




Reductie van het geheugengebruik van besturingssysteemkernen

Memory Footprint Reduction for Operating System Kernels

Dominique Chanet

Promotor: prof. dr. ir. K. De Bosschere
Proefschrift ingediend tot het behalen van de graad van 
Doctor in de Ingenieurswetenschappen: Computerwetenschappen

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. J. Van Campenhout
Faculteit Ingenieurswetenschappen
Academiejaar 2006 - 2007  



ISBN 978-90-8578-168-4
NUR 980
Wettelijk depot: D/2007/10.500/42



Voor An,
mijn vrouw, maar vooral
mijn steun en toeverlaat

Voor Jozef Ghijsens,
die wel het begin maar niet meer het einde

van deze reis mocht meemaken





Woord vooraf

Het werk dat nu voor u ligt, zou niet tot stand gekomen zijn zonder de
hulp, raad en steun van heel wat mensen. Ik wil deze dan ook graag
bedanken in dit woord vooraf.

Allereerst is er natuurlijk mijn promotor, Prof. De Bosschere, die me
de kans gaf om dit onderzoek uit te voeren, en die steeds klaar stond
met raad of een bemoedigend woord als dat nodig was. Ook Bjorn De
Sutter en Bruno De Bus, collega’s en mentors, verdienen een specia-
le vermelding. Je kan wel stellen dat ik van hen het vak geleerd heb.
Behalve Bjorn en Bruno waren ook Ludo, Matias en Bertrand mederei-
zigers in het grote Diablo-avontuur. Ze waren niet alleen fijne collega’s,
maar stonden ook garant voor de nodige ontspanning op tijd en stond.
Nu mijn onderzoek, en dat van hen, afgerond is, en onze wegen schei-
den, kan ik zonder twijfel zeggen dat ik hen allemaal zal missen.

Ook de leden van mijn doctoraatsjury wil ik bedanken voor de tijd
en moeite die ze besteed hebben aan het nalezen van deze doctoraats-
verhandeling, en de suggesties die ze gedaan hebben om de tekst dui-
delijker en correcter te maken.

Ik bedank ook graag het Fonds voor Wetenschappelijk Onderzoek
Vlaanderen, dat me vier jaar lang van de nodige middelen voorzag om
het gevoerde onderzoek te financieren.

Mijn ouders dank ik voor de levenslange steun en aanmoediging.
Van jongs af aan hebben ze mijn leergierigheid en interesse in de we-
reld gestimuleerd, en zonder die impulsen zou ik nooit dit levenspad
bewandeld hebben.

Het uitvoeren van een doctoraatsonderzoek en het schrijven van
een doctoraatsverhandeling zijn taken die niet stoppen als je ’s avonds
het kantoor verlaat en naar huis gaat. An, mijn vrouw, had steeds ge-
duld met me als ik ’s avonds weer eens wou doorwerken, of als ik er
niet met mijn gedachten bij was omdat ik nog over een probleem aan



ii

het nadenken was. Zij gaf me steun als ik die nodig had, en bleef in me
geloven, ook op de momenten dat ik dat zelf even niet meer deed. Ik
draag dit proefschrift dan ook met liefde aan haar op.

Dominique Chanet
Gent, juni 2007



Samenvatting

In ingebedde systemen is er meestal slechts een beperkte hoeveelheid
geheugen (zowel ROM als RAM) aanwezig. Er is in het verleden dan
ook al veel onderzoek gedaan naar het automatisch kleiner maken van
programma’s, zodat ze in het geheugen van een ingebed systeem pas-
sen. Dit onderzoek heeft zich tot nu toe vooral toegespitst op het ver-
kleinen van gebruikersprogramma’s die op deze systemen draaien, en
niet zozeer op het besturingssysteem.

Ingebedde systemen worden steeds complexer, en de ontwikkelaars
ervan grijpen dan ook meer en meer terug naar voorgebouwde, gene-
rieke componenten die samengevoegd worden om snel de benodigde
functionaliteit voor het systeem bij elkaar te brengen. Eén van die com-
ponenten is het besturingssysteem. Waar er vroeger vaak een appli-
catie-specifiek besturingssysteem ontwikkeld werd voor een ingebed
systeem, of een bestaand besturingssysteem werd aangekocht dat spe-
ciaal ontwikkeld werd voor modulariteit en laag geheugenverbruik, is
er tegenwoordig een stijgende interesse voor het gebruik van algeme-
ne besturingssystemen zoals Linux in een ingebed systeem. Deze al-
gemene besturingssystemen bieden een aantal voordelen: ze bieden
zeer veel functionaliteit aan, ze maken gebruik van standaard inter-
faces, en er zijn al heel veel programma’s voor beschikbaar. Dit alles
zorgt ervoor dat de ontwikkelaar zijn apparaat sneller op de markt kan
brengen, wat natuurlijk een concurrentievoordeel met zich meebrengt.
Het grote nadeel van een algemeen besturingssysteem is dat het veel
meer geheugen inneemt: niet alleen biedt het veel meer (vaak onnodi-
ge) functionaliteit aan, het is ook niet ontworpen om klein te zijn, maar
eerder om algemeen toepasbaar en makkelijk onderhoudbaar te zijn.

In deze doctoraatsverhandeling stellen we een geautomatiseerde
methode voor die het geheugengebruik van een besturingssysteemker-
nel kan beperken met behulp van binaire herschrijftechnieken tijdens
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het linken. De technieken zullen voornamelijk nuttig zijn voor het
specialiseren van een algemeen besturingssysteem voor een ingebed
systeem, waarbij overbodige functionaliteit verwijderd wordt. Linux
wordt gebruikt als voorbeeld, maar de aanpak is overdraagbaar naar
andere besturingssystemen zoals Windows XP Embedded.

Eerst overlopen we de karakteristieken die besturingssysteemcode
onderscheiden van de code van gebruikersprogramma’s. Deze karak-
teristieken hebben meestal te maken met de aanwezigheid van gro-
te hoeveelheden handgeschreven machinetaalcode in de kern. Deze
machinetaalcode houdt zich niet noodzakelijk aan dezelfde conventies
als code die door een vertaler werd gegenereerd, terwijl een herschrij-
vende linker juist op die conventies steunt om een een conservatieve
maar toch voldoende precieze voorstelling te maken van de code, die
geschikt is voor analyse en optimalisatie. We stellen dan ook manie-
ren voor waarop de binaire herschrijver aangepast kan worden zodat
ook besturingssysteemcode veilig en efficiënt herschreven kan worden.
Eens deze aanpassingen gebeurd zijn, kunnen de gekende compacte-
rende optimalisaties tijdens het linken toegepast worden om al een eer-
ste vermindering van het geheugengebruik te realiseren.

Vervolgens stellen we een aantal specialisaties voor die de bestu-
ringssysteemkern aanpassen voor één specifieke hardware/software
configuratie. Daarbij wordt allerlei voor deze configuratie overbodige
functionaliteit uit de kern verwijderd.

De eerste specialisatie houdt zich bezig met de initialisatiecode en
-data in de kern. Linux biedt de mogelijkheid om initialisatiecode en
-data uit het geheugen te verwijderen eens het systeem opgestart is en
ze niet meer nodig zijn. Het geheugen dat mag vrijgegeven worden
wordt door de ontwikkelaars gemarkeerd door middel van manueel
aangebrachte annotaties in de broncode. Sommige code en data mag
echter slechts in sommige configuraties van de kern vrijgegeven wor-
den na het opstarten, terwijl ze in andere configuraties nog nodig zijn
tijdens de verdere uitvoering van het systeem. Deze code en data wor-
den dan ook nooit vrijgegeven. Wij hebben een analyse ontwikkeld die
extra initialisatiecode en -data kan opsporen die in een specifieke kern-
configuratie toch mag worden vrijgegeven, hoewel ze door de ontwik-
kelaars niet als dusdanig was geannoteerd.

Vervolgens wordt het systeemaanroepgedrag van alle gebruikers-
programma’s die op het systeem zullen uitgevoerd worden geanaly-
seerd. Het resultaat van deze analyse is een lijst van alle systeemaan-
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roepen die op het systeem kunnen gebeuren, en van alle mogelijke pa-
rameterwaarden van deze aanroepen, voor zover het mogelijk was om
deze te detecteren. De kern wordt dan gespecialiseerd voor de verwor-
ven informatie door de ondersteuning voor alle ongebruikte systeem-
aanroepen uit de kern te verwijderen, en door de code die de resterende
systeemaanroepen afhandelt te specialiseren voor de gekende parame-
terwaarden.

Veel besturingssystemen bieden de mogelijkheid om bepaalde sys-
teemparameters bij te stellen op het moment dat het systeem gestart
wordt, door middel van de kernel command line. Op een ingebed sys-
teem heeft de gebruiker normaal gezien geen enkele controle over het
opstartproces, en dus ook geen mogelijkheid om deze kernel command
line nog aan te passen. Deze vorm van configureerbaarheid is dus over-
bodig. Onze volgende specialisatie identificeert dan ook de code voor
het verwerken van deze command line, en verwijdert ze uit de kern.
De kerncode wordt verder ook gespecialiseerd voor de nu als constant
te beschouwen waarden van de globale variabelen die door de kernel
command line ingesteld konden worden.

Voor onze laatste specialisatie steunen we op de observatie dat het
opstartproces van de kern deterministisch is. Tijdens het initialiseren
van het systeem is er slechts één draad actief, en die voert steeds exact
dezelfde code uit, als we ervan uitgaan dat de hardwareconfiguratie
van het systeem nooit verandert. We buiten deze kennis uit door het
opstartproces van de kern te observeren, en bij te houden welke intia-
lisatiecode nooit wordt uitgevoerd. Deze code kan dan zonder proble-
men uit de kern verwijderd worden. Hoewel deze specialisatie weinig
of geen invloed zal hebben op het RAM-gebruik van de kern nadat de
intialisatiecode en -data uit het geheugen verwijderd zijn, biedt ze de
kans om het ROM-gebruik van de kern gevoelig te verkleinen.

Zelfs nadat alle voornoemde specialisaties en compactietransforma-
ties uitgevoerd zijn, blijkt dat een substantieel gedeelte van de kerncode
nooit wordt uitgevoerd tijdens de normale uitvoering van het systeem.
Een deel van deze onuitgevoerde code is effectief nutteloos, maar kon
niet alsdusdanig geı̈dentificeerd worden door de beperkingen van sta-
tische analyse. Dit is niet het geval voor alle onuitgevoerde code: een
deel ervan dient voor het opvangen van uitzonderlijke situaties, zoals
hardwarefouten, die niet voorkomen tijdens het normale gebruik van
het systeem. We kunnen het onderscheid tussen beide categorieën van
onuitgevoerde code niet eenvoudig maken, dus kunnen we de onuit-
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gevoerde code niet zomaar uit de kern verwijderen. We kunnen het
RAM-gebruik van de kern wel verminderen door de onuitgevoerde co-
de slechts in te laden op het moment dat ze effectief nodig blijkt.

We stellen twee benaderingen voor voor het op aanvraag inladen
van code: frozen code compression en cold code swapping. De eerste tech-
niek stelt geen speciale hardwarevereisten, maar is beperkt tot het op
aanvraag inladen van onuitgevoerde code. De tweede techniek, waar-
voor ondersteuning voor virtueel geheugen vereist is, evenals de aan-
wezigheid van een snel secundair geheugen (bijvoorbeeld Flash-geheu-
gen), maakt het mogelijk om niet alleen onuitgevoerde code, maar alle
zelden uitgevoerde code op aanvraag te laden.

Frozen code compression deelt de onuitgevoerde code op in parti-
ties met één ingangspunt, en slaat deze partities op in het geheugen in
een gecomprimeerde vorm. In de code worden de partities vervangen
door stubs. Als het controleverloop zo een stub betreedt, wordt de de-
compressor opgeroepen die de nodige geheugenruimte alloceert en het
corresponderende codefragment decomprimeert. De stub wordt dan
overschreven met een spronginstructie die naar de gedecomprimeerde
code springt. Eens code gedecomprimeerd is, wordt ze nooit meer uit
het geheugen verwijderd.

Cold code swapping gaat anders te werk: zelden uitgevoerde (kou-
de) code wordt gescheiden van vaak uitgevoerde (hete) code en op
aparte virtuele-geheugenpagina’s geplaatst. De pagina’s met koude
code worden niet in het fysiek geheugen geladen, maar op een snel
secundair geheugen geplaatst. Als een koud codefragment uitgevoerd
moet worden, treedt er een paginafout op. De (aangepaste) pagina-
foutafhandelingscode zoekt dan de corresponderende pagina op in het
secundaire geheugen, laadt ze in een vooraf gealloceerde buffer met
vaste grootte, en past de paginatabellen aan zodat ze op het virtuele
adres in het geheugen gemapt wordt.

De gecombineerde compactietechnieken en specialisaties en het op
aanvraag inladen van code slagen er samen in om het RAM-gebruik
van de kern terug te dringen met meer dan 48%.



Abstract

There is a lot of research interest in the creation of small programs for
embedded systems, where memory (both ROM and RAM) is typically
very limited. Until now, this research has focused mostly on reducing
the footprint of user space programs, and not on reducing the footprint
of the operating system (OS).

Embedded systems are becoming increasingly complex, and devel-
opers rely more and more on pre-built, generic components to quickly
build the required software functionality for the embedded system.
One of these components is the OS. While traditionally embedded sys-
tem designers created their own OS, specifically tailored to their needs,
or used an embedded OS that was specifically engineered for config-
urability and small memory footprint, there is a growing trend to use
general-purpose operating systems like Linux and Windows XP Em-
bedded. However, the use of these general-purpose operating systems
entails a lot of overhead, as they were not engineered for small mem-
ory footprint, but rather for general applicability and maintainability.
The research on compaction and compression of user space programs
cannot be applied directly to operating systems, as there are a number
of peculiarities in operating systems code that have not yet been taken
into account by this research.

In this dissertation, we present an automated way to reduce the
memory footprint (both RAM and ROM) of an OS kernel through the
use of link-time binary rewriting techniques. The proposed techniques
will be useful in particular for streamlining a general-purpose OS ker-
nel for use on an embedded system, removing as much of the afore-
mentioned overhead as possible. We use Linux as a case study, but the
approach is transferable to other operating systems as well.

First, we give an overview of the challenges OS kernel code poses to
a link-time binary rewriter. Most of these relate to the presence of large
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amounts of hand-written assembler code in the kernel that does not
necessarily respect the coding conventions a compiler abides by. It are
precisely these conventions that a link-time binary rewriter exploits to
build a conservative, yet sufficiently precise control flow graph that can
be used for analysis and optimization. When the challenges are identi-
fied, we present ways for a link-time rewriter to overcome them. Once
these challenges are overcome, the well-known link-time compaction
optimizations can be applied to the kernel to reduce its memory foot-
print.

Next, we introduce a number of specialization transformations that
allow to adapt the kernel to one specific hardware/software platform,
removing functionality that is not needed for this platform.

A first specialization concerns initialization code and data in the
kernel. The Linux kernel offers the possibility to remove initialization
code and data from memory once the system bootup phase is com-
pleted. The code and data to be removed are identified based on man-
ual annotations by the kernel developers. However, some code and
data can only be removed after bootup in some kernel configurations,
but not in others. Consequently, this code and data is never removed
from memory. We have developed an analysis that can identify extra
initialization code and data that was not annotated by the kernel devel-
opers.

Next, the system call behavior of all user space programs that will
run on the system is analyzed. This analysis results in list of all system
calls that can be used on the system, and, in case they could be iden-
tified, all possible values for the arguments of these system calls. The
kernel is then specialized for this knowledge by removing all unused
system call handlers, and by specializing the code of the remaining han-
dlers for the known parameter values.

Many OS kernels provide the ability to tweak certain system pa-
rameters at boot time through a so-called kernel command line. On
embedded systems, where the user typically has no influence over the
boot process, this configurability is useless. Therefore, our next spe-
cialization consists of identifying the command-line handling code and
removing it from the kernel, and specializing the kernel code for the
now known-to-be-constant values of the global configuration variables
that are initialized through the kernel command line mechanism.

As a last specialization, we observe that the kernel’s boot process
is deterministic. During system initialization, there is only one thread
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active, and, supposing the system’s hardware configuration does not
change over time, the same code is executed at every system boot.
We exploit this knowledge by observing the kernel’s boot process and
recording which code is executed. All unexecuted initialization code
is then removed from the kernel. While this specialization has only
minimal impact on the kernel’s RAM footprint, it has the potential to
significantly reduce the ROM footprint.

Even after all aforementioned compaction and specialization trans-
formations have been applied, code coverage analysis shows that a sub-
stantial portion of the kernel code is never executed during normal sys-
tem operation. While part of the unexecuted code is in effect useless,
but could not be proven so because of the limitations of static analysis,
there is no way to distinguish this code from the also unexecuted, but
necessary, code for handling exceptional situations such as hardware
failures. Even though the unexecuted code cannot be removed from
the kernel entirely, the kernel’s RAM footprint can be reduced signif-
icantly by introducing an on-demand code loading scheme that only
loads this code when it is needed.

We propose two approaches to on-demand code loading: frozen
code compression and cold code swapping. The first technique has no
special hardware requirements, but is limited to loading unexecuted
code on demand. The second technique, which requires virtual mem-
ory support and the presence of a fast secondary memory (e.g., Flash
memory) in the system, makes it feasible to load all infrequently exe-
cuted code on demand, not just the code that is never executed under
normal operation.

The frozen code compression technique divides the unexecuted ker-
nel code into single-entry partitions that are stored in compressed form,
and replaced by stubs in the code. When control flow enters a stub,
a decompressor is invoked that allocates space and decompresses the
corresponding code fragment, after which the stub is overwritten with
a direct jump to the decompressed code. Once decompressed, code is
never evicted from memory.

The cold code swapping technique places the infrequently executed
(cold) code together on virtual memory pages that are separate from
those containing frequently executed (hot) code. The cold code pages
are not loaded in physical memory, but stored on a fast secondary stor-
age medium (e.g., Flash memory). Whenever a cold code fragment
needs to be executed, a page fault will occur. The kernel’s (modified)



x

page fault handler will then locate the corresponding page on the sec-
ondary storage medium and load it in a fixed-size buffer, mapping it at
the correct address in virtual memory. This scheme allows for eviction
of loaded code when the buffer is full.

Combined, the proposed compaction, specialization and code load-
ing techniques reduce the kernel’s RAM footprint with up to 48%.
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Chapter 1

Introduction

In most embedded systems, resources like processor cycles and avail-
able memory (both RAM and ROM) are constrained. There are sev-
eral reasons for this, most notably power consumption and unit cost.
Power consumption is very important for battery-operated devices,
and lower-clocked processors and smaller RAM chips can mean an
important improvement for the device’s battery lifetime. Unit cost
comes into play for mass-produced devices. Even small cost savings
on the components of a system, e.g., one fewer RAM chip or a smaller
Flash ROM, add up to significant savings when enough devices are
manufactured, which is important in the very cost sensitive embedded
market. It is therefore not surprising that embedded system designers
pay much attention to program size.

Over time, the complexity of embedded systems has risen dramati-
cally. A prime example of this trend are mobile phones. Over the years,
these devices have evolved from providing simple telephone calls to
gadgets that also send text messages, take pictures, play music and
surf the internet. The traditional methods for creating small programs,
i.e., writing them in assembler or manually fine-tuning the compiler
output are no longer practical for such complex systems, especially in
highly competitive markets, where time-to-market is very important.
Nowadays, embedded systems designers are turning to pre-built com-
ponents and higher-level languages to manage the complexity and to
deliver products on time. Of course, this approach results in some over-
head: pre-built components are usually more generic than they have to
be for one specific application, and high-level languages do not always
translate easily to compact assembler code. Not surprisingly, a lot of
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research has been done on ways to mitigate the size overhead incurred
by the use of high-level abstractions [Besz03].

1.1 Reducing Program Footprint

As indicated before, in an embedded system there are two different
scarce resources that are impacted by program size: RAM and ROM.
Optimizations that reduce a program’s use of one resource are not nec-
essarily beneficial in reducing the use of the other resource. For exam-
ple, transforming the program into a self-extracting executable would
limit the ROM size, but would have no influence at all on the RAM us-
age. Conversely, an optimization that reduces the amount of dynamic
memory allocated by the program will surely reduce the RAM usage
but will do nothing for the ROM size. Therefore it is useful to define
several different program footprints:

• RAM footprint is the number of bytes a program occupies in
RAM memory. This can be further subdivided into static RAM
footprint, i.e., the sum of the sizes of the program code and stati-
cally allocated data, and dynamic RAM footprint, which is the sum
of the static RAM footprint and the maximum amount of dynam-
ically allocated memory (stack + heap memory) during program
execution.

• ROM footprint is the number of bytes a program takes in ROM
memory. This is different from the static RAM footprint because
this includes the size of the program headers (defined by the exe-
cutable format) and excludes the size of the zero-initialized data,
which is typically not stored with the program image. Further-
more, it is quite common to store programs in a compressed for-
mat, which significantly reduces the ROM footprint but not the
static RAM footprint.

Static RAM footprint and ROM footprint are well suited for reduc-
tion through automated methods. By and large, the footprint reduc-
tion techniques can be divided into two types: compaction and com-
pression [Besz03]. The end result of compaction is a smaller program
that is still directly executable. With compression this is not the case:
an additional decompression step, either in hardware or in software,
is necessary before the program can be executed. Note that it is not
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necessary to decompress the whole program at once: many techniques
selectively decompress code or data whenever they are needed. Typi-
cally, compression techniques will be more efficient size-wise, but with
a larger execution time penalty because of the inevitable decompres-
sion. Compaction and compression are orthogonal: because the end
result of compaction is still an executable program, one can still apply
compression techniques to a compacted program, combining the ad-
vantages of both approaches.

Several techniques exist to reduce the heap memory usage, and
thus the dynamic RAM footprint, of a program through compression
of the dynamically allocated data [Chen03a, Latt05, Zhan06b]. These
techniques can be applied on top of the aforementioned compaction
and compression transformations that reduce the static RAM and ROM
footprint. The heap compression techniques are, however, beyond the
scope of this dissertation, which will focus solely on techniques for re-
ducing the static RAM and ROM footprint.

1.2 Broadening the Scope

A common characteristic of the existing compaction and compression
techniques (Beszédes et al. give a comprehensive overview [Besz03])
is that they optimize individual programs independently. However,
embedded systems software usually consists of more than just one pro-
gram. Figure 1.1 gives an abstracted overview of the software compo-
nents of a complete system. The main software components are ap-
plications, libraries and the operating system (OS). The libraries offer
common functionalities that can be used by the different applications.
Underlying all this is the operating system which acts as a gateway to
the system’s hardware. The operating system offers a range of services
to the applications, ranging from access to the hardware devices over
interprocess communications (IPC) to memory protection for the run-
ning processes. There is a lot of interaction between the different com-
ponents: applications call code from libraries and both applications and
libraries can request services from the operating system. Furthermore,
there are several ways in which applications can communicate, either
via IPC or directly through shared memory.

Not every embedded system has all these components. In partic-
ular, simpler embedded systems like washing machines or microwave
ovens are unlikely to have an operating system or even separate ap-



4 Introduction

Figure 1.1: An abstracted overview of a complete system.

plications and libraries. The functions performed by these machines
are simply not complex enough to warrant the overhead of an extra
abstraction layer in software. For these systems, the software compo-
nent can be viewed as a single application to which compaction and
compression techniques can be applied.

However, a very large class of embedded systems does have all
these different software components. A survey of embedded system
developers shows that in 2006 81.3% of all embedded system designs
incorporated some form of operating system [Turl06]. For these sys-
tems, it is of course possible to apply compaction and compression
techniques to each component in isolation, but better results can be
achieved if the system is analyzed and optimized as a whole. There
are several reasons for this:

• In a complex system, not all components are written from scratch.
In particular both the OS and some libraries, maybe even some
applications, may have been bought from third-party vendors
and will just be integrated into the system. For reusability, these
pre-built components are more general than needed for any one
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specific system in which they are used. By looking at all compo-
nents of the system at once, it is possible to specialize them for
their specific uses in this system.

• Because the components are written separately, they need to
abide to certain conventions to make sure they work together
properly. These conventions are codified into the system’s ap-
plication binary interface (ABI). The ABI specifies interfaces be-
tween applications and libraries such as which processor registers
are considered callee-saved and which are caller-saved, as well
as the interface between applications and the operating system.
This ABI is usually uniquely defined for each combination of
operating system and processor family. These conventions are
optimized for the general case, even though in some cases pro-
grams would be faster or more compact if they could ignore the
ABI. Once all components in the system are known, it is possible
to perform a whole-system integration step that removes the restric-
tions of the ABI and integrates the components in a more efficient
way.

The idea of whole-system optimization is especially attractive on
the very large class of embedded devices for which the functionality
is known and fixed over the lifetime of the device. Examples of such
systems include wireless internet routers like the Linksys WRT54G or
hard-disk video recording systems like the TiVo. Even if the software
on these systems (usually called firmware in this context) has to be up-
dated during the system’s lifetime, this happens in an atomic opera-
tion: all the firmware is updated at once. Consequently, there are never
problems with adding some new functionality to the device that would
require some feature from a library that was stripped out because it
was not needed before. After the feature is added to the firmware, the
whole-system integration step is rerun, and in the new firmware image
the necessary library functionality is included as well.

