL-10 secretion 

could not be determined. In contrast to rmIL-10 treatment, L. lactis-treated BM-DCs 

only partially inhibited the T cell activating capacity. This might be due to different 

concentrations of mIL-10 present during LPS-maturation; rmIL-10 at 10 ng/ml, 

LL-pTmIL-10 secreted 2-5 ng/ml whereas with LL-pTREX +1 ng/ml was present. 

However, although different amounts of mIL-10 were detected in the cultures of 

LL-pTmIL10- and LL-pTREX-treated LPS-stimulated BM-DCs, there was no 
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difference in their capacities to stimulate naive T cells. Therefore, another 

explanation might be that the presence of L. lactis partially inhibits the potential 

apoptosis inducing effects of IL-10 on BM-DCs. Alternatively, these L. lactis-treated 

BM-DCs could lead to increased induction of allogeneic T cell apoptosis. The latter 

explanation might also explain why LL-pTmIL10- and LL-pTREX-treated BM-DCs 

were equally effective in inhibiting the proliferation of naive allogeneic T cells in the 

presence of fully potent, mature stimulator DCs. This cannot be explained by the 

apoptosis-inducing effects of endogenous IL-10 from the regulator BM-DCs, as it has 

been reported that mature DCs down-regulate their expression of the IL-10 receptor 

and are thus unresponsive to IL-10 [210,242]. 

Recently, commensal LAB were combined with a gram-negative strain or simply LPS 

for the stimulation of human monocyte-derived DCs [422]. This resulted for all tested 

strains in a strong synergistic induction of IL-12 and TNF, and at least an additive 

effect on the up-regulation of co-stimulatory markers. It has also been shown that 

weak IL-12- and TNF-inducing LAB possess the capability to inhibit the IL-12 and 

TNF responses induced by otherwise strong IL-12- and TNF-inducing strains, as well 

as DC maturation [422]. Our work shows no synergistic effect of L. lactis-treatment 

on the expression of co-stimulatory molecules of LPS-stimulated BM-DCs. However, 

synergism was shown for IL-12p70 secretion when the BM-DCs were treated with the 

empty vector control, LL-pTREX, and LPS, and secretion of mIL-10 by L. lactis 

reduced this synergism. A similar effect on TNF was seen in some but not all 

experiments. This is a unique characteristic of LL-pTmIL10 as none of the 

commensal LAB tested by Zeuthen and co-workers showed this property in the 

presence of LPS [422]. Furthermore, the synergistic effect of LPS and L. lactis on 

IL-12p70 secretion is reflected by up-regulated IL-12/IL-23p40 mRNA expression, 

which was indeed reduced in the presence of LL-pTmIL10 confirming its inhibitory 

effect on IL-12p70 secretion. In contrast, the IL-12p35 mRNA expression levels were 

similar in non-treated, LL-pTREX-treated and LL-pTmIL10-treated BM-DCs 

stimulated with LPS. This is consistent with the finding in human DCs that IL-12p35 

mRNA is not induced by the gram-positive TLR2 agonist, peptidoglycan [99]. It has 

been proposed that mucosal inflammation occurs as the consequence of aberrant 

IL-12 responses to constituents of the commensal microbial flora, which in turn 

induces a pathological Th1 response [409,423]. We suggest that in vivo 

administration of LL-pTmIL10 during inflammation might inhibit the stimulating effects 

of gut microflora on IL-12 secretion of DCs, which can lead to a reduced 

Th1-mediated inflammation.  
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However, it became clear with the discovery of IL-23 [9] that this cytokine rather than 

IL-12 drives chronic intestinal inflammation. Furthermore, in contrast to IL-12, IL-23 

activates CD4+ Th17 cells characterized by the production of IL-17, which have 

recently been shown to play an important role in colitis and several other 

autoimmune diseases [11,424,425]. Our study strongly indicates that BM-DCs 

stimulated with LPS in the presence of L. lactis indeed drive Th17 polarization 

through the induction of IL-23, which was clearly inhibited by the secretion of mIL-10 

by L. lactis. Expression of IL-23p19 mRNA transcripts was strongly induced when 

BM-DCs were stimulated with LPS in the presence of the gram-positive L. lactis 

bacteria, compared to LPS alone. This could be explained by previous indications 

that peptidoglycan is more potent than LPS at inducting IL-23p19 mRNA transcripts 

in DCs [98,99]. Interestingly, LL-pTmIL10-pretreated, LPS-stimulated BM-DCs 

showed a reduced induction of IL-12/IL-23p40 mRNA transcripts compared to 

LL-pTREX-pretreated LPS-stimulated BM-DCs. This result indicates that p40 might 

be a limiting factor in the formation of the IL-23 complex, which might lead to a 

reduced secretion of the cytokine. Reduced secretion of IL-23 would be in agreement 

with the differential capacity of LL-pTREX- or LL-pTmIL10-pretreated, LPS-stimulated 

BM-DCs to induce IL-17 within the CD4+ T cell population. 

During inflammation, LPS and stimuli from LAB probably influence maturation of 

intestinal DCs. This may lead to a synergistic induction of IL-23 and subsequent 

sustained Th17 polarization, comparable to our in vitro data showing synergistic 

effects of LL-pTREX and LPS on BM-DCs. We hypothesize that IL-10 secreted by 

LL-pTmIL10 can regulate this synergistic effect by reducing IL-23 secretion during 

intestinal inflammation, resulting in inhibition of otherwise sustained activation of 

Th17 cells. 

Despite its ability to induce Th17 cells in vitro, IL-23 does not seem to be required for 

initiation of Th17 differentiation in vivo, although it definitely plays a role in expanding 

and maintaining the Th17 population [13,113-115]. In addition to its effect on T cell 

responses, IL-23 also has potent effects on cells of the innate immune system, 

inducing the production of inflammatory cytokines, such as IL-1, IL-6 and TNF, by 

monocytes and macrophages [417,426]. Furthermore, IL-23 also induces secretion of 

IL-17 by non-T cells in an inflammatory environment [427]. Therefore it has been 

proposed that, independently of its effect on Th17 cell activation, IL-23 production in 

response to intestinal bacteria triggers a pro-inflammatory cytokine cascade that, if 

left unchecked, can lead to the development of chronic intestinal inflammation [427]. 
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Consequently, the proposed regulation of IL-23 by LL-pTmIL10 might lead to 

reduction of the innate pathology induced by this cytokine in vivo. 

During chronic inflammation, such as IBD, chemokines play a key role in the 

pathogenic infiltration of immune cells and the establishment of tissue destructive 

processes [428]. MCP-1, of the C-C chemokine family, plays a role in recruitment of 

monocytes to sites of injury and infection and also attracts a range of other cells, 

such as T cells, NK cells, basophils and neutrophils. The important role of MCP-1 

during intestinal inflammation has been demonstrated by the marked increase in its 

tissue levels in IBD patients [429-432]. Other reports also demonstrated increased 

MCP-1 mRNA or protein levels in mouse models of (chronic) colitis [433-436]. Our 

data showed that LL-pTmIL10-pretreatment of BM-DCs strongly inhibited 

LPS-induced MCP-1 secretion. As previous data showed that LL-pTmIL10 treatment 

of dextran sodium sulfate-induced murine colitis reduced both infiltration and 

epithelial damage, we suggest that the ability to reduce inflammation-induced MCP-1 

expression might be part of the therapeutic mechanism of LL-pTmIL10 [198,363]. 

In vivo, mIL-10 secreted by LL-pTmIL10 may also target other MCP-1-secreting cell 

types in the gastro-intestinal tract. Although monocytes and macrophages are 

thought to be the main source of MCP-1, secretion by non-immune cells has also 

been demonstrated in IBD [429,430,432]. In fact, a role for IL-10 in the reduction of 

MCP-1 secretion by IL-1β-stimulated intestinal epithelial cells has been demonstrated 

in an in vitro study [437].  

Of interest is that CCR2, the receptor for MCP-1, can be expressed on CD4+ T cells, 

which produce much larger amounts of IL-17 than CCR2- cells, indicating the 

preferential expression of CCR2 on Th17 cells [438]. These CCR2+ CD4+ T cells are 

considerably increased in the ileum of CD patients [439]. Thus, MCP-1 reduction 

during oral treatment of murine colitis with LL-pTmIL10 may reduce the accumulation 

of activated pathogenic CCR2+ CD4+ Th17 cells in the inflamed intestine, thereby 

contributing to the healing effect of LL-pTmIL10. 

