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1.1. MODERN AGRICULTURE AND DETERIORATION OF SOIL 
QUALITY 

1.1.1. Modern agriculture 

The explosive population growth in the 20th century resulted in a high food 

demand in industrialised societies. Therefore the arable as well as animal 

production needed to increase through an intensification of agriculture. Until 

recently, modern agriculture was based on mechanization, intensive use of 

agrochemicals and organic manure and was focused on maximum food 

production without considering the long term impact on soil fertility or 

environment. As a consequence modern agriculture is nowadays confronted 

with a number of pressing problems. There is an intense debate about the role of 

agriculture in the diffuse pollution of the environment by the intensive use of 

agrochemicals and organic manure. These problems reflect negatively on 

agriculture because they are directly sensed by the society. Farmers themselves 

are also facing several direct negative consequences of the modern production 

methods. Agriculture in industrialised societies has to address the degradation of 

physical soil structure resulting in erosion and soil compaction, decline in soil 

organic matter (SOM) and nitrogen (N) losses.  

 

 

1.1.2. Deterioration of physical soil quality 

The erosion process is a physical phenomenon resulting from the removal of 

soil particles by water or wind, transporting them elsewhere. Erosion is a natural 

process triggered by a combination of factors such as steep slopes, climate (e.g. 

long dry periods followed by heavy rainfall), inappropriate land use, land cover 

patterns (e.g. sparse vegetation) and ecological disasters (e.g. forests fires). 

Moreover, some intrinsic features of a soil can make it more prone to erosion 

(e.g. a thin layer of topsoil, low SOM content) (EAA, 2003; Esteve et al., 2004). 

 

Erosion causes financial damage on the farm through the formation of rills and 

gullies and the washing away of fertile soil, seeds, manure and fertilizers. The 

loss of fertile soil by erosion not only has serious effects on crop yields but also 

negatively affects the soil functions, as it reduces plant rooting depth, removes 

nutrients and SOM, reduces infiltration rates and plant available soil water 

(PASW). Decrease in soil biodiversity is another and very important on-site 

impact of erosion. Decline in soil biodiversity affects nutrient turnover, 

decreases aggregate stability, increases crusting, reduces infiltration rates and 
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exacerbates erosion (Pimentel et al., 1995; Lupwayi et al., 2001; OECD, 2003; 

Anonymous, 2007b; Feller, 2007; MESAM, 2007). 

 

There are also important off-site problems caused by erosion like pollution of 

drinking water resources, the accelerated silting up of water reservoirs and mud 

on the roads and in housing properties of densely populated areas. Next to the 

offsite costs for the society for dredging waterways and cleaning the roads, the 

muddy floods also result in financial costs for the private households and have 

an emotional impact on the inhabitants (Pimentel et al., 1995; Uri, 1999; 

Verstraeten & Poesen, 1999; Verstraeten et al., 2003a; Dorren et al., 2004; 

Schiettecatte, 2006; Verstraeten et al., 2006; MESAM, 2007). 

 

In Europe, the Mediterranean region is particularly prone to erosion because it is 

subject to long dry periods, followed by heavy bursts of erosive rain, falling on 

steep slopes with fragile soils. This contrasts with Western Europe where soil 

erosion is less severe, because rain falling on mainly gentle slopes is more 

evenly distributed throughout the year and consequently, the area affected by 

erosion is less extensive than in Southern Europe. However, erosion is still a 

serious and increasing problem in Western Europe. It is clear that erosion by 

water and wind is irreversibly degrading the soils in many parts of Europe. 

Approximately 10% of European land is strongly or extremely degraded by 

water erosion (Jones et al., 2004). 

 

Erosion in Belgium mainly occurs in the loess belt, which stretches from east to 

west across the central part of the country, i.e. in the south of Flanders, and in 

the north of Wallonia (Verstraeten & Poesen, 1999; Anonymous, 2000; Gobin 

& Govers, 2003; Verstraeten et al., 2006). The major erosion problems are 

found with root and tuber crops and maize (Zea mays ssp. Mays L.) 

(Anonymous, 2000; Esteve et al., 2004; Geelen, 2006). The yearly erosion from 

silt loam soils in the hilly areas in Belgium varies between a few to 100 Mg soil 

ha-1 y-1 (Verstraeten et al., 2003b). 

 

 

Next to erosion, soil compaction also seriously threatens the agricultural 

production in some areas in Europe. Soil compaction essentially reduces the 

pore space between soil particles and can occur both at the surface and in 

subsurface soil horizons. The worst effects of surface soil compaction can be 

rectified relatively easily by soil tillage, root growth and biological activity in 

general and, hence, it is perceived to be a less serious problem in the medium to 
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long term. On the contrary, once subsoil compaction occurs, it can be extremely 

difficult and expensive to alleviate. Furthermore, remedial treatments usually 

need to be repeated. Deep soil compaction decreases the growth of plants by a 

reduction of the plant rooting depth and PASW (capacity) and often results in a 

decrease of crop yield (Figure 1.1) (Ide et al., 1984 & 1987; Ide & Hofman, 

1990; Crescimanno et al., 2004; Jones et al., 2004). More than a third of 

European subsoils are classified as having high or very high susceptibility to 

subsoil compaction (Dorren et al., 2004). 

 

0

25

50

75

100

125

0

25

50

75

100

125

D
e

p
th

 (
c

m
)

Non-compacted soil Compacted soil

percolation

filtering

buffering

to groundwater

erosion,

pollution

to surface water

runoff

compacted layer

seepage

 
Figure 1.1 Reduction of rooting depth and increase of erosion due to deep soil 

compaction (after Jones et al., 2004) 

 

 

As a result of human induced erosion and soil compaction the soil fertility of 

arable land is diminishing continuously. Erosion and soil compaction strongly 

depend on management. The main human causes for the degradation of the 

physical soil structure are increased farm and field sizes, limited crop rotations, 

intensification of crops with lower crop cover density, the frequent passages of 

the fields with heavy farming equipment, also under unfavourable 

circumstances, and ploughing and intensive soil tillage in general causing a 

disruption of aggregates and a decline in SOM. After all, farmer’s management 

decisions are determined by market conditions, technological development and 

changes in the global economy, particularly the rising relative cost of labour 

(Esteve et al., 2004; Jones et al., 2004; Bronick & Lal, 2005; Hamza & 

Anderson, 2005).  
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1.1.3. Deterioration of chemical soil quality 

Decline of soil organic matter 

SOM plays a major part in maintaining soil fertility. There are many soil 

properties, in particular related to soil physical structure, which are influenced 

by the presence of SOM. The retention and release of water, the ability to 

provide charged surfaces (variable with pH) where cations may be retained in a 

form available to plants are vitally important for a fertile soil. The simple 

mixture of SOM with the mineral fraction lowers the soil bulk density (BD) 

(and influences workability), but SOM also affects the stability of soil 

aggregates which determine several associated pore related properties, such as 

aeration and water infiltration rate (Tisdall & Oades, 1982; Holland, 2004; 

Robert et al., 2004). 

 

A higher amount of SOM results in more energy being available for 

heterotrophic bacteria and fungi and as a consequence in a higher amount and 

activity of soil micro-organisms. Microbial biomass (MB) is but a small portion 

of the total SOM content, but its activity is absolutely crucial for all soil 

functions. Micro-organisms are the main decomposers of litter, are crucial in the 

process of humification and make the parent mineral material into a habitat 

conducive for other forms of soil life, including plant growth and have a 

positive effect on the aggregate stability (Allison, 1968; Andrén et al., 2004; 

Bronick & Lal, 2005). 

 

SOM, erosion and soil compaction are strongly interrelated. Since a higher 

amount of SOM and microbial biomass result in a better aggregate stability and 

a reduction of the risk of erosion, it is essential to maintain high SOM contents 

in the upper depth layer. Although the importance of a high amount of SOM in 

the upper depth layer is acknowledged by scientists and farmers, a decrease of 

the soil organic carbon (SOC) content of European agricultural soils during the 

1990’s was calculated (Vleeshouwers & Verhagen, 2002; Janssens et al., 2005; 

Goidts & Van Wesemael, 2007). Recent studies of the evolution of SOC in 

arable fields (0-24 cm depth layer) in Flanders, in the northern part of Belgium, 

showed a decrease of 354 x 103 Mg SOC y-1 during the 1990’s (Sleutel et al., 

2003a & b). The decrease in SOC stock could be correlated with the decrease in 

livestock and by consequence a lower organic carbon (OC) input from manure 

applications (Sleutel et al., 2003b). Sleutel et al. (2006b & 2007a) found that 

next to the reduced manure application, a reduction in cereal straw and crop 

incorporation and a higher carbon (C) mineralization rate due to the observed 

temperature increase had attributed to the SOC stock decrease. As a 
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consequence of the decrease of SOC stock in the upper depth layer, it looks as if 

erosion and soil compaction will become more problematic in Europe the 

following years. 

 

Next to the necessity of a high amount of SOC in the upper depth layer to 

reduce erosion and soil compaction, maintaining or increasing the SOC stock is 

important in the framework of “global change” and the decrease of carbon 

dioxide (CO2) emissions from soils. A lot of attention is given to the possible 

role of agricultural soils as a C sink because increasing the SOC stock removes 

the greenhouse gas CO2 from the atmosphere and this can help in the reduction 

of the greenhouse effect. Art. 3.4 of the Kyoto Protocol allows C sequestration 

due to human-induced agricultural activities, which have started after 1990, to 

be accounted for during the 2008-2012 commitment period (IPCC, 2000).  

 

 

Nitrogen losses 

The loss of fertile soil through erosion and the decrease in SOM have not 

directly endangered the chemical soil fertility due to the abundant use of 

fertilizers. However, high nutrient inputs not only have adverse effects on the 

arable production by decreasing the quality e.g. lodging of cereals by over 

fertilization of N and making crops more susceptible to diseases and pests (Vos 

& MacKerron, 2000), the excessive use of agrochemicals and organic manure in 

agriculture results in a diffuse pollution of the environment that disrupts the 

ecological processes and nutrient cycles (IFA, 1992; De Clercq et al., 2001).  

 

The N cycle is the most intensively studied nutrient cycle from the point of view 

of nutrient management, since N is the most important nutrient for obtaining a 

good crop production and quality, but also because N has a major impact on the 

quality of the environment through the various pathways of N losses (Figure 

1.2) (Franco & Munns, 1982; Mengel & Kirkby, 1982; De Clercq et al., 2001; 

Hofman et al., 2003; Salomez, 2004).  

 

N losses can be categorized in gaseous losses (dinitrogen (N2), nitrous oxide 

(N2O), nitrogen oxide (NOx) and ammonia (NH3)), leaching losses (nitrate 

(NO3
-)), run-off and erosion. Nitrous oxide is a powerful greenhouse gas that 

can contribute to the depletion of the stratospheric ozone layer and the global 

warming, with the most extreme effects being the melting of the ice caps and the 

related increase of the sea level (Peoples et al., 1995; Van Cleemput, 1998). 

Nitrogen monooxide (NO) causes acid rain and the formation of ozone in the 
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troposphere (Bogaert et al., 1998). Ammonia reacts in the air with acid gases 

and particles. Their return to the soil through deposition can diminish 

biodiversity and cause acidification and eutrophication (Hofman et al., 2000). 

Leaching of NO3
-, which mainly occurs during winter and early spring in 

Europe, can also cause eutrophication. Eutrophication involves the abundant 

growth of algae and rooted vegetation. As algae dies and decays, it uses oxygen 

from the surrounding water, lowering the dissolved oxygen levels and altering 

the size and composition of commercial and recreational sport fisheries. 

Floating algae blooms can restrict light penetration to surface waters and can 

affect the health, safety and enjoyment of people using water for recreation. 

Floating algae can clog intake pipes and filtration systems, increasing the cost of 

water treatment and drinking water production. Rooted plants can become a 

nuisance around marinas and shorelines (Bogaert et al., 1998; Uri et al., 1999; 

Mulier et al., 2001).  

 

 

 
Figure 1.2 A simplified nitrogen cycle at the field scale (after De Clercq et al., 2001) 

 

 

To protect waters against pollution caused by NO3
- from agricultural sources, 

the European Union (EU) Nitrate Directive (91/676/EEC), has imposed a 

maximum concentration level of 50 mg NO3
- L-1 in ground and surface water 

(Anonymous, 1991a). To meet this provision set in the EU Nitrate Directive, 

Flanders has issued the so-called Manure Decree (Anonymous, 1991b) which 

has been amended afterwards 19 times and was replaced by a new Manure 

Decree in 2006 (Anonymous, 2006c). The Flemish farmers, stimulated by the 
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Manure Decree, have reduced their N losses for many years by using less 

chemical fertilizers, a decrease in livestock and switching over to concentrates 

with a low N content (Stuykens, 2002; Wustenberghs et al., 2004). 

 

The C and N dynamics and losses not only depend on the crop rotation and 

fertilization practice but also the tillage operations.  

 

 

1.2. CONSERVATION TILLAGE AGRICULTURE 

1.2.1. Definition 

There is confusion in the literature concerning the terminology of agriculture 

because many of the terms used are very general and a variety of implements are 

used together with different tillage intensity. Furthermore, different authors 

often use the same terms for different systems (Barber, 2000).  

 

Conventional tillage (CT) agriculture involves inversion of the soil, normally 

with a mouldboard as the primary tillage operation, followed by secondary 

tillage. The main objective of the primary tillage is weed control through 

underploughing, and the main objective of the secondary tillage is seedbed 

preparation. Subsequent weed control may be carried out either mechanically, or 

with herbicides. The negative aspect of this system is that the soil lacks a 

protective residue cover and is left practically bare, hence susceptible to soil and 

water losses through erosion. 

 

Conservation tillage (CsT) agriculture is a general term which has been defined 

as “whichever tillage or sowing system which maintains at least 30% of the soil 

surface covered with residues after sowing so as to reduce erosion by water” 

(IPCC, 2000). Another definition of CsT agriculture used is “whatever sequence 

of tillage operations that reduces the losses of soil and water, when compared to 

conventional tillage agriculture” (Lal, 1989). Normally this refers to a tillage 

system which does not invert the soil and which retains crop residues on the 

surface. However, in some situations, there are insufficient residues or other 

materials to provide a protective cover to the soil. These definitions show that 

CsT agriculture was first introduced as an erosion control measure. 
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1.2.2. Types of conservation tillage agriculture 

Using the definition “whatever sequence of tillage operations that reduces the 

losses of soil and water, when compared to conventional tillage agriculture”, 

CsT agriculture includes the following systems (Derpsch, 2007): 

� Direct drilling (synonymous with zero tillage and no-tillage (NT)) 

agriculture refers to planting the seed into the stubble of the previous 

crop without any previous tillage or soil disturbance, except that which 

is necessary to place the seed at the desired depth. Weed control relies 

on the use of herbicides. 

� Strip tillage or zonal tillage agriculture refers to a system where strips 

5 to 20 cm in width are prepared to receive the seed whilst the soil 

along the intervening bands is not disturbed and remains covered with 

residues. The system causes more soil disturbance and provides less 

cover along the rows than direct drilling. 

� Tined tillage or vertical tillage agriculture refers to a system where the 

land is prepared with implements which do not invert the soil and 

which cause little soil compaction. For this reason, the surface 

normally remains with a good cover of residues on the surface in 

excess of 30%. 

� Ridge tillage agriculture is a system where the crops are grown on 

ridges and furrows. The ridges may be narrow or wide and the furrows 

can be parallel to the contour lines or constructed with a slight slope, 

depending on whether the objective is to conserve water or to drain 

excess water. The ridges can be semi-permanent or be constructed each 

year, which will govern the amount of residue material that remains on 

the surface. In the semi-permanent systems which have a good residue 

cover between the ridges, there will still be more soil disturbance and 

less overall cover than for the no-tillage system.  

� Reduced tillage (RT) agriculture refers to tilling the whole soil surface 

but eliminating one or more of the operations that would otherwise be 

done in a CT system. This definition is extremely broad and it follows 

that tillage systems which vary as regards the implements used, the 

frequency and the intensity of operations, can all be considered as RT 

agriculture. The type of implement and the number of passes also vary. 

The result is that some systems leave very little residue at the surface 

and in others, this may be in excess of 30%. Generally, RT agriculture 

does not use either mouldboard or disc ploughs. Owing to the great 

variation in RT systems, it is difficult to generalize over the advantages 

and limitations. However, all the systems have the advantage of 
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reducing fuel consumption, work time and the equipment required as 

compared to CT agrivulture. RT systems are thus more flexible than 

CT systems. Germination conditions tend to be generally better than 

for NT agriculture due to the break-up of the soil. There is also 

comparatively more flexibility for weed control using cultivators or 

herbicides. 

 

 

1.2.3. Positive and negative effects of conservation tillage 

agriculture 

CsT agriculture is a very effective measure to reduce erosion and store water 

into the soil (Arshad, 1999; Six et al., 2002b; Bautista et al., 2004; Derpsch, 

2007). CsT agriculture can theoretically be expected to increase the SOC stock 

in the soil profile for several reasons. Leaving crop residues at the soil surface 

under CsT agriculture results in a lower rate and extent of decomposition 

because the residues are physically separated from the soil nutrients and 

decomposers and are in an environment with less favourable temperature and 

moisture conditions than under CT agriculture. The crop residues at the soil 

surface can reduce soil temperature and increase soil moisture content, which 

decreases C mineralization rates in the soil. The aggregates and soil structure are 

much less disrupted under CsT than CT agriculture where ploughing results in 

decomposition of physically protected SOM (Drury et al., 1999; Stockfisch et 

al., 1999; Balesdent et al., 2000; Six et al., 2000c; Larney et al., 2003; Baritz et 

al., 2004; Six et al., 2004a; McLauchlan, 2006). The build-up of SOM results in 

an improved soil structure that enhances gas fluxes and water infiltration rate 

and in an increased population of micro-organisms and earthworms under CsT 

compared to CT agriculture (Höflich et al., 1999; Uri et al., 1999; Holland, 

2004; Van den Bossche et al., 2007).  

 

However, CsT agriculture may also have negative effects. Due to the higher soil 

moisture content and higher amounts of easily available C in the upper layer 

under CsT compared to CT agriculture higher emissions of the greenhouse gas 

N2O may occur under CsT agriculture (Holland, 2004; Six, 2007). The presence 

of crop or green manure residues as mulch on the soil surface and higher soil 

moisture content can increase the bacterial and fungal infections of the 

following main crop (Sturz et al., 1997; Carter & Sanderson, 2001; D'Emden & 

Llewellyn, 2004).  
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CsT agriculture was first introduced on a large scale in the USA, Latin America 

and Australia. Therefore research on the positive and negative effect of CsT 

compared to CT agriculture mainly focussed on the crop rotations and the 

specific climatic and soil conditions of the USA, Latin America and Australia. 

In these large arable areas mainly cereals, soybean (Glycine max) and sunflower 

(Helianthus annuus) are grown under a warm and dry climate (Arshad, 1999; 

Uri, 1999; Six et al., 2002b; D'Emden & Llewellyn, 2004; Derpsch, 2007). The 

climatic and soil conditions and crop rotations in Western Europe are, however, 

very different. Western Europe has a maritime temperate climate and the crop 

rotations contain crops that seem less suitable under RT agriculture because they 

often include beets (Beta vulgaris L.) and potatoes (Solanum tuberosum L.), 

resulting in a high disturbance of the soil at the formation of the ridges and at 

harvest. In Belgium 20% of the cropped area is cultivated with beets and 

potatoes (Anonymous, 2006d; KMI, 2007). Next to crop rotations and climatic 

conditions, the effect of CsT agriculture also depends on the type and chemical 

composition of the organic additions and type and properties of the soil (Vigil & 

Kissel, 1991; Breland & Hansen, 1996; Robert et al., 2004; Ogle et al., 2005). 

 

 

1.2.4. Area of conservation tillage agriculture 

One big push for the development of NT agriculture trials in the USA, UK and 

elsewhere was the significant progress in herbicide technology with the 

introduction of atrazine in the late 1950’s and paraquat in the early 1960’s (Six 

et al., 2002b; Derpsch, 2007; Lal et al., 2007). Adoption of NT agriculture by 

farmers started in the early 1960’s in the USA and in the 1980’s in Latin 

America, mainly Brazil. NT agriculture was introduced on a large scale in the 

USA and Latin America as an effective measure against erosion, to stock water 

in the soil and to increase the SOM content (Arshad, 1999; Six et al., 2002b; 

Derpsch, 2007). Compared to the Americas, NT practice is much less adopted in 

Europe, Africa and Asia. In many countries this production system is virtually 

unknown (Derpsch, 2007).  

 

Information on the area of arable land under CsT agriculture is very scarce. In 

Table 1.1 an estimation of the area under NT agriculture since the 1970’s is 

given (Derpsch, 2005 & 2007). According to Derpsch (2005) probably about 

95% of the practical application of NT agriculture by farmers worldwide takes 

place in the Americas. Since NT agriculture accounts for less than 50% of CsT 

practices in the USA and Canada, but is almost the only CsT form practiced in 
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Latin America, it is not possible to extrapolate these assessments to estimations 

of the total area under CsT agriculture. 

 

 
Table 1.1 Estimation of area (1000 ha) under no-tillage agriculture in the world 

(Derpsch, 2005 & 2007) 

Country 1973/74 1983/84 1996/97 2000/01 2004/05 

USA 2200 4800 19400 21120 25304 

Brazil 1 400 6500 13470 23600 

Argentina   4400 9250 18269 

Canada   6700 4080 12522 

Australia 100 400 1000 8640 9000 

Mexico   490 650 1900 

Paraguay   500 960 1700 

Bolivia    350 550 

Uruguay    50 263 

Chile    100 120 

Others 527 655 960 1220 2252 

Total 2828 6255 39950 59890 95480 

 

 

1.2.5. Conservation tillage agriculture in Europe 

Currently, there is no survey at EU or country level of coverage of CsT 

agriculture in Europe. Available data are scarce and may not apply to the whole 

cropping system (Table 1.2). For instance, most of the areas listed as NT 

agriculture may correspond to fields managed under NT agriculture only for a 

part of a rotation, whereas the other crops of the rotation are managed using RT 

or CT agriculture. Indeed, cereals can be grown under RT or NT agriculture 

while root or tuber crops are difficult to manage under these systems (Lahmar, 

2006).  

 

Due to the lack of technology and technology transfer, the reluctance to take 

risk and the lack of institutional support the adoption of CsT agriculture in 

Europe was very slow. The last 5 to 10 years CsT agriculture is increasing 

gradually in Europe due to an increasing concern and awareness in soil and 

environmental protection. The European Conservation Agriculture Federation 

(ECAF) was constituted in Brussels on 14 January 1999. ECAF is a network of 

leading European academics, scientists and farmers. Its mission is to help 

develop and spread farming practices focused on maintaining the agricultural 

soil and its biodiversity in the context of sustainable agriculture. ECAF is in 
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contact with farmer groups at European level, in order to coordinate actions. 

ECAF has member associations in Belgium, Denmark, Finland, France, 

Germany, Greece, Hungary, Ireland, Italy, Portugal, Russia, Slovakia, Spain, 

Switzerland and UK (ECAF, 2005). 

 

 
Table 1.2 Estimation of area (1000 ha) and percentage of agricultural area under 

conservation tillage (CsT) and no-tillage (NT) agriculture in some countries 

in Europe in 2005 (ECAF, 2005; Lahmar, 2006) 

Country CsT NT 

 (1000 ha) (%) (1000 ha) (%) 

Germany 3400 20 510 3 

France 3000 17 150 0 

Spain 2000 14 300 2 

UK** 1440 30 24 1 

Czech Republic 750 18 150 4 

Italy 560 6 80 1 

Hungary 500 10 8 0 

Denmark 230 8 0 0 

Norway* 158 15 6 1 

Belgium 140 10   

Slovakia 140 10 10 1 

Switzerland 120 40 9 3 

Portugal 39 1 25 1 

Ireland 10 4 0 0 

  *:  In Norway, acreage under RT agriculture also comprises the area ploughed in spring. 

**:  The area under CsT agriculture given for the UK appears implausible as this farming technique 

is only now entering recognition amongst farmers in this country. It is thought that this figure 

includes the grazing areas that traditionally represent a very large segment of UK farming and 

which either are never tilled at all or only ploughed to renew the grazing or “ley”, i.e. once 

every 4-10 years. 

 

 

Not only farmers and scientists have recognised the importance of soil 

conservation, but also the European Commission (Anonymous, 2007c). The 

priority areas of Agenda 2000 were a continuation of the agricultural reform 

along the lines of the changes made in 1988 and 1992, with a view to 

stimulating European competitiveness, taking great account of environmental 

considerations and ensuring fair income for farmers (Anonymous, 2007a). 

Following the Agenda 2000 reforms, the radical overhaul of the Common 

Agricultural Policy (CAP) in 2003 by the European ministers of agriculture was 

just the next logical step towards a policy that supports not just farming, but the 
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long term livelihood of rural areas as a whole. The main goals of this 

reformation called Mid Term Review (MTR) are to provide farmers with a 

reasonable standard of living, consumers with quality food at fair prices and to 

preserve the rural heritage. Therefore the financial support for the farmers was 

shifted from production support to producer support. This “single farm 

payment” was made conditional upon “cross-compliance” with environment, 

food safety, animal and plant health and animal welfare, as well as the 

maintenance of the farmland in good agricultural and environmental condition. 

Erosion control measures, e.g. grass buffers and CsT agriculture, belong to the 

good agricultural and environmental conditions (Anonymous, 2003b, 2005c & 

2006g). Significant benefits can be expected from linking the direct payments 

("cross-compliance") to European farmers to the application of “soil-friendly” 

agricultural practices. However, these measures are not obligatory everywhere 

and they only apply to European farmers who are under the payment regimes. 

