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Summary 

Essential fatty acids (EFA) are important components of membranes. During pregnancy, 

neonatal needs for EFA are high because a lot of new tissue is being formed (chapter 1). 

In the first experimental part we focused on the nutrient intake during pregnancy. In 

chapter 2 we adapted and validated an existing food frequency questionnaire (FFQ), 

specifically designed to collect data on fat consumption. The relative validity of the FFQ 

was assessed by comparing the estimated fat intake with that obtained from the seven day 

estimated record. It was concluded that the FFQ is an appropriate method for classifying 

individuals to the right part of the distribution of dietary fat intake. In chapter 3 we 

evaluated the maternal dietary intake of macronutrients and micronutrients of our study 

population by comparing them with the dietary recommendations for pregnant women. We 

advise pregnant women to increase the intake of milk and milk products to obtain an 

adequate supply of calcium, vitamin B2 and vitamin D. At the same time they should 

decrease intake of sauces, fats and oils, cookies and pastries in order to diminish their 

saturated fat intake. In general, the intake of some vitamins and minerals in this study 

population is below the recommendations. Some women could benefit from a 

multivitamin/mineral supplement. In chapter 4 the dietary intake of fatty acids during 

pregnancy is described. The results are correlated with parameters of the EFA status. Very 

few women in this study population meet the adequate intake of eicosapentaenoic acid 

(EPA) and docosahexaenoic acid (DHA) whereas the intake of linoleic acid is rather high 

compared to the current recommendations. Therefore it would be advisable to increase 

the intake of long-chain n-3 PUFA and decrease the intake of linoleic acid during 

pregnancy. Moreover the fraction of EPA and of DHA in maternal and umbilical plasma 

phospholipids (PL) is positively associated with the dietary intake of these fatty acids.  

In the second experimental part the EFA status of mother and neonate was determined 

based on the fatty acid composition of plasma and umbilical cord vessel wall PL. 

First the concept of the calculated mean melting point of fatty acids from plasma PL as 

surrogate parameter of membrane fluidity is explained. In the mother, the loss of long-

chain polyunsaturated fatty acids (PUFA) at delivery compared to mid pregnancy results in 

a higher mean melting point. Concomitantly long-chain PUFA are preferentially replaced 

by shorter-chain saturated fatty acids (SFA). In umbilical plasma PL the high content of 

long-chain PUFA is accompanied with more longer-chain, less fluid SFA. Thus the fatty acid 

composition of the SFA changes in a way to counteract changes in the mean melting point 

induced by changed long-chain PUFA composition (chapter 5). 

Linoleic acid in cord plasma PL is half of that in maternal plasma PL but arachidonic acid 

(AA) in cord plasma is twice that observed in the mother. Similarly, the α-linolenic acid 
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concentration in newborns is half of that in the mother, whereas the DHA concentration is 

almost double. This situation, in which the relative plasma concentrations of the n-3 and 

n-6 long-chain PUFA exceed those of their precursors has only been observed in newborns 

and does not exist in adults. It is obviously an extremely favourable situation for the 

development of the newborn, especially at a time when large quantities of AA and DHA are 

required for the development of the brain and retina (chapters 5 & 6). 

During early puerperium (from 6 days before until 3 days after delivery) the fatty acid 

composition of maternal plasma PL and cholesteryl esters (CE) changes significantly. It is 

unlikely that the observed changes in maternal fatty acid composition in early puerperium 

are related to changes in the dietary intake of fatty acids. Another possible explanation 

for the observed differences is the changes in the maternal hormonal status during 

puerperium, but we were unable to confirm this (chapter 7). 

Because umbilical vessel walls do not have vasa vasorum which could deliver fatty acids 

they can only obtain their fatty acids from the blood passing through the cord vessels. 

Therefore the fatty acid composition of the umbilical venous vessel wall can be considered 

a longer-term reflection of the fatty acid supply from mother to foetus whereas the fatty 

acid composition of the umbilical arterial vessel wall is likely to reflect the longer-term 

EFA status of the developing foetus. The venous vessel walls have lower concentrations of 

linoleic and AA and significantly higher concentrations of Mead acid than the afferent 

blood vessel wall, indicating a marginal EFA status of the newborn (chapter 8). 

We found significant differences in the postpartum fatty acid status between women who 

developed a postpartum depression compared to control mothers. We observed a 

significant association between the ratio of Σn-6/Σn-3 in PL and the occurrence of 

postpartum depression. Women who became depressed after delivery had a significantly 

lower status of DHA and of Σn-3 PUFA in PL and CE compared to women who did not 

(chapter 9). 

The third trimester of pregnancy is associated with the predominance of small and dense 

LDL-particles which have been shown to be more susceptible to oxidation. We found an 

increase in the oxidative stability of LDL with progressing gestation. Both the rate of 

formation and the amount of conjugated dienes formed reached a maximum in the third 

trimester. This could be due to a change in the composition of LDL near term. 

Furthermore we observed significant increases in vitamin E levels during pregnancy 

(chapter 10). 

Finally we found in a group of healthy volunteers a seasonal affect in long-chain PUFA, 

such as AA, EPA and DHA (chapter 11). 
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Samenvatting 

Essentiële vetzuren (EFA) zijn belangrijke bouwstenen voor celmembranen. Tijdens de 

zwangerschap is de behoefte van de foetus aan EFA hoog omdat veel nieuw weefsel wordt 

gevormd. Een samenvatting van de literatuur omtrent EFA en hun rol tijdens de 

zwangerschap wordt gegeven in hoofdstuk 1. 

In het eerste onderzoeksluik spitsen we ons toe op de voedingsinname tijdens de 

zwangerschap. In hoofdstuk 2 valideren we een Nederlandse voedselfrequentievragenlijst 

(FFQ), om de vet- en vetzuurinname te bepalen, aangepast aan de Belgische situatie. De 

relatieve validiteit wordt bepaald door de geschatte vetinname uit de FFQ te vergelijken 

met deze bekomen uit het 7-dagen dagboek. We concluderen dat de FFQ een degelijke 

methode is om individuen te klasseren in het correcte gedeelte van de distributie van de 

vetinname. In hoofdstuk 3 vergelijken we de dagelijkse inname van macro- en 

micronutriënten van onze studiepopulatie met de aanbevelingen. Wij adviseren zwangere 

vrouwen om de inname van melk en zuivelproducten te verhogen om zo een adequate 

calcium, vitamine B2 en D-inname te bekomen. Maar de consumptie van sauzen, vetten, 

oliën, snoep en gebak moet verminderd worden om de inname van verzadigd vet te 

verlagen. Doorgaans is de inname van bepaalde vitamines en mineralen in deze 

studiepopulatie lager dan de aanbevelingen. Sommige zwangere vrouwen zouden baat 

kunnen hebben van een multivitamine/mineraal supplement. In hoofdstuk 4 wordt de 

inname van vetzuren tijdens de zwangerschap geëvalueerd en vergeleken met parameters 

van de EFA-status. Zeer weinig vrouwen hebben een adequate eicosapentaeenzuur (EPA) 

en docosahexaeenzuur (DHA) inname daar waar de inname van linolzuur redelijk hoog is in 

vergelijking met de aanbevelingen. Bovendien zijn de plasmaconcentraties van EPA en DHA 

zowel bij de moeder als in de navelstreng positief gecorreleerd met de voedingsinname 

ervan. Vandaar bevelen wij aan om tijdens de zwangerschap de inname van n-3 PUFA te 

verhogen en deze van linolzuur te verlagen.  

In het tweede onderzoeksluik wordt de EFA-status van moeder en neonaat bepaald adhv 

de analyse van de vetzuursamenstelling van plasma en navelstrengweefsel. Met het 

voorschrijden van de zwangerschap is er een daling van lang-keten polyonverzadigde 

vetzuren (PUFA) in plasma. Hoewel mathematisch significant is de grootte ervan beperkt 

en kleiner dan beschreven in andere landen. Vermindering van lang-keten PUFA resulteert 

in een verhoging van de “Mean Melting Point” (MMP) wat een parameter is voor de 

membraanfluiditeit. De verzadigde vetzuren bleken in samenstelling te variëren op een 

manier dat de wijziging in MMP ten gevolge van de daling van lang-keten PUFA in de loop 

van de zwangerschap tegengewerkt wordt. Hetzelfde fenomeen werd bij de neonaat 

waargenomen (hier is er in vergelijking met de moeder bij bevalling een lagere MMP ten 

gevolge van verhoogde lang-keten PUFA en variëren de andere vetzuren zodat deze 
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verlaging ten dele gecompenseerd wordt) (hoofdstuk 5). De linolzuurstatus in 

navelstrengplasma is slechts de helft van deze in het plasma van de moeder maar 

arachidonzuur (AA) in navelstrengplasma is dubbel zo hoog als in het plasma van de 

moeder (idem voor α-linoleenzuur en DHA). Deze situatie, waarbij de status van n-3 en n-6 

lang-keten PUFA hoger is dan van de voorlopers, is uniek voor pasgeboren en bestaat niet 

bij volwassenen. Het is duidelijk een zeer voordelige situatie voor de ontwikkeling van de 

pasgeborene juist op het moment dat grote hoeveelheden AA en DHA nodig zijn voor de 

ontwikkeling van hersenen en neuronaal weefsel (hoofdstukken 5 & 6). Tevens vinden wij 

gedurende het puerperium (6 dagen voor tot 3 dagen na de bevalling) dat de 

vetzuursamenstelling van plasma fosfolipiden en cholesterolesters (PL en CE) bij de 

moeder significant verandert: de fractie lang-keten PUFA neemt toe en de verzadigde 

vetzuren wijzigen in samenstelling. Deze verandering is niet te wijten aan een gewijzigd 

eetpatroon. Een andere mogelijk verklaring is wijziging in de hormonale status tijdens het 

puerperium (hoofdstuk 7).  

Een van de manieren om na te gaan of aan de foetale behoeften van EFA tijdens de 

zwangerschap voldaan wordt is te bepalen of vetzuren die enkel bij EFA-deficiëntie 

gevormd worden (Meadzuur) in het navelstrengweefsel aanwezig zijn (hoofdstuk 8). De 

wand van de vene (afvoerend bloedvat) heeft een lagere concentratie linolzuur en AA en 

een hogere concentratie Meadzuur dan de wand van de arterie (aanvoerend bloedvat). Dit 

kan wijzen op een marginale EFA-status bij de pasgeborene.  

Vrouwen met een postpartum depressie hebben op het ogenblik van de bevalling een 

lagere status van DHA en Σn-3 PUFA in plasma PL en CE in vergelijking met controle 

vrouwen (hoofdstuk 9). Er bestaat een significant verband tussen de verhouding van Σn-6/ 

Σn-3 in plasma PL en het voorkomen van postpartum depressie.  

De weerstand van LDL tegen peroxidatie neemt toe met de duur van de zwangerschap. 

Ook de hoeveelheid oxideerbaar materiaal per LDL partikel neemt toe (hoewel de EFA 

afnemen). Een mogelijke verklaring hiervoor is dat de samenstelling van LDL tijdens de 

zwangerschap verandert. Dit werd nagegaan. Er bleek inderdaad met voortschrijdende 

zwangerschap een toename te zijn van cholesterol en triglyceriden en een daling van de 

cholesterol/triglyceriden verhouding per partikel. Deze bevinding suggereert dat de 

bekende stijging van LDL gedurende de zwangerschap niet geïnterpreteerd mag worden als 

een indicator voor een gestegen atherogeen risico. De toename van LDL-cholesterol 

tijdens de zwangerschap is immers te wijten aan de toename van grotere en minder dense 

LDL-partikels. Deze zijn minder atherogeen dan de kleinere meer dense LDL-partikels 

(hoofdstuk 10).  

Ten slotte vinden we in een groep gezonde vrijwilligers dat er een seizoensgebonden 

variatie bestaat in de concentratie van de lang-keten PUFA (AA, EPA en DHA) in plasma PL 

(hoofdstuk 11). 
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Résumé 

Les acides gras essentiels sont absolument nécessaires au bon fonctionnement de 

l’organisme et plus particulièrement au niveau des membranes. Pendant la grossesse, les 

acides gras essentiels jouent un rôle capital dans le développement du fœtus parce que de 

nombreux tissus doivent être formés (chapitre 1). 

Dans la première partie de cette étude, nous nous sommes intéressés à la consommation 

alimentaire pendant la grossesse. Nous avons validé un questionnaire de fréquence 

alimentaire développé pour analyser la consommation des graisses (chapitre 2). Ce 

questionnaire a été validé en comparant les résultats de la consommation des graisses 

avec ceux obtenus avec un cahier alimentaire de 7 jours. Nous en concluons que ce 

questionnaire est un outil solide pour classifier les individus dans la partie adéquate de la 

courbe de distribution de la consommation des graisses. Puis, nous avons comparé la 

consommation des nutriments dans la population étudiée avec les apports journaliers 

recommandés pour la population belge (chapitre 3). Les résultats obtenus nous amènent à 

recommander aux femmes enceintes d’augmenter leur consommation de produits laitiers 

pour avoir des apports de calcium, vitamines B2 et D suffisants. Parallèlement, nous 

recommandons de diminuer la consommation des graisses animales, mayonnaise, friandises 

et pâtisseries pour réduire la consommation des acides gras saturés. Pour ce qui est du 

statut en vitamines et minéraux, souvent dans la population étudiée, les femmes 

enceintes n’atteignent pas les taux recommandés pour quelques-uns d’entre eux. Par 

conséquent, elles pourraient bénéficier d’une supplémentation multivitamines/minéraux. 

Ensuite, la consommation des acides gras pendant la grossesse a été évaluée et comparée 

avec des indicateurs du statut systémique des acides gras essentiels (chapitre 4). Très peu 

de femmes consomment suffisamment d’acide eicosapentaénoique (EPA) et d’acide 

docosahexaénoique (DHA) alors que, comparée aux recommandations, leur consommation 

en acide linoléique est plutôt élevée. Alors nous recommandons d’augmenter la 

consommation des acides gras polyinsaturés à longue chaîne n-3 et de réduire celle de 

l’acide linoléique 18:2n-6 pendant la grossesse. 

Dans la seconde partie de cette étude, le statut en acides gras essentiels de la mère et du 

nouveau-né a été défini par l’analyse de la composition des acides gras du plasma et du 

tissu du cordon ombilical. 

Chez la mère, avec l’avancement de la grossesse, la diminution du taux d’acides gras 

polyinsaturés à longue chaîne est reflétée par un “Mean Melting Point” (MMP, un marqueur 

de la fluidité membranaire) plus élevé. Parallèlement, les PUFA à longue chaîne sont 

préférentiellement remplacés par des acides gras saturés à chaîne plus courte. Dans le 

plasma ombilical, le taux élevé de PUFA à longue chaîne est associé à des acides gras 

saturés à plus longue chaîne, moins fluides. Ainsi les variations de la composition en acides 

gras saturés se font de manière à contrecarrer les changements de MMP induits par la 
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modification des d’acides gras polyinsaturés. Le même phénomène est observé chez le 

nouveau-né (en comparaison du plasma de la mère après l’accouchement, le nouveau-né a 

beaucoup plus des acides gras polyinsaturés à longue chaîne et un MMP plus bas mais la 

composition des acides gras saturés varie de sorte que cette diminution est compensée 

partiellement) (chapitre 5).  

La concentration en acides linoléique et α-linolénique dans les phospholipides du plasma 

du cordon ombilical est la moitié de celle du plasma de la mère tandis que la 

concentration en acide arachidonique (AA) et DHA du plasma du cordon ombilical est le 

double de celle du plasma de la mère. Cette situation où la concentration des acides gras 

polyinsaturés à longue chaîne n-3 et n-6 est plus élevée que celle des précurseurs, est 

unique pour le nouveau-né et n’existe pas chez les adultes. Il est clair que cette condition 

est favorable à la croissance du fœtus, à un moment où il a besoin de beaucoup de AA et 

DHA pour le développement de son cerveau et de son rétine (chapitres 5 & 6). Nous avons 

par ailleurs observé que la composition des acides gras du plasma de la mère change de 

façon considérable pendant le puerperium (6 jours avant et jusqu’à 3 jours après 

l’accouchement): en effet la concentration des acides gras polyinsaturés à longue chaîne 

s’élève et la composition des acides gras saturés varie. Cette modification rapide après 

l’accouchement ne peut être due à une modification de l’alimentation. Une explication 

possible peut être un changement de la concentration des hormones pendant le 

puerperium (chapitre 7). 

Parce que les vaisseaux sanguins du cordon ombilical sont dépourvus de vasa vasorum, ils 

ne peuvent obtenir leurs acides gras qu’à partir du sang qui y circule. Par conséquent la 

composition en acides gras des veines du cordon ombilical reflète l’adduction des acides 

gras de la mère au fœtus tandis que la composition des acides gras des artères du cordon 

ombilical reflète celui du fœtus vers la mère (chapitre 8). Les veines du cordon ombilical 

contiennent moins d’acide linoléique et de AA et beaucoup plus de 20:3n-9 en 

comparaison des artères du cordon ombilical. Cette observation peut indiquer que le 

nouveau-né a un état marginal en acides gras essentiels. 

Des femmes avec une dépression post-partum ont, juste après l’accouchement, moins de 

DHA et des acides gras polyinsaturés à longue chaîne n-3 dans leurs phospholipides 

plasmatiques en comparaison des femmes sans dépression post-partum. Il y a une 

corrélation significative entre Σn-6/Σn-3 dans le plasma et la prévalence de la dépression 

post-partum (chapitre 9). 

La résistance des LDL à la peroxidation augmente avec l’avancement de la grossesse. En 

plus la quantité de matériaux oxydables par particule de LDL augmente. Une explication 

possible est le changement de la composition de LDL pendant la grossesse. En effet, la 

quantité de cholestérol et des triglycérides augmente et la proportion de cholestérol aux 

triglycérides par unité de LDL diminue avec l’avancement de la grossesse. Il en est de 

même avec la concentration en vitamine E du plasma de la mère (chapitre 10). 
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Finalement nous avons observé dans une population des volontaires sains, qu’il existait 

une variation liée aux saisons de la concentration des acides gras polyinsaturés à longue 

chaîne (AA, EPA et DHA) des phospholipides du plasma (chapitre 11). 
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List of Abbreviations 

αLnA α-linolenic acid (18:3n-3) 

7 day ER Seven day estimated record 

AA Arachidonic acid (20:4n-6) 

AI Adequate intake 

AR Average requirement  

BMR Basal metabolic rate 

CE Cholesteryl esters 

DBI Double bond index 

DHA Docosahexaenoic acid (22:6n-3) 

EFA Essential fatty acids 

en% Energy % 

EPA Eicosapentaenoic acid (20:5n-3) 

FFQ Food frequency questionnaire 

HDL High density lipoproteins 

HUFA Highly unsaturated fatty acids  

LA Linoleic acid (18:2n-6) 

LCAT Lecithin-cholesterol acyltransferase  

LDL Low density lipoproteins 

MCL Mean chain length 

MMP Mean melting point 

MUFA Monounsaturated fatty acids 

OPI Oxidative potential index 

PAL Physical activity level  

PL Phospholipids 

PRI Population reference intake 

PUFA Polyunsaturated fatty acids 

RDA Recommended dietary allowance  

SD Standard deviation 

SFA Saturated fatty acids 

UL Tolerable upper intake level 

Fatty acid notation: number of carbon atoms:number of double bounds n-x with x is the 

place of the first double bond proximal to the methyl end of the fatty acid. 
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Aims and outline of the studies 

This thesis consists of three parts. In the first part literature concerning the 

current knowledge of essential fatty acids (EFA) and their role in pregnancy and 

foetal development is reviewed (chapter 1). 

In the second part we focus on the maternal diet. The dietary intake of 

macronutrients and micronutrients is described with emphasis on the fat and fatty 

acid intake during pregnancy. First we adapted and validated an existing food 

frequency questionnaire (FFQ) which was developed based on a Dutch FFQ. This 

FFQ was specifically designed to collect data on the fat consumption of Dutch 

pregnant women [1]. Minor changes were used to adapt this Dutch FFQ to the 

Belgian diet, in order to enable us to focus on the fat and fatty acid intake of 

pregnant Belgian women (chapter 2). 

Then we described the dietary intake of energy and of macronutrients and 

micronutrients during the course of pregnancy. The results are evaluated by 

comparing them with the dietary recommendations for pregnant women (chapter 

3). 

At last dietary intake of fatty acids during pregnancy was determined and 

correlated with parameters for essential fatty acid status in mother and newborn 

(chapter 4). 

In the third part of this work we focus on the maternal and neonatal EFA status. 

The EFA status was estimated based on the fatty acid composition of maternal and 

umbilical plasma phospholipids and cholesteryl esters. 

First the concept of the calculated mean melting point (MMP) of fatty acids from 

plasma phospholipids as surrogate parameter of membrane fluidity is explained. 

When polyunsaturated fatty acids (PUFA) are replaced by saturated (SFA) or 

monounsaturated (MUFA) fatty acids, the MMP increases and membrane fluidity 
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decreases [2-5]. The MMP of fatty acids from maternal plasma phospholipids at 

different stages during pregnancy was calculated and compared with the MMP of 

fatty acids from umbilical plasma phospholipids (chapter 5). 

Then we described the fatty acid profile of phospholipids and cholesteryl esters in 

maternal plasma on three different cut-off points during pregnancy and at 

delivery and in umbilical blood shortly after birth are (Chapter 6). 

Furthermore we investigated whether the fatty acid profile of maternal plasma 

phospholipids six days before delivery, one and three days postpartum differs 

significantly from each other (chapter 7). 

We described the fatty acid composition of umbilical cord venous and arterial 

vessel walls and discuss their possible meaning. Because umbilical vessel walls do 

not have vasa vasorum that could deliver fatty acids they can only obtain their 

fatty acids from the blood passing through the cord vessels. Therefore the fatty 

acid composition of the umbilical venous vessel wall is considered to be a long-

term reflection of the fatty acid supply from mother to foetus (chapter 8). 

Moreover we examined whether pregnant women who develop postpartum 

depression have a different fatty acid profile in their plasma phospholipids and 

cholesteryl esters compared to control pregnant women. Indeed, several studies 

have shown that major depression is accompanied by alterations in serum fatty 

acid composition: reduced n-3 fatty acids and increased 20:4n-6/20:5n-3 ratio in 

serum and red blood cells [6-9]. Moreover, pregnancy is associated with a gradual 

decrease of the relative maternal concentration of 22:6n-3 in plasma PL from the 

18the week of gestation on resulting in a decreased DHA sufficiency index. Six 

months after delivery the maternal DHA sufficiency index had not yet returned to 

early pregnancy values [10;11]. Therefore it was hypothesised that relative 

maternal depletion of 22:6n-3 might increase the risk of postpartum depression 

(chapter 9). 

The third trimester of pregnancy is associated with the predominance of small and 

dense LDL-particles [12;13]. These small and dense LDL-particles have been shown 

to be more susceptible to oxidation [14]. Hyperlipidemia and the occurrence of 

small and dense LDL particles during late pregnancy might increase the oxidative 

damage and impair the outcome of pregnancy. We determined whether the 

oxidative stability of LDL changes during the course of pregnancy and if so 
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whether this change correlates with changes in vitamin E, vitamin A, and β-

carotene levels or with changes in the fatty acid composition of plasma 

phospholipids (chapter 10). 

In this dissertation we study the fatty acid composition of plasma phospholipids 

during the course of pregnancy. When performing this kind of long-term studies it 

is important to consider the possibility of seasonal variation. In the final 

experiment of this thesis we determined whether there exits seasonal variation in 

the fatty acid composition of plasma phospholipids in 23 healthy individuals who 

donated during one year a monthly blood sample (chapter 11). 

Finally, the general conclusions emerging from these studies are discussed in 

chapter 12. Implications for further research are given. 
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Chapter 1: Literature review 

The aim of this chapter is to give a literature review on the metabolism of 

essential fatty acids (EFA) and their role in pregnancy and foetal development. 

First the metabolism of EFA is given. Then the biosynthesis of plasma lipids and 

the biochemical indicators of EFA-status are covered. Furthermore, the role of 

EFA in pregnancy and foetal development is clarified. Finally, the increased 

oxidative stress during pregnancy and the effect on lipid metabolism is discussed. 

1. What are essential fatty acids ? 

More than seventy years ago, the essentiality of certain polyunsaturated fatty 

acids (PUFA) was discovered by Burr and Burr [1;2]. Rats fed a fat-free diet for 

several months developed symptoms like growth retardation, dermatitis and 

reproductive failure. Supplementation with small amounts of n-6 and n-3 

polyunsaturated fatty acids (PUFA) induced growth promotion and prevention of 

dermatitis [1;2]. 

There are two families of essential fatty acids (EFA), the n-6 and n-3 families. 

They are essential because they are required and cannot be synthesized de novo 

by humans. The human (and animal) metabolism is unable to introduce a double 

bond between carbon atoms 3 and 4 (for n-3 fatty acids) or between carbon atoms 

6 and 7 (for n-6 fatty acids) proximal to the methyl end of the fatty acid. Linoleic 

acid (18:2n-6) and α-linolenic acid (18:3n-3) can be desaturated and elongated to 

form longer-chain, more unsaturated PUFA (Figure 1.1). Therefore 18:2n-6 and 

18:3n-3 are referred to as the parent EFA. The parent EFA are present in high 

concentrations in plants and vegetables. Linoleic acid has a well-defined function 

in the skin, but it is unclear whether α-linolenic acid itself is essential only as a 

precursor or also in its own right [3]. The long-chain PUFA play a major role in the 

development of new life as important structural components of cell membrane 
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phospholipids. Arachidonic acid (20:4n-6, AA) and docosahexaenoic acid (22:6n-3, 

DHA) are important structural fatty acids in neural tissue such as the brain and 

retina. In addition some PUFA (20:4n-6 and 20:5n-3, and to a lesser extent 20:3n-

6) are involved in the formation of eicosanoids which are hormone-like 

substances. 

Linoleic acid and α-linolenic acid are converted into PUFA through desaturation 

and elongation steps. The desaturation processes are catalysed by rate-limiting 

activities of ∆6- and ∆5-desaturases. All these enzymes are bound to the 

microsomal lipid bilayer and require zinc as co-factor [4;5]. Therefore low zinc 

intake or other factors that reduce the serum zinc status can induce a decrease in 

the long-chain fatty acids. The ∆6-desaturase converts 18:2n-6 to γ-linolenic acid 

(18:3n-6) and 18:3n-3 to stearidonic acid (18:4n-3). These fatty acids are further 

elongated to 20:3n-6 and 20:4n-3 respectively. The ∆5-desaturase is responsible 

for the biosynthesis of AA and eicosapentaenoic acid (20:5n-3, EPA). These fatty 

acids are then elongated twice to form 24:4n-6 and 24:5n-3 which are converted 

by ∆6-desaturase in 24:5n-6 and 24:6n-3. Finally, peroxisomal chain shortening by 

β-oxidation is responsible for the formation of docosapentaenoic acid (22:5n-6) 

and docosahexaenoic acid (22:6n-3). 

The two parent EFA compete for the enzyme ∆6-desaturase in the first step of 

their respective conversions. Although the ∆6-desaturase enzyme prefers 18:3n-3 

over 18:2n-6, α-linolenic acid remains at a competitive disadvantage owing to the 

excess availability of linoleic acid compared to α-linolenic acid in the present 

Western diet [6]. Recently, the ∆6- and ∆5-desaturases have been cloned [7;8] 

and it has been demonstrated that linoleic acid inhibits expression of the gene 

coding for the ∆6-desaturase enzyme [7] which likely leads to the phenomenon 

called substrate inhibition. Under certain conditions, particularly in early 

postnatal development, low tissue levels of longer-chain PUFA occur even if 

relatively high amounts of the parent EFA are present in the diet. Indeed, the 

parent EFA may cause substrate inhibition of long-chain PUFA synthesis, linoleic 

acid inhibits synthesis of arachidonic acid and α-linolenic acid inhibits synthesis of 

docosahexaenoic acid [9]. 
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Figure 1.1: Metabolic pathways converting 18-carbon unsaturated fatty acids to more 

highly unsaturated fatty acids 

tty acid notation: number of carbon atoms:number of double bounds n-x with x is the place of the 

st double bond proximal to the methyl end of the fatty acid. 

 



 

Cunnane introduced the classification of conditionally-indispensable and 

conditionally-dispensable fatty acids in stead of essential fatty acids [9]. One of 

the reasons for proposing this change in terminology was that the dietary 

essentiality of the parent or the longer-chain PUFA always appears to be 

conditional on developmental age, nutritional circumstances or the presence of 

diseases that lead to increased fatty acid β-oxidation. Linoleic acid, α-linolenic 

acid, arachidonic acid and docosahexaenoic acid are conditionally-indispensable 

fatty acids during infancy, childhood, pregnancy and lactation [9]. α-Linolenic 

acid is considered the only conditionally-indispensable fatty acid during adulthood 

[9]. 

C20 fatty acids of the n-3 and n-6 series are involved in the formation of 

important bioactive compounds (i.e. eicosanoids) such as the prostacyclins, 

prostaglandins, thromboxanes, leukotrienes, lipoxines and related substances. 

These compounds have diverse biological functions in cell growth and 

development, inflammation, and the cardiovascular system [10-13]. The enzymes 

involved in the synthesis of the eicosanoids are lipoxygenases and 

cyclooxygenases. The cyclooxygenase pathway produces prostaglandins and 

thromboxanes. The lipoxygenase pathway produces leukotrienes and lipoxines. 

Dihomo-γ-linolenic acid (20:3n-6) is the precursors of prostaglandin series 1 (with 

one double bond). AA (20:4n-6) is the precursor of the prostanoids of series 2 

(prostaglandins and thromboxanes) and of leukotrienes of series 4. EPA (20:5n-3) 

is the precursor of the prostanoids of series 3 and the leukotrienes of series 5. 

EPA competes with AA for cyclooxygenase and lipoxygenase enzymes. The 

eicosanoids derived from EPA have different biological properties than those 

derived from AA. The biological response after eicosanoid release is dependent on 

the net balance of eicosanoids derived from n-6 and n-3 long-chain PUFA [14]. 

2. EFA deficiency markers 

For the assessment of the EFA status of an individual, the total amount of EFA in 

blood plasma is a useful indicator [15]. In general, phospholipids (PL) have a 

slower turnover than free fatty acids, triglycerides or cholesteryl esters (CE). 

Furthermore, phospholipids are the major structural components of membranes 

and the fatty acid pattern of plasma PL reflects that of tissue PL [16]. Therefore 
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the EFA profile of plasma or red blood cell PL is considered suitable to document 

the overall EFA status of a given individual [17]. 

When insufficient EFA are available (either in the diet or from adipose tissue) to 

meet the requirements of the body, the human organism starts to synthesise fatty 

acids, which are hardly present under normal healthy conditions. Under these 

conditions oleic acid (18:1n-9) will be desaturated and elongated to form Mead 

acid (20:3n-9) and di-homo-Mead acid (22:3n-9). The presence of Mead acid is an 

indication of a generalised shortage of the parent EFA and their derived long-chain 

homologues. The trienoic/tetraenoic ratio (20:3n-9/20:4n-6) was proposed as an 

index of EFA deficiency [18]. 

Another suitable indicator is the EFA status index which is the ratio of the sum of 

all the essential n-3 and n-6 fatty acids to the sum of all the non-essential 

unsaturated n-7 and n-9 fatty acids. The higher this ratio, the better the essential 

PUFA status [17]. 

Furthermore, an isolated deficiency of DHA stimulates the synthesis of the most 

comparable long-chain PUFA of the n-6 family, Osbond acid or 22:5n-6 (figure 

1.1). Therefore, under steady state conditions, the ratio between 22:6n-3 and 

22:5n-6 (i.e. the DHA sufficiency index) is considered to be a reliable biochemical 

indicator of the DHA status [19]. Since the synthesis of 22:5n-6 also depends on 

the availability of its precursor 22:4n-6, the ratio of 22:5n-6 over 22:4n-6 (i.e. the 

DHA deficiency index) is also a reliable marker of the DHA status. A deficit in DHA 

is accompanied by an increased conversion of 22:4n-6 to 22:5n-6, resulting in a 

higher DHA deficiency index [17;20]. 

Finally, Holman et al [21] introduced the concept of the calculated mean melting 

point (MMP) and considered this parameter as the best current single measure of 

PUFA status although they prefer to use the entire set of fatty acid profiles [22]. 

3. Determination of the biochemical EFA status 

The fatty acid profiles of different lipid fractions (PL, CE, triglycerides, and free 

fatty acids) extracted from plasma, red blood cell membranes or tissue are useful 

indicators of the biochemical EFA status of a given individual [23]. Because of 

different rates of turnover of fatty acids in these constituents, differences arise in 
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the time required for a change in dietary fat type to be totally reflected in the 

fatty acid pattern [23]. 

The fatty acid composition of triglycerides, extracted from fasting serum or 

plasma, reflects the composition of the last few meals before blood sampling, 

while the fatty acid composition of CE and PL change more gradually during 2–3 

weeks with a change in diet and reflect the average dietary composition during a 

longer time period. 

In a group of institutionalised elderly subjects a good relationship was found for 

18:2n-6 between the four major serum fraction (PL, CE, triglycerides and free 

fatty acids). This implies that these four lipid fractions obtain fatty acids from a 

common precursor pool or that one lipid class provides fatty acids for synthesis of 

the other [24]. 

Since PL are structural lipids and are the richest source of PUFA, changes in PUFA 

profile are most pronounced in PL and therefore the fatty acid profile of PL 

reflects best the EFA status [16]. The concentration of PUFA in plasma PL has 

been used as a marker of recent dietary intake of PUFA [25;26], whereas 

erythrocyte PUFA patterns have been more commonly used to indicate long-term 

dietary intake [27]. In a fish-oil supplementation study it was shown that the 

incorporation half lives of 20:5n-3 in humans are about 5 days for serum CE, 

almost a month for erythrocytes and longer than a year for subcutaneous fat tissue 

[28]. Thus, determination of the fatty acid composition of CE gives a reflection of 

nutritional intakes over the past week or two, erythrocyte membranes over the 

past months or two and adipose tissue over a period of years. Absolute values of 

fatty acids reflect intake more accurately but relative proportion of fatty acids 

could be a more precise functional marker [14]. 

In our studies we analysed the fatty acid composition of PL and CE because the 

fatty acid profile of plasma PL and CE changes more gradually with a change in 

diet and reflects the average dietary composition over a longer time period. The 

postprandial fatty acid profile of plasma triglycerides or free fatty acids is strongly 

influenced by the fatty acid composition of the last meal. 

Recently, Cunnane [9] stated that tissue and plasma fatty acid profiles are a poor 

indicator of linoleic and α-linolenic adequacy or inadequacy because there is no 

implicit reason why a plateau in a specific fatty acid would demonstrate that a 
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required fatty acid intake has been achieved. Rather, a plateau in the 

proportional fatty acid data reflects only the maximum amount of that fatty acid 

that can be accommodated in the tissue under those conditions [9]. 

3.1. Fatty acid composition of phospholipids and triacylglycerols 

Most naturally occurring PL and triacylglycerols have an asymmetric distribution of 

saturated and unsaturated fatty acids with saturated fatty acids preferentially 

esterified in the sn-1 position of glycerolipids and unsaturated fatty acids in the 

sn-2 position in PL and in the sn-2 and sn-3 position for triacylglycerols. Therefore, 

saturated fatty acids at the sn-1 position account for nearly one-half of the fatty 

acids in PL (ca 40 to 45 w%) and about one-third of the fatty acids in 

triacylglycerols (ca 25 to 35 w%). In contrast, the 16 and 18 carbon unsaturated 

fatty acids are esterified at the sn-2 position during de novo synthesis and the 20 

and 22 carbon highly unsaturated fatty acids (HUFA) also at the sn-2 position 

during the retailoring process of PL. 

3.2. Cholesteryl esters biosynthesis 

The plasma enzyme lecithin-cholesterol acyltransferase (LCAT) catalyses the 

transfer of the fatty acid of phosphatidylcholine to unesterified cholesterol with 

the formation of lysophosphatidylcholine and of CE. LCAT has a specificity for the 

sn-2 position of phosphatidylcholine [29]. Although LCAT utilises the sn-2 acyl 

group from most of the phosphatidylcholine species it preferentially utilises the 

sn-1 acyl group from phosphatidylcholine species containing 20:4n-6 and 22:6n-3 

at the sn-2 position [30]. Furthermore, the enzyme LCAT is able to convert two 

molecules of 1-acyl-lyso-phosphatidylcholine (which contain mainly saturated 

fatty acids) into one molecule of disaturated phosphatidylcholine and one 

molecule of glycerylphosphorylcholine. These disaturated phosphatidylcholines 

can be a substrate for LCAT and may explain the unexpectedly high transfer of 

saturated fatty acids during the cholesterol esterification reaction. 

Supplementation with n-3 fatty acids in humans increases the content of n-3 PUFA 

(20:5n-3, 22:5n-3 and 22:6n-3) in plasma PL and increases the content of 

saturated plasma CE [31]. It is possible that the paradoxical increase in saturated 

CE is due to the utilisation of sn-1 acyl groups from phosphatidylcholine species 

containing n-3 HUFA at the sn-2 position. 
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4. Essential fatty acids during pregnancy and neonatal life 

The last decade, there is considerable interest in the importance of EFA and their 

longer-chain more unsaturated derivatives in relation to birth outcome and 

neonatal health. PUFA are major structural components of the cell membrane and 

are particularly important for optimal visual and nerve cell development and 

function. During pregnancy accretion of maternal, placental and foetal tissue 

occurs and therefore the EFA and long-chain PUFA requirements of pregnant 

women and the developing foetus are high. During the last trimester of pregnancy, 

the foetal need for AA and DHA is especially high because of rapid synthesis of 

brain tissue. 

It has been demonstrated that the proportion of long-chain PUFA increases in PL 

going from maternal blood to placenta to cord blood, foetal liver and foetal brain 

[32]. This process has been termed “biomagnification” and indicates that the fatty 

acid composition of PL in the foetoplacental unit is the result of alterations 

designed to achieve the high proportion of long-chain PUFA necessary for 

structural components of the developing brain [32]. Biomagnification is only valid 

for the relative concentration of PUFA (% of total fatty acids) and not for the 

absolute concentration (mg/L plasma or kg tissue). Figure 1.2 illustrates the 

biomagnification process with regard to DHA [33]. 
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Figure 1.2: The biomagnification process with regard to 22:6n-3. Data were obtained from 

mid-term abortion material [33]. 
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It is important to understand how the foetus acquires the proper type and amount 

of long-chain derivatives of the parent EFA. The higher proportion of long-chain 

PUFA in cord blood could originate from preferential transfer of PUFA from the 

maternal circulation to the foetal circulation and/or the long-chain PUFA might be 

formed in either the placenta or the foetal liver. In the following part these 

different possible sources of long-chain PUFA to the foetus are discussed. 

4.1. Desaturation enzyme system of the placenta 

Different studies in vitro illustrated that the human placenta lacks both ∆6- and 

∆5-desaturase activities [15;32;34-36]. Studies in the perfused human placenta 

obtained from normal or caesarean deliveries have demonstrated that there is no 

detectable chain elongation and desaturation of the two parent EFA [36]. In the 

microsomes of human placental tissue obtained at 18 and 22 weeks of gestation, 

no activity of either the ∆6- or ∆5-desaturase enzymes has been detected [35]. 

These data suggest that the long-chain derivatives of linoleic and α-linolenic acid 

in the foetal circulation are synthesised either by the mother or the foetus. The 

possibility that placental synthesis of long-chain PUFA may occur in vivo cannot be 

ruled out however. 

4.2. Desaturation enzyme system of the foetal liver 

Chambaz et al [35] were the first to detect, in vitro, ∆5- and ∆6-desaturase 

activities in microsomes of human foetal liver after 18 and 22 weeks of gestation. 

Rodriguez et al [37] established in vitro significant ∆6- and ∆5-desaturase 

activities in human foetal liver as early as the 17th week of gestation. The 

desaturation activities remained stable throughout the third trimester and the ∆6-

desaturase activity was higher for n-3 than for n-6 fatty acids, regardless of 

gestational age. However, their theoretic desaturase capacity calculated from in 

vitro measurements appears to be lower than the foetal PUFA requirements 

[37;38]. 

Furthermore, stable isotope tracer studies demonstrated that human preterm 

infants are capable of synthesising DHA in vivo subsequent to enteral 

administration of [13C]-labelled 18:3n-3 [39;40]. Recently, Su et al [41], using 

[13C]-tracers showed that primate foetuses (baboon) have the capacity to convert 

α-linolenic acid to DHA in vivo. In this study, [U-13C]18:3n-3 or [U-13C]22:6n-3 
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(extracted from a [U-13C]algal oil) was administered as nonesterified fatty acid to 

baboon foetuses via intra-venous injection into the jugular artery. This study 

illustrated that the foetal liver of the baboon is likely to be an important site of 

18:3n-3 to 22:6n-3 conversion [41]. 

Taken together, these data illustrate that PUFA can be synthesised in the human 

foetus during the second and third trimester. Despite this, desaturation enzyme 

systems in the human foetal liver seem to be immature and unable to supply 

enough long-chain PUFA to meet the high demands of rapidly growing tissues and 

organs [42]. 

 

In conclusion, (i) the capacity of the human placenta to synthesise long-chain 

PUFA from EFA is very limited or absent; and (ii) the desaturation enzyme system 

in the human foetal liver is immature and probably unable to supply enough long-

chain PUFA to meet the high neonatal demand. Therefore it is likely that the long-

chain PUFA in the foetal circulation are primarily derived from maternal sources. 

Consequently, to obtain adequate amounts of parent EFA and their long-chain 

polyunsaturated derivatives, the developing foetus primarily depends on active 

transport of these fatty acids from the maternal circulation across the placenta 

and thus on the EFA status of the mother. 

4.3. Fatty acid transport through the placenta 

4.3.1 Placenta in general [43] 

The placenta, which separates the maternal from the foetal circulation, is 

composed of large villi of foetal vessels surrounded by intervillous spaces in which 

maternal blood flows. The placenta allows transmission of gasses, water and a 

variety of nutrients and waste products. For solutes to move between the 

maternal and foetal circulation, they must pass through the villous trophoblast 

which is a syncytium consisting of two membranes (the microvillous or brush-

border membrane facing the mother and the basal membrane facing the foetus). 

The transfer of any substance depends amongst other factors on the concentration 

gradient between the maternal and the foetal circulation, the presence of 

circulating binding proteins, lipid solubility of the substances, etc. Gasses (oxygen, 

carbon dioxide), sodium and chloride ions, urea and ethanol are passively 
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transported through the placenta. Free fatty acids and unconjugated steroids have 

a limited passive transport through the placenta. Glucose is transported by 

facilitated diffusion according to concentration dependent kinetics. Amino acids 

are transported through energy dependent processes via selective transporters. 

Calcium is actively transported across cell membranes of the placenta. Maternal 

IgG is transported with receptor-mediated endocytosis. The placenta is an 

effective barrier to the movement of large proteins (except for IgG), thyroid 

hormones and maternal and foetal erythrocytes. Knowledge about placental 

transport of lipids is still scant. 

4.3.2 Mechanism of placental fatty acid transport 

The ability of the placenta to extract long-chain PUFA from the maternal 

circulation and deliver them to the foetus is extremely important for the neonatal 

development. Nonesterified fatty acids in the maternal compartment have been 

proposed as the major source of fatty acids for transport across the placenta, 

irrespective of the source from which they originate in the maternal circulation 

[15;32;35]. Kuhn and Crawford [32] showed in the perfused human placenta that 

neither triglycerides nor PL are taken up from the maternal circulation, only free 

fatty acids are taken up by the human placenta.  

PUFA in maternal plasma in the third trimester and postpartum are mainly 

esterified and associated with lipoproteins rather than in the form of free fatty 

acids [44]. Besides, the amount of free fatty acids in plasma of pregnant women is 

practically negligible compared to the amount of fatty acids associated with 

circulating lipoproteins. Lipoprotein receptors in the placental throphoblast cells, 

facing maternal blood, bind maternal triglyceride-rich lipoproteins and mediate 

their metabolism and subsequent transfer of PUFA to the foetal circulation 

[44;45]. 