To conclude, we demonstrate that LL-pTmIL10 can modulate functional properties of 

activated BM-DCs in the presence of LPS. We show that LL-pTmIL10 in the 

presence of LPS inhibited MCP-1 and IL-12p70 secretion by BM-DCs and also their 

ability to induce CD4+ Th17 cells. Furthermore our data indicate that LL-pTmIL10 in 

the presence of LPS could reduce the secretion of IL-23 by BM-DCs. Our combined 

data suggest that LL-pTmIL10 treatment during chronic colitis might lead to a 
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diminished promotion of CD4+ Th17 cells and a reduced accumulation of these 

pathogenic Th17 cells as well as other immune cells at the site of inflammation, 

which together contribute to the beneficial effects of LL-pTmIL10 administration.  
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Summary and Discussion 

DCs are a heterogeneous population of professional APCs. They originate from bone 

marrow-derived hematopoietic stem cells. These precursors seed the blood and give 

rise to immature DCs that form a network of sentinels in peripheral tissues, especially 

at sites of pathogen entry. Immature DCs screen the environment for antigen. They 

are specialized in antigen uptake and processing. After interaction with microbial 

products or other maturation stimuli such as inflammatory cytokines, immature DCs 

change their pattern of chemokine receptors and migrate to the draining lymphoid 

tissue. During this process, DCs down-regulate their antigen-acquisition machinery 

and up-regulate the cell surface expression of antigen-loaded MHC molecules and 

co-stimulatory molecules such as CD40, CD86 and CD80. Once in the lymphoid 

organs, the phenotypically mature DCs have the ability to initiate immune responses 

by presenting antigen to naive T cells. Cytokines or cell surface molecules expressed 

by the activating DCs influence the outcome of T cell priming into either tolerance or 

immunity and the emergence of T cells carrying a Th1, Th2 or Th17 phenotype or 

Treg cells. Factors that influence the expression of these DC-derived effector 

molecules and thus the outcome of an immune response are the DC subset, its 

activation status, the antigen encountered and the environmental conditions under 

which DCs are primed.  

The gastro-intestinal immune system has the important task to develop an immune 

response to invading pathogens while at the same time inducing tolerance against 

the normal microflora and food antigens. Different subsets of DCs are present in the 

intestinal mucosa, both at sites of antigen uptake and within inductive lymphoid 

tissue [440]. These intestinal DCs have unique functions when compared to DCs 

from non-mucosal sites and are thought to be critical in maintaining gut homeostasis 

[53,100,144,146,152]. IBD is a group of intestinal inflammatory diseases that can be 

subdivided in ulcerative colitis and Crohn’s disease based on clinical manifestations. 

Increasing evidence suggests that IBD is caused by a loss of tolerance against the 

normal microflora [164]. Given the important role of DCs in the maintenance of 

mucosal tolerance, DCs may play a role in IBD as well. Recent studies indeed 

suggest that activated DCs are central mediators in the initiation and possibly also 

perpetuation of the disease [175-178]. Therefore, manipulation of DCs may be an 

effective way to treat IBD.  

Previous studies demonstrated the therapeutic efficacy of L. lactis-delivered mIL-10 

and TFF in experimental murine models for IBD [198,318]. So far, hardly any data 
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exist on the precise mechanisms of these therapies . We hypothesized that intestinal 

DCs are attractive targets for L. lactis delivered effector proteins. The in vivo study of 

DC modulation however is complex due to the relative infrequency of DCs and the 

existence of different subsets. Alternatively, DCs can be generated in vitro from 

murine bone marrow cultures supplemented with GM-CSF and IL-4 [389,390]. These 

BM-DCs are often used to study DC functions as they can be reproducibly obtained 

at high purity and in large numbers from a small number of donors.  

In a first part of this work we investigated whether recombinant mTFF3 can directly 

regulate DC function by determining its effect on the maturation of BM-DCs. We 

purified in vitro generated CD11c+ BM-DCs and pretreated them with mTFF3. They 

were then stimulated overnight in the presence of LPS. Data were compared to 

control BM-DCs cultured in medium. The phenotype of the different BM-DC groups 

was determined by flow cytometry. In the absence of LPS, non-treated and 

mTFF3-treated BM-DCs expressed similar levels of co-stimulatory molecules. After 

LPS stimulation, mTFF3-treated BM-DCs up-regulated the expression of CD80, 

CD86, CD40 and MHC II, and the negative stimulator of T cells, PD-L1 to the levels 

expressed by control BM-DCs stimulated with LPS. These results indicate that 

mTFF3 treatment of BM-DCs does not alter their mature phenotype in response to 

LPS. Furthermore, as expected, LPS induced the secretion of pro-inflammatory 

cytokines and chemokines: IL-12p70, TNF, IL-6 and MCP-1, as well as of the 

anti-inflammatory cytokine IL-10. Pretreatment of BM-DCs with mTFF3 did not 

influence any of the secreted proteins. In addition, our data show that mTFF3 does 

not affect the capacity of LPS-stimulated DCs to activate allogeneic bead-purified 

CD4+ T cells. 

The biology of DCs in vivo is complex and different subtypes exist. Therefore, results 

from BM-DCs have to be evaluated carefully as it is unclear how closely this in vitro 

obtained population resembles its in vivo counterpart. Since mTFF3 is secreted 

mainly in the small and large intestines, it is possible that intestinal mucosal DCs are 

responsive to this peptide whereas DCs from other origins are not. To test this 

hypothesis we isolated mucosal DCs from PP and MLN and compared their 

responses to LPS with or without mTFF3 pretreatment. As a control, we used 

peripheral DCs isolated from spleen. We found that mTFF3 does not specifically 

target mucosal DCs. Following treatment with mTFF3 no differences could be 

detected between mucosal and splenic DCs with respect to LPS-mediated 

maturation, cytokine secretion and capacity to stimulate T cells. 
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TFF peptides were demonstrated to be present in the spleen and other lymphoid 

organs [259]. Our results suggest that these TFF peptides do not modulate immune 

functions through direct interaction with DCs but rather affect other cells of the 

immune system. A recent study compared immune cells isolated from wild-type and 

TFF2-deficient mice [303]. They demonstrated that after stimulation, TFF2-/- splenic 

T cells exhibited increased IL-2 and IL-4 secretion and an enhanced proliferative 

response compared to wild-type T cells. Thymocytes, on the other hand were 

unaffected by TFF2 deficiency. Furthermore, TFF2 deficiency did not affect splenic 

B cell proliferation. Thus mature T cells may be the major targets of TFF2 regulation 

in the spleen. However, each trefoil factor has its own properties so a possible effect 

of mTFF3 on T cells requires further investigation. Furthermore, Giraud et al reported 

that TFF2 can reduce LPS-induced NO expression in monocytes [310], which may 

lead to inhibition of immune cell recruitment. As this effect on monocytes has also 

been described only for TFF2, it is possible that the effect of TFF2 on DCs is different 

from what we show for mTFF3. 

Though we observed no direct modulation of DCs by purified recombinant mTFF3, it 

remains possible that in vivo mTFF3 regulates DC function through modulation of 

other cells. Crosstalk between epithelial cells and DCs is considered to be very 

important to regulate intestinal mucosal immunity [152,403]. It has been shown that 

TFF induces COX-2 expression in epithelial cells [318,319], leading to the secretion 

of prostaglandin PGE2 whose anti-inflammatory effects on DCs have been 

extensively documented [322-325] Thus, TFF peptides might serve as key players in 

the epithelial-immune signaling system. 

We found that recombinant mTFF3 does not influence LPS-induced DC maturation. 

However, it remains possible that mTFF3 can modulate DC maturation when the 

maturation stimulus is other than LPS. DCs determine the character of the immune 

response by secreting cytokines that drive the development of T cells into Th1, Th2, 

Th17 or Treg cells. PAMPs that stimulate different TLRs often induce distinct patterns 

of cytokines, thereby influencing T cell polarization [402]. Therefore it is plausible that 

mTFF3 can modulate the functions of DCs if these are stimulated by another PAMP 

(e.g. flagellin, zymosan, peptidoglycan). Furthermore, inflammatory mediators at the 

site of infection can also influence DC activation. Consequently, it is also possible 

that mTFF3 showed no effect in our experimental setup due to the absence of an 

appropriate microenvironment. Recent data from TFF2-/- stress the importance of the 

stimulus [303]. TFF2-/- macrophages secreted much higher levels of IL-6 than 

wild-type macrophages in response to IL-1R stimulation. On the other hand, wild-type 
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and TFF2-/- mice had very similar responses to LPS, suggesting that the 

hyperresponsiveness of TFF2 deficient mice was specific for IL-1β/IL-1R signaling 

pathways despite the fact that the IL-1R pathway shares many common adapters 

with the LPS/TLR4 pathway. 

In conclusion, our results in this first part demonstrate that recombinant mTFF3 does 

not influence LPS-induced DC maturation suggesting that mTFF3 does not affect 

immune responses on the level of DC functions directly. However, it remains possible 

that mTFF3 regulates DC maturation when other maturation stimuli or inflammatory 

mediators are present or that mTFF3 regulates immune function through modulation 

of other cells. 