The previous discussion outlines the ideal situation in which the
whole system can be optimized at once. However, there is still a long
way to go before this ideal can be realized. Only recently the first pa-
per on the subject of a unified whole-system representation for analysis
and optimization has appeared [Bert06]. Before we can co-optimize
the whole system, it is necessary that all individual components can be
modeled and optimized appropriately. While the current state of the art
is already well suited for the modeling and optimization of user space
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applications, this is not the case for the operating system. Some of the
assumptions that can be made in the modeling of regular applications
do not hold for the OS because it runs in the privileged protection do-
main, instead of the user protection domain, as shown in Figure 1.1.
There will also be some unique opportunities for compacting the OS
code that are not available for regular applications.

In this dissertation, we will investigate the difficulties in modeling
the operating system and its interactions with the user space programs
and propose techniques to reduce the static RAM and ROM footprint
of the operating system as a step on the road to the ideal of whole-
system optimization. It is important to note that the term “operating
system” in this context refers to the OS kernel, the code that runs in
the privileged protection domain. In general usage, the term operating
system is used to denote the combination of this kernel and a number
of companion applications like the command-line shell or the graphical
user interface. These companion applications are in fact just regular
programs that behave like any other user space program and can thus
already be modeled and optimized using existing techniques.

1.3 Our Approach to OS Kernel Footprint Reduc-
tion

There are three levels at which optimization of the OS kernel can be
performed: at the source code level, at the compiler level, or at the
linker level. Each level has its advantages and disadvantages.

At the source code and compiler levels, the greatest amount of se-
mantic information is available, as this information can be derived di-
rectly from the source code. Furthermore, source code level optimiza-
tions and optimizations in the compiler front end are architecture inde-
pendent. However, there are significant disadvantages associated with
optimization at this level. First, there is no whole-program overview,
which limits the scope of the optimizations, and makes it difficult to
optimize low-level aspects of the kernel, for example, by modifying the
calling conventions for specific procedures. Secondly, the techniques
are source language dependent. Porting the developed techniques to
an OS kernel that is written in a different programming language in-
volves a lot of effort, as all optimizations have to be ported to a new
source-level transformation tool or a new compiler. Finally, OS kernels
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contain a significant amount of hand-written assembler code for tasks
that simply cannot be expressed in higher-level languages, e.g., access-
ing the processor’s control registers. This assembler code will not be
analyzed or optimized by either a source-level transformation tool or a
compiler.

At the linker level, the main advantages are the whole-program
overview, which also includes all hand-written assembler code, and
the complete source language independence of the techniques. The
drawbacks of link-time optimization are the absence of high-level se-
mantic information (e.g., variable types and procedure signatures), and
the fact that the techniques are architecture-dependent as the optimiza-
tions operate directly at the machine code level. Recent research, how-
ever, offers workarounds for the dearth of semantic information at the
linker level, either by using a hybrid approach where certain analyses
are performed at the source code level [He07], or by using the debug
information produced by the compiler as extra input to the link-time
optimizer [VanP07a]. Furthermore, as was shown by De Bus [DeBu05],
and is illustrated in Diablo, the link-time optimizer we have developed,
it is possible to build a link-time optimizer in such a way that it is re-
targetable to new processor architectures.

After taking the aforementioned advantages and drawbacks of each
optimization level into consideration, we have decided to situate our
work at the linker level.

1.3.1 Link-time Compaction

An OS kernel contains a lot of performance-critical code. For instance,
the interrupt handlers should complete their work as soon as possi-
ble. If handling an interrupt takes too long, data may get lost for de-
vices like high-speed network interfaces that have a high interrupt fir-
ing rate. Therefore it is important that the performance impact of any
compaction or compression transformation applied to the kernel is very
limited, or at least that these performance-critical parts of the kernel are
not adversely affected by the transformations.

With this in mind, we have chosen to concentrate first on link-
time compaction techniques as a way to reduce the kernel’s mem-
ory footprint. Most link-time compaction techniques (De Sutter et al.
give an overview of the most useful link-time analyses and optimiza-
tions [DeSu05]) do not have a negative impact on execution speed, as
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they mostly remove unreachable code or unnecessary computations.
In fact, by removing these unnecessary computations, it is even pos-
sible to achieve some speedups. The big exception to this rule are the
duplicate code elimination techniques, in particular those that extract
code fragments at a granularity smaller than whole procedures as these
introduce extra procedure calls and returns, with the associated over-
head. However, this speed impact can be mitigated by using profile
information to identify the frequently executed code, which is then
excluded from this transformation [DeSu02].

In order to reliably perform link-time binary rewriting, it is imper-
ative that the rewriting tool is able to construct a correct, conservative
control flow graph of the program [Debr00, DeBu05, DeSu05]. As men-
tioned before, an OS kernel is somewhat different from a regular user
space program. As such there are some issues that have to be taken into
account when building the kernel’s control flow graph, most of which
have to do with the aforementioned presence of hand-written assem-
bler code in the kernel. We will identify these issues, and present ways
to tackle them.

1.3.2 Operating System Kernel Specialization

By exploiting knowledge about an embedded device’s hardware and
software configuration, we can achieve size reductions on top of those
already achieved with the established link-time optimizations. For al-
most all embedded systems, the hardware is fixed over the lifetime of
the device. For a smaller, but still very large fraction of systems this is
also the case for the software that will run on the device. Consequently,
it makes sense to specialize the operating system for the specific hard-
ware/software combination of a device. The first avenue to explore
for this specialization is of course the operating system’s build time
configuration system. This allows developers to cherry-pick, for ex-
ample, which hardware drivers will be compiled into the kernel, which
filesystems should be supported, whether a TCP/IP stack should be in-
cluded, et cetera. Operating systems that are specifically designed for
use in embedded systems, like eCos1 or vxWorks2 have a very fine-
grained configuration system, precisely because they have been de-
signed from the ground up for use in environments with limited mem-

1http://ecos.sourceware.org/
2http://www.windriver.com/vxworks/

http://ecos.sourceware.org/
http://www.windriver.com/vxworks/


1.3 Our Approach to OS Kernel Footprint Reduction 9

ory. This is less so for general-purpose OS kernels like Linux that have
been adapted for use in embedded systems only later in their develop-
ment history. The main focus in the development of these kernels is on
generality and maintainability of the code base, with modularity and
compactness only as secondary design goals. For example, the Linux
configuration process does not allow the developer to choose which
system calls should be included in the kernel, even though on a fixed-
functionality system it is possible to determine at design time exactly
which system calls will be used by the software.

On top of the established link-time compaction techniques, we
have developed a number of automated specialization transformations
that will adapt a kernel to a specific hardware/software combination.
This approach will have the most impact on a general-purpose OS like
Linux, where there is more room for improvement, but some of the
techniques we introduce will work equally well on operating systems
that do have a very fine-grained configuration system.

The proposed specializations, which are all applicable to the Linux
2.4 kernel, will remove unnecessary system calls from the kernel, and
specialize the remaining ones for known constant arguments. The boot-
time configurability that is present in some operating systems, but is
typically useless for embedded systems, will be removed, and the ker-
nel code will be specialized for the now constant values of the parame-
ters that could be tuned through the boot-time configuration interface.
A further specialization identifies initialization code and data that are
no longer needed in the kernel once the system has finished booting,
and allows these to be removed from memory after bootup. The last
specialization also concerns the aforementioned initialization code. As
long as a system’s hardware configuration is unchanged, the boot pro-
cess is deterministic. Through instrumentation, we observe the kernel’s
boot process and record which part of the initialization code remains
unexecuted. This code, and its associated data, may then be removed
entirely from the kernel. While this does not reduce the kernel’s RAM
footprint (the initialization code would have been removed from mem-
ory after bootup anyway), this specialization is useful for reducing the
kernel’s ROM footprint.
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1.3.3 On-demand Code Loading Techniques

Even after all aforementioned compaction and specialization transfor-
mations have been applied, code coverage analysis shows that a sub-
stantial portion of the kernel code is never executed during normal
system operation. Part of this unexecuted code is truly unreachable,
but could not be detected by the compaction and specialization tech-
niques due to the limitations of static analysis. The rest of the unexe-
cuted code is necessary for the handling of exceptional situations, for
example hardware failures. As we cannot make the distinction between
both kinds of code through static analysis, the unexecuted code cannot
be removed from the kernel. It is, however, possible to introduce an on-
demand code loading scheme that loads only the necessary code into
memory. This way, we can reduce the kernel’s static RAM footprint
without compromising its reliability by removing potentially necessary
code.

We will introduce two approaches to on-demand code loading
that take into account the specific nature of an OS kernel. The first
technique, frozen code compression, uses compression to reduce the foot-
print of unexecuted code. Code fragments are decompressed on an
as-needed basis. To avoid concurrency issues, decompressed code
fragments are never evicted from memory. The advantages of this
technique are that the performance impact is limited, and that it re-
quires no special hardware support. The biggest disadvantage is that,
because of the no-eviction policy, it is impossible to predict the exact
amount of memory that will be used by the kernel code.

The second technique, cold code swapping, requires support for vir-
tual memory. Infrequently executed (cold) code is placed on separate
virtual memory pages from the frequently executed code. The cold
code pages are not present in physical memory. Instead, they are stored
on a fast secondary storage medium (e.g., Flash memory). Whenever a
cold code fragment needs to be executed, a page fault will occur. The
kernel’s (modified) page fault handler will then retrieve the needed
page from the secondary storage, and map it into a fixed-size buffer
in physical memory. We will show that this approach allows us to evict
pages from memory without having to add additional locking in the
kernel to avoid concurrency issues. In order to minimize the number of
code loading events, and thus the performance impact, intelligent code
placement algorithms are needed for the cold code. We will discuss
and evaluate two such algorithms. This technique has two main ad-



1.4 Linux as a Case Study 11

vantages: it allows for on-demand loading of all infrequently executed
code, not just the never-executed code, and it is possible to predict ex-
actly how much memory will be needed for the kernel’s code. The
main disadvantages are the potentially larger performance impact, and
the fact that support for virtual memory is required.

1.4 Linux as a Case Study

The techniques described in this work are generally applicable to all
operating system kernels, and in particular to general-purpose oper-
ating systems used in the context of embedded systems. For both the
discussion and evaluation of the techniques we will focus on the Linux
2.4 kernel.

On the one hand, this choice is motivated by practical reasons. Both
the source code for the kernel and a whole body of information on its
inner workings are publicly available, which simplified the study of
the system. Furthermore, the link-time binary rewriting framework we
used to implement our techniques requires the presence of not only the
executable kernel image but also the object files from which this image
is constructed. Consequently, recompiling the kernel was necessary,
which is of course only possible when the source code is available.

On the other hand, the application of the proposed techniques to
the Linux kernel is also quite relevant. In 2005, 24% of all embedded
systems designers used Linux as their OS according to a survey taken
by the Embedded Systems Design magazine [Turl05]. In the same sur-
vey, memory usage is shown to be the second most important techni-
cal objection against Linux, the most important being the lack of hard
real time capabilities or low performance of Linux in general. Conse-
quently, we can conclude that there is a big interest in the use of Linux
on embedded systems, and reducing Linux’ memory footprint can help
increase its relevance in this market.

1.5 Major Contributions

The major contributions presented in this dissertation are:

• We identify a number of OS kernel code peculiarities not encoun-
tered in user-space programs, and present ways to model them
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in a link-time binary rewriter, allowing for conservative, yet suf-
ficiently precise, analysis and optimization.

• We present an automated method for specializing the OS kernel
for a specific hardware/software combination, thus improving on
the OS kernel’s build-time configuration system.

• We explore how the kernel’s code memory footprint can be re-
duced in an automated way by introducing on-demand code
loading schemes that target code for the handling of exceptional
situations and other infrequently executed code. The presented
techniques take the specific nature of an operating system ker-
nel into account, and deal reliably with concurrency while still
maintaining good performance.

• We have evaluated the proposed techniques on two different plat-
forms, i386 and ARM, and thus demonstrated the feasibility of
our approach.

• The proposed techniques were implemented in a proof-of-concept
OS kernel compaction tool based on the Diablo link-time bi-
nary rewriting framework, which is used internationally for re-
search on link-time optimization [Gilb06, Bans06], software secu-
rity [Hu06], program debugging [Gupt05, Zhan06a], binary ob-
fuscation [Mado06], program watermarking [Anck04], etc. In the
course of this implementation work, a number of core changes
to Diablo were made that resulted in an overall better reliabil-
ity and extensibility of the framework. As such, this work has
indirectly contributed to advancements in the aforementioned
research fields.

We feel this work is the first systematic exploration of techniques to
reduce the memory footprint of an operating system kernel at link time,
and a milestone on the way to the ideal of whole-system optimization
as presented in Section 1.2.

1.6 Publications

Three publications are directly connected to the OS kernel footprint
reduction work described in this dissertation. The work on OS kernel
specialization was first presented at the 2005 Conference on Languages,
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Compilers and Tools for Embedded Systems (LCTES) [Chan05]. An
extended version of this work, which also presented the first of our
on-demand code loading schemes, frozen code compression, was pub-
lished in the ACM Transactions on Embedded Computing Systems
journal in 2007 [Chan07b]. The second code loading technique, cold
code swapping, is described in a paper that has been accepted for
publication in Transactions on HiPEAC [Chan07a].

In a broader context, but still related to the work presented in
this dissertation, the author has contributed to several papers on the
subject of link-time binary rewriting and link-time compaction, pub-
lished in international journals and presented on international confer-
ences. [DeBu03, DeBu04b, VanP05b, VanP05a, VanP07b, DeSu07]

Apart from the work described in this dissertation, the author has
also contributed to research on the application of link-time binary
rewriting in the fields of program instrumentation [DeBu04a] and soft-
ware security [Anck04].

Below is a full list of all publications on international conferences
and in international journals the author has contributed to:

• De Bus, B.; Kästner, D., Chanet, D.; Van Put, L.; De Sutter, B.
Post-Pass Compaction Techniques. Communications of the ACM.
[DeBu03]

• De Bus, B.; Chanet, D.; De Sutter, B.; Van Put, L.; De Bosschere,
K. The Design and Implementation of FIT: a Flexible Instrumentation
Toolkit. Proceedings of the 2004 ACM SIGPLAN-SIGSOFT Work-
shop on Program Analysis for Software Tools and Engineering
(PASTE‘04). [DeBu04a]

• De Bus, B.; De Sutter, B.; Van Put, L.; Chanet, D.; De Bosschere, K.
Link-Time Optimization of ARM Binaries. Proceedings of the 2004
ACM SIGPLAN/SIGBED Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES‘04). [DeBu04b]

• Anckaert, B.; De Sutter, B.; Chanet, D.; De Bosschere, K. Steganog-
raphy for Executables and Code Transformation Signatures. Informa-
tion Security and Cryptology - ICISC 2004. [Anck04]

• Chanet, D.; De Sutter, B.; De Bus, B.; Van Put, L.; De Boss-
chere, K. System-Wide Compaction and Specialization of the Linux
Kernel. Proceedings of the 2005 ACM SIGPLAN/SIGBED Confer-
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ence on Languages, Compilers and Tools for Embedded Systems
(LCTES‘05). [Chan05]

• Van Put, L.; Chanet, D.; De Bus, B.; De Sutter, B.; De Boss-
chere, K. DIABLO: a reliable, retargetable and extensible link-time
rewriting framework. Proceedings of the 2005 IEEE International
Symposium On Signal Processing And Information Technol-
ogy. [VanP05a]

• Van Put, L.; De Sutter, B.; Madou, M.; De Bus, B.; Chanet,
D.; Smits, K.; De Bosschere, K. LANCET: a nifty code editing
tool. Proceedings of the 2005 ACM SIGPLAN-SIGSOFT Work-
shop on Program Analysis for Software Tools and Engineering
(PASTE‘05). [VanP05b]

• Van Put, L.; Chanet, D.; De Bosschere, K. Whole-Program Linear-
Constant Analysis with Applications to Link-Time Optimization. Pro-
ceedings of the 10th International Workshop on Software & Com-
pilers for Embedded Systems. [VanP07b]

• De Sutter, B.; Van Put, L.; Chanet, D.; De Bus, B.; De Bosschere, K.
Link-Time Compaction and Optimization of ARM Executables. ACM
Transactions on Embedded Computing Systems. [DeSu07]

• Chanet, D.; Cabezas, J.; Morancho, E.; Navarro, N. Linux Ker-
nel Compaction through Cold Code Swapping. Transactions on
HiPEAC. [Chan07a]

• Chanet, D.; De Sutter, B.; De Bus, B.; Van Put, L.; De Bosschere,
K. Automated Reduction of the Memory Footprint of the Linux Kernel.
ACM Transactions on Embedded Computing Systems. [Chan07b]

1.7 Outline

This dissertation is organized as follows. Chapter 2 gives a brief
overview of link-time binary rewriting, introducing the terms and
concepts that will be used throughout the rest of the thesis. The next
chapter details the challenges we faced in adapting a link-time binary
rewriter for user space programs for use on an operating system ker-
nel. Chapter 4 introduces techniques for specializing an OS kernel for
a specific hardware/software combination. In Chapter 5, on-demand
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code loading techniques are explored in the kernel context. We discuss
related work in Chapter 6 and draw conclusions and discuss future
work in Chapter 7.
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Chapter 2

An Introduction to Link-time
Binary Rewriting

In this chapter, we will first briefly explain how a traditional linker
works. Next, we show how a link-time binary rewriter uses the avail-
able information to build a whole-program representation that is suit-
able for conservative analysis and optimization. Then, we will address
in detail the reliability issues involved in link-time program rewriting.
We conclude with an overview of existing link-time analyses and opti-
mizations aimed at program compaction.

2.1 Traditional Linking

The basic task of a linker is to combine the compiled and assembled
source code files (called object files) and libraries into an executable pro-
gram. A library is in essence just a collection of object files. There are
two different ways in which a program can be linked: statically or dy-
namically. In the case of static linking, the final program is standalone:
it contains all code and data necessary for execution. In dynamically
linked programs, the libraries are not linked into the program, but are
separate files that are shared between different programs. This makes
sense for user space programs, as it avoids unnecessary duplication of
library code and data both on disk and in memory. However, as the
operating system kernel is always statically linked, we can concentrate
on static linking in the remainder of this dissertation.

As shown in Figure 2.1, both object files and executable programs
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Figure 2.1: Object files are combined into an executable program by the linker.



2.1 Traditional Linking 19

are structured as a collection of sections. There are different kinds of
sections:

• Code sections: these contain executable program code. There may
be read-only data intermingled with the code as well.

• Data sections: these contain the program data. They can be read-
only (e.g., constant strings, jump tables) or mutable (e.g., global
variables).

• Meta data sections: these contain meta data that is used by the tool
chain to create the final executable program. Not all of the meta
data is needed for the actual execution of the program, so only
part of it will appear in the final executable.

The meta data warrants further discussion. It consists mostly of:

• Symbol information: this information is used to identify entities in
the code and data, for example procedures and global variables.
A symbol can be interpreted as a label attached to such an entity.
Symbols have either local or global scope: local symbols are only
visible within the object file in which they are defined (this is use-
ful for, e.g., static functions or variables), whereas global symbols
are externally visible as well.

• Relocation information: as the final addresses of the code and data
sections are not yet known at compile time, the compiler has to
insert placeholder values for each symbol reference in the code
and data. The relocation information contains a list of all loca-
tions in the object file where such placeholder values are inserted,
and details how the final value should be computed (i.e., which
symbol is referenced, and what computation should be done on
this symbol’s final address to fill in the placeholder). Entries in
the relocation information will from now on simply be called re-
locations.

• Debug information: contrary to the previous two meta-data types,
the debug information is not included in the object files for the
benefit of the linker, but for use with a symbolic program debug-
ger. This information provides an additional mapping between
the generated machine code and the original source code.

The linker generates the final program in three phases:
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Figure 2.2: Overview of the operation of a link-time binary rewriter.

1. Based on the symbols referenced in the relocation information,
and the symbols declared by the different object files, the linker
decides which object files from which libraries have to be in-
cluded in the final program. Object files that are passed directly
as inputs to the linker, not as part of a library, are always entirely
included in the program. This phase is called symbol resolution.

2. By default, identically named sections from different object files
are combined into one big section in the final program. This rule
can be deviated from in most linkers through the use of a so-
called linker script that defines additional rules for combining
and placing sections. These sections are then assigned their final
addresses.

3. Using the relocation information, the linker can now recompute
all placeholder values and replace them with their final value.

While we presented only a simplified version of the static linking
process, this is sufficient to demonstrate the role of the symbol and relo-
cation information. A more in-depth description of the linking process
can be found in the book “Linkers & Loaders” by Levine [Levi00].
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2.2 Link-time Binary Rewriting

A link-time binary rewriter has the same information at its disposal
as a regular linker, i.e., the object files and libraries, and the symbol
and relocation information that is contained in those files. Figure 2.2
summarizes the operation of a link-time binary rewriter. This figure is
based on the inner workings of Diablo1 [DeBu04b, VanP05a, DeSu07],
a link-time binary rewriting framework we developed at the ELIS de-
partment of Ghent University. This is the framework we have used to
evaluate the techniques presented in this work.

First, the regular linker is used to create an executable program and
a map file. This map file details the order in which the object file’s sec-
tions are laid out in the executable program. Diablo then uses these two
files as extra inputs, and in a first step re-links the program in exactly
the same way as the original linker. This allows the link-time rewriter to
capture all possible information on the executable, including the afore-
mentioned information stored in the object files as well as any informa-
tion added by the regular linker itself. Next, the linked program’s code
sections are disassembled, and a whole-program control flow graph is
built. This representation, which we will describe in more detail in Sec-
tion 2.3, is used for all analyses and transformations on the program.
After all transformations are applied, the code is again converted into
a linear form during the graph linearization phase. Next, the linear
code is assembled, all relocations are recomputed, and the rewritten
program is stored on disk.

2.3 The Augmented Whole-program Control Flow
Graph

Based on the information available in the object files, a suitable inter-
mediate representation of the program to be rewritten has to be con-
structed. Most link-time rewriters operate on a whole-program con-
trol flow graph (WPCFG), which consists of the combined CFGs of
all procedures in the program. In link-time WPCFGs, the intermedi-
ate instructions are usually very close to the actual machine code in-
structions, and they operate on registers as if they are global variables,
whereas memory is treated as a black box. This very conservative treat-

1http://diablo.elis.ugent.be/

http://diablo.elis.ugent.be/
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ment of memory accesses is due to the fact that at this low level, where
all source code information about variables and their types is absent, it
is hard to perform accurate alias analysis [Hind01].

To model indirect control flow elegantly, a virtual unknown node is
usually added to the WPCFG. The relocation information from the ob-
ject files is used to identify all possible targets of indirect control flow:
if a procedure is never referenced from data or code, there is no way
in which its address can be produced at run time and used as a target
of indirect control flow. An important exception to this rule, computed
jumps, will be discussed in Section 2.4. All basic blocks that are possi-
ble targets of indirect control flow become successors of the unknown
node, and all basic blocks ending in indirect control transfers become
its predecessors. By imposing conservative properties on the unknown
node, it is then possible to handle unknown control flow conservatively
in any of the applied program analyses and transformations. For live-
ness analysis, for example, the unknown node is defined as reading
and writing all registers. An example of the use of the unknown node
is depicted in Figure 2.3.

Instead of using a simple WPCFG, Diablo uses an Augmented
WPCFG or AWPCFG. Besides nodes modeling the program’s basic
blocks, the AWPCFG also contains nodes for all data sections in the
object files, such as the read-only, zero-initialized or mutable data sec-
tions, the global offset table section, etc. Furthermore, the edges in the
graph are not limited to the control flow edges that model possible
execution paths. Additionally, the AWPCFG contains data reachability
edges that directly represent the relocation information from the object
files. For example, an instruction computing a relocatable address of
some data section will be connected to the node corresponding to that
section. Likewise, if the relocatable address of some data or instruction
in node A is stored in data section B, a data reachability edge from
B to A will be present. As such, the data reachability edges model
code/data that is reachable/accessible indirectly through computed
jumps or indirect memory accesses.

The program data is represented in this graph at the granularity
of object file sections (henceforth called subsections, as opposed to the
sections in the executable program). In general, the more fine-grained
the data nodes in the AWPCFG are, the more accurate analyses will
be and the more aggressive optimizations like unreachable data re-
moval can be. At link time, data section nodes in the AWPCFG can
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Figure 2.3: An example AWPCFG.

in general not be split into smaller nodes, because the compiler might
have performed base-pointer optimizations on different pointers to the
same section. There is an important exception to this assumption, how-
ever, which concerns constant strings, such as the format strings used
for C-language procedures such as printf, in GCC-compiled object
files. On platforms that use the ELF file format [Nohr93] (e.g., Linux
and most modern UNIX platforms), these constant strings are collected
in .rodata.str sections, and they are hence easily detected. Because
the GCC compilers only generate direct accesses to these strings, any
.rodata.str section of an object file containing multiple strings can
be safely split into multiple sections and hence multiple nodes in the
AWPCFG.

Figure 2.3 shows an example AWPCFG. On the left, a source code
fragment is shown, on the right the corresponding AWPCFG is pic-
tured. Solid edges are control flow edges, dashed edges are data reacha-
bility edges. The gray blocks represent the data sections in the program;
those with a thick border contain read-only data, the others contain mu-
table data. These representation conventions will be used throughout
the rest of this dissertation.

In the source code fragment, bar calls foo through a function
pointer. In essence, bar is a caller of the unknown node and foo is
a callee from the unknown node. In real programs, there are numerous
such callers and callees. The first node of bar references both f and the
string "abc", so there are data reference edges from this node to both
data nodes. Because the variable f holds the address of foo, a data
reachability edge points from f to foo. This edge corresponds to the
control flow edge from the unknown node to foo.
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(a) pseudo code

(b) naı̈ve control flow graph (c) correct control flow graph

Figure 2.4: Computed jumps in link-time binary rewriters.