Thus, PUFA arrive at the microvillous membrane of the placenta (maternal side) as 

albumin-bound nonesterified fatty acids (minority of the fatty acids) or as 

triglycerides, PL and CE as components of lipoprotein particles (majority of the 

fatty acids). Endothelial bound lipases are present that can hydrolyse these lipid 

classes and generate free fatty acids which can be taken up [46-48]. Intact 

cholesterol esters can be taken up by placental tissue and be hydrolysed there 

[49]. The latter mechanism has been suggested to provide the placenta with free 
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cholesterol but also results in the liberation of free fatty acids. The relative 

contribution of the different lipid classes to the nonesterified fatty acid pool 

taken up by the placenta is to our knowledge unclear. Placental uptake of 

nonesterified fatty acids occurs by facilitated diffusion after hydrolysis by lipase 

or after dissociation from albumin [10;50;51]. The presence of lipoprotein lipase 

activity in the human placenta allows the utilization of maternal triglycerides. In 

guinea pigs, the placental lipoprotein lipase is present only in the microvillous 

membrane of the placental trophoblast [52]. The placental lipoprotein lipase 

hydrolyses triglycerides from maternal VLDL but not the triglycerides present in 

chylomicrons [7;45;46]. The preferential hydrolysis of posthepatic triglycerides 

(VLDL) by the placental lipoprotein lipase may result in an increased availability of 

long-chain PUFA for placental uptake and serve as a protection of the foetus from 

the immediate impact of an unusual fatty acid in a meal [10;53]. The 

concentration of triglycerides in the maternal circulation increases much more 

with progressing gestation than the other lipid classes [54]. This suggests that 

maternal triglycerides are the major source of esterified fatty acids for the 

placenta. Placental lipoprotein lipase preferentially hydrolyses fatty acids in the 

sn-2 position of the glycerol backbone and the sn-2 position generally is more 

unsaturated than the sn-1 or sn-3 positions. This implies selectivity by the 

placental lipases for the release of long-chain PUFA from triglycerides. Moreover, 

the preferential incorporation of 22:6n-3 into the triglyceride fraction suggests 

that triglycerides may play an important role in the placental transport of 22:6n-3 

to the foetal circulation [10]. There is a report of the presence of a phospholipase 

A2 on the microvillous membrane for the hydrolysis of PL but the hydrolysis of 

triglycerides by lipoprotein lipase is more pronounced [55]. More recently an 

endothelial-derived lipase which is expressed amongst other organs in the 

placenta has been cloned [46]. This endothelial lipase has substantial 

phospholipase activity and less triglyceride lipase activity. Overexpression of this 

enzyme in mice reduced plasma concentrations of HDL [46]. As HDL is rich in PL 

and DHA is highly present in the PL fraction, this enzyme could be important for 

the hydrolysis of maternal PL and the supply of long-chain PUFA to the foetus. 

Once maternal plasma triglycerides are hydrolysed, they are taken up by the 

placenta, where reesterification and intracellular hydrolysis facilitates diffusion of 

the released fatty acids to the foetus and their subsequent transport to the foetal 

liver [44]. 
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The overall picture of the placental transfer of PUFA from maternal to foetal 

circulation has been schematically summarised in figure 1.3. 

 

 

Figure 1.3: Schematic representation of the placental transfer of fatty acids to the foetus 

[44]. 

Fatty acids can cross lipid bilayers (as in the syncytiotrophoblast) by simple 

diffusion. However, fatty acid binding proteins in membranes and cytoplasm are 

thought to facilitate the transfer across membranes and intracellular channelling 

of fatty acids. The known placental fatty acid binding proteins are the fatty acid 

transfer proteins (FAT/CD36 and FATP) both on the microvillous and basal 

membranes and a placenta specific plasma membrane fatty acid binding protein 

(p-FABPpm) exclusively on the microvillous membrane [56;57]. Figure 1.4 

illustrates the distribution of placental fatty acid binding proteins [57]. 
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Figure 1.4: Distribution of placental fatty acid binding proteins [57] 

Placental perfusion studies demonstrate that linoleic acid is more efficiently 

transferred from the maternal to the foetal circulation compared to 20:4n-6 [32]. 

But maternally-derived 18:2n-6 was found mostly in the free fatty acid fraction of 

foetal circulating lipids whereas 20:4n-6 had been selectively incorporated in PL 

by the placenta and exported to the foetus in that form [32]. It is known that free 

fatty acids may cross the placenta in either direction but the movement of PL and 

triglycerides may be restricted. Thus the selectivity with which the placenta 

distributes long-chain PUFA into a lipid fraction which does not recross the 

placental barrier may allow those fatty acids to be retained, relative to parent 

EFA, in the foetoplacental unit [32]. Furthermore the foetus is provided with 

preformed structural membrane components. 
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Campbell et al [58] investigated the binding characteristics of human placental 

membranes using 4 different radiolabeled fatty acids. Binding sites seem to have a 

strong preference for long-chain PUFA: the order of competition was 20:4n-6 >> 

18:2n-6 > 18:3n-3 >> 18:1n-9. When the placenta is perfused with a mixture of 

fatty acids the order of selectivity for uptake is 20:4n-6 > 22:6n-3 > 18:3n-3 > 

18:2n-6 [36]. But the placenta appears to preferentially retain 20:4n-6 in 

preference to the other fatty acids, resulting in a different order of selectivity for 

placental transfer to the foetal circulation: 22:6n-3 > 18:3n-3 > 18:2n-6 > 18:1n-9 

> 20:4n-6 [36]. Haggarty et al [36] concluded that the human placenta has the 

capacity to selectively transfer individual fatty acids to the foetus with the 

greatest selectivity being shown for DHA. 

In conclusion, these studies illustrate (i) preferential binding of long-chain PUFA 

by placental membranes [58] and (ii) selective transfer of long-chain PUFA by the 

human placenta to the foetal circulation [36] in preference to the nonessential 

fatty acids. 

Placental released nonesterified fatty acids at the foetal side are transported in 

foetal blood bound to a specific foetal protein: the α-fetoprotein [44]. This α-

fetoprotein has been shown in a number of studies to bind PUFA more strongly 

than does albumin [59]. The presence of this protein can account for the relatively 

high proportion of PUFA found in foetal plasma. The free fatty acids in foetal 

plasma are rapidly taken up by foetal liver, where they are esterified and released 

back into the foetal circulation as triglycerides. This may explain the significant 

linear correlation for certain long-chain PUFA between maternal and cord plasma 

triglycerides during gestation [60]. A strong correlation between the long-chain 

PUFA of maternal and umbilical plasma phospholipids has also been observed [17]. 

To elucidate the role of p-FABPpm in the preferential transfer of long-chain PUFA 

from the maternal circulation across the placenta, the direct binding of various 

fatty acids to purified p-FABPpm was determined [61]. It was shown that p-

FABPpm preferentially binds with long-chain PUFA despite a high concentration of 

nonessential fatty acids in the assay mixture [61]. As p-FABPpm is exclusively 

located on the microvillous membrane (facing the maternal circulation) [56] and 

p-FABPpm has a preference for long-chain PUFA, a unidirectional flow of maternal 

long-chain PUFA to the foetus is favoured [10]. 
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The uptake of linoleic acid by brush-border (facing the maternal circulation) 

preparations from human syncytiotrophoblasts was greater than that for basal 

membrane (facing the foetal circulation) preparations [62]. It was suggested that 

this may be due to differences in the concentration of fatty acid binding proteins 

between the brush-border and basal membrane. 

In summary, the observed transplacental gradient of long-chain PUFA (known as 

biomagnification) suggests the presence of a highly active and specific 

transplacental long-chain PUFA transport system that may be driven by (i) 

selectivity of the placental lipoprotein lipases for the release of long-chain PUFA 

from triglycerides; (ii) specific placental fatty acid binding proteins; and (iii) 

foetal α-fetoprotein which has a high affinity for long-chain PUFA. 

4.4. Maternal and neonatal EFA status 

4.4.1 Absolute and relative fatty acid data 

Pregnancy is generally associated with a marked hyperlipidemia involving all lipid 

classes [63]. As a consequence the absolute amounts of all the maternal plasma PL 

associated fatty acids rise during pregnancy [54;64]. Longitudinal studies indicate 

that the amounts (mg/L) of all the individual fatty acids in the maternal plasma PL 

increase from the early onset of pregnancy until delivery [54;64]. Recently, it was 

shown that plasma total fatty acid content starts to increase within the first ten 

weeks of pregnancy [65]. It was shown that between early pregnancy and delivery, 

the plasma amounts of the PL-associated essential PUFA increase by about 40%. 

For AA and DHA these figures are 23 and 52%, respectively [54]. This probably 

reflects the high requirement of these fatty acids by the developing brain and 

retina. On the other hand the saturated and monounsaturated fatty acids increase 

even more significantly than the essential PUFA (65 versus 40%). Especially the 

increase in Mead acid is more pronounced (92%), which might indicate a maternal 

deficit in essential fatty acids [54]. 

Although the absolute amounts of maternal fatty acids rise with progressing 

gestation, the relative long-chain PUFA concentrations (w%) decline with 

progressing gestation. The relative maternal DHA status increases until 18 weeks 

of gestation. Thereafter DHA gradually decreases near term and even after 

delivery maternal plasma DHA declines further [54]. The relative concentration of 
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linoleic acid remains stable, whereas the relative amounts of AA steadily decline 

from mid gestation till near term [54;64;66]. The ratio of the essential n-3 and n-6 

fatty acids to the non-essential n-7 and n-9 fatty acids decreases continuously 

during pregnancy. This led to the suggestion that pregnancy is associated with 

reduced maternal EFA status. Overall maternal long-chain PUFA status declines 

steadily during pregnancy [17]. 

The amount of all the umbilical plasma PL associated fatty acids is substantially 

lower than the maternal plasma PL associated fatty acids at delivery because the 

PL concentration is considerably lower in cord blood than in maternal blood at 

delivery [54;66]. The relative amounts of AA and DHA on the other hand are 

significantly higher in umbilical than in maternal plasma PL whereas the parent 

EFA are much lower in the neonate compared to the mother [54;66]. 

Several studies [67-69] of the fatty acid composition of foetal and maternal 

plasma PL showed that at birth, linoleic acid represents ≈ 10% of the fatty acids in 

cord plasma compared with ≈ 20% in maternal plasma but, surprisingly, the AA 

concentration of cord plasma is twice (≈ 10%) that observed in the mother (≈ 5%). 

Similarly, the α-linolenic acid concentration in newborns is half of that in the 

mother (≈ 0.3% and ≈ 0.6%, respectively), whereas the DHA concentration is 

double (≈ 6% and ≈ 3%, respectively). This situation, in which the relative plasma 

concentrations of the n-3 and n-6 long-chain PUFA exceeds those of their 

precursors has only been observed in newborns and does not exist in adults. It is 

obviously an extremely favourable situation for the development of the newborn, 

especially at a time when large quantities of AA and DHA are required for the 

development of the brain and retina. 

In our studies, described in this thesis, we decided to express the fatty acid 

composition in relative (% of total fatty acids of plasma PL) amounts. Because 

metabolic reactions of fatty acids occur in a lipid environment, it is the amount of 

a given fatty acid relative to the other fatty acids present, that determines the 

rate of this reaction in that environment [70]. Furthermore, the measurement 

error of the analytical procedure for determining relative concentrations is usually 

smaller than for determining absolute amounts [70]. 
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4.4.2 Umbilical cord vessel walls 

The umbilical vein (afferent or supplying foetal vessel) transports blood and 

nutrients from the mother to the foetus whereas the blood flows back from the 

foetus to the mother through the umbilical arteries (efferent or draining foetal 

vessels). Since umbilical vessel walls do not have a vasa vasorum to obtain 

nutrients, they can only obtain their nutrients directly from the blood passing 

through. Therefore the fatty acid composition of the umbilical vessel wall PL can 

be considered to give a longer term reflection of the neonatal EFA status than that 

of neonatal plasma or red blood cells [68]. 

It was shown that the PL of the umbilical arteries contain significantly less 18:2n-

6, 20:4n-6, 22:4n-6, 20:5n-3 and 22:5n-3 and significantly more 20:3n-9 and 22:3n-

9 compared to the PL of the umbilical vein. The presence of high amounts of Mead 

acid and 22:3n-9 in the umbilical arterial vessel wall was suggested to be an 

indication of a marginal EFA status of the newborn [67;68]. Moreover, the DHA 

deficiency index (22:5n-6/22:4n-6) was significantly higher in the PL of the 

umbilical arteries compared with the veins. This might indicate that the need for 

DHA by the foetal tissue is not adequately covered [64;68]. In chapter 8 we will 

focus on this topic. 

4.4.3 Importance of DHA for the neonate 

From prepregnancy to 10 weeks of pregnancy and between 10 and 40 weeks of 

gestation, the absolute amount of DHA associated with maternal plasma PL 

increased by ≈ 48% [65] and ≈ 52% [54], respectively. Length of gestation is 

positively correlated with the absolute and the relative maternal DHA values until 

15 weeks of pregnancy [71]. This suggests a very important role of DHA for human 

development.  

Daily supplementation of nonpregnant women with either 285 mg DHA as a 

microalgal oil (DHASCO, Martek Biosciences, Columbia, MD) or with 266 mg DHA as 

tuna fish oil for a four-week period increased plasma PL DHA by ≈ 34% and ≈ 31% 

respectively [72]. This shows that the effect of pregnancy on the amount of DHA 

in plasma PL is considerably stronger than that of increased consumption of ≈ 270 

mg DHA/d. The increased DHA content of plasma PL is unlikely of dietary origin 

alone.  
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Indeed, many dietary studies show that the dietary habits remain unaltered during 

pregnancy. Neither the amount and type of fat nor the fatty acid composition of 

the maternal diet changes during pregnancy [65;73;74]. Because plasma PL mainly 

originate from hepatic synthesis, the increase in DHA concentrations during 

pregnancy might reflect a pregnancy-associated adjustment in the hepatic 

synthesis of DHA (increase in the activity of the desaturation and elongation 

system), with an enhanced or selective incorporation of this fatty acid into the PL. 

Other explanations for the improved absolute maternal DHA status could be an 

increase in the mobilisation of DHA from maternal stores or reduced oxidation or 

both. 

Al et al [75] could not distinguish a difference in n-3 fatty acid concentrations in 

maternal plasma PL from women who delivered preterm (<37 wk), at term (37-

42wk) and after prolonged gestation (>42wk). But the DHA status (w%) in umbilical 

plasma PL significantly increased with progressing gestation. This observation 

suggests that the efficiency of maternal-foetal transfer of n-3 fatty acids improves 

with progressing gestation. 

After parturition, the elevated concentrations (mg/L) of the n-6 or n-3 fatty acids 

associated with plasma PL steadily decline both in lactating and nonlactating 

women. Regarding the relative fatty acid composition (w%), significant changes 

occur between lactating and nonlactating women for the postpartum changes of 

the n-3 fatty acids but not for the n-6 fatty acids [76]. The decline in plasma PL 

22:6n-3 values was enhanced in lactating women [76]. As human milk contains 

significant amounts of DHA, the decrease of DHA in plasma PL probably indicates 

the utilisation of DHA for breast milk. Moreover the reductions in maternal DHA 

became stronger the longer the duration of breast-feeding [76]. In other words 

there is an extra drain on DHA stores in women who breast-feed their children and 

it will probably take them longer to replenish their DHA stores [76]. 

Some studies report that during pregnancy, the absolute and relative amounts of 

DHA in maternal plasma PL of women who were previously pregnant 

(multigravidae) were significantly lower compared to women who were pregnant 

for the first time (primigravidae) [17;77]. The percentage of DHA in the plasma PL 

of multigravidae is on average ≈ 10% lower than in primigravidae. In addition, a 

significant negative relation was observed between the gravida number and the 

percentage of DHA in the maternal plasma PL [77]. These observations might 
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indicate that in usual dietary conditions pregnancy is associated with mobilisation 

of DHA from a store that may not be readily replenished after the first pregnancy 

[77]. On the other hand in a nonpregnant study population [78], neither a 

significant difference in relative amount of DHA in plasma PL was found between 

nonpregnant nulligravidae and nonpregnant multigravidae nor a significant 

relation between parity and the percentage of DHA in plasma PL. In the latter 

study the duration between the time of blood sampling and the last partus in the 

multigravidae was between 1 and 2 years. These observations indicate that the 

maternal DHA status after pregnancy normalises within 1 year [78]. However the 

average DHA concentration in erythrocyte PL was significantly lower in the 

mothers than in the nulligravidae and although there was no significant 

relationship with parity number, this observation nonetheless suggests that in 

domains with a slow fatty acid turnover, normalisation of the DHA status after 

delivery may take longer than 1 year. 

4.4.4 Essential fatty acids and birth outcome 

AA and DHA are critically important for foetal and infant growth and central 

nervous system development. Long-chain PUFA are preferentially accumulated in 

the brain during the last trimester of pregnancy and the first months of life. High 

levels of DHA are found in the grey matter of the cerebral cortex and in the 

photoreceptor outer segment membranes of the retina [15]. Post-mortem studies 

of foetuses, stillbirths and preterm infants have shown foetal accretion of 

approximately 70 mg n-3 long-chain PUFA per day during the last trimester, most 

of which is 22:6n-3 [79;80]. 

There is clinical evidence supporting a relation between long-chain PUFA in 

plasma and foetal growth. Several authors reported a positive relation between 

birth weight and 20:4n-6 content in cord plasma, suggesting that intrauterine 

20:4n-6 serves as a growth factor. Crawford et al [33] documented significantly 

lower levels of 20:4n-6 and 22:6n-3 in cord plasma phosphatidylcholine and in cord 

red blood cell phosphatidylethanolamine of low birth weight infants (< 2500 g) 

compared to infants with birth weights higher than 2500 g. Additionally, 20:4n-6 

and 22:6n-3 were significantly lower in cord plasma of the neonates with low head 

circumference (< 32.5 cm) and with small placentas (< 425 g) compared to 

neonates with high head circumference (> 35 cm) and with bigger placentas (> 650 
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g) [33]. Others found a significant and positive correlation between body weight 

and content of 20:4n-6 and total long-chain n-6 fatty acids in plasma triglycerides 

in premature infants at four days of age. The authors proposed that during early 

life AA may have a growth-promoting effect, which could be related to its role as 

an eicosanoid precursor or to its structural function in membrane lipids [81]. 

Similar results were found in a group of low birth weight preterm born infants (< 

2000 g). The percentages of 22:6n-3, 20:4n-6 and the sum of n-6 long-chain PUFA 

in cord plasma phosphatidylcholine correlated positively with birth weight and 

with head circumference. Moreover the percentage of 22:6n-3 showed strongest 

correlation with length of gestation [82]. In other words, the smallest and least 

mature infants are born with the lowest circulating levels of long-chain PUFA. 

After correction for gestational age at birth, relative DHA levels in the umbilical 

artery wall of preterm infants were significantly related to birth weight and head 

circumference [83]. These findings might indicate that both 20:4n-6 and 22:6n-3 

serve as potential foetal growth factors and are important for foetal and infant 

development [84]. 

A recent large cross-sectional study in 627 at term born infants found that both 

20:4n-6 and 22:6n-3 in umbilical cord plasma PL were negatively related to 

weight-for gestational age scores at birth [85]. In other words 20:4n-6, the sum of 

the n-6 long-chain PUFA, 22:6n-3 and the sum of n-3 long-chain fatty acids were 

lower in infants born large for gestational age and higher in the smaller infants. 

But 20:5n-3 and 22:6n-3 were significantly higher in umbilical cord plasma of the 

neonates born at later gestational age. The DHA-status index (22:6n-3/22:5n-6) 

was higher in the plasma of infants born at a later gestational age and lower in 

those with a higher weight for gestational age at birth [85]. The inconsistency 

between this study and the previous studies [33;81;82] might be explained by the 

fact that gestational age at birth plays a important role. Indeed, preterm infants 

have significantly lower EFA and long-chain PUFA statuses than do full-term 

neonates [86;87]. 

4.4.5 Singleton versus multiple pregnancy 

The concentrations (w%) of the long-chain PUFA, 20:4n-6 and 22:6n-3, in the wall 

of the umbilical artery and vein are significantly lower in infants born after 

multiple pregnancy (twins and triplets) compared to infants born after a singleton 
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pregnancy. The status of Mead acid on the other hand is much higher in twins and 

triplets [88]. The observed difference in EFA status between infants born after a 

singleton and after a multiple pregnancy supports the hypothesis that the 

maternal EFA supply to the developing foetus is limiting. Minor differences occur 

in the fatty acid composition of maternal plasma PL at delivery between multiplet 

mothers compared to mothers of singletons. The biochemical EFA status in the 

cord plasma and vessel walls of twins and triplets is lower than that observed in 

singletons. It was suggested that a larger total foetal tissue mass is related to an 

increased EFA accretion and the idea that the supply of EFA is limited [89]. This 

hypothesis has been confirmed by Rump et al [85]. 

4.4.6 Maternal diet and the effect of supplementation with n-6 or n-3 

fatty acids 

The developing foetus depends on active transport of the long-chain PUFA from 

the maternal circulation across the placenta and thus on the EFA and long-chain 

PUFA status of the mother. Cross country comparisons of cord blood fatty acid 

composition [64], composition of the cord following supplementation with specific 

fatty acids [90], and natural variations in diet within a population [91], indicate 

that the most important determinant of the fatty acid mixture delivered to the 

foetus is the fatty acid composition of the maternal diet. Therefore, the diet of a 

pregnant woman should contain sufficient amounts of EFA to cover her own 

requirement as well as that of her neonate. 

It was shown that in a Dutch population dietary habits remained unaltered during 

pregnancy. Neither the amount and type of fat nor the fatty acid composition of 

the maternal diet changed from the early onset of pregnancy until delivery [73]. 

Moreover, Otto et al [65] observed no major significant changes in dietary fatty 

acid intake between the pre-pregnant period and week 10 of pregnancy. 

There is epidemiological evidence that populations with a high fish intake (Faroe 

Islands and the Inuits) have a longer gestation, larger babies and reduced 

incidence of preeclampsia (pregnancy induced hypertension) compared to 

populations eating less marine food [92;93].  

Dietary marine n-3 fatty acids may reduce the risk of preeclampsia by increasing 

the physiologically active prostacyclin:thromboxane ratio and by reducing blood 

pressure. However it was found that pregnant women suffering from pregnancy 
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induced hypertension have a higher DHA status after delivery compared to women 

with an uncomplicated pregnancy [94]. The DHA status in pregnancy induced 

hypertension increased between 32 weeks of gestation and delivery and can thus 

be considered a late phenomenon not contributing to the pathogenesis of 

preeclampsia [94]. 

There is a strong association between gestational age and the DHA concentration 

(w%) of umbilical plasma PL. In concurrence, DHA in plasma phosphatidylcholine 

of preterm infants correlates strongly with length of gestation [82]. These 

observations led to a series of fish oil supplementation studies during pregnancy. 

Olsen and his group extensively studied the relationship between the maternal n-3 

long-chain PUFA intake and preterm delivery. Initially their results were 

inconsistent. The first studies from Olsen and co-workers [95;96] showed that 

maternal dietary intake of n-3 fatty acids by supplementation with fish oil (2.7 g 

n-3 fatty acids per day) from the 30th week of gestation prolonged gestation with 

an average of 4 days and increased birth weight by 107 g as an average, as 

compared with supplementation with olive oil. The suggested explanation for this 

delayed delivery was that a high intake of n-3 fatty increases the production of n-

3 derived eicosanoids (such as prostacyclin PGI3 which relax the myometrium) at 

the expense of the n-6 derived eicosanoids (such as prostaglandins F2α and E2 

which initiate labour). However in a later study by Olsen et al [97], when the 

intake of marine n-3 fatty acids during the second trimester was assessed by a 

semi-quantitative questionnaire no association was observed between gestational 

length and birth weight on the one hand and dietary intake of n-3 fatty acids on 

the other hand. Finally, their most recent prospective cohort study among almost 

9000 pregnant women clearly demonstrated that length of gestation is positively 

related to the intake of n-3LCPUFA, and that low fish consumption is a risk factor 

for preterm delivery [98].  

Supplementation with fish oil during the last trimester of pregnancy resulted in a 

significantly higher concentration of n-3 fatty acids and a decrease in n-6 fatty 

acids (especially linoleic acid but also AA) in maternal and umbilical plasma PL 

[90]. In addition the amount of Mead acid was significantly decreased in maternal 

plasma PL after fish oil supplementation compared to the placebo group. A 

positive correlation was found between the duration of pregnancy and the DHA 

status in umbilical plasma [90]. 
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Increased consumption of n-3 fatty acids in the form of sardines and fish oil [99] 

during the last pregnancy trimester resulted in significantly higher DHA levels in 

maternal plasma and red blood cell PL compared to control mothers. Similarly 

DHA levels increased in the blood of the newborn both in plasma as in red blood 

cells. The length of pregnancy was not affected by this increased consumption of 

n-3 fatty acids [99]. 

It is not yet entirely elucidated whether DHA supplementation prolongs gestation. 

But many studies have shown that neonates born at later gestational age have 

higher DHA levels in their umbilical plasma. This can be explained by the concept 

that the maternal-foetal transfer of DHA improves with progressing gestation [75]. 

Pregnant Spanish women consuming more than 4 fatty fish meals per month, have 

significantly higher levels of EPA and DHA and significantly lower levels of AA in 

the PL fraction of their red blood cells at delivery compared to women consuming 

less than 2 fatty fish meals per month [100]. Similar differences were found in the 

PL fraction of the red blood cells of their neonates [100]. 

The effect on the neonatal long-chain PUFA status after administration of 

pregnant women from the second trimester with three low-dose fish oil 

supplements (336 mg, 528 and 1008 mg long-chain n-3 fatty acids) was determined 

by analysing the fatty acid composition of the umbilical arteria and vein [101]. 

Daily supplements of 528 or 1008 mg long-chain n-3 fatty acids significantly 

increased foetal long-chain n-3 fatty acid status without impairing the long-chain 

n-6 fatty acid status of the newborn [101]. The supplement containing 528 mg 

long-chain n-3 fatty acids was a milk-based supplement which contained also 171 

mg 18:3n-3. This supplement resulted in a statistically insignificant higher status 

of 22:6n-3 compared to the 1008 mg long-chain n-3 fatty acid containing 

supplement with only 23 mg 18:3n-3 [101]. 

On the other hand, when pregnant women were supplemented with linoleic acid 

rich food products from the 20th week of gestation until delivery, the maternal 

linoleic acid status in plasma PL significantly increased [102]. The neonatal n-6 

long-chain PUFA increased whereas the n-3 long-chain PUFA in umbilical plasma 

became significantly lower compared to that of the neonates of the non 

supplemented mothers. 
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Supplementation of pregnant women in their second trimester with 0.57 g DHA 

and 0.26 g 20:4n-6 for four weeks did not significantly reduce the total n-6 long-

chain PUFA levels neither in plasma nor in erythrocyte PL, whereas the plasma 

levels of 22:6n-3 in the supplemented group had increased already after one week 

of supplementation and continued to be increased until the end of the 

intervention [72]. Thus a low dose of 20:4n-6 together with DHA (ratio AA:DHA in 

the supplement ≈ 1:2.2) increases the levels of DHA without decreasing the levels 

of total n-6 long-chain PUFA [72]. 

Recently, a large double-blind randomised study of 341 Norwegian pregnant 

women showed neither harmful nor beneficial effects of maternal 

supplementation with long-chain n-3 PUFA regarding pregnancy outcome, 

cognitive development or growth as compared with supplementation with n-6 

fatty acids [103]. In this study, pregnant women were either supplemented with 

cod liver oil (rich in n-3 long-chain PUFA) or with corn oil (rich in n-6 PUFA). 

Maternal dietary supplementation with long-chain n-3 fatty acids did not affect 

gestational length, birth weight, and birth length or head circumference as 

compared with supplementation with n-6 fatty acids. However, it was observed 

that neonates with high DHA concentration in umbilical plasma PL had higher 

gestational age than neonates with low concentration of DHA [103]. There were no 

differences in cognitive functioning neither at 6 nor at 9 months of age between 

the two supplementation groups [103]. As expected, the sum of n-6 fatty acids in 

umbilical plasma PL was increased in the corn oil group whereas the sum of the n-

3 fatty acids in umbilical plasma PL was increased in the cod liver oil group [103]. 

Thus it can be concluded that the n-3 and n-6 long-chain PUFA levels in umbilical 

plasma PL can be greatly influenced by supplementation during pregnancy 

[90;99;102;103]. The higher the concentration in the maternal diets the higher the 

levels of these fatty acids in maternal plasma and in umbilical plasma. Therefore 

when one wants to increase the neonatal EFA status by maternal dietary 

supplementation it is advisable to increase both the intake of n-6 and n-3 PUFA. 
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4.4.7 The effect of long-chain PUFA supplementation in infants born 

preterm and at term 

Two years ago, Simmer reviewed the literature to assess whether supplementation 

of formula with long-chain PUFA is safe and whether it is of benefit to preterm 

and at term born infants [104;105]. 

There is some evidence that long-chain PUFA supplementation of preterm infants 

increases the rate of visual maturation. However the differences between 

supplemented and control infants are small and of little clinical significance [104]. 

It was concluded that data from different randomised clinical trials do not 

demonstrate a long-term benefit to preterm infants after supplementation with 

formula with long-chain PUFA [104]. Providing an optimal ratio of 18:2n-6 to 

18:3n-3 and sufficient 18:3n-3 for infants to synthesise their own DHA may be 

adequate. No harm has been demonstrated with respect to growth when formula 

are supplemented with a balance of n-3 and n-6 long-chain PUFA [104]. The 

justification for adding long-chain PUFA to formula should be based on the 

rationale of mimicking the composition of human milk and not on evidence that 

important clinical benefits have been demonstrated. A supplement with 

approximately 0.6% 20:4n-6 and 0.4% 22:6n-3 will achieve this [104]. 

An advantage in visual development was found in at term born infants 

supplemented with 0.36% DHA compared to infants fed the control formula with 

only 1.5% α-linolenic acid. This relatively low concentration of 18:3n-3 may have 

limited the infants’ ability to synthesis DHA [105]. When the concentration of α-

linolenic acid is increased and the ratio of LA/ALA reduced in the control formula, 

no difference was found in visual maturation between supplemented and controls 

infants [105]. 

There is no evidence that long-chain PUFA supplements impair the growth of term 

infants because in the current studies a balance of n-3 and n-6 fatty acids is used 

which is unlikely to result in low arachidonic acid levels and therefore less likely 

to reduce growth [105].  

Both reviews conclude that a large long-term randomised trial is needed to 

determine whether long-chain PUFA are essential for preterm or at term born 

infants and whether the fatty acid composition of infant formulas is a determinant 

of intelligence [104;105]. 
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5. Brain development 

The brain is a structural-lipid rich organ that uses highly unsaturated fatty acids, 

particularly AA and DHA, for structure and function [80;106]. In 2-week-old 

suckling rats, tests with 14C- and tritium-labelled parent, precursor and product 

fatty acids showed that the proportions of brain 20:4n-6 derived from 20:4n-6 

itself was ≥ 10-fold greater than that recovered from the precursor linoleic acid. 

Similar results were described for a comparison of DHA and its precursor α-

linolenic acid [107;108]. Recently these findings were confirmed in foetal primates 

[41]. In that study, [13C]18:3n-3 or [13C]22:6n-3 was administered to baboon 

foetuses as nonesterified fatty acid via injection into the jugular artery. DHA in 

foetal plasma was about 8 times more effective as a substrate for brain DHA 

accretion compared with its precursor 18:3n-3 [41]. 

Administration of [13C]α-linolenic acid to rat pups during brain development 

showed that several times more α-linolenic acid was used for synthesis of brain 

cholesterol rather than for that of brain DHA. The isotopic data suggest that at 

least 5 times more α-linolenic acid carbon chain that reaches the brain is used for 

cholesterol rather than for de novo DHA synthesis [109]. The brain does not import 

cholesterol but synthesises its own [110]. Cholesterol synthesis is critical for brain 

development and it seems that α-linolenic acid is more important to the brain as a 

substrate for cholesterol than for brain DHA [108]. This phenomenon is known as 

carbon recycling. 

PUFA are needed for normal neonatal brain development [15]. Brain lipids contain 

only trace amounts of linoleic and α-linolenic acid but are extremely rich in long-

chain PUFA such as DHA. DHA is the major n-3 fatty acid in the mammalian brain 

and retina. The majority of DHA is incorporated in the brain during the brain 

growth spurt, which starts in humans at 26 weeks of gestation until about 2 years 

of age. An adequate supply of maternal DHA is necessary to support optimal 

neurobiological development of both foetus and infant [111]. 
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Abstract
Aim: To evaluate the validity and usefulness of a food
frequency questionnaire (FFQ) which was designed to
evaluate individual fat consumption for a Dutch popula-
tion relative to 7-day estimated records (7d ER). The FFQ
has been validated previously and was adapted to the
Belgian situation. Methods: Longitudinal study in 26
healthy pregnant women; FFQ and 7d ER were obtained
during the 1st and 3rd trimesters. Results: FFQ was vali-
dated with 7d ER. Fat and fatty acid intake estimated by
the FFQ did not differ significantly (p ! 0.01) from data
obtained by the 7d ER except for 18:2n–6. Pearson corre-
lation coefficient between the 2 methods ranged from
0.62 to 0.68. On average, 47% of the women were classi-
fied in the same quartile with the 2 methods and less
than 2% in the opposite quartile. Total fat intake, calcu-
lated from FFQ, was on average 87.9 (SD 18.1) g/day. The
mean intake of linoleic acid was 13.3 (SD 5.4) g/day and
of ·-linolenic acid was 1.4 (SD 0.5) g/day. The dietary
intake of the saturated, monounsaturated and polyunsat-
urated fatty acids was respectively 34.7 (SD 10.0) g/day,

29.6 (SD 8.1) g/day and 15.7 (SD 5.9) g/day. Conclusion:

The FFQ gives similar results for fat intake as the 7d ER
and is thus considered an appropriate method for clas-
sifying individuals to the right part of the distribution of
dietary fat intake.

Copyright © 2001 S. Karger AG, Basel

Introduction

In pregnancy studies, it is important to accurately esti-
mate nutrient consumption and relate it to the neonatal
outcome. We focus on the importance of essential fatty
acids on pregnancy outcome. Therefore, it is important to
know exactly the daily intake of the individual fatty acids
during the course of pregnancy. The 7-day estimated rec-
ord (7d ER) is a very time consuming method whereas the
food frequency questionnaire (FFQ) method is an easy
and cheap method to evaluate dietary intake of a popula-
tion. An additional advantage of FFQ is that it covers the
nutrient intake over a longer time-period compared to 7d
ER. In this study we used a FFQ which was specifically
designed to collect data on the fat consumption of Dutch
pregnant women [1]. Minor changes were used to adapt
this Dutch FFQ to the Belgian diet, in order to enable us
to focus on the fat and fatty acid intake of pregnant Bel-
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gian women. The aim of the present study was to deter-
mine the relative validity and usefulness of a Dutch FFQ
[1] adapted to the Belgian diet by comparing dietary fat
intake data collected by this FFQ with the 7d ER in a
group of pregnant Belgian women during the first and
third trimesters of pregnancy. Biological markers to assess
the validity were not used in this study. Later, we will
compare the results of the FFQ with the fatty acid compo-
sition of serum phospholipids [in preparation].

Methods

Study Population
At their first antenatal medical visit, healthy pregnant women

attending the Department of Gynaecology of Ghent University Hos-
pital, Belgium were asked to cooperate in this study. All pregnant
volunteers signed a written informed consent form, approved by the
ethics committee of Ghent University Hospital. Only singleton preg-
nancies were included. Inclusion criteria were: first pregnancy, dia-
stolic blood pressure below 90 mm Hg, not diabetic, no proteinuria
and not suffering from renal or cardiovascular disease. A food fre-
quency questionnaire was filled in twice during the course of preg-
nancy together with a dietician: between 6 and 22 weeks of gestation
(median 15 weeks) and between 32 and 40 weeks (median 35 weeks).
Gestational age was calculated from the self-reported first day of the
last menstrual period. If the last menstrual period was unknown, ges-
tational age was based on early ultrasound measurements. The preg-
nant women were asked to complete accurately a food diary for 1
week (7d ER) at these points during their pregnancy. Of the 33 preg-
nant women willing to participate, 29 women completed twice the
7-day estimated food record and the FFQ.

FFQ
Dietary intake was assessed by a FFQ developed by Al [1], which

was specifically designed to collect data on the fat consumption of
Dutch pregnant women. The Department of Public Health (Ghent
University Hospital) adapted this Dutch FFQ to the Belgian diet and
developed a colored photographic booklet as a tool to estimate por-
tion sizes of different foods and courses. The main objective to this
FFQ is to estimate the dietary intake of fat and fatty acids in the
preceding month. A list of 180 of the most commonly consumed Bel-
gian fat-containing foods are included in the FFQ. The women were
visited at home by the same experienced dietician and asked whether
they consume those products daily, weekly or monthly and how
many units they normally eat of that particular food. At the end of
the questionnaire, some additional questions were asked which gave
information about the kind of fat used for cooking and the frequency
of intake and the amount of fat normally bought per week or month
and the number of individuals that generally eat in the same house-
hold.

7d ER
For the purpose of assessing overall energy and nutrient intake

with high precision on individual level, a 7-day estimated food rec-
ord method was carried out [2]. For this purpose, a structured food
diary was developed, in which each meal (breakfast/morning snack/
lunch/afternoon snack/dinner/evening snack) was explicitly men-

tioned per day. As far as the food groups/food items were concerned,
the diary did not contain any predefined entries. For each food item
consumed, subjects were asked to give information about time of the
day, amount, branch, and location of consumption. For homemade
dishes, extra information was asked on ingredients and type of
amount of fat. The respondents were given detailed instructions
beforehand concerning the information needed for the diary. Special
attention was thereby given to portion sizes and to the usual house-
hold measures (spoon, cups, glasses, etc.) used by the respondents.
The diary was checked for quality and completeness of the informa-
tion every 2 days by experienced dieticians in the presence of the
respondents. The recorded foods were translated into quantities of
over 1,400 food items and analysed for nutrient composition. The
nutrient estimates from the 7d ER were converted into data for 1 day
simply by dividing by 7.

Macronutrients (proteins, carbohydrates and fat) were calculated
by self-developed nutritional software based on the Dutch Food
Composition Tables [3] and on food consumption data available in
Belgium for local food items (e.g. certain margarines).

Nutrient Analysis
Nutrient analysis was performed on the basis of Unilever nutri-

tional software [4]. For the detailed fatty acid analysis (·-linolenic
acid, arachidonic acid, eicosapentaenoic acid and docosahexaenoic
acid) of the FFQ, a database developed by Staessen et al. [5, 6] was
used.

Reliability of the Food Intake Data
The reliability of the food intake data was estimated by compar-

ing the calculated physical activity level (PAL) with published
results. The PAL was calculated by dividing the reported energy
intake (from 7d ER) by the estimated basal metabolic rate (BMR),
which was obtained with the Schofield formula [7]. For calculation of
the PAL value during the third trimester, an energy cost for pregnan-
cy of 180 kcal/day [8] was taken into account. Based on measure-
ments with doubly labelled water, PAL values of 1.4–1.7 for seated
work and 2.0–2.4 for heavy physical activity have been described [9].
A PAL value lower than 1.35 is likely to indicate an underestimation
of habitual dietary intake. Therefore, this value was used to calculate
the lower cut-off value [10, 11]. Subjects with PAL values higher than
2.4 were considered overreporters [11]. This should have led to
the exclusion of dietary intake data from 11 pregnant women (PAL
! 1.35). However, we decided not to be so strict and only exclude
those women with a calculated PAL value lower than 1 (n = 3). Thus,
the final study population consisted of 26 pregnant women.

Statistics
Daily nutrient intakes of all pregnant women were calculated.

Normality of distribution was ascertained with the Kolmogorov-
Smirnov test. Values are reported as mean and standard deviation of
the mean in parentheses (table 1). To assess the relative validity of
the FFQ three different statistical tests were performed [12]. Firstly,
it was tested whether the two methods did not result in significant
differences in dietary fat intake, using the paired Student’s t test. p !
0.01 was taken as the criterion of significance. Secondly, it was tested
how well the results from the two measurements correlated with each
other by calculating the Pearson correlation coefficients. Finally, the
women were divided into quartiles according to their fat intake
assessed by 7d ER and FFQ. When the two measurements classified
the subjects in the same or in an adjacent quartile, this was inter-
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Table 1. Nutrient intake per day, measured by 7d ER

1st trimester 3rd trimester PRI [6,12]

2,157 (362.5) 2,194 (449.5)
Proteins, en% 16.0 (1.9) 15.4 (2.0) 14
Carbohydrates, en% 46.1 (5.3) 47.0 (4.2) 55–75
Fat, en% 36.5 (5.6) 36.2 (4.7) 15–30
SF, en% 14.8 (2.2) 14.6 (2.5) !10
MUF, en% 13.6 (2.6) 13.2 (2.0) –
PUF, en% 5.9 (1.5) 6.1 (1.7) 3–7

Values are reported as mean (SD) (n = 26). Comparison is made
with the Belgian Population Reference Intake (PRI) [6, 12].

No significant differences (p ! 0.01) in nutrient intake or energy
distribution between the 1st and 3rd trimesters.

preted as a good classification. When the subjects were classified
from one extreme quartile to the other extreme quartile, this was con-
sidered as a gross difference in classification. The data were analysed
using the MedCalc statistical program, version 6 (MedCalc Software,
Mariakerke, Belgium) [13].

Results

Clinical Characteristics of the Study Population
The study population consisted of 26 pregnant Belgian

women with a mean age at delivery of 30 years (range 25–
37 years). The PAL value (calculated as described pre-
viously) ranged from 1.1 to 2.1 (mean 1.56) in the first
trimester and from 1.0 to 2.1 (mean 1.45) in the third tri-
mester. The mean Body Mass Index of the women before
pregnancy was 22.0 kg/m2 (range 17.6–29.3 kg/m2) and
mean weight gain at delivery was 15 kg (range 9–20 kg).
All pregnant women were nulliparous, all pregnancies
were uncomplicated and the infants were born healthy
and at term with a mean gestational age of 39.0 weeks
(range 38–42 weeks). The mean birth weight of the neo-
nates was 3,270 g (range 2,300–4,020 g) and the mean
birth length was 50.7 cm (range 47–54 cm). The Apgar
score was measured 1 and 5 min after birth, it is the sum
(max. 10 points) of points gained on assessment of the
heart rate, respiratory effort, muscle tone, reflex irritabili-
ty, and color. The median Apgar score 1 min after birth
was 8 (range 4–9) and 5 min after birth 9 (range 6–10).
The sex ratio of the infants was 16 males and 10 females.

7d ER
From the 7d ER, total energy intake was calculated.

Daily energy intake and energy distribution from the first

and third trimesters are summarized in table 1 and com-
pared with the Belgian population reference intake (PRI)
[8, 14]. The daily caloric intake in our study population is
on average 2,175 kcal/day. The average caloric intake
only slightly increased (37.3 kcal/day as an average)
between the first and third trimesters of pregnancy, signif-
icance was not reached. The mean daily intake of carbo-
hydrates (% of energy intake, en%) was below the PRI.
Only one woman had a carbohydrate intake higher than
55 en% and 5 women had an intake above 50 en%. 22 of
26 pregnant women (85%) had a protein intake higher
than the recommended intake of 14 en% [8]. The mean
daily intake of total fat (en%) and saturated fat (SF) was
above the PRI. Only two women had a total fat intake
lower than 30 en% as recommended and only one woman
had a SF intake lower than the recommended maximal
level of 10 en%. Mean daily intake of polyunsaturated fat
(PUF) met the PRI. No recommendations have been
made for monounsaturated fat (MUF). However, with
recommendations of maximum 30 en% of total fat, maxi-
mum 10 en% SF and 3–7 en% PUF, MUF should repre-
sent about 13–17 en%. The mean daily cholesterol intake
of this study population is 260 (SD 73.1) mg/day. Eight of
26 pregnant women (31%) had a daily cholesterol intake
higher than the maximum recommended daily allowance
of 300 mg.