In a second part of this work we focused on possible modulation of the immune 

system by genetically engineered L. lactis secreting mIL-10 (LL-pTmIL10). We 

hypothesized that IL-10 delivered via oral administration of recombinant L. lactis can 

modulate DC functions in response to microbial products, such as LPS, explaining 

partially the anti-inflammatory effect in murine models for IBD. We therefore studied 

the effect of LL-pTmIL10 on LPS-induced BM-DC function. In vitro derived 

CD11c+ BM-DCs were treated with LL-pTmIL10 or control L. lactis transformed with 

an empty vector (LL-pTREX). LPS was added to these BM-DCs after 5 hours. After 

overnight culturing the BM-DCs were analyzed and compared to untreated, 

rmIL-10-treated and LPS-stimulated BM-DCs. Figure 23 is an overview of the most 

important results. 

In the absence of LPS, both LL-pTmIL10 and LL-pTREX induced lower levels of 

MHC II and co-stimulatory molecules CD40, CD80 and CD86 compared to 

LPS-stimulated BM-DCs but expressed higher levels compared to rmIL-10 and 

non-treated control cells. This is in agreement with a recent study that demonstrated 

a generally lower induction of DC maturation by commensal LAB compared to LPS 

[422]. In addition, in our study, the level of the T cell inhibitory molecule PD-L1 

induced by LL-pTmIL10 or LL-pTREX was not different from the LPS-induced level. It 

has been shown that the expression of PD-L1 can inhibit T cell activation when 

co-stimulation is sub-optimal [126], suggesting that L. lactis induces an 

anti-inflammatory phenotype rather than a full mature phenotype as seen with LPS. 

Consistent with their phenotype, L. lactis-treated BM-DCs induced only weak T cell 

proliferation. As for the phenotype, no difference was found between LL-pTREX- and 

LL-pTmIL10-treated BM-DCs in their T cell proliferating capacity.  
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Figure 23 Summary of the effects in BM-DCs treated with LL-pTREX or LL-pTmIL10. 
Suggested mechanisms are indicated in italics 

Rather unexpected was the finding that LPS-stimulated BM-DCs pretreated with 

LL-pTmIL10 or LL-pTREX were reduced in their capacity to stimulate allogeneic 

T cells compared to LPS-stimulated BM-DCs. Chang and co-workers showed 

previously that exposure to exogenous IL-10 upon maturation with LPS severely 

impaired the capacity of DCs to promote naive CD4+ T cell proliferation [235]. This 

effect has been ascribed to a reduced DC lifespan caused by the IL-10 specific 

suppression of anti-apoptotic proteins that are induced during DC maturation. In 

addition, they also found endogenous IL-10 to act as a suicidal factor for DCs in an 

autocrine fashion [235]. In agreement with this study, our findings showed that 
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treatment with 10 ng/ml rmIL-10 completely abolished the ability of LPS-stimulated 

BM-DCs to activate naive allogeneic CD4+ T cells. We propose that the induction of 

apoptosis in mature DCs due to the presence of high concentrations of IL-10 might 

also explain the impaired capacity of LL-pTmIL10- or LL-pTREX-treated 

LPS-stimulated BM-DCs to promote T cell proliferation. Indeed, LL-pTREX treatment 

significantly up-regulated the expression of endogenous IL-10 in LPS-stimulated 

BM-DCs compared to untreated LPS-stimulated BM-DCs, whereas high 

concentrations of mIL-10 (2-5 ng/ml) were secreted by LL-pTmIL10 in the 

BM-DC cultures pretreated with this strain. However, in contrast to rmIL-10, L. lactis 

treatment of BM-DCs only partially prevented the LPS-induced T cell activating 

capacity and despite different concentrations of IL-10 in the LL-pTmIL10- and 

LL-pTREX-treated LPS-stimulated BM-DC cultures, we found no difference in their 

respective capacities to stimulate naive T cells. An explanation might be that the 

presence of L. lactis partially inhibits the apoptosis inducing effects of IL-10 on 

BM-DCs.  

Alternatively, L. lactis treatment of LPS-stimulated BM-DCs might reduce allogeneic 

T cell proliferation by the induction of T cell apoptosis. This might also explain our 

observation that LL-pTmIL10- and LL-pTREX-treated LPS-stimulated BM-DCs can 

act as regulators, effectively inhibiting the proliferation of naive allogeneic T cells in 

the presence of fully potent, mature stimulator DCs. This cannot be explained by 

induction of apoptosis in the mature DCs through secretion of endogenous IL-10 by 

the regulator BM-DCs, as it has been reported that mature DCs down-regulate their 

expression of the IL-10 receptor and are thus unresponsive to IL-10 [210,242].  

Clearly, additional experiments need to be performed to confirm or reject any of the 

previous theories. To investigate the possibility that IL-10 induced DC apoptosis 

causes the reduced T cell activating capacity of LPS-stimulated BM-DCs after 

L. lactis treatment, we propose the addition of anti-IL-10 to the co-cultures of 

LL-pTREX or LL-pTmIL10 with BM-DCs. In addition, any inhibiting influence of 

L. lactis on the apoptosis inducing effects of IL-10 can be investigated by adding 

exogenous rmIL-10 during LL-pTREX treatment of BM-DCs. Furthermore, various 

tools exist to determine the induction of apoptosis in either BM-DC or T cell 

populations. 

Our data show a synergistic effect on IL-12p70 secretion when the BM-DCs were 

treated with LL-pTREX and LPS. This is in agreement with the study of Zeuthen et al 

that demonstrated a synergistic up-regulation of IL-12 and TNF in monocyte derived 

DCs when co-exposed to LAB and LPS [422]. However, the secretion of mIL-10 by 
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LL-pTmIL10 significantly reduced this synergistic induction of IL-12p70 by LPS and 

L. lactis. A similar effect on TNF was seen in some but not all experiments. This is a 

unique characteristic of LL-pTmIL10 as none of the commensal LAB tested by 

Zeuthen and co-workers showed this ability in the presence of LPS.  

IL-12 is a heterodimer formed by the subunits IL-12p35 and IL-12p40. The 

synergistic effect of LPS and L. lactis on IL-12p70 secretion is reflected by 

up-regulated IL-12p40 mRNA expression, which was indeed inhibited in the presence 

of LL-pTmIL10, confirming its inhibitory effect on IL-12p70 secretion. In contrast, the 

IL-12p35 mRNA expression levels of non-treated, LL-pTREX-treated or 

LL-pTmIL10-treated BM-DCs stimulated with LPS are similar. However, this is 

consistent with the finding in human DCs that IL-12p35 mRNA is not induced by the 

gram-positive TLR2 agonist, peptidoglycan [99]. The p40 subunit is also known to be 

part of the pro-inflammatory cytokine IL-23, which is produced by DCs upon microbial 

stimulation. Expression levels for IL-23p19 mRNA transcripts were highly induced 

when BM-DCs were stimulated with LPS in the presence of the gram-positive 

L. lactis bacteria, compared to LPS alone. This could be explained by previous 

results indicating that peptidoglycan is more potent than LPS at the induction of 

IL-23p19 mRNA transcripts in DCs [98,99]. However, the reduced induction of 

IL-12/IL-23p40 mRNA transcripts in LL-pTmIL10-pretreated LPS-stimulated BM-DCs 

compared to LL-pTREX-pretreated LPS-stimulated BM-DCs, suggests that p40 might 

be a limiting factor in the formation of the IL-23 complex, which might lead to a 

reduced secretion of this cytokine.  

A recent study showed that IL-23 supports the proliferation of a new subset of IL-17 

producing T helper cells called Th17 [441] and several reports suggest that IL-23 

driven IL-17 is important in the pathogenesis of IBD [427,442-448]. Our results 

strongly suggest that BM-DCs stimulated with LPS in the presence of L. lactis drive 

Th17 polarization, whereas the secretion of mIL-10 by L. lactis clearly inhibits this 

effect. Reduced secretion of IL-23 would be in agreement with this differential 

capacity of LL-pTREX- or LL-pTmIL10-pretreated LPS-stimulated BM-DCs to induce 

IL-17 within the CD4+ T cell population.  

During chronic inflammation, invading bacteria and microbial components like LPS 

will activate mucosal DCs, causing aberrant responses to constituents of the 

commensal microbial flora [409,423]. Our results suggest that administration of 

LL-pTmIL10 during inflammation might inhibit the synergistic effects of the gut 

microflora on IL-12p70 secretion by DCs, which might in turn lead to a reduced 

Th1-mediated inflammation. However with the discovery of IL-23, it became clear 
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that this cytokine rather than IL-12 drives chronic intestinal inflammation by inducing 

pathogenic Th17 responses. Our results allow us to hypothesize that IL-10 secreted 

by LL-pTmIL10 might also be able to down-regulate the synergistic effect of LPS and 

commensal LAB on IL-23 secretion during intestinal inflammation resulting in the 

inhibition of otherwise sustained Th17 activation. 