2.4 Reliability

The reliability of a link-time binary rewriting framework depends en-
tirely on the reliability of its underlying program representation. The
AWPCFG has to be conservative: it should represent at least all pos-
sible execution paths in the program. A number of recent publications
[DeBu05, DeSu05, DeSu07] have described in detail how a conservative
AWPCFG can be constructed by using the relocation information avail-
able at link time and by using pattern matching. The latter is required
for computed jumps, especially in hand-written assembly code or in
position independent code (PIC), because the behavior of such jumps
is not defined in enough detail by the available relocation information.
An example is shown in Figure 2.4. Part (a) shows a fourfold unrolled
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loop in pseudo code. At the beginning of the code fragment, r0 holds
the original loop counter. r0 is divided by four, and r1 is used to deter-
mine where in the unrolled loop the iteration has to start to compensate
for loop counts not divisible by four. Using only the relocation infor-
mation, the link-time rewriter would construct a control flow graph as
depicted in part (b) of the figure. The basic block ending in an indi-
rect jump is a predecessor of the unknown node, and the block labelled
LoopEnd is made a successor of the unknown node due to the reloca-
tion appearing in the fourth instruction of the pseudo code. The four
unrolled loop iterations are placed in the same basic block, which is
obviously incorrect, as the indirect jump in the top block can transfer
control to any of the individual unrolled loop iterations. The correct
modeling of this code is shown in part (c) of the figure.

To find the potential targets of such control flow transfers, Diablo
relies on pattern matching. Whenever a use of the program counter
or some unconventional control flow transfer is detected of which it
is uncertain how it functions, the surrounding program fragment or
program slice is compared to a number of patterns. To make this work
reliably, the patterns to which a fragment is compared must be such
that they each define a specific behavior unambiguously. For example,
a pattern that matches address table lookups (commonly used in the
implementation of C-language switch statements) should include the
necessary boundary checks that check for constant values. Only if these
boundary checks can be found, and consequently the boundaries of the
lookup table can be computed, it is possible to determine all potential
targets of the computed jump.

More generally, the term “unambiguously” here means that a pat-
tern should be such that the behavior of a matched fragment is known
well enough to build a conservative program representation that is still
precise enough to be useful. In other words, the constructed repre-
sentation does not have to be an exact representation of all possible
control flow, but only a precise enough, conservative estimate. When
all matched patterns are unambiguous in this sense, the constructed
graph of the program will be conservative and useful. Obviously, the
degree of precision that is needed depends on the analyses and trans-
formations one wants to apply.

When some code fragment cannot be matched to any unambiguous
pattern, our link-time rewriter cannot build a program representation
that is both conservative enough and precise enough to enable reliable
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and useful rewriting. Whenever such a fragment is found, the rewri-
ter therefore informs the developer of this fact. The developer then
basically has four options. First, he can of course rewrite his program
to the extent that it only includes matchable patterns. Obviously, re-
quiring a developer to rewrite every program that contains unmatched
fragments is not very user-friendly, let alone automated. Secondly, the
developer can extend the set of patterns that are implemented in the
link-time rewriter. Once a pattern is implemented, it can be reused
for all programs to be rewritten. Thirdly, the developer can adapt the
compiler, assembler, or linker in his tool chain to provide additional
information on the generated code, that is used in the link-time rewri-
ter. Again, the resulting tool chain can be reused for all of the devel-
oper’s programs. Finally, the developer can instruct the link-time re-
writer to ignore the code fragment in its optimizations, by treating it
as immutable data that will not be rewritten, and making worst-case
assumptions about the code fragment for all analyses. Obviously, this
is only feasible if the code fragment is small enough so that the nega-
tive effect on the overall precision of the analyses is limited. In practice,
the best approach is to combine the second and third option. To en-
able link-time rewriting of a program as unconventional as the Linux
kernel, we have gradually implemented additional patterns and addi-
tional information provided by the compiler and linker, as discussed in
Chapter 3.

As a result, there are currently only two (small) unmatchable pat-
terns in the Linux kernel, and none in any other program in our exten-
sive regression test suite, which consists of tens of programs compiled
for multiple target architectures and run-time environments. One of the
most important reasons is that, under separate compilation, code from
one source code module, be it compiled code or hand-written code,
cannot refer to code in other modules without a description of at least
some aspects of the reference through symbol and relocation informa-
tion. In practice, this implies that all uses of, e.g., program counters
in PIC, will only impact small pieces of code. By treating that code as
constant data, that will not be rewritten, the remaining code can still be
transformed. We do this for some parts of the kernel, as described in
Section 3.1.
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2.5 Established Compaction Techniques

In this section, we present some established link-time compaction tech-
niques. Applying these techniques to the OS kernel will be the first step
in our memory footprint reduction scheme.

Unreachable code elimination is the simplest compaction technique
that can be applied on the AWPCFG, by iteratively traversing reachable
code in the WPCFG part of the AWPCFG. To obtain good results, this
optimization needs to be performed context-sensitively such that only
realizable execution paths are considered in which calls match returns.
To eliminate inaccessible data from the AWPCFG as well, it suffices to
apply a slightly adapted reachability analysis on the AWPCFG. In this
adapted version, control flow edges coming from the unknown node
are only traversed after their corresponding data reachability edges
were traversed. A more advanced version of this analysis was pub-
lished by De Sutter et al. [DeSu01].

Besides unreachable code and data elimination, a number of more
advanced control flow optimizations can be applied as well. These in-
clude duplicate code removal [DeSu02], inlining of small procedures or
procedures with a single call site and branch forwarding. The first of
these detects whether multiple copies of a procedure or basic block are
present in a program. If there are multiple identical procedures, all
but one of them are eliminated, and calls to these procedures are re-
placed by calls to the one remaining copy. If there are identical basic
blocks, they can be outlined into a new procedure. The original occur-
rences of the blocks are then replaced by calls to the new procedure.
Note that, while duplicate code removal at procedure level does not in-
cur run-time overhead, doing the same at basic block level does. New
procedure calls have to be inserted to call the abstracted basic blocks,
and some register spills may have to be inserted. In order to limit the
performance impact of duplicate code removal at basic block level, it
is advisable to use profile information to select only those blocks for
factoring that are infrequently executed.

Next, there are a number of known data flow analyses and related
optimizations that can be applied to the compacted graph. These in-
clude conditional constant propagation and interprocedural liveness analy-
sis [Much97, Debr00, DeSu05, DeSu06]. Note that conditional constant
propagation in particular is a powerful analysis: it not only allows us
to find register values that are constant at a given program point over
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all possible executions, but it also aids in the detection of unreachable
code. During the analysis, conditional branches are handled intelli-
gently: if the available information shows that a conditional branch
will always be taken or not-taken, the propagation only follows the
relevant code path. Code paths over which no information was ever
propagated can be considered unreachable and can be eliminated from
the program.

As mentioned in Section 2.3, these data flow analyses analyze the
use of registers as if they were global variables. In general, no analy-
sis information is propagated about/through memory locations. There
are, however, a number of exceptions to this rule:

• Most importantly, the symbol information available in the object
files allows us to determine for some procedures that they re-
spect the calling conventions. If a symbol with global visibility
is attached to a procedure, that means the procedure is exported
and can be called by code from other compilation units. As the
compiler cannot know all calling contexts for such global proce-
dures, it has to generate code that abides to the calling conven-
tions. Hence, we can deduce that the callee-saved registers will
remain unchanged over calls to global procedures, even though
these registers may be saved to and restored from the stack within
the called procedure. Note that this symbol information is op-
tional. It is not needed to detect procedures correctly, but only to
derive additional information on their behavior.

• When constant propagation is able to determine that some load
instruction accesses a fixed memory location in a read-only data
section2, the data at that address can be propagated into the pro-
gram.

• The constant propagation implementation for the i386 architec-
ture in our link-time binary rewriter is capable of identifying the
stack operations used for setting up function parameters and re-
trieving them. This knowledge is exploited within the constant
propagation analysis to propagate function arguments into called
functions, thus increasing the analysis precision. This modifica-
tion to the constant propagation is described in detail by Van Put

2This is possible because statically-allocated addresses are propagated just like
other numerical constants.
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et al. [VanP07b]. A more general approach, that allows for con-
stant propagation throughout a procedure’s full stack frame, is
proposed by Schwarz et al. [Schw01], but this technique is not
implemented in our link-time rewriter.

• The load-store forwarding optimization removes redundant loads
and stores from the code. For example, if two consecutive stores
to the same address occur without an intervening load, the first
store can be eliminated. Another optimization opportunity arises
when a value is stored to memory and subsequently loaded back
without intervening stores to the same address. In this case, the
load instruction can be replaced with a register copy operation if
the value is still available in some processor register.

• Through a simple local stack analysis, implemented as a peephole
optimization, redundant push and pop instruction sequences
within a single basic block can be removed. Such redundant in-
structions occur even within a single basic block because other
link-time transformations have made them redundant. For ex-
ample, if a small (one-block) procedure is inlined into its caller,
it is possible to merge the call site, the inlined procedure and the
return site into one basic block. On the i386 architecture, where
procedure parameters are passed through the stack, the afore-
mentioned local stack analysis, combined with register renaming,
can eliminate the stack manipulations that set up the procedure
parameters and clean up the stack upon return, and instead pass
the parameters to the inlined procedure code directly in registers.

All mentioned techniques were previously studied in many user-
space contexts [Muth01, Schw01, DeSu01, DeSu02, Debr00, Mado04,
DeSu05, DeSu07]. In order to apply them to a more complex, uncon-
ventional program such as a kernel, some special precautions need to
be taken, which are discussed in the next chapter.
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Chapter 3

Challenges in Rewriting an
Operating System Kernel

In most previous link-time rewriting research, a number of assump-
tions about the code to be rewritten are made. For example, it is of-
ten assumed that only a limited number of computations take place on
code addresses, and that these computations are annotated with reloca-
tion information. While such assumptions often hold for conventional,
compiler-generated code, they do not necessarily hold for manually
written assembler code.

As the lowest layer in the software stack of an embedded system,
the operating system kernel needs to work directly with the hardware
devices. As such, the kernel needs to perform many operations that are
not easily described in higher-level programming languages. Conse-
quently, the kernel contains a lot of manually written assembler code.

This chapter presents an overview of the unconventional behavior
of that assembler code and of other OS kernel peculiarities that we have
encountered in the Linux 2.4 kernel for the ARM and i386 architectures.
For each peculiarity, we describe the countermeasures that need to be
taken to handle the kernel code conservatively during link-time rewrit-
ing, yet allow aggressive compaction. As the standard link-time opti-
mizations, described in the previous chapter, can now be applied to the
kernel, we will evaluate their impact on the kernel’s memory footprint
and performance.
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3.1 Two Address Spaces

The operating system kernel begins execution in a very early stage of
the system boot process, when the booting system is not yet fully initial-
ized. On systems with virtual memory support, one of the remaining
initialization tasks is to turn on the memory management unit (MMU)
of the processor. Before this is done, all code runs in the physical ad-
dress space. All code that is executed after the MMU is enabled runs in
a virtual address space.

Ordinary linkers typically do not support two different address
spaces in the same program. This problem is circumvented by the
Linux kernel developers with some clever manual assembler program-
ming. In particular, the pre-MMU code is written in assembler, and
all addresses appearing in this code are manipulated to trick the linker
into producing the correct physical addresses. This is possible because
both the physical and the virtual addresses of the pre-MMU code are
known beforehand, so the difference between the virtual address of
an instruction as assigned by the linker and the physical address at
which it will be executed is a known constant. The kernel developers
then explicitly subtract this offset from the linker-generated addresses
whenever an absolute physical address is needed. This trickery exploits
a deep knowledge of internals of the linker being used (the standard
GNU linker ld), and of its simplicity or, in other words, of its lack of
complex analyses and transformations.

Unlike the simple GNU linker, a link-time program rewriter is not
limited to relocating addresses in the generated executable. Instead,
it will also try to optimize the address computations. Consequently,
the assembler code manipulations used to trick the standard linker into
generating the correct addresses for this pre-MMU code will no longer
work. Instead, they will confuse a standard link-time optimizer and re-
sult in faulty optimization of the address computations. To circumvent
this, countermeasures need to be taken.

Fortunately, the amount of code that is executed in the physical ad-
dress space is small compared to the other code. For example, on the
ARM platform it is only 540 bytes large. Moreover, the code executed
in the physical address space is easily identifiable, as all of this code
is defined in one source code file (arch/arm/kernel/head.S). As such,
the simplest way to deal with this problem is to exclude this code from
all optimizations by simply treating it as a data section in the AWPCFG.
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Because of the relatively small amount of code involved, the negative
impact on the obtained compaction results is negligible.

3.2 Initial Page Tables

The memory management unit stores the virtual-to-physical address
mappings in page tables, which are blocks of memory, typically 4 KiB
in size. The initial page tables, which are used during the first stage of
booting, are statically allocated in the Linux kernel. On the i386 plat-
form, these initial page tables are stored as a data block within the ker-
nel’s code section.

While link-time rewriters usually know how to deal with data
blocks occurring in the code section (this is a very common situation
on several architectures, e.g., the ARM), these page tables introduce
several problems. Firstly, link-time rewriters typically assume that
data blocks in code sections can be placed more or less randomly,
without any special alignment requirements. This is not the case here,
as the page tables have to be aligned at a 4 KiB boundary. If they
are not aligned correctly, the system will crash. We have solved this
problem by replacing the standard layout algorithm of our link-time
rewriter with one that first places the initial page tables at the correct
address, and only then places all other code and data around them.
Secondly, link-time rewriters traditionally consider the code sections
of a program to be read-only (assuming the program does not contain
self-modifying code), and as such the constant propagation analysis
in our link-time rewriter will propagate values produced by constant
loads in the code sections into the program. The initial page tables are
not read-only, even though they appear in the code section. Conse-
quently, constant propagation will produce faulty results when loads
from the page tables are encountered. Therefore, we have modified our
link-time rewriter’s constant propagation algorithm to disregard loads
from the initial page tables.

3.3 Initialization Code and Data

During the boot process, the kernel sets up the system and initializes a
number of data structures and hardware devices. Most of the code and
data structures used during this initialization process become useless
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afterwards. But unless countermeasures are taken, they keep occupy-
ing memory.

To avoid this, the Linux kernel developers annotate such initializa-
tion code and data, and instruct the compiler and linker to put them
into separate code and data sections, the so-called init sections. Once all
initialization is done, the kernel releases the virtual memory pages on
which the init sections reside, thus freeing the memory they occupied.

During the analysis and optimization phase of the link-time rewri-
ter, all code sections of the kernel are joined in a single AWPCFG, and
compacted as a whole. Compaction techniques such as code factor-
ing and branch elimination can make it unclear whether a basic block
should belong to the initialization sections or not. During the layout
phase, when the control flow graph is transformed into a linear rep-
resentation, the link-time rewriter must therefore decide which code
belongs in the init sections. It is important that no code ends up in the
init sections by mistake, as that would mean it disappears from mem-
ory after initialization, while it may still be needed afterwards. On the
other hand, the optimizations should not cause too much code to be
transferred from the init sections to the regular code section. Doing
this may result in a smaller overall code size (which is good if optimiz-
ing the static ROM footprint is the goal), but it would also result in a
larger resident code size after initialization (which is bad if optimizing
the RAM footprint of the kernel is the goal).

Our link-time rewriter marks all AWPCFG nodes that originally
came from init sections. The markings have to be kept up to date:
if duplicate code removal merges two code fragments, the resulting
procedure may only be marked as init code if all of the original code
fragments were init code as well. In general, to achieve the best RAM
footprint reduction, the link-time optimizations should prioritize size
gains in the non-initialization sections over size gains in the initializa-
tion sections. For example, if duplicate code removal discovers n iden-
tical basic blocks, of which n − 1 are initialization code, it will exclude
the one non-initialization basic block from the factoring. Otherwise, the
factored-out function would have to be placed in the non-init sections,
so the non-initialization code size would increase, even though the to-
tal code size decreases. If the optimization goal is reducing the kernel’s
ROM footprint, the link-time optimizer should clearly not make the
same prioritization. In that case, it is better to reduce the kernel’s over-
all code size, at the cost of more RAM usage afterwards. In the cases
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where such a decision had to be made, we have chosen to optimize for
RAM footprint over ROM footprint. In the layout phase, our rewriter
takes care to place the marked basic blocks back in the init code section.

3.4 Manually Written Assembler Code

Besides the physical address space initialization code, there are numer-
ous other occurrences of manually written assembler code in the ker-
nel. Procedures written in assembler code do not always adhere to the
calling conventions or the ABI of the target platform, even though they
may be exported to other source code modules. This is the case when
all call sites of a manually written assembler procedure are written in
assembler as well. In such cases, the kernel developers have full con-
trol over the parameter passing mechanism that they want to impose.
When such developer-imposed conventions differ from the standard
conventions, the involved, exported procedures violate the assumption
put forth in Section 2.5 that exported procedures always respect the ar-
chitecture’s calling conventions.

In theory, there are three ways to treat such unconventional assem-
bler code conservatively. The simplest option is to neglect the existence
of calling conventions altogether. If no program analysis assumes that
calling conventions are maintained, no analysis will produce incorrect
results where the conventions are not maintained. However, this op-
tion is not viable, because there are many cases in which assumptions
about the calling conventions do yield useful information, such as with
the propagation of data flow information of callee-saved registers, as
mentioned in Section 2.5.

The second option to deal with code that does not maintain calling
conventions consists of using code inspection to detect such code. The
detected fragments can then be differentiated from conventional code
in all program analyses. We do not find this to be a viable option either,
because detecting whether or not a procedure’s stack behavior respects
the calling conventions would be either very complex (due to the prob-
lems of aliasing memory accesses [Debr98]) or too imprecise [Linn].

This leaves us with the third option, in which the compiler informs
the link-time rewriter of all manually written assembler code. This re-
quires patching the compiler tool chain with which the kernel is com-
piled. Fortunately the required patch is extremely simple.
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For the GCC tool chain, for example, a 3-line patch to GCC’s specs
file (that specifies the configuration of the tool chain) forced the GNU
compiler to add two mapping symbols to the generated object code for
each piece of inline assembler code. In particular, a label $handwritten
is now added at the beginning of all inline assembler code fragments in
the generated object files, and a label $compiler-generated is added
at the end of each inline assembler fragment. These mapping symbols
are a common concept in tool chains. For example, the ARM ABI re-
quires compilers to add mapping symbols to indicate which parts of
the code section contain ARM code ($a), Thumb code ($t), or data ($d).
These mapping symbols are needed by the linker to produce a correct
executable.

Furthermore, each object file produced by the GCC tool chain for
ELF targets contains the name of the source file it was generated for.
Hence full assembler files (such as head.S) can be detected at link-time
by looking at the extension of the source code file name (“.S” or “.s”).

During the link-time rewriting of the kernel, each procedure of
which the labels or source file name indicate that it contains manually
written assembler code, and of which all call sites are also written di-
rectly in assembler code, is treated as an unconventional procedure,
i.e., a procedure not respecting the calling conventions. Note that these
unconventional procedures can still be analyzed and optimized, the
link-time rewriter just assumes they do not adhere to the calling con-
ventions, and hence computes less precise, but still conservative, data
flow information on them.

In the Linux kernel configured for our ARM test platform this solu-
tion allows us to assume that 1720 out of 3925 procedures respect the
calling conventions. Only 9 global procedures need to be treated as un-
conventional because they are written in and called from hand-written
assembler code. For our i386 test platform we can assume adherence to
the calling conventions for 1717 out of 4939 procedures, and 120 global
procedures are treated as unconventional on account of being written
in and called from hand-written assembler code.

3.5 Memory-mapped Input/Output

In many cases, the kernel communicates with peripheral devices by
means of memory-mapped I/O: by writing to or reading from special
memory locations the kernel can issue commands to or read data from
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these devices. Obviously, memory accesses to these memory-mapped
I/O addresses have very different properties from accesses to regular
memory. For example, two successive reads from the same memory lo-
cation without an intervening write are usually expected to return the
same value. For memory-mapped I/O addresses this is not necessarily
the case. This means that optimizations like load-store forwarding that
reorder or even remove memory operations are not allowed on mem-
ory accesses that implement memory-mapped I/O.

In practice, it is virtually impossible to distinguish regular mem-
ory accesses from I/O memory accesses at link time. Only memory
accesses relative to the stack pointer (or to registers whose value was
derived from the stack pointer) are guaranteed to be regular memory
accesses. Consequently, we modified our link-time rewriter to only per-
form memory access related optimizations on stack accesses.

3.6 Special Instruction Sequences

Besides special privileged mode instructions that do not occur in user-
space applications, the Linux kernel contains some sequences of seem-
ingly innocuous instructions that require special treatment. Usually,
these sequences depend on the micro-architectural side-effects of in-
structions to influence the processor operation on a level that is nor-
mally hidden from the application programmer. For the i386 Linux 2.4
kernel there are two such sequences:

• Writing to the processor’s control registers:

mov %cr0, %eax
orl $0x80000000, %eax
mov %eax, %cr0
jmp <next>

<next>: ...

This instruction sequence enables the processor’s memory man-
agement unit, switching the execution context from physical to
virtual address mode. The first three instructions set the pag-
ing bit in the appropriate control register. The jump instruction
flushes the processor’s prefetch queue to ensure all subsequent
instructions are interpreted in the new processor context. This
jump does not alter control flow and only appears in the sequence
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because of its side-effect. A regular link-time optimizer would
not take this side-effect into account and would remove the jump
from the program. We modified our link-time rewriting frame-
work to let it check whether or not such a seemingly useless jump
is preceded by an instruction that alters a control register. If this
is the case, the jump instruction is marked as having a side-effect
and will never be removed.

• The BUG sequence:

ud2
<source line number encoded as 2-byte int>
<pointer to source code file name>

This sequence is used to signal bugs in the kernel code. The
ud2 instruction causes an “undefined instruction” exception. The
exception handler then uses the address of the instruction that
causes the fault to locate the source code file and line number in-
formation that is printed on the console, after which execution is
terminated.

There are no explicit references to the source code information
immediately following the ud2 instruction, so normally the link-
time rewriter would consider this data to be unreachable and re-
move it from the kernel. We have adapted our link-time rewriter
so that it adds a data reference edge from the ud2 instruction to
the source code data. As long as the instruction is reachable, the
data will remain reachable as well. During the control flow graph
linearization phase, special care is taken to place the data imme-
diately after the ud2 instruction.

For the ARM Linux kernel, there are three special sequences:

• The cpwait instruction sequence:

mrc p15, 0, r1, c2, c0, 0
mov r1, r1
sub pc, pc, #4

This instruction sequence makes sure that, after a write to the
system control coprocessor (the equivalent of the i386’s control
registers), all following instructions are interpreted according to
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the new processor state. The first instruction reads some random
value from the coprocessor and the second instruction forces the
processor to stall until this read is completed, thus ensuring that
the coprocessor write instruction is completed before execution
continues. In other contexts, the second instruction would be use-
less as it does not change the visible processor state. The third
instruction executes a jump to the next instruction, which flushes
the processor pipeline. Again, this instruction would normally be
considered useless as it does not alter the control flow.

• The cpwait ret sequence combines cpwait with a function re-
turn:

mrc p15, 0, r1, c2, c0, 0
sub pc, lr, r1, lsr #32

The mov and sub instructions from the previous sequence are now
combined into a single instruction that subtracts 0 from the link
register lr (which holds the return address) and stores the result
in the program counter pc. A good link-time optimizer would
note that shifting a 32-bit value right over 32 positions results in
0 and would replace the sub instruction with mov pc, lr. By re-
moving the dependency of this instruction on r1, the processor
would no longer need to stall, resulting in potential execution er-
rors.

• D-cache initialization on the PXA250 processor:

bic r0, pc, #0x1f
add r1, r0, CACHESIZE

<loop>: ldr r2, [r0], #32
cmp r0, r1
bne <loop>

The first instruction copies the program counter in r0 and zeroes
the lowest five bits. Subsequently a loop is executed that loads
some values into r2 that will never be used, which makes the
load instruction in this loop a prime candidate for elimination af-
ter register liveness analysis is performed. The real purpose of
this loop is to initialize the data cache on the processor, and this
effect would be lost if the load instruction were eliminated from
the kernel. While it may seem useless to initialize the data cache
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by filling it with random data from the code section, this code is
necessary as a workaround for a cache bug in the PXA250 proces-
sor.

Again, we have modified our link-time optimizer to recognize these
sequences and mark them as having side effects, thus ensuring that
they will not be altered during the optimizations.

3.7 Exception Handling

Apart from the explicit control flow through jump and call instructions,
there is also implicit control flow caused by processor exceptions. For
user space programs, processor exceptions (e.g., page fault exceptions)
are handled transparently by the OS kernel, and as such they can safely
be ignored by link-time rewriters. When an exception occurs within the
kernel code itself, it has to be handled explicitly, which implies that our
link-time rewriter has to take it into account.

3.7.1 Exception Handling in the Linux Kernel

The Linux kernel contains a list of all instructions of which the develop-
ers expect they can raise exceptions. Mostly, this concerns loads from
or stores to user space memory, as page faults can occur upon execu-
tion of the load or store. Memory accesses to kernel memory will never
cause page faults as the kernel memory is never swapped out. This
list is stored in the ex table section, and it can be perceived as a two-
column list: the first column contains the address of the instruction that
possibly raises an exception, the second column stores a pointer to the
so-called fixup code for this instruction. The fixup code carries out the
appropriate actions in case an exception occurs, like for example setting
an error code in a register.