European farmers who do not receive payments are not bound to adopt these 

soil-friendly practices. Therefore, cross-compliance will only partially 

contribute to the preservation and sustainable use of soil (Anonymous, 2006f). 

 

In 2002 the EU defined the priorities and objectives of the European 

environment policy and described the measures to be taken to help implement 

its sustainable development strategy in “Sixth Environment Action Programme. 

Environment 2010: Our future, our choice”. The objectives were to protect 

natural resources and to promote a sustainable use of the soil by committing 

itself to the adoption of a “Thematic Strategy on soil protection” to halt and 

reverse soil degradation (No 1600/2002/EC) (Anonymous, 2002f). In its 

Communication "Towards a Thematic Strategy on Soil Protection", the 

European Commission identified erosion, SOM decline and soil compaction as 

main threats to which soils in the EU are confronted (COM(2002) 179) 

(Anonymous, 2002e). In the period 2003-2004, the Commission carried out an 

extensive stakeholder consultation and established technical working groups 

with the purpose to provide advice on the specific issues. In the working group 

“Soil Organic Matter” of the “Thematic Strategy on Soil Protection” it was 

concluded that CsT agriculture can increase soil fertility and SOM (Baritz et al., 

2004). In September 2006, the “Thematic Strategy for Soil Protection” was 

formulated as a proposal for a framework Directive setting out common 

principles for protecting soils across the EU (COM(2006) 231 & COM(2006) 

232) (Anonymous, 2006a, b & e). Within this common framework, the EU 

Member States will be in a position to decide how best to protect soil and how 

to use it in a sustainable way on their territory (Anonymous, 2004b & 2006a). 



Introduction 

 

 

 15 

1.2.6. Conservation tillage agriculture in Belgium 

Although CsT agriculture was studied in Belgium since the 1970’s, its adoption 

was limited till now. Until the mid 1990’s, erosion and its related problems 

received little attention in the environmental debate. This has changed through 

the increasing reports on erosion and increased interest in environmental issues 

in general (Boardman et al., 2003; Vertraeten et al., 2003a). The promotion of 

CsT agriculture among scientists and farmers in Belgium is stimulated by the 

“Belgian Association in Research Application on Conservation Agriculture” or 

BARACA, founded in 2001 and integrated in ECAF (BARACA, 2007). The 

recent enthusiasm about CsT agriculture can also partly be explained by the 

progress in agricultural machinery, more specifically the sowing machines. 

Sowing in crop residues and green manure on the surface indeed demands 

adapted equipment. Moreover, the economical circumstances force the farmers 

to reduce the production costs, while the pressure on the environment urges 

farmers to manage his soil capital better and reduce runoff and erosion 

(Vandergeten & Roisin, 2004). 

 

The area under CsT agriculture in Belgium is estimated to be about 140000 ha, 

which is around 10% of the agricultural area (Table 1.2). Although 70% of the 

farmers in the loess area in Wallonia reported problems with runoff and erosion 

in 2001, only 25% farmers adopted some CsT form (Bielders et al., 2003). 

 

Mainly, two types of RT agriculture, namely reduced tillage with a cultivator or 

soil loosener (RTC) and by direct drilling (RTDD) agriculture, are practised in 

Belgium. Continuous NT agriculture is very rare in Belgium because of the high 

disturbance of the soil at the formation of the ridges and at harvest of root and 

tuber crops. Moreover, organic manure is often applied and needs to be 

incorporated in order to minimize ammonia losses. 

 

A soil conservation policy recently emerged in Flanders and Wallonia 

subsidising farmers, who implement erosion control measures, e.g. grass buffers 

and CsT agriculture, on their fields partly paid with European funds 

(Anonymous, 1999, 2003a, 2004a, 2005a & b; Carels et al., 2006). In 2006, 671 

ha and 78 ha was under a management contract for RTC and RTDD agriculture, 

respectively, for a total grant of 68 286 euro (Swerts & Vandekerckhove, 2007). 
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In Flanders there is also a decree concerning “the subsidy of small-scale erosion 

control measures to be taken by local authorities”, often called the ‘Soil erosion 

decree’, subsiding the municipalities for making an erosion control management 

plan and taken control measures indicated in the plan (Anonymous, 2002d). 

 

Rainfall simulations in Belgium indicated that RT agriculture generally reduces 

erosion compared to CT agriculture. However, a large variation in erosion 

response was observed. The reduction of erosion by RT compared to CT 

agriculture measured in different experiments varied between 0 to 95% and was 

on average 35 to 55% (Gillijns et al., 2002 & 2004; Goyens et al., 2005; Leys et 

al., 2007; Vermang et al., 2007). However, little is known about the effect of 

RT agriculture on physical soil structure and C and N dynamics of soils under 

the specific Western European climatic and soil conditions, with crop rotations 

containing crops that seem less suitable for RT agriculture, including an 

important share of root and tuber crops. The study of the changes in physical 

soil structure and C and N dynamics after the shift of the management to RT 

gives an overall picture of the effect of RT agriculture on the soil properties.  

 

 

1.3. OUTLINE OF THE THESIS 

RT agriculture was introduced to reduce erosion and improve physical soil 

structure but the effect on the C and N cycle in typical Western European crop 

rotations and weather circumstances had not yet been examined. The objectives 

of this thesis were to investigate the less known effects of RT agriculture on soil 

properties and find out if there is potential for RT agriculture in Flanders. 

 

Chapter 2 gives the general characteristics, crop rotation, tillage and manure 

application of the selected fields while chapter 3 focuses on the short and long 

term effects of RT agriculture on the physical soil properties. The objective was 

to evaluate the aggregate stability and infiltration rate to investigate the effect of 

RT agriculture on the potential of runoff and erosion, while the water retention 

curve (WRC) and penetration resistance (PR) were determined with the 

objective to find out if the soil structure and potential for water stockage are 

optimal for root and crop growth under RT agriculture. 

 

The different components of the C and N cycle under CT and RT agriculture of 

Western European fields were studied in detail. In the past, researchers often 

concluded that the SOC and N stock under RT agriculture was higher than under 
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CT agriculture (Alvarez, 2005). However, this conclusion was mostly based on 

shallow measurements of % SOC and N in the upper layers of cereals and 

soybean fields. OC and N are present in soil fractions with different physical 

and biological relevance. RT agriculture can change the ratio of OC and N in 

these different fractions compared to CT agriculture and this can also affect the 

C and N mineralization. 

 

The objectives of chapter 4 and 5 were to search for the answers to the 

following questions: 

� Is there an increase in stratification and SOC and N stock under RT 

compared to CT agriculture for the Western European crop and 

weather conditions? 

� Is there a difference in C and N mineralization rate between RT and CT 

fields and how would the C and N mineralization be affected by 

intensive tillage of RT fields? 

� Does the shift of management to RT agriculture effect the distribution 

of the storage of C and N over the soil fractions with different physical 

and biological relevance? 

 

With respect to N use efficiency but also because N2O is a greenhouse gas and 

affects the stratospheric ozone layer, it is necessary to know the effect of RT 

agriculture on the N2O emissions (Hofman & Van Cleemput, 2001). Some 

researches indicate higher N2O losses (Fan et al., 1997; Ball et al., 1999; 

Choudhary et al., 2002), while other researches showed lower annual N2O 

emissions under RT compared to CT agriculture (Kessavalou et al., 1998). 

These contradictory results indicate the necessity of research of the N2O 

emissions under the specific Western European crop and weather conditions, 

which was in the objective of chapter 6.  

 

Whether there is a potential for RT agriculture in Flanders also depends on other 

factors than the physical and chemical soil properties. Therefore, we combined 

data from literature and experiences from RT farmers concerning yields, overall 

C and N dynamics, control of weeds, diseases and pests and economics with the 

effects on the physical and chemical soil properties measured in this study in 

order to put our results in a wider perspective and to conclude whether there is 

potential for RT agriculture in Flanders (chapter 7). 



 

 

 

 

UNDER RT AGRICULTURE SINCE 2003 
                 Heestert: field 3  
                 Photo of June 2005: 

                   sugar beets with winter wheat/ 

                   mustard (Sinapis alba L.) residues 
 
 
UNDER RT AGRICULTURE SINCE 2000 
        Kluisbergen: field 5  
       Photo of December 2005: 
           fodder maize residues 
 
 
        Baugnies: field 7  
       Photo of October 2004: 
           winter oat (Avena sativa L.) (green manure)  
           with winter wheat (Triticum aestivum L.) residues 
 
 
UNDER RT AGRICULTURE SINCE 1995 

            Maulde: field 9  
           Photo of June 2005: 

               sugar beets 
 
 
            Villers-le-Bouillet: field 11  

           Photo of May 2006: 

               winter barley (Hordeum vulgare L.)  

               with winter wheat residues 
 

           Kuttekoven: field 15  
           Photo of December 2005: 

                                        winter wheat with sugar beet residues 
 
 
 
UNDER RT AGRICULTURE SINCE 1985 

 Court-Saint-Etienne: field 17 

  Photo of June 2005: 

      winter wheat 
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2.1. INTRODUCTION 

The soil of the upper 25 to 30 cm depth layer of fields under CT agriculture is in 

general inverted and mixed with the crop residues with a mouldboard plough. 

Depending on the crop residues and rotation and the application of organic 

manure ploughing of CT fields is combined with cultivating and/or harrowing. 

Two types of RT agriculture, namely RTC and RTDD agriculture, are practised in 

Belgium. However, many variants exist in these two main RT types. Different 

types of cultivators and soil looseners, not inverting the soil, are used in 

combination with harrows/cultivators. The solid tines of the soil loosener are 

spaced apart, more solid and longer than the cultivator making a deeper 

loosening of the soil possible. 

 

Independent of the CsT type, two options are possible, namely with or without 

green manure. Growing green manure includes if desired removing the stubble 

and loosening the soil, sowing the green manure, destroying the green manure 

before possibly preparing the seedbed and sowing the crop. The combination of 

RT and green manure makes it possible to preserve the residues of the crops and 

green manure long on the soil surface (Vandergeten & Roisin, 2004). 

 

At present, RT agriculture is being promoted strongly in Western Europe and 

Belgium, because of its proven effects on reduction of soil erosion by water (see 

1.2.6). However, very little information is available on the evolution of 

important soil properties e.g. related to C and N dynamics in RT agriculture 

under the specific Western European climatic and soil conditions. In the study 

area, very little experimental sites exist where CT practices are compared to RT 

practices. Therefore, we had no choice but to include farmers' fields, where 

inevitably there is no perfect match between CT and RT fields. However, in the 

selection of the fields much care was taken to select paired fields which were 

similar from a soil type and management point of view. It was not possible to 

find short and long term RT fields which had exactly the same soil type, crop 

rotation and manure application as CT fields in the same area. Obviously some 

practices such as maintaining crop residues on the field are an inherent 

characteristic of RT agriculture which will result in more OC input, but it is not 

possible and not even desirable to separate these effects, as this would not be 

according to the common agricultural practices of RT and CT fields. 
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Fields 1-4
(2003)

Fields 5-6
(2000)

Fields 9-10
(1995)

Fields 7-8
(2000)

Fields 17-18
(1985)

Fields 15-16
(1995)

Fields 11-14
(1995)

2.2. SELECTED FIELDS AND GENERAL SOIL AND CROP DATA 

Eighteen fields with a silt loam texture were selected. They include the different 

RT types running for a different number of years, and were paired to fields 

under CT agriculture with comparable soil type and crop rotation. Our research 

sites are situated in the loess belt of central Belgium. Fields 1-6 and 15-16 are 

located in Flanders (northern part of Belgium) and fields 7-14 and 17-18 are 

located in Wallonia (southern part of Belgium) (Figure 2.1).  

 

 
Figure 2.1 Location of the selected fields in Belgium (between brackets year of shift of 

management reduced tillage) 

 

 

In central Belgium the 30 year average precipitation is 780 mm y-1 and average 

yearly temperature is 9.8 °C. However, significant deviations from the long term 

average rainfall (690 mm in 2003 and 914 mm in 2004) and temperature (11.1 

°C in 2003, 10.7 °C in 2004 and 11.0 °C in 2005) have been observed in recent 

years (KMI, 2007). The temperate maritime climate has mild winters and cool 

summers. 

 

In each field three plots of 150 m2 (10 m x 15 m) with a distance of 10 meters 

between them were selected (Figure 2.2). To avoid effects from the edges, plots 

were located at least 20 meters from the edges of the fields. On the sloping 

fields the plots of the RT and CT field were located at the same slope position. 
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Plot A

Plot CPlot BPlot A

Plot CPlot B

CT

RT

15 m

10 m

20 m

20 m

10 m

 
 

Figure 2.2 Lay-out of the plots in the fields 

 

 

Five subsamples per plot were taken from the 0-10, 10-20, 20-30 and 30-40 cm 

depth layers. The subsamples were bulked per layer per plot into one composite 

sample, thoroughly mixed and air-dried in the laboratory. The pHKCl of air-dried 

soil samples was measured in a 1 M potassium chloride (KCl) (1:2.5 soil weight 

(g): extractant volume (ml)) suspension using a glass electrode. 

Soil texture was determined per layer on a mixed soil sample of the three plots 

by the combined sieve and pipette method (De Leenheer, 1959). 

 

The location, management (RTC, RTDD or CT agriculture), slope and 

granulometric composition, pHKCl of the 0-10 cm depth layer of the 18 selected 

fields are given in Table 2.1. The period of RT agriculture (in years) is indicated 

in subscript. However, an extra year has to be added in chapter 6 and 7 because 

the soil samples were taken a year later. The granulometric composition and 

pHKCl of the 0-20, 20-30 and 30-40 cm depth layer of the 18 selected fields are 

given in Appendix I - Table I.1. 

 

The amount, effective organic carbon (EOC), i.e. the amount of organic carbon 

that remains in the soil one year after the application (Hénin & Dupuis, 1945; 

Vleeshouwers & Verhagen 2002; De Neve et al., 2003; Mulier et al., 2006; 

Tirez, 2007), of main crop residues, green manure and organic manure under the 

Belgian soil and weather conditions, and total nitrogen (TN) of these residues 

and manures during the period 2002-2005 of the selected fields were calculated 

(Hofman et al., 1995; Anonymous, 2002a, b & c; Sleutel et al., 2007a) (Table 

2.3, Table 2.5, Table 2.7, Table 2.9, Table 2.12, Table 2.13 and Table 2.15). 

 



 

 

23 

Table 2.1 Location, management (reduced tillage with cultivator or soil loosener (RTC), reduced tillage by direct drilling (RTDD) or conventional tillage 

(CT) agriculture), period of RT agriculture, slope and granulometric composition and pHKCl (with standard deviation between brackets) of the 

0-10 cm depth layer of the 18 selected fields 
Location Field Management RT since Slope (%) Clay (%) Loam (%) Sand (%) pHKCl 

Heestert 1  RTC 2003  3 13.5 52.6  33.9 7.0 (0.3) 

 2  RTC 2003  3 12.4 53.7  33.9 6.5 (0.2) 

 3  RTC 2003  3 12.1 59.9  28.0 6.6 (0.5) 

 4  CT /  3 12.7 54.4  32.9 6.5 (0.8) 

Kluisbergen 5  RTC 2000  10 18.1 51.6  30.3 6.5 (0.0) 

 6  CT /  10 16.4 56.0  27.6 5.6 (0.3) 

Baugnies 7  RTC 2000  0 10.6 59.0  30.4 7.3 (0.2) 

 8  CT /  0 11.1 59.6  29.3 6.7 (0.2) 

Maulde 9  RTC 1995  0 20.6 70.9  8.5 6.1 (0.1) 

 10  CT /  0 13.9 77.6  8.5 5.7 (0.1) 

Villers-le-Bouillet 11  RTDD 1995  0 19.8 72.2  7.9 6.5 (0.2) 

 12  CT /  0 18.9 75.4  5.7 6.6 (0.1) 

 13  RTDD 1995  0 16.7 77.2  6.1 6.5 (0.1) 

 14  CT /  0 16.2 74.6  9.4 5.8 (0.1) 

Kuttekoven 15  RTDD 1995  0 15.5 71.7  12.8 5.7 (0.1) 

 16  CT /  0 17.4 71.5  11.1 6.4 (0.2) 

Court-Saint-Etienne 17  RTC 1985  0 14.7 71.5  13.8 6.4 (0.2) 

 18  CT /  0 16.0 75.7  8.2 6.0 (0.3) 
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In Heestert (50°48’ N; 3°25’ E), an experiment was started in 2003 to study the 

effect of RT agriculture on soil losses by erosion, where different RT types were 

compared to CT agriculture (Table 2.2). Before sowing the main crop, the soil 

of fields 1-4 was worked with a cultivator to a depth of 10-15 cm. The cultivator 

had three rows with five small bend tines ending in a sweep (Figure 2.3). The 

seedbed of RTC_2 field 1 was prepared by harrowing (Figure 2.4). RTC_2 fields 2 

and 3 were worked to a depth of 15-20 cm with a soil loosener (working width 

of 3 m) with one row of four tines ending in a share sweep (width of 65 cm and 

set at 70 cm apart) and share sweep with a five-pronged horizontal fork (width 

of 60 cm and set at 80 cm apart) (D’Haene et al., 2006), respectively, followed 

by a secondary tillage with a tine harrow (Figure 2.4). 

 

 
Table 2.2 Type and depth of tillage operations (successive tillage operations are given 

per row) of 2002-2005 of fields 1-4 in Heestert 

Field Tillage (depth in cm) Time* 

1 

RTC_2 

cultivator 

(10-15) 

tine harrow 

(5) 

tine harrow 

(5) 

 2002 S, 2003 S,A, 2005 A 

 rotary harrow 

(5) 

  2004 A
† 

 cultivator 

(10-15) 

rotary harrow 

(5) 

  2005 S 

2 & 3 

RTC_2 

cultivator 

(10-15) 

soil loosener 

(15-20) 

tine harrow 

(5) 

tine harrow 

(5) 

2002 S, 2003 S 

 soil loosener 

(15-20) 

tine harrow 

(5) 

tine harrow 

(5) 

 2003 A, 2005  A 

 rotary harrow 

(5) 

  2004 A
† 

 soil 

loosener 

(15-20) 

rotary harrow 

(5) 

  2005 S 

4 

CT 

cultivator 

(10-15) 

plough 

(25-30) 

tine harrow 

(5) 

tine harrow 

(5) 

2002 S, 2003 S 

 plough 

(25-30) 

tine harrow 

(5) 

tine harrow 

(5) 

 2003 A, 2005  A 

 rotary harrow 

(5) 

  2004 A
† 

 plough 

(25-30) 

cultivator 

(10-15) 

rotary harrow 

(5) 

2005 S 

RTC_2: under 2 years of reduced tillage with cultivator or soil loosener; CT: conventional tillage  

*: S: spring (March – May) tillage operation; A: autumn (Aug. – Nov.) tillage operation, W: winter 

(Dec. - Febr.) tillage operation, †: tillage operation before green manure 
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Field 4 was conventionally ploughed to a depth of 25-30 cm, followed by a 

secondary tillage with a tine harrow. The crop rotation and manure application 

were the same for the four fields (Table 2.3) 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.3 The cultivator used in field 1 in Heestert (photo Proclam) 

 

 

      A) 

 

 

 

 

 

 

 

 

 

 

      B) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 The soil loosener used in field 2 (A) and 3 (B) in Heestert (photo Proclam) 
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Table 2.3 Amount of dry matter (DM), effective organic carbon (EOC) and total 

nitrogen (TN) content of crop residues and organic manure application of 

2002-2005 on fields 1-4 in Heestert 

Year Crop (type of residue)/ 

Manure application 

DM 

(Mg ha-1) 

EOC* 

(kg ha-1) 

TN 

(kg ha-1) 

2002 maize (fodder) (stubble) 3.4 350  25 

 cattle stable manure (40 Mg ha-1) 9.6 1540  195 

2003 maize (fodder) (stubble) 3.4 350  25 

 cattle stable manure (40 Mg ha-1) 9.6 1540  195 

2004 winter wheat (stubble) 5.4 750  30 

2005 mustard† 4.1 425  90 

 sugar beet (heads + leaves) 7.0 575  160 

maize: Zea mays ssp. Mays L.; winter wheat: Triticum aestivum L.; mustard: Sinapis alba L.; sugar 

beet: Beta vulgaris L. 
†: green manure 

*EOC: amount of organic carbon that is still in the soil one year after application 

 

 

The main tillage operation of field 5 with monoculture maize under 5 years RT 

(RTC_5) agriculture in Kluisbergen (50°46’ N; 3°29’ E) was done to a depth of 

30-35 cm in the spring with a soil loosener with one row of four tines ending in 

a chisel. The main tillage operation of the adjacent field 6 was ploughing to a 

depth of 25-30 cm (Table 2.4). Table 2.5 gives the amount, EOC and TN of the 

crop residues and manure application of these fields in 2002-2005. 

 

 
Table 2.4 Type and depth of tillage operations (successive tillage operations are given 

per row) of 2002-2005 of fields 5 and 6 in Kluisbergen 

Field Tillage (depth in cm) Time* 

5 

RTC_5 

cultivator 

(10) 

soil loosener 

(35) 

cultivator 

(10) 

rotary harrow 

(5) 

2002 S, 2003 S 

 cultivator 

(10) 

soil loosener 

(25) 

rotary harrow 

(5) 

 2004 S, 2005 S 

6 

CT 

cultivator 

(10) 

plough  

(25-30) 

cultivator 

(10) 

rotary harrow 

(5) 

2002 S, 2003 S, 2004 S, 2005 A 

 plough 

(25-30) 

cultivator 

(10) 

rotary harrow 

(5) 

 2005 S 

RTC_5: under 5 years of reduced tillage with soil loosener; CT: conventional tillage  

*: S: spring (March - May) tillage operation; A: autumn (Aug. - Nov.) tillage operation, W: winter 

(Dec. - Febr.) tillage operation, †: tillage operation before green manure 
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Table 2.5 Amount of dry matter (DM), effective organic carbon (EOC) and total 

nitrogen (TN) content of crop residues and organic manure application of 

2002-2005 on fields 5 and 6 in Kluisbergen 
Field Year Crop (type of residue)/ 

Manure application 

DM 

(Mg ha-1) 

EOC* 

(kg ha-1) 

TN 

(kg ha-1) 

2002 maize (grain) (stubble) 8.0 1225 135 5 

RTC_5  pig slurry (20 Mg ha-1) 1.8 270 155 

 2003 maize (grain) (stubble) 8.0 1225 135 

  pig slurry (20 Mg ha-1) 1.8 270 155 

 2004 maize (grain) (stubble) 8.0 1225 135 

  pig slurry (20 Mg ha-1) 1.8 270 155 

 2005 maize (grain) (stubble) 8.0 1225 135 

  pig slurry (20 Mg ha-1) 1.8 270 155 

2002 maize (fodder) (stubble) 3.4 350 25 6  

CT  pig slurry (25 Mg ha-1) 2.3 340 195 

 2003 maize (fodder) (stubble) 3.4 350 25 

  pig slurry (25 Mg ha-1) 2.3 340 195 

 2004 potatoes (leaves) 2.1 425 20 

  pig slurry (25 Mg ha-1) 2.3 340 195 

 2005 maize (fodder) (stubble) 3.4 350 25 

  pig slurry (25 Mg ha-1) 2.3 340 195 

RTC_5: under 5 years of reduced tillage with soil loosener; CT: conventional tillage  

maize: Zea mays ssp. Mays L.; potatoes: Solanum tuberosum L. 

*EOC: amount of organic carbon that is still in the soil one year after application  

 

 

Fields 7 and 8 were located in Baugnies (50°33’ N; 3°33’ E). The tillage 

operations of RTC_5 field 7 were depended on the preceding and following crop. 

The deepest tillage operation during the period 2002-2005 was done to a depth 

of 35 cm with a cultivator (working width of 5 m) with three rows of five tines 

ending in a duckfoot sweep (width of 12 cm and set at 95 cm apart) (Figure 2.5). 