In addition to its effect on T cell responses, IL-23 has also potent effects on cells of 

the innate immune system, inducing the production of inflammatory cytokines, such 

as IL-1, IL-6 and TNF, by monocytes and macrophages [417,426]. Furthermore, an 

in vivo study by Hue and co-workers indicates that IL-23, produced in response to 

intestinal bacteria, also induces the secretion of IL-17 by non-T cells, including 

granulocytes and monocytes, in an inflammatory environment [427]. The 

down-regulation of microbial-induced IL-23 by LL-pTmIL10 may thus inhibit both 

innate and adaptive pro-inflammatory immune responses in vivo.  

However, despite its capacity to induce Th17 cells in vitro, IL-23 does not seem to be 

required for the initiation of Th17 differentiation in vivo, although there is definitely a 

role for this cytokine in expanding and maintaining the Th17 population [13,113-115]. 

Furthermore, as mucosal DCs have functional properties different from peripheral 

DCs, our in vitro demonstrated effects have to be carefully interpreted. However, a 

recent publication demonstrated the existence of an intestinal CD11b+ DC population 

that is proposed to be responsible for the differentiation of Th17 cells in vivo [449]. 

These DCs are suggested to produce pro-inflammatory cytokines (IL-6, IL-23…) in 

response to bacterial flora, which, in combination with TGFβ promote Th17 

responses.  

Another important LL-pTmIL10 specific effect we could demonstrate is the strong 

inhibition of LPS-induced secretion of the chemokine MCP-1 in BM-DCs. The 

important role for MCP-1 during intestinal inflammation has been demonstrated in 

several studies in which markedly increased tissue levels were found in IBD patients 

[429-432] or in animal models of chronic colitis [433-436]. The effective suppression 

of MCP-1 release from inflammatory cells might be a valuable means to decrease 

infiltration and ameliorate IBD. Previously obtained data showed that LL-pTmIL10 

treatment of DSS-induced murine colitis resulted in a reduction of both infiltration and 

epithelial damage [198]. The ability to reduce inflammation-induced MCP-1 

chemokine expression might thus be part of the mechanism that leads to the efficient 

healing of murine colitis by LL-pTmIL10. Although monocytes and macrophages are 

suggested to be the main source of MCP-1, secretion by epithelial cells [429,432], 

smooth muscle cells and endothelial cells has also been demonstrated in IBD 
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mucosa [430]. Furthermore, a role for IL-10 in the reduction of MCP-1 secretion by 

IL1β-stimulated IECs has been demonstrated in an in vitro study [437]. 

Consequently, mIL-10 secreted by LL-pTmIL10 may also target other MCP-1 

secreting cell types in the gastro-intestinal tract.  

Very interesting is the observation that CCR2, the receptor for MCP-1 is preferentially 

expressed on IL-17 producing T cells [438]. These CCR2+ CD4+ T cells are 

significantly increased in the ileum of Crohn’s disease patients [439]. Thus, MCP-1 

reduction during oral treatment of murine colitis with LL-pTmIL10 may lead to a 

reduced accumulation of the activated pathogenic CCR2+ CD4+ Th17 cells within the 

inflamed intestine, additionally contributing to the healing effect of LL-pTmIL10. 

To verify if our in vitro results can indeed be translated to the proposed in vivo effects 

that help explain the mechanism of LL-pTmIL10 treatment in murine models of colitis, 

additional experiments are required. Figure 24 summarizes possible future 

experiments that can be performed to confirm the influence of LL-pTmIL10 on 

DC modulation in vivo in an experimental model of chronic colitis. 

To conclude, our results in the second part of this study demonstrate that 

LL-pTmIL10 can modulate functional properties of activated BM-DCs in the presence 

of LPS. We show that LL-pTmIL10 in the presence of LPS inhibited MCP-1 secretion 

by BM-DCs and also their ability to induce CD4+ Th17 cells. In addition, we have data 

suggesting that LL-pTmIL10 in the presence of LPS could reduce the secretion of 

IL-23 by BM-DCs. Together our data suggest that LL-pTmIL10 treatment during 

chronic colitis might lead to a diminished promotion of CD4+ Th17 cells and a 

reduced accumulation of these pathogenic Th17 cells as well as other immune cells 

at the site of inflammation all contributing to the beneficial effects of LL-pTmIL10 

administration.  
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Figure 24 Overview of in vivo experiments.  
First, mRNA expression levels of MCP-1, IL-12/IL-23p40 and IL-17 could be determined in 
colonic tissue of mock-treated, LL-pTREX-treated and LL-pTmIL10-treated mice. In addition, 
intestinal dendritic cells from these 3 groups could be isolated from the lamina propria and 
MLN. The cytokine secretion profile after ex vivo stimulation of these intestinal DCs could be 
compared to detect differences in MCP-1 and IL-12p70 levels between LL-pTmIL10-treated 
mice and the control groups. Furthermore, both T cell activating capacity of the intestinal DCs 
and the cytokine secretion profile of the activated T cells could be assessed and compared. 
The in vivo influence of intestinal DCs on T cells could also be assessed by directly studying 
the T cells isolated from MLN and spleen. We could determine the proliferative responses and 
the level of Th1, Th2 and Th17 cytokines after stimulating T cells derived from LL-pTmIL10-, 
LL-pTREX- and mock-treated mice with bacterial antigen. To define the importance of 
potential LL-pTmIL10-mediated effects on DCs, we could adoptively transfer intestinal DCs 
from LL-pTmIL10-treated mice into untreated mice with chronic colitis.  
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Samenvatting en Discussie 

Dendritische cellen (DC’s) vormen een heterogene populatie van zogenaamde 

professioneel antigeenpresenterende cellen (APC’s). Ze ontwikkelen zich vanuit de 

hematopoietische stamcellen van het beenmerg. Deze precursoren verspreiden zich 

via de bloedbaan naar de perifere weefsels waar ze zich ontwikkelen tot immature 

DC’s. In het bijzonder op plaatsen waar de gastheer in contact kan komen met 

ziektekiemen, zoals de huid, de slijmvliezen en de mucosa van de darm, vormen 

deze immature DC’s ware netwerken die de omgeving aftasten naar 

lichaamsvreemde antigenen. Ze maken dan ook deel uit van de eerste lijn van 

verdediging tegen binnendringende pathogenen. Nadat een immature DC in contact 

is gekomen met microbiële producten of andere ‘gevaarsignalen, zoals inflammatoire 

cytokines, ondergaat hij verschillende wijzigingen die leiden tot zijn maturatie. De 

expressie van chemokine receptoren wijzigt waardoor de DC zal migreren naar de 

drainerende lymfeknopen of de milt. Tegelijkertijd vermindert de DC zijn 

antigeenopname en verhoogt hij de expressie van MHC-antigeen complexen en 

costimulatorische moleculen zoals CD40, CD80 en CD86 aan het celoppervlak. Deze 

fenotypisch mature DC bezit nu de capaciteit om een immuunantwoord op te wekken 

door antigeen te presenteren aan naïeve T cellen. De interactie tussen de DC en een 

T cel kan resulteren in immuniteit, onder de vorm van Th1, Th2 of Th17 responsen, 

of tolerantie door het opwekken van T cel anergie, apoptose of de inductie van 

Treg cellen. Het resultaat wordt in sterke mate beïnvloed door de expressie van 

costimulatorische moleculen of andere oppervlakte eiwitten en cytokines door de DC. 

Factoren die de expressie van deze effectormoleculen beïnvloeden zijn het subtype 

en activatiestatus van de DC, het betrokken antigeen en ook de aanwezige signalen 

in de omgeving van de DC tijdens zijn maturatie. 

De gastro-intestinale mucosa vormt het grootste en meteen ook meest complexe 

onderdeel van het immuunstelsel. Door zijn continue interactie met de inhoud van het 

lumen heeft het de belangrijke taak om een onderscheid te maken tussen 

invaderende pathogene micro-organismen enerzijds en de steeds aanwezige 

normale microflora en voedselantigenen anderzijds. Terwijl tegen de 

eerstgenoemden een efficiënte immuunrespons vereist is om verdere verspreiding in 

de gastheer te voorkomen is het van groot belang dat tolerantie wordt opgewekt 

tegen de laatstgenoemde, onschadelijke groep antigenen. Hiervoor beschikt het 

intestinale immuunsysteem over gespecialiseerde immuuncellen en -organen [440]. 

Ook de intestinale DC’s hebben unieke functies in vergelijking met DC’s uit andere 
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perifere weefsels en vormen een belangrijke schakel in het onderhouden van de 

homeostase in de darm [53,100,144,146,152]. 