FFQ
Since the FFQ was developed to estimate fat intake,

total energy intake could not be calculated. Therefore,
intake of total fat, the sum of the saturated (SFA), mono-
unsaturated (MUFA) and polyunsaturated fatty acids
(PUFA) and the individual fatty acids (18:2n–6, 18:3n–3,
20:4n–6, 20:5n–3, and 22:6n–3) are expressed as gram per
day. Table 2 compares the dietary fat and fatty acid intake
calculated with the FFQ between the first and third tri-
mesters of pregnancy. No significant differences (p !

0.01) were found either in total fat intake or in intake of
individual fatty acids between the first and third trimes-
ters. Additionally, strong and significant correlations be-
tween the first and third trimesters for total fat (r = 0.57;
p ! 0.01), SFA (r = 0.47; p ! 0.01), MUFA (r = 0.61;
p ! 0.001), PUFA (r = 0.73; p ! 0.0001) and sum of n–6
fatty acids (r = 0.74; p ! 0.0001) estimated with the FFQ
were found.

Total fat intake was on average 87.9 (SD 18.1) g/day.
The most dominant n–6 fatty acid in the diet was the
essential fatty acid, linoleic acid, with a mean intake of
13.3 (SD 5.4) g/day and the dominant n–3 fatty acid in the
diet was ·-linoleic acid with an average intake of 1.4 (SD
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Table 2. Total fat and fatty acid intake (g/day) measured by the
7d ER and FFQ during the 1st and 3rd trimesters of pregnancy

1st trimester

7d ER FFQ

3rd trimester

7d ER FFQ

87.4 (19.6) 85.9 (28.3) 88.5 (22.5) 90.2 (25.0)
SFA 35.3 (7.8) 34.1 (12.1) 35.9 (10.2) 35.3 (11.4)
MUFA 32.5 (8.3) 28.8 (9.6) 32.1 (8.3) 30.5 (8.3)
PUFA 14.2 (4.2) 15.2 (6.2) 15.1 (5.5) 16.1 (6.4)
Sum n–6 13.2 (5.7) 14.0 (5.9)
Sum n–3 1.82 (0.59) 1.98 (0.59)
18:2n–6 10.3 (3.9) 12.9 (5.7)** 11.4 (4.7) 13.7 (5.9)*
18:3n–3 1.3 (0.53) 1.5 (0.55)
20:4n–6 0.13 (0.04) 0.13 (0.04)
20:5n–3 0.17 (0.11) 0.15 (0.09)
22:6n–3 0.30 (0.20) 0.30 (0.19)

Values are reported as mean (SD) (n = 26). No significant differ-
ences (p ! 0.01) in fat intake between the 1st and 3rd trimesters esti-
mated by either FFQ or 7d ER. Significant difference in linoleic acid
intake estimated by FFQ compared with 7d ER: ** p = 0.005 and
* p = 0.01.

0.46) g/day. The dietary intake of the longer chain n–3
fatty acids, 20:5n–3 and 22:6n–3, correlate strongly with
each other: r = 0.94; p ! 0.0001.

Validation of FFQ with 7d ER
There are no significant differences (p ! 0.01) in daily

dietary intake (g/d) throughout pregnancy of total fat,
SFA, MUFA and PUFA calculated by FFQ versus the
values obtained with the 7d ER (table 2). But the intake of
linoleic acid was significantly (p ! 0.01) lower calculated
from the 7d ER compared to FFQ. In table 3, the Pearson
correlation coefficients for the intake of total fat, SFA,
MUFA, PUFA and linoleic acid between FFQ and 7d ER
are summarised. All correlations were strong and highly
significant (p ! 0.001).

Table 4 gives the comparison of the classification of fat
intake into quartiles according to FFQ with that accord-
ing to 7d ER. The two methods classified more than 83%
of the study population in the same or in an adjacent
quartile. In total, less than 2% of the study population had
a gross difference in classification (from one extreme
quartile to the other).

Discussion

This work illustrates that macronutrient intakes as
assessed by the 7d ER do not change significantly in Bel-
gian women during normal pregnancy. In an other publi-
cation (in preparation) we will elaborate on the food and
nutrient (macro- and micronutrient) intake of Belgian
pregnant women. In this study we focused on the dietary
fat intake (measured with a Dutch FFQ [1] adapted to the
Belgian situation) during normal pregnancy. No signifi-
cant changes between the first and third trimesters were
found for total fat or for the individual fatty acid intake.
This finding is in agreement with other studies in preg-

Table 3. Pearson correlation coefficients for
total fat and fatty acid intake between the
values calculated from 7d ER vs. FFQ (n =
52)

7d ER vs.
FFQ

p

Total fat 0.64 ***
SFA 0.63 ***
MUFA 0.62 ***
PUFA 0.68 ***
18:2n–6 0.66 ***

Significance of the Pearson correlation
coefficients: *** p ! 0.0001.

Table 4. Classification into quartiles for the
comparison of total fat and fatty acid intake
(g/day) measured by the 7d ER vs. FFQ
(n = 26)

Good
classification
1st trimester

Grossly
misclassification
1st trimester

Good
classification
3rd trimester

Grossly
misclassification
3rd trimester

20 2 23 0
SFA 19 1 23 0
MUFA 21 0 21 0
PUFA 22 0 24 0
18:2n–6 22 0 22 1

Good classification = When classified in the same or in an adjacent quartile; grossly mis-
classification = when classified from one extreme quartile to the other extreme quartile.
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nant women using FFQ [15, 16]. Others found a reduced
fat intake in late pregnancy compared to mid-pregnancy
as measured by the 7-day weighed dietary record [17].
Brown et al. [18] observed a higher energy and nutrient
intake during mid-pregnancy compared to pre-pregnancy.
The values for the daily fat intake in our group of preg-
nant women were in concurrence with other reports [15,
18–20]. Few pregnancy studies evaluated the intake of the
individual essential fatty acids and their longer chain
homologues. In a group of Dutch pregnant women (n =
176) a daily linoleic acid intake of 15.4 (SD 10.3) g/day in
the first trimester and 14.3 (SD 13.6) g/day in the third
trimester was reported [15]. These values are comparable
to those found in our study population. Lakin et al. [19]
found in healthy omnivorous pregnant women a mean
intake of n–3 fatty acids of 1.7 (SD 0.29) g/day and a
mean intake of eicosapentaenoic acid of 0.14 (SD 0.13)
g/day. These findings are consistent with our results. Our
study population has higher mean intakes of n–6 fatty
acids (13.6 vs. 9.9 g/day), linoleic acid (13.3 vs. 9.5 g/day)
and docosahexaenoic acid (300 vs. 173 mg/day) and a
lower mean intake of arachidonic acid (129 vs. 198 mg/
day) compared to the British omnivorous women [19].

To assess the relative validity of the FFQ, the esti-
mated nutrient intake should be compared with that of a
more accurate method. However, there is no gold stan-
dard easily applicable for the assessment of dietary intake.
Therefore it is important that the errors of the FFQ and
the comparing method are as independent as possible to
avoid high false estimates of validity [12]. The major
sources of error with FFQ are due to restrictions imposed
by memory and perception of portion sizes. We used a 7d
ER which is likely to have the least correlated errors as
this method does not depend on memory (recorded after
each meal). Furthermore, for the analysis of the sets of
data obtained by the two measurements, different food
composition databases were used, which also excludes a
correlated source of error. Only one dietician was in-
volved in this study so that observer differences can also
be excluded. We found strong and significant correlations
(range 0.62–0.68) between the two methods for daily
dietary fat intake. In the literature, similar correlation
coefficients for total fat intake were described: between
FFQ and dietary history, r = 0.78 [21], between FFQ and
7-day weighed record, r = 0.59 [22], between FFQ and
4-day estimated record, r = 0.44 [20], and between FFQ
and 14-day weighed record, r = 0.42 [23]. This indicates
that the Dutch FFQ which we adapted to the Belgian diet
is suitable to assign pregnant women to the appropriate
part of the distribution of dietary fat intake. Furthermore,

the classification into quartiles was acceptable and much
better than would be expected due to chance (25% in the
same quartile, 37.5% in an adjacent quartile and 12.5%
classified in the opposite quartile). On average, 47% of the
subjects were classified in the same quartile and less than
2% were classified in the opposite quartile. These values
compare favorably with published values: 34% classified
in the same and 8% in the opposite quartile [20], 38% in
the same and 3% in the extreme quartile [23], 72% in the
same quintile and 3% in the opposite quintile [21], and
45% in the same tertile and 10% in the extreme tertile
[22]. No significant differences (p ! 0.01) in fat intake
assessed by FFQ versus 7d ER occurred except for linoleic
acid. The daily intake of linoleic acid was consistently
lower as assessed by the 7d ER compared to the estima-
tion with the FFQ. This is probably due to the fact that the
food composition database used to analyse the 7d ER,
lacks a lot of data concerning the linoleic acid content of
different foods. It can be concluded that the FFQ in con-
junction with the individual fatty acid composition data-
base of Belgian foods [5, 6] is an adequate method to rea-
sonably rank subjects according to their dietary fat in-
take.

In summary, the Dutch FFQ [1], which we adapted to
the Belgian situation, is a valid method which is able to
assign subjects to the appropriate part of the distribution
of dietary fat intake. As the time required for administrat-
ing the FFQ (B90 min) is much shorter than completing
a 7d ER, this method will be used frequently in the
future.
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Addendum to chapter 2. 

In the publication (Ann. Nutr. Metab. 2001, 45:273-278) described in chapter 2 we 

validated a food frequency questionnaire (FFQ) with the seven day estimated record (7-

day ER). 

Different food composition databases were used to analyse the sets of data obtained by 

the two measurements to exclude a correlated source of error (the errors of the FFQ have 

to be as independent as possible to avoid high false estimates of validity). The data 

obtained with the FFQ were analysed with the database developed by Staessen et al 

whereas the data obtained with the 7-day ER were analysed with the database from 

Unilever (1992). 

Only for linoleic acid a significant difference was found between the two measurements. 

One of the reviewers of this thesis suggested that the discrepancy between these two 

measurements could be due to the different nutrient databases used during the analysis. 

Therefore we analysed the two different data sets with the same Unilever nutrient 

database. 

The results are summarised in the following table. When the Unilever nutrient database is 

used to calculate the linoleic acid intake from the FFQ and from the 7-day ER, no 

significant differences in fat and fatty acid intake were observed. The correlation 

coefficient between the two measurements analysed with the same nutrient database for 

linoleic acid was r=0.65, P<0.0001 and compares favourably with the correlation 

coefficient between the two measurements analysed with the two different databases 

(r=0.66, P<0.0001). 

Table: Total fat and fatty acid intake (g/day) measured by the 7-day ER and FFQ during the first and 

third trimester of pregnancy. 

 1st trimester 3rd trimester 

 7-day ER FFQ 7-day ER FFQ 

Total fat 87.4 (19.6) 84,8 (27,4) 88.5 (22.5) 88,8 (24,5) 
SFA 35.3 (7.8) 33,4 (11,6) 35.9 (10.2) 34,8 (11,3) 
MUFA 32.5 (8.3) 31,4 (10,6) 32.1 (8.3) 32,5 (9,1) 
PUFA 14.2 (4.2) 14,2 (5,5) 15.1 (5.5) 15,4 (5,7) 
18:2n-6 10.3 (3.9) 11,7 (5,0) 11.4 (4.7) 12,8 (5,1) 

Both the datasets obtained either with the 7-day ER or with the FFQ were analysed with the same 

database (Unilever database, 1992). 
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Chapter 3: Does nutrient intake of healthy 
Belgian pregnant women differ from 
recommendations ? 

1. Abstract 

The objectives: (1) to document the energy intake and the daily dietary intake of 

macronutrients and micronutrients of a small sample of healthy pregnant women; and (2) 

to evaluate the nutrient intake by comparing this with the dietary recommendations for 

pregnant women. 

Design and Setting: longitudinal study in 27 healthy pregnant women; seven day estimated 

record (7 day ER) obtained during the first half of pregnancy and during the third 

trimester. 

Results: Energy and nutrient intake did not differ between the two examination periods 

during pregnancy. Therefore the average energy and nutrient intake during pregnancy was 

calculated and is reported in detail. Energy intake during pregnancy was 2148 (SD 386) 

kcal/d. Protein intake was 1.39 (SD 0.3) g/kg BW/d. Carbohydrate intake (% of energy 

intake, en%) and total fat intakes were 46.6 (SD 4.1) en% and 36.3 (SD 4.5) en%, 

respectively. Saturated fatty acids provide 14.7 (SD 1.9) en%, monounsaturated fatty acids 

13.3 (SD 2.1) en% and polyunsaturated fatty acids 6.0 (SD 1.4) en%. The dietary intake of 

vitamins and minerals during pregnancy is described in detail and compared with the 

Belgian population reference intake. 

Conclusion: Pregnant women had an adequate protein intake. Complex carbohydrates 

should partly replace saturated fat. Some pregnant women could benefit from a balanced 

multivitamin/mineral supplement. 
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2. Introduction 

The nutrient needs of a pregnant woman are higher than at any other time in her 

life. The developing foetus depends entirely on the nutrients supplied by the 

mother’s diet, thus good maternal nutrition during pregnancy is important both 

for the mother as for a healthy foetal development. The pregnant woman needs 

additional nutrients, including calories, proteins and certain vitamins and 

minerals. The present study is part of a larger investigation in pregnant women. As 

described further on we have evaluated the essential fatty acid status of pregnant 

women and their neonates by analysing the fatty acid composition of maternal and 

umbilical cord plasma [1;2]. The aim of the present study was (1) to document the 

energy intake and the daily dietary intake of macronutrients and micronutrients of 

these healthy pregnant women; and (2) to evaluate their nutrient intake by 

comparing this with the dietary recommendations for pregnant women. 

With a seven day estimated food record (7 day ER) it is possible to calculate the 

daily dietary intake of macro- and micronutrients. As the purpose of this study was 

to describe the nutrient intake during the course of pregnancy we asked the 

pregnant women to fill in a seven day food diary during the first half of pregnancy 

and during the third trimester. The average of the two estimated nutrient intake 

values was calculated and compared with dietary recommendations from the 

Belgian [3;4] or the Dutch Health Council [5;6]. 

3. Methods 

3.1. Study population and study design 

The study population was recruited from the pregnant women attending the 

Department of Gynaecology of Ghent University Hospital, Belgium in the period 

from March 1997 to June 1999. At their first antenatal medical visit, the pregnant 

women were asked to cooperate in this study. Only singleton pregnancies were 

included. Inclusion criteria were: first pregnancy, diastolic blood pressure below 

90 mm Hg, not diabetic, no proteinuria and not suffering from renal or 

cardiovascular disease. Thirty pregnant women volunteered to cooperate in this 

part of the study (the food consumption survey). All pregnant volunteers signed a 

written informed consent form, approved by the ethics committee of Ghent 
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University Hospital. The pregnant women were asked to complete accurately a 

food diary for one week (seven day estimated record, 7 day ER) between 6 and 22 

weeks of gestation (median 15 wks) and between 32 and 40 weeks (median 35 

wks). Length of gestation (in weeks) was calculated from the recorded date of 

delivery and the self-reported first day of the last menstrual period. If the last 

menstrual period was unknown gestational age was based on early ultrasound 

measurements. 

3.2. Seven day estimated record 

For the purpose of assessing overall energy, macro- and micronutrient intake with 

high precision on an individual level, a 7 day ER was carried out [7]. For this 

purpose, a structured food diary was developed, in which each meal 

(breakfast/morning snack/lunch/afternoon snack/dinner/evening snack) was 

explicitly mentioned per day. As far as the food groups/food items were 

concerned, the diary did not contain any predefined entries. For each food item 

consumed, subjects were asked to give information about time of the day, 

amount, branch, and location of consumption. For homemade dishes, extra 

information was asked on ingredients and type and amount of fat. The 

respondents were given detailed instructions on beforehand concerning the 

information needed for the diary. Special attention was thereby given to portion 

sizes and to the usual household measures (spoon, cups, glasses, etc.) used by the 

respondents. Experienced dieticians, in the presence of the respondents, checked 

the diary on quality and completeness of the information every 2 days. The 

recorded foods were translated into quantities of over 644 food items and 

analysed for nutrient composition. The nutrient estimates from the 7 day ER were 

converted into data for 1 day by dividing by 7. Nutrient analysis was performed on 

the basis of Unilever nutritional software [8] based on the Dutch Food Composition 

Table [9] and on food composition data available in Belgium for local food items 

(e.g. certain margarines). The Dutch Food Composition Table is more extended 

than the Belgian Food Composition Table. 

3.3. Reliability of the food intake data  

The most common reason of the observed bias in self report dietary intake 

methods is that the procedure is regarded as a burden, which probably promotes 

underreporting of dietary intake [10]. The reliability of the food intake data was 
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estimated by comparing the calculated physical activity level (PAL) with published 

results. The PAL was calculated by dividing the reported energy intake (from 7 day 

ER) by the estimated basal metabolic rate (BMR), which was obtained with the 

Schofield formula [11]. For calculation of the PAL value during the third trimester, 

an energy cost for pregnancy of 180 kcal/d [4] was taken into account. Based on 

measurements with doubly labelled water, PAL-values of 1.4 – 1.7 for seated work 

and 2.0 – 2.4 for heavy physical activity have been described [12]. Goldberg, Black 

and colleagues [13;14] developed a tool to detect the underreporters. They 

calculated cut-off values based on the ratio of mean reported energy intake and 

basal metabolic rate, as estimated from weight and height using the Schofield 

equations [11], with the WHO recommended physical activity level for light 

activity. Based on doubly-labelled water measurements it is highly unlikely that 

any normal healthy free living person could habitually exist at a PAL of less than 

1.35. Goldberg et al [14] suggested that energy intake data lower than 1.35 x BMR 

as estimates of habitual intake can be rejected (cut-off 1). Furthermore they [14] 

developed a more specific method (cut-off 2) which takes into account the study 

period, sample size and use of observed or predicted BMR. For a 7 day 

measurement in a single individual when the BMR is estimated with Schofield 

equations, recorded intakes have to be below 1.10 x BMR before they can safely 

be rejected (cut-off 2). In the population under study 11 women reported an 

energy intake lower than 1.35 x BMR (cut-off 1) and 3 women reported an energy 

intake lower than 1.1 x BMR (cut-off 2). We decided to follow the most specific 

method and excluded those women with a calculated PAL-value lower than 1.1 

(n=3). Subjects with a PAL-value higher than 2.4 are considered overreporters 

[15]. None of the pregnant women had a reported energy intake higher than 2.4 x 

BMR. Thus the final study population consisted of 27 pregnant women. 

3.4. Statistics 

Energy and daily macro- and micronutrient intakes of each pregnant woman were 

calculated from the 7 day ER. The within and between subject variation was 

calculated by means of coefficient of variation (CV %). Normality of distribution 

was ascertained with the Kolmogorov-Smirnov test. Values are reported as mean 

and standard deviation (SD) in parentheses. Comparisons of nutrient intake 

between the first half of pregnancy and the third trimester were performed with 

the paired students’ t-test. A value of P<0.01 was taken as the criterion of 
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significance. The data were analysed using the MedCalc statistical program, 

version 6 (MedCalc Software, Mariakerke, Belgium) [16]. 

4. Results 

4.1. Clinical characteristics of the study population 

The study population consisted of 27 pregnant Belgian women with a mean age at 

delivery of 30 years (range 25 - 40 years). The mean Body Mass Index of the 

women before pregnancy was 22 kg/m2 (range 18 – 29 kg/m2) and mean weight 

gain at delivery was 14 kg (range 8 - 21 kg). All pregnant women were nullipara, 

all pregnancies were uncomplicated and the infants were born healthy and at 

term with a mean gestational age of 39.0 weeks (range 38 – 42 weeks). The mean 

birth weight of the neonates was 3285 g (range 2300 - 4020 g) and the mean birth 

length was 51.0 cm (range 47 - 54 cm). The sex ratio of the infants was 15 males 

and 12 females. 

4.2. Nutrient intake 

Daily energy intake and the energy distribution (macronutrient intake) during the 

first half of gestation and third trimester were calculated from the 7 day ER. The 

7 day ER enabled us also to calculate the vitamin and mineral intake at the two 

examinations during pregnancy. The students’ t-test revealed that there are no 

significant differences neither in caloric intake, macronutrient nor micronutrient 

intake between the two examinations during pregnancy. Therefore we calculated 

the average intake of macro- and micronutrients during the course of pregnancy. 

Daily energy intake and the energy distribution during pregnancy are summarised 

in Table 1 and compared with the Belgian Population Reference Intake (PRI) [3] 

and with the Dutch dietary reference intake values [5;6]. 

The between subject variation for macronutrient intake varied from 8.8% to 30.8% 

with an average CV of 17.6%. The within subject variation for macronutrient 

intake varied from 5% to 11% with a mean CV of 8.1%.  

The energy intake during pregnancy was 2148 (SD 386) kcal/d. This study 

population had a carbohydrate intake of 250 (SD 52) g/d and a fat intake of 87 (SD 

19) g/d. Dietary recommendations for protein intake are best expressed as g/kg 

body weight/d and the PRI for adults in Belgium is 0.75g/kg BW/d. A net protein 
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utilisation of 0.7 has to be considered and during pregnancy an extra protein need 

of 14g/d is recommended. Thus for a pregnant women with a body weight of 65 kg 

the Belgian Health Council recommends a daily protein intake of (65 x 0.75/0.7) + 

14 = 84 g/d [3;5]. The Dutch Health Council has for protein intake a recommended 

dietary allowance (RDA) of 9 en% or 62 g/d for pregnant women and a tolerable 

upper intake level (UL) of 25en% [5]. The daily protein intake in our study 

population was 1.39 (SD 0.3) g/kg BW/d or 84.3 (SD 15.7) g/d. 

Table 1: Average macronutrient intake measured by 7 day estimated record at the two examinations 

during pregnancy. Values are reported as mean (SD) (n = 27). 

 Diet of 

study 

population 

Between 

subjects 

CV (%) 

Within 

subject 

CV (%) 

Belgian PRI [3] Dutch dietary 

reference intakes 

[5] 

Energy (kcal/d) 2148 (386) 18 8 2250+180=2430 

(a) 

2727 

Energy (MJ/d) 8.98 (1.61) 18 8 10.2 AR: 

10.2+1.2=11.4 

Proteins (en%) 15.8 (1.8) 11.6 5 ± 10 RDA: 9 

UL: 25 

Proteins  

(g/kg BW/d) 

1.39 (0.3) 23 9 0.75 - 

Proteins (g/d) 84.3 (15.7) 18.6 9 70 + 14 = 84 (b) RDA: 62 

Carbohydrates 

(en%) 

46.6 (4.1) 8.8 5 > 55 RDA: > 40 

Fat (en%) 36.3 (4.5) 12.5 7 15 – 30 AI: 20 – 40 (c) 

AI: 20 – 30/35 (d) 

SFA (en%) 14.7 (1.9) 13.1 10 < 10 < 10 (UL) 

MUFA (en%) 13.3 (2.1) 15.8 7 - - 

PUFA (en%) 6.0 (1.4) 23.9 10 3 – 7 < 12 (UL) 

MUFA+PUFA (en%) 19.3 (3.2) 16.7 8  AI: 8 – 38 (c) 

AI: 8 - 28/33 (d) 

18:2n-6 (en%) 4.5 (1.4) 30.8 11 3 - 5 AI: 2.5 

-: not given. (a): recommended daily energy intake for women between 18 and 29 years with a body 

weight of 65 kg and PAL of 1.56 (= light activity level). From the tenth week of pregnancy: extra 

energy cost of 180 kcal/d or 0.75 MJ/d. (b): (BW x 0.75 g/kg BW/d) / NPU with NPU = Net Protein 

Utilisation = 0.7 and extra protein cost for pregnancy is 14 g/d. Thus for women with a body weight 

of 65 kg: PRI = 65 x 0.75 / 0.7 = 70 g/d. (c): for people with an optimal and stable body weight. (d): 

for people who are overweight or who experience undesirable weight gains. AR: average 

requirement, RDA: recommended dietary allowance, AI: adequate intake, UL: tolerable upper intake 

level. 
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Regarding the composition of dietary fat of the population under study: the mean 

intake of SFA exceeded the national and international recommendations. Only one 

woman from this population had a SFA intake lower than 10 en%. For 21 women 

PUFA intake was within the Belgian PRI range. For 6 women PUFA intake was 

higher than 7 en% with a maximum intake of 9.6 en% which is still lower than the 

Dutch UL. Average linoleic acid intake during pregnancy was 4.5 en% and within 

the recommended Belgian PRI range of 3 – 5 en% and higher than the Dutch 

adequate intake (AI) of 2.5 en%. In three women linoleic acid intake was lower 

than 3 en% (PRI) but reached the Dutch AI and in 8 women linoleic acid intake was 

higher than 5 en% (PRI) with a maximum intake of 8 en%. 

Neither the mineral intake nor the vitamin intake did significantly differ between 

the beginning of pregnancy and near term (students’ t-test). Therefore we 

calculated the average intake of minerals and vitamins during the course of 

pregnancy. The mineral intake during pregnancy is summarised in Table 2 and the 

vitamin intake of this population is summarised in Table 3. The data were 

compared with the Belgian PRI [3] and the Dutch dietary reference intake values 

[6]. 

The between subject variation for mineral intake varied from 20.5% to 41.8% with 

an average CV of 27.2%. The within subject variation for mineral intake varied 

from 9% to 16% with a mean CV of 12.3%. 

Table 2: Daily mineral intake during pregnancy measured by the 7 day ER. Values are reported as 

mean (SD) (n = 27). 

 Diet of study 

population 

Between 

subjects CV 

(%) 

Within subject 

CV (%) 

Belgian PRI  

[3] 

Dutch dietary 

reference 

intakes [5] 

Na (g/d) 2.9 (0.63) 21.5 14 0.57 – 3.5  

K (g/d)  3.3 (0.69) 20.5 9 2 – 4  

Ca (mg/d)  967 (337) 34.9 15 1200 AI: 1000 

UL: 2500 

P (mg/d)  1450 (329) 22.7 10 1000  

Mg (mg/d) 285 (64) 22.6 10 480  

Fe (mg/d) 11.9 (3.6) 30.0 11 10  

Zn (mg/d) 11.4 (4.7) 41.8 14 7  

Cu (mg/d) 1.0 (0.26) 26.0 12 1.1  

Se (µg/d) 38.8 (9.5) 24.5 16 70  

See Table 1 for explanations of abbreviations. 
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All the pregnant women had a sodium and potassium intake that were in the PRI 

interval. Two women had a Na intake higher than 3.5 g/d and five women had a K 

intake higher than 4 g/d. Only 26% (n=7) of the women had a calcium intake 

higher than 1200 mg/d which is the recommended intake for pregnant women by 

the Belgian Health Council [3] and 41% (n=11) of the women had a Ca intake 

higher than 1000mg/d which is the Dutch AI [6]. On the other hand the mean 

phosphorus intake was rather high (1450 (SD 329) mg/d). 11% of the women had a 

P intake lower than the PRI. This results in a low Ca/P ratio ranging from 0.4 to 

0.9 whereas the recommended ratio is at least 1 [3]. Mg intake was low, none of 

the pregnant women had an intake as high as the PRI of 480 mg/d [3]. Fe intake 

was 11.9 (SD 3.6) mg/d and 70% of the women (n=19) had an intake higher than 

the PRI of 10 mg/d for pregnant women. Similarly the average intake of Zn in this 

population was good: only 2 women had a Zn intake lower than the PRI. Cu intake 

was rather low: only 11 women (41%) reached the PRI for Cu. The intake of 

selenium is very low compared to the Belgian recommendations: all the pregnant 

women had a Se intake lower than the PRI. 

Table 3: Daily vitamin intake during pregnancy measured by the 7 day ER. Values are reported as 

mean (SD) (n = 27). 

 Diet of study 

population 

Between 

subjects CV 

(%) 

Within 

subject CV 

(%) 

Belgian PRI 

[3] 

Dutch dietary 

reference 

intakes [5] 

Retinol (µg/d) 777.9 (353.6) 45.5 22   

β-carotene (mg/d) 1.2 (0.5) 41 33   

Vitamin A (µg/d) 983.5 (388.8) 39.5 22 700 (a)  

Vitamin D (µg/d) 2.1 (0.6) 30.2 18 10 AI: 10 (b) 

AI: 7.5 (c) 

UL: 50 

Tocopherol (mg/d) 12.2 (5.0) 41 22 10  

Vitamin C (mg/d) 113 (44) 38.7 22 90  

Vitamin B1 (mg/d) 1.3 (0.4) 33.2 14 1.0 RDA: 1.4 

Vitamin B2 (mg/d) 1.5 (0.6) 36.8 12 1.6 RDA: 1.4 

Vitamin B6 (mg/d) 1.6 (0.5) 33.7 13 1.4  

Niacin (mg NE/d) 15.9 (3.6) 22.7 14 14 AI: 17 

Niacin (mg/d)     UL: 35 

(a): expressed as retinol equivalents (RE): 1 RE = 1 µg retinol = 6 µg β-carotene. (b): no exposure to 

sunlight. (c): light-coloured skin, and remain outdoor for at least 15 minutes a day with at least 

hands and face uncovered. NE = niacin equivalent. For other explanations, see Table 1. 
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The between subject variation for vitamin intake varied from 22.7% to 45.5% with 

an average CV of 36.2%. The within subject variation for vitamin intake varied 

from 12% to 33% with a mean CV of 19.2%. 

The intake of the vitamins from the B-complex correlate strongly with each other: 

B1 versus B2: r= 0.83, P<0.0001 and B1 versus B6: r= 0.91, P<0.0001. Five women 

had a thiamin intake lower than the PRI of 1 mg/d and 16 women had a riboflavin 

intake lower than the PRI of 1.6 mg/d. At least 74 % of the study population 

(n=20) had a vitamin B6 intake higher than the PRI of 1.4 mg/d. At least 70 % 

(n=19) of the women had a vitamin A (expressed as retinol equivalents), ascorbic 

acid and tocopherol (expressed as tocopherol equivalents) intake higher than the 

PRI and 78 % (n=21) of the women had a niacin (expressed as niacin equivalents) 

intake higher than the PRI. None of the pregnant women reached the PRI or AI for 

vitamin D intake. 

5. Discussion 

We did not find any significant differences in macronutrient intake nor in intakes 

of minerals and vitamins as assessed by the 7 day ER between the first half of 

pregnancy and the third trimester. However as the inter-subject variability ranges 

from 8-24% for macronutrients and from 20-42% for micronutrients and the intra-

subject variability ranges from 5-10% and from 9-16% for macro- and 

micronutrients respectively, one could assume that there was no power to detect 

differences between the two examination periods for nutrient intake. Others 

[17;18] have shown previously in larger study populations that the fat intake 

during pregnancy (estimated with food frequency questionnaires) does not 

change. Average intake values during pregnancy were also obtained by Badart-

Smook et al [19] who used the cross-check dietary history in 370 pregnant women 

at approximately 22 weeks of gestation to assess maternal dietary habits during 

pregnancy. Therefore, we calculated the average intake between the two 

examinations during pregnancy of each individual nutrient and compared the 

results with the dietary recommendations. Some women used supplements 

(vitamin and/or fish oil supplements) during pregnancy. The intake of these 

supplements was taken into account during the nutrient analysis. 

The Belgian dietary recommendations are expressed as Population Reference 

Intake (PRI). The PRI is defined as the intake that will meet the needs of 97.5% of 
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all the healthy individuals in a population. The nutritional needs for pregnant 

women sometimes deviate from the needs of a healthy non pregnant population 

(such as for calcium, phosphorus, magnesium, iron, and vitamin D). In these cases 

we compared our results with the PRI for pregnant women. The Belgian Health 

Council has revised the dietary guidelines in 2000 [3]. In The Netherlands, the 

Health Council’s Committee has reviewed the dietary guidelines for calcium, 

vitamin D, B1, B2, niacin, pantothenic acid and biotin in 2000 [6] and more 

recently in 2001 for energy, proteins, fats and digestible carbohydrates [5]. The 

Dutch Committee expresses its dietary reference intake values either as estimated 

average requirement (AR), as recommended dietary allowance (RDA), as adequate 

intake (AI) or as tolerable upper intake level (UL). The RDA is defined as the 

estimated AR (the level of intake that is adequate for half of the population) plus 

twice the standard deviation of the requirement. This intake is adequate for 

virtually all of the individuals in the group in question. When the estimated AR is 

unknown, the Committee refers to AI. This is the level of intake that is sufficient 

for the entire population. The UL is the level of intake above which there is a 

chance that adverse effects will occur. 

Most pregnant women in this population had an adequate caloric intake. The daily 

protein intake in our study population compares favourably with both the Belgian 

and Dutch dietary guidelines. The average carbohydrate intake of this group of 

pregnant women was too low with respect to the Belgian guidelines but is 

considered adequate by the Dutch Health Council. Regarding total fat intake, in 

Belgium a maximum recommended limit of 30 en% [3] is advised whereas the 

Health Council of The Netherlands has accepted an upper limit of 40 en% for 

people with an optimal and stable body weight and an upper limit of 30 or 35 en% 

for individuals who are overweight or who experience undesirable weight gains 

[5]. Thus with respect to the Dutch guidelines our study population had an 

adequate total fat intake, only five women had a total fat intake higher than 40 

en% (maximum 45 en%). The Health Council of The Netherlands puts more 

emphasis on the composition than on the total amount of fat. The average intake 

of SFA in this study population was far beyond the recommended maximum of 

10en%.  

Mean intake of calcium was below the recommendations. During pregnancy, 

calcium needs are increased. It has been shown that a shortage of calcium in the 
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diet increases the risk of pregnancy induced hypertension [20]. All the pregnant 

women had a Mg and Se intake lower than the Belgian PRI. These women could 

become deficient for magnesium or selenium with progressing pregnancy. 

Magnesium deficiency during pregnancy can cause fatigue, increased risk of 

premature birth and maternal hypertension (eclampsia). Regarding selenium, a 

reduction in serum selenium normally occurs in the first trimester of pregnancy 

but a further highly significant decrease in serum selenium was observed in 

women who miscarried compared to women who delivered from a healthy neonate 

[21]. 

70% or more of this study population had an intake of vitamin C, vitamin A, 

tocopherol, vitamin B6, thiamine and niacin which was higher than the PRI. 

Riboflavin intake on the other hand was below recommendations. Maternal intake 

of riboflavin has been positively associated with birth weight and length [19]. 

Concerning vitamin D intake, the Belgian PRI for pregnant women is 10 µg/d and 

the Dutch AI during pregnancy is between 7.5 and 10 µg/d (depending on the 

exposure to sunlight) [3;6]. The average vitamin D intake in this study population 

was only 2.1 µg/d. None of the pregnant women reached the PRI or AI. Vitamin D 

recommendations for non pregnant adult women are 2 µg/d (Belgian PRI) and 

between 2.5 and 5 µg/d (Dutch AI, depending on the exposure to sunlight) [3;6]. 

Thus our study population has an adequate vitamin D intake compared to the 

national and the Dutch recommendations for non pregnant women but during 

pregnancy vitamin D needs are more than doubled [22]. Besides eating more 

vitamin D-rich foods (such as fatty fish and vitamin D enriched margarine and milk 

products), pregnant women should obtain regular sunlight exposure to increase 

vitamin D production in the skin. Pregnant women could be advised to take 

vitamin D supplements during the winter period. 

We are well aware of the fact that our study population is not representative for 

the population of Belgian pregnant women and that the sample size is very small. 

However one cannot ignore the fact that the macronutrient intake in this group is 

very similar to the macronutrient intake of the Belgian population, calculated 

from the BIRNH study (Belgian Interuniversity Research on Nutrition and Health) 

[23-25]. 

In conclusion, energy and protein intake is adequate in our study population. As 

saturated fat intake is too high and carbohydrate intake rather low, it could be 
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advised to partly replace saturated fat in the diet by complex carbohydrates. Only 

one quarter of this pregnant population had a sufficient Ca intake. We advise 

pregnant women to increase the intake of milk and milk products (yoghurt and 

cheese) to obtain an adequate supply of calcium, vitamin B2 and vitamin D. None 

of the pregnant women reached the PRI for selenium, an important micronutrient 

present in seafood. Furthermore none of the women in our study population 

reached the PRI for magnesium. Nuts, seeds and chocolate are good sources of 

magnesium. Iron supplementation during pregnancy is a controversial issue. First 

of all, a physiological consequence of normal pregnancy is that the absorption of 

iron from food is increased. Therefore one opinion is that the increased iron 

absorption is large enough to meet the increased requirements of pregnancy 

provided that the dietary intake is adequate and thus that iron supplements during 

pregnancy are not needed [26]. However others argue that the physiologic 

adaptations are often insufficient to meet the increased requirements because 

iron deficiency anemia frequently develops during pregnancy [27]. As a result iron 

supplementation during pregnancy is often advised. Different strategies for iron 

supplementation are used. On the one hand, selective iron supplementation after 

iron status assessment has been recommended because not all women need iron, 

and compliance is likely to be better when an individual's need is recognized. On 

the other hand, routine iron supplementation to all women in the second half of 

pregnancy has been advocated in order to reach all women without the difficulties 

associated with assessment of iron status [27;28]. 

In general, the intake of some vitamins and minerals in this study population is 

below the recommendations. Some women could benefit from a 

multivitamin/mineral supplement. But one should be aware that balance is 

important with optimal ratios of iron to zinc (as iron reduces zinc absorption) and 

optimal ratios of calcium to phosphorus and magnesium. 
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Maternal and umbilical fatty acid
status in relation to maternal diet

S.R.DeVriese,1C.Matthys,2 S.De Henauw,2 G.De Backer,2 M.Dhont,3 A.B.Christophe1
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Summary Theaimof this study was to describe the dietary fat intake duringpregnancyand to study the relationship
between the intake of polyunsaturated fattyacids (PUFAs) and the fattyacid composition ofmaternalandumbilical plasma
phospholipids (PLs) andcholesterolesters (CEs) atdelivery.Inaddition, the contributionof foodgroupsto theintakeof total fat and
fattyacids in the diet wasquantified.
Maternal and umbilical blood samples were collected at delivery from 30 healthy pregnant women.The women completed a

food frequencyquestionnaire during the first and third trimesters.The total fat intake duringpregnancy is 85 (SD 24) g/day.
The mean intake of saturated fatty acids (SFAs) is 33.4 g/day, of monounsaturated fatty acids (MUFAs) 28.6 g/day and of PUFA
15.2 g/day.Major sources of fat,MUFA and PUFA are fats, oils and sauces.Major sources of SFA are meat and poultry followed
by cheeseandeggs.Meat andpoultry contribute themost to the intake of 20:4n-6 whereas fish is themajor source of 20:5n-3
(EPA) and 22:6n-3 (docosahexaenoic acid (DHA)) in the diet.Linoleic acid,EPAand DHA (w%) in PLofmaternalplasmaare
positively related to the intake of these fattyacidsduringpregnancy.No association is foundbetween thematernal intake
of the twoparent essential fattyacids (18:2n-6 and18:3n-3) and their fraction inumbilical PLor CE.EPAand the sumof n-6
fatty acids (w%) in umbilical plasma PL are positively correlated with the dietary intake of these fatty acids. & 2002 Elsevier
Science Ltd.All rights reserved.
INTRODUCTION

There are two families of essential fatty acids (EFAs), the
n-6 and n-3 families. They are essential because they are
required and cannot be synthesised de novo by humans.
Linoleic acid (18:2n-6) and a-linolenic acid (18:3n-3) are
the parent EFA, they need to be present in the diet. They
can be desaturated and elongated by liver enzymes to
form long-chain polyunsaturated fatty acids (PUFAs)
which play a major role in the development of new life
as important structural components of cell membrane
phospholipids (PLs).1,2 Arachidonic acid (20:4n-6; AA)
and docosahexaenoic acid (22:6n-3; DHA) are important
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structural fatty acids in neural tissue such as the brain and
retina.3,4 During pregnancy, accretion of maternal, placen-
tal and fetal tissue occurs and therefore the EFA require-
ments of pregnant women and the developing fetus are
high. During the last trimester of pregnancy, the fetal need
of AA and DHA are especially high because of rapid
synthesis of brain tissue. The desaturation enzyme system
in the human fetal liver is immature and unable to supply
sufficient long-chain PUFA to meet their high neonatal
demand. Moreover, the capacity of the placenta to
synthesise long-chain PUFA from the parent EFA is very
limited.5 Thus, to obtain an adequate amount of parent
EFA and their long-chain polyunsaturated derivatives, the
developing fetus depends on active transport of these fatty
acids from the mother across the placenta and thus on the
EFA status of the mother.6 Therefore, the diet of a pregnant
woman should contain sufficient amounts of EFA to cover
her own requirement as well as that of her fetus.

The major objective of the present study was to
describe the dietary intake of long-chain PUFA during
pregnancy and to study the relationship between the
fatty acid intake and their fraction in maternal and
glandins, Leukotrienes and Essential FattyAcids (2002) 67(6), 389^396
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umbilical plasma PLs and cholesterol esters (CEs) at
delivery. In addition, the contribution of food groups to
the intake of total fat and fatty acids in the diet was
quantified.

PATIENTS AND METHODS

Study population

The study population consisted of 30 healthy pregnant
women attending the Department of Gynecology of
Ghent University Hospital, Belgium. At their first antena-
tal medical visit, the pregnant women were asked to
cooperate in this study. All pregnant volunteers signed a
written informed consent form, approved by the ethics
committee of Ghent University Hospital. Only singleton
pregnancies were included. Inclusion criteria were: first
pregnancy, diastolic blood pressure below 90 mmHg, not
diabetic, no proteinuria and not suffering from renal or
cardiovascular disease. A food frequency questionnaire
(FFQ) was filled in twice during the course of pregnancy
together with a dietician: between 6 and 22 weeks of
gestation (median 15 weeks) and between 32 and 40
weeks (median 35 weeks). Length of gestation (in weeks)
was calculated from the recorded date of delivery and the
self-reported first day of the last menstrual period. If the
last menstrual period was unknown, gestational age was
based on early ultrasound measurements. Shortly after
delivery, a maternal and umbilical venous blood sample
was collected in EDTA-tubes. Blood samples were tem-
porarily stored at 61C. Within 24 h of collection, plasma
was isolated by centrifugation (600� g during 5 min at
41C) and stored in plastic tubes under nitrogen at �801C
until fatty acid analysis.

Food frequency questionnaire

Dietary intake was assessed by an FFQ developed by Al,7

which was specifically designed to collect data on the fat
consumption of Dutch pregnant women. The Department
of Public Health (Ghent University Hospital) adapted this
Dutch FFQ to the Belgian diet and developed a coloured
photographic booklet as a tool to estimate portion sizes of
different foods and dishes. The main objective of this FFQ
is to estimate the dietary intake of fat and fatty acids in
the preceding month. In a recent publication8 we have
validated this modified Dutch FFQ (adapted to the
Belgian diet) with the 7-day estimated record (food diary).
The used FFQ was considered to be a valid method that is
able to assign the subjects to the appropriate part of the
distribution of dietary fat intake.8 A list of 180 of the most
commonly consumed Belgian fat-containing foods are
included in the FFQ. Twice the same experienced
dietician visited the women at home and asked whether
Prostaglandins, Leukotrienes and Essential FattyAcids (2002) 67(6), 389^
they consume those products daily, weekly or monthly
and how many units they normally eat of that particular
food. At the end of the questionnaire, some additional
questions were asked which gave information about the
kind of fat used for cooking and the frequency of intake
and the amount of fat normally bought per week or
month and the number of individuals that generally eat
in the same household.