The most common tillage operation of field 8 was ploughing in autumn to a 

depth of 30 cm (Table 2.6). The amount, EOC and TN of the crop residues and 

manure application of these fields in 2002-2005 are given in Table 2.7. 
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Table 2.6 Type and depth of tillage operations (successive tillage operations are given 

per row) of 2002-2005 of fields 7 and 8 in Baugnies 

Field Tillage (depth  in cm) Time* 

7 

RTC_5 

cultivator  

(25) 

cultivator 

(25) 

rotary harrow 

(5) 

 2002 S 

 cultivator 

(10) 

cultivator 

(35) 

rotary harrow 

(5) 

 2002 A
† 

 cultivator 

(5) 

cultivator 

(15) 

rotary harrow 

(5) 

 2003 S, 2005 S 

 cultivator 

(15) 

cultivator 

(15) 

  2003 A, 2005 A
† 

 cultivator 

(25) 

rotary harrow 

(5) 

  2004 A
† 

8 

CT 

cultivator 

(10) 

plough 

(30) 

cultivator 

(10) 

rotary harrow 

(5) 

2002 A, 2003 A, 2004 A, 2005 A 

RTC_5: under 5 years of reduced tillage with cultivator; CT: conventional tillage  

*: S: spring (March - May) tillage operation; A: autumn (Aug. - Nov.) tillage operation, W: winter 

(Dec. - Febr.) tillage operation, †: tillage operation before green manure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.5 The cultivator used in field 7 in Baugnies 
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Table 2.7 Amount of dry matter (DM), effective organic carbon (EOC) and total 

nitrogen (TN) content of crop residues and organic manure application of 

2002-2005 on fields 7 and 8 in Baugnies 
Field year Crop (type of residue)/ 

Manure application 

DM 

(Mg ha-1) 

EOC* 

(kg ha-1) 

TN 

(kg ha-1) 

2002 maize (fodder) (stubble) 3.4 350 25 7  

RTC_5  cattle horse compost  (20 Mg ha-1) 10.2 1710 165 

 2003 winter rye† 1.9 325 80 

  sugar beet (heads + leaves) 7.0 575 160 

  green compost (15 Mg ha-1) 7.7 1280 70 

 2004 winter wheat (stubble) 5.4 750 30 

  cattle horse manure (25 Mg ha-1) 6.0 960 210 

 2005 winter oat † 1.9 325 80 

  potatoes (leaves) 2.1 440 20 

2002 winter wheat (stubble) 5.4 750 30 8 

CT  cattle stable manure (20 Mg ha-1) 4.8 770 155 

 2003 triticale (stubble) 5.4 750 30 

  cattle stable manure (20 Mg ha-1) 4.8 770 155 

 2004 winter barley (stubble) 5.4 750 30 

  cattle stable manure (15 Mg ha-1) 3.6 580 115 

 2005 maize (fodder) (stubble) 3.4 350 25 

RTC_5: under 5 years of reduced tillage with cultivator; CT: conventional tillage  

maize: Zea mays ssp. Mays L.; winter rye: Secale cereale L.; sugar beet: Beta vulgaris L.; winter 

wheat: Triticum aestivum L.; winter oat: Avena sativa L.; potatoes: Solanum tuberosum L.; triticale: 

X Triticosecale; winter barley: Hordeum vulgare L. 
†: green manure 

*EOC: amount of organic carbon that is still in the soil one year after application 

 

 

Fields 9 and 10 were located in Maulde (50°37’ N, 3°32’ E). The main tillage 

operation of RTC_10 field 9 and CT field 10 were done with a soil loosener and 

plough, respectively (Table 2.8). Field 9 was under RTC agriculture since 1995 

(Table 2.9). 
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Table 2.8 Type and depth of tillage operations (successive tillage operations are given 

per row) of 2002-2005 of fields 9 and 10 in Maulde 

Field Tillage (depth  in cm) Time* 

9 

RTC_10 

cultivator 

(10) 

rotary harrow 

(5) 

  2002 S, 2004 A
†, 2005 S 

 cultivator 

(10) 

soil loosener 

(20) 

rotary harrow 

(5) 

 2002 A, 2005 A
† 

 soil loosener 

(20) 

rotary harrow 

(5) 

  2003 A 

10 

CT 

cultivator 

(10) 

plough 

(25-30) 

cultivator 

(10) 

rotary harrow 

(5) 

2002 S, 2003 S, 2004 S, 2005 S 

RTC_10: under 10 years of reduced tillage with soil loosener; CT: conventional tillage 

*: S: spring (March - May) tillage operation; A: autumn (Aug. - Nov.) tillage operation, W: winter 

(Dec. - Febr.) tillage operation, †: tillage operation before green manure 

 

 
Table 2.9 Amount of dry matter (DM), effective organic carbon (EOC) and total 

nitrogen (TN) content of crop residues and organic manure application of 

2002-2005 on fields 9 and 10 in Maulde 

Field Year Crop (type of residue)/ 

Manure application 

DM 

(Mg ha-1) 

EOC* 

(kg ha-1) 

TN 

(kg ha-1) 

2002 peas (stubble + straw) 6.0 500 180 9      

RTC_10 
2003 winter wheat (stubble) 5.4 750 30 

  winter wheat (straw) 4.7 650 40 

 2004 winter wheat (stubble) 5.4 750 30 

  winter wheat (straw) 4.7 650 40 

 2005 mustard† 4.1 425 90 

  sugar beet (heads + leaves) 7.0 575 160 

2002 sugar beet (heads + leaves) 7.0 575 160 10       

CT 
2003 maize (fodder) (stubble) 3.4 350 25 

 2004 maize (fodder) (stubble) 3.4 350 25 

  cattle stable manure (45 Mg ha-1) 10.8 1730 375 

 2005 maize (fodder) (stubble) 3.4 350 25 

RTC_10: under 10 years of reduced tillage with soil loosener; CT: conventional tillage  

peas: Pisum sativum L.; winter wheat: Triticum aestivum L.; mustard: Sinapis alba L.; sugar beet: 

Beta vulgaris L.; maize: Zea mays ssp. Mays L. 
†: green manure 

*EOC: amount of organic carbon that is still in the soil one year after application 
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Fields 11-14 were located in Villers-le-Bouillet (50°34’ N, 5°15’ E) and fields 

15-16 in Kuttekoven (50°47’ N, 5°20’ E). Fields 11, 13 and 15 had not been 

ploughed since 1994. In 1995-2000 these fields were loosened with a cultivator 

(chisel) and from 2001 onwards they were under RTDD agriculture (RTDD_10). 

The main tillage operation of fields 12, 14 and 16 was ploughing (Table 2.10 

and Table 2.11). On fields 11-16 two years of cereals are followed by sugar 

beets or potatoes (Table 2.12 and Table 2.13).  
 

 
Table 2.10 Type and depth of tillage operations (successive tillage operations are given 

per row) of 2002-2005 of fields 11-14 in Villers-le-Bouillet 

Field Tillage (depth in cm) Time* 

11 

RTDD_10 

rotary harrow 

(5) 

   2002 A, 2003 A
†, 2005 A 

12 

CT 

plough 

(25-30) 

rotary harrow 

(5) 

  2002 A
†, 2003 S, A 

 soil loosener 

(25-30) 

rotary harrow 

(5) 

  2004 A
†, 2005 A 

 rotary harrow 

(5) 

   2005 S 

13 

RTDD_10 

rotary harrow 

(5) 

   2002 A, 2003 A
†, 2005 A 

14 

CT 

plough 

(25-30) 

cultivator 

(10) 

rotary harrow 

(5) 

 2002 A, 2004 A, 2005 A 

 cultivator 

(10) 

plough 

(25-30) 

cultivator 

(10) 

rotary harrow 

(5) 

2004 S 

RTDD_10: under 10 years of reduced tillage by direct drilling; CT: conventional tillage  

*: S: spring (March - May) tillage operation; A: autumn (Aug. - Nov.) tillage operation, W: winter 

(Dec. - Febr.) tillage operation, †: tillage operation before green manure 
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Table 2.11 Type and depth of tillage operations (successive tillage operations are given 

per row) of 2002-2005 of fields 15 and 16 in Kuttekoven 

Field Tillage (depth in cm)  Time* 

15 

RTDD_10 

rotary harrow 

(5) 

  2003 A, 2004 A
† 

16 

CT 

plough 

(20-25) 

cultivator 

(10) 

tine harrow 

(5) 

2002 W, 2005 W 

 plough 

(20-25) 

tine harrow 

(5) 

 2002 A, 2003 A, 2005 A 

 cultivator 

(10) 

  2004 A
† 

RTDD_10: under 10 years of reduced tillage by direct drilling; CT: conventional tillage  

*: S: spring (March - May) tillage operation; A: autumn (Aug. - Nov.) tillage operation, W: winter 

(Dec. - Febr.) tillage operation, †: tillage operation before green manure 

 

 

Table 2.12 Amount of dry matter (DM), effective organic carbon (EOC) and total 

nitrogen (TN) content of crop residues and organic manure application of 

2002-2005 on fields 11-14 in Villers-le-Bouillet 

Field year Crop (type of residue)/ 

Manure application 

DM 

(Mg ha-1) 

EOC* 

(kg ha-1) 

TN 

(kg ha-1) 

2002 winter wheat (stubble) 5.4 750 30 11 

RTDD_10  winter wheat (straw) 4.7 650 40 

 2003 winter barley (stubble) 5.4 750 30 

  winter barley (straw) 4.7 650 40 

 2004 rapeseed† 4.1 425 90 

  sugar beet (heads + leaves) 7.0 575 160 

  cattle stable manure (25 Mg ha-1) 6.0 960 210 

 2005 winter wheat (stubble) 5.4 750 30 

  winter wheat (straw) 4.7 650 40 

2002 winter wheat (stubble) 5.4 750 30 12  

CT 
2003 phacelia† 4.1 350 90 

  sugar beet (heads + leaves) 7.0 575 160 

 2004 winter wheat (stubble) 5.4 750 30 

 2005 phacelia† 4.1 350 90 

  maize (fodder) (stubble) 3.4 350 25 

RTDD_10: under 10 years of reduced tillage by direct drilling; CT: conventional tillage  

winter wheat: Triticum aestivum L.; winter barley: Hordeum vulgare L.; rapeseed: Brassica rapa L.; 

sugar beet: Beta vulgaris L.; phacelia: Phacalia tanacetifolia L.; maize: Zea mays ssp. Mays L.;  

†: green manure; *EOC: amount of organic carbon that is still in the soil one year after application 
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Table 2.12 Amount of dry matter (DM), effective organic carbon (EOC) and total 

nitrogen (TN) content of crop residues and organic manure application of 

2002-2005 on fields 11-14 in Villers-le-Bouillet 
Field year Crop (type of residue)/ 

Manure application 

DM 

(Mg ha-1) 

EOC* 

(kg ha-1) 

TN 

(kg ha-1) 

2002 winter wheat (stubble) 5.4 750 30 13 

RTDD_10  winter wheat (straw) 4.7 650 40 

 2003 winter barley (stubble) 5.4 750 30 

  winter barley (straw) 4.7 650 40 

 2004 rapeseed † 4.1 425 90 

  potatoes (leaves) 2.1 440 20 

  cattle stable manure (25 Mg ha-1) 6.0 960 210 

 2005 winter wheat (stubble) 5.4 750 30 

  winter wheat (straw) 4.7 650 40 

2002 winter wheat (stubble) 5.4 750 30 14  

CT 
2003 winter barley (stubble) 5.4 750 30 

 2004 potatoes (leaves) 2.1 440 20 

  cattle stable manure (25 Mg ha-1) 6.0 960 210 

 2005 winter wheat (stubble) 5.4 750 30 

RTDD_10: under 10 years of reduced tillage by direct drilling; CT: conventional tillage  

winter wheat: Triticum aestivum L.; winter barley: Hordeum vulgare L.; rapeseed: Brassica rapa L.; 

potatoes: Solanum tuberosum L. 

†: green manure 

*EOC: amount of organic carbon that is still in the soil one year after the application 
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Table 2.13 Amount of dry matter (DM), effective organic carbon (EOC) and total 

nitrogen (TN) content of crop residues and organic manure application of 

2002-2005 on fields 15 and 16 in Kuttekoven 
Field year Crop (type of residue)/ 

Manure application 

DM 

(Mg ha-1) 

EOC* 

(kg ha-1) 

TN 

(kg ha-1) 

2002 rapeseed † 4.1 425 90 15  

RTDD_10  sugar beet (heads + leaves) 7.0 575 160 

  cattle stable manure (25 Mg ha-1) 6.0 960 210 

 2003 winter wheat (stubble) 5.4 750 30 

  winter wheat (straw) 4.7 650 40 

 2004 winter barley (stubble) 5.4 750 30 

  winter barley (straw) 4.7 650 40 

 2005 rapeseed† 4.1 425 90 

  sugar beet (heads + leaves) 7.0 575 160 

  cattle stable manure (25 Mg ha-1) 6.0 960 210 

2002 mustard† 4.1 425 90 16 

CT  sugar beet (heads + leaves) 7.0 575 160 

  cattle stable manure (25 Mg ha-1) 6.0 960 210 

 2003 winter wheat (stubble) 5.4 750 30 

 2004 winter barley (stubble) 5.4 750 30 

 2005 mustard† 4.1 425 90 

  sugar beet (heads + leaves) 7.0 575 160 

  cattle stable manure (25 Mg ha-1) 6.0 960 210 

RTDD_10: under 10 years of reduced tillage by direct drilling; CT: conventional tillage  

rapeseed: Brassica rapa L.; sugar beet: Beta vulgaris L.; winter wheat: Triticum aestivum L.; winter 

barley: Hordeum vulgare L.; mustard: Sinapis alba L. 

†: green manure 

*EOC: amount of organic carbon that is still in the soil one year after application 

 

 

Fields 17 and 18 were located in Court-Saint-Etienne (50°38’ N; 4°34’ E). 

RTC_20 field 17 was under RT agriculture for 20 years. The deepest tillage 

operation to a depth of 25 cm was done in the autumn with a soil loosener 

(working width of 3 m) with one row of four tines ending in a share-and-point 

sweep (width 60 cm and set at 70 cm apart) (Figure 2.6). Field 18 was 

conventionally ploughed to a depth of 25 cm every 2 years in the winter before 

the sugar beets (Table 2.14). These fields have a 2 year sugar beet - winter 

wheat / mustard crop rotation (Table 2.15) 
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Figure 2.6 The soil loosener used in field 17 in Court-Saint-Etienne. 

 

 
Table 2.14 Type and depth of tillage operations (successive tillage operations are given 

per row) of 2002-2005 of fields 17 and 18 in Court-Saint-Etienne 

Field Tillage (depth in cm) Time* 

17 

RTC_20 

rotary harrow 

(5) 

   2002 S, 2004 S 

 soil loosener 

(25) 

rotary harrow 

(5) 

  2002 A, 2004 A 

 cultivator 

(10) 

cultivator 

(10) 

soil loosener 

(25) 

rotary harrow 

(5) 

2003 A
†, 2005 A

† 

18 

CT 

plough 

(25) 

rotary harrow 

(5) 

rotary harrow 

(5) 

 2002 S, 2004 S 

 soil loosener 

(25) 

rotary harrow 

(5) 

  2002 A, 2004 A 

 cultivator 

(10) 

cultivator 

(10) 

  2003 A
†, 2005 A

† 

RTC_20: under 20 years of reduced tillage with soil loosener; CT: conventional tillage  

*: S: spring (March – May) tillage operation; A: autumn (Aug. – Nov.) tillage operation, W: winter 

(Dec. - Febr.) tillage operation, †: tillage operation before green manure 
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Table 2.15 Amount of dry matter (DM), effective organic carbon (EOC) and total 

nitrogen (TN) content of crop residues and organic manure application of 

2002-2005 on fields 17 and 18 in Court-Saint-Etienne 
Field year Crop (type of residue)/ 

Manure application 

DM 

(Mg ha-1) 

EOC* 

(kg ha-1) 

TN 

(kg ha-1) 

2002 mustard† 4.1 425 90 17  

RTC_20  sugar beet (heads + leaves) 7.0 575 160 

 2003 winter wheat (stubble) 5.4 750 30 

  winter wheat (straw) 4.7 650 40 

  cattle stable manure (30 Mg ha-1) 7.2 1160 250 

 2004 mustard† 4.1 425 90 

  sugar beet (heads + leaves) 7.0 575 160 

 2005 winter wheat (stubble) 5.4 750 30 

  winter wheat (straw) 4.7 650 40 

  chicken manure (7 Mg ha-1) 3.5 800 235 

2002 mustard† 4.1 425 90 18 

CT  sugar beet (heads + leaves) 7.0 575 160 

 2003 winter wheat (stubble) 5.4 750 30 

  cattle stable manure (40 Mg ha-1) 9.6 1540 330 

 2004 mustard† 4.1 425 90 

  sugar beet (heads + leaves) 7.0 575 160 

 2005 winter wheat (stubble) 5.4 750 30 

  cattle stable manure (30 Mg ha-1) 7.2 1160 250 

RTC_20: under 20 years of reduced tillage with cultivator or soil loosener; CT: conventional tillage  

mustard: Sinapis alba L.; sugar beet: Beta vulgaris L.; winter wheat: Triticum aestivum L. 
†: green manure 

*: amount of organic carbon that is still in the soil one year after application 



 

 

 

 

Chapter 3:  
 

The effect of reduced tillage agriculture  
on physical soil properties of silt loam soils 

 

 
 

HEESTERT:  

FIELD 2 WITH WINTER WHEAT STUBBLE IN SEPTEMBER 2006 

 

LEFT: HAND PENETROLOGGER 

RIGHT: AUTOMATED PENETROLOGGER 

 

 

Modified from: 

D’Haene, K., Vermang, J., Cornelis, W.M., Leroy, B.L.M., Schiettecatte, W., De Neve, 
S., Gabriels, D., Hofman, G. Reduced tillage effects on the physical properties of silt 
loam soils growing root crops. Soil Till. Res., submitted. 
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3.1. ABSTRACT 

Crop rotations in Western Europe often include beets and potatoes, which are 

generally assumed to be less suitable under RT agriculture because they result in 

a high disturbance of the soil at the formation of the ridges and at harvest. 

Nevertheless, in the scope of the increasing concern for soil conservation, RT 

agriculture is growing more important in today’s agriculture. Therefore, the 

short and long term effect of RT agriculture on BD, WRC, aggregate stability, 

field-saturated hydraulic conductivity (Kfs) and PR of silt loam soils with crop 

rotations including root and tuber crops was evaluated. Ten fields at seven 

locations representing the important RT types, applied for a different number of 

years, and eight fields under CT agriculture with comparable soil type and crop 

rotation were selected. 

At each location, BD of the 5-10 cm depth layer was mostly lower in the RT 

fields (1.42±0.05 Mg m-³ [average with standard deviation]) compared to the CT 

fields (1.44±0.09 Mg m-³) and the water content at saturation was mostly higher 

(0.394±0.027 m³ m-³ and 0.382±0.021 m³ m-³ for RT and CT fields, 

respectively). No differences in BD (1.53±0.03 Mg m-³) or WRC could be found 

in the 25-30 cm depth layer when comparing the RT with the CT fields. The PR 

of the RTDD fields was higher in the upper 10-30 cm depth layer compared to 

CT fields but was only higher in the 20-30 cm depth layer of RTC fields 

compared to the CT fields if the working depth was lower under RTC than CT 

agriculture. However, no change in PR in the 30-60 cm depth layer could be 

determined for the RTC or RTDD compared to CT fields. The stability index of 

the 0-10 cm layer measured by the ‘dry and wet sieving’ method of De 

Leenheer and De Boodt (1959) was 40% higher under RT than CT agriculture. 

The mean weight diameter (MWD) measured with the three methods of Le 

Bissonnais (1996) was significantly higher even after short term RT compared 

to CT agriculture i.e. the MWD after a heavy shower, a slow wetting of the soil 

and stirring the soil after prewetting was 19%, 38% and 34% higher for RT than 

CT fields, respectively. The Kfs tended to be higher under RT compared to the 

CT fields. Despite the high disturbance of the soil every 2 or 3 years of crop 

rotations including sugar beets or potatoes, RT agriculture had a positive effect 

on the investigated physical soil properties. 
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3.2. INTRODUCTION 

One of the most important negative consequences of modern agricultural 

production is probably the soil physical degradation resulting in erosion and soil 

compaction, which is attributed to deep and intensive tillage practices (Esteve et 

al., 2004). Erosion causes financial damage on the farm through the formation 

of rills and gullies and the washing away of seeds, manure, fertilizers and fertile 

soil. The yearly erosion from silt loam soils in the hilly areas in Belgium varies 

between a few to 100 Mg soil ha-1 y-1 (Verstraeten et al., 2003b). Soil 

compaction is another process that threatens the agricultural production in some 

areas. Soil compaction at the soil surface can be remediated by the usual soil 

tillage, root growth and biological activity. However, deep soil compaction 

under the plough layer decreases the growth of plants by reducing rooting depth 

and PASW, often results in a decrease of crop yield (Ide et al., 1984 & 1987; 

Ide & Hofman, 1990) and is extremely difficult to remediate. 

 

Under RT agriculture, the soil is not inverted and mixed with the crop residues 

and this seems to profoundly impact many soil properties particularly in the 

upper depth soil layer. Under a temperate climate most researchers report 

comparable or higher BD in the 0-5 cm layer of short term (≤11 years) RT fields 

with cereals and soybean (Angers et al., 1997; Yang & Wander, 1999; Kay & 

Vanden Bygaart, 2002; Al-Kaisi et al., 2005b; Puget & Lal, 2005), while under 

long term RT agriculture the BD is comparable or lower than on CT agriculture 

(Tebrügge & Düring, 1999; Deen & Kataki, 2003; Dolan et al., 2006). In the 5-

20 cm depth layer, mostly no differences in BD were measured under short term 

RT compared to CT fields, while for long term RT fields BD decreased in 

following order: RTDD ≥ RTC ≥ CT agriculture. Deeper in the soil profile, BD 

was comparable for RT and CT fields (Angers et al., 1997; Tebrügge & Düring, 

1999; Yang & Wander, 1999; Kay & Vanden Bygaart, 2002; Deen & Kataki, 

2003; Al-Kaisi et al., 2005b; Puget & Lal, 2005; Dolan et al., 2006). Studies by 

Friedel et al. (1996), Hussain et al. (1999) and Liebig et al. (2004) showed that 

the aggregate stability of the upper layer of fields with a cereal, maize and 

soybean crop rotation, increased in RTC or RTDD compared to CT fields. 

In the scope of the increasing concern for soil conservation, RT agriculture is 

growing more important in today’s agriculture in Western Europe although the 

crop rotations are somewhat particular because of the large share of root and 

tuber crops. However, no research has been carried out on the effect of RT 

agriculture on BD and aggregate stability of soils with crop rotations including 
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beet and with heavy soil disturbance at harvest, that seem less suitable for RT 

agriculture. 

 

In their literature review of runoff and erosion during rainfall simulations and 

natural rainfall under field conditions in temperate climate, Strauss et al. (2003) 

concluded that RTDD agriculture mostly decreased runoff and erosion compared 

to CT agriculture. Rainfall simulation studies in Flanders showed that runoff 

and erosion were often lower in RTC than CT fields (Goyens et al., 2005; Leys 

et al., 2007 – see 1.2.6). However, RT fields often have a lower field-saturated 

hydraulic conductivity Kfs compared to CT fields. It has been reported that 3 to 

18 years after converting from CT to RTC or RTDD agriculture on loam soils, the 

Kfs was lower or at best comparable under RTDD than RTC and CT agriculture 

(Wienhold & Tanaka, 2000; Lipiec et al., 2006; Singh & Malhi, 2006). On the 

other hand, Liebig et al. (2004) reported that after 15 years of RTDD agriculture 

on a silt loam soil in the Great Plains, Kfs was higher than under CT agriculture. 

Seeing these contrasting results further research on the effect of a conversion 

from CT to RT agriculture on Kfs seems therefore needed. 

 

The objective of this study was to investigate the short and long term effects of 

RT agriculture on BD, WRC, PR, aggregate stability and field-saturated 

hydraulic conductivity Kfs under the specific Western European climatic and 

soil conditions and typical rotations including crops which are often assumed to 

be less suitable for RT agriculture such as beets and potatoes. 

 

 

3.3. MATERIALS AND METHODS 

3.3.1. Soil sampling 

BD and WRC were determined in two replicates on undisturbed soil samples 

taken from the 5-10 and 25-30 cm depth layers of each plot using the core 

method as described by Cornelis et al. (2005). Soil samples for the measurement 

of the % SOC and TN were taken at the same time. Fields 1-4 were sampled on 

3 December 2004, with the mustard crop (green manure) on the fields. Field 5 

had maize crop residues whereas field 6 was bare at the time of sampling (10 

December 2004). At the time of the sampling, 20 December 2004, field 7 had 

winter oat (green manure) on the field and field 8 was bare. Field 9 had mustard 

as green manure whereas field 10 had maize crop residues at sampling (17 

March 2005). Fields 11-12 were sampled 9 March 2005 with winter wheat and 

Phacelia (Phacelia L.) (green manure), respectively. Fields 13-14 with winter 
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wheat as crop were sampled 10 March 2005. Fields 15 and 16 were sampled on 

11 March 2005. Rapeseed (Brassica rapa L.) was grown as green manure on 

field 15 while field 16 was bare. Fields 17 and 18 were sampled 15 December 

2004 with winter wheat as crop. 

 

The PR was measured with a hand digital penetrologger (Eijkelkamp Agrisearch 

Equipment, the Netherlands) in June - July 2005, one month after the sowing 

period of beets and maize, in November - December 2005, one month after the 

harvest of beets and maize, and March - April 2006 after the winter. A fully 

automated digital penetrologger was used in fields 1-4 in Heestert in September 

2006 to have an idea of the 2 dimensional variability of the PR of the soil under 

RT and CT fields. 

 

Ten samples for aggregate stability were taken per plot from the 0-10 cm depth 

layer. Fields 1-4 were sampled on 21 June 2005 with sugar beets on the fields. 

Field 5 and 6 had maize as crop at the time of sampling (21 June 2005). At the 

time of the sampling, 13 July 2005, field 7 and 8 had potatoes and maize on the 

field, respectively. Field 9 had sugar beets whereas field 10 had maize as crop at 

sampling (13 July 2005). Fields 11, 13 and 14 were sampled 18 July 2005 with 

winter wheat, while field 12 had maize as crop. Fields 15 and 16 were sampled 

with sugar beets on 15 July 2005 and fields 17 and 18 on 18 July 2005 with 

winter wheat as crop. These samples were then mixed to obtain a representative 

composite sample. 

 

Field-saturated hydraulic conductivity Kfs was measured in three replicates per 

plot between 13 and 18 July 2005, but only on fields under more than 10 years 

of RT. 

 

The measurement of SOC and TN was done as described in chapter 4 and 5, 

respectively. 