The kernel contains a generic exception handler that is invoked
whenever a processor exception arises. The handler then looks up the
address of the faulting instruction in the ex table section and trans-
fers control to the appropriate fixup code. If the faulting instruction is
not listed in the table, an unexpected situation has occurred and the
kernel aborts execution with an error message. If the generic handler
passes control to a fixup code fragment, it takes care to restore the orig-
inal processor context first, so to the executing thread it appears as if
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control has transferred transparently from the faulting instruction to
the fixup code. This allows us to leave the generic handler out of the
control flow modeling without introducing inaccuracies in the graph.

3.7.2 Challenges for a Link-time Rewriter

This approach to exception handling brings about several problems for
a link-time binary rewriter:

• Using only the rules described in Section 2.3, the link-time re-
writer would model the exceptional control flow incorrectly. Fig-
ure 3.1 illustrates this. In part (a) we see the naı̈ve modeling of the
exceptional control flow. Both the instruction that can potentially
raise an exception and the fixup code have an incoming control
flow edge from the unknown node because both are referred to
from the ex table section. This is overly conservative: the ref-
erences in the first column of the exception table will never be
used for indirect control flow and as such the corresponding con-
trol flow edge is superfluous. We also see that there is no indi-
cation in the control flow graph that control can branch from the
faulting instruction to the fixup code. This is definitely incorrect,
as it violates the rule that a conservative control flow graph al-
ways represents a superset of all possible execution paths. Part
(b) of the figure shows the ideal modeling of the control flow. For
this, a special type of control flow edge is introduced, the excep-
tion edge, that directly connects the potentially faulting instruction
with the corresponding fixup code. In this representation, which
was proposed by Rajagopalan et al. [Raja06], there is no need for
the unknown node, and as such it is very precise. As our link-
time rewriter does not support this concept of exception edges,
we have opted for a more conservative, but still correct, model-
ing, which is shown in part (c) of the figure. The exception edge
is replaced with a control flow edge to the unknown node, and
the fixup code keeps its incoming edge from the unknown node.

• Analyses and optimizations need to be aware of the exception
handling situation. For example, duplicate code removal should
not factor out two identical-looking procedures that have non-
equivalent fixup fragments associated with them.

• Whenever an exception arises, the execution of the instruction
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(a) naı̈ve modeling

(b) ideal modeling

(c) conservative modeling

Figure 3.1: Control flow graph modeling of the exception handling mecha-
nism of the Linux kernel.
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that caused the exception is canceled. This is something that anal-
yses should take into account: when propagating information
over an exceptional control flow path, they should consider the
faulting instruction to be unexecuted. When propagating infor-
mation over the regular execution path, the instruction has to be
considered executed. This is mainly important for link-time bi-
nary rewriters that use the ideal modeling of exceptional control
flow. The modeling we used is not susceptible to this problem,
as the control flow path leading to the fixup code passes through
the unknown node, which means that analyses have to assume
worst-case properties for this path, and all information propa-
gated over this path is lost.

• The generic exception handler looks up the address of the faulting
instruction in the ex table section through binary search. This
means the entries in the section have to be in sorted order. There
is however no guarantee that the kernel code will be laid out in
the original order after the rewriting is done. Therefore we have
modified our rewriter so that it sorts the entries in the ex table
section after the graph linearization phase of the rewriting pro-
cess is completed.

3.8 Evaluation

Once the link-time binary rewriter is adapted to support all aforemen-
tioned kernel code peculiarities, it can be used to apply the standard
link-time optimizations described in Section 2.5 to an OS kernel. In this
dissertation we will use two test systems to perform the evaluation of
all proposed techniques. In this section, we will first describe the two
test configurations in detail, and then we will evaluate the impact of
the standard link-time optimizations on the memory footprint and per-
formance of the kernel.

3.8.1 Evaluation Environment

For the evaluation, we have used two different Linux systems, one
based on the i386 architecture, the other one based on the ARM archi-
tecture.

Our i386 system has a Pentium III processor, with 64 MiB of RAM,
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an IDE hard disk and a Fast Ethernet network card. The Linux kernel
is a vanilla 2.4.25 kernel, configured without module support and with
only the necessary drivers for this system. Compilation was done with
GCC 3.3.2.

Our ARM system is an Intrynsic CerfCube 255, with a PXA255 XS-
cale processor, with 64 MiB of RAM, 32 MiB of Flash storage and a Fast
Ethernet network connector. The Linux kernel is a 2.4.19 kernel, with
patches supplied by the device manufacturer. The kernel is also con-
figured without module support and with only the necessary drivers.
Compilation was done with GCC 3.2.

For both kernels, the compiler was instructed to optimize for code
size (optimization flag -Os). All other build options were left at their
standard values.

Both systems have an identical user space configuration that ap-
proximates the firmware of an internet home gateway (e.g., the Linksys
EtherFast Cable/DSL router), with native address translation (NAT)
features enabled in the kernel configuration and a dynamic host con-
figuration protocol (DHCP) client (for acquiring an IP address from the
Internet service provider) and server (for assigning IP addresses to the
systems on the local network) and a simple web server to allow for
browser-based configuration of the device.

These kinds of devices commonly use Linux-based firmware, so
this is a realistic case study. The user space software is based on Busy-
box 1.4.21. This is a so-called multicall program that performs different
functions depending on the name by which it is called. It is used in al-
most all embedded Linux systems because it provides a very compact,
but complete user space environment. On our test systems, Busybox
acts as init, as a shell, as a number of other necessary system utili-
ties and even as the web server and DHCP client and server. Busybox
is statically linked against uClibc2, an embedded C library that is also
engineered for small code size.

To assess the performance impact of the applied transformations on
the resulting kernel, we use LMbench 2.0.4 [McVo96], a cross-platform
benchmark suite for Unix-like operating systems that measures various
aspects of the kernel’s performance, like system call performance, inter-
process communication bandwidths and latencies and context switch-
ing times.

1http://www.busybox.net/
2http://www.uclibc.org/

http://www.busybox.net/
http://www.uclibc.org/
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3.8.2 Impact on Kernel Footprint

Table 3.1 shows the impact of the standard link-time optimizations on
the kernel memory footprint for our two test systems. All sizes in the
table are in kibibytes. In each row, the technique mentioned in the left-
most column is applied in addition to the techniques mentioned in the
rows above. The bottom two rows show results with restricted dupli-
cate basic block elimination. These will be discussed later on. Columns
two and three present the sizes of the non-initialization code and data
sections of the kernel. The data size includes the read-only, writable
and zero-initialized data sections. The next two columns present the
sizes of the initialization code and data sections. The next column
shows the size of the resulting vmlinux image (the uncompressed ker-
nel image), in which the zero-initialized sections occupy no space. The
seventh column shows the size of the corresponding compressed ker-
nel image file. The last two columns show the kernel’s static RAM foot-
print, respectively during and after system initialization.

The inclusion of both uncompressed and compressed image sizes in
the table merits some further explanation. In the first instance, the out-
put of the Linux build process is an uncompressed kernel image called
vmlinux. This is a regular ELF executable file, just like a user space
program. It is on this representation that the link-time optimizer will
apply its optimizations. On some systems, particularly those that use
execute-in-place (XIP) technology to execute the kernel directly from
Flash memory, the vmlinux image is placed in ROM and as such the
size of this image is equal to the kernel’s static ROM footprint on these
systems. However, it is customary to append another step to the Linux
build process, in which the kernel is transformed into a self-extracting
compressed image, called zImage or bzImage depending on the target
architecture. The compression is performed with the well-known gzip3

compressor, and a small decompressor is attached to the compressed
image that will reconstruct the original vmlinux image in memory at
boot time. In this way, the kernel’s static ROM footprint can be signif-
icantly reduced, at the cost of precluding XIP techniques. For systems
where this extra compression step is used (which is the case for most
current-day systems), the static ROM footprint is shown in the com-
pressed image size column of the table.

3http://www.ietf.org/rfc/rfc1951.txt

http://www.ietf.org/rfc/rfc1951.txt
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General Discussion

Applying well-known, general purpose link-time compaction tech-
niques to the kernel results in a reduction of the static RAM footprint
after initialization of about 10% on the ARM and 11.1% on the i386 plat-
form. Approximately half of this gain can be attributed to unreachable
code and data elimination. Given the size of the Linux kernel source
base this does not surprise us. Any large project that has evolved over
a long period of time is bound to contain unreachable code and inac-
cessible data. It does however indicate that there is still some margin
for improving the kernel configurability, through which unused code
should normally be excluded.

It should be noted that some of the size reductions obtained with
unreachable code and data elimination can in theory also be achieved
by simply compiling the kernel with the compiler optimization flags
-ffunction-sections and -fdata-sections, and linking the result-
ing object files with the --gc-sections flag. These flags instruct the
compiler to place every procedure and every global variable in its own
section. The linker can then remove all unreferenced sections from the
final binary. This is somewhat similar to our link-time compactor’s un-
reachable code elimination, albeit at a coarser granularity. Moreover,
invoking these compiler flags deteriorates the quality of the generated
code, as the compiler can perform less address computation optimiza-
tions. A true link-time optimizer obviously does not suffer from this
drawback.

Most of the other gain, especially on the i386, comes from duplicate
code removal. Duplicate code removal gains at the procedure level re-
sult from the fact that there are a lot of similar procedures in the ker-
nel, that operate on superficially different data structures (e.g., a list
of pointers to virtual memory pages versus a list of pointers to open
files), from cut-and-paste duplication by the developers, and from the
fact that the GCC compiler does not always honor the inlining requests
of the programmer. This last cause merits some more discussion. In
the Linux kernel, a number of procedures are defined in header files as
static inline. If these are inlined properly, the compiler optimiza-
tions are able to remove large parts of these procedures through spe-
cialization because the exact calling context for each inlined instance is
known. The GCC compiler does not always perform this inlining how-
ever, and as a result these procedures appear several times throughout
the kernel code in their original, non-specialized form.
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Duplicate code removal gains at the basic block level result from
similar procedures in the kernel that differ enough to be unsuitable
for procedure-level factoring, but have a number of basic blocks that
are identical. The other major source of opportunities for basic block
factoring comes from the use of inline assembler macros in the source
code. These macros, that implement things like copying a value from
user space memory to kernel space, appear quite frequently, and are
always inlined into their callers.

The other whole-program compaction techniques implemented in
Diablo add another 1.6% to the obtained compaction for the ARM, but
amount to practically nothing for the i386. This is because most of the
analyses treat memory as a black box. As the i386 architecture lacks suf-
ficient user-visible registers, almost all computations involve the stack.
This makes the data flow analyses very imprecise.

It may seem remarkable that none of the transformations have an
impact on the size of the data sections for the ARM kernel, while they
are capable of removing almost 10% of the same data on the i386. The
reason is simple however: all read-only data is incorporated into the
code section on the ARM, and is thus counted as code. On the i386
this data resides in a separate section and is counted as data. The com-
paction techniques typically have much more impact on the read-only
data sections than on mutable data sections, which explains the very
small impact of the compaction techniques on the ARM data sections.

Impact on Compressed Image Size

It is clear that the gains obtained for the compressed image size are
somewhat disappointing. For the i386 architecture, unreachable code
and data elimination reduces the size of the compressed image by 3%,
but duplicate code elimination reduces this gain to 2.5% even though
the size gain for the uncompressed image nearly doubles from 6.5%
to 12.1%. For the ARM architecture, the results are even stranger: de-
spite reducing the uncompressed image size with 8.4%, unreachable
code and data elimination slightly increases the compressed image size.
Subsequent optimizations offer no substantial improvement: the total
compressed image size reduction amounts to 0.1%.

To some extent the difference between uncompressed image size re-
duction and compressed image size reduction is understandable. Gzip-
ping, like any compression technique, reduces the amount of redun-
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dant information in a byte stream. Compaction techniques such as du-
plicate code removal also remove redundancy from a program, albeit
on a different level. In fact, duplicate basic block removal even de-
creases the compressibility of the remaining code by replacing easily
compressible information (identical pieces of code) by information that
is much harder to compress (calls to the extracted procedure, which
all contain different relative displacements). Duplicate code removal at
the procedure level does not have the same detrimental effect, as it does
not involve the insertion of additional, hard-to-compress function call
instructions in the program code. Instead, duplicate procedure elimi-
nation only replaces calls to one function by calls to another function.

To quantify the effect of duplicate basic block elimination on the
compressibility of the kernel image, we applied all compaction tech-
niques, minus the duplicate basic block elimination. The resulting total
compaction is presented on the last row of Table 3.1(a) and (b). These
results confirm our argumentation, as disabling duplicate basic block
removal improves the compressed image size by 1.8% on the i386 and
by 0.4% on the ARM, even though the uncompressed image sizes in-
crease significantly.

The viability of duplicate basic block elimination hence depends on
one’s optimization target. When the goal is reducing the static RAM
footprint, this optimization should certainly be applied. If the goal is
reducing the compressed image’s size however, this transformation is
best disabled.

While the effect of duplicate basic block elimination completely ac-
counts for the increase of the compressed image size for the i386 test
system, this is clearly not the case for the ARM system. Here, the
gzipped image already grows when the unreachable code and data is
removed from the kernel, notwithstanding the fact that the correspond-
ing uncompressed image was reduced with 8.4%. The only difference
between this kernel image and the original one is that the unreachable
code and data have disappeared from the image and that the code and
data layout has changed. To understand this result, we have examined
a large number of regular ARM programs (from the SPEC and Media-
Bench benchmark suites), on which we applied several different code
and data layout algorithms before gzipping them. Although we always
observed a similar behavior, we have until this day not been able to
pinpoint precise causes of this behavior, as we have not observed any
systematic relation between code layout properties (such as average
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Figure 3.2: Performance degradation for the LMbench benchmark suite.

branch displacement) and compressibility. Consequently, this remains
an open, and in our opinion, very intriguing question.

3.8.3 Impact on Kernel Performance

As the focus of our research is memory footprint reduction, our link-
time rewriter does not include optimizations specifically targeted at
execution speed improvement. Therefore, we do not expect significant
speedups in the rewritten kernels. However, we also want to avoid ex-
cessive slowdowns caused by the applied optimizations. In theory, the
only applied optimization that can cause significant slowdowns is the
duplicate basic block removal, as this transformation introduces extra
function calls and potentially extra register spills and restores in the
kernel. However, it is possible to limit the performance impact this op-
timization causes by using profile information to guide the basic block
factoring process. Therefore, we have gathered such profile informa-
tion, and we will evaluate in which way it impacts the kernel’s execu-
tion speed and the attainable memory footprint reductions. How the
profile information is collected will be discussed in Appendix A.

The graph in Figure 3.2 shows the performance degradation of the
rewritten kernels with respect to the original kernels. Positive bars cor-
respond to slowdowns, whereas negative bars indicate speedups. For
each microbenchmark we show results for the i386 and ARM kernels,
with all optimizations enabled, with and without profile information to
guide the duplicate basic block elimination.
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Without profile information, the average performance degradation
is 2.4% for the i386 kernel and 1.5% for the ARM kernel. With profile
information, the i386 kernel experiences a marginal speedup of 0.1%,
while the average slowdown of the ARM kernel is reduced to 0.3%. As
can be seen in the next-to-last row of Table 3.1 (a) and (b), the restricted
duplicate basic block elimination reduces the memory footprint gains
with at most 0.1%. As such, it is clearly advisable to use profile infor-
mation to guide the basic block factoring process, as this significantly
reduces the performance impact without severely restricting the attain-
able memory footprint gains.
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Chapter 4

Specialization for a Known
System Configuration

Embedded devices often have known, fixed hardware and a fixed set
of user space applications. Examples of such fixed-function systems are
the Linksys WRT54GL wireless Internet gateway1 and the TiVo digital
TV recorder2, both of which run the Linux kernel. For these systems, it
is known a priori which kernel functionality is required, and which is
not.

The built-in configuration capabilities of the Linux kernel allow
the system designer to select the required hardware drivers semi-
automatically. While this driver selection can be done at a very fine-
grained level, it can only be used to omit drivers (and some other
functionality) from being compiled and linked into the kernel image.
In most cases, this built-in configuration does not allow the remaining,
selected parts of the kernel to be optimized for a selected configuration.
For example, even though there may be no need to provide boot-time
command-line parameters for some driver on a particular system, it is
not possible to omit the code for handling such command-line parame-
ters automatically. Hence there is no automated method for optimizing
the driver for its default parameter values, let alone for other, fixed val-
ues. While a user of a general-purpose computer might be interested in
booting the kernel with different command-line parameters, this rarely
is the case for embedded systems. On PDAs, mobile phones, and other
such embedded systems, the user is most often not supposed to influ-

1http://www.linksys.com/
2http://www.tivo.com/

http://www.linksys.com/
http://www.tivo.com/
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ence the boot process at all. Therefore, there is no reason to retain the
command-line kernel configurability for such systems, or indeed to re-
tain the overhead that results from the lost optimization opportunities.
On embedded systems running Linux, manual techniques are typically
used to remove this overhead.

With respect to the software needs, a fine-grained configuration is
not at all available in the standard distribution of the Linux kernel.
For example, most of the system calls implemented in Linux cannot
be omitted with the standard build-time configuration, even though
they may not be needed on specific systems. The system calls include,
for example, different versions of calls that correspond to different ver-
sions of the standard GNU C library implementation. Such system
calls are included for backward compatibility, but on a system with
fixed software, including a fixed C library, it is perfectly well known
which versions of such system calls are required. Furthermore, most
embedded systems are not as general-purpose as the standard kernel,
and hence embedded systems often do not require all the functionality
that the kernel exposes to user space through system calls. It should
be noted that specialized, commercially supported distributions of the
Linux kernel exist (e.g., LynuxWorks Bluecat, Montavista Linux) that
allow more fine-grained configuration. However, this configurability
is introduced manually, which means it has to be reintroduced, or at
least updated, for every new release of the Linux kernel these distribu-
tions support.

In this chapter, we propose and evaluate link-time kernel com-
paction and specialization optimizations based on a known hardwa-
re/software configuration and a fixed boot process. The major benefit
of applying these techniques at link time is that they do not require
the source code to be changed, and that the specialization they offer
hence does not complicate the maintenance of the kernel source. Fur-
thermore, as the kernel-specific specializations are applied at link time,
they can cooperate seamlessly with the existing link-time program
transformations discussed in Section 2.5. Again, we focus on the Linux
2.4 kernel, but variations on these techniques are applicable to other
operating systems as well.

Note that the proposed techniques remain applicable for devices
whose functionality may change during their lifetime due to firmware
upgrades that add new features or refine current ones. Usually, such
firmware upgrades replace all the software on the device at once, in-



4.1 System Call Elimination 55

Figure 4.1: Kernel system call handling.

cluding the OS kernel. For each firmware version, an appropriate ker-
nel specialized for the exact software configuration can be included in
the firmware image.

4.1 System Call Elimination

The first kernel specialization technique concerns the removal of un-
used system call handlers. In Linux, all system calls are identified with
an integer. Where a system call occurs in the code of a user-space appli-
cation, this number is either encoded literally in the system call instruc-
tion or it is passed from user-space as the first parameter of the system
call. The kernel then uses this number to index the system call handler
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table, from which it loads the address of the corresponding handler, to
which control is then transferred.

Figure 4.1 illustrates the system call handling mechanism of the i386
Linux kernel. When an application issues a system call, the processor
invokes a generic system call handler in the kernel. This generic han-
dler then delegates the work to dedicated system call handlers based
on the system call number (which is passed in register %eax). This ded-
icated handler is found by using the system call number as an index
into the system call handlers table.

Because each dedicated handler’s relocatable address is stored in
this table, the AWPCFG includes a data reachability edge from the ta-
ble to the handler, and a corresponding control flow edge from the un-
known node to the handler. These edges keep the handler reachable
in the kernel, even if the system call handler might not be called from
within the kernel itself. For all system calls that are not used by any
user space program, we remove the data reachability edge and the cor-
responding control flow edge from the AWPCFG. As a result, if a han-
dler is not reachable in any other way from within the kernel, it will
become unreachable in the AWPCFG, and the unreachable code and
data elimination discussed in Section 2.5 will eliminate it. If the han-
dler is reachable in any other way, either because it is called directly or
because its address is stored in some other data structure in the kernel,
other edges in the AWPCFG will keep the handler reachable.

In short, the only additional feature needed to implement this spe-
cialization in a link-time kernel rewriter is the possibility to gather
a list of unused system call numbers, to identify the table at the
sys call table symbol, and to nullify the unused entries by removing
the appropriate AWPCFG edges.

To collect the list of system calls that can be eliminated, one has to
analyze all programs that will be installed on the embedded system.
For architectures like the ARM, where the number of the system call is
encoded literally into the system call instruction, this is trivial: it suf-
fices to find all system call instructions and disassemble them to gen-
erate a list of reachable system calls. On an architecture like the i386,
where the system call number is passed in a register, constant propa-
gation is needed to determine the value of this register at each system
call instruction. To be conservative, we need to assume that all system
call handlers can be called as soon as the system call number of one sys-
tem call cannot be determined by the constant propagation. In practice,
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we have found this not to be a problem, as a basic link-time constant
propagation of register values was able to resolve all system calls in a
large number of benchmarks that were linked against two different C
libraries (glibc and uClibc) for the i386.

If not all user space programs are known a priori, this automated
specialization may still be useful. On many systems, the installed sys-
tem libraries are known beforehand. When applications are only al-
lowed to perform system calls through these libraries, for example for
security reasons, it is sufficient to analyze only these libraries.

4.2 System Call Specialization

After the unused system call handlers have been removed, the remain-
ing ones can be specialized for known parameter values. By perform-
ing a constant propagation analysis on all user space programs, it is
possible to determine all possible values for some of the system call pa-
rameters. This collection of known parameter values can be done along
with the detection of used system calls as discussed in the previous sec-
tion.

In the link-time rewriter, the collected information is used to im-
prove the precision of the conditional constant propagation. As illus-
trated in Figure 4.2, the additional information can be injected in con-
stant propagation without adapting the analysis code. It suffices to
temporarily wrap the system call handler in a new procedure that sets
up the known system call parameters before performing the actual call
to the handler. In the example shown in the figure, we were able to
determine all values for two parameters of the open system call: the
second parameter always takes value 1, the third parameter can be 3 or
5. In the wrapper function, there is a code path for each possible combi-
nation of the parameter values, and on each path the known parameters
are set up and the handler is called. For unknown parameter values, a
random register is pushed onto the stack, as the registers will always
contain unknown values because the wrapper procedure is called from
the unknown node.

System call specialization is mainly useful for removing argument
validity checks from the system call handlers and for removing func-
tionality from multiplexed system calls. A multiplexed system call is
one that performs completely different actions depending on the value
of one of its arguments, for example, the ioctl and socketcall system



58 Specialization for a Known System Configuration

Figure 4.2: Information about constant system call parameters can be sup-
plied to constant propagation through a wrapper procedure.
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calls. If the value for the command argument is known for all invoca-
tions, system call specialization can remove the code paths associated
with the never-invoked actions from the system call handler.

4.3 Command-line Specialization

The Linux kernel is configurable at boot time through the so-called ker-
nel command line. This command line, which is a string passed to the
kernel by the boot loader, consists of a number of (parameter, value)
pairs. These parameters, which correspond to global variables in the
kernel, can sometimes be set at run time as well. In many cases the user
has no control over the boot process of an embedded system, and there
is often no desire to ever change the values of these parameters at run
time.

Figure 4.3 shows the AWPCFG fragment corresponding to the ker-
nel’s implementation of this feature. The parse commandline proce-
dure splits the command-line string in (parameter, value) pairs and
passes them to the process arg procedure. In this procedure, the
param handlers table is scanned, and if a match for a parameter name
is found, the appropriate handler is called with the parameter value as
an argument. The handler (for example set debuglevel) then sets the
corresponding kernel variable, to be used later on during the execution
of the kernel, for example in some function.

There are two main specialization opportunities associated with
this boot-time parameter feature. First, if the kernel command line
that will be used on the device is known in advance and cannot be
changed during the lifetime of the system, we can eliminate all unused
parameter handlers from the param handlers table. The developer
specifies the desired kernel command line to our link-time binary re-
writer, which parses this command line and marks all entries in the
param handlers table that are needed for successful parsing of the
command line. All other entries from the table can be removed. As a
result, the AWPCFG data reachability edges to the superfluous param-
eter handlers disappear, together with their corresponding unknown
control flow edges. The handlers are thus unreachable from the en-
try point of the AWPCFG, and can be removed by unreachable code
elimination.

The second specialization opportunity involves specializing the
kernel code for specific values of the configuration variables. If the
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Figure 4.3: Kernel command line handling.
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value of a variable is known to be constant throughout the lifetime of
the system, the link-time optimizations in our binary rewriter needn’t
treat this value as unspecified. Instead, the kernel can be optimized for
this known value.

As with the elimination of system calls, the developer has to pro-
vide a list with additional specialization information. In this case,
this list identifies the kernel variables associated with the boot-time
parameters and their fixed values. Using symbol information, the
link-time kernel specializer looks up the memory locations of the vari-
ables, writes the specified values at those locations and marks them as
read-only. When constant propagation is then later applied during the
generic compaction of the kernel, the desired initial values are prop-
agated into the code and, whenever possible, the code is specialized
for those values. In the case of boolean variables, this typically results
in compare instructions and conditional branches being removed or
replaced by direct branches, thus eliminating unrealizable execution
paths.