Inflammatoir darmlijden (IBD) is de algemene term voor een groep chronische 

ontstekingsziekten van de darm die aan de hand van klinische verschijnselen kunnen 

worden onderverdeeld in ulceratieve colitis en de ziekte van Crohn. Hoewel de 

precieze etiologie niet gekend is, vermoedt men dat naast genetische aanleg en 

omgevingsfactoren, een abnormale immuunreactie tegen de normale darmflora een 

belangrijke rol speelt in de oorzaak van IBD [164]. Zoals gezegd spelen DC’s een 

belangrijke rol in mucosale tolerantie en het is dan ook niet verwonderlijk dat een 

aantal recente studies suggereren dat geactiveerde DC’s cruciaal zijn bij het 

ontstaan en mogelijk ook het aandrijven van de inflammatie in IBD [175-178]. Hieruit 

kan besloten worden dat methodes om de activatie van DC’s te onderdrukken zinvol 

kunnen zijn in de behandeling van IBD. 

Lactococcus lactis is een niet-pathogene, niet-invasieve, niet-koloniserende 

gram-positieve melkzuurbacterie die voornamelijk gebruikt wordt voor de productie 

van gefermenteerde voeding. Steidler en medewerkers zijn de haalbaarheid 

nagegaan om via orale toediening van genetisch gewijzigde L. lactis, biologisch 

actieve, immuunmodulerende eiwitten af te leveren aan de mucosa [198,318,346]. 

Hierbij resulteerde intragastrische toediening van muis interleukine 10 (mIL-10) 

secreterende L. lactis in 50% reductie van inflammatie in natrium dextraan sulfaat 

(DSS) geïnduceerde chronische colitis. Bovendien verhinderde deze stam het 

ontstaan van spontane colitis in IL-10-/- muizen [198]. Daarnaast resulteerde 

dagelijkse intragastrische toediening van trefoil factor secreterende L. lactis in een 

beschermend en therapeutisch effect tegen DSS geïnduceerde acute colitis en in 

een verbetering van chronische geïnstalleerde colitis in IL-10-/- muizen [318]. Deze 

studies tonen, naast de mogelijkheid om L. lactis te gebruiken als leverancier van 

biologisch actieve eiwitten in de darm, ook de therapeutische efficiëntie van L. lactis 

aan in muismodellen voor IBD.  

Ondanks de aangetoonde efficiëntie van de door L. lactis afgeleverde 

effectormoleculen mIL-10 en trefoil peptiden, zijn er nauwelijks data over de precieze 

werking van deze therapieën. Door hun aanwezigheid in de darm en hun 

immuunmodulerende rol vormen intestinale DC’s een aantrekkelijk doelwit voor de 

door L. lactis aangeleverde therapeutische eiwitten. De in vivo studie van DC’s wordt 

echter bemoeilijkt door de heterogeniteit van deze cellen en hun relatief lage 

aantallen. Daarom hebben wij in deze studie gebruik gemaakt van in vitro 
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gegenereerde beenmerg DC’s (BM-DC’s). Door toevoegen van GM-CSF en IL-4 

kunnen op reproduceerbare wijze relatief grote aantallen DC’s gegenereerd worden 

uit beenmergculturen [389,390]. Bovendien kunnen deze cellen  op eenvoudige wijze 

sterk opgezuiverd worden. BM-DC’s vormen dus een waardig en veel gebruikt 

alternatief voor de studie van DC’s en hun functies.  

De trefoil factor familie (TFF) is een familie van protease resistente peptiden die 

abundant gesecreteerd worden door mucus producerende cellen van het 

gastro-intestinale stelsel. Deze TFF, bestaande uit het gastrische TFF1, TFF2 en 

intestinale TFF3, dragen bij tot de bescherming en het herstel van gastro-intestinaal 

epitheel bij schade [289,366,367]. De signaalwegen die bij deze processen 

betrokken zijn, zijn nog maar gedeeltelijk ontrafeld [450]. Er is ook reeds bewijs 

geleverd dat het toedienen van trefoil peptiden een helend effect heeft in 

proefdiermodellen voor intestinale inflammatie [318,373,374,393] maar er is nog 

geen diepgaand onderzoek verricht naar het mechanisme waarmee deze peptiden 

de inflammatoire processen in de darm onderdrukken. De succesvolle behandeling 

van Th1 gemedieerde colitis in IL-10-/- muizen met TFF secreterende L. lactis duidt 

op immuunmodulerende eigenschappen van de TFF naast hun functie in epitheliale 

restitutie [318]. Sommige recente publicaties wijzen ook sterk in de richting van een 

rol voor de TFF in immuunregulatie maar er werd nog geen directe invloed 

aangetoond [259,303,310,315,317,391].  

In een eerste deel van dit werk wilden we een mogelijke directe invloed van 

recombinant muis TFF3 (mTFF3) op de functionele capaciteiten van DC’s 

onderzoeken. Daarom hebben we het effect van mTFF3 op de door LPS 

geïnduceerde maturatie van BM-DC’s bepaald. Hiervoor werden CD11c+ BM-DC’s 

voorbehandeld met mTFF3 alvorens ze overnacht te stimuleren met LPS. Deze 

cellen werden vergeleken met controle BM-DC’s die niet werden voorbehandeld. Het 

fenotype van de BM-DC’s werd bepaald door middel van flow cytometrie. In de 

afwezigheid van LPS expresseerden onbehandelde en mTFF3 behandelde BM-DC’s 

gelijkaardig lage hoeveelheden aan costimulatorische moleculen. Na LPS stimulatie 

zagen we een sterk opgereguleerde expressie van CD80, CD86, CD40 en MHC II en 

van de negatieve stimulator van T cellen, PD-L1 op de mTFF3 behandelde BM-DC’s. 

De expressieniveaus verschilden bovendien niet van de LPS gestimuleerde controle 

BM-DC’s. Uit deze data konden we dus besluiten dat mTFF3 behandeling van 

BM-DC’s geen invloed heeft op de inductie van een matuur fenotype ten gevolge van 

LPS stimulatie. Zoals verwacht induceerde LPS ook de secretie van de 

pro-inflammatoire cytokines IL-12p70, TNF en IL-6, het chemokine MCP-1 evenals 
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van het anti-inflammatoire IL-10. Voorbehandeling van de BM-DC’s met mTFF3 had 

geen enkele invloed op de secretie van deze eiwitten. In overeenstemming met deze 

data bleek mTFF3 ook niet in staat om de T cel stimulerende capaciteit van LPS 

gestimuleerde BM-DC’s te wijzigen. 

Resultaten bekomen met BM-DC’s dienen steeds kritisch geëvalueerd te worden. 

Het is immers onduidelijk in welke mate deze in vitro populatie overeenstemt met de 

in vivo populatie die bestaat uit verschillende subtypes. Aangezien mTFF3 

voornamelijk in de dunne en dikke darm gesecreteerd wordt, leek het ons mogelijk 

dat intestinale DC’s responsief zijn voor dit peptide in tegenstelling tot DC’s van 

andere weefsels. Om die hypothese te testen isoleerden we mucosale DC’s uit de 

Peyerse platen (PP) en mesenteriale lymfeknopen (MLN) en vergeleken hun 

gevoeligheid aan LPS met en zonder mTFF3 voorbehandeling. Ons onderzoek 

toonde aan dat mTFF3 niet in staat is om specifiek mucosale DC’s te moduleren. Na 

stimulatie met LPS konden immers geen verschillen waargenomen worden tussen 

mTFF3 behandelde en onbehandelde mucosale DC’s op gebied van maturatie, 

cytokine secretie en capaciteit om allogene T cellen te stimuleren. Hetzelfde gold 

voor DC’s uit de milt die als bron van niet-mucosale DC’s werden gebruikt.  

Cook en medewerkers hebben de aanwezigheid van de TFF in de milt en andere 

lymfoide organen aangetoond [259]. Uit onze resultaten kunnen we concluderen dat 

TFF peptiden het immuunsysteem niet kunnen moduleren via rechtstreekse 

interactie met DC’s en dat hun aanwezigheid en functie in de immunologische 

organen dus op een andere manier verklaard moet worden. In een recente studie 

heeft men de immuuncellen van TFF2 deficiënte muizen vergeleken met deze van 

wild-type muizen [303]. Hierin werd aangetoond dat TFF2-/- T cellen uit de milt na 

stimulatie sterker prolifereerden en meer IL-2 en IL-4 secreteerden dan wild-type 

T cellen. Anderzijds kon geen verschil worden waargenomen tussen de thymocyten 

van beide muizen. Ook de proliferatie van B cellen uit de milt was niet aangetast in 

TFF2 deficiënte muizen. Hieruit kan worden besloten dat mature T cellen het 

voornaamste doelwit vormen voor TFF2 regulatie in de milt. Elk TFF peptide heeft 

echter zijn eigen karakteristieken en individuele functies en het effect van mTFF3 op 

T cellen dient nog onderzocht te worden. In een andere studie toonden Giraud en 

medewerkers aan dat TFF2 in staat is om LPS geïnduceerde NO productie in 

monocyten te onderdrukken [310] wat kan leiden tot een verminderde aantrekking 

van immuuncellen. Ook dit effect op monocyten werd enkel voor TFF2 waargenomen 

waardoor het aannemelijk lijkt dat de effecten van TFF2 op het immuunsysteem, en 

DC’s in het bijzonder, verschillend zijn van wat we hier besluiten voor mTFF3.  