 

 

3.3.2. Soil bulk density and water retention curve  

BD was determined from the oven dry mass (105 °C) of the undisturbed 

samples and volume of the soil core. No shrinkage was observed in any of the 

cores.  
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To construct the WRC, the sand box method (Eijkelkamp Agrisearch 

Equipment, the Netherlands) was used for water tensions between 0 and –0.01 

MPa, whereas for the lower water tensions (down to –1.5 MPa) the pressure 

membrane method (Soilmoisture Equipment, USA) was used following the 

procedure of Cornelis et al. (2005). The water retention function of van 

Genuchten (1980) was fitted to the desorption data: 
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where θr and θs are the residual and the saturated soil water content, respectively 

(m3 m–3), h is the soil water tension, and α, n and m = 1 – 1 / n are parameters 

obtained by fitting Eq. 1 to the measured water retention data (van Genuchten et 

al., 1991). 

 

The total and readily plant available soil water (respectively TPASW and 

RPASW) were calculated as the moisture content at field capacity (-0.03 MPa) 

minus the moisture content at respectively wilting point (-1.5 MPa) and a 

critical water tension set here at -0.05 MPa. Selecting a critical water tension at  

-0.05 MPa, was based on data by Taylor & Ashcroft (1972) and Wesseling 

(1991) for the crops under consideration. 

 

We further applied the WRC to derive the index of soil physical quality S 

defined by Dexter (2004) as the slope of the inflection point of the WRC. It is 

assumed to be a measure of the soil microstructure, which controls many of the 

soil physical properties. The index S can be written as: 
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Since the index greatly depends on θr which is a rather ill-defined parameter and 

often set equal to zero in the curve-fitting procedure to avoid negative values 

(Khlosi et al., 2006), it was set here to zero for all soil samples. This should 

allow better comparison between the various fields. Based on pot and field 

experiments in several countries, Dexter (2004) suggested a value of S = 0.035 

as the boundary between good and poor structural soil quality. Values of S < 

0.02 indicate a very poor soil physical quality. 
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3.3.3. Penetration resistance 

The PR is the resistance of the soil against penetration of a cone and is a 

measure for the compaction of the soil. The maximum resistance a root can 

penetrate is 3 MPa (Ide et al., 1987; Ide & Hofman, 1990) and this is half of the 

maximum PR of the used penetrologgers. 

 

To have an idea of the PR during the year, the PR was measured three times 

with a hand digital penetrologger (Eijkelkamp Agrisearch Equipment, the 

Netherlands). The hand penetrologger (60° angle cone with a base of 1 cm²) was 

pushed perfectly straight to 60 cm depth into the soil by applying equal pressure 

on both grips. The hand penetrologger was used 12 times at random per plot. 

A fully automated digital penetrologger (30° angle cone with a base of 1 cm2) 

(CRA Gembloux, Belgium) was used to have an idea of the 2 dimensional 

variability of the PR of the soil under RT and CT agriculture. Seventeen 

measurements were taken over 80 cm to a depth of 60 cm in three replicates. 

The speed used to push the cone of the automated penetrologger into the soil 

was constant at 2 cm s-1 (Roisin, 2003 & 2007). 

 

 

3.3.4. Aggregate stability 

The stability of the aggregates was measured on air-dried soil samples using the 

“dry and wet sieving” method of De Leenheer & De Boodt (1959), adjusted by 

Hofman (1973) as described by Leroy et al. (2007). The instability index was 

calculated as the difference of the MWD of the wet sieving minus the MWD of 

the dry sieving. The inverse of the instability index, i.e. the stability index (SI), 

was taken as a measure of the stability of the aggregates (De Leenheer & De 

Boodt, 1959; De Boodt & De Leenheer, 1967).  

 

Additionally, the aggregate stability was measured with the three methods of Le 

Bissonnais (1996), being fast wetting of the soil simulating a heavy shower 

(most aggressive), slow wetting of the soil (least aggressive) and stirring the soil 

after prewetting to test the wet mechanical cohesion of the soil aggregates. The 

MWD for method 1, 2 and 3 are referred to as MWDfast, MWDslow and MWDstir, 

respectively. 
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3.3.5.  Field-saturated hydraulic conductivity 

The field-saturated hydraulic conductivity Kfs was measured with a Guelph 

pressure infiltrometer with 0.097 m inner diameter (Soilmoisture Equipment, 

USA) using the single head method (Reynolds & Elrick, 2002). Using the single 

head method with the soil-structure parameter α* (see e.g. Reynolds & Elrick, 

2002) taken from Elrick et al. (1989) to calculate Kfs is often sufficient for 

practical applications. The method involves measuring the steady-state rate of 

water infiltration in which a constant depth (head) of water is maintained. A 

“bulb” of saturated soil with specific dimensions under the ring is rather quickly 

established by the infiltrometer. This bulb is very stable and its shape depends 

on the type of soil, the radius of the ring and the head of water in the ring 

(Reynolds & Elrick, 2002). 

Using the equation of Reynolds & Elrick (1990) which is based on a solution for 

three-dimensional flow, Kfs can then be calculated from the steady-state 

infiltration rate.  

 

 

3.3.6. Statistical analysis 

The homogeneity of variances was tested with the Levene’s test (P = 0.05). A   

t-Test was used to find significant differences for locations with only 2 fields. 

One way analysis of variances (ANOVA) with field as factor/post hoc Duncan 

test and Welch/post hoc Games-Howell test were used to determine significant 

differences for the locations with more than 2 fields for homogeneous and 

heterogeneous variances, respectively. A correlation analysis was performed 

using a Pearson’s correlation matrix in SPSS (version 12.0, SPSS Inc., USA). 

 

 

3.4. RESULTS 

3.4.1. Soil bulk density and water retention curve 

In the 5-10 cm depth layer the BD tended to be lower in the RT compared to the 

CT fields at the same location, except for RTC_5 field 7 compared to CT field 8 

(Table 3.1). The water content at saturation θs of the upper depth layer was 

generally higher for the RT compared to the CT fields at the same location, 

except for RTC_2 1-3 compared to CT field 4 and RTC_20 field 17 compared to 

CT field 18, though in case of the latter, differences were not significant at P = 

0.05. No clear trends were observed when comparing TPASW, RPASP and S of 

the RT and CT fields (Table 3.1 and Appendix II - Table II.1).  
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Table 3.1 Bulk density (BD), moisture content at saturation (θs) and S of 5-10 cm 

depth layer of the 18 selected fields (with standard deviation between 

brackets) 
Field BD 

(Mg m-³) 

θs 

(m3 m-3) 

S 

1 RTC_2 1.38 (0.10) a 0.374 (0.015) a 0.041 (0.001) a 

2 RTC_2 1.49 (0.08) a 0.391 (0.012) a 0.044 (0.004) a 

3 RTC_2 1.46 (0.02) a 0.397 (0.014) a 0.045 (0.003) a 

4 CT 1.48 (0.08) a 0.404 (0.019) a 0.036 (0.004) a 

5 RTC_5 1.37 (0.04) a 0.374 (0.001) a 0.038 (0.014) a 

6 CT 1.43 (0.04) a 0.352 (0.006) b 0.032 (0.005) a 

7 RTC_5 1.46 (0.10) a 0.400 (0.035) a 0.055 (0.005) a 

8 CT 1.24 (0.07) b 0.359 (0.024) a 0.046 (0.001) b 

9 RTC_10 1.43 (0.04) a 0.420 (0.024) a 0.033 (0.006) b 

10 CT 1.49 (0.04) a 0.411 (0.018) a 0.053 (0.003) a 

11 RTDD_10 1.37 (0.04) b 0.399 (0.019) ab 0.042 (0.013) a 

12 CT 1.40 (0.03) b 0.382 (0.008) b 0.049 (0.010) a 

13 RTDD_10 1.47 (0.03) a 0.415 (0.007) a 0.045 (0.004) a 

14 CT 1.49 (0.04) a 0.378 (0.006) b 0.050 (0.004) a 

15 RTDD_10 1.47 (0.01) b 0.406 (0.022) a 0.048 (0.007) a 

16 CT 1.51 (0.02) a 0.397 (0.004) a 0.042 (0.002) a 

17 RTC_20 1.35 (0.08) a 0.349 (0.022) a 0.033 (0.005) a 

18 CT 1.47 (0.08) a 0.369 (0.016) a 0.039 (0.001) a 

RTC: reduced tillage with cultivator or soil loosener, RTDD: by direct drilling with in subscript the 

period in years; CT: conventional tillage 

same letters indicate no significant differences between tillage treatments per location (P = 0.05) 

(one way ANOVA/Duncan post hoc test, Welch/Games-Howell post hoc test or t-Test) 

 

 

In the 25-30 cm depth layer, similar observations were made, though less 

pronounced (Table 3.2 and Appendix II - Table II.2). 
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Table 3.2 Bulk density (BD), moisture content at saturation (θs) and S of 25-30 cm 

depth layer of the 18 selected fields (with standard deviation between 

brackets) 
Field BD 

(Mg cm-³) 

θs 

(m3 m-3) 

S 

1 RTC_2 1.51 (0.03) a 0.380 (0.002) b 0.038 (0.002) b 

2 RTC_2 1.47 (0.14) a 0.410 (0.027) ab 0.043 (0.001) ab 

3 RTC_2 1.50 (0.04) a 0.403 (0.006) a 0.047 (0.002) a 

4 CT 1.48 (0.03) a 0.411 (0.009) ab 0.040 (0.005) b 

5 RTC_5 1.52 (0.05) a 0.396 (0.015) a 0.039 (0.013) a 

6 CT 1.53 (0.02) a 0.405 (0.001) a 0.040 (0.005) a 

7 RTC_5 1.54 (0.02) a 0.393 (0.020) a 0.056 (0.002) a 

8 CT 1.51 (0.03) a 0.402 (0.013) a 0.054 (0.002) a 

9 RTC_10 1.55 (0.05) a 0.431 (0.018) a 0.036 (0.009) b 

10 CT 1.51 (0.01) a 0.410 (0.023) a 0.052 (0.001) a 

11 RTDD_10 1.50 (0.05) a 0.408 (0.004) a 0.037 (0.003) a 

12 CT 1.54 (0.03) a 0.387 (0.004) a 0.042 (0.011) a 

13 RTDD_10 1.53 (0.04) a 0.389 (0.012) ab 0.039 (0.004) a 

14 CT 1.50 (0.06) a 0.374 (0.015) b 0.050 (0.009) a 

15 RTDD_10 1.50 (0.02) b 0.401 (0.004) a 0.045 (0.003) a 

16 CT 1.56 (0.01) a 0.401 (0.003) a 0.042 (0.002) a 

17 RTC_20 1.58 (0.03) a 0.386 (0.017) a 0.034 (0.005) a 

18 CT 1.59 (0.06) a 0.385 (0.003) a 0.037 (0.004) a 

RTC: reduced tillage with cultivator or soil loosener, RTDD: by direct drilling with in subscript the 

period in years; CT: conventional tillage 

same letters indicate no significant differences between tillage treatments per location (P = 0.05) 

(one way ANOVA/Duncan post hoc test, Welch/Games-Howell post hoc test or t-Test) 
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3.4.2. Penetration resistance 

Shortly after the field work a low PR was measured in the RTC and CT fields. 

During the growing season or winter period the PR of the RTC but especially of 

the CT fields was increased (e.g. RTC_5 7 and CT 8 fields in Figure 3.1 and 

Figure 3.2, respectively). 

 

The PR of the 10-20 cm depth layer was higher in the soil profile under RTDD 

compared to RTC and CT fields (e.g. RTDD_10 field 11 in Figure 3.3 compared to 

RTC_5 7 and CT 8 fields in Figure 3.1 and Figure 3.2, respectively). 

 

In CT fields 8, 10, 14 and 18 an obvious plough pan was measured, except when 

the moisture conditions were too high (e.g. the plough pan was not measured on 

13/12/2005 in CT field 8 (Figure 3.2)). 

 

 

Next to the hand penetrologger, an automated penetrologger was used in fields 1 

to 4 in Heestert to have an idea of the 2 dimensional variability of the PR of the 

soil under RT and CT fields. The locations of the tines of cultivator or soil 

loosener in the RT fields were visible (↓ in Figure 3.5 and Figure 3.6 and  

in Figure 3.7). The PR in the 5-15 and 15-20 cm depth layer in RTC_2 field 1 

was lower and higher compared to fields 2-4, respectively (Figure 3.4). 
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 Measurement: 13/12/2005 

 After harvesting potatoes and 

 sowing barley 
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 Measurement: 24/03/2006 

 With barley 
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Figure 3.1 Penetration resistance (MPa) and moisture content (g g-1) of field 7 (reduced tillage by cultivator since 2000) in Baugnies 
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 Measurement: 13/07/2005 

 After sowing maize 
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 Measurement: 13/12/2005 

 After harvesting maize and 

 before ploughing 
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 Measurement:24/03/2006 

 Fallow after ploughing 
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Figure 3.2: Penetration resistance (MPa) and moisture content (g g-1) of ploughed field 8 in Baugnies 

 



 

 

50  
 Measurement: 06/16/2005 

 With winter wheat 

 

No measurement possible because the penetration 

resistance was too high  

 Measurement: 11/24/2005 

 With winter barley 
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 Measurement: 05/19/2006 

 With winter barley 
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Figure 3.3: Penetration resistance (MPa) and moisture content (g g-1) of field 11 (reduced tillage by direct drilling since 1995) in Villers-le-Bouillet 
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Field 1 Field 2 
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Figure 3.4 Penetration resistance (MPa) and moisture content (g g-1) of fields 1-3 

(reduced tillage with cultivator or soil loosener since 2003) and ploughed 

field 4 measured with a hand penetrologger on 08/09/2006 
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Figure 3.5 Penetration resistance (MPa) of field 1 (reduced tillage with cultivator since 

2003) on 08/09/2006 (CRA Gembloux) (↓ indicates where the cultivator 

loosened the soil) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.6 Penetration resistance (MPa) of field 2 (reduced tillage with soil loosener 

since 2003) on 08/09/2006 (CRA Gembloux) (↓ indicates where the soil 

loosener loosened the soil) 
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Figure 3.7 Penetration resistance (MPa) of field 3 (reduced tillage with soil loosener 

since 2003) on 08/09/2006 (CRA Gembloux) (   indicates where the 

soil loosener loosened the soil) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 Penetration resistance (MPa) of ploughed field 4 on 08/09/2006 (CRA 

Gembloux)  
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3.4.3. Aggregate stability 

The distribution of the aggregate sizes fractions of the 0-10 cm depth layer for 

fields 5-8 (RTC_5) and fields 17-18 (RTC_20) obtained with the “dry and wet 

sieving” method of De Leenheer & De Boodt (1959) is given as an example in 

Figure 3.9. The aggregate size fractions 8-4.76 mm and 2.83-4.76 mm were 

(significantly) higher in RTC_5 field 5 compared with CT field 6. A similar 

distribution was found in field 7 and 8. Also in RTC_20 field 17, the aggregate 

size fraction >4.76 mm was significantly higher in comparison with CT field 18. 

Similar trends, i.e. higher percentages of large aggregates, under RT agriculture 

were observed in the other fields (data not shown). 
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*: reduced tillage field 

same letter per aggregate size per location indicates no significant differences between tillage 

treatments (P = 0.05) (t-Test) 

 

Figure 3.9 Distribution of aggregate size fractions (%) (vertical lines = standard 

deviation) of the 0-10 cm depth layer of fields 5-8 (5 years reduced tillage 

with cultivator RTC) and of fields 17-18 (20 years RTC) measured with the 

“dry and wet sieving” method of the Leenheer and De Boodt (1959) 

 

 

When applying the methods of Le Bissonnais (1996), aggregate sizes fractions 

were strongly affected by the method used (Figure 3.10). There were few 

aggregate sizes larger than 0.5 mm in fields 5-8 and 18 and larger than 1 mm for 

field 17 (Figure 3.10A) after the aggressive method 1, while after the slow 

wetting of method 2, there were little aggregate sizes smaller than 0.2 mm 

(Figure 3.10B). After 5 years RTC agriculture, method 2 resulted in a significant 
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increase (P = 0.05) in % aggregate size >2 mm both in field 5 compared to field 

6, and field 7 compared to field 8. The same significant increase was observed 

after 20 years of RTC agriculture (RTC_20 field 17 compared to CT field 18). The 

aggregate sizes obtained with the third method were in between the most and 

least aggressive method (Figure 3.10C). The % aggregate size >2 mm, 1-2 mm 

and 0.5-1 mm obtained with the third method was (significantly) higher in the 

RTC compared to the CT fields. The same trend in distribution of particle sizes 

was found for the other fields (data not shown). 

 

 

There were no significant differences between tillage treatments in SI between 

fields 1 to 4 (Figure 3.11). After 5 years RTC agriculture, the SI was 

significantly higher (P = 0.05) in field 5 in comparison with CT field 6 but not 

significantly higher in field 7 compared to CT field 8. After 10 years RTC 

agriculture, there was a significant increase in SI in field 9 compared to CT field 

10. When comparing fields 11 to 14 (RTDD_10 vs. CT), CT field 14 had the 

lowest SI. There was no difference in SI between RTDD_10 field 15 and CT field 

16. After 20 years RTC agriculture, there was an insignificant increase in SI in 

RTC_20 field 17 compared to CT field 18. 

 

The results of field 1-4 showed that the MWD according to the three methods of 

Le Bissonnais (1996) increased shortly after changing from CT to RTC 

agriculture (Figure 3.12). The MWDslow and MWDstir of RTC_2 fields 1-3 (RTC_2) 

were significantly higher compared to field 4 (CT). MWDfast showed the same 

trend. After 5 years RTC agriculture the MWDslow and MWDstir was significantly 

higher (RTC_5 on field 5 compared to CT agriculture on field 6, RTC_5 on field 7 

compared to CT agriculture on field 8). There was no obvious trend in MWDfast 

after 5 years RTC agriculture. After 10 years RTC agriculture, the MWD in the 

three methods was significantly higher on RTC_10 field 9 compared to CT field 

10. RTDD_10 fields 11 and 13 had significantly higher MWDslow and MWDstir 

values than CT fields 12 and 14, respectively. On the other hand, MWDstir was 

significantly lower when comparing RTDD_10 field 15 with CT field 16. After 20 

years RTC agriculture (field 17), the MWDfast, MWDslow and MWDstir were 

significantly higher than CT field 18. The MWD obtained after the different 

methods of Le Bissonnais (1996) resulted in the order MWDslow > MWDstir > 

MWDfast (Figure 3.10). 
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*: reduced tillage with cultivator or soil loosener 

same letter per aggregate size per location indicates no significant differences between tillage 

treatments (P = 0.05) (t-Test) 

 

Figure 3.10 Distribution of aggregate size fractions (%) (vertical lines = standard 

deviation) obtained with method 1 (A), 2 (B) and 3 (C) of Le Bissonnais 

(1996) of the 0-10 cm depth layer of fields 5-8 (5 years reduced tillage with 

cultivator (RTC) and fields 17-18 (20 years RTC)  
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                                                                               *:  reduced tillage with  

                                                                                    cultivator or soil loosener (RTC) 

 

                                                                             **:  reduced tillage by 

                                                                                    direct drilling (RTDD) 

 

 

 

 

 

 

     A:   2 years RTC 

                                                                                 B:   5 years RTC 

                   C: 10 years RTC or RTDD 

     D: 20 years RTC 

 

 

 

 

 

 
same letter indicates no significant differences between tillage treatments at P = 0.05 per location 

(one way ANOVA/Duncan post hoc test, Welch/Games-Howell post hoc test or t-Test) 

 

Figure 3.11 Stability index (SI) (line = standard deviation) determined by the ‘dry and 

wet sieving’ method of De Leenheer & De Boodt (1959) of the 0-10 cm 

depth layer of the 18 selected fields 
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58                                                                                                                                         *:   reduced tillage with cultivator or soil loosener (RTC) 

                                                                                                                                       **:   reduced tillage by direct drilling (RTDD) 

 

                                                                                                                                                  A:   2 years RTC 

                                                                                                                                                  B:   5 years RTC 

                                                                                                                                                  C: 10 years RTC or RTDD 

                                                                                                                                                  D: 20 years RTC 

 

 

 

              

            same letter per location indicates no significant  

            differences between  tillage treatments at P = 0.05 

             

            (one way ANOVA/Duncan post hoc test,  

            Welch/Games-Howell post hoc test or t-Test) 

             

  

            (vertical lines =  standard deviation) 

             

 
Figure 3.12 Mean weight diameter (MWD) (mm) measured by the 3 methods of Le Bissonnais (1996) of the 0-10 cm depth layer of the 18 selected fields 
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3.4.4. Field-saturated hydraulic conductivity 

Per location there were no significant differences in Kfs between the fields 11-18 

(Figure 3.13), but the high variability in Kfs between the plots of some fields 

complicated the comparison. The Kfs was higher under RT than CT agriculture 

at two of the three locations. 

 

 

 

 

 

 
                     *: reduced tillage with  

                                            cultivator or soil loosener (RTC) 

                **: reduced tillage by 

                           direct drilling (RTDD) 

 

 

 

 

 
same letter indicates no significant differences between tillage treatments per location (P = 0.05) 

(one way ANOVA/Duncan post hoc test or t-Test) 

 

Figure 3.13 Field-saturated conductivity Kfs (cm h-1) (vertical lines = standard 

deviation) measured with a Guelph infiltrometer of fields 11-18 
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fields at the same location, except for RTC_5 field 7 compared to CT field 8 
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which is probably the reason for this low BD at the soil surface. The higher 

SOC content of the RT compared to CT fields (Figure 4.3) is probably an 

important reason for the lower BD of the RT fields (Saini, 1966; Adams, 1973; 

Friedel et al., 1996). Under a temperate climate most researchers found a 

comparable or higher BD in the 0-5 cm depth layer under short term (≤11 years) 

RT fields with maize, wheat and soybean (Angers et al., 1997; Yang & Wander, 

11** 12 13** 14
                                Field

0

4

8

12

16

20

K
fs
 (

c
m

 h
-1
)

a
a

a
a

15** 16

a
a

17* 18
Field

0

4

8

12

16

20

K
fs
 (

c
m

 h
-1
)

a

a



Chapter 3 

 

 

 60 

1999; Kay & Vanden Bygaart, 2002; Puget & Lal, 2005; Al-Kaisi et al., 2005b) 

while under long term RT agriculture the BD was comparable or lower than CT 

agriculture (Tebrügge & Düring, 1999; Deen & Kataki, 2003; Dolan et al., 

2006).  

 

The saturated θs of the 5-10 cm depth layer was mostly higher for the RTDD and 

RTC compared to the CT fields at the same location. Riley (1998) measured a 

higher θs after 15 years RTC compared to CT agriculture, while McVay et al. 

(2006) found a comparable θs for 4 locations and a significant decrease in θs in 

1 location under RT compared to CT agriculture 12 to 37 years after conversion 

to RT agriculture. These contrary results show that it is very difficult to find a 

trend in the change of pore sizes after conversion to RT agriculture. Ploughing 

results in more unstable large pores, which disappear quickly during the 

growing season or winter. More large pores (>50 µm) and fewer pores of 10-50 

µm were found in the soil profile of CT fields compared to 9 year RT fields in 

Germany (Ahl et al., 1998). However, Wahl et al. (2004) found more large 

pores (minimum diameter 1 mm) after 10 years RT compared to CT agriculture 

up to 120 cm depth, which they contributed to channels of roots and 

earthworms. Several researchers (e.g. Logan et al., 1991; Warkinton, 2001) 

have measured more biopores under RT than CT fields. 

 

In Norway the available water capacity (at -0.01 minus -1.5 MPa) of the 3-7 cm 

depth layer was higher after 15 years RTC compared to CT agriculture (Riley, 

1998). However we measured comparable TPASW and RPASW in the 5-10 cm 

depth layer for the RT and CT fields except for the significantly lower TPASW 

and RPASW of RTC_10 field 9 compared to CT field 10 (P = 0.05) (Appendix II 

- Table II.1 and Table II.2). The lower TPASW and RPASW of RTC_10 field 9 

compared to CT field 10 can be explained by the wet soil conditions at sowing 

of the green manure of RTC_10 field 9 resulting in soil compaction while the 

maize residues were not removed from CT field 10. 

The physical soil quality index S was for all fields close to or higher than 0.035, 

which, according to Dexter (2004), indicates a good physical quality of the soil. 

 

In the 25-30 cm soil layer, no differences in BD and WRC were measured under 

RT compared to CT fields which is similar as the results of other researches 

(Angers et al., 1997; Tebrügge & Düring, 1999; Yang & Wander, 1999; Kay & 

Vanden Bygaart, 2002; Deen & Kataki, 2003; Al-Kaisi et al., 2005b; Puget & 

Lal, 2005; Dolan et al., 2006). 
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The lower crop yield in wet years and the higher yield in dry years that are 

generally observed on RT compared to CT fields, is often attributed to higher 

TPASW and RPASW under RTC and RTDD compared to CT fields. However, 

our results, i.e. comparable TPASW and RPASW between RT and CT fields, 

indicate that other factors are responsible for the differences in crop yields of 

RT and CT fields. The soil temperature and evaporation of RT fields can be 

lower due to a higher amount of residues of crops or green manure which results 

in larger soil - water contents in RT compared to CT fields.  

 

 

3.5.2. Penetration resistance 

The PR is influenced by the soil moisture content. The penetrologger can be 

pushed through wet soil as if it were butter. As a consequence a plough pan can 

not be detected in wet soils. The same soil could be very difficult to penetrate 

when dry. Since different tillage practices and crop rotations result in different 

soil moisture contents, measurements of the PR of RT and CT fields in the same 

period don’t detect the compacted layers of all measured fields. No PR 

measurements could be done in RTDD_10 field 11 at the first sampling due to the 

dry soil circumstances (Figure 3.3), while the soil moisture was too high to 

measure the PR at the second sampling in CT field 8 (Figure 3.2). 