Suppose that in the example of Figure 4.3 the developer specified
that the boot-time parameter debuglevel will not appear on the com-
mand line, and that debug, its associated kernel variable, has a fixed
value of 0. Because debuglevel will not appear on the command line,
its entry can be removed from the parameter handler table. Conse-
quently, set debuglevel, the parameter handler function, becomes un-
reachable and disappears from the kernel. The debug variable now
has only one incoming data reachability edge, from a read operation
in some function. The developer has also specified that the value of
debug should be 0, not 3, so 0 is written into this memory location,
and because there are no more write accesses to the variable, it can be
marked read-only. Afterwards, constant propagation can propagate the
known value to specialize the code in some function. The if-test and
the printk call can then be removed from the kernel by the constant
propagation optimizations. This example illustrates how small special-
ization transformations (in this case removing an entry from a table)
interact with the established link-time analyses and optimizations to
achieve the desired effect.
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4.4 Finding Extra Initialization Code and Data

As described in Section 3.3, the Linux kernel is divided into initializa-
tion and non-initialization parts. The initialization code and data are
removed from memory once the system is initialized and they are no
longer needed. The initialization code and data are identified by man-
ually inserted annotations in the kernel source code. This approach has
several shortcomings:

• It does not allow for conditional markings: some code is only
reachable during system initialization in certain kernel configu-
rations, whereas in others it can also be reached after initializa-
tion. This is for example the case for a number of utility functions
that are available in the kernel: depending on which features are
compiled into the kernel, they are called only during system ini-
tialization or also during the steady-state operation of the system.
Another example is device initialization code: if the kernel sup-
ports hot-plugging of certain device types, the device initializa-
tion code can be called at any time. If hot-plugging is disabled,
the initialization can only happen during the boot process, and
the code will not be needed afterwards. Because the current an-
notation system does not allow the annotations to depend on the
kernel configuration, such code has to be marked “non-init” in all
cases.

• There are certain types of data that simply cannot be annotated,
because they are defined behind the scenes by the compiler, and
never declared explicitly. Examples are literal strings that appear
in the code (for example as the format argument for a printf-
like procedure), and jump tables that are generated by the com-
piler as part of the translation of a switch statement. These kinds
of data will always be considered non-initialization data, even
though they belong uniquely to initialization code.

• Sometimes initialization code or data is not annotated due to hu-
man error: the developer simply forgot to do so, or was not sure
whether the code or data are still needed after initialization.

In this section, we present two analyses that identify additional ini-
tialization code and data, starting from the code and data that were
already identified by the kernel developers.
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Initialization Code Detection

The initialization sections are released from memory in a procedure
called free initmem. Consequently, all code that is reachable from
this procedure, or from its return site, should be considered non-
initialization code. This code can be identified with a simple reach-
ability analysis. This analysis should not take into account code paths
that go through code that is already marked as initialization code by
the kernel developers, as these code paths will cease to exist once the
init sections are removed from memory. All code that is not marked in
the reachability analysis can be considered initialization code.

Initialization Data Detection

As explained in Section 2.3, data can only be manipulated at the granu-
larity of subsections. Therefore, we will try to move whole subsections
at once to the initialization data sections. In general, a data subsec-
tion can be considered initialization data if all accesses (i.e., loads and
stores) to the subsection occur before the initialization sections are re-
moved from memory. The temporal aspect of this observation is hard
to translate to an analysis on the AWPCFG, which provides little tem-
poral information.

A sufficient condition for a data subsection to be considered part of
the initialization data is the following: all accesses to the data should occur
either in initialization code or in non-initialization code that was called from
initialization code. This implies that there should be no direct references
to the subsection from any non-initialization code or data: if there is to
be an access to the subsection from non-initialization code, the address
should be passed to this code down the call chain from somewhere in
the initialization code. Furthermore, such addresses must not escape,
i.e., be stored somewhere in memory so they can be retrieved and used
after the initialization sections are released.

For addresses stored in data sections, determining whether they es-
cape involves first identifying where they can be loaded, and subse-
quently tracing all uses of the loaded values. Due to the complexity and
imprecision of alias analysis at link time [Hind01], it is hard to identify
with any degree of precision the places where a certain address can be
loaded. Therefore, we have opted to limit our analysis to data subsec-
tions that are only referenced directly from initialization code. This still
includes most of the compiler-generated data that cannot be annotated,
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such as jump tables and constant strings.
For our ARM test kernel, only 2396 bytes of the remaining, unana-

lyzed data are not trivially shown to be non-initialization data. For the
i386 test kernel, this is the case for 5447 bytes of data. Note that this
does not mean all of this data is initialization data: this is the amount
of data for which we would have to implement a complex analysis to
determine whether or not it is initialization data. Given the meager
potential gains, we feel that this was not worth the effort.

In short, for each data subsection that is not already marked as ini-
tialization data, and only has incoming data reachability edges from
initialization code, our analysis tries to determine whether the pro-
duced address escapes. It does so by tracing all uses of the register
into which the address was produced, and of all registers into which
derived values are produced (i.e., by adding an offset to the address)
throughout the procedure in which the reference occurred. If the ad-
dress is stored in memory, or passed as an argument to another proce-
dure, it is considered to be escaping.

In fact, assuming an address has escaped whenever it is passed as
an argument to another procedure is overly conservative. It is, how-
ever, difficult to analyze whether an address escapes over function call
boundaries, as in many cases such addresses are passed on to proce-
dures several levels deeper into the call chain (e.g., printk, the printf-
like utility function that is used for kernel output, passes its arguments
on to vsnprintf, where the actual processing occurs). In the process of
passing on the arguments, they are frequently spilled to memory, which
means that they are considered to be escaping anyway. This can only
be avoided with the use of a good stack analysis that allows to track
the stored addresses through the stack as well. We have opted to use a
different approach to reduce the imprecision of our analysis: whenever
an address is passed on to another procedure, our link-time rewriter
checks whether this procedure is in a list of known-safe procedures,
i.e., procedures whose arguments are known not to escape. If this is the
case, our analysis assumes the address does not escape. Upon termi-
nation of the analysis, our rewriter emits a list of (procedure, argument
number) pairs for which the analysis assumed the argument escapes.
This list can then be used by the developer to identify other known-
safe procedures, increasing the precision of the analysis the next time it
is run.

Manually verifying whether procedure arguments can escape may
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seem to be an onerous task. However, the number of procedure ar-
guments that need to be checked is relatively small: for our ARM test
system, only 50 arguments needed to be checked, of which 33 were
safe. Using a good source code browser (e.g., the Vim editor com-
bined with the ctags source code indexing utility), a person with rea-
sonable C-language skills but no intimate knowledge of the Linux ker-
nel internals can verify the safety of a procedure argument in less than
one minute. Consequently, building the known-safe procedure list for
the whole kernel takes less than one hour, and this list can easily be
reused even if the kernel is later reconfigured. Unfortunately, the list of
known-safe procedures cannot be carried over directly to a new kernel
version. The implementation of some procedures may have changed
in the new version, and procedures that were previously safe may now
have become unsafe.

While moving code and data to the initialization sections does not
reduce the kernel’s static ROM footprint, it does reduce the static RAM
footprint during steady-state operation of the system, and as such it is
a desirable optimization.

4.5 Boot Process Specialization

Until the init thread is spawned, and the initialization sections are
removed from memory, the kernel executes as a single-threaded pro-
gram. The kernel’s execution up to this point is completely determined
by the boot-time command line parameters and the hardware that is
present in the system. As these two things typically don’t change in
the course of a device’s lifetime, we can conclude that the kernel will
execute exactly the same code on each boot. By observing the boot se-
quence, through code coverage or profiling analysis, we can determine
which of the initialization code is never executed, and remove this code
from the kernel image. The unreachable code and data detection algo-
rithm in our link-time rewriter will then automatically remove the as-
sociated data sections as well. While this optimization will have little
or no impact on the steady-state RAM footprint of the kernel (as most
of the removed code and data are from the initialization sections), it
does reduce the kernel’s static ROM footprint. This optimization was
first proposed by He et al. [He07].

It is important to note that this optimization is only partially safe.
While normally the boot process is exactly the same each time the sys-
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tem is turned on, this assumption is no longer true when some hard-
ware peripheral becomes defective. Any error handling mechanisms
that were present in the initialization code to cater for such an eventu-
ality will no longer exist after this specialization, and the system will
no longer be able to gracefully handle this situation. In some cases, this
is not a problem: once part of the hardware breaks down, the system
is useless and so there is no need for any part of it to work correctly
any more. In other cases however, a more graceful error handling strat-
egy is required and blindly removing all unexecuted initialization code
is therefore not allowed. Still, even in this situation part of the un-
executed initialization code — for example code paths in driver code
that are only relevant for certain revisions of the hardware — can be
removed, under developer supervision. The link-time rewriter iden-
tifies unexecuted code regions (e.g., whole procedures or individual
code paths within a single procedure) and presents them to the devel-
oper, who can then decide on a case-by-case basis whether or not to
they may be removed.

4.6 Evaluation

In this section, we evaluate the impact of the proposed specialization
techniques on the kernel’s memory footprint. Performance measure-
ments performed with LMbench have shown no discernible difference
between kernel performance with and without specializations applied,
so we will not discuss slowdowns any further in this evaluation section.

Table 4.1 presents the impact of the specialization techniques on the
kernel’s memory footprint. Each row shows the impact of the special-
ization mentioned in the left-most column when applied in addition to
all transformations in the rows above. Note that the standard link-time
optimizations are applied to the kernel as well.

4.6.1 Initialization Code Motion

Identifying extra initialization code has no impact on the kernel’s ROM
footprint, as the total amount of code in the kernel is not reduced.
It does, however, reduce the static RAM footprint after initialization
with 1.4% for the i386 and 1.7% for the ARM platform. This corre-
sponds to approximately 5100 and 5800 instructions respectively that
were moved to the .text.init section.
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4.6.2 Initialization Data Motion

The identification of extra initialization data has no effect on the ROM
footprint either. In this case, the static RAM footprint after initializa-
tion is reduced with 1.4% (i386) and 1.1% (ARM), which corresponds
to about 14 KiB in both cases. Interestingly, for the ARM kernel, the re-
duction is mostly achieved by moving bytes from the non-initialization
code to the initialization code. As mentioned before, in the ARM ker-
nel the read-only data is subsumed into the code sections, and most
of the extra initialization data consists in effect of compiler-generated
constant strings and jump tables that could not be annotated as initial-
ization data by the kernel developers.

To achieve this result, we had to manually check a number of pro-
cedure arguments in the kernel source code to see whether they escape
(see Section 4.4). For the i386 kernel, this required inspection of 30 pro-
cedure arguments, of which 11 were found to be escaping. For the ARM
kernel, we checked 50 arguments, of which 17 escaped. In both cases,
the manual source code inspection took less than one hour.

4.6.3 System Call Elimination and Specialization

To determine which system call handlers may be removed from the ker-
nel, all software that will run on the system has to be analyzed. Thanks
to the simple setup of our test systems, this means analyzing just one
user-space binary, namely Busybox, and the Linux kernel itself. This
analysis was performed using a modified version of our link-time bi-
nary rewriter that reports the known register values for each system call
instruction during context-sensitive constant propagation. With this
approach, we were able to determine for each system call instruction
which system call was actually invoked, and we were able to deter-
mine all possible values for 14 arguments of 11 system calls for the i386
kernel, and for 15 arguments of 12 system calls for the ARM kernel.

The analysis showed that of the 245 system calls offered by the
Linux kernel, only 80 can actually be called in our test configuration.
All other system call handlers were removed from the kernel, resulting
in a reduction of the static RAM footprint after initialization of 5.2%
(i386) and 4.2% (ARM). Note that this is the first optimization that has
a discernible impact on the compressed image size, and thus the static
ROM footprint in most systems: the i386 kernel’s compressed image
size is reduced by an additional 6.2% (total reduction 9.1%) , the ARM
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kernel’s compressed image size is for the first time significantly smaller
than that of the original kernel, with a 4.9% reduction.

The impact of propagating the known system call arguments into
the kernel is insignificant (0.1% of the non-initialization code was re-
moved for the ARM kernel, and even less for the i386 kernel), but it
did result in the removal of a number of argument validity checks in
the system call handlers. We were also able to determine all possible
values for the command argument of sys socketcall, a multiplexed
system call. Of the 17 possible values for the command argument, only
12 actually appeared in the user space programs, so the code paths as-
sociated with the other commands could be removed as well.

4.6.4 Command-line Specialization

The next specialization step consists of specializing the kernel for
known, fixed command-line parameters. As a first step, we deter-
mined which parameters should still be adjustable at boot time. For
the i386 system, this was the “root” parameter that specifies the disk
device on which the root partition is installed. For the ARM, we ad-
ditionally left the parameter “console” adjustable, in order to allow us
to specify the console input and output devices, as the CerfCube has
no screen and keyboard. The auxiliary parsing procedures for all other
parameters were removed from the kernel, leading to an additional
gain in the initialization data sections of 3.1% for the i386 and 6.5% for
the ARM. The overall impact of this first step on the memory footprint
is, however, negligible.

The second step was to propagate the known values of the boot-
time parameters, and of some driver parameters that can only be
changed if the driver is compiled as a module, into the kernel. For
this, we selected 29 parameters for the ARM system, and 28 for the i386
system. For the i386 kernel, the impact of this specialization is limited,
with a reduction of about 0.3% for all footprint sizes. For the ARM ker-
nel, the results are more pronounced: while the static RAM footprint
after initialization only decreases by 0.4%, the uncompressed image
size is reduced by 2%, and the compressed image size does even better
with a 2.4% size reduction. The better results obtained for the ARM
kernel should come as no surprise: the conditional constant propaga-
tion analysis, which is the driving force behind the compaction gains
attained here, works better for the ARM architecture, where more reg-
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isters are available and the run-time stack is much less frequently used
for storing results of computations and passing arguments to other
procedures.

4.6.5 Boot Process Specialization

The final specialization step involves removing all unexecuted initial-
ization code from the kernel. For this, we need code coverage infor-
mation that identifies the unexecuted initialization code. This coverage
information can easily be derived from the profile data we already col-
lected to limit the performance impact caused by duplicate basic block
elimination.

On the i386, 47.6% of the initialization code (both the original code
and the extra code we have identified) turns out to be superfluous. For
the ARM kernel, this is the case for 41.3% of the initialization code. As
a result, the initialization code sections are now considerably smaller
than in the original kernel, even though they grew substantially due
to the extra initialization code and data identification specializations
that were applied before. Moreover, eliminating the unexecuted ini-
tialization code also reduces the size of the other kernel sections, in
particular those containing initialization data: along with the code, a
number of data reference edges disappear, thus disconnecting parts of
the AWPCFG so that they can be removed by unreachable code and
data elimination.

While this specialization has little impact on the static RAM foot-
print after initialization, it has a significant impact on the kernel’s ROM
footprint: the uncompressed image size is reduced with 4.8% for the
i386 kernel, and with 1.7% for the ARM kernel. The compressed image
size is reduced with 5.2% and 2.1% respectively.

Together, all compaction and specialization techniques reduce the
static memory footprint with 20.1% during and 19.8% after initializa-
tion for the i386, and with 17.5% during and 17.6% after initialization
for the ARM. The uncompressed image size is reduced with 23.3% and
22.1% respectively, whereas the compressed image size is reduced with
14.7% and 9.5% respectively.



Chapter 5

On-demand Code Loading

Code coverage analysis shows that, even after application of the com-
paction and specialization techniques described in the previous chap-
ters, over 50% of the remaining Linux kernel code is not executed dur-
ing “normal” system operation. This does not mean all of the unexe-
cuted code can be removed from the kernel. While part of it is indeed
useless code that could not be detected due to the limitations of static
analysis, there is also a substantial amount of code in the kernel that
serves to handle unexpected situations like hardware failures.

In order to reduce the memory overhead of all this unexecuted code,
we propose to introduce an on-demand code loading scheme in the
kernel. The unexecuted code is removed from the kernel’s memory
image, but kept available in a repository, and loaded into memory only
when it is actually needed. In fact, such a scheme needn’t be limited to
unexecuted (or frozen, terminology introduced by Citron et al. [Citr04])
code: with the right approach, it can be sensibly extended to include all
cold (i.e., infrequently executed) code.

In this chapter, we will discuss the issues involved in designing an
on-demand code loading scheme for use in an OS kernel. After a short
discussion of Linux’ loadable kernel modules, which can be thought of
as the kernel’s standard on-demand code loading technique, we will
propose and evaluate two different code loading approaches, and dis-
cuss their strengths and weaknesses.
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5.1 Design Issues

There are many possible variations on the idea of on-demand code
loading, so it is interesting to look at the possible design choices that
can be made. First of all, we state a number of design criteria any vi-
able solution should comply to:

• Reliability: the correct operation of the kernel must in no way be
compromised by the code loading scheme.

• Performance: the OS kernel is a performance-critical part of the
system, especially as it communicates directly with the hardware
devices. Loading code must not slow down the system too much.

• No changes to source code: large-scale rewriting or manual annota-
tion of the kernel source code should not be necessary.

• Automation: the code to be loaded on demand must be selected
and partitioned into loadable fragments automatically. Users of
the technique should not need to have an intimate knowledge of
the kernel code.

Based on these criteria, a number of design choices have to be made:

• Code selection: Will all code be loaded on demand? If not, how
do we select which code will always be resident and which code
won’t?

• Repository: From where will the loadable code be retrieved? Pos-
sibilities include loading the code over a network, loading it from
secondary memory (hard disk, Flash memory) or retrieving it
from main memory, where it is stored in compressed form.

• Trigger: What mechanism will be used to decide when a code frag-
ment has to be loaded?

• Buffer management: Is the buffer into which the code is loaded of
fixed or variable size? Is it pre-allocated or allocated at run time
on an as-needed basis?

• Eviction strategy: Will loaded code be evicted again? If there is
code eviction, does it take place immediately after execution of
the code or only when there is not enough free memory left? How
is concurrent execution within the kernel dealt with?
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As it turns out, the eviction strategy is a very important factor in
the overall reliability of the code loading scheme. Operating system
kernels are inherently multithreaded: even on a single processor, kernel
code can be interrupted by other kernel code (for example, an interrupt
handler or exception handler that interrupts the execution of a system
call handler). When code is selected for eviction, it is important to make
sure that the code is not being executed by any thread in the kernel.
As the code loading scheme we propose is automatically introduced
into the kernel at a very low level (at link time), it is hard to insert
locking mechanisms that protect code under execution from eviction.
At this low level, there is not enough information about the semantics
of the code available to safely introduce locks in such a way that they
will provably not result in deadlock or livelock situations. Therefore,
alternatives for locking have to be found if loaded code is to be evicted.

5.2 Linux Kernel Modules

The Linux kernel already offers its own built-in code loading scheme.
The build system allows developers to compile parts of the kernel (e.g.,
hardware drivers) as loadable modules. These modules are stored on
disk or in ROM and can be loaded either manually with the insmod
command or automatically when their functionality is needed. Mod-
ule unloading is done manually, through the rmmod command, and ref-
erence counting is used to make sure the module’s code or data are
no longer needed before the module is in effect removed from mem-
ory. Modularization of the code is done manually: module initializa-
tion and finalization routines have to be written, and the build system
has to be made aware of the fact that the code can be compiled as a
loadable module. This process requires significant knowledge of the
kernel’s internals.

Loadable kernel modules are mostly intended for the distribution
of kernels for generic machines. Drivers for a wide range of periph-
erals are compiled as modules, and at boot time the kernel then loads
only those drivers that are necessary for the specific hardware it is run-
ning on. We feel this scheme is less suited to embedded systems, where
the hardware is known in advance and the necessary drivers can easily
be compiled into the kernel, obviating the need for the module load-
ing infrastructure altogether and thus reducing the kernel’s code size.
Furthermore, the module granularity is determined by the kernel’s con-
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figuration system, and this is not fine-grained enough for our purposes.
We wish to remove individual, infrequently executed code paths from
a driver or kernel subsystem, and not a driver or subsystem as a whole.

In the next two sections, we propose two alternative code loading
schemes that work at a much finer granularity and can be introduced
automatically into the kernel: frozen code compression and cold code swap-
ping.

5.3 Frozen Code Compression

Our first technique is generally applicable and does not require any
special hardware support. The code that is to be loaded on demand is
partitioned into single-entry regions. These regions are stored in mem-
ory in a compressed form, and replaced in the code by a stub that in-
vokes a decompression routine and passes a pointer to the compressed
code to it. This situation is depicted in Figure 5.1(a). When the control
flow enters the stub, the decompressor is invoked. It allocates a buffer
of the appropriate size through kmalloc, the kernel’s dynamic mem-
ory allocation procedure, and decompresses the code into this buffer.
The stub is then overwritten with a direct jump to the decompressed
code so that subsequent invocations of the code no longer need to pass
through the decompressor. Finally, the processor registers are restored
to their state upon entry to the stub and control is transferred to the de-
compressed code. The situation after decompression is shown in Fig-
ure 5.1(b).

This scheme side-steps the concurrency issues associated with code
eviction by never evicting loaded code from memory. This implies that
it only makes sense to compress code that is not expected to be exe-
cuted, i.e., frozen code. If a code fragment is known to be executed at
least once, there is no profit to be made from compressing it, as it will
be decompressed and kept in memory anyway.

The downside of this no-eviction strategy is that in the worst case
scenario the kernel’s memory footprint is still as big as without frozen
code compression. This can only be the case, however, if all frozen code
is in the kernel for handling exceptional situations (and not because it is
undetected unreachable code), and if all possible exceptional situations
occur between two consecutive reboots. We consider this to be unreal-
istic, and hence do not take this situation into account in the remainder
of the discussion.
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(a) before decompression

(b) after decompression

Figure 5.1: A stub replacing frozen code.
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The upside of this approach is that the concurrency issues involved
in frozen code compression are significantly simplified, as we will dis-
cuss in Section 5.3.5, and that the performance impact of frozen code
compression is very small: the decompressor needs to be called at most
once for each frozen code region. After decompression, the processor’s
I-cache and D-cache need to be invalidated to ensure correct execu-
tion of the decompressed code. Subsequent invocations of the decom-
pressed code are slowed down only by the extra direct jump they have
to perform in the updated stub to reach the decompressed code region.
Under normal operation, no code should be decompressed of course,
and hence no slowdown will be experienced whatsoever.

The frozen code compression approach is reminiscent of the profile-
guided code compression technique proposed by Debray and Evans
[Debr02], in which infrequently executed code fragments in user space
programs are compressed and decompressed in a pre-allocated buffer
whenever they are needed. The scheme proposed by Debray and Evans
includes a code eviction strategy, but the authors do not consider the
difficulties involved in supporting multi-threaded applications with
their approach, and as such do not offer any solution for the concur-
rency problem we face when trying to apply this technique to an OS
kernel.

In the remainder of this section, we will discuss several aspects of
this scheme in more detail.

5.3.1 Frozen Code Identification

The frozen code is identified by performing an extensive code cover-
age analysis on the kernel. The target system is loaded with an in-
strumented kernel, and subjected to several usage scenarios that the
system developer considers “normal” operation. Of course, this may
also include some “abnormal” scenarios that, although not normal, oc-
cur frequently enough for the developer to consider them important.
An example might be the disconnection of devices while they are being
used.

As the decompressor calls the kmalloc and kfree procedures pro-
vided by the kernel, we need to make sure that these procedures are
never considered frozen to avoid infinite loops. Fortunately, these pro-
cedures are so widely used throughout the kernel code that there is no
risk of them being considered frozen code in the first place. We have
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also decided not to consider any code from the initialization code sec-
tion as frozen code. While it is technically possible to compress the
frozen initialization code as well, we consider this to be useless as this
code is removed from memory after booting anyway.

Note that we do not distinguish interrupt handling code from “reg-
ular” kernel code, so even the interrupt handlers will possibly be com-
pressed. While the decompression process may cause an interrupt han-
dler to respond slowly to the interrupt when it still needs to be de-
compressed, this will happen only once. Afterwards, the code will al-
ready be decompressed and subsequent occurrences of the same inter-
rupt will be handled as quickly as without code compression. If a slow
reaction to even one interrupt is unacceptable, the interrupt handler
code has to be identified (either through the execution of more cover-
age scenarios, or otherwise manually), and excluded from the frozen
code.

5.3.2 Frozen Code Partitioning

After the frozen code is identified, it is partitioned into regions that
form the basic units of compression. To minimize the amount of book-
keeping information related to the compressed code, we have opted to
operate on single-entry regions. As such, one stub and one compressed
code address suffice as bookkeeping code and data about each com-
pressed region. If we would have allowed multiple-entry regions, we
would need to keep track of the offsets of entry points in the regions
as well. Furthermore, when a frozen code region is decompressed, the
decompressor has to overwrite all stubs leading to the region with di-
rect jumps to the decompressed code. With multiple entry points, we
would have needed multiple stubs per region, and we would have had
to keep a list of all stubs associated with each region, so they could all be
overwritten at once after decompression. Finally, the compression algo-
rithm we have implemented (which will be described in Section 5.3.4)
compresses individual instructions, so the fact that we use single-entry
regions, and not larger, multiple-entry regions, has no detrimental ef-
fect on the achieved compression ratio.

The partitioning happens in three steps. First, frozen code is parti-
tioned into single-entry regions per procedure. Each frozen basic block
that has incoming AWPCFG edges coming from non-frozen code is
considered to be the start of a new region. Furthermore, all frozen code
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blocks that have incoming AWPCFG data reachability edges are con-
sidered to be the start of a new region as well. The latter allows us to
relocate all data reachability edges that point to a compressed region to
point to the corresponding stub instead. As the address of this stub is
known at link time, this can be done without requiring any additional
bookkeeping code or data at run time.

In the second step, frozen code regions are merged as much as
possible, without violating the single-entry requirement. This implies
that any region that has incoming edges from one other region only, is
merged with that region. As a consequence, frozen code regions can
span procedure boundaries. The purpose of this step is to minimize
the number of regions (and, more importantly, stubs) and to minimize
the (static) number of inter-region control flow transfers. As the final
address of the uncompressed frozen code is not known at link time,
inter-region control flow transfers have to be encoded under the worst-
case assumption that these transfers can span large displacements in
the instruction memory, which is less efficient. The displacements
of intra-region control flow transfers are known at link time, by con-
trast, and as these are often rather small, they can be encoded more
efficiently.