Fatty acid analysis of FFQ

For the detailed description of fatty acid intake (18:2n-6,
18:3n-3, 20:4n-6, 20:5n-3 and 22:6n-3) of the FFQ , a
databank developed by Staessen et al.9,10 was used. Food
items were combined into 12 food groups: meat and
poultry; fish and fish products; milk products (except
cheese); cheese and eggs; fats, oils and sauces; cookies
and pastry; sweets and chips; bread; cereals and pasta;
potatoes; vegetables, fruits and nuts; and prepared dishes
(such as soups, lasagna, etc.). The relative contribution of
each food group to the intake of total fat, saturated fatty
acids (SFAs), monounsaturated fatty acids (MUFAs), PUFA,
18:2n-6, 20:4n-6, 20:5n-3 and 22:6n-3 was determined.
These relative contributions were computed on an
individual level.10 For the ith food, the percentage of
consumption contributed by that food is calculated as

%contribution of nutrientk by food i

¼ ðtotal of nutrientk provided by food iÞ � 100

ðtotal of nutrientk provided by all foodsÞ :

This is given by

Xj

j¼1

Q iDikð Þ � 100

,Xj

j¼1

Xk

k¼1

Q iDikð Þ

where Q is the food consumed (g), D the amount of
nutrient/g of food, j¼1–30 subjects (30 subjects in the
study population), k the nutrient factors, and i¼1–180
food items.

Fatty acid composition of plasma PLs and CEs

Lipids were extracted from 1 ml serum according to Folch
et al.11 The lipids were separated by thin-layer chromato-
graphy on rhodamine-impregnated silica gel plates using
petroleum ether (bp 60–801C; Merck Belgolab, Overijse,
Belgium)/acetone 85:15 as mobile phase.12 The PL and CE
fractions were scraped off and the fatty acids converted
into methyl esters by transesterification with 2 ml of a
mixture of methanol:benzene:HCl (aqueous, 12 N)
(80:20:5).13 After cooling and adding 2 ml of water, fatty
acid methyl esters were extracted with petroleum ether
(bp 40–601C), evaporated to dryness under a nitrogen
flow at a temperature not exceeding 401C, and analysed
396 & 2002 Elsevier Science Ltd. All rights reserved.



Table 1 Fat and fattyacid intake (g/day) measuredby the FFQ8

during the first and third trimestersof pregnancy.Values are reported
asmean (SD) (n=30)

First
trimester

Third
trimester

Average during
pregnancya

Total fat 83.0 (27.9) 87.0 (27.0) 85.0 (24.5)
SFA 32.6 (12.0) 34.3 (12.2) 33.4 (10.5)
MUFA 27.9 (9.4) 29.3 (8.8) 28.6 (8.2)
PUFA 14.9 (5.9) 15.4 (6.5) 15.2 (5.8)
18:2n-6 12.6 (5.4) 13.1 (5.9) 12.9 (5.3)
18:3n-3 1.26 (0.51) 1.41 (0.58) 1.34 (0.46)
20:4n-6 0.13 (0.04) 0.13 (0.04) 0.13 (0.03)
20:5n-3 0.18 (0.11) 0.15 (0.10) 0.16 (0.08)
22:6n-3 0.31 (0.18) 0.28 (0.19) 0.30 (0.14)
S n-3 1.8 (0.6) 1.9 (0.7) 1.8 (0.5)
S n-6 12.9 (5.5) 13.4 (6.0) 13.1 (5.3)

No significant differences in fat or fattyacid intakebetween the first
and third trimestersof pregnancy.
aAverage of values obtained during first and third trimesters of
pregnancy.

Fatty acid status andmaternal diet 391
by temperature-programmed capillary gas chromatogra-
phy (Varian Model 3500, Walnut Creek, CA, USA) on a
25 m�250 mm (L� ID)�0.2 mm df Silar 10C column.14

The injection and detection temperatures were set at
2851C. The starting temperature of the column was
1501C, which was increased to 2401C after 3 min at a
rate of 21C/min. The carrier gas was nitrogen with a flow
of 25 cm/s. Peak identification was performed by spiking
with authentic standards (Sigma–Aldrich, Bornem, Bel-
gium). Peak integration and calculation of the per cent
composition was performed electronically with a Varian
Model 4290 integrator. The coefficient of variation of
intra-assay samples of the entire method of fatty acid
analysis is less than 5%.

Statistics

From the FFQ , the daily total fat and fatty acid intake was
calculated. Normality of distribution was ascertained with
the chi-square test. Dietary intake values obtained from
the FFQ and fatty acid fractions of PL and CE that had no
normal distribution were log transformed to reach
normality of distribution. Values are reported as mean
and standard deviation in parentheses. Comparisons of
fat and fatty acid intake between the first and third
trimesters of pregnancy were performed with the paired
Student’s t-test. A value of Po0.01 was taken as the
criterion of significance. Pearson correlation coefficients
were calculated to test the relationship between dietary
fatty acid intake and fatty acid status in maternal and
umbilical PL and CE. The data were analysed using
the MedCalc statistical program, version 6 (MedCalc
Software, Mariakerke, Belgium).15

RESULTS

Clinical characteristics of the study population

The study population consists of 30 pregnant
Belgian women with a mean age at delivery of 30 years
(range 25–37 years). The mean body mass index of the
women before pregnancy is 23.0 kg/m2 (range 17.6–
30.0 kg/m2) and mean weight gain at delivery is 15 kg
(range 9–20 kg). All pregnant women are nullipara, all
pregnancies are uncomplicated and the infants are born
healthy and at term with a mean gestational age of 39.0
weeks (range 38–42 weeks). The mean birth weight of the
neonates is 3320 g (range 2300–4200 g) and the mean
birth length is 51.0 cm (range 47–55 cm). The sex ratio of
the infants is 16 males and 14 females.

Fatty acid intake

Since the FFQ is developed to estimate the fat intake, total
energy intake cannot be calculated. Therefore, intake of
& 2002 Elsevier Science Ltd. All rights reserved. Prosta
total fat, SFAs, MUFAs and PUFAs and the different fatty
acids are expressed as gram per day. Table 1 summarises
the dietary fat and fatty acid intake during pregnancy.

Fat and fatty acid intake does not change during the
course of pregnancy. Therefore, the average fat and
fatty acid intake during the course of pregnancy is
calculated (Table 1). Total fat intake is on average
85 (SD 24.5) g/day or 765 (SD 220) kcal/day. SFAs provide
301 (SD 94) kcal/day, MUFAs 257 (SD 74) kcal/day and
PUFAs 137 (SD 52) kcal/day. The ratio of dietary intake
of PUFA/SFA is 0.47 (SD 0.15). The most dominant n-6
fatty acid in the diet is 18:2n-6, with a mean intake of
12.9 (SD 5.3) g/day and the dominant n-3 fatty acid in the
diet is 18:3n-3 with an average intake of 1.3 (SD 0.5) g/day.
The dietary intake of the two parent EFAs strongly
correlate with each other: r¼0.89 (Po0.0001). The dietary
intake of the longer chain n-3 fatty acids is
0.46 (SD 0.21) g/day. The intake of 20:5n-3 and of 22:6n-3
correlate strongly with each other: r¼0.93; Po0.0001.

Contribution of foodgroups to the intake of fat

Figure 1 shows the contribution of specific food
groups contributing to the total fat intake and to the
intake of fatty acids. Fats, oils and sauces provide the
major part of total fat in the diet, followed by meat
and poultry and by cheese and eggs. The same holds for
MUFA in the diet. Meat and poultry are the main source
of SFA followed by cheese and eggs and by fats, oils
and sauces. Fats, oils and sauces are also the most
important source of PUFA and linoleic acid in the diet,
followed by meat and poultry and bread. Meat and
poultry are the major source of AA in the diet, whereas
fish and fish products are the main sources of 20:5n-3
and 22:6n-3.
glandins, Leukotrienes and Essential FattyAcids (2002) 67(6), 389^396
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Relationship between fattyacid composition ofmaternal and
neonatal PL and CEand dietary fatty acid intake

The maternal and umbilical fatty acid composition of PL
and CE isolated from plasma is summarised in Table 2.
The dominant n-6 fatty acid in maternal plasma PL is
linoleic acid (18:2n-6 ) whereas in umbilical plasma PL it
is AA. DHA is the predominant n-3 fatty acid both in
maternal and in umbilical plasma PL. 18:2n-6 is the major
n-6 fatty acid in the CE fraction of maternal and umbilical
plasma. The EPA fraction in umbilical plasma PL
correlates significantly with that in maternal plasma PL:
r¼0.68, Po0.0001. Neither the fraction of DHA nor of AA
in umbilical plasma PL correlates with the fraction of
Fig. 1 Therelative contributionofspecific foodgroupsto thedietaryintak
eicosapentaenoicacid (20:5n-3) andDHA (22:6n-3).Fooditemswere com
products (except cheese); cheeseandeggs; fats, oils and sauces; cookie
vegetables, fruits andnuts; andprepared dishes (suchas soups, lasagna

Prostaglandins, Leukotrienes and Essential FattyAcids (2002) 67(6), 389^
these fatty acids in maternal plasma PL. In CE, no
correlations between the fraction of the fatty acids in
umbilical and maternal plasma are observed.

In Table 3, the Pearson correlation coefficients (in some
cases after log transformation to obtain normal distribu-
tion) between the maternal and umbilical fatty acids (w%)
of PL and CE with the dietary fatty acid intake estimated
by the FFQ (g/kg BW/day) are presented. Linoleic acid
intake during pregnancy is positively correlated with the
fraction of linoleic acid in maternal plasma PL at delivery.
a-Linolenic acid intake is positively correlated with the
fraction of a-linolenic acid in maternal plasma CE. No
association is found between the maternal intake of the
two parent EFAs (18:2n-6 and 18:3n-3) and the fraction
eoftotal fat,SFAs,MUFAs,PUFAs, linoleicacid (18:2n-6),AA (20:40n-6),
binedinto12 foodgroups:meat andpoultry; fishand fishproducts;milk
s andpastry; sweets and chips; bread; cereals andpasta; potatoes;
, etc.).
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Fig. 1 (continued)

Table 2 Fattyacid composition (w%) of PLsandCEsisolated frommaternalandumbilicalplasma shortlyafterdelivery.Valuesare reportedas
meanand (SD) (n=30)

PLs CEs

Maternal plasma levels Umbilical plasma levels Maternal plasma levels Umbilical plasma levels

16:0 31.9 (SD 2.5) 28.1 (SD 2.5) 11.9 (SD1.9) 18.1 (SD 3.4)
18:0 9.7 (SD1.0) 13.8 (SD 2.1) 0.67 (SD 0.44) 3.6 (SD 2.4)
18:2n-6 19.1 (SD 3.2) 8.4 (SD 3.7) 51.4 (6.2) 18.8 (SD 7.3)
18:3n-3 0.22 (SD 0.14) 0.06 (SD 0.08) 0.61 (SD 0.14) 0.19 (SD 0.17)
20:4n-6 8.4 (SD1.8) 14.9 (SD 3.1) 5.4 (SD1.6) 10.5 (SD 4.5)
20:5n-3 0.50 (SD 0.31) 0.36 (SD 0.24) 0.38 (SD 0.27) 0.39 (SD 0.32)
22:6n-3 4.8 (SD1.3) 5.8 (SD1.7) 0.6 (SD 0.34) 1.2 (SD1.18)
SFA 46.0 (SD 3.3) 47.3 (SD 2.4) 14.2 (SD 2.9) 25.0 (SD 6.1)
MUFA 12.7 (SD1.3) 12.6 (SD1.3) 23.7 (SD 3.2) 32.3 (SD 8.0)
PUFA 38.2 (SD 3.5) 36.4 (SD 2.7) 59.8 (SD 5.9) 33.6 (SD 9.8)

Fatty acid status andmaternal diet 393
of these fatty acids in umbilical plasma PL or CE. The
dietary intake of 20:5n-3 is positively correlated with the
fraction of 20:5n-3 in maternal and umbilical plasma PL.
& 2002 Elsevier Science Ltd. All rights reserved. Prosta
The DHA intake during pregnancy is positively
correlated with the fraction of DHA in maternal plasma
PL and CE. In addition, the intake of long-chain n-3 PUFA
glandins, Leukotrienes and Essential FattyAcids (2002) 67(6), 389^396



Table 3 Pearson correlation coefficientsbetweenmaternal fatty
acid intake estimatedwith the FFQ8 (g/kg BW/day) and fattyacid
composition (w%) ofPLsorCEsisolated frommaternalandumbilical
plasma shortlyafterdelivery

Diet18:2n-6 (g/kg BW/day)
Maternalplasma PL18:2n-6 0.53 Po0.01
Maternalplasma CE18:2n-6 0.25 NS
Umbilical plasma PL18:2n-6 0.02 NS
Umbilical plasma CE18:2n-6 0.10 NS

Diet18:3n-3 (g/kg BW/day)
Maternalplasma PL18:3n-3 0.06 NS
Maternalplasma CE18:3n-3 0.53 Po0.01
Umbilical plasma PL18:3n-3 �0.12 NS
Umbilical plasma CE18:3n-3 0.04 NS

Diet 20:4n-6 (g/kg BW/day)
Maternalplasma PL 20:4n-6 �0.09 NS
Maternalplasma CE 20:4n-6 0.0 NS
Umbilical plasma PL 20:4n-6 �0.25 NS
Umbilical plasma CE 20:4n-6 �0.27 NS

Diet 20:5n-3 (g/kg BW/day)
Maternalplasma PL 20:5n-3 0.48 Po0.01
Maternalplasma CE 20:5n-3 0.34 NS
Umbilical plasma PL 20:5n-3 0.59 Po0.01
Umbilical plasma CE 20:5n-3 �0.05 NS

Diet 22:6n-3 (g/kg BW/day)
Maternalplasma PL 22:6n-3 0.52 Po0.01
Maternalplasma CE 22:6n-3 0.39 Po0.05
Umbilical plasma PL 22:6n-3 �0.20 NS
Umbilical plasma CE 22:6n-3 �0.11 NS

Diet EPA+DHA (g/kg BW/day)
Maternalplasma PLEPA+DHA 0.53 Po0.01
Maternalplasma CEEPA+DHA 0.44 Po0.05
Umbilical plasma PLEPA+DHA �0.11 NS
Umbilical plasma CEEPA+DHA �0.15 NS

DietSn-3 (g/kg BW/day)
Maternalplasma PL Sn-3 0.27 NS
Maternalplasma CESn-3 0.34 NS
Umbilical plasma PLSn-3 �0.15 NS
Umbilical plasma CE Sn-3 �0.07 NS

DietSn-6 (g/day)
Maternalplasma PL Sn-6 0.51 Po0.01
Maternalplasma CESn-6 0.31 NS
Umbilical plasma PLSn-6 0.38 Po0.05
Umbilical plasma CE Sn-6 0.12 NS
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(¼ EPA+DHA) during pregnancy is positively associated
with the fraction of these fatty acids in maternal plasma
PL and CE. The dietary intake of the sum of the n-6 fatty
acids is positively correlated with the sum of n-6 fatty
acids in maternal and umbilical plasma PL.

DISCUSSION

In the present study, we confirmed that neither total fat
nor the individual fatty acid intake significantly differs
between the first and third trimesters.8 Therefore, we
calculated for each individual the average intake of fat
and fatty acids during the course of pregnancy. The mean
total fat intake in this study population is 85 g/day (SD
24.5). This is comparable with other pregnancy studies. In
Prostaglandins, Leukotrienes and Essential FattyAcids (2002) 67(6), 389^3
a group of Dutch pregnant women, a fat intake of
88.6 (SD 39.0) g/day was measured with an FFQ.16 One
study in the UK calculated a total fat intake by pregnant
women of 92 g/day17 and another study reported in
British omnivore pregnant women a total fat intake of 98
g/day.18 Furthermore, two studies in the USA reported a
total fat intake also calculated with FFQ of
69.9 (SD 24.4) g/day19 and of 74 g/day20 in pregnant
women. Lakin et al.18 found in British healthy omnivore
pregnant women a mean intake of n-3 fatty acids of
1.7 (SD 0.29) g/day and a mean intake of EPA of
0.14 (SD 0.13) g/day. These findings are consistent with
our results. Our study population has higher mean
intakes of n-6 fatty acids (13.1 vs. 9.9 g/day), linoleic acid
(12.9 vs. 9.5 g/day) and DHA (300 vs. 173 mg/day) and a
lower mean intake of 20:4n-6 (130 vs. 198 mg/day)
compared to the British omnivore women.18

The Belgian recommendations concerning the intake of
parent EFAs are: the daily intake of linoleic acid should be
approximately 3–5% of the total energy intake (en%) and
the daily intake of a-linolenic acid should be between 0.5
and 1 en%.21 The ratio between the intake of 18:2n-6 and
18:3n-3 should be about 5/1. An intake of more than 10
en% of 18:2n-6 and more than 3 en% of 18:3n-3 is not
desirable.21 With the FFQ it is not possible to calculate the
daily energy intake. Therefore, we are unable to calculate
the contribution of the EFA to the total energy intake. But
if we assume that our population has a 2000 kcal diet
then the calculated recommended daily intake of 18:2n-6
should be approximately 6.7–11.1 g/day and of 18:3n-3
should be between 1.11 and 2.22 g/day. In this study
population, the ratio between the intake of 18:2n-6 and
18:3n-3 averages 9.6 (SD 1.78). Lowest and highest values
are 5.1 and 14.0. This indicates that the intake of linoleic
acid is too high compared to the intake of a-linolenic acid
in the population under study. Indeed, 14 women have an
18:2n-6 intake higher than 11.1 g/day and 10 women
have an 18:3n-3 intake lower than 1.11 g/day. In 1999,
Simopoulos and co-authors22 made some recommenda-
tions for adequate intake (AI) of fatty acids for adults and
pregnant women. The AI is expected to meet or exceed
the amount needed to maintain a defined nutritional
state of adequacy in essentially all the members of a
specific healthy population.23 Based on a 2000 kcal diet,
the AI for 18:2n-6 and for 18:3n-3 should be 4.44 g/day
and 2.22 g/day respectively.22,22 Compared to these
recommendations, our study population has a high
18:2n-6 intake and a low intake of 18:3n-3. The AI for
the sum of EPA and DHA should be 0.65 g/day of which
EPA intake should be at least 0.22 g/day and DHA intake
in pregnant women should be at least 0.3 g/day.22 In only
seven women of this study population (23%), the intake
of EPA+DHA is higher than the AI. Only eight women
(27%) have an EPA intake higher than the AI and 13
96 & 2002 Elsevier Science Ltd. All rights reserved.
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women (43%) have a DHA intake higher than the AI for
DHA. It is noticeable that the women with a DHA intake
higher than the AI have a significantly higher DHA status
in plasma PL compared to the women with a DHA intake
lower than the AI: 5.4 (SD 1.4) vs. 4.3 (SD 1.1) w%, Po0.05.
In contrast to the advises of Simopoulos et al.,22 the AI of
the n-3 fatty acids from fish (EPA+DHA) during preg-
nancy, according to Health Council’s Committee of The
Netherlands, is only 0.2 g/d.23 Thus, only two women
from this study population have an EPA+DHA intake
lower than the Dutch recommendations. In Belgium,
there are still no recommendations for the daily intake of
the individual long-chain PUFA.

In this study population, the dietary intake of linoleic
acid (g/kg BW/day) is positively and significantly corre-
lated with the fraction of 18:2n-6 in maternal plasma PL.
A positive but non-significant (Po0.1) association is
found between the dietary intake of 18:2n-6 during
pregnancy and the fraction of 18:2n-6 in maternal plasma
CE. In Dutch pregnant women, the linoleic acid intake is
positively correlated with the fraction of linoleic acid in
maternal (r¼0.32) and umbilical (r¼0.26) plasma PL, the
relationship with the fatty acid fraction in CE is not
investigated.16 In our pregnant study population, the
fraction of 20:5n-3 in maternal and umbilical plasma PLs
is positively associated with the dietary intake of 20:5n-3.
The fraction of DHA in maternal plasma PL and CE is
positively associated with the intake of DHA. In the
literature, it was found that the dietary intake of long-
chain n-3 PUFA during pregnancy shows a slight but
significant correlation with maternal (r¼0.22) and umbi-
lical plasma levels (r¼0.17).24 Vegetarian pregnant women
have a significantly lower intake of 20:4n-6, 20:5n-3 and
22:6n-3 compared to omnivore mothers.18 This was
reflected in a reduced ratio of DHA/18:3n-3 in maternal
red blood cells.18

When pregnant women are supplemented with fish oil
(2.7 g n-3 PUFA/day), the maternal plasma PL contain
significantly more n-3 fatty acids and less n-6 fatty
acids.25 Additionally, the concentration of DHA in
umbilical plasma PL of neonates born from fish-oil-
supplemented mothers was significantly higher com-
pared to the placebo group.25 Supplementing women in
their second trimester of pregnancy with 0.57 g DHA/day
and with 0.26 g AA/day resulted in significantly higher
DHA levels in plasma PL and in red blood cells compared
to controls without a concomitant decline in n-6 fatty
acids.26

In a population of 372 pregnant women, the head
circumference of the newborn was negatively associated
with the maternal intake of 18:2n-6 and the birth length
was positively associated with the sum of n-3 PUFA+AA
in the maternal diet.27 We could not reproduce these
findings. The inverse relationship between linoleic acid
& 2002 Elsevier Science Ltd. All rights reserved. Prosta
and n-3 PUFA in maternal diet with fetal growth
parameters suggests that the intake of linoleic acid
should be decreased in favour of the intake of n-3 PUFA
by pregnant women.

Concerning the consumption of food groups, fats/oils/
sauces, meat/poultry and cheese/eggs are the most
important fat sources. Meat and poultry are the most
important source of SFA and of AA whereas fish and fish
products are the major sources of EPA and DHA in the
diet. Similar results were found in a large Belgian
population from the BIRNH study.10

In summary, fat and fatty acid intake remain constant
throughout pregnancy. Linoleic acid, EPA, DHA and the
sum of n-6 fatty acids (w%) in PL of maternal plasma are
positively related to the intake of these fatty acids during
pregnancy. EPA and the sum of n-6 fatty acids (w%) in PL
of umbilical plasma are positively associated with the
intake of these fatty acids during pregnancy. It our study
population, the intake of linoleic acid is rather high
whereas the intake of a-linolenic acid is low compared to
the current recommendations. The intake of the long-
chain n-3 PUFA (EPA+DHA) varies from 0.1 to 0.8 g/day.
Taking the Simopoulos et al. recommendations22 in mind,
it would be advisable to increase the dietary intake of
long-chain n-3 PUFA in favour of linoleic acid during
pregnancy. A high maternal intake of linoleic acid may
alter the maternal and neonatal n-3 fatty acid status.
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ABSTRACT: It has been demonstrated that in pathological con-
ditions with an increase in the calculated mean melting point
(MMP) of phospholipid (PL) fatty acids (FA) there are changes in
the composition of the saturated FA (SFA), which partially coun-
teract this effect: shorter-chain SFA with lower melting points are
increased, while longer-chain less fluid SFA are suppressed. The
aim of this study was to determine whether there are differences
in MMP during pregnancy and in the newborn and, if so, whether
similar adaptive changes occur in the composition of the SFA.
The FA composition of plasma PL was determined in healthy
women (n = 16) twice during pregnancy (15–24 wk and 29–36
wk) and at delivery and in umbilical venous blood obtained at
birth. The MMP of maternal PL was significantly higher at deliv-
ery compared to mid-gestation, due to a loss of highly unsatu-
rated FA (HUFA) which were replaced by SFA. In addition,
changes in the SFA occurred: 16:0 with lower melting point was
higher while 18:0 with higher melting point was lower at deliv-
ery. MMP of PL FA in umbilical plasma was lower than in mater-
nal plasma at delivery, which was due to higher HUFA content.
In contrast to maternal plasma, 16:0 was lower while 18:0, 20:0,
and 24:0 were higher in umbilical plasma resulting in a higher
MMP of SFA, tending to raise the overall MMP. It can be con-
cluded that, during pregnancy and in the newborn, the FA com-
position of SFA changes in a way to counteract changes in MMP
induced by reduced and increased HUFA, respectively.

Paper no. L8541 in Lipids 36, 15–20 (January 2001).

Holman et al.(1–4) introduced the concept of the calculated
mean melting point (MMP) and calculated mean chain length
(MCL) of fatty acids (FA) from plasma phospholipids (PL) as
surrogate parameters of membrane fluidity. PL are the major
structural components of membranes, and the FA pattern of
plasma PL reflects that of tissue PL. Membrane fluidity de-
pends among others on the amounts of PL, the FA composition
of the PL, and the amount of cholesterol. Membrane fluidity
plays an important role in the efficiency of ligand binding, the

activity of membrane enzymes, membrane transport, and cell
deformability (5). Changes in membrane lipid composition
and, consequently, changes in membrane fluidity may result in
differences in the function of membrane receptors. In
preeclamptic women (6), membrane fluidity of platelets was
significantly higher compared to that of normotensive women
and was accompanied by higher levels of unsaturated FA in the
membrane of platelets. When long-chain polyunsaturated FA
(PUFA) are replaced by saturated (SFA) or monounsaturated
FA (MUFA), the MMP increases and membrane fluidity de-
creases (1–4). It has been demonstrated that the MMP of FA of
plasma PL of pregnant (36 wk of gestation), lactating, and non-
lactating women (6 wk postpartum) is higher compared to that
from nonpregnant women (3). Furthermore, it has been demon-
strated that the MMP of plasma PL is significantly increased in
patients with multiple sclerosis. The latter patients have re-
duced concentrations of PUFA due to impaired chain elonga-
tion, and PUFA are replaced with SFA (1). This overall in-
crease in MMP is accompanied by changes in the composition
of the SFA, which partially counteract this effect: shorter-chain
SFA with lower melting points are increased while longer-
chain, less fluid SFA are suppressed. 

The objective of the present study was to determine whether
similar adaptive changes in MMP occur during the course of
pregnancy and in the newborn. Therefore, we determined the
FA composition of PL, isolated from maternal venous plasma
during the course of pregnancy and from umbilical venous
plasma. 

MATERIALS AND METHODS

Study population.Healthy pregnant women at the Department
of Gynecology of Ghent University Hospital, Belgium, were
asked to participate in this study. All pregnant women signed a
written informed consent form, approved by the ethics commit-
tee of Ghent University Hospital. Only singleton pregnancies
were included. Inclusion criteria were: normotensive (DBP <90
mm Hg), not diabetic, no proteinuria, and not suffering from
renal or cardiovascular disease. Twenty pregnant women en-
tered the study. Two pregnant women delivered preterm and
were excluded from the study. From one pregnancy the umbili-
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cal blood sample was lost and from another pregnancy we only
obtained one antenatal sample. These pregnancies were also ex-
cluded. The study population thus consisted of 16 healthy preg-
nant women and their neonates (seven girls and nine boys). 

Maternal venous blood was collected in EDTA-tubes twice
during the course of pregnancy, between 15 and 24 wk of gesta-
tion (median 20 wk) and between 29 and 36 wk (median 32 wk)
and at delivery (median 39.7 wk; range 38.0–41.4 wk). After
delivery, a sample of umbilical venous blood was collected.
Blood samples were temporarily stored at 6°C. Within 24 h of
collection, plasma was isolated by centrifugation (600 × g dur-
ing 5 min at 4°C) and stored in plastic tubes under nitrogen at
−80°C until transportation in dry ice to Maastricht for analysis.

FA analysis. All samples of a given mother-infant pair were
analyzed simultaneously. The FA analysis was performed as
described previously (7). Previous to the FA analysis an inter-
nal standard [dinonadecanoyl lecithin, phosphatidylcholine
19:0] was added to every sample. Total lipid extracts of plasma
were prepared using a modified Folch extraction (8). The PL
fraction was isolated by solid-phase extraction on an amino-
propyl silica column (9). The PL were saponified and the FA
converted to the corresponding methyl esters by reaction with
BF3 in methanol (140 g/L) at 100°C during 1 h. The methyl es-
ters were analyzed using a capillary gas–liquid chromatograph
equipped with a 50 m BP1 nonpolar column, 0.22 mm i.d. ×
0.10 µm film thickness, and a 50 m BP × 70 mm polar column,
0.22 mm i.d. × 0.25 µm film thickness (SGE, Bester BV, Am-
stelveen, The Netherlands). The injection temperature was set
at 250°C and the detector temperature at 300°C. The starting
temperature of the columns was 160°C, which after 4 min was
increased to 200°C with a rate of 6°C/min.  Subsequently, after
a stabilization period of 3 min, the temperature was further in-
creased to 270°C at a rate of 7°C/min. The carrier gas was he-
lium, head pressure 370 kPa.

The results are expressed as mole percentage of total FA, and
the absolute FA amount in the PL fraction is also reported (mg/L
plasma). Thirty-one different FA with chain lengths between 14
and 24 carbon atoms were identified. The sum of all the SFA,
the MUFA, the PUFA, the highly unsaturated fatty acids
(HUFA: fatty acids with 20 or more carbon atoms and with at
least three double bonds), Σn-7, Σn-9, Σn-3, and Σn-6 were cal-
culated and are reported together with the individual FA. 

The fluidity of lipids was assessed through the MMP, °C
(sum of the mole fraction multiplied by the melting point for
each fatty acid) and the MCL (number of carbon atoms, sum of
the mole fraction multiplied by the number of carbon atoms in
the FA). The oxidative potential index (OPI) of FA in plasma
PL was estimated by summing the mole fraction of FA with 1,
2, 3, 4, 5, and 6 double bonds, multiplied by 1, 30, 70, 120, 180,
and 240, respectively (10).

Statistical analysis.Normality of distribution was ascer-
tained with the Kolmogorov-Smirnov test. The calculated pa-
rameters such as MMP, MCL, and OPI had a normal distribu-
tion. FA fractions were arcsin transformed to reach normality
of distribution. Values are reported as mean [95% confidence
interval of the mean (CI)]. Paired Student t-test was performed

for FA comparisons between maternal samples of the first and
second antenatal visit with maternal samples obtained at deliv-
ery and for maternal-umbilical FA comparisons at delivery and
birth. In order to avoid type 2 errors, due to multiple compar-
isons, a value of P < 0.005 was taken as the criterion of signifi-
cance. For maternal plasma, the correlations between the frac-
tion of the PUFA and HUFA in the PL on the one hand and the
MMP of SFA and the MMP of MUFA on the other hand, were
calculated. For these calculations the results of the two antena-
tal visits and of delivery were used. The degree of association
was calculated using Pearson correlation. The data were ana-
lyzed using the MedCalc statistical program, version 6 (Med-
Calc Software, Mariakerke, Belgium) (11).

RESULTS

Clinical characteristics.The mean age of the mothers (n = 16)
at delivery was 30 yr (range 20–38 yr). The mean body mass
index of the women before pregnancy was 21.2 (range
16.5–24.2). All mothers were nullipara, all pregnancies were
uncomplicated, and the infants were born healthy with a mean
birth weight of 3169.4 g (range 2570–3860 g) and a mean birth
length of 50.3 cm (range 47–53 cm). The median Apgar Score
1 min after birth was 9 (range 4–9) and 5 min after birth 9
(range 9–10). 

The FA patterns of plasma PL (mol%) from maternal plasma
during the course of pregnancy and at delivery and from umbil-
ical plasma shortly after birth are given in Table 1. Calculated
values derived from this FA composition are summarized in
Table 2.

Maternal FA composition. In maternal plasma PL, a few sig-
nificant differences between gestation and delivery occurred.
The total amount of maternal plasma PL-associated FA did not
differ significantly between gestation and delivery.

Neither PUFA nor MUFA changed significantly between
mid-gestation and delivery. HUFA were lower, while SFA were
higher at delivery compared to mid-gestation (P < 0.005). 

Palmitic acid (16:0) and stearic acid (18:0), the two major
SFA, changed significantly, but in opposite directions: 16:0 in-
creased while 18:0 dropped during the last 20 wk of pregnancy
(P < 0.001). 

Few of the individual n-6 or n-3 FA differed significantly
between mid-pregnancy and delivery; arachidonic acid
(20:4n-6) and its elongation product 22:4n-6 declined (P <
0.005), but linoleic acid remained stable. In the series of n-3
FA, only 22:5n-3 was lower at delivery (P < 0.005). 

The sum of the ∆5 desaturation products (20:5n-3, 20:4n-6,
and 20:3n-9) was calculated as a parameter for the essential FA
status of the mother because in some disorders in which ∆5 de-
saturation is affected, the conversion of 20:4n-3 to 20:5n-3, of
20:3n-6 to 20:4n-6, and of 20:2n-9 to 20:3n-9 may be equally
altered. This would result in an unchanged triene/tetraene ratio.
The sum of the ∆5 desaturase products was lower at delivery as
compared to mid-pregnancy: 8.2 (7.6 to 8.8%) vs. 9.3 (8.5 to
10.0%); P < 0.0005.

Umbilical plasma FA composition.The amount of umbilical
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plasma PL-associated FA was only 34% [95% confidence in-
terval (CI) 30.2 to 38.7] of maternal plasma PL-associated FA
at delivery. The FA composition of umbilical venous plasma
PL was very different from that of maternal plasma PL at de-
livery. 

Both SFA and HUFA were significantly higher in umbilical
plasma PL compared to maternal values. No significant differ-
ences were observed in MUFA and PUFA between mother and
neonate.

The SFA in umbilical plasma PL showed significant differ-
ences from the SFA content of maternal plasma PL; 16:0, the
major SFA, was lower in umbilical plasma compared to mater-
nal values. In contrast, the 18:0 content was significantly higher
in umbilical plasma. The other long-chain SFA were also
higher in the neonate compared to the mother, 20:0 (P <

0.0001) and 24:0 (P < 0.001). The odd-chain FA 15:0 (P <
0.001) and 23:0 (P < 0.0001) were lower in the neonate. 

Umbilical plasma PL were significantly enriched in all the
individual n-6 HUFA compared to maternal plasma. In con-
trast, maternal plasma contained more 18:2n-6. α-Linolenic
acid (18:3n-3) was not detected in umbilical plasma. Eicosa-
pentaenoic acid (20:5n-3) was significantly lower in umbilical
plasma, while its elongation and desaturation product docosa-
hexaenoic acid (22:6n-3) was significantly higher in umbilical
plasma PL compared to maternal plasma PL. 

Calculated parameters. (i) Maternal plasma. The MMP of
the FA in plasma PL at delivery is significantly elevated com-
pared to mid-pregnancy (increase of 1.13°C, 95% CI, 0.64 to
1.61, P < 0.001). The MCL was significantly lower at delivery
compared to gestation. These parameters have an effect on
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TABLE 1
Amount (mg/L plasma) and Composition (mol% of total fatty acids) of Fatty Acids in Phospholipids Isolated from Maternal Venous Plasma
During the Course of Pregnancy and at Delivery and from Umbilical Venous Plasma at Birth: Mean (95% CI of the  mean) (n = 16)

Maternal plasma Maternal plasma Maternal plasma Umbilical plasma Paired
Fatty acid 1st antenatal visit: 15–24 wk 2nd antenatal visit: 29–36 wk delivery: 38–41 wk birth: 38–41 wk t-testb

Total (mg/L) 1682.5 1810.1 1845.5 521.4
(1532.3 to 1832.7) (1656.2 to 1964.0) (1679.1 to 2011.9) (559.1 to 683.7) c

14:0 0.5 (0.4 to 0.6) 0.4 (0.4 to 0.5) 0.45 (0.4 to 0.5) 0.4 (0.3 to 0.4)
15:0 0.2 (0.2 to 0.3) 0.2 (0.2 to 0.25) 0.2 (0.2 to 0.23) 0.1 (0.1 to 0.2) b,c
16:0 33.5 (32.8 to 34.2) 34.5 (33.8 to 35.3) 35.8 (34.9 to 36.6) 31.9 (30.6 to 33.2) a,b,c
17:0 0.4 (0.4 to 0.5) 0.4 (0.3 to 0.4) 0.3 (0.3 to 0.4) 0.35 (0.3 to 0.4) a,b
18:0 11.0 (10.6 to 11.3) 10.5 (10.0 to 11.0) 9.75 (9.4 to 10.1) 14.7 (14.3 to 15.2) a,b,c
20:0 0.5 (0.5 to 0.5) 0.5 (0.5 to 0.6) 0.5 (0.4 to 0.5) 0.9 (0.8 to 1.0) c
22:0 1.3 (1.2 to 1.4) 1.3 (1.2 to 1.50) 1.2 (1.1 to 1.4) 1.45 (1.3 to 1.6)
23:0 0.5 (0.5 to 0.6) 0.5 (0.5 to 0.6) 0.5 (0.45 to 0.6) 0.2 (0.15 to 0.2) c
24:0 0.9 (0.8 to 1.0) 0.9 (0.8 to 1.0) 0.85 (0.75 to 0.95) 1.4 (1.1 to 1.7) c
18:3n-3 0.1 (0.1 to 0.2) 0.1 (0.1 to 0.2) 0.2 (0.1 to 0.2) ND
20:4n-3 0.1 (0.1 to 0.1) 0.1 (0.1 to 0.2) 0.1 (0.1 to 0.1) 0.1 (0.0 to 0.1)
20:5n-3 0.5 (0.4 to 0.6) 0.6 (0.4 to 0.7) 0.4 (0.3 to 0.5) 0.3 (0.2 to 0.4) c
22:5n-3 0.7 (0.6 to 0.8) 0.7 (0.6 to 0.8) 0.6 (0.5 to 0.7) 0.8 (0.5 to 1.1) b
22:6n-3 4.1 (3.7 to 4.5) 4.2 (3.6 to 4.7) 3.7 (3.2 to 4.3) 6.2 (5.1 to 7.3) c
18:2n-6 20.4 (19.6 to 22.2) 20.8 (19.2 to 22.4) 20.8 (19.3 to 22.2) 7.7 (6.9 to 8.5) c
20:2n-6 0.45 (0.4 to 0.5) 0.4 (0.4 to 0.5) 0.4 (0.3 to 0.4) 0.3 (0.3 to 0.3)
20:3n-6 2.8 (2.5 to 3.0) 2.8 (2.5 to 3.1) 3.0 (2.7 to 3.3) 4.5 (4.1 to 4.95) c
20:4n-6 8.6 (7.9 to 9.3) 7.9 (7.2 to 8.6) 7.6 (7.0 to 8.2) 15.2 (14.4 to 15.9) b,c
22:4n-6 0.3 (0.3 to 0.4) 0.3 (0.3 to 0.3) 0.3 (0.3 to 0.3) 0.7 (0.6 to 0.9) b,c
22:5n-6 0.3 (0.3 to 0.4) 0.3 (0.2 to 0.3) 0.3 (0.3 to 0.4) 0.5 (0.5 to 0.6) c
24:2n-6 0.2 (0.15 to 0.2) 0.2 (0.2 to 0.3) 0.2 (0.15 to 0.2) 0.6 (0.5 to 0.7) c
16:1n-7 0.4 (0.3 to 0.5) 0.4 (0.3 to 0.6) 0.7 (0.4 to 0.9) 0.6 (0.5 to 0.7)
18:1n-7 1.4 (1.2 to 1.5) 1.3 (1.2 to 1.4) 1.3 (1.1 to 1.4) 2.3 (2.1 to 2.5) c
18:1n-9 8.1 (7.7 to 8.6) 8.3 (7.8 to 8.7) 8.7 (7.9 to 9.6) 6.5 (6.3 to 6.7) c
20:1n-9 0.1 (0.1 to 0.1) 0.1 (0.1 to 0.1) 0.1 (0.10 to 0.12) 0.1 (0.05 to 0.1) a,b,c
20:3n-9 0.2 (0.1 to 0.2) 0.1 (0.1 to 0.2) 0.2 (0.14 to 0.2) 0.3 (0.2 to 0.3)
24:1n-9 1.6 (1.5 to 1.8) 1.7 (1.5 to 1.8) 1.6 (1.4 to 1.7) 1.9 (1.7 to 2.1)
Σn-3 5.6 (5.0 to 6.2 5.7 (4.8 to 6.5) 5.1 (4.24 to 5.9) 7.4 (6.0 to 8.7) c
Σn-6 33.5 (32.5 to 34.4) 32.8 (31.6 to 33.9) 32.6 (31.0 to 34.2) 29.6 (28.3 to 30.9) c
Σn-7 1.7 (1.5 to 2.0) 1.7 (1.5 to 1.9) 1.9 (1.6 to 2.3) 2.9 (2.6 to 3.1) c
Σn-9 10.05 (9.6 to 10.5) 10.2 (9.7 to 10.7) 10.6 (9.7 to 11.5) 8.7 (8.4 to 9.0) c
SFA 48.9 (48.2 to 49.5) 49.4 (49.0 to 49.9) 49.6 (48.9 to 50.3) 51.4 (50.4 to 52.5) b,c
MUFA 11.6 (11.0 to 12.2) 11.76 (11.13 to 12.40) 12.4 (11.2 to 13.5) 11.29 (10.9 to 11.7)
PUFA 39.2 (38.4 to 40.1) 38.6 (37.9 to 39.2) 37.8 (36.6 to 39.1) 37.2 (36.4 to 38.1)
HUFA 17.6 (16.7 to 18.5) 17.0 (15.8 to 18.3) 16.3 (15.3 to 17.3) 28.6 (27.4 to 29.8) b,c
aSFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; HUFA, highly unsaturated fatty acids; ND, not detectable.
bPaired t test performed after arcsin transformation of all the fatty acid fractions. a, significant difference (P < 0.005) between maternal values of second ante-
natal visit and delivery; b, significant difference (P < 0.005) between maternal values of first antenatal visit and delivery; c, significant difference (P < 0.005)
between maternal values at delivery and umbilical venous plasma at birth.



membrane fluidity. The OPI of plasma PL, an index for suscep-
tibility toward peroxidation, was significantly lower at delivery
compared to gestation. The change in composition of the SFA
results in a shorter MCL and consequently a lower MMP (de-
crease of 0.24°C, 95% CI, 0.13 to 0.34, P < 0.001) of the SFA.
The same phenomenon was observed in MUFA, but it was less
pronounced, the MCL of the MUFA is shorter at delivery com-
pared to mid-pregnancy (P < 0.005) and their MMP is lower
(0.60°C, 95% CI, 0.25 to 0.95, P < 0.005). 

The mole fraction of the PUFA, but not of HUFA, in the PL
correlated positively with both the MMP of SFA (r = 0.56, n =
48, P < 0.0001) and with the MMP of MUFA (r = 0.64, n = 48,
P < 0.0001) (Fig. 1). Even without the two values with a low
PUFA fraction (<34 mol%), the same association still exists.

(ii) Umbilical plasma. The high concentration of HUFA in
umbilical plasma caused a significantly higher OPI, a longer
MCL, and a lower MMP compared to maternal values. The
lower global MMP in umbilical plasma PL compared to mater-
nal plasma PL is associated with a higher MMP of the SFA
(0.86°C, 95% CI, 0.61 to 1.11, P < 0.001) and of the MUFA
(1.03°C, 95% CI, 0.46 to 1.60, P = 0.002). 

Higher concentrations of HUFA in the newborn than in the
mother are associated with higher concentrations of SFA, and a
shift in the composition of SFA toward longer chain lengths.
The MCL of the SFA is significantly higher in umbilical
plasma compared to maternal plasma at delivery. These
changes partially counteract the reduction in MMP induced by
higher levels of HUFA.