 

A general conclusion for the differences in PR under RTC compared to CT 

agriculture is difficult because the quality of loosening the soil depends on three 

major factors: the moisture content of the soil, the initial soil structure and the 

used cultivator or soil loosener (Vandergeten & Roisin, 2004). If the working 

depth under RTC agriculture was lower compared to CT agriculture, the PR was 

higher in the 20-30 cm depth layer of RTC fields e.g. the higher PR in the 15-20 

cm depth layer of RTC_2 field 1 compared to fields 2-4 (Figure 3.4). Other 

researchers also found that the changed depth and intensity of the field work in 

RTC compared to CT agriculture influenced the PR. After 8 years RTC 

agriculture a higher PR was measured in the 10-25 cm in a silt clay loam under 

RTC compared to CT agriculture in Sweden. In the 0-10 and 25-50 cm depth 

layers, there were no differences in PR. The depth of disturbance under RTC 

agriculture was 12 cm instead of 25 cm under CT agriculture (Stenberg et al., 

2000). After 12 years of RTC agriculture on a sandy loam soil in Norway and 15 

years RTC agriculture on a silt loam soil in Sweden a higher PR was measured 

compared to CT agriculture due to the lower depth of disturbance. This was 
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correlated with a higher density and lower % SOC (Etana et al., 1999; Riley et 

al., 2005). 

 

The smaller tines of the cultivator used in RTC_2 field 1 caused a larger mixture 

of the soil. This resulted in a lower PR in the 5-15 cm depth layer in RTC_2 field 

1 compared to fields 2-4 (Figure 3.4). The lower heterogeneity under CT than 

RT agriculture (Perfect & Caron, 2002; Roisin, 2003) was observed under CT 

field 4 compared to RTC_2 fields 1-3 (Figure 3.4). The location where the tines 

had worked the field remained visible for several years (e.g. ↓ in Figure 3.5), as 

was also found by e.g. Franzluebbers, 2002; Baritz et al., 2004 and Vandergeten 

& Roisin, 2004. At the top of the soil profile of RTC_2 field 2 a local higher PR 

was visible which was probably caused by a stone in the field (Figure 3.6). With 

the hand penetrologger these measurements are done again.  

 

 

3.5.3. Aggregate stability 

There is an enormous variety in the methods for measuring the aggregate 

stability, which complicates a comparison of the results. The retention of crop 

residues at the soil surface exerts a positive influence on the formation of 

aggregates even in the short term (Hermawam & Bomke, 1997; Martens, 2000; 

Denef et al., 2001a; Coppens et al., 2006). Bossuyt et al. (2001) measured a 

higher aggregate stability after addition of crop residues, which was higher for 

the crop residues with a higher C:N ratio. Changing from CT agriculture to RT 

agriculture under temperate climate conditions mostly resulted in a (significant) 

higher aggregate stability in the upper layers of RT fields (Hussain et al., 1999; 

Diaz-Zorita et al., 2002; Liebig et al., 2004). The results of our study confirm 

that the reduction of tillage intensity and the retention of crop residues at the soil 

surface of RT fields result in a higher aggregate stability of the RT compared to 

CT fields despite the frequent disturbance on the occasion of harvest of root and 

tuber crops might every two to three years.  

 

Since the wet sieving according to the method of De Leenheer & De Boodt 

(1959) was started with an equal amount of three aggregate fractions, the 

differences in distribution of aggregate size fractions were smaller than with the 

three methods of Le Bissonnais (1996). The SI was significantly correlated with 

MWDslow. There was a good correlation between the MWD obtained with the 

three methods of Le Bissonnais (1996) (Table 3.3). The MWDslow and MWDstir 

of silt loam soils in Brittany showed a clear linear correlation with SOC (up to 
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maximum 1.5%) and clay content (up to a maximum of 30%). The high 

differences in clay content of the monoculture maize fields of Le Bissonnais et 

al. (2002) resulted in a high difference in SOC content in the upper layers and a 

significant correlation between MWD and the soil parameters. Our fields with a 

high soil disturbance at the harvest of beet or potatoes resulted in a low increase 

in SOC content, MWD and SI. The lack of correlation between the MWD or SI 

with texture and SOC content in this research is obviously related to the small 

range in soil texture and SOC content.  

 

 
Table 3.3 Pearson correlation between mean weight diameter after fast wetting 

(MWDfast), MWD after slow wetting (MWDslow), MWD after stirring 

(MWDstir), stability index (SI) and clay, soil organic carbon (SOC) and 

field-saturated hydraulic conductivity (Kfs) 

  MWDslow 

(mm) 

MWDstir 

(mm) 

SI 

 

Clay 

(%) 

SOC 

(%) 

Kfs 

(cm h-1) 

MWDfast (mm)    0.827 **  0.666 **   0.217 0.196 0.175  0.044 

MWDslow (mm)    0.750 **   0.472  0.326 0.214  0.289 

MWDstir (mm)     0.391 0.381 0.427  0.157 

SI     0.382 0.227 -0.303 

Significant differences *: P = 0.05; **: P = 0.01 

 

 

The disadvantage of the three methods of Le Bissonnais (1996) is the time 

intensity of the measurements while the advantage is that MWD is studied after 

fast wetting of the soil simulating a heavy shower, slow wetting of the soil and 

stirring the soil after prewetting to test the wet mechanical cohesion of the soil 

aggregates. If the MWD under the three circumstances is needed, the three 

methods must be used. However, the aggregate stability is mostly studied to 

have an idea about the sensitivity of soils for runoff and erosion and then one 

method is enough. The MWDfast and MWDstir show a good relation with runoff 

and erosion (Amezketa et al., 1996; Barthès & Roose, 2002). However, the 

aggressive character of method 1 results in a low MWDfast which makes 

comparison of soils difficult. The method of De Leenheer & De Boodt (1959) is 

a good alternative to measure the stability of aggregates to have an idea of the 

susceptibility of soils to runoff and erosion. Leroy et al. (2007) also concluded 

that the most sensitive procedure to assess organic treatments in terms of 

aggregate stability was the one described by De Leenheer & De Boodt (1959). 
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3.5.4. Field-saturated hydraulic conductivity 

Our results confirm the high variability of Kfs (Reynolds et al., 2000). We 

observed a higher Kfs under RT compared to CT agriculture in June-July 2005 

after autumn tillage operations in RT fields 15 and 17 in 2004 and no tillage 

operations in the previous 12 months in RT fields 11 and 13. The higher Kfs 

under RT compared to CT agriculture can possibly be explained by the higher 

aggregate stability, the fact that the channels made by earthworms and roots 

were less (RTC) or not (RTDD) destroyed compared to CT fields and vertical 

cracks from loosening the soil. The very high variability of Kfs of RTC_20 field 

17 was possibly caused by the presence of these natural or manmade channels. 

Liebig et al. (2004) also measured a higher Kfs with an infiltrometer in RT 

compared to CT fields in the spring after autumn tillage. However, often a lower 

Kfs is measured in RT compared to CT fields 2-3 months after the tillage 

operations (Wienhold & Tanaka, 2000; Lipiec et al., 2006; Singh & Malhi, 

2006). This suggests that 2-3 months after tillage operations, the Kfs of RT fields 

is lower than CT fields, while after a longer period (>6 months) of stabilization 

the opposite can be found. However, under long term RTDD agriculture a 

compacted crust can be formed at the surface which can decrease Kfs and 

increase soil erosion. 

 

 

3.6. CONCLUSION 

In the scope of the increasing concern for soil conservation, RT agriculture is 

growing more important in Western European agriculture although the crop 

rotations contain a large share of erosion sensitive root and tuber crops. At each 

location, BD of the 5-10 cm depth layer was mostly lower under RT than CT 

fields, while the θs was mostly higher. No differences in BD or WRC could be 

found in the 25-30 cm depth layer between RT and CT fields. The PR was only 

higher in the 20-30 cm depth layer under RTC compared to the CT agriculture if 

the working depth was lower while the PR in the upper 10-30 cm depth layer of 

the RTDD fields was higher than CT fields. The aggregate stability of the 0-10 

cm depth layer measured by the method of De Leenheer & De Boodt (1959) 

was higher under RT than CT agriculture. The MWDfast, MWDslow and MWDstir 

(Le Bissonnais, 1996), was significantly higher even after short term RT 

compared to CT agriculture. This explains the low erosion and runoff of RT 

fields. The Kfs tended to be higher under RT than CT agriculture.  
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4.1. ABSTRACT 

RT agriculture is an effective measure to reduce soil loss from soils susceptible 

to erosion in the short term and is claimed to increase the SOC stock. The 

change in distribution and total stock of SOC in the 0-60 cm depth layer, the 

stratification of microbial biomass carbon (MB-C) content in the 0-40 cm depth 

layer, the distribution of OC over the different physical fractions in the 0-10 cm 

depth layer and the C mineralization in the upper 0-5 cm depth layer (disturbed 

and undisturbed) in silt loam soils in Western Europe with different periods of 

RT agriculture was evaluated. Ten silt loam fields at seven locations, 

representing the important RT types and maintained for a different number of 

years, and eight fields under CT agriculture with comparable soil type and crop 

rotation were selected. 

RT agriculture resulted in a higher stratification of SOC in the soil profile. 

However, the total SOC stock in the 0-60 cm depth layer was not changed, even 

after a period of 20 years of RT agriculture. The amounts of OC in three 

different POM fractions of the 0-10 cm depth layer were found to be 

(significantly) higher both on an absolute as well as a relative basis in the RT 

compared to the CT fields. In general the difference was the highest for the 

coarse free POM fraction, which is the most labile fraction. The MB-C content 

was significantly higher in the 0-10 cm depth layer under RT agriculture, even 

after only 5 years, compared to CT agriculture. The higher percentage of (labile) 

OC and MB-C content in the upper 0-5 cm depth layer of RT fields resulted in a 

higher C mineralization rate in undisturbed soil under controlled conditions in 

the laboratory. Simulating ploughing by disturbing the soil resulted both in 

lower and higher C mineralization rates of the silt loam soils, but due to the 

large variability of the estimated C mineralization parameters, these differences 

were not significant. It seems that under the specific management and climatic 

conditions of Western Europe, RT practices increase the SOC content and 

microbial activity in the top layers, but do not result in enhanced SOC 

sequestration when the entire soil profile is considered. A crop rotation with 

sugar beets or potatoes, with heavy soil disturbance every 2 or 3 years at the 

harvest of beets or potatoes, possibly limited the anticipated positive effect of 

RT agriculture in our research.  
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4.2. INTRODUCTION 

In the framework of “global change” ample attention is given to the possible 

role of agricultural soils as a C sink. Increasing the SOC stock removes CO2 

from the atmosphere and this can help in the reduction of the greenhouse effect. 

Art. 3.4 of the Kyoto Protocol allows C sequestration due to human-induced 

agricultural activities, which have started after 1990, to be accounted for during 

the 2008-2012 commitment period (IPCC, 2000). Recent studies of the changes 

in SOC in agricultural fields (0-24 cm depth layer) in Flanders however, showed 

a decrease of 354 x 103 Mg SOC y-1 during the 1990’s (Sleutel et al., 2003a & 

b). SOC plays an important role in the formation of aggregates. A better 

aggregation stability of the soil improves the soil structure and reduces the risk 

of erosion (Holland, 2004). As a consequence of the decrease of SOC stock in 

the upper soil layer, it is likely that erosion will become more problematic in 

Flanders in the near future. 

  

RT agriculture is often an effective measure to reduce erosion in the short term, 

which is one of the main reasons for farmers to switch to RT agriculture (see 

1.2). RT agriculture can theoretically increase the SOC stock in the soil profile. 

Leaving crop residues at the soil surface under RT agriculture results in a lower 

rate and extent of decomposition because the residues physically separated from 

the soil nutrients and decomposers and in an environment with less favourable 

temperature and moisture conditions than under CT agriculture. The crop 

residues at the soil surface can reduce soil temperature and increase soil 

moisture content. The aggregates and soil structure are less disrupted under RT 

than CT agriculture where ploughing results in decomposition of physically 

protected SOM (Drury et al., 1999; Stockfisch et al., 1999; Balesdent et al., 

2000; Larney et al., 2003; Baritz et al., 2004; Six et al., 2004a). 

 

In a literature study about the effect of RT agriculture on various experimental 

fields Alvarez (2005) concluded that under a temperate climate RT agriculture 

increases the SOC stock compared to CT agriculture. However, this conclusion 

was based on measurements of % SOC in the upper 15 to 30 cm depth layer, as 

in most other studies. To have a complete view on the change in SOC stock, the 

% SOC has to be measured to a depth extending below the plough layer. After 

11 years RTC or RTDD agriculture of a silt loam soil in Illinois, the SOC stock 

was significantly increased in the 0-20 cm depth layer compared to CT 

agriculture but the increase of the SOC stock in the 0-30 cm depth layer or 

deeper was not significant (Yang & Wander, 1999). The SOC stock in the 0-40 
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cm depth layer of a silt loam soil was similar after 20 years RTC compared to 

CT agriculture in eastern Canada (Yang & Kay, 2001) and after 22 years RTC or 

RTDD compared to CT agriculture in Minnesota (Dolan et al., 2006) but was 

increased in the 0-60 cm depth layer after 25 years RTDD compared to RTC and 

CT agriculture in eastern Canada (Deen & Kataki, 2003). Ahl et al. (1998) even 

found a decreased SOC stock in the 0-30 cm depth layer of a sandy loam soil 

and in the 0-50 cm depth layer of a silt loam soil after 9 years of RTC compared 

to CT agriculture in Germany.  

 

The lower macro-aggregate turnover under RTDD compared to CT agriculture is 

believed to lead to a stabilization of POM in stable micro-aggregates since 

intensive tillage disrupts aggregates and formerly physically protected SOM 

becomes subjected to mineralization (Beare et al., 1994). The current hypothesis 

is indeed that macro-aggregates (>250 µm) are formed around fresh residue 

which then becomes coarse intra-macro-aggregate POM (Figure 4.1) (Six et al., 

2000a). Fresh residue induces the formation of macro-aggregates because it is a 

C source for microbial activity and for the production of microbial-derived 

binding agents (Six et al., 2000a & b; Jarecki & Lal, 2003). Fine intra-macro-

aggregate POM within a macro-aggregate is derived from the decomposition 

and subsequent fragmentation of coarse intra-macro-aggregate POM. As fine 

intra-macro-aggregate POM is formed it gradually becomes encrusted with clay 

particles and microbial products to form micro-aggregates (>53 and <250 µm) 

within macro-aggregates. Eventually, the binding agents in macro-aggregates 

degrade, resulting in loss of macro-aggregate stability and the release of stable 

micro-aggregates, which become the building blocks for the next cycle of 

macro-aggregate formation. Micro-aggregate stability is higher and less 

dependent on agricultural management than macro-aggregate stability (Six et 

al., 2000a & b). Moreover, the formation of macro-aggregates depends on 

fungal and bacterial activity, active root growth and fauna, e.g. earthworms, 

which is higher under RT than CT agriculture (Six et al., 2002b). 
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Figure 4.1 Formation of macro- and micro-aggregates (Six et al., 2000a) 

 

 

The physical fractionation procedure and the associated conceptual SOM model, 

which Six et al. (2002a) proposed, specifically takes physical protection of 

organic matter (OM) into account since it differentiates POM inside aggregates 

from POM outside of these aggregates. Five soil fractions are isolated: coarse 

free POM (coarse fPOM) (>250 µm), fine free POM (fine fPOM), intra-micro-

aggregate POM (iPOM), intra-micro-aggregate silt + clay sized fraction and the 

remaining silt + clay sized soil fraction (<53 µm) (Figure 4.2). The coarse and 

fine fPOM and iPOM represent the unprotected and physically protected OM 

fraction, respectively. The intra-micro-aggregate and free <53 µm POM 

fractions are bound to silt and clay particles and have been associated with 

chemically and biochemically protected SOM pools. 
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Figure 4.2 Physical fractionation as described by Six et al. (2002a) 

 

 

Sleutel et al. (2005) physically fractionated the 0-10 cm depth layer of a clay 

loam field from Hungary after 3 years RTC or RTDD agriculture according to Six 

et al. (2002a). A higher percentage of dry matter (DM) of the coarse sand + 

coarse fPOM and silt + clay fraction was measured while the DM of the intra-

micro-aggregate silt + clay sized fraction was decreased under RTC and RTDD 

compared to CT agriculture. The 3 years RT agriculture resulted in an absolute 

increase of SOC present in the five size and density fractions compared to CT 

agriculture. There was a relative increase of the two fPOM fractions in the RT 

compared to CT fields and therefore a shift towards more labile OM. Up to 60% 

of the accumulation of SOC could be attributed to an increase of SOC in fPOM 

and up to 30% iPOM. Wander & Bollero (1999) found no significant higher 

POM in the upper 0-15 cm depth layer from RTDD (>5 years) compared to CT 

fields from farmers in Illinois. After 10 years RTDD agriculture, Wander & 

Bidart, (2000) measured significantly higher POM in the upper 0-5 cm depth 
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layer under RT compared to CT agriculture in Illinois while Mikha & Rice 

(2004) detected that the number of large (>2000 µm) and small macro-

aggregates (>250 and <2000 µm) in the 0-5 cm depth layer of a silt loam soil in 

Kansas were significantly increased compared to CT agriculture. The aggregate 

associated SOC of the large and small macro-aggregates and micro-aggregates 

in the 0-5 cm depth layer of the RTDD field was significantly higher than the CT 

field. Crushing the macro- and micro-aggregates resulted in a significantly 

increased C mineralization of the OC of the large and small macro-aggregates 

and micro-aggregates. The highest increase was measured for the large macro-

aggregates. Oorts et al. (2007) measured an increase of large and small macro-

aggregates and intra-aggregate silt + clay associated OM and intra-aggregate 

POM in a 32 year old RTDD silt loam field compared to CT field in Northern 

France. Sieving the moist soil to 2 mm didn’t change the C mineralization of the 

RTDD and CT field. However, sieving to 250 or 50 µm resulted in a small 

decrease of C mineralization in the 0-5 cm depth layer, an increase in the 5-20 

cm depth layer and an overall small increase in the 0-20 cm depth layer of the 

RTDD field while the C mineralization of the 0-20 cm depth layer of the CT field 

was unaffected. Increased loss of SOM following sieving or crushing macro- 

and micro-aggregates of RT fields corroborates the theory that more relatively 

labile SOM is stored as occluded POM in less disturbed soils (Balesdent et al., 

2000; Mikha & Rice, 2004; Oorts, 2006; Oorts et al., 2007). 

 

It is important to know to what extent the SOC is stable, i.e. how much of the 

stored SOC will be released in case RT fields are ploughed (Dick et al., 1998; 

Stockfisch et al., 1999; Kettler et al., 2000; Conant et al., 2007). Stockfisch et 

al. (1999) found a more pronounced stratification of SOC in the 0-50 cm depth 

layer of a silt loam field for 21 years under shallow RT compared to CT 

agriculture in Germany but the SOC stock was not significantly higher. 

Ploughing the RT field resulted in a reduction of the stratification and a 

significant decrease of the SOC stock of the RT compared to CT field. 

Measurements of Dick et al. (1998) indicated that ploughing a RTDD plot of a 

loam soil in Michigan after 7 years RTDD agriculture resulted in a redistribution 

of the % SOC and stimulated C mineralization. Five years after ploughing, the 

% SOC was higher in the 0-20 cm depth layer than the plot that had been 

ploughed for 12 years but lower than the plot that had remained RTDD 

agriculture during the whole experiment. The same trend was found when RTDD 

or RTC fields were ploughed as a weed control measure of a silt loam soil in 

Nebraska (Kettler et al., 2000). These research results indicate that RT 
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agriculture under cereal crop rotations can stabilize some SOC and sequester a 

small amount of C into the soil. 

 

These studies suggest that changes in SOC stratification and stock, and C 

mineralization dynamics, when converting to RT agriculture, are strongly 

dependent on soil conditions and type of RT practices adapted. However, little 

is known about the influence of RT agriculture on % SOC, the SOC stock, MB-

C and potential C mineralization under the specific Western European climatic 

and soil conditions and with rotations containing crops that seem less suitable 

under RT agriculture including an important share of root and tuber crops. 

Therefore, this research focussed on the short and long term effects of RT 

agriculture on % SOC and SOC stocks, MB-C, distribution of SOC in the 0-10 

cm depth layer over the different fractions and C mineralization under the 

specific Western European conditions. 

 

 

4.3. MATERIALS AND METHODS 

4.3.1. Soil sampling 

Soil samples were taken in December 2004 for fields 1-8 and 17-18 and in 

March 2005 for fields 9-16 for the determination of % SOC and MB-C and for 

measuring the C mineralization rate in lab incubations (see 3.3.1).  

 

Additional soil samples were taken for the physical fractionation in June – July 

2005 (see 3.3.1).  

 

 

4.3.2. Soil organic carbon 

Five subsamples per plot were taken from the 0-5, 5-10, 10-15, 15-20, 20-30, 

30-40 and 40-60 cm depth layers to measure the % SOC in the soil profile. The 

subsamples were bulked per layer and per plot into one composite sample, 

thoroughly mixed and let to dry to the air in the laboratory. The % SOC was 

measured with the method of Walkley & Black (1934). 
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4.3.3. Microbial biomass carbon 

Five subsamples per plot were taken of the 0-10, 10-20, 20-30 and 30-40 cm 

depth layers, were bulked into one composite sample and homogenized. MB-C 

was measured with a chloroform fumigation extraction using a 0.1 M KCl 

extractant (1:2 soil weight (g): extractant volume (ml)) (Voroney et al., 1993). 

The OC in the extracts before and after fumigation was analyzed with a TOC 

analyzer (TOC-V CPN, Shimadzu, Japan). 

 

To correct for the incomplete release and extraction of MB-C an extraction 

efficiency of carbon (KEC) factor is needed (Voroney et al., 1993; Joergensen & 

Mueller, 1996). KEC depends on the soil depth (Dictor et al., 1998; Tessier et al., 

1998). However, the variation in the value of KEC is relatively small in the upper 

50 cm and a correct KEC is not essential when aiming to compare different soils 

(Dictor et al., 1998). As suggested by Voroney et al. (1993) and Jenkinson et al. 

(2004) an extraction efficiency KEC value of 0.25 was used. 

 

 

4.3.4. Carbon mineralization 

In order to measure the C mineralization, soil cores inside PVC tubes with a 6.8 

cm inner diameter and 7 cm height were used. On each field, visible crop 

residues were removed before sampling. The tubes were pushed into the soil 

until they were filled with 5 cm soil. The tube was carefully dug out, excess soil 

from the bottom of the tube was removed, and the bottom was covered with a 

PVC cap. Two tubes were taken per plot. One of the duplicate tubes per plot 

was incubated “undisturbed” (U). In order to simulate the effect of an intensive 

tillage operation, the soil of the other tube was removed and the tube was then 

refilled with the “disturbed soil” (D), adjusted to the same bulk density. Since 

the moisture content of fields 1-8 and 17-18 at the time of sampling was 50±5% 

water filled pore space (WFPS), which is considered to fall within the optimum 

range of soil moisture content for C mineralization (De Neve & Hofman, 2002), 

it was not necessary to dry or moisten the soil. The moisture content of fields 9-

16 was significantly higher than 50% WFPS and therefore the soil from those 

fields was dried to 50±5% WFPS. 
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The % WFPS was calculated as (Linn & Doran, 1984): 

 % WFPS = gravimetric water content x BD x 100                               (3) 

                                             total soil porosity 

 

with total soil porosity = 1 – (BD / 2.65) 

 

The tubes with field moist soil were placed inside 2 l glass jars. Small vials 

containing 15 ml of 1 M natrium hydroxide (NaOH) solution were placed in the 

jars to trap evolved CO2. The jars were closed airtight and incubated at 14 °C 

for 12 weeks. Samples were taken after 1, 2 and 4 days, twice weekly in weeks 

2 to 5 and weekly during the rest of the experiment by removing the NaOH 

vials. Amounts of evolved CO2 were measured by titration of the NaOH with 1 

M HCl to pH 8.3 in the presence of barium dichloride (BaCl2) (Anderson, 

1982). After removal of the vials, the glass jars were left open for 1 h to allow 

replenishment of dioxygen (O2). Next, the soil moisture content was adjusted if 

needed, fresh vials containing NaOH were added, and the jars were closed again 

to continue the C mineralization measurements.  

The incubation experiments started on 7 December 2004 for fields 1-4; 13 

December for fields 5 and 6 and 20 December for fields 7-10.  

 

C mineralization rates became linear after the first week of incubation, showing 

that the disturbance of microbial activity was kept to a minimum.  

 

The C mineralization rates were estimated by fitting a zero-order kinetic model 

C = kC . t to the cumulative CO2-C production, where t is the period (in days) 

and kC is the carbon mineralization rate (mg C kg–1 dry soil day–1) using data 

from day 7 until day 91 in the linear part of the C mineralization. 

 

 

4.3.5. Physical fractionation 

Ten subsamples per plot were taken from the 0-10 cm depth layer and were 

bulked into one composite sample, thoroughly mixed and were left to dry in the 

laboratory. The physical fractionation procedure was carried out in triplicate. To 

avoid possible slaking of micro-aggregates during wet sieving, all soil samples 

were pre-wetted according the method used by Gale et al. (2000): a 10 g sub 

sample was weighed on a 20 µm nylon filter on top of a glass-fibre filter 

(Whatman GF/A) in a Petri-shell. The soil samples were wetted by slowly 

adding water to the edges of the glass-fibre filter and by allowing it to be 
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absorbed by the soil. The samples were left to equilibrate overnight in a 

refrigerator. The complete physical fractionation procedure described by Sleutel 

et al. (2006a), was based on the procedure of Six et al. (1998; 2000a). Five soil 

fractions were isolated: coarse fPOM (>250 µm), fine fPOM, iPOM, intra-

micro-aggregate silt + clay size fraction and the remaining <53 µm fraction 

(Figure 4.2). The <53µm fractions of the soils containing calcium carbonate 

(CaCO3) were analyzed for total carbon (TC) and inorganic carbon (IC) with a 

total organic carbon (TOC) analyzer (TOC-V CPN, Shimadzu, Japan). The TOC 

was calculated as TC – IC. Sub samples of the separated soil fractions not 

containing CaCO3 were analyzed for TOC with a CNS-analyzer (Variomax, 

Elementar Analysesysteme, Germany).  