A side effect of the region merging step is that, once run-time de-
compression is triggered, potentially more code than strictly necessary
will be decompressed. We consider this to be an acceptable drawback,
however, as our main objective is to reduce the kernel memory foot-
print during normal operation, while still having a reduced, albeit not
maximally reduced, size under abnormal operation.

We should note that this partitioning system is much simpler than
the one proposed by Debray and Evans [Debr02] for cold code com-
pression. Because their system operates with a small code buffer that
stores decompressed code, they need to perform the partitioning of
cold code in such a way that it balances the need for a small decompres-
sion buffer with the need to minimize the dynamic number of control
flow transfers between separate regions. If there are too many control
flow transfers between regions, they risk having to decompress previ-
ously decompressed, but evicted, code over and over again.

Finally, in a third step we select the partitioned and merged frozen
regions that will actually be compressed. In order to achieve a good
overall compression ratio, it is important to compress only those re-
gions for which compression actually yields a size reduction. If a
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region is too small, or not very compressible, the possibility exists
that the combined size of the stub and the compressed region is big-
ger than the original, uncompressed region. Determining in advance
which regions can be compressed profitably is an undecidable prob-
lem [Debr02]. Therefore, we resort to a heuristic approach to select the
actual regions that will be compressed:

• All regions smaller than a certain minimum size will be excluded
from compression. We determine this minimum size by assuming
a fixed compression factor γ for all code. Then it is profitable to
compress a region if K + γ × S < S, with K the stub size and
S the uncompressed size of the region. The minimum size S0 for
which this equation holds is S0 = K/(1− γ).

• After the small regions are discarded, all regions are compressed.
Any region for which compression turns out to be unprofitable
is then deselected, and will appear in the final kernel as uncom-
pressed code.

Once the code is partitioned into regions, these regions are merged.
The profitable ones are selected, and they are patched to remove all
inter-region fall-through control flow. This last step removes any mem-
ory layout dependencies between selected regions, and thus simplifies
the run-time decompression process.

Note that extra precautions have to be taken with regards to the
exception handling constructs within the Linux kernel as described in
Section 3.7. Whenever an exception occurs, the address of the faulting
instruction is retrieved from the exception handler table through binary
search. This implies that (1) the corresponding data reference edges in
the AWPCFG should always point to the actual instruction that raised
the exception, and should not be moved to a compression stub and (2)
because of the binary search the entries in the exception handler table
should always be in sorted order. These two implications make it im-
possible to compress any instruction referenced from the first column
of the exception handler table. If the address of the instruction isn’t
known at link time, it is impossible to sort the exception handler ta-
ble correctly. Moreover, moving the data reference edge to the stub,
whose location is known at link time, is explicitly disallowed in this
case. For these reasons, basic blocks with incoming edges from the first
column of the exception handler table are explicitly excluded from the
partitioning of frozen and executed code. The fixup code, which is ref-
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erenced from the second column of the exception handler table, can
however be compressed without problems.

5.3.3 Decompression Stubs

The stubs that replace the frozen code regions invoke the decompres-
sor with the address of the relevant compressed code. In order to keep
these stubs as compact as possible, the call to the decompressor is per-
formed without arguments, and the compressed code pointer is ap-
pended directly to the call instruction (the gray block in Figure 5.1(a)).
As such, the pointer is located at the return address of the call to the
decompressor, which can load this pointer by simply dereferencing its
return address.

To ensure the correct working of the kernel, the values of the proces-
sor registers have to be preserved over decompression. To ensure this,
the stub has to save all registers it changes on the stack first. For an
architecture like the i386 this is no problem, as the procedure call stores
its return address on the stack, and no registers are overwritten. On
architectures like the ARM that store the procedure return address in
a register, this so-called link register has to be stored on the stack first.
As such, a stub on the i386 architecture would be 9 bytes large (5 bytes
for the call instruction and 4 bytes for the compressed code pointer),
whereas a stub on the ARM architecture will be 12 bytes large: 4 bytes
for saving the link register, 4 bytes for the call and 4 bytes for the com-
pressed code pointer. Note that there is no need to include an instruc-
tion that restores the link register in every single stub, since this can
instead be done in the decompressor itself, of which only one instance
is present in the final program.

5.3.4 Code Compression and Decompression

In this dissertation, we do not focus on finding the best software-
controlled code compression technique, but rather on using compres-
sion in the context of an OS kernel. As such, we have decided to use an
established compression scheme rather than inventing our own new
one. The code compression algorithm we apply is basically the same
as the algorithm described in [Debr02], but we apply it on the i386 and
ARM architectures instead of on the Alpha architecture. The data that
has to be compressed is a sequence of machine code instructions. Each
of these instructions consists of an opcode field, followed by a number
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i = j = v = b = 0

do

v = 2*v + NextBit()

b = 2*(b + N[i])

j = j + N[i]

i = i + 1

while v >= (b + N[i])

return D[j + v - b]

Figure 5.2: Decoding algorithm for a canonical Huffman code.

of instruction-specific fields (the presence of these fields depends on
the opcode). For each of the field types, a stream is created containing
the field values for each instruction in the sequence. One additional
stream is created that consists of the sizes of all frozen code regions.
For each of these streams, an optimal Huffman code is generated.

Each individual frozen region is then compressed by first writing
the Huffman coded version of its size, followed by the instruction se-
quence that makes up the region, whereby the value for every instruc-
tion field is replaced by its Huffman code.

Decompression is fairly easy. The decompressor first reads the size
symbol from the beginning of the stream and decodes it. Then a buffer
of the correct size is allocated, and the instructions can be decoded.
This is done by repeatedly reading an opcode field from the stream and
decoding it. Based on the opcode, the decompressor knows which field
types will follow, so it can read the corresponding symbols from the
stream one by one. This process is repeated until the whole allocated
decompression space is filled.

By using so-called canonical Huffman codes [Witt94] it is possible to
build a very simple and small decompressor. The canonical Huffman
code is one possible variant of the possible Huffman encodings for a
given set of tokens. This variant has the property that the code words
of length i are the i-bit numbers with the values bi, bi+1, . . . , bi+N [i]−1,
where N [i] is the number of code words of length i in the code, b1 = 0
and bi = 2× (bi−1 +N [i−1]). If we store the tokens to be encoded in an
array D ordered by their code word value, the algorithm in Figure 5.2
is a simple and fast way to decode the code words1.

After the code is decompressed, all inter-region PC-relative control

1This is the same representation of the algorithm as was presented by Debray and
Evans [Debr02].
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flow offsets have to be recomputed. As the final address of a frozen
code region is only known at decompression time, it is impossible to
compute the inter-region jump and call offsets in advance. An effi-
cient way to perform this recomputation is to insert sentinel instruc-
tions (with an invalid opcode) into the instruction stream to indicate
which instructions need to have their offsets recomputed. At link time,
these offsets are computed as if the frozen code region was located at
address 0. During decompression the correct offset can be computed
by subtracting the final address of the decompressed code region from
the precomputed offset.

5.3.5 Concurrency Issues

The Linux kernel is multithreaded, preemptible and supports symmet-
ric multiprocessing. For all of these reasons, it is possible that different
threads have to access the decompressor or decompressed code concur-
rently. In order to guarantee correct operation of the kernel in all cir-
cumstances, some form of locking needs to be implemented. Our major
concerns for the implementation of the locking scheme are correctness
and performance. Because the decompressor needs to be preemptible
to allow other interrupt handlers or higher-priority threads to run dur-
ing decompression, we need to minimize the locking used to prevent
deadlocks and race conditions.

Consequently, our decompressor is implemented in such a way that
it is fully reentrant, allowing multiple threads to execute it concurrently.
If this weren’t the case, the complete decompressor would need to be
locked, which would allow priority inversion2 to occur. This is obvi-
ously undesirable.

A decompressor that can be executed by multiple threads at the
same time, however, opens the door to possible race conditions. More
precisely, two race situations can occur.

First, it is possible for one thread to execute the first instruction of
a stub while the decoder in another thread is concurrently overwriting
this same stub. This could cause the first thread to execute a partially
overwritten instruction. The solution is to overwrite the stub atomi-

2Priority inversion occurs when a low priority thread holds a shared resource that
is required by a high priority thread. This forces the high priority thread to wait until
the low priority thread is finished with the resource, effectively inverting the relative
priorities of the two threads.
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cally, ensuring that no thread can ever see a partially overwritten in-
struction. On the ARM platform, atomically overwriting the stub is
trivial as we only need to overwrite the first four bytes of the stub, and it
is always possible to do a four-byte atomic write. On the i386 platform,
the jump instruction we need to write is five bytes long (one byte for
the opcode, four bytes for the jump offset), so one atomic write seems
insufficient. Adding locking to each stub is unacceptable as well, as this
would at least double the size of the stubs. Fortunately, other solutions
exist: on a single-processor system, it suffices to disable the processor
interrupts while the stub is being overwritten, so that no other thread
can interrupt the overwriting code. But on multiprocessor systems, this
is not enough, as threads on other processors might still see an incon-
sistent stub state. A workaround exists, at the cost of increasing the size
of each stub with five bytes: we just add a jump to the next instruction
at the beginning of each stub. Because the displacement of this jump
is 4 bytes long, this displacement can be overwritten in one atomic op-
eration. When the stub is first executed, the jump acts as a no-op. As
soon as the displacement is overwritten, the jump instruction functions
as the jump into the decompressed code.

The second possible race condition occurs when two threads con-
currently enter the decoder from the same stub. This means the same
compressed region will be decompressed twice, and the stub will be
overwritten twice. While this is a wasteful situation in which code is
unnecessarily decompressed multiple times, it does not cause incorrect
behavior. We can avoid this situation by creating one lock per region.
The decoder then acquires this lock before decompressing the region,
and if a second instance of the decoder is invoked for the same region,
it only has to wait until the lock is released and then jump back to the
(now overwritten) stub. While this is the best solution for performance,
it requires keeping a lock for each region, which wastes a considerable
amount of space only to guard us from possibly (but improbably) wast-
ing space at some point in the future. Therefore we have opted for a
different solution that is somewhat slower, but does not require a lock
for each region. The region is always decompressed into a fresh buffer
but before the stub is overwritten the decoder checks whether some
other thread has already done so. If this is the case, the race condition
has occurred and the current thread releases its decompression buffer
(via the kernel’s built-in kfree procedure) and jumps to the already-
overwritten stub. In order to avoid introducing new race conditions,
the checking and overwriting of the stub is protected by a lock.
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PlaceSections(0)

S = ComputeCompressedSize()

S’ = 0

while S > S’:

S’ = S

PlaceSections(S)

S = ComputeCompressedSize()

PadCompressedSection(S’ - S)

Figure 5.3: Section placement algorithm in the presence of a compressed code
section.

5.3.6 Section Placement

On architectures like the i386 and the ARM that do not have a central-
ized Global Offset Table [Sriv94], explicit addresses appear in the code
nearby or in the instructions that use the addresses. On the i386, they
appear as immediate operands in the instruction. On the ARM, they
appear in data blocks that are intermingled with the code. Addresses
that appear like this in frozen code regions have to be compressed as
well. This leads to an interesting phase ordering problem: the final size
of the compressed code region depends on its contents, and thus on the
addresses that appear in the region. However, these addresses depend
in turn on the size of the compressed code, as the placement of the code
and data sections following the compressed code section depends on
the size of this section.

We solved this problem with an algorithm that iteratively places the
sections based on an estimate of the compressed code size. After each
placement round, this estimate is recomputed. The algorithm stops
when the new estimate is lower than the previous one. At this point,
the compressed code will fit in the space that is reserved for it. The com-
pressed code is then padded to fill the complete reserved space in order
to ensure that the addresses do not change later on when the binary
image of the compacted kernel is generated. The algorithm is shown in
Figure 5.3. PlaceSections(x) assigns addresses to all sections, assum-
ing size x for the compressed code section. ComputeCompressedSize()
adjusts the addresses in the frozen regions and computes the com-
pressed code section size. PadCompressedSection(x) appends x bytes
to the section.
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5.4 Frozen Code Compression Evaluation

In this section, we will evaluate the impact of the frozen code compres-
sion technique on the kernel’s footprint and performance.

For the coverage analysis, we mostly stressed the web server func-
tionality and network interaction of our test systems. They were sub-
jected to a number of usage scenarios: long idle time, high load web
serving, low load web serving, requests for non-existing web pages,
etc. Failure conditions like network errors and file system corruption
were considered to be abnormal behavior, and as such they were not
included in our usage scenarios. The code for handling these failure
conditions was consequently considered frozen. The correctness of the
kernel after frozen code compression was tested by triggering some
conditions that did not occur during the code coverage analysis, like
unplugging the network cable during transfer of a large file, running
a file system check on the system’s hard drive, etc. Furthermore, we
executed a large number of system utility programs that were not exe-
cuted during the coverage analysis. These tests resulted in considerable
amounts of code being decompressed, without incorrect kernel behav-
ior being observed.

In order to estimate the effectiveness of the frozen code identifica-
tion, we observed our test systems during a five-day period. In this pe-
riod, the i386 system decompressed 10 regions for a total of 4502 bytes
and the ARM system decompressed 4 regions for a total of 2144 bytes.
In both cases, the decompressed code was responsible for handling a
UDP connection request to the systems. During the coverage analysis
there were no UDP connection requests to either of the two systems,
and we do not consider them to be normal behavior either because the
systems only serve as HTTP servers, and HTTP is a TCP service. Con-
sequently we conclude that the coverage analysis performed on our test
systems is sufficiently accurate for this test case.

5.4.1 Impact on Kernel Footprint

Table 5.1 presents the impact of frozen code compression on the ker-
nel’s memory footprint. Here, the frozen code compression is applied
on top of all previously described compaction and specialization trans-
formations. The next-to-last row of each subtable shows results for a
kernel to which unrestricted basic block factoring was applied. The
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Table 5.2: Effect of frozen code compression on the kernel’s code and data
size.

last row of each subtable shows the impact of restricting duplicate ba-
sic block elimination by means of profile information. This last row is
included as the performance degradation caused by both kernel ver-
sions (rewritten with and without profile information) is compared in
Section 5.4.2.

Table 5.2 shows the impact of the frozen code compression in more
detail. After all compaction and customization techniques are applied,
the i386 kernel has 563 KiB of non-initialization code and the ARM ker-
nel has 839 KiB. This corresponds to 183588 and 214729 instructions re-
spectively. Splitting the code in frozen and non-frozen parts and parti-
tioning the frozen code in single-entry regions incurs some overhead:
a number of jump instructions have to be inserted to ensure correct
control flow. Furthermore, because the final addresses of the frozen
code regions are unknown, some constructs have to be encoded less ef-
ficiently. For instance, on the i386 inter-region jumps will always have
a four-byte offset whereas in some cases it would have been possible
to use the shorter one-byte-offset jump instruction if the code hadn’t
been split up. On the ARM platform absolute addresses cannot be gen-
erated in one instruction and the efficiency of the instruction sequences
that can be used to generate an address is dependent on the code lay-
out [DeSu07]. In the frozen code regions, one always has to use the
most conservative (meaning longest) instruction sequence. For the i386
platform, the total partitioning overhead is 3.37 KiB, for the ARM plat-
form it is 11.94 KiB.

For the i386, 54% of the non-initialization code was considered
frozen and partitioned into 1326 single-entry regions. For the ARM,
59% of the non-initialization code was frozen and partitioned into 1714
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regions. These frozen code percentages are lower than those reported
by Cours et al. [Cour04]. This was to be expected, as the preceding
link-time compaction and specialization transformations have already
removed part of the unreachable code from the kernel.

After compression, the frozen code for the i386 kernel is 221.79 KiB
large, which means a compression ratio (= size compressed code/size
original code) of 0.73 is achieved. For the ARM kernel, the frozen
code size after compression is 329.33 KiB, so the compression ratio is
0.65. While the compression ratio for ARM code is on par with the ra-
tio reported by Debray and Evans [Debr02] for a similar compression
scheme for the Alpha architecture, significantly less compression was
achieved for the i386 code. This should be no surprise, as i386 CISC
code is typically much denser than the RISC code of the Alpha and
ARM architectures, leaving less opportunities for compression.

Taking into account the overhead incurred by the stubs, the code
and data size of the decompressor and the padding bytes added for
section placement (see Section 5.3.6), a net gain of 65.14 KiB is achieved
for the i386 kernel and 141.49 KiB for the ARM kernel. As shown in
the next-to-last row of Table 5.1(a) and (b), this results in an additional
reduction of the static RAM footprint after initialization under normal
operation of 6.5% for the i386 kernel and 11.2% for the ARM kernel.
Similar size reductions (6.8% and 11.9% respectively) are achieved for
the uncompressed kernel image.

Given the compression ratio and stub size for both architectures, we
can now determine the minimum region size for compression as ex-
plained in Section 5.3.2. According to the formula explained there, the
minimum region size for the i386 architecture should be 9/(1− 0.73) ≈
34 bytes, for the ARM architecture this is 12/(1 − 0.65) ≈ 35 bytes.
However, brute force searching shows the best minimum size to be 50
bytes for both architectures, so our measurements were done with this
minimum region size. In both cases, the difference in results was, how-
ever, smaller than 0.2%, which shows that the formula does give a good
approximation for the optimal minimum region size.

Combining all compaction and specialization transformations with
frozen code compression allows us to reduce the kernel’s static RAM
footprint after initialization by 26.3% for the i386 architecture, and by
28.8% for the ARM architecture. The size of the uncompressed image is
reduced by 30.1% and 34% respectively. Disappointingly, frozen code
compression partially undoes the size reductions on the compressed
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Table 5.3: Gzip compression ratios for uncompressed and compressed code.

kernel image: these drop from 14.7% and 9.5% to 5% and 3% respec-
tively.

In order to understand the cause of this loss, we have applied gzip
compression separately on the completely uncompressed code sec-
tions, on the non-frozen code sections and on the compressed frozen
code sections of the kernel for both architectures. The results are shown
in Table 5.3. This table clearly shows the cause of the problem: the re-
maining uncompressed code is just as easily compressible as it was
before, but the already-compressed code is almost not further com-
pressible at all. As our instruction compression algorithm is less pow-
erful than gzip’s algorithm (compression ratio 0.73 and 0.65 versus 0.58
and 0.54), the net effect is that the total gzipped size of all code grows
with 47 KiB for the i386 kernel and 38 KiB for the ARM kernel, which
accounts for all of the drop in compressed image size reduction.

Even more than with duplicate basic block elimination, the viability
of frozen code compression as a compaction strategy depends on the ul-
timate optimization goal. While this technique can significantly reduce
the kernel’s static RAM footprint, it should not be used if the main op-
timization goal is to reduce the kernel’s compressed image size.

5.4.2 Impact on Kernel Performance

Figure 5.4 shows the performance degradation of fully rewritten (i.e.,
all optimizations and specializations and frozen code elimination en-
abled) kernels when compared to the original kernels for the two ar-
chitectures. As we had already shown in Section 3.8.3, unrestricted du-
plicate basic block elimination has a significant impact on the kernel’s
performance. Therefore, we have included for each architecture perfor-
mance measurements for a kernel that was rewritten with unrestricted
duplicate basic block elimination, and for one that was rewritten with
profile-guided duplicate basic block elimination.
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Figure 5.4: Performance degradation for the LMbench benchmark suite.

For the i386 kernel, the average performance degradation was
2.46% with unrestricted basic block factoring, while the kernel with re-
stricted basic block factoring experienced a 1.04% speedup on average.
For the ARM kernel, the average performance degradation was 2.07%
and 0.67% respectively. In general, these numbers are comparable with
those reported in Section 3.8.3, so we can conclude that the frozen code
compression technique does not incur a significant slowdown.

For completeness, we have included the kernels with restricted du-
plicate basic block elimination in the last row of Table 5.1 (a) and (b).
Again, we note that restricting duplicate basic block elimination has
very little impact on the kernel’s footprint, while having a noticeable
effect on kernel performance, so whenever possible the binary rewriter
should in effect be provided with profile information.

In general, we can conclude that the frozen code compression tech-
nique is a viable technique for reducing the kernel’s static RAM foot-
print, and for reducing the size of the uncompressed image. When the
optimization goal is the minimization of the compressed image size,
this technique is not very useful. The principal downside of this tech-
nique is its no-eviction policy, which limits the technique to loading
only frozen code, and which makes it impossible to determine a hard
upper bound on the kernel’s memory usage. For this reason, we have
developed a second technique, that does not suffer from these limita-
tions. This technique will be discussed in the next section.
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5.5 Cold Code Swapping

Virtual memory paging [Henn03] allows programs to use more mem-
ory than is physically present in the system, by swapping out pages to a
secondary storage medium, usually a hard disk. When there is a mem-
ory access to a page that is not present in physical memory, the proces-
sor’s memory management unit generates a page fault. The page fault
handler, which is part of the operating system, is then responsible for
retrieving the page from the swap space and placing it somewhere in
memory. Because of the high latency involved in reading a page from
disk, the OS usually puts the process causing the page fault to sleep and
schedules another process to run in its place while the page is retrieved.
This makes swapping less suitable for use in the OS kernel itself, and
indeed Linux does not implement swapping for kernel memory. While
this has been repeatedly proposed in the past, the kernel developers
rejected the idea because of the amount of timing-critical code in the
kernel that is not allowed to sleep. Separating this timing-critical code
and data from other code and data would be too involved and error-
prone to be practical3.

Our second code loading technique will introduce a limited, di-
rected form of virtual memory paging for the kernel memory. By lim-
iting the swapping to kernel code (which is read-only, obviating the
need for slow write-back operations), and using a faster secondary stor-
age medium to store the swapped-out pages, we believe our approach
is not susceptible to the drawbacks of kernel memory swapping de-
scribed above.

Essentially, our scheme separates the code to be loaded on demand
from the always-resident code and places it on separate virtual memory
pages. These pages are not mapped into physical memory, so when the
code is needed, a page fault will occur. A modified page fault handler
will distinguish this kind of page fault from “regular” page faults that
are caused by user-space programs, and load the necessary code from
the secondary storage medium. It is essential that the code repository
can be accessed sufficiently fast, so the thread causing the page fault
does not have to be put to sleep while the page is loaded.

In order to reduce the execution speed penalty incurred by the code
loading, our scheme only swaps out infrequently executed (cold) code.

3The relevant thread on the Linux Kernel Mailing List can be viewed at http://
lkml.org/lkml/2001/4/17/115

http://lkml.org/lkml/2001/4/17/115
http://lkml.org/lkml/2001/4/17/115
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To further reduce the number of code loading events, a good code
placement strategy is needed that places related code on the same vir-
tual memory page as much as possible.

There is a fixed-size buffer of pre-allocated physical frames avail-
able to store the loaded pages. Like regular virtual memory, the buffer
is managed with a replacement policy, for example round robin. Code
eviction occurs whenever the buffer is full, at which time the replace-
ment policy decides which page will be removed from memory with-
out checking whether the code on the page is being executed at eviction
time. Still, this does not raise concurrency issues, as will be illustrated
in Section 5.5.1.

There are several possible alternatives for the secondary storage
medium. For example, similarly to the approach taken with the frozen
code compression technique, the unloaded code could be compressed
and stored in memory. In the further discussion, however, we will focus
on the case where the unloaded code repository is stored in Flash mem-
ory. This is a reasonable choice, as Flash memory is already available
in most embedded systems for storing the firmware. The read speed of
Flash memory is sufficiently fast to avoid having to put a thread to sleep
because a page of code has to be loaded. For currently available Flash
memory parts (Intel Embedded Strataflash P334), a 4 KiB page can be
read in approximately 40 microseconds. As only code is ever swapped
in, there is no need to write back pages to Flash memory when they
are evicted from memory, avoiding costly Flash write operations that
would slow down the process.

Note that it would also be possible to extend this technique to the
kernel’s read-only data (i.e., strings for error description). However,
we have left this extension for future work. Extending the technique
to incorporate writable data is not advisable, as Flash memory wears
down after too many write cycles. Consequently, the repeated write-
back operations that swapping out writable data would entail, would
severely limit the device’s lifetime. Furthermore, the write-back opera-
tions would significantly slow down the swapping process.

When compared to the frozen code compression technique, cold
code swapping has two advantages: there is a hard upper bound on the
kernel code memory usage, and the technique can be applied to all cold
code, not just the frozen code, potentially resulting in greater memory
savings. The main disadvantages are the need for virtual memory sup-

4http://www.intel.com/design/flcomp/datashts/314749.htm

http://www.intel.com/design/flcomp/datashts/314749.htm
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port, which is not provided by all embedded system chipsets, and the
fact that cold code swapping may be slower than frozen code compres-
sion: because of the fixed buffer size, it is possible that two or more
threads compete for the buffer space, and thrashing occurs. This is
never possible with the frozen code compression technique.

In the remainder of this section, we discuss a number of aspects of
this technique in more detail.

5.5.1 Concurrency Issues

1 1
2 1

1 2
P a g eF a u l t

P a g eF a u l t

0 1 2

1 91 20
2 91 21

2 11 22
Figure 5.5: An example of the concurrency issues involved in evicting code
from memory.

Even though code eviction is done without checking whether the
evicted code is being executed, our code loading scheme works reliably.
This is illustrated in Figure 5.5. The left side of the figure shows a time
line of the execution of two different threads, the right side shows the
contents of the buffer at times T0, T1 and T2. The downward-pointing
arrow indicates the next page to be replaced according to the replace-
ment policy.