Samenvatting en discussie 

 129

Hoewel wij geen directe modulatie van DC’s konden aantonen met gezuiverd 

recombinant mTFF3 blijft het nog steeds mogelijk dat mTFF3 onrechtstreeks in staat 

is om de activatie van DC’s te reguleren door een modulerende invloed op andere 

cellen uit te oefenen. Zo wordt communicatie van het epitheel naar de onderliggende 

DC’s beschouwd als een belangrijk onderdeel van mucosale immuniteit [152,403]. 

Wij konden, net als in eerdere studies, TFF geïnduceerde COX-2 expressie 

aantonen in intestinale epitheelcellen [318,319,451]. Dit leidt o.a. tot de secretie van 

PGE2 waarvan de anti-inflammatoire effecten op DC’s reeds uitvoerig werden 

beschreven [322-325]. TFF peptiden zouden langs deze weg dus een belangrijke rol 

kunnen spelen in de signalisatie van het epitheel naar het immuunsysteem. 

We hebben aangetoond dat recombinant mTFF3 niet in staat is om LPS 

geïnduceerde maturatie van DC’s te beïnvloeden. Het is dus wel nog mogelijk dat 

mTFF3 de maturatie van DC’s onder invloed van een andere stimulus dan LPS kan 

onderdrukken. Zoals eerder aangehaald beïnvloeden de DC’s het type 

immuunrespons o.a. door polariserende cytokines te secreteren die de ontwikkeling 

van naïeve T cellen naar Th1, Th2, Th17 of Treg cellen sturen. Het cytokinepatroon 

van de DC’s wordt onder andere bepaald door de pathogeen geassocieerde 

moleculaire patronen (PAMP’s) die via ‘Toll-like’ receptoren (TLR’s) de DC 

stimuleren [402]. Het is dus goed mogelijk dat mTFF3 in staat is om de functies van 

DC’s te moduleren indien deze worden aangedreven door een ander PAMP (bvb. 

zymosan, peptidoglycaan of flagelline). Bovendien kunnen DC’s tijdens een infectie 

additioneel beïnvloed worden door de aanwezige inflammatoire moleculen. Het is 

dus ook mogelijk dat wij geen mTFF3 gemedieerde effecten waargenomen hebben 

door de afwezigheid van een gepaste micro-omgeving. Het belang van de juiste 

stimulus werd nog eens onderstreept in de recente studie van TFF2-/- muizen [303]. 

TFF2 deficiënte macrofagen bleken na stimulatie van de IL-1 receptor (IL-1R) 

significant hogere hoeveelheden IL-6 te produceren dan wild-type macrofagen. 

Anderzijds vertoonden deze macrofagen wel gelijkaardige reacties na LPS stimulatie 

wat wijst op een IL-1β/IL-1R specifieke hyperresponsiviteit in TFF2 deficiënte muizen 

en dit ondanks het feit dat de IL-1R signaalweg veel adaptor-moleculen deelt met de 

LPS/TLR4 signaalweg. 

Uit dit alles hebben wij besloten dat recombinant mTFF3 niet in staat is om de LPS 

geïnduceerde maturatie van DC’s te onderdrukken, wat suggereert dat mTFF3 zijn 

invloed op het immuunsysteem niet uitoefent via directe modulatie van de DC’s. 

Niettegenstaande bestaat de mogelijkheid dat mTFF3 de maturatie van DC’s 

reguleert in de aanwezigheid van een andere maturatiestimulus of van inflammatoire 
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moleculen of dat mTFF3 immuunantwoorden reguleert door het beïnvloeden van 

andere cellen. 

In het tweede deel van dit werk wilden we de mogelijke invloed van de mIL-10 

secreterende genetisch gewijzigde L. lactis stam (LL-pTmIL10) op het 

immuunsysteem nagaan. Een belangrijke fysiologische functie van IL-10 is het 

onderdrukken van de expressie van cytokines en andere gesecreteerde moleculen of 

oppervlakte-eiwitten door DC’s. Dit heeft een verminderde capaciteit van deze DC’s 

om het immuunsysteem te activeren tot gevolg, waardoor aan IL-10 een 

ontstekingsremmende werking kan worden toegeschreven 

[121,122,125,235,245,401]. Wij hebben de hypothese gesteld dat lokale aflevering 

van IL-10 in de darm door recombinant L. lactis een regulerende invloed kan 

uitoefenen op de activatie van intestinale DC’s door microbiële producten, zoals LPS, 

wat een gedeeltelijke verklaring zou kunnen zijn voor de vastgestelde onderdrukte 

inflammatie in de muismodellen voor IBD. Om deze mogelijkheid te onderzoeken zijn 

we het effect van LL-pTmIL10 op de functie van LPS gestimuleerde BM-DC’s 

nagegaan. In vitro gegenereerde CD11c+ BM-DC’s werden gedurende 5 uur 

voorbehandeld met LL-pTmIL10 of de controlestam LL-pTREX - dit is L. lactis 

getransformeerd met de uitgangsvector - en vervolgens al dan niet gestimuleerd met 

LPS. Na overnacht cultuur werden deze BM-DC’s geoogst en vergeleken met 

onbehandelde, recombinant mIL-10 (rmIL-10) behandelde en LPS gestimuleerde 

BM-DC’s. Een overzicht van de belangrijkste resultaten is weergegeven in 

Schema 1. 

Zowel LL-pTmIL10 als LL-pTREX induceerden lagere niveaus van MHC II en 

costimulatorische moleculen CD40, CD80 en CD86 in BM-DC’s vergeleken met LPS 

gestimuleerde BM-DC’s maar expresseerden meer van deze oppervlaktemoleculen 

dan onbehandelde of rmIL-10 behandelde BM-DC’s. Deze resultaten zijn in 

overeenstemming met een recente studie die voor verschillende commensale 

melkzuurbacteriën een lagere inductie van DC maturatie aantoonde in vergelijking 

met LPS [422]. Wij stelden verder ook vast dat het door LL-pTREX of LL-pTmIL10 

geïnduceerde expressieniveau van PD-L1 niet verschilde van het door LPS 

geïnduceerde niveau. Expressie van deze T cel inhiberende molecule door DC’s in 

combinatie met suboptimale expressie van costimulatorische moleculen, kan 

activatie van T cellen verhinderen [126]. Onze resultaten suggereren bijgevolg dat 

L. lactis een anti-inflammatoir fenotype induceert in vergelijking met het mature 

fenotype van met LPS geactiveerde BM-DC’s. In overeenstemming hiermee 

induceerden de met L. lactis behandelde BM-DC’s slechts een zwakke T cel 
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proliferatie. Net als voor het fenotype was er hierbij geen verschil tussen de T cel 

inducerende capaciteit van LL-pTREX en LL-pTmIL10 behandelde BM-DC’s. 

 

 

Schema 1 Overzicht van LL-pTREX en LL-pTmIL10 geïnduceerde effecten in BM-DC’s. 
Hypothetisch mogelijke mechanismen staan schuingedrukt. 

Eerder onverwacht was de vaststelling dat de met LPS gestimuleerde BM-DC’s die 

voorbehandeld waren met LL-pTREX of LL-pTmIL10 een gereduceerde capaciteit 

vertoonden om allogene T cellen te stimuleren ten opzichte van onbehandelde met 

LPS gestimuleerde BM-DC’s. Dit kon niet worden afgeleid van hun fenotype, dat 

gelijkaardig was aan dat van de onbehandelde met LPS gestimuleerde BM-DC’s. 