DISCUSSION 

The loss of HUFA (mean 1.30% pts, 95% CI, 0.61–1.99) at de-
livery compared to mid-pregnancy was about equal to the in-
crease in SFA and MUFA (mean 1.44% pts, 95% CI,
0.48–2.41). The lower content of HUFA in maternal plasma PL
resulted in a higher MMP of the FA mixture in plasma PL.
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TABLE 2
Calculated Values Derived from the Fatty Acid Composition of Maternal Plasma Phospholipids During the Course of Pregnancy and at Delivery
and of Umbilical Venous Plasma at Birth: mean (95% CI of the mean) (n = 16)

Maternal plasma Maternal plasma Maternal plasma Umbilical plasma
1st antenatal visit: 2nd antenatal visit: delivery: birth: Paired

Calculated valuesa 15–24 wk 29–36 wk 38–41 wk 38–41 wk t-testb

OPI 32.15 (30.87 to 33.44) 31.50 (29.78 to 33.23) 29.94 (28.34 to 31.54) 43.10 (40.54 to 45.66) a,b,c
MCL (overall) 18.02 (17.98 to 18.06) 18.00 (17.95 to 18.05) 17.92 (17.87 to 17.97) 18.39 (18.30 to 18.47) a,b,c
MCL SFA 16.86 (16.81 to 16.90) 16.84 (16.79 to 16.90) 16.78 (16.72 to 16.83) 17.04 (16.96 to 17.13) a,b,c
MCL MUFA 18.80 (18.71 to 18.90) 18.80 (18.72 to 18.89) 18.70 (18.59 to 18.81) 18.90 (18.82 to 18.98) b,c
MCL PUFA 19.23 (19.15 to 19.30) 19.22 (19.12 to 19.33) 19.18 (19.08 to 19.27) 20.09 (19.99 to 20.19) c
MCL HUFA 20.62 (20.58 to 20.66) 20.64 (20.59 to 20.68) 20.61 (20.55 to 20.66) 20.57 (20.49 to 20.64)
MMP (overall) 26.17 (25.49 to 26.84) 26.84 (26.20 to 27.47) 27.30 (26.59 to 28.70) 24.49 (23.48 to 25.50) b,c
MMP SFA 65.65 (65.52 to 65.79) 65.61 (65.45 to 65.78) 65.41 (65.25 to 65.58) 66.27 (66.02 to 66.53) a,b,c
MMP MUFA 17.24 (16.78 to 17.69) 17.22 (16.76 to 17.68) 16.64 (16.08 to 17.20) 17.67 (17.27 to 18.07) b,c
MMP PUFA −20.49 (−21.58 to −19.40) −20.04 (−21.40 to −18.67) −19.27 (−20.42 to −18.13) −31.12 (−32.38 to −29.86) c
MMP HUFA −39.56 (−40.21 to −38.90) −39.15 (−39.84 to −38.45) −38.14 (−39.04 to −37.23) −39.52 (−40.32 to −38.72) b
aOPI, oxidative potential index; MCL, mean chain length, expressed as number of carbon atoms; MMP, mean melting point, expressed as degrees Celsius.
For other abbreviations see Table 1.
ba, significant difference (P < 0.005) between maternal values of second antenatal visit and delivery; b, significant difference (P < 0.005) between maternal
values of first antenatal visit and delivery; c, significant difference (P < 0.005) between maternal values at delivery and umbilical venous plasma at birth.

FIG. 1. Correlation between the mean melting point (MMP) of the mono-
unsaturated fatty acids (MUFA) and of the saturated fatty acids (SFA) in
plasma phospholipids and the fraction of polyunsaturated fatty acids
(PUFA) in maternal plasma phospholipids (mol%).



HUFA were preferentially replaced by shorter-chain SFA, es-
pecially palmitic acid as was also demonstrated in anorexia
nervosa (4). These shorter-chain FA are more fluid than their
longer-chain homologs because they have lower melting
points. The MMP of SFA was significantly lower at delivery
compared to pregnancy. Although the shorter chain length of
the SFA compensates only partially for the higher overall
MMP, it is possible that FA metabolism in pregnancy attempts
to maintain MMP homeostasis as was shown previously in
multiple sclerosis (1). An additional indication for this hypoth-
esis is the positive correlation between the fraction of PUFA in
PL with the MMP of SFA and of MUFA. This indicates that a
loss in PUFA, which would result in an increased MMP, is ac-
companied by an increase in shorter-chain SFA and MUFA,
which have an opposing effect on the MMP. A difference as
large as 10.8°C was observed by Holman et al.  (3) between
the MMP of plasma PL FA of nonpregnant healthy controls
(15.3°C) and the MMP of plasma PL FA of women at parturi-
tion (26.1°C). Taking into account the differences in MMP
found in different populations , the latter value compares fa-
vorably with ours at delivery (27.3°C). In our study population,
the MMP increases only 1.13°C from mid-pregnancy until de-
livery. The MMP of the FA mixture of PL in umbilical plasma
(24.49°C) is comparable with a previously calculated value of
20.07°C of PL in normal cord serum (2), but is much lower
than maternal values due to higher HUFA status. A higher
HUFA fraction in umbilical plasma PL is accompanied with
more longer-chain, less fluid SFA. The observed changes in the
FA composition of maternal plasma PL during the course of
pregnancy are probably not due to changes in dietary intake.
Indeed, analysis of food frequency questionnaires (surveyed at
the beginning of pregnancy and in the third trimester) of Bel-
gian pregnant women attended by the same obstetrician re-
vealed no significant differences in the FA composition of the
diet nor in fat intake during the course of pregnancy (DeVriese,
S.R., Matthys, C., De Henauw, S., Christophe, A.B., and
Dhont, M., unpublished results). Others confirm these findings:
the maternal dietary fat composition of pregnant Dutch  women
was consistent during pregnancy (12).

Holman et al.(3) found that pregnant women in their 36th
wk of gestation have significantly suppressed concentrations of
all the products of ∆5 desaturation compared to nonpregnant
women. Our data reveal a similar pattern; the concentration of
∆5 products in mid-pregnancy is significantly higher than at
delivery. 

The essential fatty acid composition of maternal PL slightly
changed from mid-pregnancy to delivery; 20:4n-6 and its elon-
gation product 22:4n-6 declined, but 18:2n-6 remained stable.
No changes were observed in 18:3n-3, 20:5n-3, or  22:6n-3,
while 22:5n-3 decreased. The sum of the ∆5 desaturation prod-
ucts was lower at delivery indicating a lower essential FA sta-
tus of the mother; however, the differences were small. Similar
deviations in maternal essential FA status, but of greater mag-
nitude, were reported by Al et al.(10th wk of gestation vs. de-
livery) (13) and by Otto et al.(14th wk of gestation vs. deliv-
ery) (14). The FA pattern of umbilical plasma presented here

is very different from maternal values as was noted in pre-
vious studies (2,11–13,15–17). HUFA, especially 20:4n-6 and
22:6n-3, are higher in umbilical than in maternal plasma and
both FA are lower in maternal plasma PL after delivery com-
pared to mid-pregnancy. As FA desaturation and elongation by
fetal tissues cannot meet neonatal needs (18–20), this could in-
dicate a preferential placental transfer of these long-chain FA
to the fetus (21). The total amount of FA in PL (mg/L plasma),
and of each individual FA, is much lower in umbilical plasma
compared to maternal values (Table 1). This is in concurrence
with literature findings (13). 

In summary, small but significant deviations were found in
maternal plasma PL essential FA between mid-gestation and
delivery. This is in concurrence with previous reports on the
essential FA status of the mother during pregnancy. 

This study extends the concept that changes in overall MMP
are counteracted by changes in the MMP of individual FA
classes. We demonstrated that in maternal plasma, the loss of
HUFA during gestation is accompanied by a shorter MCL and
a decrease in the MMP of the SFA. The high content of HUFA
in umbilical plasma is associated with a significantly longer
MCL and a higher MMP of the SFA. Thus, the FA composi-
tion of the SFA changes in a way to counteract changes in the
MMP induced by changed HUFA composition. Similar adap-
tations in the FA composition of SFA, to maintain homeostasis
in the overall MMP, were found in multiple sclerosis (2), cystic
fibrosis, and anorexia nervosa (4).
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ABSTRACT: The purpose of this study was to assess the FA
composition of both cholesteryl esters (CE) and phospholipids
(PL) in maternal plasma during pregnancy and at delivery and in
umbilical plasma at birth. A longitudinal study of 32 normal
pregnant women was carried out with three cutoff points during
pregnancy (first, second, and third trimester) and at delivery. Few
significant differences occurred in the FA profile of maternal CE:
18:1n-9 increased, 18:2n-6 dropped slightly, and 18:3n-3 de-
creased with progressing gestation. In maternal PL, long-chain
highly unsaturated FA concentrations dropped and were re-
placed by saturated FA as gestation progressed. Additionally,
changes in saturated FA in PL occurred: Shorter-chain 16:0 was
higher whereas longer-chain 18:0 was lower at delivery com-
pared to early pregnancy. The FA profile of umbilical venous
plasma was strikingly different from that of maternal plasma at
delivery. Cord plasma CE contained more saturated and mono-
unsaturated FA than maternal CE. The polyunsaturates 18:2n-6
and 18:3n-3 are lower in umbilical CE than in maternal CE
whereas 20:4n-6 and 22:6n-3 are twice as high in umbilical CE.
Cord plasma PL have a higher content of long-chain highly un-
saturated FA than maternal plasma PL at delivery. In contrast to
maternal plasma PL, 16:0 was lower and longer-chain saturated
FA were higher in cord plasma PL. The FA profile of umbilical
plasma at birth shows preferential accumulation of 20:4n-6 and
22:6n-3, with low concentrations of 18:2n-6 and 18:3n-3 in CE
and PL, indicating a preferential supply of the fetus with long-
chain highly unsaturated FA needed for fetal development.

Paper no. L9124 in Lipids 38, 1–7 (January 2003).

The two most important families of long-chain FA for human
beings are the n-6 and n-3 families. Linoleic acid (18:2n-6) and
α-linolenic acid (18:3n-3) can be desaturated and elongated to
form long-chain PUFA, which play a major role in the devel-
opment of new life as important structural components of cell
membrane phospholipids (PL) (1,2). During pregnancy, accre-
tion of maternal, placental, and fetal tissue occurs. Therefore,
the requirement for PUFA is high for pregnant women and the
developing fetus. Arachidonic acid (20:4n-6) and docosa-
hexaenoic acid (22:6n-3) are important structural FA in neural
tissue such as the brain and retina (3,4). The FA 18:2n-6,
18:3n-3, 20:4n-6, and 22:6n-3 are conditionally indispensable

FA for fetuses, and pregnant and lactating women (5). Cunnane
(5) introduced the classification of conditionally indispensable
and conditionally dispensable FA instead of EFA (5).

Several authors have analyzed the FA composition of ma-
ternal plasma PL throughout pregnancy and of umbilical
plasma PL at birth (6–12). Few studies have described the FA
composition of cholesteryl esters (CE) in maternal and um-
bilical plasma at delivery (13–16). The FA composition of
maternal plasma CE on three different occasions during the
course of pregnancy and at delivery has, to our knowledge,
never been described before.

In a previous study we reported a number of changes in the
composition and the calculated mean melting point (MMP)
of FA in plasma PL throughout pregnancy in a small study
population (n = 16) (7). We found that the MMP of maternal
PL was significantly higher at delivery compared to mid-ges-
tation due to a loss of highly unsaturated FA, which were re-
placed by saturated FA (SFA). In addition, changes in SFA
occurred: The content of 16:0, with a lower melting point
(MP), was higher while 18:0, with a higher MP, was lower at
delivery (7). In contrast to maternal plasma, 16:0 was lower
in umbilical plasma while the longer chain SFA were higher,
tending to raise the overall MMP.

The aim of the present work was to confirm previous find-
ings in a larger study population and to assess whether simi-
lar changes occur in the FA profile of plasma CE. Further-
more, the relationship between the FA in the PL and the CE
fractions was investigated.

SUBJECTS AND METHODS

Study population. Healthy pregnant women attending the De-
partment of Gynecology of Ghent University Hospital, Bel-
gium, were asked to cooperate in this study. All pregnant vol-
unteers signed a written informed consent form, approved by
the ethics committee of Ghent University Hospital. Inclusion
criteria were: singleton pregnancy, nullipara, term delivery
(38–42 wk), normotensive (diastolic blood pressure below 90
mm Hg). We excluded women (i) who were diagnosed with
gestational diabetes mellitus; (ii) who had signs of protein-
uria; and (iii) who suffered from renal or cardiovascular dis-
ease. We did not exclude women who delivered through a
Caesarean section (n = 2) because no important differences in
the maternal FA composition of serum PL was found between
mothers who had a normal vaginal delivery and mothers who
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had a Caesarean section (16). From the 39 pregnant women
who entered the study, 34 completed the study. Five women
failed to finish the study owing to lack of motivation. Two
pregnant women delivered preterm and were excluded from
the study. The study population thus consisted of 32 healthy
pregnant women and their neonates (13 girls and 19 boys). 

Maternal venous blood samples were obtained thrice dur-
ing the course of pregnancy: (i) between 5 and 14 wk of
gestation (median 12 wk), (ii) between 20 and 24 wk (median
22 wk), and (iii) between 29 and 37 wk (median 32 wk) and
(iv) at delivery (median 39.5 wk). Umbilical venous blood
was collected immediately after the cord had been clamped.
Blood was collected in EDTA-containing Vacutainer tubes
(Belliver Industrial Estate, Plymouth, United Kingdom) and
temporarily stored at 6°C. Within 24 h of collection, plasma
was separated from blood cells by centrifugation (600 × g for
5 min at 4°C) and stored in plastic tubes under nitrogen at 
−80°C until further analysis.

FA analysis of plasma CE and PL. All samples of a given
mother–infant pair were analyzed simultaneously. Lipids were
extracted from 1 mL plasma according to a modified Folch et
al. extraction with methanol/chloroform (1:2) (17). The lipids
were separated by TLC on rhodamine-impregnated silica gel
plates using petroleum ether (b.p. 60–80°C; Merck Belgolab,
Overijse, Belgium)/acetone 85:15 as mobile phase (18). The
CE and PL fractions were scraped off and the FA converted
into methyl esters by transesterification with 2 mL of a mix-
ture of methanol/benzene/HCl (aqueous, 12 N) (80:20:5) (19).
After cooling and adding 2 mL of water, FAME were extracted
with petroleum ether (b.p. 40–60°C), evaporated to dryness
under a nitrogen flow at a temperature not exceeding 40°C,
and analyzed by temperature-programmed capillary GC (Var-
ian Model 3500) on a 25 m × 250 µm (length × i.d.) × 0.2 µm
df Silar 10C column (19). The injection and detection temper-
atures were set at 285°C. The starting temperature of the col-
umn was 150°C, which was increased to 240°C after 3 min at
a rate of 2°C/min. The carrier gas was nitrogen with a flow of
25 cm/s. Peak identification was performed by spiking with
authentic standards (Sigma-Aldrich, Bornem, Belgium). Peak
integration and calculation of the percent composition was
performed electronically with a Varian Model 4290 integrator.
The coefficient of intra-assay variation of the entire method of
FA analysis was less then 5%.

The results are expressed as weight percentage (wt%) of
total FA. Twenty-six different FA with chain lengths between
14 and 24 carbon atoms were identified. The sum of all the
SFA (∑SFA); the monounsaturated FA (∑MUFA); the PUFA
(∑PUFA); the long-chain highly unsaturated FA (∑HUFA =
FA with 20 or more carbon atoms and with at least three
double bonds); ∑n-3; ∑n-6; and ∑trans FA were calculated
and are reported together with the individual FA. The mean
melting point (MMP, °C) (sum of the mole fraction multiplied
by the MP for each FA) and the mean chain length (MCL)
(sum of the mole fraction multiplied by the number of carbon
atoms in the FA) of the plasma lipids were assessed (7). 

Statistical analysis. Values are reported as mean and SD in

parentheses. The normality of distribution was ascertained
with the Kolmogorov–Smirnov test. The FA (wt%) that had a
skewed distribution were log-transformed for the statistical
analyses of these variables. Group mean differences were as-
sessed by means of ANOVA. Repeated-measures ANOVA
was used to test for significant differences in the FA compo-
sition of maternal serum PL and CE during the course of
pregnancy. The ANOVA model included only a time factor
(FA data thrice during the course of pregnancy and shortly
after delivery). A paired Student’s t-test was performed for
maternal-umbilical FA comparisons at delivery and birth. In
order to avoid type 2 errors, due to multiple comparisons, a
value of P < 0.005 was taken as the criterion of significance.
The degree of association was calculated using the Spearman
rank correlation. The data were analyzed using both SPPS
(version 10.0 for Windows; SPSS Inc., Chicago, IL) (20) and
the MedCalc statistical program (version 6; MedCalc Soft-
ware, Mariakerke, Belgium) (21). For 4 of our 32 subjects,
we were unable to obtain a complete set of matching plasma
PL or CE data for maternal and umbilical blood samples. This
accounts for the various sample sizes in Tables 1 and 2. How-
ever, all repeated-measures ANOVA or paired t-tests were
made with matching samples. 

RESULTS

Clinical characteristics. The mean age of the mothers (n =
32) at delivery was 29 yr (range 21–41 yr). The mean body
mass index of the women before pregnancy was 23.6 (range
17.6–35.6). All the infants were born healthy with a mean
birth weight of 3155 g (range 2300–4020 g) and a mean
crown–heel length of 50.2 cm (range 48–52 cm). 

The FA composition of maternal plasma CE and PL (wt%)
during the course of pregnancy and at delivery and from um-
bilical plasma shortly after birth are summarized in Tables 1
and 2.

FA composition of maternal plasma lipid classes. (i) CE.
The fraction of the individual SFA remained stable in mater-
nal CE during pregnancy. The major monounsaturate, oleic
acid (18:1n-9), and as a consequence ∑MUFA, significantly
increased with progressing gestation. Linoleic acid with more
than 50 wt% of the FA was the major FA of the CE fraction.
The acid 18:2n-6 slightly decreased with progressing gesta-
tion. On the other hand, α-linolenic acid increased slightly
with progressing gestation and reached a maximum during
the third trimester. ∑PUFA significantly decreased in mater-
nal CE during pregnancy. None of the long-chain highly un-
saturated acids changed significantly in maternal CE. When
we compare maternal values from the first trimester with de-
livery values, more significant differences were found in CE:
20:4n-6, 20:5n-3, ∑n-6, and ∑HUFA were significantly (P <
0.001) lower at delivery. Neither the MMP nor the MCL of
the FA in maternal plasma CE changed significantly with pro-
gressing gestation.

(ii) PL. ∑HUFA significantly decreased while ∑SFA
significantly increased during gestation. ∑PUFA slightly
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decreased and ∑MUFA slightly increased throughout gesta-
tion, but significance was not reached. Palmitic acid (16:0)
and stearic acid (18:0), the two major saturates, changed sig-
nificantly but in opposite directions: 16:0 increased while
18:0 fell during pregnancy. The long-chain 24:0 also dropped
significantly during gestation. Few of the individual n-6 or
n-3 FA differed significantly with progressing gestation. Ara-
chidonic acid (20:4n-6) declined, but linoleic acid remained
stable. In the series of n-3 FA, only 22:5n-3 significantly
dropped during pregnancy. When we compare maternal val-
ues from the first trimester with delivery values, more signifi-
cant differences were found in PL: 20:4n-6, 20:5n-3, and
22:5n-3 were significantly (P < 0.001) lower at delivery. The
MMP of the FA of maternal plasma PL significantly rose with
progressing gestation and their MCL significantly decreased.

Maternal-umbilical FA comparisons at delivery and birth.
(i) CE. ∑SFA and ∑MUFA were significantly higher in cord
plasma CE compared to maternal plasma CE. The two major
saturates, 16:0 and 18:0, and oleic acid were much higher in

umbilical CE. ∑PUFA were significantly lower (36.9 vs. 61.2
wt%), whereas ∑HUFA were significantly higher in cord
plasma CE. The only two FA that were lower in umbilical CE
compared to maternal CE were 18:2n-6 and 18:3n-3. Linoleic
acid was extremely low in cord plasma (20.2 vs. 52.4 wt%).
Arachidonic acid, on the other hand, was twice as high in the
neonate as in the mother (11.3 vs. 5.6 wt%). Similarly,
22:6n-3 was also twice as high in cord plasma (1.24 vs. 0.61
wt%). Mead acid (20:3n-9), the marker of combined linoleic
and α-linolenic acid deficiency, was significantly higher in
the neonate. The MMP of the FA in umbilical plasma CE was
significantly higher than the MMP of the maternal plasma
CE-associated FA.

(ii) PL. As we found in the CE fraction, ∑SFA and ∑HUFA
were significantly higher in umbilical PL compared to mater-
nal values. ∑MUFA and ∑PUFA did not differ between ma-
ternal and umbilical plasma PL. The SFA content of umbilical
PL was signifcantly different from that of maternal PL.
Palmitic acid was lower in cord plasma. In contrast, the 18:0

CHOLESTERYL ESTERS AND PHOSPHOLIPIDS IN MATERNAL AND CORD PLASMA 3

Lipids, Vol. 38, no. 1 (2003)

TABLE 1
Composition (wt% of total FA) of FA in CE Isolated from Maternal Venous Plasma During the Course of Pregnancy 
and at Delivery and from Umbilical Venous Plasma at Birtha: Mean and SD

Trimester I Trimester II Trimester III Delivery Umbilical cord
(n = 32) (n = 28) (n = 29) (n = 30) RM ANOVA (n = 28) Paired t-test

CE Mean SD Mean SD Mean SD Mean SD (P ) Mean SD (P )

14:0 0.84 0.24 0.83 0.24 0.77 0.20 0.77 0.28 0.03 1.20 0.58 0.001‡

15:0 0.24 0.05 0.22 0.08 0.22 0.09 0.29 0.41 0.73 0.43 0.30 0.04
16:0 11.73 1.34 11.83 1.31 11.74 1.32 12.04 1.93 0.18 19.63 3.23 0.0001‡

17:0 0.15 0.12 0.13 0.19 0.13 0.17 0.13 0.13 0.32 0.80 1.32 0.01
18:0 0.97 0.72 0.82 0.50 0.83 0.71 0.70 0.45 0.30 3.92 2.63 0.0001‡

∑SFA 14.28 2.22 14.11 1.91 14.00 2.36 14.29 2.82 0.05 27.05 6.03 0.0001‡

16:1n-9 0.35 0.17 0.33 0.15 0.30 0.16 0.38 0.32 0.59 1.20 1.07 0.0001‡

16:1n-7 2.62 0.90 2.84 1.46 3.00 1.16 3.93 1.66 0.04 5.49 2.55 0.02
18:1n-9 15.96 2.24 16.65 2.37 17.31 2.34 18.58 2.31 0.0001* 24.28 6.29 0.0001‡

18:1n-7 0.70 0.55 0.62 0.46 0.55 0.52 0.58 0.59 0.28 1.95 1.15 0.0001‡

∑MUFA 19.82 2.75 20.56 3.44 21.35 2.92 23.72 3.26 0.0001* 33.89 7.12 0.0001‡

16:2n-6 0.09 0.09 0.08 0.10 0.10 0.10 0.11 0.13 0.62 0.42 0.54 0.007
18:2n-6 55.00 4.74 54.90 5.06 54.68 4.54 52.44 5.97 0.01 20.18 6.66 0.0001‡

18:3n-6 0.37 0.27 0.28 0.25 0.27 0.28 0.41 0.29 0.20 0.41 0.35 0.99
20:3n-6 0.74 0.24 0.79 0.21 0.79 0.17 0.74 0.19 0.45 1.37 0.86 0.001‡

20:4n-6 6.79 1.62 6.42 1.30 5.87 1.16 5.59 1.50 0.05 11.31 4.18 0.0001‡

∑n-6 63.09 4.37 62.53 4.78 61.84 3.92 59.45 5.55 0.01 34.27 7.50 0.0001‡

18:3n-3 0.55 0.25 0.63 0.23 0.69 0.19 0.62 0.14 0.009 0.26 0.25 0.0001‡

18:4n-3 ND ND ND ND ND 0.25 0.26 0.0001‡

20:5n-3 0.59 0.32 0.63 0.50 0.47 0.24 0.38 0.26 0.02 0.41 0.33 0.80
22:5n-3 0.09 0.13 0.09 0.12 0.11 0.12 0.13 0.19 0.42 0.23 0.23 0.10
22:6n-3 0.76 0.33 0.80 0.27 0.74 0.33 0.61 0.35 0.09 1.24 1.12 0.01

∑n-3 2.01 0.73 2.18 0.75 2.04 0.50 1.75 0.63 0.04 2.40 1.27 0.04
20:3n-9 ND ND ND ND ND 0.21 0.14 0.0001‡

∑PUFA 65.15 4.10 64.73 4.47 63.91 3.82 61.23 5.45 0.005* 36.88 8.03 0.0001‡

∑HUFA 9.09 1.83 8.79 1.69 8.08 1.35 7.58 1.98 0.03 15.22 5.63 0.0001‡

∑trans FA 0.47 0.21 0.43 0.19 0.49 0.26 0.50 0.22 0.67 1.08 1.01 0.007
MMP (°C) 5.36 1.88 5.43 1.61 5.81 1.79 6.42 2.49 0.21 14.84 5.00 0.0001‡

MCL 17.82 0.05 17.80 0.06 17.79 0.04 17.76 0.09 0.04 17.67 0.22 0.04
aRM, repeated measurements; ND, not detectable; ∑SFA, sum of the saturated FA; ∑MUFA, sum of the monounsaturated FA; ∑PUFA, sum of PUFA; ∑HUFA,
sum of the long-chain highly unsaturated FA (FA with 20 or more carbon atoms and with at least three double bonds); ∑trans FA, sum of the trans FA;MMP,
mean melting point (sum of the mole fraction multiplied by the melting point for each FA); MCL, mean chain length (sum of the mole fraction multiplied by
the number of carbon atoms in the FA).
*Significantly different according to repeated measurements ANOVA (maternal values during pregnancy); ‡significantly different according to paired Stu-
dents’ t-test (comparison between maternal values at delivery and umbilical values at birth).



content was significantly higher in umbilical plasma. The
other long-chain saturates (20:0; 22:0, and 24:0) were also
higher in the neonate. The odd-chain 23:0 was lower in the
neonate. In contrast to what was found in CE, 18:1n-9 was sig-
nificantly lower in umbilical plasma PL. Umbilical PL were
significantly enriched in all the individual n-6 long-chain
highly unsaturated compounds compared to maternal plasma
PL. Consistent with their reduced fraction in the CE, 18:2n-6
and 18:3n-3 were significantly lower in umbilical PL. EPA
(20:5n-3) and 22:5n-3 were significantly lower in umbilical
PL, and 22:6n-3 was significantly higher in cord plasma PL.
Mead acid was significantly higher in the neonate compared
to the mother. The MMP of the FA in umbilical plasma PL did
not differ from that of the maternal plasma PL-associated FA
although the MCL of the FA in umbilical plasma PL was sig-
nificantly higher than that of maternal plasma PL FA.

Relationship between the FA in plasma CE and PL. Strong
correlations (P < 0.0001) were found between the maternal
CE and PL fractions for 18:2n-6 (r = 0.73), 20:3n-6 (0.67),
20:4n-6 (0.71), 20:5n-3 (0.79), and 22:6n-3 (0.49). In umbili-
cal plasma the correlations between these FA in the CE and
the PL fraction were not so strong: for 18:2n-6 (r = 0.45, P <
0.01), 20:5n-3 (0.47, P < 0.01), and 22:6n-3 (0.36, P < 0.05).

DISCUSSION

In this study population very few significant changes in the
FA composition of the polyunsaturates with progressing ges-
tation occured: In PL only 20:4n-6, 22:5n-3, and ∑HUFA
dropped significantly, and in CE only 18:2n-6 slightly de-
creased and 18:3n-3 slightly increased. In other longitudinal
studies, more significant changes in PUFA composition were
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TABLE 2
Composition (wt% of total FA) of FA in PL Isolated from Maternal Venous Plasma During the Course of Pregnancy 
and at Delivery and from Umbilical Venous Plasma at Birtha: Mean and SD

Trimester I Trimester II Trimester III Delivery Umbilical cord
(n = 32) (n = 28) (n = 30) (n = 32) RM ANOVA (n = 32) Paired t-test

PL Mean SD Mean SD Mean SD Mean SD (P ) Mean SD (P )

14:0 0.34 0.09 0.40 0.17 0.38 0.09 0.34 0.20 0.28 0.33 0.12 0.87
15:0 0.25 0.14 0.27 0.13 0.23 0.10 0.24 0.25 0.14 0.18 0.10 0.14
16:0 28.40 1.73 29.77 2.79 30.21 1.03 32.24 2.46 0.0001* 28.69 2.39 0.0001‡

17:0 0.38 0.30 0.47 0.40 0.32 0.13 0.34 0.20 0.17 0.33 0.20 0.85
18:0 11.75 1.01 11.19 1.27 10.58 0.71 9.90 1.04 0.0001* 14.11 2.20 0.0001‡

20:0 0.52 0.10 0.57 0.13 0.56 0.09 0.56 0.14 0.10 0.92 0.20 0.0001‡

22:0 1.54 0.25 1.60 0.28 1.60 0.21 1.48 0.20 0.03 1.73 0.27 0.0001‡

23:0 0.62 0.12 0.66 0.11 0.59 0.17 0.53 0.19 0.02 0.25 0.13 0.0001‡

24:0 1.14 0.19 1.17 0.19 1.08 0.15 0.99 0.16 0.0001* 1.74 0.47 0.0001‡

∑SFA 44.95 1.28 46.10 3.89 45.55 0.99 46.61 3.32 0.001* 48.29 2.50 0.02
16:0 DMA 0.82 0.14 0.73 0.17 0.66 0.11 0.64 0.26 0.0001* 0.98 0.36 0.0001‡

18:0 DMA 0.49 0.28 0.46 0.23 0.36 0.24 0.39 0.16 0.03 0.49 0.28 0.02
∑DMA 1.31 0.34 1.19 0.33 1.02 0.29 1.03 0.31 0.0001* 1.47 0.58 0.0001‡

16:1n-9 0.27 0.11 0.30 0.14 0.27 0.11 0.27 0.15 0.21 0.26 0.11 0.85
16:1n-7 0.41 0.30 0.40 0.19 0.43 0.20 0.54 0.23 0.66 0.60 0.23 0.26
18:1n-9 8.02 1.30 7.83 1.20 8.63 1.17 8.69 1.26 0.54 7.11 1.18 0.0001‡

18:1n-7 1.11 0.35 1.07 0.38 1.10 0.27 1.10 0.37 0.005* 1.92 0.37 0.0001‡

24:1n-9 2.24 0.54 2.20 0.41 2.26 0.39 2.16 0.55 0.72 2.74 0.59 0.0001‡

∑MUFA 12.25 1.52 12.10 1.38 12.92 1.31 12.98 1.23 0.008 12.85 1.22 0.60
18:2n-6 19.90 3.00 19.83 3.04 20.29 2.66 19.56 3.01 0.62 8.85 3.98 0.0001‡

20:2n-6 0.38 0.18 0.36 0.18 0.40 0.13 0.35 0.14 0.08 0.26 0.11 0.0001‡

20:3n-6 3.12 0.66 2.99 0.64 3.12 0.72 3.08 0.58 0.66 4.24 0.84 0.0001‡

20:4n-6 9.76 1.76 8.78 1.49 8.49 1.31 8.70 1.82 0.0001* 14.80 3.33 0.0001‡

22:4n-6 0.28 0.22 0.35 0.17 0.32 0.20 0.30 0.21 0.23 0.67 0.52 0.0003‡

22:5n-6 0.30 0.16 0.33 0.12 0.34 0.15 0.38 0.16 0.006 0.59 0.25 0.0001‡

∑n-6 33.99 2.50 32.84 3.68 33.19 2.43 32.52 3.10 0.12 29.62 2.33 0.0001‡

18:3n-3 0.19 0.08 0.26 0.29 0.26 0.13 0.21 0.14 0.05 0.07 0.08 0.0001‡

20:5n-3 0.70 0.39 0.72 0.52 0.56 0.37 0.49 0.30 0.07 0.36 0.23 0.003‡

22:5n-3 0.85 0.24 0.73 0.21 0.68 0.19 0.62 0.15 0.0001* 0.48 0.17 0.0002‡

22:6n-3 4.93 0.99 5.13 1.16 4.94 1.16 4.73 1.32 0.11 5.95 1.68 0.001‡

∑n-3 6.73 1.47 6.94 1.74 6.52 1.51 6.16 1.66 0.05 7.01 1.81 0.02
20:3n-9 0.07 0.05 0.16 0.26 0.10 0.09 0.11 0.12 0.23 0.28 0.17 0.0001‡

∑PUFA 40.79 2.08 39.93 3.44 39.81 1.76 38.79 3.05 0.007 36.91 2.75 0.01
∑HUFA 20.00 2.55 19.18 2.62 18.55 2.46 18.40 2.94 0.001 27.37 4.73 0.0001‡

∑trans FA 0.59 0.28 0.59 0.25 0.60 0.20 0.50 0.22 0.15 0.32 0.17 0.0001‡

MMP (°C) 25.32 1.29 26.35 3.12 26.34 1.16 27.01 2.81 0.0001* 25.90 2.70 0.10
MCL 18.05 0.10 18.00 0.11 17.98 0.08 17.91 0.12 0.0001* 18.25 0.19 0.0001‡

aDMA, dimethylacetals; PL, phospholipids; for other abbreviations see Table 1.



found (6,10). When we compare maternal values from the
first trimester with delivery values, more significant differ-
ences are found. Our study shows preferential accumulation
of 20:4n-6 and 22:6n-3, with low concentrations of 18:2n-6
and 18:3n-3 in fetal plasma CE and PL, indicating a preferen-
tial supply of the fetus with HUFA needed for fetal develop-
ment. These findings are consistent with other reports
(6,7,13,16,22). These observations support the hypothesis of
placental selectivity for transport of certain FA (23–25). Kuhn
and Crawford (24) found that during in vitro perfusion of the
human placenta, the majority of radiolabeled 20:4n-6 from
the maternal circulation was selectively exported to the fetal
circulation and incorporated into fetal PL, in contrast to small
amounts of 18:2n-6 and 18:3n-3. 

It has been established that ∑SFA increases whereas
∑HUFA decreases in maternal plasma PL during pregnancy
(7,10). We demonstrated that in maternal plasma PL the loss
of HUFA during gestation is accompanied by a shorter MCL
of SFA and that the high content of HUFA in umbilical
plasma PL is associated with a significantly longer MCL of
SFA (7). In this study we confirmed similar changes in the PL
fraction. The most remarkable finding in the composition of
SFA of maternal plasma PL is the increase in 16:0 together
with the decrease in the longer-chain FA 18:0 and 24:0 dur-
ing gestation. The concentration of HUFA in umbilical
plasma PL is much higher than in maternal plasma PL at de-
livery. Additionally, the composition of SFA in umbilical
plasma PL is completely different from maternal plasma PL;
16:0 is lower and the longer-chain FA (18:0, 20:0, 22:0, and
24:0) are much higher. Thus, this study supports our hypothe-
sis that the FA composition of SFA of plasma PL changes in
a way to counteract changes in the MCL and consequently in
the MMP induced by a changed HUFA composition (7). 

The increase in ∑SFA and the decline in ∑HUFA in ma-
ternal plasma PL could be related to changes in the dietary in-
take of FA. However, this is rather unlikely as we found in
this study population that the dietary habits remain unaltered
during pregnancy (26,27). Neither the amount and type of fat
nor the FA composition of the maternal diet changed during
pregnancy until 1 mon postpartum, as has been confirmed by
others (26–28). We can conclude that in this study population
maternal diet cannot be a confounding factor in the plasma
FA composition.

Another possible explanation for the observed differences
in the maternal plasma FA composition during pregnancy is
changes in the maternal hormonal status during gestation. The
major pathway for PC synthesis, the Kennedy pathway, pref-
erentially results in the appearance of 16:0 in the sn-1 position
and 18:2n-6 or 18:1n-9 in the sn-2 position. Estrogen enhances
an alternative pathway, the Greenberg pathway, resulting in
the appearance of more PC with 18:0 in the sn-1 position and
20:4n-6 in the sn-2 position (29–31). During pregnancy, levels
of estrogens and progesterone rise steadily as a result of pla-
cental production of these hormones (32). One would expect
that the rise in estrogen during pregnancy would result in an
increased synthesis of PC along the Greenberg pathway,

resulting in an increased ratio of 18:0 over 16:0. On the con-
trary, an increase in 16:0 together with a decrease in 18:0 and
20:4n-6 with progressing gestation is observed, indicating an
enhanced synthesis of PC along the Kennedy pathway in spite
of estrogen (7,30,31). Skryten et al. (30) suggested subclinical
cholestatic changes in the liver during normal pregnancy to
explain this discrepancy in PC synthesis. Indeed, intrahepatic
cholestasis of pregnancy is well described in humans and is
associated with hyperlipidemia during pregnancy (33,34).
Cholestasis is characterized by higher levels of 16:0 and lower
levels of 18:0 in serum PL (35). Cholestatic conditions en-
hance the Kennedy pathway (30). Intrahepatic cholestasis of
pregnancy generally resolves after delivery (34). The results
of our study are in concurrence with the concept of enhanced
synthesis along the Kennedy pathway as a result of increase
cholestatic influence on liver PC synthesis during pregnancy.
Of course, these explanations are rather speculative as we
measured neither estrogen levels nor markers for cholestasis.
Furthermore, the level of dimethylacetals, which originate
from plasmalogens, dropped during pregnancy. Thus, this de-
crease shows that there is a decrease in plasmalogens relative
to diacylphospholipids during gestation. It is not known
whether this reflects a change in the relative contribution of
both pathways for PL synthesis.

Minor changes were observed in the maternal CE FA com-
position during pregnancy. The adaptations in the SFA com-
position to counteract changes in the MCL and MMP found in
PL were not confirmed in plasma CE. In maternal CE the loss
of linoleic acid during gestation is compensated by an increase
in oleic acid. In umbilical plasma, the higher concentration of
∑HUFA is accompanied by considerably higher levels of all
the individual SFA (even the shorter-chain 14:0 and 16:0)
compared to maternal plasma. In normal, fed, healthy persons,
most of the circulating CE are formed in plasma under the ac-
tion of LCAT (36,37). The esterification takes place in the
plasma mainly by transfer of the FA from the sn-2 position of
PC, the major plasma PL, to the 3-β-OH-group of cholesterol
under the influence of LCAT. Human LCAT utilizes the sn-2
FA from most PC species (including 16:0–18:1 PC, 16:0–18:2
PC, and 18:1–16:0 PC) (38). In other words, human LCAT
preferentially utilizes linoleic acid, which is the predominant
FA in CE. However, when the long-chain FA 20:4n-6 and
22:6n-3 are present in sn-2 of PC, LCAT prefers the sn-1 acyl
group. Thus, from 16:0–20:4 PC and 16:0–22:6 PC, the sn-1
acyl group is utilized by LCAT, producing 16:0 CE. This
mechanism explains why such small amounts of 22:6n-3 are
found in CE (38). The substrate preference of LCAT can ex-
plain why the FA composition of CE is less influenced by
pregnancy than the FA composition of plasma PL.

Striking differences exist between the maternal and umbil-
ical FA profiles of the two plasma lipid classes studied (CE
and PL). In agreement with other studies (6,7,13,16,22), we
found that the percentage values of 18:2n-6 and 18:3n-3 were
markedly lower in cord plasma than in maternal plasma (CE
and PL). The long-chain n-3 and n-6 PUFA are markedly
higher in cord plasma in the two lipid fractions compared to

CHOLESTERYL ESTERS AND PHOSPHOLIPIDS IN MATERNAL AND CORD PLASMA 5

Lipids, Vol. 38, no. 1 (2003)



maternal plasma. The maternal-umbilical plasma differences
are not always consistent for the two lipid fractions (CE and
PL). In some cases the differences are even in the opposite di-
rection. Consistent differences were found for 20:3n-6,
20:4n-6, and 22:6n-3 (umbilical values significantly higher
than maternal values) and for 18:2n-6 and 18:3n-3 (umbilical
values significantly lower than maternal values). Opposite
differences were found in the composition of saturated and
monounsaturated FA.

In summary, small but significant deviations occurred in
PUFA composition of maternal plasma CE and PL during the
course of pregnancy. The FA profile of umbilical plasma at
birth is very different from maternal values at delivery in the
two lipid fractions (CE and PL). This concurs with previous
literature findings on the EFA status of the mother during
pregnancy and of the neonate at birth.
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Abstract

The fatty acid composition of serum phospholipids (PL) and cholesteryl esters (CE) in 26 healthy pregnant women at the end of

term and 1 and 3 days after delivery was analysed in order to determine whether the maternal serum fatty acid composition changes

in the early puerperium. The composition of the saturated fatty acids significantly changes in the PL fraction: 16:0 decreased and

18:0 increased. Both 20:4n-6 and 20:5n-3 significantly increased after parturition in serum PL while 22:6n-3 remained constant at the

three sampling time points. The sum of HUFA was slightly higher 3 days postpartum compared to the prepartum data. The essential

fatty acid index significantly increased after delivery. In the CE fraction too differences occurred during puerperium: 18:2n-6 and

20:4n-6 increased and 18:1n-9 decreased after parturition. The sum of the n-3 fatty acids in CE remained unaltered. The EFA index

significantly improved both in PL as in CE after delivery.

In conclusion, the previously reported changes in the fatty acid composition of PL and CE during normal pregnancy diminish

shortly after delivery. In fact, very soon after delivery the maternal fatty acid composition returns to more normal values.

r 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Pregnancy is generally associated with a marked
hyperlipidemia involving all lipid classes [1]. As a
consequence the absolute amounts of all the maternal
plasma phospholipid associated fatty acids rise during
pregnancy [2,3]. Longitudinal studies indicate that the
amounts (mg/l) of all the individual fatty acids in the
maternal plasma phospholipids increase from the early
onset of pregnancy until delivery [2–4]. During the course
of pregnancy, the total serum cholesterol concentration
rises by 25�50%, followed by a rapid fall shortly after
delivery [5]. Similarly total serum phospholipid (PL)
concentrations rapidly fall postpartum.
Although the absolute amounts of fatty acids raise

with progressing gestation, the relative long-chain
polyunsaturated fatty acid concentrations (wt%) decline
with progressing gestation [4,6,7]. The procentual fatty
acid composition changes during the course of preg-

nancy. During the course of pregnancy, 16:0 increases
and 18:0 decreases in maternal PL [6]. Recently, we
finalised a longitudinal study in pregnant women and
found that in plasma cholesterolesters (CE) only the
sum of n-6 slightly decreased and 18:1n-9 and 18:3n-3
increased with progressing gestation [26].
The aim of the present study was to examine whether

the established rapid fall in total PL and CE concentra-
tions after delivery is associated with changes in the fatty
acid composition of these lipid fractions during early
puerperium. Therefore, we analysed the fatty acid
composition of PL and CE in healthy pregnant women
at the end of term and 1 and 3 days after delivery.

2. Subjects and methods

2.1. Study population

Healthy pregnant women attending the Department
of Gynecology, ZOL, Genk, Belgium were asked to
cooperate in this study without a selection based on
previous miscarriages, parity or gravity. We excluded
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women (i) with any medical disorder; (ii) who had signs
of an infection before/after delivery; (iii) who went into
labour prematurely (o37 weeks); (iv) with ruptured
membranes for more than 12 h; and (v) who had a
Caesarean section after labour. Not one of the subjects
was a regular drinker. All subjects had a normal
physical examination, normal values of renal tests
(blood urea and creatinine). Only singleton pregnancies
were included. The 26 pregnant women, enrolled in the
study, had an uncomplicated vaginal delivery. The mean
age of the mothers at delivery was 27.7 (SD 3.5) years.
Fourteen women were nulliparas, 8 women were
primiparas and 4 women had a parity of 2.
The study protocol was approved by the Medical

Ethics Committee of the ZOL, Genk, Belgium and
written informed consent was obtained from each
participant after the study design was fully explained.
Venous blood collections were always performed

under standardised conditions to minimise sources of
pre-analytical variation [8]. Each women had 3 blood
samplings carried out under fasting conditions at
08.00 h (730min). The first sample was obtained during
the last visit at the antenatal clinic 3–6 days prior to the
expected date of delivery; the two postpartum blood
samples were collected in the maternity hospital (1 and 3
days after delivery). Serum was stored in plastic tubes
under nitrogen at �80�C until thawed for fatty acid
analysis.