Assume there are two threads in the kernel, the buffer can hold two
pages, and we use a round-robin replacement policy. Thread 1 is exe-
cuting cold code from virtual page V1 in the physical buffer frame P1,
while thread 2 is executing hot, non-swappable code. At some point,
the second thread has to execute some cold code from virtual page V2,
which is currently not in the buffer, causing a page fault. The page
fault handler runs in the execution context of thread 2, locates the nec-
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essary code in secondary memory and because of the round-robin re-
placement policy decides to put V2 in P1. Once V1 is unmapped from
memory, a page fault will occur in thread 1 when the next instruction
in this thread is loaded. The page fault handler will run in the context
of thread 1, find V1 in secondary storage and map it in P2 because of
the round-robin policy, after which execution in thread 1 can continue
as before. While this scenario means that thread 1 has been temporarily
interrupted, the integrity of the execution has not been compromised.
In the worst case, this scenario could cause a cascade of swap-ins for all
kernel threads, but it is easily shown that this thrashing will not occur
as long as there are at least as many buffer frames as there are kernel
threads.

5.5.2 Code Selection

As mentioned previously, only infrequently executed code will be con-
sidered for on-demand code loading. Based on basic block profile in-
formation gathered for the kernel (the instrumentation technique is dis-
cussed in Appendix A), the kernel code is divided into three categories:

1. The core code: this is the code that always has to be present in
memory for the system to work correctly. Basically, this portion
of the code consists of all code that can be executed before our
code loading mechanism is initialized, the page fault handling
mechanism and the code needed to read the secondary storage
medium.

2. The base code: this is the frequently executed (hot) kernel code,
which we want to keep permanently resident for performance
reasons, even though there are no technical difficulties in swap-
ping it out.

3. The swappable code: this is the remaining code, which is either
infrequently (cold) or never (frozen) executed. This is the code
that will be removed from the kernel image and stored on the
secondary storage medium for on-demand loading.

As with the frozen code compression scheme, we will not apply the
cold code swapping technique to the initialization code in the kernel.
By the time the user space processes start executing, and the device’s
full memory capacity is needed, the initialization code will already be
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removed from memory, making it useless to load this code on demand.
Consequently, we will consider all initialization code to be part of the
core code.

(a) before duplication (b) after duplication

Figure 5.6: A slice of the call graph before and after procedure duplication.
Gray nodes represent initialization code, white nodes non-initialization code.
Nodes with heavy borders are considered core code, those with a dashed bor-
der are infrequently executed, those with a solid border are frequently exe-
cuted.

As mentioned before, all code that can be executed before our code
loading mechanism is initialized has to be considered core code. While
most of this code is part of the initialization code section, it also includes
a number of non-initialization utility procedures that are called from
the initialization code. We can reduce the amount of non-initialization
core code by duplicating all non-initialization procedures that are only
called from initialization code prior to the initialization of our code
loading mechanism. All calls from initialization code are moved to
the duplicated procedures, which can then be considered initialization
code as well. The original procedures will then no longer be called
prior to the initialization of our mechanism, and can be considered
swappable. As the initialization code is released from memory during
the boot process, the duplicated procedures incur no memory overhead
during the system’s steady state operation.

Figure 5.6 illustrates this process. In part (a) we see a slice of the
kernel’s call graph before duplication. Non-initialization procedure D
is called by initialization procedures A and B before the code loading
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mechanism is initialized. The call from non-initialization procedure C
can only occur after the mechanism is initialized. Because of the calls
from A and B, D and its descendants in the call graph E and F must
be considered core code. In part (b) the situation after duplication is
shown. F is not duplicated as it is hot code, and will not be swapped
out anyway. The duplicated procedures D’ and E’ are only reachable
from initialization code, and can thus be considered initialization code
themselves. The original procedures D and E can now only be called
after the code loading mechanism is initialized and can hence be con-
sidered swappable instead of core code.

5.5.3 Code Placement

The problem of code placement to minimize page faults has been stud-
ied before. An overview of the existing literature can be found in Sec-
tion 6.4. All existing algorithms use some variation on run-time profile
data as input, and of course they concentrate on achieving a good place-
ment for the most-frequently executed code. As we only have to place
the least-frequently executed code, for which there is much less profile
information available, these algorithms are not guaranteed to achieve
good results. This is especially true in the case where only frozen code
is considered swappable, because for this code all execution counts are
zero.

Therefore, we have implemented two different code placement al-
gorithms. The first makes use of whatever profile information is avail-
able to achieve a good placement, whereas the second aims to mini-
mize, for each entry point in the swappable code, the total number of
pages needed to load all swappable code that is directly reachable from
that entry point. The second algorithm makes no use of profile infor-
mation and relies only on an analysis of the static structure of the code.
Both algorithms assume that the swappable code can be placed inde-
pendently from the base and core code, i.e., there are no fall-through
control flow paths connecting swappable code to other code. This can
easily be achieved in practice by breaking up all fall-through paths in
and out of the swappable code by inserting direct jump instructions.

The profile-based algorithm

In this algorithm, the code is placed with a chain granularity. A chain
is a set of basic blocks that have to be placed in a predetermined or-
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der because of control flow dependencies (e.g., fall-through paths or a
function call and its corresponding return site). Control flow between
chains is always explicit, in the form of function calls, returns or jumps.
Consequently, the order of the chains is not important for the correct
working of the code.

We use a graph representation of the problem as proposed by Fer-
rari [Ferr74]. The graph nodes represent chains and are labeled with
the size of the chain in bytes. The (undirected) graph edges represent
direct control flow between chains. The edge weights are computed by
the following formula:

weight(eij) =
∑

e∈(Ei→j∪Ej→i)

(1 + execcount(e))

where Ei→j is the set of direct control flow edges from chain i to chain j
and execcount(e) is the traversal count of control flow edge e according
to edge profile information. In our current implementation, the edge
profiles are estimated from the basic block profile information we have
available. It is also possible to obtain exact edge profiles by inserting
the appropriate instrumentation into the kernel, just like we did for
obtaining the basic block profiles, but, as will be shown in the evalua-
tion section, the estimated edge profiles are accurate enough to derive
a good code placement. The traversal counts are incremented by one
to ensure that the substantial body of frozen code in the kernel, whose
edge traversal counts are zero, is not ignored during placement. If each
node is placed on a separate virtual memory page, the graph’s total
edge weight is an estimate of the number of page faults that will occur
at run time.

The nodes in the graph are clustered in such a way that node sizes
never exceed the virtual memory page size. This is done in three steps:

1. We try to minimize the total edge weight of the graph. This is
done with a greedy heuristic by iteratively selecting the heaviest
edge whose head and tail can still be merged without exceeding
the page size. In case of a tie, we select the edge with the maxi-
mum commonweight, which is defined as:

commonweight(eij) =
∑

k∈succ(i)∩succ(j)

(weight(eik) + weight(ejk))

where size(i)+size(j)+size(k) ≤ PAGESIZE. In this way, we try
to obtain a graph with less, but heavier edges instead of one with
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many light edges. After this step, the total edge weight cannot be
reduced any further.

2. We try to maximize the weight of individual edges by iteratively
merging sibling nodes (nodes not connected to each other but
connected to a common third node). In each iteration we select
the nodes for whom the sum of the weights of the edges connect-
ing them to their common parent is maximal. The idea behind
this step is that, if more than one page is available in the swap-in
buffer, the probability of page j already being in the buffer upon
a control transfer from page i is proportional to weight(eij).

3. For each connected subgraph, nodes are merged with a best-fit
algorithm. This step minimizes the total number of pages needed
for each connected subgraph. We do not yet merge nodes from
different subgraphs, because we do not want to pollute the pages
for one connected subgraph with code from another subgraph.
After all, the likelihood that node j is needed in memory before
node i is removed from the swap-in buffer is higher if i and j
belong to the same connected subgraph.

The per-entry point minimization algorithm

This algorithm makes no use of profile information to guide the code
placement. The swappable code is first partitioned into single-entry
regions that do not span procedure boundaries. These single-entry
regions (henceforth simply called regions) are the basic units of code
placement. Regions that have incoming control flow edges from base
or core code are called entry points. As a simplification, we assume that
the entry points are independent of each other, i.e., that the fact that
entry point i was entered at time T has no influence on the probability
of any specific entry point j being entered at time T ′ > T . Under this
assumption, it makes sense to place the code in such a way that only
a minimal amount of pages is reachable from each entry point. After
all, in the absence of meaningful profile information we have to assume
that all code paths through cold code are equally likely to be followed,
so we cannot favor one code path over another for placement on a min-
imum number of pages.

Initially, each region is placed on its own page. Let P be the set of



5.5 Cold Code Swapping 99

pages, and E the set of entry points (E ⊆ P ). We define two functions:

∀p ∈ P : entries(p) = {e ∈ E | p is reachable from e}

and
∀e ∈ E : pcount(e) = ]{p ∈ P | e ∈ entries(p)} .

entries(p) returns the set of entry points from which code on a page p
is reachable, without passing through hot or core code. pcount(e) computes
the number of pages that are reachable from entry point e.

The code placement algorithm tries to minimize the pcount for each
entry point by iteratively executing the following steps:

1. Build the set M containing the entry points with maximal pcount.

2. Select pages pi and pj such that size(pi) + size(pj) ≤ PAGESIZE
and pi and pj have a maximum number of entry points in com-
mon with M and each other, i.e., ](M ∩ entries(pi) ∩ entries(pj))
is maximal. In case there are multiple eligible pairs, select the pair
that has the most entry points in common. Stop if no pair can be
found.

3. Merge pages pi and pj .

Reducing fragmentation

Both described code placement algorithms will terminate with a lot of
remaining small pages that aren’t merged because there are no direct
control flow edges between the code on the pages. In order to reduce
fragmentation, a post-pass merges these small pages. We have tried
two merging strategies. The first is just best-fit merging of pages, as-
suming there is no correlation between code on pages that are not con-
nected through direct control flow edges. The second strategy attempts
to place the most-frequently executed code together on the same page.
By concentrating the hottest code on a small number of pages, we hope
to reduce the kernel’s working set.

5.5.4 The Modified Page Fault Handler

The original kernel’s page fault handler has to be extended to support
the code loading mechanism. Our modified page fault handler acts as
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a wrapper around the original one: all page faults unrelated to the code
loading mechanism are passed on to the original handler.

During system initialization, a number of physical frames are re-
served for use as our mechanism’s swap-in buffer. Whenever a page
fault exception occurs, our handler checks whether the memory access
causing the page fault is part of the swappable code’s address range. If
not, the page fault is passed on to the original handler. Otherwise, the
needed page is located in the secondary storage and copied to a physi-
cal frame in the swap-in buffer. Then, the page tables are updated and
the faulting instruction is re-executed.

For simplicity, the swap-in buffer is not managed by the kernel’s
built-in page replacement policy. The modified page fault handler im-
plements its own, rather simple, replacement policy. We have imple-
mented three basic replacement algorithms: round robin, random and
not recently used (NRU). The latter is implemented by periodically
resetting the accessed flag of the page-table entries and flushing the
Translation Lookaside Buffer (a special-purpose cache that aids the pro-
cessor in performing virtual address translations). When the buffer is
full, the page to be evicted is chosen randomly from those that have an
unset accessed flag.

5.6 Cold Code Swapping Evaluation

Due to practical limitations, the cold code swapping technique has un-
til now only been evaluated for the i386 architecture. As our i386 test
platform does not have Flash memory, we have devised an alterna-
tive way to quantify the performance degradation incurred by loading
code from Flash memory. In short, the swapped-out code resides in a
repository in RAM, and swapping in a page is done by copying it from
the repository to the swap-in buffer and mapping it at the correct ad-
dress in virtual memory. The delay that would be caused by reading
the page from Flash instead of from memory is simulated by a delay
loop that was inserted in the copying code. In order to determine a
realistic delay value, we have performed measurements on our ARM
test system, which does have Flash memory on board (Intel StrataFlash
J3 NOR-based Flash memory). Reading a contiguous 4096-byte block
from Flash takes approximately 442 µs on this device, so this is the de-
lay value we have used for our further experiments.

In order to quantify the effect of the different code placement algo-
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Figure 5.7: Effect of the hot code threshold on the remaining non-initialization
code size.

rithms and the other parameters of this code loading scheme (swap-in
buffer size and in-kernel page replacement algorithm), we have exe-
cuted five consecutive runs of the LMbench benchmark suite with a
number of rewritten kernels and recorded the amount of page faults
(i.e., code loading events) that occurred during execution. The profile
information used for guiding the swappable code selection and place-
ment was collected by running the LMbench suite on an instrumented
kernel as explained in Appendix A.

5.6.1 Influence of the Hot Code Threshold on the Remaining
Code Size

Figure 5.7 shows the effect of the hot code threshold T on the remaining
size of the non-initialization code in a rewritten kernel. The T value
indicates how much of the kernel code is considered hot. For exam-
ple, T = 95% means that the most frequently executed basic blocks
that together account for 95% of the execution time are considered hot.
T = 100% corresponds with only the frozen code being considered
cold. The figure also includes the size of the non-initialization code
before cold code swapping is applied, and the size of the core code that
must never be swapped out. For all data points in the graph, the cold
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Figure 5.8: Number of kernel page faults in function of T for both cold code
placement strategies.

code swapping was applied on top of all preceding link-time optimiza-
tion and specialization transformations.

In line with our previous experience, slightly less than half of the
remaining code after compaction and specialization is frozen. The re-
maining code size then drops off rapidly with decreasing T values: at
T = 100%, the code size is approximately 300 KiB, at T = 99.9% this has
already diminished to 151 KiB. From this point onwards, the decrease
happens much more slowly: at T = 99%, the remaining code size is
136 KiB, at T = 90%, 117 KiB of the non-initialization code remains, of
which approximately 64 KiB is core code.

Clearly, the interesting range of T values lies between T = 100%
and T = 90%. Lower T values yield little to no extra gain, while they
will substantially reduce the kernel’s performance.

5.6.2 Evaluation of the Code Placement Strategies

For different T values, and for both cold code placement strategies, we
have recorded the number of kernel page faults that occurred during
five consecutive runs of the LMbench suite. In all cases, we have used
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Figure 5.9: Number of kernel page faults in function of T for the profile-based
placement strategy, with both small page merging strategies.

a 32-page swap-in buffer, the best-fit small pages merging algorithm
and the NRU in-kernel page replacement policy. The results are shown
in Figure 5.8. In order to make the results more clearly visible, the X
axis of this graph does not have a linear scale. Instead all data points
are spaced equidistantly.

The results confirm our intuition: for T = 100%, the per entry point
placement strategy gives better results than the profile-based place-
ment strategy, although in both cases the total number of in-kernel page
faults is of course low. As soon as the hot code threshold is lowered
however, and useful profile information about the swapped-out code
becomes available, the profile-based strategy outperforms the per en-
try point strategy. At T = 99.99%, both strategies are almost tied (the
profile-based strategy is already slightly better), but for lower T values
the differences are very clear. While the number of page faults for the
profile-based strategy hovers between 40000 and 60000 for low T val-
ues, the page faults for the per entry point strategy exceed 220000 for
T = 90%.

In order to quantify the influence of the small pages merging strat-
egy on the number of page faults, we have done the measurements
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from the previous graph for the profile-based placement strategy with
the profile-based small pages merging strategy as well. The results are
shown in Figure 5.9. In this case, there is no clear winner: while the
profile-based merging strategy usually outperforms the best-fit strat-
egy, it does so by a small margin, and not in all cases. Hence, we can
conclude that the small pages merging strategy has little influence on
the overall effectiveness of the cold code placement.

Table 5.4 shows the average performance degradation for the indi-
vidual microbenchmarks of the LMbench suite for different T values.
All measurements were done with the profile-based code placement
and small pages merging strategies, with a 32-page swap-in buffer and
the NRU page-replacement policy. The numbers indicate the relative
performance degradation compared to the original, not rewritten ker-
nel. Positive numbers indicate slowdowns, negative numbers indicate
speedups. Boldface numbers indicate extreme slowdowns of more than
20%.

In general, for the higher T values (T ≥ 99.98%), no extreme slow-
downs are noticeable. On average, there is a performance hit of ap-
proximately 1% for T = 100%, and a performance improvement of
approximately 2% for T = 99.99%. This is slightly counterintuitive,
as in the first case less code would need to be swapped in than in the
second case. We suspect that the small performance loss caused by the
extra swap-ins is in this case offset by the performance gained because
of better I-cache utilization. Because the coldest code is moved to sepa-
rate memory pages, the hot code is placed closer together, reducing the
chance that hot cache lines are polluted with cold code.

For lower T values, there are big slowdowns for the shell process and
TCP connect benchmarks. The cause of these big slowdowns is that in
both cases a code path through the kernel that is uniquely exercised by
these benchmarks is considered hot for high enough values of T , but
this is no longer the case once T drops below a certain threshold. These
(long) code paths are scattered over a number of cold pages, triggering
several swap-ins. In the case of the TCP connect benchmark, for ex-
ample, the original measured time was approximately 200 µs, whereas
the time measured in the case of the extreme slowdown is in the order
of 3000 µs. Given the page swap-in delay of 442 µs, this corresponds
to approximately 6 pages being swapped in for one run of the bench-
mark. The effect is very pronounced because of the simple nature of the
microbenchmark: it does nothing more than create a TCP connection



5.6 Cold Code Swapping Evaluation 105

Table 5.4: Performance degradation per individual microbenchmark result.
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Figure 5.10: In-kernel page faults for different swap-in buffer sizes and re-
placement policies.

and then close it. Because the execution time of this benchmark is so
small, even a single swap-in operation would cause the execution time
to triple. Obviously, in real world programs, the effect of a low number
of swap-ins would be relatively less noticeable when compared to the
total execution time of the program.

5.6.3 Influence of Buffer Size and Replacement Policy

Next, we investigate the influence of the swap-in buffer size and in-
kernel page replacement policy on the performance of the cold code
swapping technique. For these experiments, we focused on a kernel
rewritten with the profile-based code placement and small page merg-
ing strategies, and a fixed hot code threshold value T = 99.98%. Buffer
sizes are varied between 16, 32 and 64 pages, and three buffer manage-
ment policies are considered: round robin, random replacement and
NRU replacement.

Figure 5.10 shows the number of in-kernel page faults that occurred
during five runs of the LMbench suite for each combination of swap-
in buffer size and replacement policy. These results are entirely in line
with our expectations. The size of the swap-in buffer has a severe im-
pact on the total number of page faults: quadrupling the buffer size
reduces the amount of page faults by a factor of 11. The impact of the
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Figure 5.11: Average performance degradation for different swap-in buffer
sizes and replacement policies.

page replacement policy is less pronounced, but it is clear that the NRU
page replacement policy performs best, and random replacement con-
sistently performs worst.

Figure 5.11 shows the average performance degradation for each
combination of buffer size and replacement policy. The large average
degradation for the 16-page buffer is due to only three microbench-
marks that experience extreme slowdowns that completely skew the
average. The reason for this is that these microbenchmarks trigger a
swap-in for more than 16 different pages, thus causing thrashing in
the buffer. The same effect is noticeable for the 32-page swap-in buffer
with random replacement policy. The randomness of the page replace-
ment here causes the thrashing to occur even with a buffer that is large
enough to hold all code needed for the microbenchmarks because still
needed pages are already evicted from the buffer before all not-needed
pages are.

Interestingly, for the round robin and NRU replacement policies
there appears to be little performance difference between the 32-page
and 64-page buffer cases. Hence, it seems that a buffer size of 32 pages
is sufficiently large for practical purposes in this case study.
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5.6.4 Impact on Memory Footprint

Returning to our embedded router case study, Table 5.5 shows the im-
pact of cold code swapping on the kernel’s memory footprint. In this
case, the hot code threshold T was fixed at 99.98%, and the profile-
based code placement and small pages merging strategies were used.
The first three lines in the table recapitulate the memory footprint re-
ductions achieved with the whole-program optimizations and special-
ization described in the previous chapters. The next line shows the
overhead of the modified page fault handler code that was added to
the kernel to support the cold code swapping technique. This over-
head amounts to 5 KiB of code and 4 KiB of data. The next two lines
show the results with cold code swapping enabled, both without and
with initialization code duplication (see Section 5.5.2). The initializa-
tion code duplication optimization allows us to swap out 6 KiB of code
that would otherwise have been considered core code. The last line in-
cludes a 32-page swap-in buffer and the size of the uncompressed cold
code repository, in order to provide a realistic view of the final memory
footprint reductions.

The final static RAM footprint reduction, taking into account a
32-page swap-in buffer, is 48.6%. This is almost double the final
static RAM footprint reduction achieved with frozen code compres-
sion (26.3%). This is due to two different causes: first, the cold code
swapping technique does not require the (compressed) unloaded code
to be retained in memory, and second, the cold code swapping tech-
nique is not restricted to loading frozen code on demand.

The static ROM footprints, on the other hand, paint a less rosy pic-
ture. This was to be expected, as all swapped-out code is now stored in
ROM in uncompressed form. In total, 421 KiB of code is swapped out.
This code is placed on 125 pages, so the final size of the swapped-out
code repository is 500 KiB. There are two reasons for the size increase
of the swapped-out code:

• To separate the cold from the hot code, a number of direct jump
instructions have been inserted to break up control flow depen-
dencies between hot and cold code. Furthermore, because the
distance in virtual memory between hot and cold code is very
large, part of the already existing direct jump instructions that
connected hot code to cold code had to be recoded with a four-
byte offset instead of a one-byte offset.
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• As the minimum granularity of the profile-based code placement
strategy is a chain of basic blocks, there inevitably is some frag-
mentation. Pages will almost never be perfectly filled.

A possible extension to the cold code swapping technique could
solve the problem of the drastically increased ROM footprint by storing
the swapped-out code in compressed form in the Flash repository. An
additional benefit of this approach for systems with slow Flash memory
and fast processors would be increased performance: if the processor
can decompress the loaded page fast enough, the decompression time
may be completely compensated for by the reduction in load time.

In conclusion, we can state that the cold code swapping technique
is very useful for reducing the kernel’s static RAM footprint. If a good
value for the hot code threshold T is chosen, there is only a limited per-
formance impact, while the memory footprint reductions are substan-
tial. The technique is, however, not suitable for reducing the kernel’s
ROM footprint. If it is possible to apply the cold code swapping tech-
nique (i.e., the processor supports virtual memory), this technique is
preferable over the frozen code compression technique. In case the de-
vice does not offer the necessary hardware support for cold code swap-
ping, frozen code compression can be a useful, albeit more limited, al-
ternative.



Chapter 6

Related Work

In this chapter, we discuss related work. First, we give an overview of
the most important program compaction and compression techniques.
Then, we discuss OS kernel specialization and optimization. We con-
clude with an overview of the existing code placement techniques for
the minimization of page fault occurrences.

6.1 Program Size Reduction Techniques

In general, there are two different approaches to program size reduc-
tion: compaction and compression. Compaction techniques produce
a smaller program that is directly executable, while compression tech-
niques require a decompression step (either in software or in hardware)
before the program can be executed.

We now present an overview of the most important program com-
paction and compression techniques. A comprehensive overview can
be found in [Besz03].

6.1.1 Compaction Techniques

A program’s code size is dependent on the binary representation of
its instructions. This binary representation is defined by the target
processor’s instruction set architecture (ISA). Traditional CISC proces-
sor architectures, like the i386, offered an instruction set that was en-
gineered for code density. Complex but frequently occurring opera-
tions were represented by one instruction, and the variable-length in-
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struction sets made it possible to assign a shorter representation to the
most frequently occurring instructions and a longer one to those in-
structions that were used less. Most modern-day processor families,
however, have a RISC ISA, with fixed-size instructions (usually 32 bit
wide) that only encode relatively simple operations. Consequently,
programs compiled for RISC processors typically have a larger code
size than those compiled for CISC architectures. For at least two popu-
lar embedded RISC architectures, ARM and MIPS, this disadvantage
has been countered by the introduction of an alternative instruction
set, called Thumb and MIPS-16 respectively, whose instructions have a
fixed width of 16 bit. The trade-off for the smaller instruction size is lim-
ited expressiveness: instead of three-address instructions (two source
registers and one destination register), most instructions have a two-
address form where the destination register is one of the source regis-
ters, not all registers can be used in all instructions and not all instruc-
tions from the original ISA have a 16-bit counterpart. Because of this,
code compiled for the alternative ISA will comprise more, but smaller,
instructions. Translating ARM code to Thumb instructions on aver-
age reduces the code size with 30% but the resulting code will execute
on average 40% slower [Furb96]. Because programs can switch modes
during execution, it is possible to compile performance-sensitive code
for the 32 bit ISA and just translate the infrequently executed parts of
the code to the alternative ISA. Krishnaswamy and Gupta [Kris02] ex-
plored this idea, and showed that the code size reduction is almost the
same as when pure Thumb code is used, while the performance of the
mixed ARM-Thumb code is nearly the same as that of the original pure
ARM code.

Perhaps the most trivial compaction technique is compiler opti-
mization. Most compiler optimizations not only speed up program
execution but also reduce a program’s footprint. The most notable ex-
ceptions to this rule are loop unrolling and procedure inlining. Most
compilers offer the user the possibility to tune the optimization level,
and even allow to optimize strictly for code size instead of execution
speed (e.g., GCC’s -Os command-line parameter). For embedded sys-
tems tool chains like ARM’s RVCT, code size optimization is even the
default behavior. A good overview of compile-time program optimiza-
tion can be found in the book by Allen and Kennedy [Alle01]. As the
different compiler optimizations interact with each other, it is necessary
to find a good optimization ordering so that maximal code compaction
is achieved. Cooper et al. [Coop99b] use a genetic algorithm to deter-
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mine the best optimization sequence for either a set of programs or an
individual program. They found that the ideal optimization sequence
differs for each program, and report code size savings of up to 40%
when the optimization sequence suggested by the genetic algorithm
was used instead of the compiler’s fixed optimization sequence.