 

 

4.3.6. Statistical analysis 

The homogeneity of variances was tested with the Levene’s test (P = 0.05). A   

t-Test was used to assess whether % SOC per depth layer, results of the physical 

fractionation and SOC stock were significant different between fields for 

locations with only 2 fields. One way ANOVA with field as factor combined 

with post hoc Duncan test and Welch combined with post hoc Games-Howell 

test were used to determine significant differences in % SOC per depth layer, 

results of the physical fractionation and SOC stock for the locations with more 

than 2 fields for homogeneous and heterogeneous variances, respectively.  

The C mineralization rate was calculated by linear regression of the cumulative 

C mineralization data to time. Significant differences in the fitted C 

mineralization rate were searched per location with one way ANOVA/post hoc 

Duncan test and Welch/post hoc Games-Howell test for homogeneous and 

heterogeneous variances, respectively. A correlation analysis between the fitted 

C mineralization rate, MB-C content, % clay and % SOC was performed using a 

Pearson’s correlation matrix. An univariate general linear model was used to 

correlate the fitted C mineralization rate with the results of the physical 

fractionation (SPSS version 12.0, SPSS Inc., Chicago). 
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4.4. RESULTS 

4.4.1. Soil organic carbon percentage and stock 

The depth stratification of % SOC in the soil profile of the RT fields was more 

pronounced compared to CT fields (Figure 4.3). The ratio of % SOC in the layer 

0-5 cm to the layer 40-60 cm was on average 5.0 and 3.2 for the RT and CT 

fields, respectively. However, the differences in degree of stratification between 

RT and CT agriculture varied between the investigated locations. 

There was no significant difference (P = 0.05) in % SOC between RTC_2 fields 

1-3 managed under RT agriculture for a short term (2 years) and CT field 4 

(Figure 4.3A). A significantly higher % SOC was measured in the 0-5 cm depth 

layer for the fields under 5 years RT compared to CT agriculture (Figure 4.3B). 

The % SOC in RTC_5 field 5 was (significantly) higher in the whole profile (0-

60 cm) compared to field 6. The % SOC of field 7 under 5 years RT agriculture 

tended to be higher than in CT field 8 in the 5-10 cm depth layer and lower in 

the 15-20, 20-30 and 40-60 cm depth layers and was significantly lower (P = 

0.05) in the 30-40 cm depth layer. After 10 years under RT agriculture, the % 

SOC was significantly higher (P = 0.05) in the 0-5 cm depth layer compared to 

CT agriculture (Figure 4.3C). In the 5-10 cm depth layer there was a significant 

higher % SOC in the RTDD_10 fields compared to CT fields. The % SOC was 

(significantly) lower in the 10-15, 15-20 and 20-30 cm depth layers in RTC_10 

field 9 in comparison with CT field 10. There was a lower % SOC in the 10-15, 

15-20 and 20-30 cm depth layers of the RTDD_10 fields. Deeper in the soil profile 

the % SOC was comparable between the CT and RT fields. After 20 years of 

RT agriculture, the % SOC was higher in the upper 0-5, 5-10 and 10-15 cm 

depth layers in RTC_20 field 17, but lower deeper in the profile as compared to 

CT field 18 (Figure 4.3D). However, these differences in % SOC between fields 

17 and 18 were not significant (P = 0.05). 

 

The SOC stock of the 0-60 cm depth layer (Mg SOC ha-1) was calculated using 

the measured bulk densities (Figure 4.4). The SOC stock of fields 1 to 4 was 

similar for all four fields. The lower % SOC and comparable soil bulk densities 

of CT field 6 resulted in a significant lower (P = 0.05) SOC stock in the 0-60 cm 

depth layer compared to RT field 5. The SOC stock in field 7 and 8 was 

comparable. The total SOC stock of the 0-60 cm depth layer was not 

significantly (P = 0.05) different between the CT and RT fields after 10 years of 

RT agriculture, except the SOC stock of RTC_10 field 9 was significantly lower 

than CT field 10. The SOC stock of RTC_20 field 17 under 20 years RT 

agriculture was comparable to that of the CT field 18. 



The effect of reduced tillage agriculture on carbon dynamics in silt loam soils 

 

 

 77 

0-5 5-10
10-15

15-20
20-30

30-40
40-60

Depth (cm)

0

0.5

1

1.5

2

%
 S

O
C

Bar Chart 1

Bar Chart 2

Bar Chart 3

Bar Chart 4

Field 1*
Field 2*
Field 3*
Field 4

aa
a

a aa a a
a

a
a a

a

A

a a aa

a

a
a a

a

aa

a
a

a
a

 
0-5 5-10

10-15
15-20

20-30
30-40

40-60

0

0.5

1

1.5

2

%
 S

O
C

Bar Chart 1

Bar Chart 2

Field 5*
Field 6

b

a

b

a

b

a

a

a

b

a

a

a

b

b

B

0-5 5-10
10-15

15-20
20-30

30-40
40-60

Bar Chart 1

Bar Chart 2

Field 7*
Field 8

b

a

a
a

aa

a

a

a

a

a

a

ab

Depth (cm)  
 

0-5 5-10
10-15

15-20
20-30

30-40
40-60

0

0.5

1

1.5

2

%
 S

O
C

Bar Chart 1

Bar Chart 2

Field   9*
Field 10

b

a

a
a a

b

a

a

a

a

b

b

a

b

0-5 5-10
10-15

15-20
20-30

30-40
40-60

Depth (cm)

Bar Chart 1

Bar Chart 2

Bar Chart 3

Bar Chart 4

Field 11**
Field 12
Field 13**
Field 14aa

ab

b b
b

a

b

ab

a

c

a
a

C
a

c

c

b

a

a

a
b b

bc
c

b

a ab
ab

0-5 5-10
10-15

15-20
20-30

30-40
40-60

Bar Chart 1

Bar Chart 2

Field 15**
Field 16

b

a

a

a

ab

a a

a

a

b

b

a

b

 
 

 

 
                                                             *: reduced tillage with cultivator or soil loosener (RTC) 

                                                           **: reduced tillage by direct drilling (RTDD) 

 

                                                                        A:   2 years RTC 

                                                                        B:   5 years RTC or RTDD 

                                                                        C: 10 years RTC 

                                                                        D: 20 years RTC 

 

 

 

 

same letters indicate no significant differences between tillage treatments per location per depth 

layer (P = 0.05) (one way ANOVA/Duncan post hoc test or t-Test) 

 

Figure 4.3 Soil organic carbon (SOC) (%) (vertical lines = standard deviation) of the 0-

5, 5-10, 10-15, 15-20, 20-30, 30-40 and 40-60 cm depth layers of the 18 

selected fields 
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                                                                           *:  reduced tillage with  

                                                                                cultivator or soil loosener (RTC) 

  

                                                                         **:  reduced tillage by  

                                                                                direct drilling (RTDD) 

 

 

 

  

 

 

 

 

                                A:   2 years RTC 

                                              B:   5 years RTC or RTDD 

                                C: 10 years RTC 

                                 D: 20 years RTC 

 

 

 

 

 

 

same letters indicate no significant differences between tillage treatments between tillage treatments 

per location (P = 0.05) (one way ANOVA/Duncan post hoc test or t-Test) 

 

Figure 4.4 Soil organic carbon (SOC) stock (Mg ha-1) (vertical lines = standard 

deviation) in the 0-60 cm depth layer of the 18 selected fields 

 

 

4.4.2. Microbial biomass carbon 

The MB-C content in the upper 10 cm depth layer was 1.5 to 3 times higher in 

the RT compared to CT fields (Figure 4.5). We found a more pronounced 

stratification for the MB-C content than the % SOC under RT compared to CT 

agriculture at the same location. The ratio’s of the MB-C content of the 0-10 cm 

to 30-40 cm depth layer were on average 2.5 and 2.2 and of % SOC 2.1 and 1.6 

under RT and CT agriculture, respectively. 

 

The MB-C in the 0-10 cm depth layer of CT field 4 was significantly lower (P = 

0.05) than in RTC_2 field 1 but comparable with RTC_2 fields 2 and 3 (Figure 

4.5A). Deeper in the soil profile, the MB-C content was comparable for fields 1-

4. The MB-C content was significantly higher in the 0-10 cm depth layer under 
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5 year RT than CT agriculture (Figure 4.5B). Deeper in the soil profile the MB-

C content was comparable between the CT and 5 years RT fields. After 10 years 

RT agriculture a significant higher (P = 0.05) MB-C content was measured in 

the 0-10 cm depth layer of RTC_10 field 9 compared to CT field 10 in Maulde 

and RTDD_10 fields 13 compared to CT field 14 in Villers-le-Bouillet. The MB-C 

content tended to be lower in the 10-20 cm depth layer under RT compared to 

CT agriculture. The MB-C content of RTC_20 field 17 (20 years RT agriculture) 

was higher in the 0-10 cm depth layer and lower in the 10-20 cm depth layer 

than in CT field 18 (Figure 4.5C). 

 

 

     
                                                                                                             *: reduced tillage with cultivator 

                                                                                                                 or soil loosener (RTC) 

                                                                                                           **: reduced tillage by direct  

                                                                                                                 drilling (RTDD) 

 

                                                                                                                        A:   2 years RTC 
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                                                                                                                        D: 20 years RTC 

 

 

 

0-10
10-20

20-30
30-40

0

50

100

150

200

250

300

350

M
B

-C
 (

m
g
 k

g
-1
 d

ry
 s

o
il)

Bar Chart 1

Bar Chart 2
Field   9*
Field 10

a

a

a

a
aa a

a

C

0-10
10-20

20-30
30-40

Depth (cm)

Bar Chart 1

Bar Chart 2

Bar Chart 3

Bar Chart 4

Field 11**
Field 12
Field 13**
Field 14

a
a

a

a a
a aa

a

a

a

a
a

aa

0-10
10-20

20-30
30-40

Bar Chart 1

Bar Chart 2
Field 15**
Field 16

a

a
a

aa aa
aa

  
0-10

10-20
20-30

30-40

Depth (cm)

0

50

100

150

200

250

300

350

M
B

-C
 (

m
g
 k

g
-1
 d

ry
 s

o
il)

Bar Chart 1

Bar Chart 2

Field 17*
Field 18

a

a

a
a

aa aa

D

 
 

same letters indicate no significant differences between tillage treatments between tillage treatments 

per location and per depth layer (P = 0.05) (one way ANOVA/Duncan post hoc test, Welch/Games-

Howell post hoc test or t-Test) 

 

Figure 4.5 Microbial biomass carbon (MB-C) (mg kg-1 dry soil) (vertical lines = 

standard deviation) of the 0-1, 10-20, 20-30 and 30-40 cm depth layers of 

the 18 selected fields 
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4.4.3. Physical fractionation 

The dry matter (DM) distributions of the size and density fractions isolated 

according to physical fractionation method of Six et al. (2000a) are presented in 

Table 4.1. The sum of the DM amounts of coarse fPOM, fine fPOM and iPOM 

fractions ranged between 7 and 33% and was higher in the RT than CT fields at 

the same locations, except for RTC_2 field 3 compared to CT field 4 in Heestert. 

This sum was roughly equal to the sand fraction DM obtained from the soil 

texture analysis, except for fields 2, 3, 4 and 6. 

 

In all fields, the DM amounts of the intra-micro-aggregate silt and clay fraction 

and the free silt and clay fraction ranged between 22-38% and 38-63%, 

respectively. These DM contents were smaller in the RT than CT fields, except 

for RTC_2 field 3 compared to CT field 4. 

 

 

The amounts of OC in all three isolated POM fractions was found to be 

(significantly) higher both on an absolute (g OC 100 g-1 dry soil) as well as 

relative basis (g OC g-1 SOC) in the RT compared to the CT fields (Figure 4.6 

and Figure 4.7), except in Heestert (RTC_2 fields 1-3 compared to CT field 4). In 

general the difference was the highest for the coarse fPOM fraction. For some 

fields, the amount was twice as high under RT compared to CT agriculture (e.g. 

RTDD_10 field 15 compared to CT field 16).  

 

In contrast, the absolute amount of OC in the intra-aggregate and free silt and 

clay fractions was only slightly higher in the RT than CT fields. As a 

consequence of the relative higher amount of OC in the POM fractions, the 

relative amount of OC in the intra-aggregate and free silt and clay fractions was 

lower under RT than CT agriculture.  
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Table 4.1 Distribution of the dry matter content of the coarse sand + coarse free particulate organic matter (fPOM) (>250 µm), fine fPOM (53-250 µm), 

intra-aggregate organic matter (iPOM) (53-250 µm) and <53 µm fraction isolated according to physical fractionation method of Six et al. 

(2000a) in % (averages with standard deviation between brackets) of the 0-10 cm depth layer of the 18 selected fields  

Micro-aggregates + fine free POM +fine sand (53-250 µm) Silt + clay (<53 µm) Field Coarse sand + coarse fPOM 

(>250 µm) fine fPOM >53 µm (iPOM) <53 µm (silt + clay)  

1 RTC_2 1.49 (0.33) a 0.19 (0.05) a 30.5 (4.3) a 28.6 (6.4) a 37.9   (5.1) a 

2 RTC_2 1.82 (0.41) a 0.21 (0.13) a 24.8 (2.6) b 30.1 (1.2) a 43.2   (1.3) a 

3 RTC_2 1.47 (0.47) a  0.18 (0.04) a 20.3 (1.0) b 21.2 (7.9) a 55.5   (6.0) a 

4 CT 1.40 (0.21) a 0.18 (0.07) a 23.7 (0.7) b 32.0 (2.0) a 42.8   (2.8) a 

5 RTC_5 2.20 (0.44) a 0.32 (0.07) a 27.0 (5.6) a 29.8 (1.2) a 42.9   (2.5) a 

6 CT 0.84 (0.20) a 0.16 (0.04) a 12.8 (0.8) a 36.6 (2.9) a 46.7   (3.1) a 

7 RTC_5 3.10 (0.30) a 0.32 (0.09) a 29.9 (3.1) a 23.3 (2.1) a 44.7   (1.3) a 

8 CT 1.86 (0.20) b 0.21 (0.06) a 26.5 (1.5) a 26.2 (2.9) a 43.5   (1.1) a 

9 RTC_10 2.21 (0.86) a 0.28 (0.03) a 9.1 (1.8) a 36.1 (2.1) a 47.8   (2.6) a 

10 CT 1.81 (0.74) a 0.24 (0.09) a 8.7 (1.6) a 38.2 (6.2) a 55.7   (4.8) a 

11 RTDD_10 2.38 (0.59) a 0.16 (0.06) a 6.1 (0.8) a 32.5 (9.2) a 58.9 (10.2) a 

12 CT 1.61 (0.26) a 0.17 (0.02) a 6.2 (1.3) a 36.0 (2.3) a 54.7   (1.8) a 

13 RTDD_10 2.31 (0.75) a 0.18 (0.03) a 5.8 (0.3) a 35.5 (3.2) a 54.6   (3.7) a 

14 CT 1.32 (0.07) a 0.05 (0.04) b 5.7 (0.1) a 29.7 (4.1) a 63.2   (4.1) a 

15 RTDD_10 1.64 (0.45) a 0.14 (0.00) a 14.5 (0.9) a 34.5 (2.7) a 48.5   (1.6) a 

16 CT 1.01 (0.45) a 0.10 (0.04) a 12.3 (0.6) b 35.6 (6.4) a 49.1   (7.2) a 

17 RTC_20 2.33 (0.37) a 0.16 (0.06) a 6.9 (0.3) a 35.7 (9.3) a 53.9   (8.9) a 

18 CT 2.24 (0.55) a 0.11 (0.04) a 6.1 (0.7) a 37.9 (2.6) a 53.7   (2.4) a 

RTC: reduced with cultivator or soil loosener, RTDD: by direct drilling with in subscript the period in years; CT: conventional tillage 

same letters indicate no significant differences between tillage treatments per location and per depth layer (P = 0.05) (one way ANOVA/Duncan post hoc test, Welch/Games-

Howell post hoc test or t-Test) 
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                                                                *: reduced tillage with cultivator or soil loosener (RTC) 

                                                              **: reduced tillage by direct drilling (RTDD) 

 

                                                                           A:   2 years RTC 

                                                                           B:   5 years RTC 

                                                                           C: 10 years RTC or RTDD 

                                                                           D: 20 years RTC 

 

 

same letters indicate no significant differences between tillage treatments per location (P = 0.05) 

(one way ANOVA/Duncan post hoc test, Welch/Games-Howell post hoc test or t-Test) 

 

Figure 4.6 Absolute amount of organic carbon (OC) (g 100 g-1 dry soil) in the coarse 

free particulate organic matter (fPOM) (>250 µm), fine fPOM (53-250µm), 

intra-aggregate organic matter (iPOM) (53-250 µm) and <53 µm soil 

fractions isolated according to physical fractionation method of Six et al. 

(2000a) (vertical lines = standard deviation) of the 0-10 cm depth layer of 

the 18 selected fields 
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                                                                 *: reduced tillage with cultivator or soil loosener (RTC) 

                                                               **: reduced tillage by direct drilling (RTDD) 

 

                                                                         A:   2 years RTC 

                                                                         B:   5 years RTC 

                                                                         C: 10 years RTC or RTDD 

                                                                         D: 20 years RTC 

 

 

Same letters indicate no significant differences between tillage treatments per location (P = 0.05) 

(one way ANOVA/Duncan post hoc test, Welch/Games-Howell post hoc test or t-Test) 

 

Figure 4.7 Relative distribution of organic carbon (OC) (g 100 g-1 SOC) in the coarse 

free particulate organic matter (fPOM) (>250 µm), fine fPOM (53-250µm), 

intra-aggregate organic matter (iPOM) (53-250 µm) and <53 µm soil 

fractions isolated according to physical fractionation method of Six et al. 

(2000a) (vertical lines = standard deviation) of the 0-10 cm depth layer of 

the 18 selected fields 
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4.4.4. Carbon mineralization 

In Figure 4.8 the measured cumulative CO2 respiration of the disturbed and 

undisturbed soil cores of 0-5 cm depth layer of fields 9, 10 and 11 are given as 

an example.  
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Figure 4.8 Cumulative respiration (mg CO2-C kg-1 dry soil) of the undisturbed (U) and 

disturbed (D) soil samples (vertical lines = standard deviation) of the 0-5 

cm depth layer of fields 9 (reduced tillage by soil loosener), 10 

(conventional tillage) and 11 (reduced tillage by direct drilling) 
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The estimated C mineralization rate in the undisturbed soil cores varied between 

0.6 and 4.1 mg C kg-1 dry soil day-1. The C mineralization rate in the 

undisturbed soil cores of the RT fields was 1.5 to 3 times higher than the C 

mineralization rate under CT agriculture, except for fields 5 and 6 (Figure 4.9). 

However, these differences were not significant due to the high variability of the 

measurements. Disruption of the soil to simulate an intensive tillage operation 

resulted in a reduction or increase of C mineralization rate, but the differences 

between the disturbed and undisturbed soil cores were not significant. 
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The C mineralization rate was estimated by fitting a zero-order kinetic model C = kC . t to the 

cumulative CO2-C production, where t is the period (days) and kC is the mineralization rate (mg CO2-

C kg–1 dry soil day–1) using data from day 7 until day 91 in the linear part of the C mineralization 

 

same letters indicate no significant differences between tillage treatments per location (P = 0.05) (one 

way ANOVA/Duncan post hoc test, Welch/Games-Howell post hoc test or t-Test) 

 

Figure 4.9 Carbon mineralization rate (mg CO2-C kg-1 dry soil day-1) of the 

undisturbed (U) and disturbed (D) soil samples (vertical lines = standard 

deviation) of the 0-10 cm depth layer of the 18 selected fields 
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The C mineralization rate was also expressed as a percentage of the SOC 

content. After incubation of 90 days, on average 1.6±0.7% and 1.5±0.5% of the 

SOC content was mineralized in the undisturbed and disturbed soil cores of the 

RT fields, respectively. For the CT fields only 1.2±0.7% and 1.4±0.7% of the 

SOC content was mineralized in the undisturbed and disturbed soil cores, 

respectively. 

 

 

4.5. DISCUSSION 

4.5.1. Soil organic carbon percentage and stock 

In the selection of the fields much care was taken to select paired fields which 

were similar from a soil type and management point of view. Obviously some 

practices such as maintaining crop residues on the field (e.g. RTC_5 field 5) are 

an inherent characteristic of RT agriculture which will result in more OC input, 

but it is not possible and not even desirable to separate these effects, as this 

would not be according to the common agricultural practices in RT and CT 

agriculture (see 2.1). Therefore, searching for the effect of the change of 

management to RT agriculture not only the change in tillage intensity but also 

applied EOC has to be considered as for example including a green manure in 

the crop rotation can result in an extra 0.25 to 0.42 Mg EOC (Sleutel et al., 

2007a). 

Since the period between soil tillage and sampling influences the measured BD, 

the calculated SOC stock depends on the sampling date (Tebrügge & Düring, 

1999). The paired fields, i.e. the fields at the same location in this study, were 

tilled at the same time and hence the SOC stock can be directly compared.  

 

Researchers often concluded that the higher stratification of % SOC in loamy 

RT experimental fields under a temperate climate resulted in a higher SOC 

stock of RT compared to CT fields (Alvarez, 2005). However, this conclusion 

was mostly based on shallow measurements of % SOC in the top layers of the 

experimental fields. In this study no higher SOC stock was found in the 0-60 cm 

depth layer under RT, even after 20 years, than CT agriculture in spite of the 

fact that the amount of EOC of the manure and crop residues beet - winter wheat 

/ mustard rotation of fields 17 and 18 was comparable, namely 1780 kg EOC y-1 

in RTC_20 field 17 compared to 1645 kg EOC y-1 in CT field 18. The lower 

amount of EOC applied with the manure in RTC_20 field 17 (only 30 Mg cattle 

manure ha-1) compared to CT field 18 (40 Mg cattle manure ha-1) in 2003 was 

compensated with the EOC of the straw that was left on the soil surface of 
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RTC_20 field 17 (Table 2.15). The cultivation of grain maize on RTC_5 field 5 

resulted in a higher amount of crop residues and as a consequence a larger input 

of EOC compared to fodder maize and potatoes of CT field 6 (Table 2.5). The 

higher amount of EOC in combination with reduced tillage intensity might 

explain the higher SOC stock of RTC_5 field 5 compared to CT field 6. Since 

farmer 7 had composted his manure in 2003 and 2004, a large fraction of the 

OC applied through manure may have remained in the soil (Table 2.7). 

Application of composted manure and sowing green manure has not resulted in 

a higher SOC stock after 5 years RT agriculture in RTC_5 field 7 compared to 

CT field 8. Sowing the green manure in RTC_5 field 7, however, resulted in extra 

tillage times compared to CT field 8. 

The studies of e.g. Yang & Kay (2001); Halvorson et al. (2002) and Dolan et al. 

(2006) confirm our finding that long term RT agriculture does not necessarily 

result in a higher SOC stock under RT than CT agriculture. Ahl et al. (1998) 

even found a decreased SOC stock after 9 years of RT compared to CT 

agriculture in Germany. A 2 or 3 year crop rotation with sugar beets or potatoes, 

with heavy soil disturbance every 2 or 3 years at the harvest of beets or potatoes, 

possibly limited the anticipated positive effect of RT agriculture in the research 

of Ahl et al. (1998) and perhaps also in the present research. In crop rotations 

with cereals, maize and soybean SOC stocks are more likely to be increased by 

RT agriculture, because of the absence of soil disturbance at harvest. Moreover, 

although tillage intensity in this study was lower in the RT compared to CT 

fields, the soil disturbance caused by tillage remained relatively intense in the 

RT fields.  

 

Another important consideration is that the net rate of accumulation strongly 

depends on the degree of saturation of the soil with SOC. In fields 1-4 the SOC 

content was relatively high at the onset of the experiment, which may have 

limited the potential for SOC sequestration in these soils. Furthermore, 

according to Alvarez (2005) the SOC (g cm-³) will reach a new equilibrium 25 

to 30 years after changing to RT agriculture. The accumulation rate of SOC 

starts slowly and a maximum accumulation rate can be found 5 to 10 years after 

changing the management (Alvarez, 2005; West & Six, 2007). This could 

possibly explain why there was no change in % SOC in the fields 1-4.  
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4.5.2. Microbial biomass carbon 

Comparing the MB-C of the fields in Kluisbergen (fields 5 and 6) and Baugnies 

(fields 7 and 8), it is clear that the MB-C was lower in Kluisbergen (115±25 and 

45±16 mg MB-C kg-1 dry soil in RTC_5 field 5 and CT 6, respectively) compared 

to Baugnies (272±36 and 155±13 mg MB-C kg-1 dry soil in RTC_5 field 7 and 8 

under CT, respectively). Tillage and application of manure was done in August 

in fields 7 and in October in field 8, only a few months before sampling in 

December, while fields 5-6 were tilled in April. Tillage and/or incorporation of 

crop residues or manure might have stimulated the growth of MB-C in fields 7 

and 8 (He et al., 1997). The MB-C in the 0-10 cm depth layer of RTC_5 field 7 

was higher than in any other field. The farmer had put his stable manure at the 

soil surface which resulted in a high MB-C content in RTC_5 field 7.  