Chang en medewerkers hebben eerder aangetoond dat DC’s die tijdens de maturatie 
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met LPS aan exogeen IL-10 werden blootgesteld een sterk gereduceerde capaciteit 

vertoonden om naïeve CD4+ T cel proliferatie te induceren zonder evenwel de door 

LPS geïnduceerde fenotypische maturatie te onderdrukken [235]. Dit effect werd 

toegeschreven aan de IL-10 gemedieerde suppressie van anti-apoptotische eiwitten 

waardoor de mature DC’s sneller in apoptose treden. In dezelfde studie werd ook 

aangetoond dat de aanwezigheid van endogeen IL-10 op autocriene wijze een 

gelijkaardige invloed uitoefent op maturerende DC’s. In overeenstemming met deze 

studie konden ook wij aantonen dat LPS gestimuleerde BM-DC’s behandeld met 

10 ng/ml rmIL-10 een sterk gereduceerde capaciteit vertoonden om naïeve allogene 

CD4+ T cellen te stimuleren. De inductie van apoptose in mature DC’s door de 

aanwezigheid van IL-10 zou ook een verklaring kunnen zijn voor de waarneming dat 

LPS gestimuleerde BM-DC’s voorbehandeld met LL-pTREX of LL-pTmIL10 een de 

verminderde T cel activerende capaciteit vertoonden. LL-pTREX behandeling zorgde 

immers voor een significante verhoging van de endogene IL-10 expressie in LPS 

gestimuleerde BM-DC’s vergeleken met onbehandelde door LPS gestimuleerde 

BM-DC’s. Anderzijds zorgde voorbehandeling van de BM-DC’s met LL-pTmIL10 voor 

de aanwezigheid van hoge concentraties exogeen IL-10 (2-5 ng/ml) tijdens 

LPS stimulatie. In deze co-cultuur kon de hoeveelheid endogeen IL-10 bijgevolg niet 

exact bepaald worden. In tegenstelling tot rmIL-10 reduceerde de voorbehandeling 

met LL-pTREX of LL-pTmIL10 slechts gedeeltelijk de T cel activerende capaciteit van 

LPS gestimuleerde BM-DC’s. Dit zou te maken kunnen hebben met het verschil aan 

IL-10 concentraties aanwezig tijdens LPS maturatie: rmIL-10 was aanwezig aan 

10 ng/ml, LL-pTmIL10 secreteerde 2-5 ng/ml en in de aanwezigheid van LL-pTREX 

kon + 1 ng/ml endogeen IL-10 worden gedetecteerd. Ondanks de verschillende 

hoeveelheden IL-10 werd echter geen verschil waargenomen in T cel stimulerende 

capaciteit van LL-pTREX of LL-pTmIL10 behandelde LPS gestimuleerde BM-DC’s. 

Een alternatieve verklaring zou daarom kunnen zijn dat de aanwezigheid van L. lactis 

het apoptose inducerend effect van IL-10 op DC’s gedeeltelijk onderdrukt.  

Een andere mogelijke verklaring voor de gereduceerde T cel activerende capaciteit 

van de met L. lactis behandelde, LPS gestimuleerde BM-DC’s is dat deze BM-DC’s 

in staat zijn om apoptose te induceren in de T cel populatie. Dit zou bovendien ook 

de efficiëntie verklaren waarmee zowel LL-pTREX als LL-pTmIL10 behandelde, LPS 

gestimuleerde BM-DC’s optreden als regulators en de proliferatie van naïeve 

allogene T cellen in aanwezigheid van mature, potente stimulator DC’s, kunnen 

onderdrukken. Dit fenomeen kan immers niet uitgelegd worden aan de hand van 

apoptose inductie in de stimulator DC’s door endogene IL-10 productie van de 
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regulator populatie, aangezien beschreven werd dat in mature DC’s de expressie van 

de IL-10 receptor onderdrukt wordt waardoor deze ongevoelig zijn voor IL-10 

[210,242]. 

Bovenstaande theorieën vragen uiteraard bijkomend onderzoek. Om de rol van 

endogeen en exogeen IL-10 te onderzoeken, kan een blokkerend anti-IL-10 

antilichaam worden toegevoegd aan de co-culturen van BM-DC’s met LL-pTREX of 

LL-pTmIL10. De eventuele inhiberende invloed van L. lactis op de apoptose 

inducerende werking van IL-10 kan onderzocht worden door exogeen rmIL-10 toe te 

voegen tijdens LL-pTREX behandeling van BM-DC’s. Tenslotte bestaan er 

verscheidene mogelijkheden om de inductie van apoptose rechtstreeks aan te tonen 

in de BM-DC’s of in de T cel populatie. 

Zeuthen en medewerkers hebben recent aangetoond dat er een groot verschil is in 

de capaciteit van verschillende melkzuurbacteriën om TNF en IL-12 secretie te 

induceren in humane, uit monocyten ontwikkelde DC’s. Niettegenstaande deze 

species-specifieke verschillen stelden zij vast dat beide cytokines steeds 

synergistisch werden opgereguleerd wanneer additioneel LPS werd toegevoegd 

[422]. In overeenstemming hiermee stelden ook wij een synergisme vast in de 

secretie van IL-12p70 wanneer de BM-DC’s werden gestimuleerd met LPS in de 

aanwezigheid van LL-pTREX. Secretie van mIL-10 door LL-pTmIL10 bleek evenwel 

in staat om deze synergistische inductie van IL-12p70 te reduceren. Een algemeen 

beschreven oorzaak van mucosale inflammatie is een aberrante respons gericht 

tegen de commensale microflora en IL-12 productie door APC’s is daarbij een 

belangrijke factor door het induceren van pathologische Th1 responsen [409,423]. 

We suggereren aan de hand van onze data dat orale toediening van LL-pTmIL10 

tijdens inflammatie het stimulerend effect van de microflora op IL-12 secretie kan 

reduceren wat op zijn beurt zou kunnen leiden tot een verminderde Th1 gemedieerde 

inflammatie. 

IL-12p70 is een heterodimeer cytokine, bestaande uit de subunits IL-12p35 en 

IL-12p40. De p40 subunit van IL-12 maakt ook deel uit van een ander 

pro-inflammatoir cytokine, het heterodimere IL-23 [9]. Dit cytokine wordt eveneens 

door DC’s tot expressie gebracht na contact met microbiële producten [9,452]. Om 

na te gaan of de gereduceerde expressie van IL-12p70 in LL-pTmIL10 behandelde 

BM-DC’s ook een verschil in IL-23 expressie impliceert, zijn we het effect van 

LL-pTmIL10 op de mRNA expressie van de subunits IL-12p35, IL-12/IL-23p40 en 

IL-23p19 nagegaan na LPS stimulatie. Zowel het synergistische effect van LPS en 

L. lactis op IL-12p70 secretie als de inhibitie hiervan in aanwezigheid van 
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LL-pTmIL10 werden weerspiegeld in de mRNA expressieniveaus van IL-12/IL-23p40. 

Daarentegen waren de IL-12p35 mRNA expressieniveaus van onbehandelde, 

LL-pTREX behandelde en LL-pTmIL10 behandelde BM-DC’s gestimuleerd met LPS, 

gelijkaardig. Dit is in overeenstemming met een eerdere studie in humane DC’s 

waarin, in tegenstelling tot LPS, het gram-positieve TLR2 ligand peptidoglycaan niet 

in staat bleek om IL-12p35 mRNA expressie te induceren [99]. In vergelijking met 

LPS inductie bleek het mRNA expressieniveau van de IL-23p19 subunit sterk 

geïnduceerd te worden door de gram-positieve L. lactis bacterie in de 

LPS gestimuleerde BM-DC’s. Dit is ook in overeenstemming met eerdere studies in 

DC’s die aantoonden dat peptidoglycaan een sterkere capaciteit heeft dan LPS om 

IL-23p19 mRNA te induceren [98,99]. Zoals reeds gezegd resulteert LL-pTmIL10 

voorbehandeling van LPS gestimuleerde BM-DC’s wel in een sterk verminderde 

inductie van IL-12/IL-23p40 mRNA transcripten in vergelijking met LL-pTREX 

voorbehandeling. Dit suggereert dat in de LL-pTmIL10 behandelde BM-DC’s de p40 

subunit een limiterende factor vormt in de vorming van het IL-23 complex, wat dus 

een gereduceerde secretie van dit cytokine zou kunnen veroorzaken. 

IL-23 ondersteunt de proliferatie van een nieuwe subset IL-17 producerende T helper 

cellen, de Th17 cellen [441] en verscheidene studies toonden reeds het belang aan 

van IL-23/IL-17 gemedieerde inflammatie in de pathogenese van IBD 

[427,442-444,446,448]. Uit onze resultaten bleek dat BM-DC’s gestimuleerd met LPS 

in aanwezigheid van L. lactis, T cellen aanzetten tot de productie van IL-17. Secretie 

van mIL-10 door LL-pTmIL10 bleek evenwel een onderdrukkend effect te hebben op 

deze Th17 polariserende capaciteit. Verminderde secretie van IL-23 door deze 

LL-pTmIL10 behandelde BM-DC’s vergeleken met de LL-pTREX behandelde 

BM-DC’s zou een verklaring kunnen zijn voor dit fenomeen.  