2.2. Fatty acid analysis of serum phospholipids and

cholesteryl esters

All 3 samples of each women were analysed simulta-
neously by the same technician. Lipids were extracted
from 1ml serum according to a modified Folch
extraction with methanol:chloroform (1:2) [9]. The lipids
were separated by thin layer chromatography on
rhodamine-impregnated silica gel plates using petroleum
ether (bp 60–80�C; Merck Belgolab, Overijse, Belgium)/
acetone 85:15 as mobile phase [10]. The PL and CE
fraction were scraped off and the fatty acids converted
into methyl esters by transesterification with 2ml of a
mixture of methanol:benzene:HCl (aqueous, 12N)
(80:20:5) [11]. After cooling and adding 2ml of water,
fatty acid methyl esters were extracted with petroleum
ether (bp 40�60�C), evaporated to dryness under a
nitrogen flow at a temperature not exceeding 40�C,
and analysed by temperature programmed capillary gas
chromatography (Varian Model 3900, Walnut Creek,
CA, USA) on a 30m� 250 mm (L� ID) � 0.2 mm df
10% cyanopropylphenyl-90% biscyanopropyl polysi-
loxane column (Restek Corp, Bellefonte, PA, USA).
The injection and detection temperature were set at
285�C. The starting temperature of the column was
150�C, which was increased to 240�C after 3min at a
rate of 2�C/min [11]. The carrier gas was nitrogen

with a flow of 25 cm/s. Peak identification was
performed by spiking with authentic standards (Sigma-
Aldrich, Bornem, Belgium). Retention times of con-
jugated linoleic acids were determined on basis of a
commercial sample (Tonalins). Peak integration and
calculation of the percent composition was performed
by computer with Star Chromatography Workstation
Version 5.52 software. The coefficient of intra-assay
variation of the fatty acid analysis method (5 repeated
assays of a single pool) ranges from 1.4% to 4.4% for
peaks larger than 5wt% and from 1.4% to 11.4% for
peaks larger than 1wt%.
The results are expressed as area percent. The sum of

all the saturated fatty acids (SFA), the mono-unsatu-
rated fatty acids (MUFA), the polyunsaturated fatty
acids (PUFA), the highly unsaturated fatty acid
(HUFA: fatty acids with 20 or more carbon atoms
and with at least 3 double bonds),

P
n-3,

P
n-6, the sum

of the trans fatty acids (
P

trans) and the sum of the
different forms of conjugated linoleic acid (CLA) were
calculated and are reported together with the individual
fatty acids. The sum of the dimethylacetals (DMA) is
also reported. The essential fatty acid index (the ratio of
essential n-6 and n-3 fatty acids over non-essential n-7
and n-9 fatty acids) was calculated as a parameter for
essential fatty acid adequacy.

2.3. Statistical analysis

Values are reported as mean and standard deviation.
The normality of distribution was ascertained with the
Kolmogorov–Smirnov test. Group mean differences are
assessed by means of analysis of variance (ANOVA).
Repeated measures analysis of variance was used to test
for significant differences in the fatty acid composition
of maternal serum PL and CE at the three time-points
near delivery. The ANOVA model included only a time
factor (fatty acid data shortly before delivery and twice
postpartum). In order to avoid type 2 errors, due to
multiple comparisons, a value of Po0:005 was con-
sidered significant. For 4 of our 26 subjects, we were
unable to obtain a complete set of matching plasma PL
or CE data for maternal pre- and postpartum blood
samples. This accounts for the various sample sizes in
Tables 1 and 2. However, all repeated measures analysis
of variance were made with matching samples. The data
were analysed using SPPS (version 10.0 for WINDOWS;
SPSS Inc, Chicago) [12].

3. Results

Tables 1 and 2 summarise the fatty acid composition
of PL and CE from maternal serum at the end of
pregnancy (prepartus) and 1 and 3 days after delivery.
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3.1. Fatty acid composition of maternal serum lipid

classes

3.1.1. Phospholipids

Palmitic acid (16:0) decreases significantly over time
whereas stearic acid (18:0) significantly increases. The
ratio of 16:0 over 18:0 drops significantly from 3.2 (0.4)
prepartus over 3.1 (0.4) 1 day after delivery to 2.8 (0.4) 3
days postpartum (Po0:001). The odd-chain fatty acids,
15:0 and 17:0, rise significantly after delivery. Oleic
acid (18:1n-9) significantly drops. Linoleic acid and
a-linolenic acid remain constant after parturition. Both

20:4n-6 and 20:5n-3 significantly increase after parturi-
tion. Docosahexaenoic acid (22:6n-3) remains constant
at the three sampling time points. The ratio of 18:2n-6
over 20:4n-6 significantly decreases (Po0:001): 3.1 (SD
0.8), 2.8 (SD 0.6) and 2.6 (SD 0.5) respectively before
delivery, 1 and 3 days after delivery. The sum of the
dimethylacetals is significantly higher postpartum com-
pared to the prepartum data. The essential fatty acid
index significantly increases after delivery.

3.1.2. Cholesteryl esters

Only a few significant differences occurred in the fatty
acid profile of maternal CE during the puerperium. As
in the PL fraction, 18:1n-9 is significantly lower
postpartum compared to the status at the end of
pregnancy. The sum of the mono-unsaturates also
significantly decreases postpartum compared to prepar-
tum values. Linoleic and a-linolenic acid change in
opposite directions: 18:2n-6 increases and 18:3n-3
decreases after parturition. Arachidonic acid (20:4n-6)
and the sum of the n-6 fatty acids significantly increases
after delivery. As in PL, the ratio of 18:2n-6 over 20:4n-6
significantly decreases during puerperium ðPo0:001Þ:
12.0 (SD 3.2), 11.0 (SD 3.3) and 10.5 (SD 2.4)
respectively before delivery, 1 and 3 days after delivery.
The sum of the n-3 fatty acids remains unaltered as do
20:5n-3 and 22:6n-3. Similarly to the PL fraction, the

Table 1

Composition (area% of total fatty acids) of fatty acids in PL isolated

from maternal serum at the end of pregnancy (prepartus) and 1 (day 1)

and 3 (day 3) days after delivery: mean (SD)

Prepartus

(n ¼ 26)
Day 1

(n ¼ 22)
Day 3

(n ¼ 23)
RM ANOVA

(P)

14:0 0.39 (0.13) 0.33 (0.07) 0.38 (0.11)

15:0 0.16 (0.03) 0.17 (0.03) 0.20 (0.04) 0.001

16:0 32.83 (1.11) 32.43 (1.33) 31.27 (1.43) 0.0001

17:0 0.28 (0.05) 0.29 (0.04) 0.33 (0.07) 0.003

18:0 10.41 (1.09) 10.54 (0.90) 11.32 (1.08) 0.001

20:0 0.51 (0.13) 0.51 (0.09) 0.54 (0.10)

22:0 1.30 (0.26) 1.35 (0.21) 1.50 (0.38)

23:0 0.62 (0.13) 0.60 (0.10) 0.67 (0.10)

24:0 0.96 (0.23) 1.00 (0.20) 1.14 (0.41)

SFA 47.45 (1.09) 47.21 (0.98) 47.36 (1.27)

16:1n-9 0.10 (0.02) 0.11 (0.02) 0.11 (0.04)

16:1n-7 0.58 (0.24) 0.58 (0.20) 0.56 (0.18)

18:1n-9 9.40 (2.53) 8.49 (1.17) 7.74 (1.11) 0.0001

18:1n-7 1.28 (0.26) 1.38 (0.20) 1.46 (0.17) 0.003

20:1 0.16 (0.05) 0.15 (0.02) 0.16 (0.03)

24:1 2.17 (0.42) 2.39 (0.41) 2.54 (0.42) 0.005

MUFA 13.69 (2.48) 13.11 (1.43) 12.57 (1.56)

18:2n-6 21.71 (2.48) 21.50 (2.66) 21.38 (2.63)

20:3n-6 2.88 (0.60) 3.06 (0.52) 2.83 (0.63)

20:4n-6 7.19 (1.14) 7.83 (0.93) 8.41 (1.02) 0.0001

22:5n-6 0.44 (0.12) 0.44 (0.13) 0.39 (0.11) 0.001P
n-6 32.22 (2.28) 32.84 (1.90) 33.02 (2.27)

18:3n-3 0.29 (0.12) 0.22 (0.05) 0.20 (0.06)

20:5n-3 0.34 (0.13) 0.36 (0.14) 0.43 (0.13) 0.004

22:5n-3 0.40 (0.09) 0.42 (0.09) 0.42 (0.08)

22:6n-3 2.95 (0.53) 3.06 (0.51) 2.87 (0.42)
P
n-3 3.98 (0.69) 4.05 (0.65) 3.92 (0.58)

20:3n-9 0.26 (0.07) 0.26 (0.07) 0.26 (0.08)

PUFA 37.23 (2.25) 37.97 (1.70) 38.07 (2.30)

HUFA 14.45 (1.92) 15.42 (1.34) 15.62 (1.46)

16:0DMA 0.49 (0.07) 0.53 (0.06) 0.63 (0.08) 0.0001

18:0DMA 0.28 (0.11) 0.27 (0.07) 0.34 (0.06) 0.0001

18:1DMA 0.12 (0.04) 0.11 (0.04) 0.15 (0.03) 0.004
P
DMA 0.90 (0.20) 0.92 (0.14) 1.12 (0.16) 0.0001

P
trans 1.31 (0.32) 1.38 (0.26) 1.48 (0.27)P
CLA 0.57 (0.15) 0.58 (0.06) 0.61 (0.10)

EFA index 3.24 (0.67) 3.47 (0.56) 3.73 (0.64) 0.005

SFA: saturated fatty acids; MUFA: mono-unsaturated fatty acids;

PUFA: polyunsaturated fatty acids; HUFA: long-chain highly

unsaturated fatty acids; DMA: dimethylacetals; CLA: sum of the

peaks identified as conjugated linoleic acids; RM: repeated measure-

ments.

Table 2

Composition (area% of total fatty acids) of fatty acids in CE isolated

from maternal venous serum at the end of pregnancy (prepartus) and 1

(day 1) and 3 (day 3) days after delivery: mean (SD)

Prepartus

(n ¼ 26)
Day 1

(n ¼ 22)
Day 3

(n ¼ 22)
RM ANOVA

(P)

14:0 0.75 (0.22) 0.70 (0.19) 0.67 (0.20)

15:0 0.15 (0.04) 0.16 (0.04) 0.17 (0.03)

16:0 11.89 (0.60) 12.07 (1.14) 11.86 (1.03)

18:0 0.56 (0.10) 0.56 (0.10) 0.65 (0.14)

20:0 0.47 (0.18) 0.51 (0.22) 0.53 (0.19)

SFA 13.82 (0.82) 13.99 (1.21) 13.88 (1.17)

16:1n-9 0.42 (0.12) 0.45 (0.13) 0.45 (0.12)

16:1n-7 3.76 (1.48) 3.88 (1.67) 3.20 (1.13)

18:1n-9 18.57 (2.42) 18.67 (2.89) 16.80 (2.46) 0.0001

18:1n-7 0.73 (0.18) 0.84 (0.36) 1.11 (0.96)

MUFA 23.47 (3.65) 23.83 (4.39) 21.56 (3.50) 0.003

16:2n-6 0.20 (0.06) 0.24 (0.13) 0.17 (0.07) 0.005

18:2n-6 54.91 (4.92) 53.94 (5.85) 56.16 (4.81) 0.005

20:3n-6 0.70 (0.14) 0.79 (0.09) 0.76 (0.14)

20:4n-6 4.77 (0.82) 5.16 (1.00) 5.51 (0.90) 0.005
P
n-6 60.59 (4.46) 60.05 (5.29) 62.60 (4.58) 0.005

18:3n-3 0.70 (0.21) 0.57 (0.16) 0.52 (0.14) 0.002

20:5n-3 0.24 (0.14) 0.25 (0.09) 0.27 (0.11)

22:6n-3 0.43 (0.08) 0.47 (0.10) 0.45 (0.10)
P
n-3 1.37 (0.33) 1.28 (0.24) 1.24 (0.30)

20:3n-9 0.07 (0.04) 0.07 (0.02) 0.07 (0.02)

PUFA 62.11 (4.28) 61.56 (5.15) 63.97 (4.53)

HUFA 6.22 (0.92) 6.74 (1.12) 7.06 (1.02)

EFA index 2.73 (0.63) 2.69 (0.73) 3.06 (0.69) 0.003
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EFA index significantly increases after delivery in the
CE fraction.

4. Discussion

This study shows that even in a short time period,
from 6 days before until 3 days after delivery, the fatty
acid composition of maternal plasma PL and CE
significantly changes. This is in contrast to the previous
findings of Al et al. [13] who observed, in a small subset
of 5 mothers, no significant differences in the PL fatty
acid composition of maternal plasma collected approxi-
mately 10 days before delivery with that of maternal
plasma collected immediately after delivery. It was
concluded that labour has no influence on the fatty
acid composition of maternal plasma PL [13]. The
observed changes in the maternal plasma fatty acid
composition around delivery in our study, do not
necessarily mean that labour influences the fatty acid
composition of maternal plasma PL or CE. Previously
two different research groups examined the effect of
labour on maternal serum lipid composition by compar-
ing values obtained from women who delivered by
Caesarean section with those who had normal vaginal
deliveries [14,15]. Ruyle et al. [14] found no statistical
differences between fatty acid mass (mg/l) of maternal
serum lipids from women with Caesarean section
(n ¼ 18) versus women with standard vaginal delivery
(n ¼ 11). Moreover, Schouw et al. [15] found no
important differences in the maternal fatty acid compo-
sition of serum PL between mothers after normal
vaginal delivery (n ¼ 15) as compared with mothers
who had a Caesarean section (n ¼ 5). Therefore, any
significant influence of labour on maternal fatty acid
composition of serum lipids is unlikely.
The observed changes in maternal fatty acid composi-

tion in early puerperium could be related to changes in
the dietary intake of fatty acids. However, this is rather
unlikely as we and others, showed that dietary habits
remain unaltered during pregnancy [16]. Neither the
amount and type of fat nor the fatty acid composition of
the maternal diet changed during pregnancy until 1
month postpartum [16,17]. It is possible that the food
served in the maternity clinic is different from the
dietary habits of the pregnant women at home. But the
samples are taken after 1 and 3 days in the maternity
clinic and it is known that the fatty acid profile of
plasma PL and CE changes more gradually and reflects
the average dietary fat composition over a longer time
period [18].
Another possible explanation for the observed differ-

ences in the maternal serum fatty acid composition
during early puerperium is changes in the maternal
hormonal status during puerperium. The major path-
way, the Kennedy pathway, for phosphatidylcholine

synthesis preferentially results in the appearance of 16:0
in the sn-1 position and 18:2n-6 or 18:1n-9 in the sn-2
position. Estrogen enhances an alternative pathway, the
Greenberg pathway, resulting in the appearance of more
phosphatidylcholine with 18:0 in the sn-1 position and
20:4n-6 in the sn-2 position [19–21]. During pregnancy,
levels of estrogens and progesterone rise steadily as a
result of placental production of these hormones. With
removal of the placenta at delivery, estrogen and
progesterone levels drop sharply, reaching prepregnancy
levels by the fifth day postpartum [22]. One would
expect that the drop in estrogen postpartum would
result in an increased synthesis of phosphatidylcholine
along the Kennedy pathway, resulting in an increased
ratio of 16:0 over 18:0 postpartum. On the contrary the
opposite is observed, in this study, the ratio of 16:0 over
18:0 decreases postpartum. Moreover different studies
during pregnancy showed an increase in 16:0 together
with a decrease in 18:0 and 20:4n-6 with progressing
gestation indicating an enhanced synthesis of phospha-
tidylcholine along the Kennedy pathway in spite of
estrogen [7,20,21]. Skryten et al. [20] suggested sub-
clinical cholestatic changes in the liver during normal
pregnancy to explain this discrepancy in phosphatidyl-
choline synthesis. Indeed intrahepatic cholestasis of
pregnancy is well-described in humans and is associated
with hyperlipidemia during pregnancy [23,24]. Choles-
tasis is characterised with higher levels of 16:0 and lower
levels of 18:0 in serum lipids [25]. Cholestatic conditions
enhance the Kennedy pathway [20]. It has been shown
that intrahepatic cholestasis of pregnancy generally
resolves after delivery [24]. The results of our study are
in concurrence with the concept of reduced synthesis
along the Kennedy pathway as a result of reduced
cholestatic influence on liver phosphatidylcholine synth-
esis soon after delivery.
Dimethylacetals originate from plasmalogens. Thus

this increase shows that there is a relative increase of
plasmalogens relative to diacylphospholipids during the
puerperium. It is not known whether this reflects a
change in the relative contributing of both pathways for
PL synthesis.
Of course these explanations are rather speculative

as we did not measure estrogen levels nor markers
for cholestasis. Fact is that the previously reported
gradual changes in the fatty acid composition of PL [7]
and CE which occur with the progression of normal
pregnancy [26] diminish shortly after delivery. The sum
of n-6 slightly decreased and 18:1n-9 and 18:3n-3 was
found to increase in CE with progressing gestation
whereas in this study 20:4n-6 increased and 18:1n-9 and
18:3n-3 dropped in serum CE postpartum. Similar
opposite changes were found in the PL fraction.
Moreover the essential fatty acid index improves after
parturition whereas it diminishes with progressing
gestation. It seems that very soon after delivery the
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maternal fatty acid composition returns to more normal
values.
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Chapter 8: Fatty acid composition of 
umbilical vessel walls 

1. Abstract 

The essential fatty acid (EFA) status of 16 Belgian neonates after at term pregnancy was 

determined by analysing the fatty acid composition of phospholipids isolated from 

umbilical veins (supplying vessel) and arteries (draining vessels). The phospholipids of 

umbilical arteries contained less n-6 fatty acids and considerably more n-9 fatty acids than 

phospholipids of umbilical veins. Mead acid (20:3n-9) was 7.5 times higher in umbilical 

arteries compared to umbilical veins and the ratio of 20:3n-9 over 20:4n-6 was ten times 

higher in arterial than in the venous vessels, indicating that the EFA status of downstream 

neonatal tissue may be marginal. Furthermore the ratio of 22:5n-6 over 22:4n-6, which is 

an indicator of the 22:6n-3 status, is twice as high in the phospholipids of umbilical 

arteries compared to umbilical veins. This might indicate that the need for 22:6n-3 by the 

foetal tissue is not adequately covered. In conclusion, the findings in this study can 

suggest that the biochemical EFA status of neonates born at term may not be optimal. 

2. Introduction 

Since umbilical vessel walls do not have a vasa vasorum to obtain nutrients, they 

can only obtain their nutrients directly from the blood passing through. The 

umbilical vein (afferent or supplying foetal vessel) transports blood and nutrients 

from the mother to the foetus whereas the blood flows back from the foetus to 

the mother through the umbilical arteries (efferent or draining foetal vessels). 

Furthermore tissue phospholipids (PL) have slower fatty acid incorporation and 

turnover rates compared to plasma PL [1;2]. Therefore the fatty acid composition 

of the umbilical venous vessel wall can be considered a longer-term reflection of 

the essential fatty acid (EFA) supply from mother to foetus whereas the fatty acid 
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composition of the umbilical arterial vessel wall is likely to reflect the longer-term 

EFA status of the developing foetus [3]. 

The objective of the present study was to assess the longer-term EFA status of 

healthy at term born infants by determining the EFA levels in the PL fraction of 

umbilical cord venous and arterial vessel walls. 

3. Subjects and Methods 

3.1. Study population 

Healthy pregnant women attending the Department of Gynaecology of the Ghent 

University Hospital, Belgium were asked to cooperate in this study. All pregnant 

women signed a written informed consent form, approved by the ethics 

committee of Ghent University Hospital. Inclusion criteria were: singleton 

pregnancy, nullipara, term delivery (38 – 42 weeks), normotensive (diastolic blood 

pressure below 90 mmHg). We excluded women who were diagnosed with 

gestational diabetes mellitus, who had signs of proteinuria, and who suffered from 

renal or cardiovascular disease. From sixteen women in labour the umbilical cord 

was obtained. Shortly after giving birth, approximately 15 cm of umbilical cord 

was collected from their infants. The cord vessels were rinsed with saline (NaCl, 

0.9% w/v) and the cords packed vacuum into plastic bags and stored at –80°C until 

transportation in dry ice to Maastricht for analysis. 

3.2. Fatty acid analysis 

Umbilical vein and arteries were isolated from each umbilical cord and 

homogenised as described previously [4]. The vessel walls were frozen in liquid 

nitrogen and pulverized. The pulverized samples were freeze-dried before lipid 

extraction. Prior to the fatty acid analysis an internal standard (dinonadecanoyl 

phosphatidylcholine, PC 19:0) was added to every sample for the quantification of 

absolute fatty acid amounts present in the PL fraction of cord vein and artery 

walls. Total lipid extracts were prepared using a modified Folch extraction [5]. 

The PL fractions isolated by solid-phase extraction on an aminopropyl silica 

column [6] were hydrolysed and the fatty acids methylated with boron-trifluoride 

in methanol (140 g/L) at 100 °C during one hour. The methyl esters were analysed 

using capillary gas liquid chromatography with a 50 m BP1 non-polar column, 0.22 

ID x 0.10 µm film thickness, and a 50 m BPx70 polar column, 0.22 ID x 0.25 µm 
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film thickness (SGE, Bester BV, Amstelveen, The Netherlands). The injection 

temperature was set at 250°C and the detector temperature at 300°C. The 

starting temperature of the columns was 160°C and after 4 min it was increased 

to 200°C with a rate of 6°C/min. Subsequently, after a stabilisation period of 3 

min, the temperature was further increased to 270°C at a rate of 7°C/min. The 

carrier gas was helium and head pressure was 370 kPa. 

Relative fatty acid levels are expressed as weight percent of total fatty acid 

methyl esters and the absolute fatty acid amount present in the PL fraction is 

expressed as mg/g dry weight of cord vessel wall tissue). The sum of all the 

saturated fatty acids, the mono-unsaturated fatty acids, the polyunsaturated fatty 

acids, the highly unsaturated fatty acid (fatty acids with 20 or more carbon atoms 

and with at least 3 double bonds), ∑n-3, and ∑n-6 are calculated and are reported 

together with the individual fatty acids. 

3.3. Statistical analysis 

Normality of distribution was ascertained with the Kolmogorov-Smirnov test. 

Values are reported as mean and standard deviation (SD). Paired Student’s t test 

(two tailed) was performed for fatty acid comparisons between PL of the umbilical 

venous and arterial vessel walls. In order to avoid type 2 errors, due to multiple 

comparisons, a value of P<0.001 was taken as the criterion of significance. 

Pearson’s correlation coefficients were calculated to study the relation between 

some fatty acids measured in cord vessel walls (18:2n-6, 20:4n-6 and 22:6n-3) and 

gestational age at birth, birth weight or birth length. Furthermore, the 

relationship between the fatty acid composition of cord vessel walls and that of 

the plasma PL running through was determined by calculating the Pearson’s 

correlation coefficients. The data were analysed using the MedCalc statistical 

program, version 6 (MedCalc Software, Mariakerke, Belgium) [7]. 

4. Results 

4.1. Clinical characteristics 

The study group comprised 16 healthy pregnant women and their neonates (7 girls 

and 9 boys). All infants were delivered at term with a mean gestational age of 

39.6 weeks (range 38.0-41.4 wks). The mean age of the mothers at delivery was 

30 years (range 20-38 years). The mean Body Mass Index of the women before 
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pregnancy was 21.2 (range 16.5-24.2). All mothers were nullipara, all pregnancies 

were uncomplicated and the infants were born healthy with a mean birth weight 

of 3169 g (range 2570-3860 g) and a mean crown-heel length of 50.3 cm (range 47-

53 cm). The median Apgar Score 1 min after birth was 9 (range 4 - 9) and 5 min 

after birth 9 (range 9 - 10). 

4.2. Fatty acid composition of umbilical vein and artery vessel walls 

The fatty acid composition (weight%) of PL in cord vein and artery vessel walls at 

birth are given in Table 1. 

Striking differences exist between the fatty acid composition of the umbilical vein 

and arteries. The total amount of umbilical vein PL associated fatty acids was 

16.00 (SD 1.27) mg/g dry weight and was significantly higher (P=0.001) than the 

total amount of umbilical artery PL associated fatty acids of 14.58 (SD 1.38) mg/g 

dry weight. The contents of n-6 fatty acids is significantly higher in cord vein PL 

compared to cord artery PL. Especially 18:2n-6, 20:3n-6, 20:4n-6 and 22:4n-6 are 

much higher in umbilical vein. There is one exception: 22:5n-6 is lower in 

umbilical vein but significance was not reached. Umbilical artery PL contain much 

more mono-unsaturated fatty acids and poly-unsaturated fatty acids of the n-9 

family. Particularly 20:3n-9 and 22:3n-9 occur significantly more in arterial than in 

venous PL. The trienoic/tetraenoic ratio (20:3n-9/20:4n-6) is ten times higher in 

the umbilical arteries compared to the umbilical vein. Similarly the 

docosahexaenoic acid deficiency index (22:5n-6/22:4n-6) is twice as high in 

umbilical arteries compared to the supplying umbilical vein. No significant 

differences were observed for the sum of the n-3 fatty acids nor for 22:6n-3. 

Hardly any 20:5n-3 was detected in the umbilical PL. 

4.3. Relationship between fatty acids in cord vessel walls and 

gestational age or foetal growth 

There was a significant positive relation between gestational age at birth and 

18:2n-6 (r=0.63, P<0.01) or 20:4n-6 (r=0.66, P<0.01) in arterial wall PL but not in 

vein PL. In addition, the relationship with 22:6n-3 did not reach significance. 

There was no significant relation between 18:2n-6, 20:4n-6 or 22:6n-3 in cord 

vessel walls and birth weight or birth length. 
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Table 1: Fatty acid composition (weight% of total fatty acids) of phospholipids isolated from vessel 

walls of umbilical vein and artery (n=16) shortly after birth: mean (SD). 

Fatty acid Umbilical vein 

(afferent or supplying vessel) 

Umbilical artery 

(efferent or draining vessel) 

P * 

14:0 0.70 (0.14) 0.97 (0.18) <0.0001 

15:0 0.67 (0.23) 0.70 (0.18)  

16:0 24.44 (0.96) 23.22 (0.93) <0.001 

17:0 1.09 (0.14) 0.99 (0.13)  

18:0 13.15 (0.61) 13.02 (0.45)  

20:0 0.47 (0.04) 0.54 (0.04) <0.0001 

22:0 1.31 (0.14) 1.67 (0.12) <0.0001 

23:0 0.40 (0.05) 0.33 (0.04) <0.0001 

24:0 2.52 (0.30) 3.14 (0.27) <0.0001 

SFA 44.75 (0.87) 44.59 (1.04)  

16:1n-7 0.35 (0.15) 0.31 (0.08)  

18:1n-7 2.20 (0.24) 2.62 (0.33) <0.0001 

18:1n-9 7.66 (0.67) 10.93 (1.80) <0.0001 

20:1n-9 0.28 (0.06) 0.56 (0.16) <0.0001 

24:1n-9 4.22 (0.57) 5.07 (0.62) <0.0001 

MUFA 14.71 (1.18) 19.49 (2.70) <0.0001 

20:3n-9 0.40 (0.25) 2.99 (0.90) <0.0001 

22:3n-9 0.34 (0.17) 1.46 (0.39) <0.0001 

18:2n-6 1.89 (0.53) 1.11 (0.36) <0.0001 

20:2n-6 0.38 (0.09) 0.17 (0.03) <0.0001 

20:3n-6 1.98 (0.32) 1.21 (0.21) <0.0001 

20:4n-6 17.45 (1.19) 12.64 (1.65) <0.0001 

22:4n-6 4.77 (0.71) 2.66 (0.45) <0.0001 

22:5n-6 2.46 (0.72) 2.65 (0.57)  

24:2n-6 0.73 (0.18) 0.23 (0.07) <0.0001 

22:5n-3 0.35 (0.15) 0.24 (0.10) <0.0001 

22:6n-3 5.91 (1.03) 5.96 (1.43)  

PUFA 36.70 (1.89) 31.46 (2.18) <0.0001 

HUFA 33.71 (1.41) 29.94 (1.83) <0.0001 

∑n-3 6.31 (1.17) 6.33 (1.52)  

∑n-6 29.65 (2.15) 20.67 (2.16) <0.0001 

MA/AA 0.024 (0.016) 0.25 (0.09) <0.0001 

DHADI  0.53 (0.22) 1.04 (0.33) <0.0001 

DHASI 2.77 (1.53) 2.44 (1.11)  

* Paired Student’s 2-sample t-test. SFA: saturated fatty acids, MUFA: mono-unsaturated fatty acids, 

PUFA: polyunsaturated fatty acids, HUFA: highly unsaturated fatty acids. MA/AA: 20:3n-9/20:4n-6. 

DHADI: 22:5n-6/22:4n-6. DHASI: 22:6n-3/22:5n-6. 
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4.4. Correlation between the fatty acid composition of cord vessel 

walls and that of the plasma phospholipids running through 

Linoleic acid in umbilical vein vessel wall correlated slightly with 18:2n-6 in 

maternal plasma PL: r = 0,52 and P=0.045 and linoleic acid in arterial vessel wall 

correlated with 18:2n-6 in umbilical plasma PL: r = 0.45 but significance was not 

reached (P = 0.1). 

No significant correlation was found between 20:4n-6 in arterial or venous vessel 

walls and 20:4n-6 in plasma PL running through. 

There was a significant relation between the 22:6n-3 in vein vessel walls and 

22:6n-3 in maternal plasma PL: r = 0.68, P=0.005. Similarly the DHA content in 

arteria vessel walls correlated positively with DHA in umbilical plasma PL: r = 

0.80, P<0.001. The other long-chain n-3 fatty acid, 20:5n-3 is hardly detected in 

the umbilical vein vessel walls. Therefore any correlation with its concentration in 

plasma PL of maternal blood is not meaningful. 

5. Discussion  

This study shows striking differences between the fatty acid composition of 

umbilical vein, which is the supplying foetal vessel, and the umbilical arteries, 

which are the draining foetal vessels. In general, the contents of the n-6 fatty 

acids are higher in vein PL than in artery PL whereas the contents of the n-9 fatty 

acids and monounsaturates are much higher in the umbilical arteries. This might 

reflect preferential use of polyunsaturated fatty acids by the foetus, as was 

suggested by Felton et al [8]. The PL of umbilical arterial vessel walls contain 

considerably more Mead acid (20:3n-9) and dihomo-Mead acid (22:3n-9). Mead 

acid, a desaturation and elongation product of oleic acid, only accumulates in 

tissues if insufficient amounts of the parent EFA (18:2n-6 and 18:3n-3) are 

available [9]. Mead acid and its direct elongation product 22:3n-9 are considered 

reliable markers of EFA-deficiency [9]. 

Previously, Hornstra et al [3] also showed that the PL of the umbilical arteries 

contain significantly less 18:2n-6, 20:4n-6, 22:4n-6, 20:5n-3 and 22:5n-3 and 

significantly more 20:3n-9 and 22:3n-9 compared to the PL of the umbilical vein. 

Mead acid was rarely observed and dihomo-Mead acid was not observed at all in 

adult blood vessels [3]. Therefore the presence of high amounts of 20:3n-9 and 
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22:3n-9 in the umbilical arterial vessel wall was suggested to indicate a marginal 

EFA status of the newborn. 

Al et al [10] postulated that the presence of these EFA deficiency indicators does 

not necessarily reflect a shortage of EFA. An alternative explanation may be that 

the high proportions of 20:3n-9 and 22:3n-9 may simply reflect that the foetal 

desaturase system is more active than the adult desaturase system and that the 

desaturase activity is higher in arterial vessel walls compared to venous vessel 

walls, resulting in the formation of 20:3n-9 and 22:3n-9 even when adequate 

amounts of EFA are available. However the ratio between the sum of the n-6 

derivatives of linoleic acid and 18:2n-6, which is the n-6 desaturation index, in the 

umbilical arteries was not significantly different from the ratio in the umbilical 

vein: 10.4 (SD 1.04) versus 9.9 (SD 2.13), respectively, whereas Mead acid was five 

times higher in the arteries. Therefore the higher content of 20:3n-9 in umbilical 

arteries does not simply result from a higher desaturase activity in umbilical 

arteries [10]. However, in a later study of Al et al [11], the n-6 desaturation index 

was significantly higher in the umbilical arterial as compared to the umbilical 

venous vessel wall: 17.0 (SD 2.35) versus 15.3 (SD 2.21), respectively. In our study 

population, the n-6 desaturation index was also significantly higher in the 

umbilical arteries 18.7 (SD 4.8) compared to 14.9 (SD 3.2) in umbilical veins, 

whereas 20:3n-9 was as an average 7.5 times higher in the arteries than in the 

veins. 

An alternative explanation for the high 20:3n-9 and 22:3n-9 levels in the umbilical 

artery could be that the arterial vessel walls serve as the “dustbin” for the foetus, 

to get rid of substances it does not need [12]. 

Furthermore, we and others found that 22:5n-6 was the only n-6 fatty acid that 

was higher in the artery compared to the vein [3;10]. Since the synthesis of 22:5n-

6 is known to be stimulated when the available amount of 22:6n-3 is too low [13], 

this suggests that the DHA status of the neonates is not optimal. Indeed, the DHA 

deficiency index (22:5n-6/22:4n-6) was significantly higher in the PL of the 

umbilical arteries compared with the veins [3;10]. These findings suggest that the 

need for DHA by the foetal tissue is not adequately covered [3;10;14]. 

In our study population of term infants, significant positive correlations were 

observed between gestational age and 18:2n-6 or 20:4n-6 in arterial cord vessel 

walls. Previously it was shown in a Dutch population of preterm infants that 
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gestational age at birth was positively correlated with 20:4n-6, sum of n-6 long-

chain polyunsaturates and 22:6n-3 in arterial cord vessel walls [4]. After 

correction for gestational age, 22:6n-3 in arterial cord vessel walls remained 

significantly related to birth weight and head circumference at birth [4]. We could 

not confirm these observations, but this is probably due to the fact that our study 

population consisted of a term born infants. 

Furthermore we found for the long-chain n-3 fatty acids (20:5n-3 and 22:6n-3) 

significant correlations between their concentrations in umbilical cord vessel walls 

and their concentrations in the plasma PL running through. This correlation was 

not found for 20:4n-6. 

In conclusion, the biochemical EFA status of neonates after a normal at term 

pregnancy does not seem to be optimal. Relatively high amounts of Mead acid 

were found in the walls of the umbilical arteries. Moreover the DHA deficiency 

index was significantly higher in the walls from umbilical arteries as compared to 

umbilical veins, which may indicate a relative shortage of foetal DHA. 
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Chapter 9: Lower serum n-3 
polyunsaturated fatty acids correlate with 
the occurrence of postpartum depression 

The first part of this chapter gives a literature review on major depression and lipid 

metabolism. In the second part, we will discuss the results of a study in women with 

postpartum depression. 

Part A: Literature review 

1. Major depression 

It is now widely accepted that serotonin or 5-hydroxytryptamine (5-HT) plays a 

key role in the pathophysiology of major depression. The presumed serotonergic 

disturbances in depression are a combination of decreased peripheral and central 

serotonin activity and alterations in peripheral and central serotonin uptake 

mechanisms [1]. Cholesterol and membrane fatty acids (associated with 

phospholipids) may play a role in the metabolism of serotonin. Alterations in 

phospholipids and cholesterol, which are structural components of all cell 

membranes in the brain, may induce changes in membrane microviscosity and, 

consequently, may affect functioning of various neurotransmitter systems, which 

are thought to be related to the pathophysiology of major depression (e.g. 

serotinin and (nor)adrenalin) [2-4]. Membrane fatty acids and cholesterol regulate 

5-HT release and uptake and modulate the activity of tryptophan hydroxylase, the 

rate-limiting enzyme in serotonin synthesis [5]. Consequently, changes in brain-
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cell membrane cholesterol and in membrane fatty acids may decrease 5-HT 

turnover in the brain and hence precipitate depression [6;7]. 

Moreover it is well established that low concentrations of 5-hydroxyindolacetic 

acid in cerebrospinal fluid, which is a marker of brain serotonin turnover, are 

strongly associated with depression and suicide. It has been shown in healthy 

volunteers that low plasma concentrations of 22:6n-3 correlate with low 

concentrations of 5-hydroxyindolacetic acid in cerebrospinal fluid [8]. 

2. Do plasma cholesterol and polyunsaturated fatty acids 

predict depression ? 

Significant lower concentrations of total cholesterol and of high-density 

lipoprotein cholesterol have repeatedly been described in depressed patients 

[3;9]. Moreover, there is evidence for an inverse relationship between plasma 

cholesterol levels and severity of depression [4]. Furthermore, a negative relation 

has been described between LDL cholesterol and depressive mood in men but not 

in women [10]. 

Cholesterol-lowering therapies (used in the treatment of cardiovascular diseases) 

have been associated with reduced mortality from cardiac causes but increased 

mortality due to increased suicide, homicide and accidents [2;11-13]. It was 

suggested that plasma cholesterol reductions by dietary interventions may lead to 

a more negative emotional state which in turn could increase the risk for suicide 

or other types of violent deaths [12]. Furthermore, Morgan et al [14] found that 

lower serum cholesterol concentrations are accompanied by a 3-time increase in 

the development of depressive symptoms and that plasma cholesterol levels are 

inversely related to the severity of depression. However in the study of Weidner 

et al [15] consumption of a diet low in fat and high in complex carbohydrates 

resulted in decreased serum cholesterol levels and was associated with reductions 

in depression and aggressive hostility.  

Pekkanen et al [16] reported that lower serum cholesterol was associated with 

lower mortality due to accidents and violence in coastal Western Finland but no 

association was found in inland Eastern Finland. Consequently, it was hypothesised 

that the consumption of fish may be protective for depression. An experiment in 

monkeys suggested that a low-fat diet may be associated with increases in 
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aggressive behaviour [17]. However the fatty acid composition of the two diets 

changed from a n-6 to n-3 ratio of approximately 6:1 on a high fat diet to 

approximately 33:1 on a low fat diet. 

Moreover cholesterol-lowering drugs may alter PUFA concentrations in tissue. All 

classes of fibrates induce peroxisomal proliferation and increase the oxidation of 

PUFA furthermore decreased levels of PUFA in VLDL and LDL have been described 

[18]. Bile-sequestering agents interfere with fat absorption and are likely to 

reduce tissue concentrations of PUFA. Hydroxymethylglutaryl-CoA (HMG-CoA) 

reductase inhibitors increase PUFA levels in triglycerides of VLDL and reduce 

scores of anger and hostility. 

Abnormalities in serum cholesterol and fatty acid composition have been 

described in psychiatric patients, including unipolar depressed and manic bipolar 

patients [19]. The role of cholesterol and fatty acids in the pathophysiology of 

affective disorders has been related to changes in structural components of cell 

membranes in the brain. 

 

 

Figure 9.1: Fish consumption and prevalence of major depression. A simple Pearson’s 

product moment correlation was used for regression analysis (r= -0.84, P<0.005) [20;21]. 
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It has been hypothesised by Hibbeln & Salem [19] that a depletion of n-3 fatty 

acids, particularly an inadequate amount of 22:6n-3 in the nervous system, may 

increase the vulnerability to depression. This hypothesis is supported by 

epidemiological observations of a lower prevalence of depression in countries 

where fish intake is high [8]. 

A cross-nation study of rates of depression showed that cumulative rates of 

depression in North American and European populations are 10-fold greater than 

in a Taiwanese population [22]. Another cross-national comparison with a sample 

size of 35,000, observed a strong negative correlation between fish consumption 

and the prevalence of major depression (r= - 0.84, P<0.005) (figure 9.1) [20;21]. 

Moreover, one recent study reported that a seafood consumption of more than 

twice a week is associated with a lower risk of both depression (odds ratio = 0.63) 

and suicidal attempts (odds ratio = 0.57) [23]. 

Clinical data of plasma fatty acid composition in patients and in supplementation 

interventions have been consistent with the hypothesis that n-3 fatty acids are 

protective against depression and hostility, as elaborated below. 

In depressed patients reduced n-3 fatty acids and a shift in the balance of fatty 

acids from n-3 towards n-6 was noticed [4;24-26]. Major depressed patients have 

significantly lower total n-3 fatty acids in serum cholesteryl esters compared to 

minor depressed patients or healthy controls [4]. Furthermore the Σn-6/Σn-3 ratio 

in serum cholesteryl esters is significantly higher in patients with major depression 

compared to healthy controls [4]. Patients with major depression have an 

increased ratio of 20:4n-6/20:5n-3 in serum phospholipids and cholesteryl esters 

[4;26]. Similarly, the severity of illness in major depression was positively 

correlated with the ratio of 20:4n-6 to 20:5n-3 in serum phospholipids and red 

blood cell membranes [24]. Depressive patients were found to have reduced levels 

of n-3 PUFA and particularly DHA in their red blood cell membranes compared to 

healthy controls [27]. Edwards et al [25] confirmed these findings and observed no 

significant difference between patients and controls for dietary intake of n-3 fatty 

acids nor for total energy intake. Significant negative correlations were found 

between the red blood cell membrane n-3 fatty acid levels and the Beck 

Depression Inventory index on the other hand [25]. Positive correlations were 

found between dietary intake of n-3 fatty acids and their levels in red blood cell 

membranes in the patient group. Dietary intake of n-3 fatty acid levels was 
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negatively correlated with the Beck Depression Inventory score; that is the more 

n-3 fatty acids consumed by depressive patients in their normal diet the less 

severe is their level of depression [25]. Finally, Maes et al documented a lower 

status of 18:3n-3, 20:5n-3 and total n-3 PUFA, in cholesteryl esters and an 

increase in mono-unsaturated fatty acids and n-6 PUFA in phospholipids together 

with an increased ratio of 20:4n-6/20:5n-3 [26]. 

All these observations taken together suggest an abnormal metabolism of n-3 

PUFA in depression. 

In conclusion, affective disorders have repeatedly been associated with 

abnormalities in cholesterol and fatty acids but it still remains unclear whether 

these changes are directly related to the pathogenesis of depression. Until now it 

has not been determined whether the high ratios of 20:4n-6 to 20:5n-3 both in 

serum and red blood cell phospholipids are the result of depression or whether 

tissue PUFA changes predate the depressive symptoms. The association between 

the state of depression and plasma and red blood cell PUFA levels may be a cause, 

an effect or a reflection of other changes occurring during depression [24]. 

Furthermore decreased appetite and weight loss in depressed subjects may 

underlie the relationship between low cholesterol and depressive symptoms. 

3. Postpartum depression 

Mild depressive symptoms, the so-called postpartum blues, are a common 

complication of the puerperium and affect 30 – 85% of women in the early 

postpartum period [28-31]. A cross-national ecological analysis reported that the 

prevalence of postpartum depression varied from 0.5% in Singapore to 24.5% in 

South Africa. The mean prevalence rate world-wide was 12.4% (n=22 countries) 

[32]. The onset of postpartum depression occurs from between 4 weeks and 6 

months following delivery. 

Pregnancy induces a physiological rise in both serum cholesterol and triglyceride 

concentrations with peak concentrations at term and a rapid decline within a few 

days after delivery [33]. The cholesterol concentration normalizes by the 20th 

week postpartum [34]. Based on these observations it has been suggested that the 

sudden fall in cholesterol levels after delivery could serve as a ‘natural model’ to 

test the association between cholesterol and mood [35]. 
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Ploeckinger et al [35] analysed serum concentrations of total cholesterol and 

triglycerides two weeks before delivery and at the first and third days after 

delivery in 20 women. These data were correlated with mood scores. A significant 

correlation was found between the decline in cholesterol and depressive 

symptoms postpartum [35]. Similarly, a significant association between mood 

state and serum cholesterol level on the third day postpartum has been found 

[36]. In contrast, in a longitudinal study of 266 women, rapidity of cholesterol 

decline had no effect on risk of depression in the weeks after delivery [37]. The 

decline in serum cholesterol between 32 weeks of pregnancy and week 10 

postpartum was similar for women who became depressed postpartum and women 

who did not [37]. The first studies only lasted until 3 or 4 days postpartum and had 

a depression score instead of diagnosis of depression as in the latter study. 