 

Under a temperate climate increased stratification of MB-C following the 

adoption of RT agriculture is generally observed. After only 4 years of RTC 

agriculture of a sandy loam soil in Austria a significantly higher MB-C content 

was found in the 0-10 cm depth layer but not in the 10-20 cm depth layer 

(Kandeler et al., 1999a & b). Spedding et al. (2004) measured a significantly 

higher MB-C content in the 0-10 cm depth layer of sandy loam soils in Canada 

after 10 years RTC or RTDD compared to CT agriculture, but not in the 10-20 cm 

depth layer. Höflich et al. (1999) looked at the results of several long term 

experiments (between 2 and 19 years RTC agriculture) on sandy loam soils in 

Germany. They found a significant increase of the MB-C content in the 0-15 cm 

depth layer after 5 years RTC agriculture, whereas an increase in the 15-30 cm 

depth layer was only observed after 18 years RTC agriculture (Höflich et al., 

1999). Stockfisch et al. (1999) also measured a 1.5 times higher amount of MB-

C content in the 0-10 cm depth layer under 21 years of RTC compared to CT 

agriculture. These and our results confirm that RT agriculture under Western 

European crop and weather conditions results in a higher MB-C content shortly 

after the implementation of RT agriculture while changes in % SOC are 

observed only after an extended period of RT agriculture in the upper soil 

layers. MB-C seems to be a very sensitive indicator for the effects of changes in 

tillage management. The higher MB-C content results in a higher aggregate 

formation and protection of SOM (Carter, 1991; Balesdent et al., 2000) and 

according to Carter (1991) the MB-C content to % SOC ratio can be used as an 

indication of the anticipated accumulation of % SOC. In our study next to tillage 

also the accompanying shift of amount of EOC may have stimulated the higher 

MB-C content of the RTC_5 field 5 compared to CT field 6 and RTC_5 field 7 

compared to CT field 8. 
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4.5.3. Physical fractionation  

The sum of the DM amounts of coarse fPOM and fine fPOM fractions, 1.0-

3.4%, was higher in the RT compared to the CT fields at the same locations. 

The summed DM weight of the iPOM and intra-micro-aggregate silt + clay 

sized fractions, 35-59%, was not consistently higher in the RT than CT fields 

(Table 4.1). These results suggest no substantial differences in the amount of 

micro-aggregates in the RT fields in contrast to previous findings by Denef et 

al. (2001b). However, this lack of increase of micro-aggregates was in 

agreement with Pulleman (2005), who measured no significant differences in 

the amount of micro-aggregates between pasture, organically and CT fields in 

spite of obvious large differences in soil disturbance. 

 

The much higher amount of OC present in coarse and fine fPOM (on average 67 

and 37% higher in the RT than CT fields) (Figure 4.6) is likely to have resulted 

from lower disturbance of the crop residues (Kader et al., 2006 & 2007) because 

the unprotected coarse and fine labile fPOM are very sensitive to management 

practices (Bremer et al., 1994). The crop rotation also contributes to the POM 

production (West & Post, 2002; Kader et al., 2006 & 2007; Soon et al., 2007). 

The little accumulation of fPOM in Court-Saint-Etienne may be due to 2 year 

crop rotation sugar beet - winter wheat which causes a high disturbance at the 

harvest of the root crop. Carter et al. (2007) also found no significant increase of 

OC present in POM as well as total OC in the RT compared to CT field in one 

of three sites in Atlantic Canada for a 3 year rotation with red clover, potatoes 

and barley.  

On average 46% more OC was present in the iPOM of RT than CT fields. 

Although the DM weight of the iPOM and intra-micro-aggregate silt + clay 

sized fractions was not constantly higher in the RT fields, RT agriculture seems 

to lead to more physically protected iPOM in the top depth layer, which 

confirms the conceptual model of Six et al. (2002a). 

Only 14% more OC was measured in the intra-micro-aggregate and free <53 µm 

OM fractions of RT compared to CT fields. This was expected since this OC 

pool is more stable and is only affected by management in the long term. E.g. 

Tiessen & Stewart (1983) found that coarse silt and fine clay fractions decreased 

up to 50% after a longer period of tillage (60 years of cultivation of former 

grassland soils under fallow-grain rotation).  

The largest differences in the OC distribution over soil fractions between the 

tillage treatments were found for the RTDD fields, particularly for the iPOM and 

coarse fPOM fraction. These results confirm research of other regions, namely a 

reduction in tillage intensity results firstly in a higher amount of the more labile 
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OC fractions (Denef et al., 2004; Mikha & Rice, 2004; Sleutel et al., 2005; Dou 

& Hons, 2006).  

 

Sleutel et al. (2006c & 2007b) further analysed RTDD_10 field 11 and CT field 14 

by using pyrolysis-field ionization mass spectroscopy (Py-FYMS). They found 

significant differences in the SOM composition of the sand and clay fractions 

under RT and CT agriculture while no differences were observed in the silt 

fractions. This result also accords with observations made by Tiessen & Stewart 

(1983) and Tiessen et al. (1983). They found that the cultivation of native silt 

loam soil with small cereal - fallow cropping sequence decreased the SOM 

concentration of all size separates while the relative proportion of fine silt 

remained unchanged even after 90 years of cultivation as this fraction contains 

highly aromatic, stable material of intermediate C:N ratios. The higher amount 

of clay sized OC under RT compared to CT agriculture may also partly have 

resulted from the larger amount of accumulation of rather labile SOM 

compounds, such as soil MB and its metabolites as well as root exudates and 

lysates (Leinweber & Schulten, 1995). This is also reflected in the higher 

amounts of MB-C in the RT compared to CT fields (Figure 4.5). 

 

 

4.5.4. Carbon mineralization 

The C mineralization rates in the undisturbed soil cores of the RT fields were 

1.5 to 3 times higher than the C mineralization rates of the C fields, except for 

fields 5 and 6. Although we removed crop residues left at the soil surface before 

taking samples, the higher C mineralization rate in the RT fields in the 

incubation experiments may also be due to the presence of fresh crop residues 

on the RT fields while almost no crop residues were left on the CT fields. 

The difference in C mineralization rate of RT compared to CT fields was higher 

than the difference in % SOC resulting in a higher % SOC mineralized under 

RT than CT fields under laboratory conditions. Alvarez et al. (1995) found that 

after an incubation of 160 days a higher % of SOC was mineralized in the upper 

5 cm of a silt loam soil in Argentina under RT compared to CT agriculture. 

However, this higher potential for C mineralization of RT fields does not 

necessarily translate in higher C losses in the field, because temperature and 

moisture content tend to be less favourable for aerobic decomposition in RT 

fields. During a 3 year measuring period, the annual CO2 losses of a loam soil in 

Nebraska were measured weekly, and the CO2 losses were lower under RT (23 

to 25 years) than CT agriculture (Kessavalou et al., 1998).  
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The higher amount of more labile OC in fPOM and iPOM under RT compared 

to CT agriculture suggests that the risk of loosing OC at soil disturbance is high 

under RT agriculture. Surprisingly, disturbance of the soil resulted only in a 

small difference (higher or lower) in C mineralization rate, except for 2 of the 3 

the RTDD_10 fields. In contrast, most studies found that the disturbance of the soil 

resulted in a higher C mineralization rate (Franzluebbers, 1999; Balesdent et al., 

2000; Stenger et al., 2002). However, in these experiments the soil was 

disturbed by sieving, which is far more extreme than the disturbance in this 

experiment and than an intensive tillage operation in the field. Sieving likely 

results in a destruction of both macro- and micro-aggregates and releases large 

amounts of physically protected SOC. The release of physically protected SOC 

caused by disturbance in this experiment was probably minimal, which may 

well explain the limited effect of soil disturbance on the C mineralization rate. 

As mentioned before, the frequent disturbance on the occasion of harvest of 

these silt loam fields with crop rotations including root and tuber crops under 

RT agriculture might be another important reason why little effect of additional 

disturbance on C mineralization rate was observed.  

 

The C mineralization rate of the undisturbed soil cores of the RT fields under 

laboratory conditions showed no correlations with the parameters MB-C 

content, % clay and % SOC (Table 4.2). The C mineralization rate in the 

undisturbed soil cores of the CT fields was positively correlated with the MB-C 

content (Pearson correlation P = 0.05). In the disturbed soil cores, the C 

mineralization rates of the RT and CT fields were positively correlated with % 

SOC (Pearson correlation P = 0.05), which suggests a better contact between the 

MB and SOC as a result of soil disturbance. 

 

We tried to derive a pedotransfer function that could be used to determine the C 

mineralization rate of other RT and CT fields based on the OC present in the 

different fractions isolated according to the physical fractionation method of Six 

et al. (2000a). The highest correlation between the C mineralization rate 

undisturbed and OC fractions was found with the OC present in the coarse + 

fine fPOM fraction. However, based on our results of the OC content in the 

fractions of the physical fractionation we can not improve the prediction of the 

C mineralization rate of the undisturbed soil cores compared to measurements of 

% SOC. The lack of correlation between the C mineralization rate and OC 

content in the fractions of the physical fractionation in this research is obviously 

related to the small range in soil texture and as a consequence OC content in the 

different fractions.  
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Table 4.2 Pearson correlation of microbial biomass carbon (MB-C) content (0-10 cm 

depth layer) in the field, clay (0-10 cm depth layer), soil organic carbon 

(SOC) (0-5 cm depth layer) and total C mineralization rate (day 7-day 91) 

(0-5 cm depth layer) of undisturbed (U) and disturbed-refilled (D) tubes of 

the reduced (RT) and conventional tillage (CT) fields 

  Clay SOC C mineralization 

rate U 

C mineralization 

rate D 

  (%) (%) (mg C kg-1 dry 

soil day-1) 

(mg C kg-1 dry 

soil day-1) 

RT MB-C (mg C kg-1 dry soil)  -0.681 * -0.406     0.602   0.194 

 Clay (%)  0.448    -0.331   0.235 

 SOC (%)       0.339   0.653 * 

CT MB-C (mg C kg-1 dry soil)  -0.541 0.009     0.809 *   0.269 

 Clay (%)  0.060    -0.161   0.204 

 SOC (%)       0.065   0.717 * 

Significant differences *: P = 0.05; **: P = 0.01 

 

 

4.6. CONCLUSION 

The % SOC in the surface layer of silt loam soils was higher under RT than CT 

agriculture. The amount of OC in three different POM fractions was found to be 

(significantly) higher both on an absolute as well as relative basis in the RT 

compared to the CT fields. In general the difference was the highest for the 

coarse fPOM fraction, which is the most labile fraction. The higher percentage 

of (labile) SOC in the surface layer of RT fields resulted in a higher C 

mineralization rate in undisturbed tubes under controlled conditions in the 

laboratory. Simulating an intensive tillage operation resulted in both lower and 

higher C mineralization rates of the RT fields indicating that ploughing RT 

fields will have a limited effect on the SOC stock. The relatively intense soil 

disturbance of the tillage operations of the RT fields and disturbance on the 

occasion of harvest of root and tuber crops every 2 to 3 years might explain why 

little effect of additional disturbance on C mineralization was observed.  

Although the EOC from manure application and crop residues was comparable 

or higher for the RT compared to CT fields, this research suggests that no 

change in SOC stock occurs in the 0-60 cm depth layer under RT agriculture, 

even after 20 years of not ploughing the soil. The frequent soil disturbances of 

the RT fields might decrease the potential positive effects of RT agriculture on 

SOC accumulation. 
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5.1. ABSTRACT 

Crop rotations in Western Europe contain crops that seem not suitable for RT 

agriculture because they often include beets and potatoes, resulting in a high 

disturbance of the soil at the formation of the ridges and at harvest. Therefore, 

the short and long term effects of RT agriculture on the stratification and stock 

of TN in the 0-40 cm depth layer and the N mineralization in the upper 0-15 cm 

depth layer of silt loam soils in Belgium was evaluated. For doing so, ten fields 

at seven locations representing the important types of RT systems applied for a 

different number of years, and eight fields under CT agriculture with 

comparable soil type and crop rotation were selected. 

Despite the presence of root and tuber crops in these rotations, the stratification 

of the percentage of TN and of the C:N ratio was more pronounced under RT 

than CT fields. The TN stock in the RTC was comparable to CT fields, even 

after 20 years. No trend could be found in the change in TN stock of RTDD 

compared to CT agriculture. The N mineralization rate in undisturbed soil cores 

under controlled conditions in the laboratory was on average 0.20±0.08 mg N 

kg-1 dry soil day-1 for RT fields compared to on average 0.13±0.05 mg N kg-1 

dry soil day-1 for CT fields. This increase in N mineralization rate was correlated 

with a higher microbial biomass nitrogen (MB-N) content. Disturbing the soil 

resulted in a decreasing trend in N mineralization rate compared to the 

undisturbed soil, on average 0.19±0.04 mg N kg-1 dry soil day-1 and 0.11±0.04 

mg N kg-1 dry soil day-1 for RT and CT fields, respectively, but the differences 

between disturbed and undisturbed soils were rarely significant due to the high 

variability of the N mineralization rate. 
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5.2. INTRODUCTION 

Since the N released by mineralization is often a major source of N for plant 

growth and strongly depends on soil factors, extensive data has been collected in 

the past on the N mineralization rate under controlled circumstances in the 

laboratory (e.g. Vlassak, 1970; Coppens et al., 2002) and in the field (e.g. 

Hofman, 1988; Neeteson et al., 1988; Demyttenaere, 1991; Smit, 1994). 

However, all these data were pertaining to CT soils. While RT agriculture is 

gaining momentum in Western Europe, the research on RT agriculture was 

focused on the effects of the change of field management on soil erosion and 

SOC stock changes. The change of N dynamics under a temperate climate due 

the shift to RT agriculture was researched in the large arable regions in 

America, Canada and Australia with crop rotations including mainly cereals, 

maize and soybean. The arable crop rotations in Western Europe are somewhat 

particular because of the large share of root and tuber crops. However, no 

research has been carried out on the effect of RT agriculture on the N dynamics 

of soils with crop rotations including beet and potatoes, with heavy soil 

disturbance at harvest, that seem less suitable for RT agriculture.  

 

In general, the TN stock of experimental fields with a cereal, maize and soybean 

crop rotation under a temperate climate seemed to remain unchanged or to 

decrease under short and long term RT compared to CT agriculture. No 

significant differences in the TN stock compared to CT agriculture were 

measured of two sandy loam soils after 4 or 5 years RTDD agriculture and one 

loam soil after 8 years RTC agriculture in eastern Canada (Angers et al., 1997), 

of a silty clay loam soil after 8 years RTDD or RTC agriculture in central Ohio 

(Puget & Lal, 2005) and of a silt loam soil after 21 years of RTC agriculture in 

Germany (Stockfisch et al., 1999). However, Etana et al. (1999) measured a 

decreased TN stock compared to CT after 17 years RTC agriculture of a silt 

loam soil in Sweden. 

 

Next to the change in TN stock, it is important to know whether the TN is stable 

or will be released in case RT fields are ploughed. Occasionally ploughing of 

RT fields is sometimes used as a remedy for infestation with weeds of RT fields. 

Kandeler & Böhm (1996) and Kandeler et al. (1999b) measured the N 

mineralization rate of a clay field from Austria 2 to 8 years after changing to 

RTDD and RTC agriculture. The N mineralization rate of the upper depth layer 

showed a decreasing trend in the order: RTDD > RTC > CT agriculture. Deeper in 

the soil profile a significant decrease in N mineralization was determined under 
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RT compared to CT agriculture. Doran (1987) found a (significant) increase of 

potentially mineralizable N in the upper depth layer of silt and silt loam fields 

under 5 to 11 years RTDD agriculture. The same trend was observed by Friedel 

et al. (1996) after 14 years RTC agriculture in Germany and by Kristensen et al. 

(2000) after 20 years RTDD agriculture in Maryland. 

N mineralization research is most often studied on sieved soil, which can 

strongly effect the measured N mineralization (Stenger et al., 1995; Balesdent et 

al., 2000). Sieving results in a destruction of both macro- and micro-aggregates 

and a release of large amounts of physically protected SOM. In a literature 

review Balesdent et al. (2000) mostly found a higher N mineralization after 

sieving the soil of virgin, RTDD and CT fields. The largest differences were 

found for RTDD fields with a high % clay.  

 

The objective of this study was to look into the short and long term effects of 

RT agriculture on stratification and stocks of N, and the N mineralization of the 

top soil for these specific Western European climatic and soil conditions, with 

crop rotations containing crops that are less common under RT agriculture 

(including an important share of root and tuber crops), and to asses the effect of 

soil disturbance on the N mineralization of RT and CT fields. 

 

 

5.3. MATERIALS AND METHODS 

5.3.1. Soil sampling 

Fields 1-8 and 17-18 were sampled in December 2004, whereas fields 9-16 were 

sampled in March 2005 for the determination of % TN and for measuring the N 

mineralization rate in lab incubations (see 3.3.1).  

 

 

5.3.2. Total nitrogen and soil organic carbon 

Five subsamples per plot were taken from the 0-10, 10-20, 20-30 and 30-40 cm 

depth layers. The subsamples were bulked per plot and per layer into one 

composite sample, thoroughly mixed and let to dry to the air in the laboratory. 

The percentage of TN was measured with a CNS elemental analyzer (Vario 

Max, Elementar, Germany) whereas SOC content was analysed according to the 

method of Walkley & Black (1934). 
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5.3.3. Nitrogen mineralization rate  

N mineralization rate was measured under controlled conditions in the 

laboratory for both undisturbed and disturbed soil samples. PVC tubes with a 

0.046 m inner diameter and 0.18 m height were used as incubation containers. 

On each field, visible crop residues were removed before sampling. The tubes 

were then pushed 15 cm into the soil. The soil core was carefully dug out, 

excess soil from the bottom of the core was removed, and the bottom was 

covered with a PVC cap. Fourteen tubes were taken from each plot. Seven tubes 

per plot were incubated “undisturbed”. In order to simulate the effect of an 

intensive tillage operation, the soil from the other seven tubes was removed and 

the tube was then refilled with the “disturbed soil”, adjusted to the same bulk 

density.  The moisture content of fields 1-8 and 17-18 at the time of sampling 

was 50±5% WFPS (see Eq. 3), which is considered to be within the optimum 

soil moisture content range for N mineralization (De Neve & Hofman, 2002). It 

was therefore not necessary to dry or moisten the soil. The moisture content of 

fields 9-16 was significantly higher than 50% WFPS and therefore the soil from 

those fields was dried to 50±5% WFPS to avoid N losses through denitrification 

during the incubation. 

 

Every two weeks soils were sampled destructively by removing the soil from 

one tube of the U and D treatment for each plot. The soil was mixed thoroughly 

and 30 g moist soil was analysed for mineral N (NO3
--N and ammonium 

nitrogen (NH4
--N)) by extraction with a 1M KCl (1:2 soil weight (g): extractant 

volume (ml)) solution. The mineral N concentration in the extract was measured 

colorimetrically with a ‘continuous flow auto-analyser’ (Chemlab System 4, 

Skalar, the Netherlands). 

The N mineralization rates were calculated using zero-order kinetics:                 

Nt = N0 + kN . t, where Nt is the amount of mineral N at time t (mg N kg–1 dry 

soil), N0 is the initial amount of mineral N (mg N kg–1 dry soil), t is the time (in 

days) and kN  is the nitrogen mineralization rate (mg N kg–1 dry soil day–1).  

 

 

5.3.4. Microbial biomass nitrogen 

Eight weeks after the start of the incubation, the MB-C was measured with a 

chloroform fumigation extraction using a 0.1 M KCl extractant (1:2 soil weight 

(g): extractant volume (ml)) (Voroney et al., 1993). The OC in the extracts was 

analyzed with a TOC analyzer (TOC-V CPN, Shimadzu, Japan). To correct for 

the incomplete release and extraction of MB-C a KEC factor is needed (Voroney 
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et al., 1993). As suggested by Voroney et al. (1993) an extraction efficiency KEC 

value of 0.25 was used. The MB-N was obtained assuming a C:N ratio of 6 for 

microbial biomass (Chaves, 2006; Chaves et al., 2006). 

 

 

5.3.5. Physical fractionation 

Sub samples from every replicate of the different treatments were separately 

used for the physical fractionation. The fractionation procedure was carried out 

in triplicate, yielding a total of twelve repetitions per tillage treatment and per 

soil depth (see 4.3.5). Sub samples of the separated soil fractions were analyzed 

for TN with a CNS elemental analyzer (Vario Max, Elementar, Germany). 

 

 

5.3.6. Statistical analysis 

The homogeneity of variances was tested with the Levene’s test (P = 0.05). A   

t-Test was used to find statistically significant differences in % TN and C:N 

ratio per depth layer, physical fractionation results and TN stock for locations 

with only 2 fields. One way ANOVA with field as factor/post hoc Duncan test 

and Welch/post hoc Games-Howell test were used to determine statistically 

significant differences for the locations with more than 2 fields for 

homogeneous and heterogeneous variances, respectively. The N mineralization 

was calculated with linear regression in SPSS. A correlation analysis was 

performed using a Pearson’s correlation matrix in SPSS (SPSS version 12.0, 

SPSS Inc., Chicago). 

 

 

5.4. RESULTS 

5.4.1. Total nitrogen percentage and stock 

There were no significant differences in % TN in the different layers of fields 1-

4 in Heestert (Figure 5.1A). However, the % TN decreased more gradually with 

depth in field 4. After 5 years RTC agriculture, the % TN in the 0-10 and 10-20 

cm depth layer in the RTC_5 field 5 was significantly (P = 0.05) higher than field 

6 under CT but not significantly higher deeper in the soil profile (Figure 5.1B).  
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                                                                     *: reduced tillage with cultivator or soil loosener (RTC) 

                                                                   **: reduced tillage by direct drilling (RTDD) 

 

                                                                                 A:   2 years RTC 

                                                                                 B:   5 years RTC 

                                                                                 C: 10 years RTC or RTDD 

                                                                                 D: 20 years RTC 

 

 

same letters indicate no significant differences between tillage treatments per location and per depth 

(P = 0.05) (one way ANOVA/Duncan post hoc test, Welch/Games-Howell post hoc test or t-Test) 

 
Figure 5.1 Total nitrogen (TN) (%) in the 0-10, 10-20, 20-30 and 30-40 cm depth 

layers (vertical lines = standard deviation) of the 18 selected fields 
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The % TN in the 0-10 cm depth layer in RTC_5 field 7 was significantly higher 

than in CT field 8 and lower deeper in the soil profile. A (significant) higher % 

TN in the 0-10 cm depth layer was observed after 10 years RT agriculture 

(Figure 5.1C).  The % TN of the 10-20 cm depth layer was significantly lower 

in RTC_10 field 9 compared to CT field 10 and in RTDD_10 field 15 compared to 

CT field 16, while the % TN of the 10-20 cm depth layer was lower in CT field 

14 compared to RTDD_10 fields 11 and 13. In the 20-30 cm depth layer, the % TN 

after 10 years RT agriculture was (significantly) lower than under CT 

agriculture. The % TN in the 30-40 cm depth layer after 10 years RT was 

comparable to CT agriculture. The % TN in RTC_20 field 17 was significantly 

higher in the 0-10 cm depth layer and significantly lower (P = 0.05) in the 10-20 

cm depth layer compared to CT field 18 (Figure 5.1D). The % TN in the 20-30 

and 30-40 cm depth layer was lower in RTC_20 field 17 than in CT field 18. 

 

There was no difference in C:N ratio in fields 1 to 8 between ≤5 years RTC and 

CT agriculture (Figure 5.2). After 10 years RT agriculture, the C:N ratio was 

(significantly) higher in the 0-10 cm depth layer and mostly lower in the 10-20 

and 20-30 cm depth layer than under CT agriculture. RTC_20 field 17 had a 

slightly higher C:N ratio (not significant) in the 0-10 and 10-20 cm depth layer 

and a lower C:N ratio in the 20-30 cm depth layer compared to CT field 18. 

 

The TN stock of the 0-40 cm depth layer calculated with the measured bulk 

densities was on average 5.4±0.6 Mg TN ha-1 for the 18 fields. The TN stock 

was similar for all fields in Heestert (Figure 5.3). A higher TN stock was 

measured after 5 years RTC agriculture. The TN stock, however, was lower after 

10 years RT agriculture in Maulde (field 9 compared to field 10) and in 

Kuttekoven (field 15 compared field 16). Conversely, CT field 14 had a 

significantly lower (P = 0.05) TN stock compared to fields 11-13. The TN stock 

of RTC_20 field 17 was lower (but not significantly) than CT field 18. 
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                                                                *: reduced tillage with cultivator or soil loosener (RTC) 

                                                             **: reduced tillage by direct drilling (RTDD) 

 

                                                                           A:   2 years RTC 

                                                                           B:   5 years RTC 

                                                                           C: 10 years RTC or RTDD 

                                                                           D: 20 years RTC 

 

 

 

same letters indicate no significant differences between tillage treatments per location and per depth 

(P = 0.05) (one way ANOVA/Duncan post hoc test, Welch/Games-Howell post hoc test or t-Test) 

 

Figure 5.2 C:N ratio in the 0-10, 10-20, 20-30, and 30-40 cm depth layers (vertical 

lines = standard deviation) of the 18 selected fields 
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                                                                                *:   reduced tillage  

                                                                                      with cultivator or soil loosener (RTC) 

                                                                               **: reduced tillage with 

                                                                                      direct drilling (RTDD) 

 

 

 

 

 

 

 

 

 

 

       A:   2 years RTC 

      B:   5 years RTC 

                    C: 10 years RTC or RTDD 

       D: 20 years RTC 

 

 

 

 

 

 

same letters indicate no significant differences per location (P = 0.05) (One way ANOVA/Duncan 

post hoc test or t-Test) 

 

Figure 5.3 Total nitrogen (TN) stock (Mg ha-1) in the 0-40 cm depth layer (vertical 

lines = standard deviation) of the 18 selected fields 

 

 

5.4.2. Nitrogen mineralization rate and microbial biomass 

nitrogen 

As an example in Figure 5.4 the evolution of NH4
+_N and mineral N (NO3

--N + 

NH4
+-N) of the disturbed and undisturbed soil cores of field 7 are given. The 

amount of NH4
+-N increased until week 4 and then decreased but was low in 

general. The amount of mineral N increased linearly with time (Figure 5.4). 