Een drijvende factor tijdens inflammatie is de activatie van intestinale DC’s door 

zowel gram-negatieve LPS als gram-positieve microbiële stimuli. Vermoedelijk, en 

vergelijkbaar met onze in vitro data waarbij we synergistische effecten van 

LL-pTREX en LPS op BM-DC’s waarnamen, leidt dit o.a. tot een synergistische 

inductie van IL-23, die op zijn beurt kan zorgen voor sterke Th17 polarisatie. Uit onze 

data menen wij te kunnen veronderstellen dat LL-pTmIL10 in staat is om deze 

synergistische inductie van IL-23 te onderdrukken, resulterend in een verminderde 

Th17 gemedieerde pathologie. 

IL-23 heeft naast zijn effect op T cellen ook sterke effecten op cellen van het 

aangeboren immuunsysteem. Zo induceert het de productie van pro-inflammatoire 

cytokines zoals IL-1, IL-6 en TNF in macrofagen en monocyten [417,426]. De in vivo 
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studie van Hue en medewerkers toonde bovendien aan dat tijdens inflammatie het 

door intestinale bacteriën geïnduceerde IL-23 onder andere ook granulocyten en 

monocyten aanzet tot de productie van IL-17. De onderdrukking van 

microbieel geïnduceerd IL-23 door LL-pTmIL10 zou dus naast de T cel gemedieerde 

ook aangeboren pro-inflammatoire immuunresponsen kunnen inhiberen.  

Uit onze data konden we verder ook besluiten dat LL-pTmIL10 in staat is om de LPS 

geïnduceerde secretie van het chemokine MCP-1 in BM-DC’s te onderdrukken. IBD 

wordt gekarakteriseerd door een continue infiltratie van de ontstoken weefsels door 

inflammatoire cellen uit de circulatie en chemokines spelen in dit proces een 

belangrijke rol [428]. Verscheidene studies beschrijven een verhoogde expressie van 

MCP-1 in geïnflammeerd weefsel van IBD patiënten [429-432] en in 

proefdiermodellen van chronische colitis [433-436], wat erop wijst dat de 

onderdrukking van MCP-1 secretie door inflammatoire cellen een efficiënte manier 

zou kunnen zijn om infiltratie te verminderen en IBD te verbeteren. De behandeling 

van chronische colitis met LL-pTmIL10 resulteerde naast een vermindering van de 

epitheliale schade ook in een verminderde infiltratie van inflammatoire cellen [198]. 

De eigenschap van LL-pTmIL10 om inflammatie geïnduceerde secretie van MCP-1 

te onderdrukken zou dus deel kunnen uitmaken van het mechanisme dat leidt tot de 

genezing van colitis. Monocyten en macrofagen vormen de belangrijkste bron van 

MCP-1. Daarnaast werd echter ook expressie van dit chemokine door epitheelcellen, 

gladde spiercellen en endotheelcellen in IBD mucosa aangetoond [429,430,432]. In 

een in vitro studie in intestinale epitheelcellen demonstreerde men bovendien een rol 

voor IL-10 in de onderdrukking van IL-1β geïnduceerde MCP-1 secretie [437]. Naast 

DC’s zouden bijgevolg ook andere MCP-1 secretende cellen in de darm het doelwit 

kunnen zijn van het door LL-pTmIL10 gesecreteerde mIL-10.  

Een interessante waarneming is de preferentiële expressie van CCR2, de receptor 

voor MCP-1, op IL-17 producerende T cellen [438]. In het ileum van Crohn patiënten 

werd bovendien een significante toename van deze CCR2+ CD4+ T cellen 

vastgesteld [439]. Bijgevolg zou een daling van MCP-1 tijdens de orale behandeling 

met LL-pTmIL10 ook kunnen leiden tot een verminderde accumulatie van 

geactiveerde pathogene CCR2+ CD4+ Th17 cellen in de geïnflammeerde darm wat 

additioneel zou kunnen bijdragen aan het genezend effect van deze stam. 

We moeten ons wel bewust blijven van het feit dat onze in vitro bekomen data niet 

noodzakelijk overeenstemmen met de in vivo situatie. Zo werd onlangs aangetoond 

dat IL-23, ondanks zijn in vitro capaciteit om Th17 cellen te induceren, niet cruciaal is 
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voor de in vivo differentiatie van deze populatie [113-115]. Ook moeten we rekening 

houden met het bestaan van gespecialiseerde mucosale DC’s wiens functionele 

capaciteiten kunnen verschillen van perifere en dus ook van in vitro gegenereerde 

DC’s. Om na te gaan of LL-pTmIL10 ook in vivo in staat is om de functies van DC’s 

te moduleren en of dit bijdraagt tot de therapeutische effecten van deze stam in 

muismodellen voor chronische colitis, zijn bijkomende experimenten noodzakelijk. 
Schema 2 is een overzicht van mogelijke in vivo experimenten die hierover uitsluitsel 

kunnen geven. 

Samenvattend hebben wij in het tweede deel van dit werk aangetoond dat 

LL-pTmIL10 een modulerend effect kan uitoefenen op de functionele karakteristieken 

van LPS geactiveerde BM-DC’s. In de aanwezigheid van LPS inhibeert LL-pTmIL10 

de secretie van MCP-1 door BM-DC’s en hun capaciteit om CD4+ Th17 cellen te 

induceren. In een bredere zin suggereren onze data bijgevolg dat LL-pTmIL10 

behandeling tijdens chronische colitis zou kunnen leiden tot een verminderde 

ontwikkeling van IL-17 producerende CD4+ T cellen en een verminderde accumulatie 

van deze pathogene Th17 cellen en andere immuuncellen in het geïnflammeerde 

weefsel wat collectief zou kunnen bijdragen tot de gunstige effecten van LL-pTmIL10 

therapie. 
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Schema 2 Mogelijke in vivo experimenten.  
In een muismodel voor chronische colitis kunnen colonweefsels geïsoleerd worden van mock, 
LL-pTREX of LL-pTmIL10 behandelde muizen. De mRNA expressieniveaus van MCP-1 maar 
ook van IL-12/IL-23p40 en IL-17 kunnen dan worden vergeleken tussen de verschillende 
groepen. Daarnaast kunnen we van deze 3 groepen ook de DC’s uit de lamina propria en 
mesenteriale lymfeknopen isoleren voor verdere studie. Het cytokine profiel na ex vivo 
stimulatie zou kunnen worden vergeleken om verschillen te detecteren in MCP-1 en IL-12p70 
secretie tussen de DC’s van LL-pTmIL10 behandelde muizen en de 2 controle groepen. 
Daarnaast kunnen deze DC’s ook getest worden op hun T cel activerende capaciteit en kan 
worden gekeken naar cytokine secretie van de geactiveerde T cellen. Een indicatie voor de 
invloed van de intestinale DC’s op T cellen in vivo kan eventueel ook worden nagegaan door 
het analyseren van T cellen geïsoleerd uit de verschillend behandelde muizen. We denken 
hierbij aan een vergelijking van de proliferatieve respons en de secretie van Th1, Th2 of Th17 
cytokines na stimuleren met bacterieel antigeen. Om het belang van mogelijke LL-pTmIL10 
gemedieerde effecten op DC’s te bepalen, kan tenslotte overgegaan worden tot een 
adoptieve transfer van intestinale DC’s uit LL-pTmIL10 behandelde muizen naar muizen met 
chronische colitis. 

 

Induceren van chronische colitis in muizen

Behandeling met LL-pTmIL10, LL-pTREX of mock

Colon weefsel Intestinale DC’s T cellen
Histologie

Vergelijk mRNA niveaus:

•MCP-1

•IL-12/IL-23p40

•IL-17

Vergelijk:

•In situ cytokine secretie 
(MCP-1, IL-12p70)

•Apoptotische cellen 
(TUNEL-assay)

•T cel activerende capaciteit
(MLR)

•T cel polarizatie (Th17)

Adoptieve transfer:

•Voorkomen/genezen
colitis?

Vergelijk:

•In situ cytokine secretie
(IL-17, IFNγ,…)

•Bacterieel antigeen 
geïnduceerde proliferatie

•Apoptotische cellen 
(TUNEL-assay)

Induceren van chronische colitis in muizen

Behandeling met LL-pTmIL10, LL-pTREX of mock

Colon weefsel Intestinale DC’s T cellen
Histologie

Vergelijk mRNA niveaus:

•MCP-1

•IL-12/IL-23p40

•IL-17

Vergelijk:

•In situ cytokine secretie 
(MCP-1, IL-12p70)

•Apoptotische cellen 
(TUNEL-assay)

•T cel activerende capaciteit
(MLR)

•T cel polarizatie (Th17)

Adoptieve transfer:

•Voorkomen/genezen
colitis?

Vergelijk:

•In situ cytokine secretie
(IL-17, IFNγ,…)

•Bacterieel antigeen 
geïnduceerde proliferatie

•Apoptotische cellen 
(TUNEL-assay)
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