Recently in a study of 47 primiparous women, lower postpartum levels of total 

cholesterol were associated with symptoms of anxiety, hostility and depression, 

and lower postpartum levels of HDL cholesterol were associated with symptoms of 

anxiety [38]. 

Pregnancy is associated with a gradual relative decrease of 22:6n-3 (w%) in 

maternal plasma PL from the 18th week of gestation on resulting in a decreased 

DHA sufficiency index. Six months after delivery the maternal DHA sufficiency 

index had not yet returned to early pregnancy values [39;40]. After delivery 

maternal plasma 22:6n-3 steadily declines further both in lactating and 

nonlactating women [40]. This relative maternal depletion of 22:6n-3 may be one 

of the complex factors leading to increased risk of depression in the postpartum 

periods [41]. 

Hibbeln concluded from a cross-national ecological analysis that both higher 

concentrations of 22:6n-3 in breast milk and greater seafood consumption were 

associated with lower prevalence rates of postpartum depression [32]. The 

concentrations of DHA in mother’s milk are a reasonably good parameter of 

maternal DHA status postpartum [42]. The DHA content of breast milk correlated 

significantly with the prevalence rate of postpartum depression (r= -0.84, 

P<0.0001). Lower national rates of seafood consumption were significantly 

correlated with higher prevalence rates of major postpartum depressive symptoms 

(r= -0.81, P<0.0001) (figure 9.2) [32]. One possible criticism of these cross-

national findings is that women from Asian cultures may have been more reluctant 
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to report depressive symptoms. Even so, despite exclusion of all Asian countries 

from these analyses, the cross-national relationships remained robust (r= -0.76, 

P<0.0001). 

 

Figure 9.2: Seafood consumption and prevalence rates of postpartum depression. A 

logarithmic regression was used for analysis (r= -0.81, P<0.0001) [32]. 

 

Based on these observations we hypothesised that the relative maternal depletion 

of 22:6n-3 might increase the risk of postpartum depression. In the next part of 

this chapter we examine whether the maternal concentration of n-3 fatty acids at 

delivery differs in women who develop postpartum depression compared to 

controls. 
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Part B: Our own study: “Lower serum n-3 
polyunsaturated fatty acids predict the 
occurrence of postpartum depression” 

1. Abstract 

Several studies have shown that major depression is accompanied by alterations in serum 

fatty acid composition, i.e. reduced n-3 fatty acids and an increased 20:4n-6/20:5n-3 ratio 

in serum. Moreover, in several study groups, a gradual relative decrease of maternal serum 

22:6n-3 was found from mid gestation till term and a further decline after delivery. 

Therefore, the aim of the present study was to investigate whether the postpartum fatty 

acid profile of maternal serum phospholipids (PL) and cholesteryl esters (CE) differs in 

women who develop postpartum depression compared to controls. We compared the fatty 

acid composition shortly after delivery of 10 women who developed postpartum depression 

and 38 women who did not. After delivery, 22:6n-3 and the sum of the n-3 fatty acids in PL 

and CE was significantly lower in the group of mothers who developed a postpartum 

depression. The ratio of Σn-6/Σn-3 fatty acids in PL was, postpartum, significantly higher 

in the depressed group as compared to the controls. The observed abnormalities in fatty 

acid status in affective disorders were confirmed in postpartum depression. 

 

De Vriese S.R.1, Christophe, A.B.1 and Maes M.2 - Departments of 1Internal Medicine, 

Division of Nutrition; and 2Psychiatry, Maastricht, The Netherlands. Submitted to Life 

Sciences. 

2. Introduction 

Major depression is associated with alterations in fatty acid composition of serum 

lipids. In depressed patients reduced n-3 fatty acids and a shift in the balance of 

fatty acids from n-3 towards n-6 was noticed [4;24-26]. Major depressed patients 

have significantly lower total n-3 fatty acids in serum cholesteryl esters (CE) 
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compared to minor depressed patients or healthy controls [4]. Furthermore the 

Σn-6/Σn-3 ratio in serum CE is significantly higher in patients with major 

depression compared to healthy controls [4]. The severity of illness in major 

depression was positively correlated with the ratio of 20:4n-6 to 20:5n-3 in serum 

phospholipids (PL) and red blood cell membranes [24]. Similarly, patients with 

major depression have an increased ratio of 20:4n-6/20:5n-3 in serum PL and CE 

[4;26]. Depressive patients were found to have reduced levels of n-3 fatty acids 

and particularly 22:6n-3 in their red blood cell membranes compared to healthy 

controls [27]. Edwards et al [25] confirmed these findings and observed no 

significant difference between patients and controls for dietary intake of n-3 fatty 

acids nor for total energy intake. These observations suggest an abnormal 

metabolism of n-3 PUFA in depression [26]. 

Pregnancy is associated with a gradual relative decrease of 22:6n-3 (w%) in 

maternal plasma PL from the 18th week of gestation on resulting in a decreased 

DHA sufficiency index. Six months after delivery the maternal DHA sufficiency 

index had not yet returned to early pregnancy values [39;40]. Several studies have 

shown an association between reduced n-3 fatty acids in serum and the 

occurrence of major depression [4;24-26]. These observations prompted the 

hypothesis that relative maternal depletion of 22:6n-3 might increase the risk of 

postpartum depression. Therefore, the aim of the present study was to investigate 

whether the fatty acid profile of maternal serum PL or CE at delivery differs in 

women who develop postpartum depression compared to controls. 

3. Subjects and Methods 

3.1. Study population and blood sampling 

Healthy pregnant women attending the Department of Gynaecology, ZOL, Genk, 

Belgium were asked to cooperate in this study without a selection based on 

previous miscarriages, parity or gravity. Only singleton pregnancies were included. 

We excluded women i) with any medical disorder; ii) with a past or present axis-I 

psychiatric disorder, except depression, as assessed by means of DSM-IV criteria 

using the Semi-structured Interview for the DSM-III-R (SCID; [43;44]; iii) who ever 

had used major psychotropic drugs, including antidepressants and antipsychotics; 

iv) who had signs of an infection before/after delivery; v) who went into labour 
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prematurely (<37 weeks); vi) with ruptured membranes for more than 12 hours; 

and vii) who had a Caesarean Section after labour. Finally, 48 pregnant women 

were enrolled in the study. Not one of the subjects was a regular drinker. All 

subjects had a normal physical examination, normal values of renal tests (blood 

urea and creatinine). The study protocol was approved by the Medical Ethics 

Committee of the ZOL, Genk, Belgium and written informed consent was obtained 

from each participant after the study design was fully explained. 

Shortly after delivery a maternal blood sample was obtained. Serum was obtained 

after centrifugation and stored in plastic tubes under nitrogen at –80°C until 

thawed for fatty acid analysis. 

3.2. SCID interview 

Within six to ten months after delivery a resident in psychiatry trained in the DSM-

interview techniques had a telephone interview of the participants in order to 

make the diagnosis of postpartum depression. Telephone interviews to assess the 

history of major depression according to DSM-IV criteria using the SCID interview 

are commonly used in epidemiological studies [43;45]. Although the criteria for 

the postpartum onset specified in the DSM-IV includes that the onset of the 

episode occurs within 4 weeks postpartum, we used 3 months as onset specifier, 

since a review of the literature shows that a considerable number of postpartum 

depressions may occur after the first month [31]. 

The study population consisted of 10 pregnant women who developed postpartum 

depression and 38 pregnant women who did not. 

3.3. Fatty acid analysis of serum phospholipids and cholesteryl 

esters 

Lipids were extracted from 1 mL serum according to a modified Folch extraction 

with methanol:chloroform (1:2) [46]. The lipids were separated by thin layer 

chromatography on rhodamine-impregnated silica gel plates using petroleum ether 

(bp 60-80°C; Merck Belgolab, Overijse, Belgium)/acetone 85:15 as mobile phase 

[47]. The PL and CE fraction were scraped off and the fatty acids converted into 

methyl esters by transesterification with 2 mL of a mixture of 

methanol:benzene:HCl (aqueous, 12N) (80:20:5) [48]. After cooling and adding 2 

mL of water, fatty acid methyl esters were extracted with petroleum ether (bp 
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40-60°C), evaporated to dryness under a nitrogen flow at a temperature not 

exceeding 40°C, and analysed by temperature programmed capillary gas 

chromatography (Varian Model 3500, Walnut Creek, CA, USA) on a 30m x 250µm 

(LxID) x 0.2µm df Rtx 2330 column (Restek Corp, Bellefonte, PA, USA). The 

injection and detection temperature were set at 285°C. The starting temperature 

of the column was 150°C which was increased to 240°C after 3 min at a rate of 

2°C/min. The carrier gas was nitrogen with a flow of 25 cm/s [48]. Peak 

identification was performed by spiking with authentic standards (Sigma-Aldrich, 

Bornem, Belgium). Peak integration and calculation of the percent composition 

was performed by computer with Star Chromatography Workstation Version 5.52 

software. The coefficient of intra-assay variation of the fatty acid analysis method 

(5 repeated assays of a single pool) ranges from 1.4 % to 4.4 % for peaks larger 

than 5 w% and ranges from 1.4 % to 11.4 % for peaks larger than 1 w%. The results 

are expressed as weight percent of total fatty acids. 

3.4. Statistical analysis 

Values are reported as mean and standard deviation. Normality of distribution was 

ascertained with the Kolmogorov-Smirnov test. Student’s t-test was used to 

examine the difference in the fatty acid composition of maternal serum PL and CE 

between women who developed a postpartum depression and women who did not. 

Since previous research has revealed differences between controls and patients 

with depression in the Σn-6/Σn-3 and the 20:4n-6/20:5n-3 ratios and total n-3 

fatty acids, the significance level concerning the Σn-6/Σn-3 and the 20:4n-

6/20:5n-3 ratios, and the 182:n-6, 18:3n-3, 20:4n-6, 20:5n-3, 22:6n-3, Σn-6 and 

Σn-3 fractions was set at α = 0.05. The data were analysed using the MedCalc 

statistical program, version 6 (MedCalc Software, Mariakerke, Belgium) [49]. 

4. RESULTS 

The study population consisted of 10 pregnant women who developed postpartum 

depression and 38 pregnant women who did not.  

Table 1 summarises the fatty acid composition of PL and CE from maternal serum 

immediately after delivery.  
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After delivery, 22:6n-3 in PL and CE was significantly lower in the groups of 

mothers who developed a postpartum depression. Similarly the sum of the n-3 

fatty acids in PL and CE was significantly lower in the women who became 

depressed. The ratio of Σn-6/Σn-3 fatty acids in PL postpartum was significantly 

higher in the depressed group compared to the controls. In CE the ratio of Σn-

6/Σn-3 fatty acids was higher in women who became depressed but significance 

was not reached (P=0.08). Also the ratio of 20:4n-6/20:5n-3 in PL was higher in 

women with postpartum depression but significance was not reached (P=0.07). 

Table 1: Composition (weight% of total fatty acids) of fatty acids in PL and CE isolated from maternal 

venous serum immediately after delivery: mean (SD). 

 Postpartum 

depression 

(n=10) 

Controls 

(n=38) 

P * 

PL 18:2n-6 21.99 (2.93) 20.41 (3.02)  

PL 18:3n-3 0.20 (0.09) 0.21 (0.13)  

PL 20:4n-6 8.21 (1.66) 8.42 (1.47)  

PL 20:5n-3 0.30 (0.08) 0.43 (0.24)  

PL 22:6n-3 3.11 (0.50) 4.22 (1.20) 0.006 

PL Σn-6/Σn-3 8.55 (1.48) 6.41 (2.02) 0.003 

PL AA/EPA 32.37 (22.34) 23.54 (10.50)  

PL Σn-6 33.60 (1.72) 32.32 (3.08)  

PL Σn-3 4.02 (0.56) 5.43 (1.46) 0.005 

CE 18:2n-6 53.99 (6.90) 53.58 (5.99)  

CE 18:3n-3 0.60 (0.20) 0.62 (0.17)  

CE 20:4n-6 4.97 (1.18) 5.67 (1.42)  

CE 20:5n-3 0.21 (0.08) 0.34 (0.21)  

CE 22:6n-3 0.38 (0.14) 0.61 (0.28) 0.02 

CE Σn-6/Σn-3 52.87 (15.55) 42.44 (16.39)  

CE AA/EPA 26.66 (12.41) 21.47 (12.83)  

CE Σn-6 59.67 (5.98) 60.02 (5.75)  

CE Σn-3 1.19 (0.26) 1.58 (0.51) 0.03 

* unpaired students’ t-test; AA: arachidonic acid (20:4n-6); EPA: eicosapentaenoic acid (20:5n-3) 

5. DISCUSSION 

In this study we found significant differences in the postpartum fatty acid status 

between women who developed a postpartum depression compared to control 
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mothers. We observed a significant association between the ratio of Σn-6/Σn-3 in 

PL and the occurrence of postpartum depression. Moreover, women who became 

depressed after delivery had a significantly lower concentration of 22:6n-3 and of 

Σn-3 fatty acids in PL and CE compared to women who did not. 

Our observations are in line with several studies in major depression. In depressed 

patients reduced n-3 fatty acids and a shift in the balance of fatty acids from n-3 

towards n-6 was noticed [4;24-26]. Major depressed patients have significantly 

lower Σn-3 fatty acids in serum CE compared to minor depressed patients or 

healthy controls [4]. Furthermore the Σn-6/Σn-3 ratio in serum CE is significantly 

higher in patients with major depression compared to healthy controls [4]. 

Patients with major depression have an increased ratio of 20:4n-6/20:5n-3 in 

serum PL and CE or in red blood cell membranes [4;24;26]. Depressive patients 

were found to have reduced levels of n-3 PUFA and particularly DHA in their red 

blood cell membranes compared to healthy controls [25;27]. All these 

observations suggest an abnormal metabolism of n-3 PUFA in depression [26]. 

Similar deviations were found in our group of women with postpartum depression. 

From our results, we may conclude that there is an association between 22:6n-3 or 

Σn-6/Σn-3 and the risk for depression in the postpartum period. Moreover, Hibbeln 

concluded from a cross-national ecological analysis that both higher 

concentrations of 22:6n-3 in breast milk and greater seafood consumption (rich in 

22:6n-3) are associated with lower prevalence rates of postpartum depression 

[32]. However, these observations do not prove that higher n-3 fatty acid status 

causes lower prevalence rates of postpartum depression. 

In summary, the observed abnormalities in fatty acid status in affective disorders 

were confirmed in postpartum depression. 
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ABSTRACT: In 24 healthy pregnant women, parameters re-
lated to the oxidative stability of low density lipoproteins (LDL)
were determined at three times during pregnancy and shortly
after delivery. The fatty acid composition of plasma phospho-
lipids (PL) and the plasma concentrations of vitamin E, vitamin
A, and β-carotene were assessed in the same samples. Total
triglyceride (TG), total cholesterol, LDL-cholesterol, and high
density lipoprotein (HDL)-cholesterol concentrations were also
determined. The length of the lag phase of isolated LDL chal-
lenged with Cu2+ ions significantly increased with the progres-
sion of pregnancy. The oxidation rate and the amount of conju-
gated dienes formed increased and reached a maximum at
29–37 wk of pregnancy. Total TG, cholesterol, and LDL-cho-
lesterol reached a maximum in the third trimester of pregnancy.
β-Carotene remained stable, vitamin A decreased, and vitamin
E significantly increased throughout pregnancy. Vitamin E
plasma concentration correlated positively with the length of
the lag phase. The increased levels of vitamin E could contribute
to the higher resistance of LDL toward oxidation with progress-
ing gestation, measured by the prolonged lag phase. Further-
more, vitamin E plasma levels correlated positively with TG
concentration but not with LDL-cholesterol. The level of
polyunsaturated fatty acids in PL decreased with the progres-
sion of pregnancy. No correlation was found between the fatty
acid composition of plasma PL, nor with the cholesterol con-
centration, and the parameters studied related to the oxidative
stability of LDL. The major finding of this study is the increased
oxidative resistance of LDL with progressing gestation.

Paper no. L8588 in Lipids 36, 361–366 (April 2001).

The third trimester of pregnancy is accompanied by hyper-
lipidemia. As pregnancy progressess, the maternal plasma
triglyceride (TG) concentration, the low density lipoprotein
(LDL) content, and total cholesterol concentration increase
(1–6). Late pregnancy is also associated with the predomi-
nance of small and dense LDL-particles (3,7). These small
and dense LDL-particles have been shown to be more suscep-
tible to oxidation (8). Hyperlipidemia and the occurrence of
small and dense LDL particles during late pregnancy might

increase the oxidative damage and impair the outcome of
pregnancy. Many studies have determined either the antiox-
idative defense systems or peroxidation products during preg-
nancy (9–12). Uncomplicated pregnancy, but especially pre-
eclampsia and diabetic pregnancy, is associated with high
serum levels of lipid peroxides (8–13). During normal preg-
nancy the higher levels of lipid peroxides are accompanied
by higher maternal levels of vitamin E compared to nonpreg-
nant women (9,10,12–14). However, the increase in vitamin
E levels is more pronounced, i.e., the vitamin E/lipid perox-
ide ratio increases with progressing gestation . 

The aim of this study was to determine whether the oxida-
tive stability of LDL changes during the course of pregnancy
and, if so, whether this change correlates with changes in vit-
amin E, vitamin A, and β-carotene levels or with changes in
the fatty acid composition of plasma phospholipids (PL).

SUBJECTS AND METHODS

Healthy pregnant women attending the Department of Gyne-
cology were asked to cooperate in this study. All pregnant
volunteers signed a written informed consent form, approved
by the ethics committee of Ghent University Hospital. Only
singleton pregnancies were included. Inclusion criteria were:
first pregnancy, normotensive (diastolic blood pressure <90
mm Hg), not diabetic, no proteinuria, and not suffering from
renal or cardiovascular disease. The study population con-
sisted of 24 healthy pregnant women. None of the women
used any medication. Maternal venous blood was collected in
EDTA tubes thrice during the course of pregnancy: earlier
than 18 wk of gestation (median 12 wk), between 20 and 26
wk (median 23 wk), between 29 and 37 wk (median 32 wk)
and shortly after delivery (median 39 wk; range 36–41 wk).
Blood samples were temporarily stored on ice, and plasma
was isolated by centrifugation (600 × g during 5 min at 4°C)
within 24 h of collection. Plasma was stored with sucrose
(60%, 10 µL/mL) to prevent lipoprotein aggregation during
deepfreezing (−80°C).

Preparation and oxidation of LDL. LDL were prepared by
sequential ultracentrifugation at 4°C according to Esterbauer
et al. (15) and isolated from the appropriate density fraction
(d = 1.019–1.063 g/mL). EDTA was present throughout all
the steps of the isolation in a concentration of 1 mg/mL den-
sity solution. Immediately after isolation, the LDL samples
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were dialyzed at 4°C for 24 h against four changes of buffer
(0.01 M Na2HPO4, 0.0022 M NaH2PO4, 0.16 M NaCl, 10 µM
EDTA, and 0.1 µg/mL chloramphenicol; pH 7.4) which was
made oxygen-free by vacuum degassing and subsequently
was continuously purged with nitrogen. The protein content
of the LDL fraction was determined according to Lowry et
al. (16) with fatty acid-free serum albumin as standard. The
concentration was initially adjusted to 500 mg/L with dialy-
sis buffer. This solution was further diluted 10-fold in a quartz
cuvette with EDTA and chloramphenicol-free phosphate
buffer at a final protein concentration of 50 µg/mL.

Oxidation was initiated by addition of CuCl2 (10 µM, in
cuvette). The formation of conjugated dienes was determined
by monitoring the change of absorbance at 234 nm at 30°C.
The optical density was recorded every 3 min during a 3-h pe-
riod. From the absorbance curve the following parameters
were derived: length of the lag phase (Tlag); length of the
time required to obtain maximum levels of conjugated dienes
(Tmax); length of the propagation phase, oxidation rate, and
maximal amount of conjugated dienes formed. Tlag (ex-
pressed in minutes) or the length of the lag phase is defined
as the time interval between the addition of CuCl2 to initiate
oxidation and the onset of rapid oxidation. Tmax (expressed
in minutes) is the time at which the absorbance reaches a
maximum. After reaching the maximum value, the conju-
gated dienes slowly decreased by decomposition. The length
of the propagation phase (during which the absorbance
rapidly increases to a maximum) is the difference between
Tmax and Tlag. The oxidation rate was calculated from the
slope of the tangent to the curve during the propagation phase
and is expressed as moles of dienes formed per minute per
gram of LDL protein. The maximal amount of conjugated di-
enes formed (expressed as mol dienes/g LDL-protein) was
calculated by means of the molar extinction coefficient for
conjugated dienes (ε234 = 29,500 L/mol/cm). An actual ex-
perimental curve is given in Figure 1.

Plasma lipid analyses. Lipids were assayed using enzy-
matic-colorimetric methods based upon the technique of Al-
lain et al. (17) for free and total cholesterol and that of Bu-
colo and David (18) for TG. LDL-cholesterol was calculated
by difference between total cholesterol and cholesterol in the
supernatant after precipitation of LDL with dextrane sulfate
(QuantolipR, Immuno AG, Wien, Austria). HDL-cholesterol
was determined in the supernatant after precipitation of the
other lipoproteins with different concentrations of polyethyl-
ene glycol (QuantolipR, Immuno AG). 

For the determination of the fatty acid composition of
plasma PL, the following method was used. Lipids were ex-
tracted from 1 mL plasma according to Folch et al (19). The
PL were prepared by thin-layer chromatography on rho-
damine-impregnated silica gel plates using petroleum ether
(bp 60–80°C; Merck Belgolab, Overijse, Belgium)/acetone
85:15 as mobile phase (20). The PL band was scraped off, and
the fatty acids were converted into methyl esters by transes-
terifications with 2 mL of a mixture of methanol/benzene/HCl
(80:20:5) (21). Fatty acid methyl esters were extracted with

petroleum ether (bp 40–60°C), evaporated to dryness under a
nitrogen flow at a temperature not exceeding 40°C, and ana-
lyzed by temperature-programmed capillary gas chromatog-
raphy (Varian Model 3500) on a 25-m × 250 µm × 0.2 µm
film thickness Silar 10C column (L. Restek, Interscience, Bel-
gium) (21). The injection and detection temperatures were set
at 285°C. The starting temperature of the column was 150°C,
which was increased to 240°C after 3 min at a rate of
2°C/min. The carrier gas was nitrogen with a flow of 25 cm/s.
Peak identification was performed by spiking with authentic
standards (Sigma-Aldrich, Bornem, Belgium). Peak integra-
tion and calculation of the percentage composition were per-
formed electronically with a Varian Model 4290 integrator. 

Plasma levels of lipid-soluble vitamins with antioxidant
activity. The concentrations of vitamin E, vitamin A, and β-
carotene in plasma were measured by high-performance liq-
uid chromatography as described by Catignani and Bieri (22).
Peak identification was performed using the following stan-
dards: d-α-tocopherol, all-trans-retinol, and β-carotene
(Sigma-Aldrich). 

Statistical analysis. Normality of distribution was ascer-
tained with the Kolmogorov-Smirnov test. Parameters related
to LDL oxidative stability were log-transformed whereas the
fatty acid fractions were arcsin transformed to reach normal-
ity of distribution. The vitamin levels (vitamin E, vitamin A,
and β-carotene) had a normal distribution. Values are reported
as mean (standard deviation). Differences in LDL oxidative
stability-related parameters, in fatty acid composition of PL,
and in vitamin levels between the first trimester and later
stages in pregnancy or delivery were tested using the paired
Student t-test. In order to avoid type 2 errors, due to multiple
comparisons, a value of P < 0.01 was taken as the criterion of
significance. Multiple regression and Spearman rank correla-
tion coefficients were calculated to study the degree of asso-
ciation between LDL oxidative stability and antioxidant sta-
tus-related parameters or plasma lipid concentrations. Trends
during gestation were evaluated by computing Spearman’s
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FIG. 1. Kinetics of density lipoprotein oxidation (actual experimental
curve). Tlag, length of the lag phase; Tmax, length of time required to
obtain maximal levels of conjugated dienes.



rank correlation coefficients between gestational age and vit-
amin levels or plasma lipid concentrations. For the calcula-
tion of the correlation coefficients, samples from the same
subject collected at different gestational ages were considered
as independent samples. The data were analyzed using the
MedCalc statistical program, version 6 (MedCalc Software,
Mariakerke, Belgium) (23).

RESULTS

Clinical characteristics of the study population. The mean
age of the mothers at delivery was 30 yr (range 25–41 yr).
The mean Body Mass Index of the women before pregnancy
was 24.2 kg/m2 (range 17.6–35.6 kg/m2), and mean weight
gain at delivery was 15 kg (range 7–23 kg). All pregnant
women were nullipara, all pregnancies were uncomplicated,
and the infants were born healthy with a mean birth weight of
3365 g (range 2590–4200 g) and a mean birth length of 51.2
cm (range 47–55 cm). The median Apgar score 1 min after
birth was 8 (range 4–10) and 5 min after birth 9 (range 6–10).
The sex ratio of the infants was 13 males and 11 females.

Oxidative stability of LDL. The oxidizability-related pa-
rameters of LDL throughout gestation are summarized in
Table 1. Tlag was significantly higher at later stages of preg-
nancy compared to the value earlier than 18 wk of gestation.
Tlag reached a maximum in the third trimester, namely 129%
(SD 41.1%) of the value at the first antenatal visit. The length
of the propagation phase did not change significantly during
pregnancy. The oxidation rate increased to reach a maximum
in the third trimester of pregnancy: 147% (SD 64.6%) of the
oxidation rate at the first antenatal visit. A similar pattern was

found for the maximal amount of conjugated dienes: the value
in the third trimester was 142% (SD 52.4%) of the value at
the first antenatal visit. 

Fatty acid composition of plasma PL. Table 2 summarizes
the fatty acid composition of the plasma PL. The sum of the
highly unsaturated fatty acids (HUFA; fatty acids with 20 or
more carbon atoms and with at least 3 double bonds) of the
plasma PL steadily decreased with progressing gestation
whereas the sum of the saturated fatty acids was slightly
higher at delivery compared to the first trimester. 

No correlation was found between the fatty acid fractions
of plasma PL and any of the LDL oxidative stability-related
parameters studied (data not shown).

Plasma levels of cholesterol and TG (Table 3). Cholesterol
and TG concentrations could not be determined in all the
plasma samples (aliquots were too small) obtained from this
study population. Significance calculations were based on
paired values. The values obtained for each women from the
first trimester were compared with those obtained at later
stages during pregnancy. The TG concentration reached a
maximum in the third trimester of pregnancy. Both total cho-
lesterol and LDL-cholesterol increased significantly during
pregnancy and reached a maximum in the third trimester.
HDL-cholesterol, on the other hand, reached a maximum in
the second trimester and then leveled off again. To test
whether the length of the lag phase depends on the plasma TG
or LDL-cholesterol concentration, multiple regression analy-
sis was performed. No significant correlations were found be-
tween any of the above-mentioned parameters.

Plasma levels of lipid-soluble vitamins with antioxidant
activity. As was the case for the determination of the choles-
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TABLE 1
Oxidizability-Related Parameters of Low Density Lipoprotein (LDL)a

<18 wk of 20–26 wk of 29–37 wk of Delivery
gestation gestation gestation

Tlag (min) 41.6 (16.23) 49.2 (27.63) 51.1 (19.93)* 50.2 (28.88)
Tmax (min) 102.5 (22.00) 108.6 (32.28) 111.12 (24.95)* 113.75 (39.04)
Dienes (mol/g LDL-protein) 138.0 (61.59) 159.7 (54.99)* 179.1 (64.54)** 149.6 (63.54)
Oxidation rate
(mol dienes/g LDL-protein/min) 2.33 (1.16) 2.72 (1.01)* 3.04 (1.19)* 2.48 (1.18)

aPaired Student t-test after log transformation. Values significantly different from values obtained before 18 wk of gestation: *: P < 0.01; **: P < 0.001(mean
with standard deviation in parentheses throughout gestation (n = 24).

TABLE 2
Fatty Acid Composition (wt%) of Plasma Phospholipidsa

<18 wk of 20–26 wk of 29–37 wk of
gestation gestation gestation Delivery

SFA 44.6 (1.43) 45.6 (4.0) 45.0 (0.9) 46.5 (3.4)*
MUFA 12.1 (1.6) 11.7 (1.4) 12.8 (1.3) 12.7 (1.3)
PUFA 39.7 (2.3) 39.1 (3.8) 38.9 (1.8) 37.6 (3.6) *
HUFA 19.4 (2.5) 18.8 (2.8) 17.9 (2.5)* 17.8 (3.1)**
aMean with standard deviation in parentheses throughout gestation (n = 24). Paired Student t-test after arcsin transforma-
tion. Values significantly different from values obtained before 18 wk of gestation: *: P < 0.01; **: P < 0.001; ***: P < 0.0001.
SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; HUFA, highly unsatu-
rated fatty acids.



terol concentration, vitamin plasma levels (µmol/L) could not
be determined in all the plasma samples (aliquots were too
small) obtained from this study population. Calculations of
significance were based on paired values. The values obtained
for each woman from the first trimester were compared with
those obtained at later stages during pregnancy. The results
are summarized in Table 4. Plasma levels of vitamin E signif-
icantly increased from the first trimester and reached a maxi-
mum in the third trimester, whereas β-carotene remained sta-
ble throughout pregnancy. Vitamin A in maternal plasma was
significantly lower at delivery compared to the beginning of
pregnancy. When the vitamin status of all the women over all
the visits was plotted vs. gestational age, the plasma vitamin
E levels were found to increase and the vitamin A levels to
decrease during gestation (Fig. 2). To test whether the oxida-
tive stability-related parameters correlated with the vitamin
plasma levels, multiple regression analysis was performed.

Only the vitamin E status correlated positively with Tlag: r =
0.54; P < 0.0001 (Fig. 3) and with the amount of formed di-
enes: r = 0.41; P < 0.01. Neither vitamin A nor β-carotene cor-
related with the LDL oxidative stability-related parameters. 

In our study population, no significant correlation was
found between vitamin E plasma levels and total cholesterol
or LDL-cholesterol concentration. On the contrary, vitamin E
plasma levels correlated with the TG concentration during the
course of pregnancy: r = 0.41; P < 0.01; n = 49. 

DISCUSSION

To our knowledge this is the first report on maternal plasma
lipid-soluble antioxidant vitamin levels (vitamins E, A, and
β-carotene) and in vitro formed peroxidation products (con-
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TABLE 3
Plasma Levels of Cholesterol and Triglycerides (TG)a

<18 wk of 20–26 wk of 29–37 wk of Delivery
gestation (n = 14) gestation (n = 15) gestation (n = 12) (n = 14)

TG 110 (42.2) 135 (48.7) 186 (92.1)* 161 (55.0)
Total cholesterol 198.4 (30.8) 238.1 (41.5)*** 258.6 (42.6) **212.6 (73.4)
LDL-cholesterol 126.9 (29.9) 155.2 (38.5)** 171.6 (42.2)* 134.6 (55.6) 
HDL-cholesterol 49.4 (13.5) 55.8 (16.5)* 49.7 (14.8) 45.6 (19.5)
a Expressed as (mg/dL) mean with standard deviation in parentheses throughout gestation. Paired Student t-test. Val-
ues significantly different from values obtained before 18 wk of gestation: *: P < 0.01; **: P < 0.001;
***: P < 0.0001. HDL, high density lipoprotein; for other abbreviation see Table 1.

TABLE 4
Plasma Concentrations of Lipid-Soluble Vitamins with Antioxidant Activitya

<18 wk of 20–26 wk of 29–37 wk of Delivery
gestation (n = 15) gestation (n = 17) gestation (n = 12) (n = 13)

Vitamin A 1.40 (0.26) 1.24 (0.37) 1.03 (0.23)** 0.87 (0.24)***
Vitamin E 21.54 (7.61) 28.39 (13.13) 31.16 (8.56)* 30.19 (9.61)*
β-Carotene 0.29 (0.22) 0.26 (0.18) 0.24 (0.12) 0.23 (0.12)
aExpressed as (mg/dL) mean with standard deviation in parentheses) throughout gestation. Paired Student t-test. Val-
ues significantly different from values obtained before 18 wk of gestation: *: P < 0.01; **: P < 0.001;
***: P < 0.0001.

FIG. 2. Maternal plasma vitamin E (A) and vitamin A (B) levels (µmol/L)
vs. gestational age. (Spearman’s rank correlation coefficient, A: r = 0.31;
P = 0.025; n = 54. B: r = −0.62; P = 0.0001; n = 54).

FIG. 3. Relation between the maternal plasma vitamin E concentration
(µmol/L) and the length of the lag phase during in vitro oxidation of ma-
ternal low density lipoprotein (min). (Spearman’s rank correlation coef-
ficient, r = 0.54; P = 0.0001; n = 57).



jugated dienes of LDL), carried out in conjunction with de-
terminations of the fatty acid compositions of maternal
plasma PL at three times during normal uncomplicated preg-
nancy and at delivery. 

Both the rate of formation and the amount of conjugated
dienes formed reached a maximum in the third trimester. This
could be due to a change in the composition of the LDL near
the end of pregnancy. Indeed, structural changes in plasma
lipoproteins during pregnancy have been described (1–7;24).
An elevation of TG levels in all lipoprotein fractions during
pregnancy compared to nonpregnant women was demon-
strated previously (1,2,4,5). Longitudinal studies during vari-
ous stages of pregnancy showed a steady rise of LDL-choles-
terol and PL levels during pregnancy, which reached a maxi-
mum either at 36 wk of gestation (1) or at 2 wk postpartum
(2). The observed increase in the concentration of plasma TG,
cholesterol, and LDL-cholesterol in our study population is a
well-known phenomenon during late pregnancy compared to
early pregnancy or nonpregnant individuals (1,3–5). We ob-
served an increase in HDL-cholesterol concentration that
reached a maximum between 20 and 26 wk of gestation; oth-
ers found a maximum of HDL-cholesterol at 28 wk of gesta-
tion (1). 

The amount of conjugated dienes formed is a parameter
for the concentration of substrate available for lipid peroxida-
tion such as the amount of polyunsaturated fatty acids
(PUFA) present in LDL. We did not determine the fatty acid
composition of LDL, but it is conceivable that when the fatty
acid composition of plasma PL changes there will be a related
change in the LDL. In our study population the PUFA and
HUFA status of plasma PL was significantly lower at deliv-
ery compared to the first trimester. No correlation was found
between the fraction of PUFA or HUFA in PL and T lag or the
amount of formed conjugated dienes.

It had been previously published that there is no correla-
tion between the plasma α-tocopherol concentration and the
α-tocopherol content of LDL (25). We found a positive cor-
relation between Tlag and plasma vitamin E concentrations
during pregnancy. It is not clear how the higher plasma vita-
min E concentrations can contribute to the higher resistance
of LDL toward oxidation as measured by the prolonged lag
phase. Vitamin E is tightly bound to LDL, and as LDL-cho-
lesterol increases with progressing gestation it is expected
that the vitamin E content will increase also. Our finding that
vitamin E levels significantly rise during pregnancy is in line
with reports by others (9,10,12–14). The observed increase in
vitamin E levels during the course of pregnancy is probably
not due to changes in dietary intake. Indeed, analysis of food
frequency questionnaires surveyed at the beginning of preg-
nancy and in the third trimester of this study population re-
vealed no significant differences in the vitamin E content of
the diet, nor of the other vitamins, during the course of preg-
nancy (DeVriese, S.R., Matthys, C., De Henauw, S.,
Christophe, A.B., and Dhont, M., unpublished results). Our
results suggest that when the amount of substrate available
for lipid peroxidation in LDL increases (i.e., suggested by in-

creased levels of conjugated dienes formed), the concentra-
tion of vitamin E increases also. Indeed, Esterbauer et al. (26)
showed that the vitamin E content of LDL increases with the
PUFA content of LDL. Vitamin A levels decreased with pro-
gressing gestation, as reported by others (14). We found no
significant changes in maternal plasma β-carotene concentra-
tions whereas others reported a decline in maternal β-carotene
levels (14) or observed significantly higher β-carotene levels
in pregnant women compared to nonpregnant women (27). 

In conclusion, we report an increase in maternal plasma
vitamin E levels, a decrease in vitamin A levels, and un-
changed β-carotene levels during pregnancy. Furthermore,
this study showed an increase in the oxidative stability of
LDL with progressing gestation as measured by a prolonged
lag phase after in vitro oxidation of isolated LDL with Cu2+.
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Chapter 11: Seasonal variation in long-
chain polyunsaturated fatty acids 

In this dissertation we studied the fatty acid composition of plasma phospholipids (PL) 

during the course of pregnancy. When performing this kind of long-term studies it is 

important to consider the possibility of seasonal variations. Therefore we determined 

whether there exits seasonal variation in the fatty acid composition of plasma PL obtained 

from 23 healthy individuals during one calendar year. The results described in this chapter 

have been used as part of a larger study dealing with seasonal variation in the number of 

suicide deaths and serotonergic markers of suicide. In that study it was determined 

whether these seasonal variations are related to a seasonal variation in the PUFA fractions 

of serum PL. The results of that study have been described in a manuscript entitled “In 

humans, the seasonal variation in n-3 poly-unsaturated fatty acids is related to the 

seasonal variation in violent suicide and serotonergic markers of violent suicide” by SR De 

Vriese, AB Christophe and M Maes, submitted to Prostaglandins, Leukotrienes and Essential 

Fatty acids. 

1. Introduction 

Seasonal variation in plasma total cholesterol and high density lipoprotein 

cholesterol (HDL) have been repeatedly reported [1;2]. However, no data are 

available on the seasonal variation in PUFA. In this dissertation we study the fatty 

acid composition of plasma PL during the course of pregnancy. When performing 

this kind of long-term studies it is important to consider seasonal variations in 

plasma fatty acid compositions. This study was conducted in order to examine 

whether there is seasonal variation in the PUFA fractions of PL in the serum of 

healthy volunteers. 

 166



 

2. Subjects and Methods 

2.1. Study population 

Twenty-three healthy Caucasians (12 men and 11 women, mean age 38.5 years, 

range 23 – 69 years) volunteered to participate in this study. Inclusion and 

exclusion criteria for subjects are described somewhere else [3]. The geographical 

coordinates for this study are 51.2°N and 4.5°E around the city of Antwerp, 

Belgium. The subjects gave oral informed consent to participate in the study in 

accordance with the ethical standards of the Ethical Committee of the University 

of Antwerp. The study period extended from December 11, 1991 until December 

25, 1992. Seasons were defined by their respective solstices and equinoxes, that 

is, winter: December 21 to March 20; spring: March 21 to June 20; summer: June 

21 to September 20; and fall: September 21 to December 20. 

2.2. Methods 

Blood collections were performed under standardized conditions to minimize 

sources of pre-analytical variation [4]. Blood samples were taken after an 

overnight fast at 8:00 am (± 30 minutes). Each subject had 12 consecutive monthly 

blood samplings carried out by the same investigator. Blood samplings in men and 

postmenopausal women were evenly spaced at monthly intervals. Blood samplings 

in premenopausal females were always carried out 5 to 10 days after the first day 

of the menstrual cycle. Serum was stored in plastic tubes under nitrogen at –80°C 

until thawed for fatty acid analysis. All serum samples from one subject are 

analysed simultaneously using the same batch of solvents and the same capillary 

GC column [4]. Lipids were extracted from 1 mL serum according to a modified 

Folch extraction with methanol:chloroform (1:2) [5]. The lipids were separated by 

thin layer chromatography on rhodamine-impregnated silica gel plates using 

petroleum ether (bp 60-80°C; Merck Belgolab, Overijse, Belgium)/acetone 85:15 

as mobile phase [6]. The PL fraction of serum lipids was scraped off and the fatty 

acids converted into methyl esters by transesterification with 2 mL of a mixture of 

methanol:benzene:HCl (aqueous, 12N) (80:20:5) [7]. After cooling and adding 2 

mL of water, fatty acid methyl esters were extracted with petroleum ether (bp 

40-60°C), evaporated to dryness under a nitrogen flow at a temperature not 

exceeding 40°C, and analysed by temperature programmed capillary gas 

chromatography (Varian Model 3500, Walnut Creek, CA, USA) on a 25m x 250µm 
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(LxID) x 0.2µm df Silar 10C column [7]. The injection and detection temperature 

were set at 285°C. The starting temperature of the column was 150°C, which was 

increased to 240°C after 3 min at a rate of 2°C/min. The carrier gas was nitrogen 

with a flow of 25 cm/s. Peak identification was performed by spiking with 

authentic standards (Sigma-Aldrich, Bornem, Belgium). Peak integration and 

calculation of the percent composition was performed electronically with a Varian 

Model 4290 integrator. The coefficient of variation of intra-assay samples of the 

entire method of fatty acid analysis for peaks bigger than 1 w% is less than 5% and 

for peaks smaller than 1 w% is less than 10%. The results are expressed as weight 

percent of total fatty acids. 

2.3. Statistical analysis 

Seasonal variation has been ascertained by means of analysis of variance (ANOVA) 

[8;9]. Values are reported as means with standard deviation. 

3. Results 

Table 1 shows the mean PUFA values in the seasons. AA was significantly lower in 

winter than in the other seasons. EPA was significantly lower in winter and spring 

than in summer. DHA was significantly lower in winter than in the other seasons. 

Total n-3 was significantly lower in winter than in autumn and summer. There 

were no significant seasonal differences in any of the other PUFA fractions, 

including 18:2n-6 and 18:3n-3. 

Figure 11.1 shows the seasonal variation in 22:6n-3 and figure 11.2 shows the 

monthly variation in 22:6n-3. These figures illustrate a significant annual rhythm 

in 22:6n-3 with peaks around August - September and lows in December – 

February.
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Table 1: Seasonal differences in serum phospholipid PUFA fractions in 23 healthy volunteers who had 

monthly blood samplings during one calendar year 

 Winter Spring Summer Fall F df P 

18:2n-6 21.59 (2.80) 21.42 (3.28) 21.08 (3.03) 21.09 (2.61) 1.8 3/171 0.2 

18:3n-3 0.27 (0.16) 0.29 (0.19) 0.27 (0.14) 0.27 (0.16) 0.5 3/171 0.7 

20:4n-6 7.38 (1.30) 7.89 (1.57) 8.38 (1.55) 8.20 (1.65) 4.9 3/171 0.003 

20:5n-3 0.53 (0.28) 0.67 (0.44) 0.76 (0.56) 0.68 (0.43) 3.1 3/171 0.02 

22:5n-6 0.57 (0.77) 0.51 (0.64) 0.54 (0.64) 0.52 (0.67) 0.6 3/171 0.6 

22:6n-3 2.37 (0.53) 2.85 (0.75) 3.08 (0.72) 2.89 (0.77) 8.1 3/169 0.0001 

total n-6 32.5 (2.18) 32.6 (2.52) 33.0 (2.08) 32.8 (2.27) 0.6 3/171 0.6 

total n-3 3.96 (0.86) 4.65 (1.25) 5.02 (1.23) 4.71 (1.75) 3.3 3/171 0.02 

All results are expressed as mean (SD). All results of ANOVAs with seasons and subjects as factors. 

  

 

Figure 11.1: Seasonal variation of 22:6n-3 (w%). 
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Figure 11.2: Monthly variation of 22:6n-3 (w%). 

4. Discussion 

The major finding of this present study is that 20:4n-6, 20:5n-3, 22:6n-3 and total 

n-3 fractions, show - in a normal population - statistically significant annual 

rhythms with peaks around August - September and lows in winter. It is interesting 

to note that linoleic acid and α-linolenic acid (the parent EFA) showed no 

significant seasonal variation whereas there is a true seasonality in the delta-5-

desaturase products (20:4n-6 and 20:5n-3) and in the elongation-desaturation 

product of the latter (22:6n-3). This could suggest that there is a seasonal 

variation in the delta-5-desaturase. The origin of the above seasonal rhythms has 

remained elusive, but the seasonal variation in many human physiological 

functions is related to genetically determined processes (endogenous rhythms) 

which may be adjusted in time (or “entrained” or “synchronized”) by cycles in 

light-dark span or ambient temperature. 