However, compiler optimizations are hampered by the fact that a
compiler only views one compilation unit (which usually corresponds
to one source code file) at a time. Some optimizations like code fac-
toring [Coop99a, DeSu02, Cheu03, Chen03b, DeSu05], which extracts
similar code sequences into separate functions so they only need to
occur once in the program, definitely benefit from a whole-program
overview. This shortcoming can be overcome by moving some of the
optimization burden from the compiler to a later stage of the tool chain,
the linker. The linker’s task is to join the separate compilation units and
libraries in order to create one executable file. Traditionally, no opti-
mization is done in this phase. However, it turns out that the link phase
is well-suited for program size optimizations. By applying, amongst
others, unreachable code and data elimination, code factoring at both
procedure and basic block level, interprocedural constant propagation
and liveness analysis, it is possible to reduce the static RAM footprint
of statically linked programs for the Alpha architecture with on aver-
age 20% to 43% [DeSu05]. The Alpha architecture, however, is server-
oriented and as such tool chains for these systems are not at all geared
towards creating compact programs. Therefore, it makes more sense
to evaluate the potential of link-time compaction on a real embedded
architecture, with a tool chain that is more focused on generating small
programs. We have studied link-time compaction of statically linked
programs for the ARM architecture, compiled with the ARM Developer
Suite and the ARM RealView Compiler Tools, which are known to pro-
duce very small binary executables. We have found that it is possible
to achieve an average code size reduction of 14.6%, with an average re-
duction in execution time of 8.3%, while the total energy consumption
decreased with 7.3% on average [DeSu07]. This proves the viability
of link-time binary compaction for real embedded systems and shows
that compaction can be done without compromising execution speed
and energy consumption.
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6.1.2 Compression Techniques

If the only optimization target is the ROM footprint, it is sufficient to
use any known data compression technique to compress the complete
program image and transform the program into a self-extracting exe-
cutable. However, techniques have been developed that make use of
the unique properties of program code to achieve a higher compres-
sion ratio. These are the so-called wire codes. They typically work by
translating the code to some intermediate compiler format and apply-
ing compression to this representation. Ernst et al. [Erns97] use the
intermediate code format of the LCC C compiler as a starting point
for compression, Franz and Kistler [Fran97] use syntax trees. In both
cases, decompression of the code involves some further compilation
to achieve an executable representation. This makes these approaches
less suitable for embedded systems, where the overhead of the further
compilation would be too large. Drinić et al. [Drin03] propose a tech-
nique for compression of machine code based on prediction by partial
matching (PPM). To improve the achieved compression ratio, they per-
form instruction rescheduling to improve the prediction probabilities
for their compressor. For large i386 applications, they report compres-
sion ratios that are 18 to 24% better than those achievable with off-the-
shelf compressors.

On some systems, compression is a hardware feature. Program
code is then stored in a compressed format in memory — thus reduc-
ing both static RAM and ROM footprint — and decompressed by hard-
ware. In one approach, decompression is done upon transfer from main
memory to the processor cache. This has the advantage that the decom-
pression is not in the critical path of the execution. This technique is
used in the Compressed Code RISC Processor [Wolf92], where the code
size of MIPS programs was reduced with 27%, and IBM’s Codepack
technology [Kemp98], which reduces the code size of PowerPC exe-
cutables with on average 40%. The alternative is to perform decompres-
sion when the processor fetches the instructions from the cache. While
this places the decompressor in the processor’s critical path, and thus
incurs some extra instruction fetch latency, it allows for a much better
cache utilization. This in turn makes for a reduced power consump-
tion as less accesses to main memory are needed. Xie et al. [Xie03] use
profiling information to compress only those parts of the code that are
infrequently executed to avoid the decompression latency as much as
possible. They report good (but unspecified) compression ratios with a



6.1 Program Size Reduction Techniques 115

performance penalty of only 6% compared to the execution of the un-
compressed program.

Hardware compression of instructions is also often employed in
VLIW architectures, where the wide instruction words often necessi-
tate the inclusion of a large number of no-op operations in the instruc-
tion stream. These no-ops waste memory space and instruction fetch
bandwidth, so they are often compressed in the memory representation
of the program with no-op compression techniques [Colw88, Cont96,
Adit00].

An alternative approach that also requires hardware support is
the so-called echo instruction. Here, a dictionary is built that contains
the most frequently occurring instruction sequences. Elsewhere in the
code, these sequences are then replaced by a single echo instruction
that points to an entry in the dictionary and specifies how many in-
structions from this entry need to be “echoed”. This is in effect an LZ77
compression technique [Ziv77] adapted for use on program code, and
can also be seen as a hardware-supported version of the procedural
abstraction techniques used in program compaction. Fraser reports a
code size reduction of on average 33% with this approach [Fras06].

There are several approaches that forego hardware decompression
support and do the decompression in software. Kirovski et al. [Kiro97]
propose a technique where whole procedures are decompressed at
once. Upon each procedure call, the decompression buffer is checked
for the presence of the called procedure. If it is not available, the decom-
pressor will allocate space in the buffer and decompress the procedure.
For SPARC code, on average a 40% compression is achieved, at the cost
of a 10% slowdown.

Debray and Evans [Debr02] perform compression of more general
code regions. In order to limit the performance impact, only cold code
is compressed. If only the code that was never executed during the
profiling runs is compressed, a code size reduction of 13.7% is achieved
together with a small speedup in execution. By compressing code that
is responsible for up to 0.005% of the execution time during profiling
runs, a code size reduction of 18.8% was achieved, at the cost of a
27% execution slowdown. While these results seems worse than those
achieved by Kirovski et al., they cannot be compared directly. The size
reductions reported by Debray and Evans do not use the original exe-
cutable as the baseline, but a version that has already been compacted
with a link-time compactor. Furthermore, different ISAs were used
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(SPARC versus Alpha) and different compression algorithms were ap-
plied. The frozen code compression technique described in this disser-
tation is very similar to the technique proposed in this work. The major
difference is that Debray and Evans do not deal with concurrent pro-
grams, which makes it possible to easily evict decompressed code from
memory. As an OS kernel is inherently multithreaded, code eviction is
a lot harder for the frozen code compression technique, which is why
we have chosen to omit it altogether.

Shogan and Childers [Shog04] propose a variation on the technique
by Debray and Evans where decompression happens under the con-
trol of a software dynamic translator (SDT) instead of being integrated
with the program itself. The SDT is a software layer that sits between
the program and the operating system. Compressed code regions are
fetched by the SDT and decompressed into a buffer before execution.
When the control flow exits the decompressed region it returns to the
SDT, which then decompresses the next region, evicting previously de-
compressed regions from the buffer as needed. The authors report code
size reductions of about 45%.

Ozturk et al. [Oztu05] compress the complete program code and do
decompression with basic block granularity. To offset the performance
loss caused by software decompression, they use a predictive decom-
pression strategy that decompresses basic blocks that are expected to
be executed ahead of time in a separate decompression thread. A third
thread handles eviction of decompressed basic blocks when they are
not expected to be executed in the near future. Unfortunately, no code
size savings or performance measurements are mentioned in the article.

Waldman and Pinter [Wald06] use a code compression technique to
reduce a program’s static ROM footprint. Code size reduction and run-
time overhead are traded off based on profile information. The code re-
gions selected for compression are single-entry, single-exit regions that
vary in size from individual basic blocks to whole procedures. The de-
compression buffers are dynamically allocated at run time, and there is
no predetermined upper bound on the total amount of memory used
for decompression buffers. The authors report an average code size re-
duction of 18.5%, at the cost of a 3.8% increase in memory usage at run
time and a 7.8% increase in execution time.

Citron et al. [Citr04] propose to replace compression with delayed
code and data loading. Through profiling analysis, the frozen code and
data of a program are identified. These are the code and data frag-
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ments that are never executed or referenced during the profiling runs.
The frozen code and data are then removed from the program and re-
placed with stubs that load them from disk or ROM if they are needed
during execution. For the mediabench benchmark suite [Lee97], which
is representative for embedded programs, an average static RAM foot-
print reduction of 78% is achieved, while less than 1% of the code and
data needs to be loaded during execution. This technique allows for
reduction of a program’s static RAM footprint, but it does not reduce
the ROM footprint, as the frozen code and data are still stored in ROM.
An extra advantage of this technique is that application startup times
are significantly reduced because less than one quarter of the original
program needs to be loaded at program startup.

An alternative take on the compression idea refers back to the ob-
servation that a program’s image size depends on the ISA it is compiled
for. By defining an application-specific instruction set and providing
an interpreter for this ISA, the code size can be reduced if the size of
the native code is larger than the size of the interpreted program and
the native interpreter combined. With this approach Fraser and Proeb-
sting [Fras95, Proe95] are able to reduce the code size of C programs
by about 50%. A variation on this technique is used by Hoogerbrugge
et al. [Hoog99] to compress code for the TriMedia architecture. In or-
der to limit the performance loss they only compress cold code. The
interpreted language’s instruction set is constructed based on a set of
training applications, and is not specific to the one program being com-
pressed. This approach removes about 80% of the code size and results
in an eightfold execution slowdown. Clausen et al. [Clau00] extend the
Java bytecode language with application-specific macro-instructions
that replace frequently occurring bytecode sequences. A modified Java
Virtual Machine can then interpret the macro-instructions and execute
the program. This approach results in an average code size reduction
of 15%.

6.2 OS Memory Footprint Reduction

The idea of specializing the Linux kernel for a specific application was
first explored by Lee et al. [Lee04]. Based on source code analysis, a
system-wide call graph is built that spans the application, the libraries
and the kernel. On this graph, a reachability analysis is performed,
resulting in a compaction of the kernel of 17% in a simple case study.
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We believe our approach to be more general, as it is source-language
independent, and because more optimizations can be performed at link
time.

He et al. [He07] use an approach similar to ours to reduce the code
size of the Linux kernel. They use a different link-time binary rewriting
framework however, PLTO [Schw01], that only supports the i386 ar-
chitecture. They only apply the standard whole-program link-time op-
timizations and two specializations: system call elimination and boot
process specialization. A novelty in their approach is the use of approx-
imate decompilation to generate C source code for hand-written assembly
code in the kernel. This allows the use of a source code based pointer
analysis (the FA-analysis [Mila04]) for the identification of targets of
indirect function calls. While the generated source code is not func-
tionally equivalent to the original assembler code, it exhibits the same
properties with regards to this FA-analysis. On a Linux 2.4 kernel with-
out networking support, they report a code size reduction of 23.83%.
For the same test system we have used for an earlier evaluation of the
specialization techniques presented in Chapter 4 [Chan05], their results
are similar to ours, suggesting the two techniques are approximately
equal in strength.

In an earlier paper by the same research group, Rajagopalan et
al. [Raja06] describe the challenges in rewriting and instrumenting a
Linux kernel with PLTO. The problems they faced were mostly the
same as those described in Chapter 3.

An alternative approach to customize an OS for use in embedded
devices is proposed by Bhatia et al. [Bhat04]. Instead of manually cus-
tomizing the OS for specific hardware features and handcrafting the
generic code base to a hardware specific version, the authors of this
paper propose to remotely customize OS modules on demand. A cus-
tomization server provides a highly optimized and specialized version
of an OS function on demand of an application. The embedded device
needs to send the customization context and the required function to
the server and on receipt of the customized version, applications can
start using it. The size of the customized code is reduced by up to a
factor of 20 for a TCP/IP stack implementation for ARM Linux, while
the code runs 25% faster and throughput increases by up to 21%.

While our approach to minimizing the kernel’s memory footprint
is top-down in that we start with a full-featured kernel and strip away
as much unneeded functionality as possible, there are a number of
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projects that take a bottom-up approach. The Flux OSKit [Ford97],
Think [Fass02] and TinyOS [Gay03] are operating system building
frameworks that offer a library of system components to the developer,
allowing him to assemble an operating system kernel containing only
the needed functionality for the system.

McNamee et al. [McNa01] introduce a toolkit for the systematic spe-
cialization of operating system code. Their approach is based on the
partial evaluation of source code, generating specialized versions of
parts of the kernel. The specialization can happen both statically, at
system build time, and dynamically, at run time, but only the static
approach is really useful with regards to memory footprint reduction.
The focus of this work is also more on achieving performance improve-
ments than on kernel memory footprint reduction.

6.3 Other OS Kernel Optimization Approaches

Krintz and Wolski [Krin05] propose to apply specialization to the Linux
kernel to improve the performance of scientific applications in batch
processing systems. In such systems, only one application is running
at any time, so it is possible to tailor the kernel to this one application.
For every new job that is run on the system, a new, specialized kernel is
loaded. The objective of this work is to improve the performance of the
scientific application, not to reduce the memory footprint of the kernel.

Spike [Cohn97] is a (post-)link-time optimizer for the Alpha archi-
tecture that includes a profile-guided code layout optimization to im-
prove cache usage. Spike has also been used to optimize Tru64Unix
kernels [Flow01] for speed, both through profile-guided code layout
and through the profile-guided insertion of data prefetching instruc-
tions. Performance improvements of up to 40% on a set of benchmarks
running on an optimized kernel were reported for this Spike version.

Perianayagam et al. [Peri06] use PLTO to instrument a Linux kernel
to collect basic block and edge profiles, call trace profiles and system
call traces for a representative set of applications. This information is
then used to specialize the kernel for these applications: new system
calls are created that are specialized for frequently occurring system
call parameters, aggressive procedure inlining is applied to optimize
the most frequently executed code paths and profile-guided code lay-
out optimizations are applied. The achieved performance gains are,
however, very small.
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In contrast with link-time optimization, most kernels are tradition-
ally optimized by the compiler only. To detect kernel bottlenecks, pro-
file information is used. Profile-guided restructuring of the operating
system for the optimization of its throughput or latency has been stud-
ied for AS400 [Schm98] and HP-UX [Spee94] platforms.

The KernInst dynamic kernel instrumentation system [Tamc99] has
been used to optimize parts of the UltraSPARC Solaris kernel [Tamc01].
As its approach is dynamic, it cannot optimize for code size: the en-
tire kernel has to remain in memory. KernInst uses a code positioning
scheme, similar to the one used by Spike, which results in speedups up
to 17.6% for selected functions.

In the past, there have been many research projects that focused
on dynamically specializing OS kernel subsystems in order to improve
the performance of specific applications. A comprehensive overview of
the varied approaches is given by Denys et al. [Deny02]. None of these
approaches is particularly useful in reducing the memory footprint of
a kernel, however.

6.4 Code Reordering for Page Fault Minimization

Hatfield and Gerald [Hatf71] describe a technique that aims to mini-
mize the number of page faults for both code and data references. The
code and data are divided into a set of relocatable blocks (e.g., an ar-
ray or a procedure). Using profile data, a nearness matrix is constructed,
with one row and column for each relocatable block. Entry cij of this
matrix represents the count of references from block i to block j. Vir-
tual memory pages correspond to square regions along the diagonal
of the matrix. By reordering the rows and columns of the matrix, the
largest entries are brought closest to the diagonal, which corresponds
to placing the blocks that reference each other most on the same page.

Ferrari [Ferr74] formulates the problem as a graph clustering prob-
lem. Nodes in the graph represent relocatable blocks. The weight of a
node equals the size of the block it represents. Edges in the graph rep-
resent interblock references, and can be weighted according to various
cost functions. An optimal ordering is then sought by clustering graph
nodes in such a way that no node becomes larger than the page size
and the total weight of the remaining edges is minimal. If the edges are
weighted according to profile information, this method is equivalent to
that of Hatfield and Gerald. The author proposes a better-performing
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edge weighting, however, that is based on a trace of the block references
during execution instead of mere profile data.

Pettis and Hansen [Pett90] propose to reorder the procedures in a
program in such a way that those procedures that call each other most
frequently are placed closest together. Their main aim is to reduce the
number of conflict misses in the instruction cache, but they note that
this placement algorithm also reduces the number of page faults dur-
ing program execution. Once again, the program is represented as a
graph, with the nodes representing the procedures, and edges repre-
senting procedure calls. The edges are weighted according to profile
information. In each step of the algorithm, the edge with the highest
weight is selected and its head and tail nodes are merged. This method
does not prevent procedures from spanning page boundaries.

Gloy and Smith [Gloy99] also reorder procedures to improve a pro-
gram’s instruction memory hierarchy behavior. Their technique is sim-
ilar to Pettis and Hansen’s, but instead of profile information they use
temporal ordering information, which not only summarizes the number of
calls from one procedure to another, but also in which way these calls
are interleaved. While their approach is in the first place directed to-
wards optimization of the cache utilization, the authors also discuss an
extension of the technique to minimize the amount of page faults.
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Chapter 7

Conclusions and Future
Work

In this dissertation, we have shown how the RAM and ROM memory
footprint of an OS kernel can be reduced through the application of
link-time binary rewriting techniques. We have identified the chal-
lenges OS kernel code presents to a link-time rewriter, and we have
shown how these challenges can be overcome. As an extension to
the standard link-time compaction optimizations, we have proposed
a number of specializations that streamline the kernel for a specific
hardware/software combination. Finally, we have introduced two
approaches to on-demand code loading that allow to reduce the ker-
nel’s footprint even further, without significantly decreasing its perfor-
mance.

7.1 Conclusions

Table 7.1 gives an overview of the memory footprint reductions that
were achieved with the techniques presented in this work.

The combined optimization and specialization techniques result in
a 19.8% reduction of the static memory footprint after initialization for
the i386 kernel, and a 17.6% reduction for the ARM kernel. The uncom-
pressed image size is reduced by 23.3% and 22.1% respectively, while
the compressed image size is reduced by 14.7% and 9.5% respectively.

The introduction of on-demand code loading in the kernel allows
us to reduce the static RAM footprint after initialization even more.
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Frozen code compression results in a reduction of 26.3% for the i386,
and 28.8% for the ARM. Cold code swapping for the i386 kernel even
achieves a 48.6% reduction of the footprint after initialization. The on-
demand code loading techniques are, however, less suitable for reduc-
tion of the kernel’s ROM footprint: frozen code compression reduces
the gains for the compressed image size to 5% and 3% for the i386
and ARM kernels respectively. Cold code swapping even increases the
compressed image size with 40% compared to the original i386 kernel.
This size increase can be avoided by storing the swapped-out pages in
compressed form in ROM.

The performance impact of the proposed transformations is mini-
mal: by judiciously choosing the optimization parameters (especially
in the case of cold code swapping), the performance of the rewritten
kernel lies within 1 to 2% of that of the original kernel.

We can conclude that the usefulness of the proposed transforma-
tions is dependent on the ultimate optimization target. If reducing the
RAM usage is the main concern, all optimizations should be applied,
and cold code swapping should be preferred over frozen code com-
pression if the hardware platform allows to do so. If reducing the ROM
footprint is more important, it is advisable not to introduce code load-
ing, and for maximal reduction of the compressed image size duplicate
basic block elimination should not be applied either.

In general, the techniques presented in this dissertation allow em-
bedded system designers to significantly reduce the OS kernel’s mem-
ory footprint without compromising its performance. The proposed
techniques all operate automatically or semi-automatically, requiring
little human intervention or knowledge of the kernel’s internal work-
ings. The static RAM footprint reduction of up to 48% for the general-
purpose Linux kernel makes it more feasible to use such a general-
purpose OS for embedded systems, which has the potential of signifi-
cantly reducing the design time for a device.

7.2 Future Work

In this section, we take a look at possible extensions to the work pre-
sented in this dissertation. We discuss both a number of direct exten-
sions, and we also look somewhat further ahead, towards the ideal of
whole-system optimization.
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7.2.1 Direct Extensions

There are a number of direct, obvious extensions possible to the work
presented in this dissertation. On the one hand, there are still more
specialization opportunities in OS kernels that have not yet been fully
explored. For example, the Linux kernel exposes a lot of internal in-
formation to user space programs as virtual files in the /proc directory
tree. Currently, the proc interface is an all-or-nothing proposition: if
it is enabled, all kernel subsystems and drivers expose their informa-
tion in the directory tree. It would be better if the interfaces could be
enabled selectively: through an analysis of the user space programs,
the specializer could draw up a list of all /proc interfaces that are in
effect used by the software. The code that exposes all other, unused
information could then be discarded from the kernel.

As part of the kernel command line specialization, the kernel code is
specialized for known constant values of configuration variables. This
technique could be applied to other, non-configuration, variables as
well if these are known to be constant for a particular system. For ex-
ample, some variables in hardware drivers are assigned a value based
on the results of hardware probing in the bootup phase of the system.
Assuming the system’s hardware configuration does not change over
time, these variables will always be assigned the same value. Hence, a
valuable extension to the current work would be a systematic method
for discovering such system-dependent constants, so that the kernel
code can be specialized for them.

The on-demand code loading schemes presented in this work can
also be extended to include on-demand loading of (read-only) data.
The main challenge here is determining which data to load on demand,
and when to load it, as it is a lot more unwieldy to instrument all of the
kernel’s data accesses than it is to instrument the kernel code for the
collection of basic block profiles.

As the work presented in this dissertation focuses on reducing the
kernel’s static RAM and ROM footprint, an obvious extension is the
incorporation of techniques that reduce the dynamic RAM footprint of
the kernel, such as the heap compression technique proposed by Zhang
and Gupta [Zhan06b].
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7.2.2 Looking Further Ahead

In the longer term, it should be possible to optimize all system compo-
nents at once. As systems become more complex, designers will turn in-
creasingly to pre-built components that together make up the system’s
software. The overhead this entails can, at least partially, be contained
by the introduction of an automated whole-system integration step that
streamlines the individual components by removing unused function-
alities, and optimizes the communication between components by in-
tegrating them more tightly, perhaps even moving code and/or data
from one component (OS, library, program, . . . ) to another. This vision
has already been put forward by Rajagopalan et al. [Raja03] in 2003.
The work presented in this dissertation allows for a correct modeling
of the OS kernel as part of the whole system, and as such allows for
including the OS in this integration step.

One of the most important challenges for this research direction will
be devising a proper, unified model for the intercomponent commu-
nications. In this dissertation, we have only touched lightly on this
subject: the only real intercomponent communications we considered
were system calls, which can easily be modeled as something akin to
regular function calls on the binary instruction level. However, there
are more complex ways of interaction between components possible as
well: interprocess communication through sockets or shared memory,
remote procedure calls for distributed systems, communication with
the OS kernel through virtual file systems such as the aforementioned
proc filesystem come to mind.

When the system integration happens at the binary level, these com-
munication channels appear as a succession of abstraction layers and
data passed into them will inevitably be lost somewhere in the com-
plexities of the system before it can be propagated to the other end,
where it is actually consumed. For example, a program that consumes
kernel data through the proc interface has to open the relevant virtual
file with a regular open system call, and read the information it needs
with a regular read system call. In the kernel, the read system call
handler delegates the work to the proc subsystem, where it is then fur-
ther delegated to the specific handler installed for the proc entry that
is read. This process involves at least two indirect procedure calls, and
possibly a number of argument conversions.

A good modeling of the data flow through the different system com-
ponents can avoid this data loss problem. By defining the start and end
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points of each communication channel, and describing how data is con-
verted upon transfer through the channel, it will be possible to perform
effective intercomponent data flow analysis.



Appendix A

Gathering Profile
Information

Basic block profiles for the kernel are generated by instrumenting the
kernel with a modified version of our link-time rewriter. The instru-
mentation added to the kernel is very straightforward: an extra zero-
initialized data section that contains a counter for each basic block in
the kernel is inserted, and in each basic block the necessary instructions
are added to increment that block’s counter. Obviously, to preserve the
correct working of the kernel, no live register values may be corrupted
by the instrumentation code.

On the i386, the counter can be incremented with one instruction,
inc $counter. While the inc instruction does not overwrite any reg-
isters, it does update the processor’s condition flags, so if the original
value of these flags is still needed later on, it needs to be saved and re-
stored by adding a pushf instruction before and a popf instruction after
the inc.

On the ARM architecture, the most concise way to increment a ba-
sic block’s counter requires at least two free registers: one in which the
address of the counter is produced, and another to load the counter
value in so that it can be updated. The standard interprocedural live-
ness analysis of our link-time rewriter is used to identify two registers
containing dead values. If less than two such registers can be found,
spill code is inserted to save and restore the values of the used registers
on the run-time stack.

There are no special accommodations for reading out the counter
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values. The Linux kernel already offers the possibility to access the
contents of the kernel’s memory through the /proc/kcore interface, so
the counter values are read directly from this interface.

Using the collected basic block profile information, our link-time
rewriter then classifies the kernel code in two categories, hot and cold
code, based on a user-configurable threshold value T . For example,
for T = 0.95, the most-executed basic blocks that together constitute
(approximately) 95% of the kernel’s execution time will be considered
hot. The hot code is identified with the following algorithm:

1. Compute the control flow graph’s total weight. The total weight
is defined as W =

∑n
i=1 weight(blocki), where n is the number of

basic blocks in the graph, weight(blocki) is the execution count of
the ith block multiplied by its number of instructions.

2. Sort the basic blocks on execution count in descending order.

3. Walk the sorted block list, summing the block weights until the
accumulated weight is higher than or equal to T ∗W .

4. The control flow graph’s hot threshold count H is then equal to
the execution count of the last-visited block. All blocks whose
execution count is higher than or equal to H are considered hot,
all other blocks are cold.

Note that this algorithm is not exact, though the approximation it pro-
vides is sufficiently accurate to be useful.
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