Recently Bluher et al [10] studied whether seasonal variations could be due to 

changes in nutrition or changes in physical activity depending on the season. They 
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found annual rhythms in plasma total cholesterol and HDL concentrations with a 

maximum in winter and a minimum in summer. This rhythm was independent of 

age, gender, BMI, diet or physical activity. They concluded that the annual rhythm 

of total cholesterol and HDL was not primarily induced by seasonal differences in 

dietary intake or physical activity. The annual rhythm in cholesterol levels is most 

likely determined by endogenous factors or factors directly related to seasonal 

changes in the environment [10]. 

It is possible that some changes found in the fatty acid composition during the 

course of pregnancy were enlarged or reduced by this seasonal variation. However 

this was impossible to determine in our study population of pregnant women 

because (i) our study population was too small; (ii) the delivery date of our group 

of pregnant women was stretched over different calendar years and (iii) no more 

than 4 women delivered in the same month. In retrospective, it was determined 

whether DHA level in plasma PL of women who delivered in winter (n=8) was 

significantly lower (P<0.05; one-sided test) compared to that of women who 

delivered in other seasons (n=26). This was not the case suggesting that seasonal 

effects, if any are small relative to the effects of pregnancy (but once again our 

study population is too small to make this kind of statement). It would be 

interesting to correct for seasonal variation in a larger population of pregnant 

women. 
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Chapter 12 

General conclusions

 



 

Chapter 12: General conclusions 

1. Main findings 

1.1. The maternal diet. 

During gestation there is no change in dietary intake of energy, macronutrients 

and micronutrients (chapter 3). In this study population most pregnant women 

had an adequate caloric intake (2148 (SD 386) kcal/d). Protein intake compared 

favourably with the Belgian dietary guidelines. The average carbohydrate intake 

was too low whereas the average total fat intake was too high compared to the 

Belgian recommendations. High fat intake was due to an excessive intake of 

saturated fat. Only one quarter of this pregnant population met the 

recommendations for Ca intake. We advise pregnant women to increase the intake 

of milk and milk products (yoghurt and cheese) to obtain an adequate supply of 

calcium, vitamin B2 and vitamin D. Increasing the intake of cheese and milk 

products will however increase the intake of saturated fat. Therefore we advise to 

reduce the intake of fatty meat products, sauces, chips, sweets and pastry. None 

of the women reached the recommended intake for magnesium and selenium 

entailing the risk that they could become deficient for these micronutrients with 

progressing pregnancy. Magnesium deficiency during pregnancy can cause fatigue 

and increases the risk of premature birth and maternal hypertension. Low serum 

selenium levels have been associated with miscarriage. Nuts, seeds and chocolate 

are good sources of magnesium and seafood is a good source of selenium. In 

general, the intake of some vitamins and minerals in this study population is 

below the recommendations. Some women could benefit from a 

multivitamin/mineral supplement. 

Dietary intake of long-chain PUFA during pregnancy was determined by the 

validated food frequency questionnaire (FFQ) (chapter 2 & 4). The most dominant 
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n-6 fatty acid in the diet is 18:2n-6, with a mean intake of 12.9 (SD 5.3) g/day and 

the dominant n-3 fatty acid in the diet is 18:3n-3 with an average intake of 1.3 (SD 

0.5) g/day. The dietary intake of 20:4n-6 is 0.13 (SD 0.03) g/d and that of the 

longer chain n-3 fatty acids is 0.46 (SD 0.21) g/d. Meat and poultry are the major 

sources of 20:4n-6 in the diet, whereas fish and fish products are the main sources 

of 20:5n-3 and 22:6n-3. In 2003 the Belgian recommendations for fat intake have 

been adapted and are identical to the recommendations for adequate intake of 

long-chain PUFA by Simopoulos et al [1]. According to these recommendations, for 

pregnant women, the sum of 20:5n-3 and 22:6n-3 should be 0.65 g/day, the 20:5n-

3 intake at least 0.22 g/day and the 22:6n-3 intake at least 0.3 g/day. In only 7 

out of 30 women of this study population the intake of 20:5n-3 and 22:6n-3 was 

higher than the thus defined adequate intake. The intake of linoleic acid is rather 

high compared to the current Belgian recommendations. A high maternal intake of 

linoleic acid may negatively affect the maternal and neonatal n-3 fatty acid 

status. Therefore it would be advisable to increase the dietary intake of long 

chain n-3 PUFA and reduce that of linoleic acid during pregnancy. 

In maternal plasma PL, the fractions of 18:2n-6, 20:5n-3 and 22:6n-3 are positively 

correlated with their respective dietary intakes (g/kg BW/day) in this study 

population. For the latter fatty acid, a positive correlation was also found 

between intake and level in maternal plasma CE. In umbilical plasma PL, 20:5n-3 

and the sum of n-6 fatty acids are positively associated with the intake of these 

(groups of) fatty acids during pregnancy. 

1.2. Maternal and neonatal EFA status  

The lower content of long-chain PUFA in maternal plasma PL results in a higher 

mean melting point of the fatty acid mixture. Long-chain PUFA were preferentially 

replaced by shorter chain SFA, especially palmitic acid. These shorter chain fatty 

acids are more fluid than their longer chain homologues because they have lower 

melting points. Moreover, the high content of long-chain PUFA in umbilical plasma 

PL is accompanied with more longer-chain, less fluid SFA. Thus the fatty acid 

composition of the SFA changes in a way to counteract changes in the mean 

melting point induced by changed long-chain PUFA composition (chapter 5). 

During pregnancy we found changes in the fatty acid composition of PL and CE 

(Chapter 6). There is a decrease in linoleic acid (in CE), arachidonic acid (in PL 
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and CE) and the sum of PUFA (in PL and CE) and an increase in saturated (in PL) 

and mono-unsaturated fatty acids (in PL and CE).  

Linoleic acid in cord plasma PL is half of that in maternal plasma PL but 

arachidonic acid (AA) in cord plasma is twice that observed in the mother. 

Similarly, the α-linolenic acid concentration in newborns is half of that in the 

mother, whereas the DHA concentration is almost double. This situation, in which 

the relative plasma concentrations of the n-3 and n-6 long-chain PUFA exceed 

those of their precursors has only been observed in newborns and does not exist in 

adults. It is obviously an extremely favourable situation for the development of 

the newborn, especially at a time when large quantities of AA and DHA are 

required for the development of the brain and retina. 

During early puerperium (from 6 days before until 3 days after delivery) we found 

significant changes in the fatty acid composition of maternal plasma PL and CE 

(chapter 7). The previously reported gradual changes in the fatty acid 

composition of PL and CE which occur with the progression of normal pregnancy 

diminish shortly after delivery. 

The wall of the umbilical artery (efferent blood vessel) contains less 18:2n-6 and 

20:4n-6 and significantly more Mead acid than the wall of the umbilical vein 

(afferent blood vessel) (chapter 8). Mead acid, a desaturation and elongation 

product of oleic acid, only accumulates in tissues if insufficient amounts of the 

parent EFA are available. This study confirmed previous findings in which evidence 

was obtained for a marginal EFA status of the newborn.  

We found significant differences in the postpartum fatty acid status between 

women who developed a postpartum depression compared to mothers who did not 

(chapter 9). We observed a significant association between the ratio of Σn-6/Σn-3 

in PL and the occurrence of postpartum depression. Women who became 

depressed after delivery had a significantly lower status of 22:6n-3 and of Σn-3 

fatty acids in PL and CE compared to women who did not.  

This observed an increase in the oxidative stability of LDL with progressing 

gestation measured by a prolonged lag-phase after in vitro oxidation of isolated 

LDL with Cu2+. Both the rate of formation and the amount of conjugated dienes 

formed reached a maximum in the third trimester. This could be due to a change 

in the composition of the LDL near the end of pregnancy (structural changes in 
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plasma lipoproteins during pregnancy have been described). Additionally we 

observed significant increases in the vitamin E levels during pregnancy (chapter 

10). 

It the last experiment of this thesis we found a true seasonality in long-chain 

PUFA, such as 20:4n-6, 20:5n-3 and 22:6n-3 (chapter 11). Significant annual 

rhythms were detected in the long-chain PUFA: 20:4n-6, 20:5n-3 and 22:6n-3. 

These three fatty acids and the sum of total n-3 fatty acids were significantly 

lower in winter than in the other seasons.  

2. Dietary recommendations for pregnant women 

2.1. General 

In our study population important differences between mean intake and dietary 

recommendations were found. Although this does not mean that for the individual 

woman there are deficiencies, it seems prudent to give individuals dietary advice 

to meet the recommendations. Thus it is recommended that expecting mothers 

are seen by a dietician to get individualised advice. 

2.2. Essential fatty acids 

2.2.1 General 

It is now well established that adequate supply of long-chain PUFA is critical and 

essential for a normal neurological development of the foetus [2;3]. The degree to 

which the foetus is capable of fatty acid desaturation and elongation is not clear 

[4;5]. In addition, it is known that the long-chain PUFA concentration in umbilical 

plasma PL is lower when gestational age at birth is lower, in children born from 

multiple pregnancies and when birth order is higher. The nutritional status of the 

mother during gestation has been related to foetal growth. Significant linear 

correlations between the mother and the newborn have been found for long-chain 

n-3 and n-6 PUFA [6;7]. 

From the literature and the results of our studies it may be felt necessary to 

increase the dietary EFA and/or long-chain PUFA intake of pregnant women in 

order to prevent the decrease of their long-chain PUFA status during pregnancy 

and to optimise the foetal long-chain PUFA status. 
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This may be of particular importance for infants born preterm, because they have 

a significantly lower PUFA status than term neonates [8]. In addition, their long-

chain PUFA status drops considerably during the first postnatal weeks, even when 

given breast milk [9;10], whereas during intra-uterine life the foetal EFA status 

increases considerably during the same postconceptional period [11]. 

Consequently, during the growth spurt of the brain, the availability of LCPUFA is 

much lower for infants born preterm than for the intra-uterine foetus of 

comparable postconceptional age. Whether or not this contributes to the well 

known developmental disadvantage of preterm vs. term infants needs careful 

consideration. 

Many supplementation studies (mainly with fish oil) have shown that it is possible 

to alter the maternal fatty acid status as well as that of their neonates. 

Supplementation of pregnant women with long-chain PUFA has been shown to 

improve neonatal long-chain PUFA status [12;13]. However it is not yet elucidated 

whether these biochemical differences have functional consequences. If 

supplementation with essential PUFA during pregnancy is considered, it should be 

recalled that the two PUFA families compete for the same metabolic enzymes. 

Therefore, the supplement of choice should contain a mixture of n-6 and n-3 

(long-chain) PUFA. 

2.2.2 Requirements 

In 2000 ISSFAL (International Society for the Study of Fatty Acids and Lipids) 

published new recommendations for fatty acid intake, namely: 2 – 3 en% linoleic 

acid, 1 en% 18:3n-3, more than 0.3 en % EPA + DHA. Recently, in 2003 the Belgian 

recommendations for fat intake have been adapted in a similar way: n-3 fatty acid 

intake should range between 1.3 and 2 en%, the 18:3n-3 intake at least 1 en% and 

the intake of EPA + DHA at least 0.3 en%. The n-6 fatty acid intake should range 

between 4 and 8 en% and that of 18:2n-6 should be at least 2 en%. Based on a 

2,000 kcal diet this means for 18:2n-6 between 4.4 and 6.6 g/day, for 18:3n-3 

more than 2.22 g/day and for EPA + DHA more than 667 mg/day.  

Pregnant Spanish women having more than 4 fatty fish meals per month have an 

average fish, EPA and DHA intake of 54.5 g/d, 320 mg/d and 650 mg/d 

respectively. Two to four fish meals per month accounted for an average fish, EPA 

and DHA intake of 8.9 g/d, 100 and 200 mg/d respectively [14]. Thus when the 
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Belgian and the ISSFAL recommendations are translated into fish intake pregnant 

women should consume at least 4 fatty fish meals per month. 

2.2.3 Optimum timing of supplementation 

Sattar et al [15] suggested that the optimum timing for dietary supplementation 

with long-chain PUFA during pregnancy is the first trimester. Arguments for this 

suggestion were: (i) programmes in developed countries of supplementation during 

the second and third trimester with high protein and high carbohydrate diets have 

not improved the outcome for the infant; (ii) pre-eclampsia is associated with 

pathological changes in the placenta during the first trimester. As the placenta is 

rich in cell membranes it is possible that its development depends on the supply of 

EFA just after conception or that the endothelium requires EFA to maintain the 

integrity of endothelial cell membranes in pre-eclampsia; and iii) epidemiological 

observations of a protective effect of fish intake on pregnancy complications 

relate to women who had a lifelong exposure to diets rich in fish and seafood. 

2.3. Fatty acid content of the Westernised diets 

The Westernised diet is rich in linoleic acid and relatively poor in α-linolenic acid. 

Linoleic acid is found in highest concentrations in vegetable oils and thus in PUFA-

rich margarines but it is also present in a wide range of other foods. Lean meat, 

organ meats and eggs contain linoleic acid and also small quantities of arachidonic 

acid, which is readily incorporated into cell membranes [16]. α-Linolenic acid is 

found in high concentrations in linseed, canola, soybean, and wheat germ oil and 

in walnuts [17]. Vegetables are poor sources of n-3 fatty acids. The long-chain n-3 

PUFA are found in highest concentrations in fatty fish and other marine foods such 

as shellfish, molluscs and fish oil. EPA and DHA originate in phytoplankton and are 

concentrated in fish and shellfish through the aquatic food chain. Recently, eggs 

rich in α-linolenic acid or in DHA have been introduced in the market. DHA and AA 

are also available as dietary supplements, such as fish oil concentrates (mainly 

DHA and its precursors EPA and 22:5n-3) and single cell oils (DHA and AA). 

In fatty fish, breast milk, fish oils and single cell oils, the long-chain PUFA are 

mainly present as triacylglycerols. In lean fish, meat, and egg yolk, phospholipids 

are the major long-chain PUFA carriers, whereas in certain supplements n-3 long-

chain PUFA are present as ethyl-esters. Studies comparing the bio-availability of 
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these various forms of long-chain PUFA indicated considerable differences but are 

still incomplete [18-25]. Therefore, further research on this issue is needed. 

2.4. Maternal seafood diet: balance between beneficial and adverse 
effects 

Seafood is rich in n-3 PUFA (mainly EPA and DHA) and selenium. The beneficial 

effects of n-3 PUFA during gestation have been described in detail in this 

dissertation. In summary, n-3 PUFA are related to a reduced incidence of pre-

eclampsia, reduced incidence of postpartum depression, increased length of 

gestation and increased birth weights. 

However seafood may also contain toxic contaminants, including polychlorinated 

biphenyls (PCB’s) and methyl mercury. PCB’s have been associated with decreased 

birth weight and delays in neurobehavioral development [26-29]. Methyl mercury 

has been linked with lower birth weight in Greenland populations [30] while in 

Faroe populations birth weights showed an increase at higher exposure to mercury 

[31]. 

Thus seafood contains both beneficial and potentially toxic components. Few 

studies have evaluated the relative importance of and possible interactions 

between these seafood components. In a birth cohort from the Faroe Islands it 

was found that after adjustment for PUFA and other covariates, mercury and PCB 

were poorly associated with birth weight [32]. 

Selenium, an important micronutrient present in seafood, may offer some 

protection against mercury toxicity. 
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Food frequency questionnaire 

Voedingsfrequentievragenlijst 

Algemene voedingsvragen 

1. Volgt u speciale voedingsrichtlijnen of een dieet ? 
 nee 
 ja, vermageringsdieet/ zoutarm dieet (∗) 
 ja, vegetarisch/ macrobiotisch (*) 
 ja, andere nl.............................. 

2. Met hoeveel personen eet u de warme maaltijd ? 
 ik eet alleen 
 ik eet met nog ………perso(o)n(en), m.a.w. totaal aantal personen: ……………… 
 indien elders een warme maaltijd gebruikt wordt: ……… x per week elders gegeten. 

3.  

 
  Heeft u de afgelopen maand thuis 
  …………. gegeten ? 

 
ik eet niets 

 
ik eet .....deel

 
ik eet alles 

 
afgelopen 

maand niet 
bereid 

 
  Gekookte groente 
 

    

 
  Rauwe groente 
 

    

 
  Pasta (macaroni, spaghetti, e.d.) 
 

    

 
  Rijst  
 (niet van de Chinees, maar zelfgemaakt)
 

    

 
  Vlees in een saus  
  (goulasch, vol au vent, e.d.) 
 

    

 
  Gebakken aardappelen 
 

    

 
  Aardappelpuree 
 

    

 
  Gerechten met peulvruchten 
  (chili, witte bonen in tomatensaus) 
 

    

 

                                                      
∗    schrappen wat niet juist is a.u.b. 
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Food frequency questionnaire 

Vragen over productgebruik 

I. Oliën en vetten bij de broodmaaltijd 

4. Wat smeert u meestal op uw brood ? 
 Noteer het merk én de benaming (vb. niet enkel “Buttella” maar “Buttella plantaardig” of 

“Buttella super”, .......) 
 Niets   
 Minarine merk(en):........................................... x per week 
 margarine in vlootje merk(en):........................................... x per week 
 margarine in papierwikkel merk(en):........................................... x per week 
 (room)boter  ........................................... x per week 
 halfvolle boter merk(en):........................................... x per week 
 andere, nl. .................................................................................... x per week 

5. Hoe dik besmeert u uw boterham daarmee ?  
 ……… g per snede van een rond/ vierkant/ groot/ klein brood (*) 
 ……… g per ................................................................................. 

6. Indien u wel eens broodjes eet, besmeert u dan beide kapjes ? 
 ja 
 nee 

7. Hoeveel brood eet u gemiddeld op een volledige (ontbijt + andere broodmaaltijd) 
 weekdag (ma-vr): .................... sneetjes van een rond/ vierkant/ groot/ klein brood (*) 

  en .............. broodjes (welke?........................................................ ) 
 weekenddag: - zaterdag: .........sneetjes van een rond/ vierkant/ groot/ klein brood (*) 

   en ............... broodjes (welke?....................................................... ) 
  - zondag: .......…sneetjes van een rond/ vierkant/ groot/ klein brood (*) 
 en ............... broodjes (welke?....................................................... ) 

II. Oliën en vetten bij de warme maaltijd 

8. Heeft u de afgelopen maand de volgende gerechten gegeten ? 
Indien ja, noteer bij de “vetsoort”: de soort vetstof, alsook het merk én de benaming (vb. 
margarine Fama in vlootje, margarine Becel bakken en braden, frituurolie Vandemoortele,...) 
8.1. Pasta (macaroni, spaghetti, e.d.): blanke/ volkoren (*) 
a. In totaal wordt er ..................... gram/ pak(ken)/ tas(sen) (*) pasta gekookt 
b. Vetsoort (bv. in (vlees)saus die bij de pasta gemaakt wordt) 

..................................................................................................................................... 
c. Hoeveel vet in totaal: ................ gram 
d. Hoe vaak: ................ x per week/ 2 weken / 3 weken/ maand (*) 
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8.2. Rijst (zelfgemaakte, niet van de Chinees): witte/ zilvervlies (*) 
a. In totaal wordt er ..................... gram/ builtje(s)/ tas(sen) (*) rijst gekookt 
b. Vetsoort (bv. in (vlees)saus die bij de rijst gemaakt wordt) 

............................................................................................................................…. 
c. Hoeveel vet in totaal: ................ gram 
d. Hoe vaak: ................ x per week/ 2 weken / 3 weken/ maand (*) 
8.3. Zelf gefrituurde frieten 
a. Ik eet een kleine/ middel/ grote portie frieten (*) 
b. Vetsoort: ................................................................................................................... 
c. Hoe vaak: ................ x per week/ 2 weken / 3 weken/ maand (*) 
8.4. Gebakken aardappelen 
a. Ik eet ................ eetlepel(s) 
b. Vetsoort: ................................................................................................................... 
c. Hoeveel vet in totaal: ................ gram 
d. Hoe vaak: ................ x per week/ 2 weken / 3 weken/ maand (*) 
8.5. Aardappelpuree 
a. Ik eet ................ eetlepel(s) 
b. Vetsoort: .................................................................................................................... 
c. Hoeveel vet in totaal: ................ gram 
d. Hoe vaak: ................ x per week/ 2 weken/ 3 weken/ maand (*) 
8.6. Gekookte aardappelen 
a. Ik eet ................ stuks aardappelen, ter grootte van een ei 
b. Hoe vaak: ................ x per week/ 2 weken/ 3 weken/ maand (*) 
8.7. Peulvruchten: bruine bonen/kapucijners/witte bonen in tomatensaus (*)    
a. In totaal wordt er ................ blik of pot à 1 liter/ blik of pot à ½ liter/gram bereid (*) 
b. Vetsoort: ..................................................................................................................... 
c. Hoeveel vet in totaal: ................ gram 
d. Hoe vaak: ................ x per week/ 2 weken/ 3 weken/ maand (*) 
8.8. Gekookte groente, de meest gegeten groentesoorten in de afgelopen maand zijn: 
 ............................................................................... vers gekookt/ diepvries/ blik of glas (*) 

 ............................................................................... vers gekookt/ diepvries/ blik of glas (*) 

 ............................................................................... vers gekookt/ diepvries/ blik of glas (*) 

 ............................................................................... vers gekookt/ diepvries/ blik of glas (*) 

 ............................................................................... vers gekookt/ diepvries/ blik of glas (*) 

a. Ik eet gemiddeld ................ eetlepel(s) (de evt. witte saus niet meerekenen) 
b. Vetsoort: ..................................................................................................................... 
c. Hoeveel vet in totaal: ................ gram 
d. Ik eet ................ x per week/ 2 weken/ 3 weken/ maand (*) gekookte groente 

en er komt ................ x per week/ 2 weken/ 3 weken/ maand (*) het bovengenoemde vet 
bij (vergeet het vet in witte saus niet) 

8.9. Stukjes vlees in een saus (goulash, vol au vent) 
a. Vetsoort: ..................................................................................................................... 
b. Hoeveel vet in totaal: ................ gram 
c. Hoe vaak: ................ x per week/ 2 weken/ 3 weken/ maand (*) 
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8.10. Vlees of vis (lapjes of een stuk)  
a. Vetsoort: .................................................................................................................………… 
b. Hoeveel vet in totaal: ................ gram 
c. Hoe vaak: ................ x per week/ 2 weken/ 3 weken/ maand (*) 
d. Gebruikt u jus of saus, gemaakt van het braadvet van het vlees ? (stukjes vlees in een 

saus, zoals goulash, hier niet meerekenen!) 
 nee 
 ja, ........................... x per week/ maand (*) 

e. Voegt u water toe bij de bereiding van de jus ? 
 nee 
 ja, .......................... eetlepel(s)/ tas(sen) (*) 

f. Wordt de jus wel eens ontvet (het gestolde vet eraf geschept) ? 
 nee 
 ja, ........................... x per week/ maand (*) 

g. Het hoeveelste deel van de totale hoeveelheid bereide saus neemt u ? 
.............................. 

 (evt. hoeveel eetlepels neemt u? .................. eetlepels) 

III. Sausen 

Vetpercentages staan in het algemeen vermeld op de verpakking. Indien u het niet weet, 
gelieve het merk en evt. de benaming te vermelden. 
8.11. Heeft u de afgelopen maand rauwe groenten gegeten ? 

 nee 
 ja, de meest gegeten rauwe groentesoorten waren: 

........................................................................................................................……………. 
 ................................................................................................................................………. 

Ik eet gemiddeld ........................ gram/ eetlepel(s)/ schaaltje(s) (*) 

rauwe groente ............................ x per week/ 2 weken/ 3 weken/ maand (*) 

Gebruikt u een saus bij de rauwe groente? 

 nee 
 ja, in totaal (dus voor de bereiding van het hele gerecht) wordt gebruikt: .................... 
 ja, ik neem voor mezelf: 
 slasaus .............. …...... % vet; ......................... …....... koffielepel(s)/ eetlepel(s) (*) 

  ..............x per week/ 2 weken / 3 weken/ maand (*) 
 fritessaus ........... …...... % vet; ......................... …....... koffielepel(s)/ eetlepel(s) (*) 

  ..…....... x per week/ 2 weken / 3 weken/ maand (*) 
 mayonaise ......... …...... % vet; ......................... …....... koffielepel(s)/ eetlepel(s) (*) 

  ..…....... x per week/ 2 weken / 3 weken/ maand (*) 
 Becel dressing ... …...... % vet; ......................... …....... koffielepel(s)/ eetlepel(s) (*) 

  ..…....... x per week/ 2 weken / 3 weken/ maand (*) 
 yoghurt, mager/ halfvol/ vol (*)…..……….. .................. koffielepel(s)/ eetlepel(s) (*) 

  ..…....... x per week/ 2 weken / 3 weken/ maand (*) 
 olie, soort ............................... ......................................koffielepel(s)/eetlepel(s) (*) 

  ..…....... x per week/ 2 weken / 3 weken/ maand (*)  
 overige, nl. ............................. ......................................koffielepel(s)/eetlepel(s) (*) 

  ..…....... x per week/ 2 weken / 3 weken/ maand (*)  
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8.12. Gebruikt u een saus bij frieten? 
 Nee 
 ja, nl. ................................. % vet;..................................... koffielepel(s)/ eetlepel(s) (*) 

  .. …....... x per week/ 2 weken / 3 weken/ maand (*) 
8.13. Heeft u de afgelopen maand nog andere (dus naast de bij vraag 11 en 12 al 

genoemde) sausjes gebruikt? (bv. knoflooksaus, cocktailsaus, ….) 
 nee 
 ja, nl. ................................. % vet;..................................... koffielepel(s)/ eetlepel(s) (*) 

  .............  x per week/ 2 weken / 3 weken/ maand (*) 

IV. Zuivel 

Heeft u afgelopen maand de volgende producten gebruikt? 

9. Melk:  
 nee 
 ja, nl. magere/ halfvolle/ volle (*) 

 ik gebruik ....... tas(sen)/ glas(zen)/ liter  
 per dag 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

Denk ook aan het gebruik van melk in koffie, sausen, zelfgemaakte pudding, 
aardappelpuree ... 

10. Kant & klare chocolademelk: 
 nee 
 ja, nl. magere/ halfvolle/ volle (*) 

 ik gebruik ....... tas(sen)/ glas(zen)/ liter  
 per dag 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

11. Koffiemelk: 
 nee 
 ja, nl. magere/ halfvolle/ volle/ koffiemelkpoeder (*) 

 ik gebruik ....... tas(sen) koffie  
 per dag 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 
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12. Yoghurt: 
 nee 
 ja, nl. magere/ volle/ halfvolle (*) en met/ zonder fruit (*) 

 ik gebruik .....….. schaaltje(s)/ liter/ eenpersoonsportie(s) van 125 g/150 g/200 g (*) 
 per dag 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

13. Kant & klare vla/ pudding: 
 nee 
 ja, nl. magere/ volle/ halfvolle (*) 

 ik gebruik .....…… schaaltje(s)/liter (*) 
 per dag 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

14. Ijs: 
 nee 
 ja, nl. waterijs/ consumptie-ijs/ roomijs (*) ......................................(merk noteren) 

 ik gebruik ....... ijsjes/ bolletjes ijs (*) 
 per dag 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

15. (slag)Room: (room in sausen, op ijs, …) (room op gebak niet meerekenen: zie VI) 
 nee 
 ja, nl. light room/ verse room/ slagroom (*) .............................................(merk 

noteren) 
 ik gebruik .…..... eetlepel(s)/ liter (*) 

 per dag 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 
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16. Platte kaas: 
 nee 
 ja, nl. mager/ halfvolle/ volle (*) en met/ zonder fruit (*) 

 ik gebruik .....…. eetlepel(s)/ gram/ eenpersoonsportie(s) van .......... gram (*) 
 per dag 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

17. Smeerkaas/ fonduesneetje kaas (vb. Ziz, e.d.) (*): 
 nee 
 ja, nl. magere/ volvette/ dubbelroom (*) 

 ik gebruik ....….. sneetje(s)/ gram/ driehoekje(s) (*)     
 per dag 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

18. Franse kaas, Belgische halfharde kaas: 
 nee 
 ja, nl. soort(en) met % vet; 

 ................................................. ik gebruik .......... gram per ....................... 
 ................................................. ik gebruik .......... gram per ....................... 
 ................................................. ik gebruik .......... gram per ....................... 
 ................................................. ik gebruik .......... gram per .......................
 ................................................. ik gebruik .......... gram per ....................... 
 ................................................. ik gebruik .......... gram per ....................... 
 ................................................. ik gebruik .......... gram per ....................... 
 ................................................. ik gebruik .......... gram per ....................... 

19. Andere kaas (Hollandse kaas, andere vaste kaas, e.d.): 
 nee 
 ja, nl. soort(en):.............................................................................................................. 

 .............................……...........................................................................………………... 
 ik gebruik ...................... (voorgesneden) plak(ken)/ gram (*) 

 per dag 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 
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V. Vlees, gevogelte en vis 

20. Vleeswaren 
Hoeveel keer per week eet u vleeswaren ? …………. keer 

 
 
 

  
gemiddeld aantal sneetjes 

 

   
  Heeft u de afgelopen maand  
  …………. gegeten ? 

 
niet 

gebruikt
 

 
per dag

 
per week

 

 
per 2 

weken 

 
per 3 

weken 

 
per 

maand 

 
  gekookte ham 
 

      

 
  casselerrib/filet de Saxe (*) 
 

      

 
  gerookt paarden- of rundvlees (filet    
  d’Anvers) (*) 
 

      

 
  rauwe ham/ gerookte ham/ bacon (*) 
 

      

 
  Kippenwit/ kalkoenham/ kalfskop (*) 
 

      

 
  salami/ boterhamworst/ hespeworst/   
  kalfsworst/ Parijse worst/   
  champignonworst (*) 
 

      

 
  Frankfurtworst/ Weense worst/    
  cervelaat/ lookworst (*) 
 

      

 
  pâté (aantal gram aanduiden)/ 
  vleesbrood/ hoofdvlees/ corned beef (*) 
 

      

 
  Filet américain puur/ préparé (*) 
  (aantal gram aanduiden) 
 

      

 
  Vleessalade/ vissalade/ zeevruchten-  
  salade (*) (aantal gram aanduiden) 
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21. Vlees, vis en gevogelte.  
Hoeveel keer per week eet u een warme maaltijd ? ………… keer 

Hoeveel keer per week eet u vlees, vis of gevogelte bij de warme maaltijd? ….……..keer 
 

   
gemiddeld aantal gram of aantal stuks 

 
 
  Heeft u de afgelopen maand  
  …………. gegeten ? 

 
niet 

gebruikt

 
per  
dag 

 

 
per week

 
per 2 

weken 

 
per 3 

weken 
 

 
per 

maand 

 
  Varkenshaasje/ varkensmignonette (*) 
 

      

 
  Varkensfiletgebraad/filetcotelet/  
  ribcotelet/ varkensbrochette/mager  
  varkenslapje/ varkensschnitzel (*) 
 

      

 
  Spieringcotelet/ vet varkenslapje/  
  varkensschoudergebraad/  
  varkensstoofvlees (*) 
 

      

 
  Varkensgehakt/ varkensbraadworst/   
  ribbetjes of spareribs (*) 
 

      

 
  Vers spek  
 

      

 
  Gemengd gehakt/ braadworsten van  
  gemengd gehakt/ blinde vink (*) 
 

      

 
  Bloedworst/ witte worst (*) 
 

      

 
  Nier: varkens-/rund-/kalfs- (*) 
 

      

 
  Lever: varkens-/rund- (*) 
 

      

 
  Biefstuk/ rumsteak/ châteaubriand/  
  ossehaas/ tournedos/ rosbief (*) 
 

      

 
  Filet américain/ rundbrochetten (*) 
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gemiddeld aantal gram of aantal stuks 

 
 
  Heeft u de afgelopen maand  
  …………. gegeten ? 

 
niet 

gebruikt

 
per  
dag 

 

 
per week

 
per 2 

weken 

 
per 3 

weken 
 

 
per 

maand 

 
  Entrecôte zonder vet 
  Entrecôte met vet (*) 
 

      

 
  Rundstoofvlees/ soepvlees (*) 
 

      

   
  Hamburger 
 

      

       
 
  Kalfslap/kalfsblanquette/kalfsgehakt (*) 
 

      

 
  Lamsvlees, schapevlees (*) 
 

      

 
  Paardevlees 
 

      

       
   
  Kalkoenfilet/ kalkoenbout (*) 
  Kippefilet, enkele of dubbele (*) 
  Kippebout, met of zonder vel (*) 
 

      

   
  Konijn: rugstuk/voorbout/achterbout (*) 
 

      

  
  Ander vlees of gevogelte 
 

      

       
 
  Vis: vers/ diepvries (*) 
  kabeljauw/, koolvis, schelvis, wijting,  
  leng, rog, tarbot, zeeduivel (*) 
 

      

 
  Vis: vers/ diepvries (*) 
  pladijs, tong, heilbot, zeepaling (*) 
 

      

 
  Vis: vers/ diepvries (*) 
  zalm, zalmforel, makreel, haring, paling 
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gemiddeld aantal gram of aantal stuks 
 

 
  Heeft u de afgelopen maand  
  …………. gegeten ? 

 
niet 

gebruikt

 
per  
dag 

 

 
per week

 
per 2 

weken 

 
per 3 

weken 
 

 
per 

maand 

 
  Vis: gerookt 
  sprot, heilbot, makreel, forel, paling,  
  zalm (*) 
 

      

 
  Vis: in blik of bokaal 
  sardine, ansjovis, tonijn, zalm, makreel, 
  pilchards, opgelegde haring (*) 
 

      

 
  Garnalen 
 

      

 
  Mosselen (gewicht: met schelp) 
 

      

 

VI. Koek, snoep en gebak 

Heeft u de afgelopen maand de volgende producten gebruikt? 

22. Cake: 
 nee 
 ja, ik eet gemiddeld ……… plakjes 
 per dag 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

23. Peperkoek: 
 nee 
 ja, ik eet gemiddeld ……… plakjes 
 per dag 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 
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24. Koekjes:  welke? .............................................................(evt. merknaam noteren) 
 nee 
 ja, ik eet gemiddeld ……… stuks 
 per dag 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

25. Wafels: Luikse/ vanille-/ chocolade (*) 
 nee 
 ja, ik eet gemiddeld ……… stuks 
 per dag 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

26. Slagroomtaart/ crème au beurre taart (*) 
 nee 
 ja, ik eet gemiddeld ……… stukken 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

27. Taart: rijst-/fruit-/confituur-/mattetaart (*) 
 nee 
 ja, ik eet gemiddeld ……… stukken 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

28. Tompoes/ éclair of soes, met gele crème/met slagroom (*) 
 nee 
 ja, ik eet gemiddeld ……… stuks 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 
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29. Oliebollen/ appelbeignets/ pannenkoeken (*) 
 nee 
 ja, ik eet gemiddeld ……… stuks 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

30. Chocolade: melk/ puur/ met noten (*)     
 nee 
 ja, ik eet gemiddeld ……… repen van ………… gram 
 per dag 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

31. Pralines: met crèmevulling/likeurvulling (*) 
 nee 
 ja, ik eet gemiddeld ……… stuks 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

32. Mars/ Twix/ Snicker/ overige, nl. ...................................................................................... 
 nee 
 ja, ik eet gemiddeld ……… mini stuks / ……… gewone stuks (*) 
 per dag 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

33. Toffees (met/zonder chocolade) / smarties (*) 
 nee 
 ja, ik eet gemiddeld ……… stuks 
 per dag 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 
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34. Marsepein     
 nee 
 ja, ik eet gemiddeld ……… gram 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

VII. Diversen, hartig 

Heeft u de afgelopen maand de volgende producten gebruikt ? 

35. Pinda’s: gezouten/ in chocoladelaagje (*) 
 nee 
 ja, ik eet gemiddeld ……… handjes/ zakje(s)/ gram (*) 
 per dag 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

36. Borrelnootjes 
 nee 
 ja, ik eet gemiddeld ……… handjes/ zakje(s)/ gram (*) 
 per dag 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

37. Overige noten, nl. ............................................................ 
 nee 
 ja, ik eet gemiddeld ……… handjes/ zakje(s)/ gram (*) 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

38. Chips, nl. .............................................................................. 
 nee 
 ja, ik eet gemiddeld ……… handjes/ zakje(s)/ gram (*) 
 per dag 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 
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39. Kroepoek 
 nee 
 ja, ik eet gemiddeld ……… handjes 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

40. Olijven 
 nee 
 ja, ik eet gemiddeld ……… stuks 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

41. Bitterbal: frituur/ oven/ zelf gefrituurd (*) in .................................................................... 
 nee 
 ja, ik eet gemiddeld ……… stuks 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

42. Frikandel 
 nee 
 ja, ik eet gemiddeld ……… stuks 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

43. Loempia 
 nee 
 ja, ik eet gemiddeld ……… stuks 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

44. Saucijzenbroodje 
 nee 
 ja, ik eet gemiddeld ……… stuks 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 
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45. Pizza: diepvries/ pizzeria/ zelfgemaakt (*) zo groot als een diepvriespizza/ als bij de 
pizzeria (*) 
 nee 
 ja, ik eet gemiddeld ……… stuks 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

46. Frieten van de frituur 
 nee 
 ja, ik eet gemiddeld ……… porties 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

47. Frieten: zelf gefrit. aardappelen/ diepvries frieten/ ovenfrieten (*) 
 nee 
 ja, ik eet gemiddeld ……… porties 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

48. Aardappelkroketten: oven/ zelf gefrituurd (*) in ............................................................. 
 nee 
 ja, ik eet gemiddeld ……… stuks 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

49. Nasi van de Chinees/kant en klaar (*) 
 nee 
 ja, ik eet gemiddeld ……… Chinees bakje(s)/ eetlepel(s) 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

50. Bami van de Chinees/kant en klaar (*) 
 nee 
 ja, ik eet gemiddeld ……… Chinees bakje(s)/ eetlepel(s) 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

 

 202



Food frequency questionnaire 

51. Varkenssaté/kippensaté (*) 
 nee 
 ja, ik eet gemiddeld ……… stuk(s) 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

VIII. Overigen 

Heeft u de afgelopen 2 maanden de volgende producten gebruikt? 

52. Vers fruit 
 nee 
 ja, nl. (soorten) .................................................................................................... 

 Ik eet gemiddeld .............. stuks vers fruit 
 per dag 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

53. Fruit in blik of glas 
 nee 
 ja, nl. (soorten) .................................................................................................... 

 Ik eet gemiddeld .............. schaaltje(s)/ eetlepel(s)/ ½ stuks /schijven (*) 
 per dag 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

54. Vruchtesappen 
 nee 
 ja, nl. (soorten) ....................................................................................................... 

 Ik drink gemiddeld .............. glazen/ liter (*) 
 per dag 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 
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55. Eieren: gekookt/gebakken (*) in .............. gram .................................... (vetsoort) per 
stuk 
 nee 
 ja, ik eet gemiddeld .............. stuks 
 per dag 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

56. Pindakaas  
 nee 
 ja, ik besmeer hiermee gemiddeld ........... sneetje(s) en gebruik .......... gram per 

snede 
 per dag 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

57. Pasta: chocolade-/chocoladehazelnoot (*) 
 nee 
 ja, ik besmeer hiermee gemiddeld ........... sneetje(s) en gebruik .......... gram per 

snede 
 per dag 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

58. Hagelslag of vlokken: melk of puur (*) 
 nee 
 ja, ik bestrooi hiermee gemiddeld .....….... sneetje(s) en gebruik .......... gram per 

snede 
 per dag 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

59. Ontbijtgranen: cornflakes/ muesli/ overige (*) nl. ............................................................. 
 nee 
 ja, ik eet gemiddeld .....…....... eetlepel(s)/ tas(sen) (*) 
 per dag 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 
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60. Bier, nl ........................................................................................................………………. 
 nee 
 ja, ik drink gemiddeld .....…....... glas(zen) 
 per dag 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

61. Wijn: witte/rode (*) 
 nee 
 ja, ik drink gemiddeld .....…....... glas(zen) 
 per dag 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 

62. Overige alcoholische dranken, nl. .................................................................................. 
 nee 
 ja, ik drink gemiddeld .....…....... glas(zen) 
 per dag 
 per week 
 per 2 weken 
 per 3 weken 
 per maand 



 

 



 

Questionnaire postpartum mood syndromes  

SCID-P (version 1.0): 

I. Current major depressive episode 

1. Tenminste 5 van de volgende symptomen waren aanwezig tijdens dezelfde twee 
weken. Tenminste één van de symptomen was ofwel (i) depressieve 
gemoedstoestand, of (ii) verlies van interesse en plezier 

• Absent 
• Subtreshold 
• Treshold or true 

2. Was u heel wat minder geïnteresseerd in de meeste dingen waar u vroeger wel 
plezier in had? (Hoe was dat?). Indien ja, was dat bijna elke dag? Hoelang duurde 
het? (Twee weken?) 

• Absent 
• Subtreshold 
• Treshold or true 

3. Gedurende deze periode: vermagerde of verdikte u? (hoeveel? Trachtte u te 
vermageren?). Indien nee: hoe was uw eetlust. (hoe was uw eetlust in vergelijking 
met uw gebruikelijke eetlust? Moest u uzelf dwingen om te eten?) 

• Absent 
• Subtreshold 
• Treshold or true 

4. Gedurende deze periode: hoe sliep u? (moeilijk inslapen, moeilijk doorslapen, 
frequent wakker worden, teveel slapen?). Hoeveel uren per nacht ivgl met 
gewoonlijk? (was dat bijna elke nacht?). 

• Absent 
• Subtreshold 
• Treshold or true 

5. Was u zo zenuwachtig of rusteloos dat u niet kon stilzitten? (was het zo erg dat 
het anderen opviel? Was dat bijna elke dag?). Indien nee: wat met het 
tegenovergestelde: langzamer spreken of bewegen dan normaal is voor u. (was 
het zo erg dat het anderen opviel? Was dat bijna elke dag?) 

• Absent 
• Subtreshold 
• Treshold or true 
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6. Hoe stond het met uw energie? (bijna elke dag voortdurend vermoeid). 

• Absent or false 
• Subtreshold 
• Treshold or true 

7. Wat vond u van uzelf? (waardeloos? Bijna elke dag?). Indien nee: voelde u zich 
schuldig over dingen die u gedaan had of niet gedaan had? (Bijna elke dag?) 

• Absent or false 
• Subtreshold 
• Treshold or true 
Nota: code 1 of 2 if only low self-esteem 

8. Had u moeite met denken of om u te concentreren? (welke zaken verstoorden u? 
bijna elke dag?). Indien nee: was het moeilijk beslissingen te nemen over 
alledaagse dingen? 

• Absent  
• Subtreshold 
• Treshold or true 

9. Ging het zo slecht dat u vaak dacht over de dood of dat u beter dood had kunnen 
zijn? Indien ja: hebt u iets gedaan om uzelf te verwonden? 

• Absent  
• Subtreshold or inadequate information 
• Treshold or true 

10. Was u vlak voor dit begon lichamelijk ziek? (wat vond uw dokter ervan?) 
Gebruikte u drugs of geneesmiddelen? (was er verandering in de hoeveelheid die 
u gebruikte?). Indien ja voor één van deze vragen: ga na of de depressieve 
episode werd geïnitieerd en onderhouden door een organische factor. 

• Organic mood syndrome 
• No organic etiology 

II. PAST MAJOR DEPRESSIVE SYNDROME 

11. Indien momenteel niet depressief: Is er ooit een periode geweest waarin u zich 
bijna elke dag het grootste gedeelte van de tijd depressief of neerslachtig voelde? 
(hoe was dat?) 

• Absent  
• Subtreshold 
• Treshold or true 

12. Indien past depressed mood: Gedurende die periode, was u dan heel wat minder 
geinteresseerd in de meeste dingen of kon u niet meer genieten van de dingen 
waar u vroeger wel plezier in had? 

• Absent  
• Treshold or true 
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