However, a very large variability between replicates was observed. The N 

mineralization rate of the undisturbed soil samples varied from 0.032 to 0.329 

mg N kg-1 dry soil day-1 (Table 5.1). 
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Figure 5.4 Evolution ammonium nitrogen (NH4
+-N) (mg kg-1 dry soil) and mineral 

nitrogen (NH4
+-N+NO3

--N) (mg kg-1 dry soil) (vertical lines = standard 

deviation) of undisturbed and disturbed soil cores of the 0-15 cm depth 

layer of reduced tillage field 7 

 

 

At each location, the N mineralization rate of the RT fields was higher than of 

CT fields, with the exception of fields 5 and 6 (Table 5.1). The N mineralization 

rates of the RTC and RTDD fields was on average 1.55 and 1.76 times the N 

mineralization rate of the CT fields, respectively. 

The N mineralization rates per ha were calculated with the measured BD and 

varied from 0.066 to 0.708 kg N ha-1 day-1. The N mineralization rates per ha 

were 1.53 and 1.69 times higher for the RTC and RTDD than for the CT fields, 

respectively. 

 

For most fields we found only small and inconsistent differences (either higher 

or lower) in the N mineralization rate between disturbed and undisturbed soil 

(Table 5.1). There was an obvious higher N mineralization rate of the RTDD 

fields 11 and 13 compared to CT fields 12 and 14 but not for RTDD field 15 

compared to CT field 16. Although we removed winter wheat residues left at the 

soil surface before taking samples, the immobilization in fields 15 and 16 upon 

disturbance may have been due to small amounts of winter wheat residues that 

were still present in the tubes and that started to immobilize N from the moment 

they were mixed with the soil. The maize residue of RTC_5 field 5 possibly 

caused some N immobilization in the course of the incubation compared to CT 

field 6. 
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Table 5.1 Nitrogen mineralization rate kN * of the undisturbed and disturbed soil 

cores with standard deviation between brackets of the 0-15 cm depth layer 

of the 18 selected fields to be compared per location 

 Undisturbed samples Disturbed samples 

Field kN (mg N kg-1 dry 

soil day-1) 

R² sign kN (mg N kg-1 dry 

soil day-1) 

R² sign 

1 RTC_2 0.108 (0.028) 0.395 0.001 0.045  (0.023) 0.143 0.069 

2 RTC_2 0.107 (0.015) 0.705 0.000 0.033 (0.025) 0.072 0.205 

3 RTC_2 0.082 (0.032) 0.235 0.016 0.039 (0.022) 0.180 0.039 

4 CT 0.084 (0.027) 0.308 0.005 0.068 (0.040) 0.114 0.107 

5 RTC_5 0.032 (0.024) 0.065 0.229 -0.025 (0.039) 0.020 0.531 

6 CT 0.069 (0.020) 0.364 0.002 0.049 (0.025) 0.162 0.051 

7 RTC_5 0.177 (0.036) 0.525 0.000 0.144 (0.023) 0.642 0.000 

8 CT 0.131 (0.088) 0.094 0.145 0.131 (0.031) 0.451 0.000 

9 RTC_10 0.275 (0.056) 0.606 0.000 0.255 (0.035) 0.710 0.000 

10 CT 0.109 (0.034) 0.187 0.035 0.108 (0.030) 0.374 0.001 

11 RTDD_10 0.095 (0.038) 0.218 0.021 0.179 (0.034) 0.559 0.000 

12 CT 0.242 (0.031) 0.741 0.000 0.162 (0.028) 0.596 0.000 

13 RTDD_10 0.224 (0.069) 0.325 0.004 0.242 (0.036) 0.676 0.000 

14 CT 0.178 (0.018) 0.817 0.000 0.140 (0.025) 0.589 0.000 

15 RTDD_10 0.329 (0.027) 0.872 0.000 0.207 (0.039) 0.556 0.000 

16 CT 0.091 (0.022) 0.427 0.001 0.140 (0.018) 0.732 0.000 

17 RTC_20 0.099 (0.030) 0.330 0.003 0.116 (0.019) 0.626 0.000 

18 CT 0.033 (0.018) 0.129 0.085 0.091 (0.024) 0.407 0.001 

RTC: reduced with cultivator or soil loosener, RTDD: by direct drilling with in subscript the period in 

years; CT: conventional tillage 

* The N mineralization rate k was calculated using zero-order kinetics: Nt = N0 + kN . t, where t is 

the time (in days), Nt is the amount of mineral N at time t (mg N kg–1 dry soil), N0 is the initial 

amount of mineral N (mg N kg–1 dry soil), and kN the mineralization rate (mg N kg–1 dry soil day–1). 

The R² of the regression and significance (sign) of N mineralization rate kN are given. 

 

 

The MB-N content in the undisturbed soils after 8 weeks of incubation was 

higher in the RT fields (≥5 years) (33.4±16.8 mg MB-N kg-1 dry soil) than in the 

CT fields (28.1±13.2 mg MB-N kg-1 dry soil), but the differences were not 

significant (Figure 5.5). The MB-N contents in the disturbed tubes after 8 weeks 

incubation were higher than the MB-N contents of the undisturbed tubes. The 

MB-N content in the disturbed tubes was also (significantly) higher in the RT 

fields (≥5 years) (42.6±17.3 mg MB-N kg-1 dry soil) than in the CT fields 

(30.4±16.3 mg MB-N kg-1 dry soil). 
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                                                                                                          *: reduced tillage with cultivator  

                                                                                                              or soil loosener (RTC) 

                                                                                                        **: reduced tillage by direct  

                                                                                                              drilling (RTDD) 

 

                                                                                                                     A:   2 years RTC 

                                                                                                                     B:   5 years RTC 

                                                                                                                     C: 10 years RTC or RTDD 

                                                                                                                     D: 20 years RTC 

 

 

 

 

    

  

 

 

 

 

 

 

 

 

same letters indicate no significant differences between tillage treatments per location (P = 0.05) 

(one way ANOVA/Duncan post hoc test, Welch/Games-Howell post hoc test or t-Test) 

 

Figure 5.5 Microbial biomass nitrogen (MB-N) content (mg kg-1 dry soil) in the 

undisturbed (U) and disturbed (D) soils (vertical lines = standard deviation) 

of the 0-15 cm depth layer of the 18 selected fields 

 

 

5.4.3. Nitrogen from physical fractionation 

The N present in the three POM fractions of the upper 0-10 cm depth layer was 

comparable or higher in the RT than in the CT fields at the same location, both 

on an absolute (Figure 5.6) as well as on a relative basis (Appendix III - Figure 

III.1). No trend in differences in the N present in the free silt and clay fraction 

between the RT and CT fields could be observed (Figure 5.6).  
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                                                                 *: reduced tillage with cultivator or soil loosener (RTC) 

                                                               **: reduced tillage by direct drilling (RTDD) 

 

                                                                             A:   2 years RTC 

                                                                             B:   5 years RTC 

                                                                             C: 10 years RTC or RTDD 

                                                                             D: 20 years RTC 

 

 

 

same letters indicate no significant differences between tillage treatments per location (P = 0.05) (one 

way ANOVA/Duncan post hoc test, Welch/Games-Howell post hoc test or t-Test) 

 

Figure 5.6 Absolute distribution of the nitrogen (N) content (g 100 g-1 dry soil) in the 

coarse free particulate organic matter (fPOM) (>250 µm), fine fPOM (53-

250 µm), intra-aggregate organic matter (iPOM) (53-250 µm) and <53 µm 

fraction (vertical lines = standard deviation) of the 0-10 cm depth layer of 

the 18 selected fields 
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Although the C:N ratio of the upper 0-10 cm depth layer was higher under RT 

>5 years compared to the CT fields (Figure 5.2), this was not correlated with a 

higher C:N ratio of the different fractions obtained with the physical fraction 

method of Six et al. (2002b) (Appendix III - Figure III.1). 

 

 

5.5. DISCUSSION 

5.5.1. Total nitrogen percentage and stock 

In the study area, very little experimental sites exist where CT can be compared 

to RT practices. Therefore, we had to include farmers' fields, where inevitably 

there is no perfect match in management between CT and RT fields. However, 

in the selection of the fields much care was taken to select paired fields which 

were similar from a soil type and management point of view. Therefore, when 

assessing the effect of the change of management to RT agriculture not only the 

change in tillage intensity but also the differences in EOC and TN applied by 

organic manure, crop and green manure have to be considered (see 2.1). 

 

The experimental plots on fields 5 and 6, both with a slope of 10%, were located 

on the same position on the slope. Their potential erosion loss by water 

calculated with the Revised Universal Soil Loss Equation (RUSLE) (Renard et 

al., 1991) is more than 20 Mg soil ha-1 y-1 (Van Rompaey et al., 2000). 

However, next to the potential erosion the actual erosion loss also depends on 

the crop and tillage operations. The cultivation of grain maize on RTC_5 field 5 

not only resulted in a higher amount of crop residues and as a consequence EOC 

and TN compared to fodder maize and potatoes of CT field 6 but the maize 

residues on RTC_5 field 5 also prevented soil losses through erosion during 

winter, while CT field 6 was often left fallow during winter. The low TN stock 

of CT field 6 can be related to erosion losses resulting in a serious loss of fertile 

top soil and TN in combination with the lower amount of crop residues and 

higher tillage intensity compared to RTC_5 field 5 (Figure 5.3). 

The application of composted manure and green waste manure resulted in a high 

amount of EOC and TN in RTC_5 field 7, but has not resulted in a higher TN 

stock in RTC_5 field 7 compared to CT field 8. A negative aspect of sowing 

green manure is, however, extra tillage and soil disturbance times in RTC_5 field 

7 compared to CT field 8. 
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Results from experiments under temperate climate with cereal, maize and 

soybean rotations indicated that TN stocks tend to decrease under RTC 

agriculture while TN stocks remain unchanged under RTDD agriculture (e.g. 

Doran, 1987, Angers et al., 1997; Etana et al., 1999; Stockfisch et al., 1999; 

Puget & Lal, 2005). We found similar or lower TN stocks under RTC compared 

to CT agriculture. No trend could be found in the change in TN stock of RTDD 

fields. The significant higher TN stock of fields 11 and 13 after 10 years RT 

agriculture, of which 4 years RTDD, compared to CT field 14 suggests a higher 

TN stock after long term RTDD compared to CT agriculture, but the TN stock of 

RTDD field 15 was significantly lower compared to CT field 16 (P = 0.05). A 

longer period of direct drilling will possibly indicate a trend for the RTDD fields 

with crop rotations including root and tuber crops. 

 

 

In our study, the C:N ratio of the upper layer of RTDD fields was higher 

compared to CT fields (Figure 5.2). The higher % TN and C:N ratio in the upper 

layer of RT fields is attributed to the higher amount of crop residues remaining 

on the surface (RTDD) or in the upper depth layer (RTC) and a slower 

decomposition of crop residues at the soil surface because of the limited contact 

between the soil micro flora, crop residues and nutrients (Stemmer et al., 1999). 

Mineralization results in a decrease of % SOC since CO2 is lost but N remains 

mostly in the soil and as a consequence results in a lower C:N ratio in CT fields 

(Van Hove, 1969; Murty et al., 2002; McLauchlan, 2006). 

 

A higher C:N ratio was measured in the upper depth layer in Nebraska under 5 

to 11 years RTDD agriculture (Doran, 1987) and in Ohio after 8 years RTDD 

compared to CT and RTC agriculture (Puget & Lal, 2005). In most cases, the 

C:N ratio of the upper layer of RTC fields remained unchanged or was higher 

compared to CT fields. A comparable C:N ratio in the upper layer was measured 

under CT agriculture and after 8 to 17 years of RTC agriculture in eastern 

Canada by Angers et al. (1997), in Sweden by Etana et al. (1999), in central 

Ohio by Puget & Lal (2005) while a higher C:N ratio was measured after 9 and 

21 years RTC agriculture in Germany by Ahl et al. (1998) and Stockfisch et al. 

(1999), respectively. These results indicate that the changes in C:N ratio 

compared to CT agriculture become apparently after short term RTDD 

agriculture but only after long term RTC agriculture.  
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5.5.2. Nitrogen mineralization and microbial biomass nitrogen 

Comparison of the N mineralization in this study with N mineralization data 

from other research is hampered by the fact that N mineralization experiments 

are carried out at different temperatures and moisture contents, with or without 

drying and sieving the soil and for different periods. Independently of the 

measuring method, a higher N mineralization rate of the upper depth layer was 

measured under RT compared to CT agriculture, which was correlated with a 

higher % TN (Friedel et al., 1996; Kandeler et al., 1999b; Kristensen et al., 

2000). 

 

Soils under RT agriculture often have a lower temperature and higher moisture 

content (Drury et al., 1999; Balesdent et al., 2000; Larney et al., 2003; Six et 

al., 2004a). In general these differences in soil temperature and moisture content 

slow down the N mineralization of RT compared to CT fields (Franzluebbers et 

al., 2001; Al-Kaisi et al., 2005a & b). After 7 years RTC and RTDD agriculture of 

a clay soil in Pennsylvania the N mineralization rate in the laboratory was 

highest under RTDD and lowest under CT agriculture. In the field however, the 

highest amount of NO3
--N in the 0-5 and 5-20 cm depth layer was measured 

under RTC and the lowest under RTDD agriculture. The highest differences in the 

amount of NO3
--N in the field were found in spring (Drinkwater et al., 2000). 

However, lower NO3
--N concentrations can also be an indication of higher 

gaseous N losses as a result of a higher moisture content rather than a lower N 

mineralization rate under RT agriculture in field conditions. 

 

We used the temperature correction function determined for Flemish CT fields 

by De Neve et al. (1996) to recalculate the N mineralization rate obtained in the 

laboratory to N mineralization per ha and per year using the monthly average 

temperatures. This resulted in an estimated in situ N mineralization of on 

average 52, 73 and 114 kg N ha-1 y-1 15 cm-1 for CT, RTC and RTDD fields, 

respectively, if the soil temperature and moisture content would be equal for 

both CT and RT fields. However, under field conditions the differences in N 

mineralization will be smaller due to the less favourable soil temperature and 

moisture conditions of the RT fields. Moreover, the low stratification of N under 

CT fields due to the mixing of the soil at ploughing results in a comparable N 

mineralization in the entire plough layer. The N mineralization of the upper 30 

cm depth layer of the CT field will be twice the N mineralization of the 15 cm 

depth layer, namely 104 kg N ha-1 y-1 30 cm-1. However, the N mineralization of 

RTDD fields is negligible in the 15-30 cm depth layer due to the high 

stratification of the % of TN resulting in a N mineralization of 114 kg N ha-1 y-1 
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30 cm-1. The N mineralization of RTC fields in the 15-30 cm depth layer will be 

in between N mineralization of the CT and RTDD fields. This indicates that the 

differences in N mineralization in the upper 30 cm between CT and RT fields 

are too small to adapt the N fertilization for RT fields. 

 

 

It is important to know to what extent the N will be released when RT fields are 

ploughed. Disturbance had a limited effect on the N mineralization rate in our 

experiment, while sieving in other experiments in most cases resulted in a 

higher N mineralization rate (Balesdent et al., 2000). It has to be mentioned that 

in these experiments the soil was disturbed by sieving, which is far more 

extreme than the disturbance in our experiment or than an intensive tillage 

operation in the field. Sieving results in a destruction of both macro- and micro-

aggregates and a release of large amounts of physically protected SOM. The 

release of physically protected SOM caused by disturbance in our experiment 

was probably minimal resulting in a small effect or no effect of disturbance, 

except for the RTDD fields 11 and 13. The frequent disturbance of these silt loam 

fields with crop rotations including root and tuber crops under RT agriculture on 

the occasion of harvest might be an important reason why little effect of 

additional disturbance on the N mineralization rate was observed. 

 

The MB-N in the disturbed soil cores was on average higher than in the 

undisturbed soil cores but the differences were not significant. A higher N 

mineralization rate was correlated with a higher MB-N content (Table 5.2). The 

higher MB-N contents under RT compared to CT fields are similar with the 

results of other researches. After only 3 years RTC agriculture in a clay loam soil 

in Germany, the MB-N was higher in the 0-10 cm depth layer compared to CT 

agriculture (Hoffmann et al., 1996 & 1997). The MB-N of a sandy loam field 

from Austria was higher in the 0-10 cm depth layer 7 years after changing to 

RTC and RTDD agriculture (Kandeler et al., 1999a). After 20 years RTC 

agriculture, the MB-N in the upper 15 cm of a silt loam soil was significantly 

higher compared to CT agriculture in Maryland (McCarty et al., 1995).  

 

The sampling method of undisturbed tubes resulted in a high variability of N 

mineralization rates making the detection of correlations with soil parameters 

more difficult. The N mineralization rate (kg N ha-1 day-1) of the undisturbed 

and disturbed soil cores of the fields was positively correlated with % loam and 

negatively with % sand (Table 5.2). There was also a positive correlation with 

% TN and MB-N and a negative correlation with C:N ratio (Table 5.2). The 
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higher correlations for the N mineralization in the disturbed compared to the 

undisturbed soil with these soil parameters indicate a stronger aggregation and 

physical protection of SOM and TN in micro- and macro-aggregates in the 

undisturbed as compared in the disturbed state while a part of the TN physically 

protected in the undisturbed samples was mineralized in the disturbed samples. 

 

 
Table 5.2 Pearson correlation of nitrogen mineralization rate of the undisturbed (U) 

and disturbed (D) tubes with microbial biomass nitrogen (MB-N) of the U 

and D tubes, clay, loam, sand, total nitrogen (TN) and C:N ratio of reduced 

tillage (RT) and conventional tillage (CT) fields 

Mineralization rate 

(kg N ha-1 day-1) 

MB-N 

(kg MB-N ha-1 day-1) 

Clay 

(%) 

Loam 

(%) 

Sand 

(%) 

TN 

(%) 

C:N 

ratio 

  D U D      

RT U 0.838 ** 0.493   0.677 * 0.241 0.630 -0.590 0.215 -0.108 

 D  0.735 * 0.829 * 0.482 0.881 ** -0.869 ** 0.662 * -0.368 

CT U 0.813 * 0.863 ** 0.733 * 0.451 0.418 -0.460 0.666 -0.413 

 D  0.910 ** 0.868 ** 0.513 0.699 -0.718 * 0.694 -0.650 

Significant differences *: P = 0.05; **: P = 0.01 

 

 

5.5.3. Nitrogen of physical fractionation 

The high C:N ratios of the POM fractions (13-32) can be explained by the fact  

that they are relatively fresh. Less or undecomposed OM consists of large 

proportions of lignin-derived monomers and dimers and of carbohydrate and are 

poor in N-containing compounds (Appendix III – Figure III.2). The low C:N 

ratio of the clay and silt fraction (5-11) reflect the presence of the relative higher 

proportion of N compared to OC in the <53 µm fraction. Indeed N containing 

compounds and recalcitrant N heterocycles have been reported to be enriched 

with decreasing particle size which may be explained by the selective 

accumulation of microbial N containing metabolites in the finer soil fractions 

(Leinweber & Schulten, 1995). The C:N ratio of the iPOM was lower than the 

C:N ratio of the fPOM fraction for most fields. This indicates that the iPOM is 

an intermediate decomposed fraction of OM which is more stabilized inside the 

micro-aggregates than the fPOM but more labile than the silt and clay OM 

(Leinweber & Schulten, 1995; Sleutel et al., 2007b). 

 

The amount of N in the coarse and fine fPOM fractions were on average 96% 

and 53% higher in the RT compared to CT fields, which was higher than for OC 

in these fractions (Figure 5.6 and Appendix III – Figure III.2). The amount of N 
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in the iPOM fraction was on average 50% higher in RT than CT fields, which is 

comparable as for OC in this fraction. The amount of N in the <53 µm fraction 

was comparable for the RT and CT fields. This indicates on average a lower/ 

comparable and comparable C:N ratio for the POM and <53 µm fraction of RT 

compared to CT fields, respectively.   

 

 

 

5.6. CONCLUSION 

Crop rotations in Western Europe often include beets or potatoes. Despite the 

soil disturbance at the harvest of these crops a more pronounced stratification of 

% TN in the soil profile was found for these rotations under RT agriculture. 

However, the TN stock in the RTC fields was lower or similar compared to CT 

fields, even after 20 years RTC agriculture. No trend could be found in the 

change in TN stock of RTDD compared to CT fields. The higher % TN in the 

upper 0-15 cm depth layer of RT fields resulted in a higher N mineralization 

rate and MB-N content in undisturbed soil cores under controlled conditions in 

the laboratory. Recalculation of the N mineralization rate obtained in the 

laboratory to N mineralization per ha and per year using the monthly average 

temperatures and considering the higher stratification of % TN of RT compared 

to CT fields indicated that the differences in N mineralization in the upper 30 

cm between CT and RT fields are too small to adapt the N fertilization for RT 

fields. 
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SOIL SAMPLING FOR MEASURING THE NITROUS OXIDE EMISSIONS 
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Modified from: 

D’Haene, K., Van den Bossche, A., Vandenbruwane, J., De Neve, S., Gabriels, D., 
Hofman, G. The effect of reduced tillage on nitrous oxide losses from silt loam soils. 
Biol. Fertil. Soils, submitted. 
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6.1. ABSTRACT 

RT agriculture is an effective measure to reduce soil loss from soils susceptible 

to erosion in the short term but has often been found to increase N2O emissions 

from soils. Three silt loam fields under RT agriculture running for a different 

number of years and three fields under CT agriculture with comparable soil type 

and crop rotation were selected for measuring N2O-N emissions. Therefore, 

undisturbed soil samples taken in September 2005 and February 2006 were 

incubated in the laboratory at 80% WFPS and N2O emissions were measured. 

N2O-N emissions from RT fields tended to be slightly higher than the N2O 

emissions from CT fields. The increase in N2O-N emissions of RT compared to 

CT fields was correlated with an increase in % TN and MB-N. Denitrification 

and nitrification are microbial processes that indeed strongly depend on the 

availability of OC and TN. Leaving the straw on the field, as is a typical feature 

for RT agriculture, possibly resulted in low mineral N content in the soil and a 

reduction of the potential N2O-N emissions from RT fields. 
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6.2. INTRODUCTION 

Denitrification, a form of anaerobic respiration during which NO3
- or nitrite 

(NO2
-) is reduced to gaseous N oxides (NO and N2O) and N2, is important not 

only because N2O is a greenhouse gas and affects the stratospheric ozone layer 

but also with respect to N use efficiency (Hofman & Van Cleemput, 2001). 

Denitrification strongly depends on soil NO3
- concentrations and the availability 

of OC present in SOM, crop residues or green manure. Denitrification rates in 

the field tend to increase with increasing soil moisture content (e.g. Bremner, 

1978; Firestone, 1982; Aulakh et al., 1983; Sextone et al., 1985; Colbourn & 

Harper, 1987, Klemedtsson et al., 1988; Bergstrom & Beauchamp, 1993; 

Clayton et al., 1997; Colbourn, 1998). Nitrification can also result in the 

formation and loss of N2O. N2O emissions from nitrification mainly depend on 

the availability of NH4
+, easily available OC and soil moisture content. The 

percentage of WFPS in soils is a useful indicator of the relative aerobic and 

anaerobic microbial activities in soils. Nitrification declines rapidly with 

increasing water content above 60% WFPS in favour of denitrification because 

aeration is a major factor regulating nitrification (e.g. Linn & Doran, 1984; 

Firestone & Davidson, 1989; Aulakh et al., 1991a, b & 1992; Abassi & Adams, 

2000). 

 

On the one hand, RT agriculture under a temperate climate increases the % TN 

in the surface soil (see 5.4.1). Soil moisture content is often higher under RT 

fields covered with crop residues than CT fields (e.g. Stockfisch et al., 1999; 

Balesdent et al., 2000). Since these factors both increase N2O emissions, 

fertilization during the growing season were reported to result in high peaks of 

N2O emissions from RT fields (Granli & Bøckman, 1994; Johnson et al., 2005). 

On the other hand, CT fields often have a slightly higher surface temperature 

and this in combination with more aerated conditions has been reported to result 

in higher N mineralization and a higher amount of NO3
--N which in turn can 

promote N2O emissions under CT fields (Johnson et al., 2005). Aggregate 

stability and drainage conditions tend to be better under RT compared to CT 

agriculture (Hussain et al., 1999; Strauss et al., 2003). A higher aggregate 

stability and better drainage result in lower N2O emissions. Since all the  above 

mentioned factors are strongly interrelated, it is difficult to predict the effects of 

RT agriculture on N2O emissions and conflicting results are reported in 

literature (Johnson et al., 2005). 
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Research on N2O emissions in RT agriculture under temperate climates has been 

focused mainly on cereal crop rotations under RTDD agriculture. From intact soil 

cores in the laboratory Liu et al. (2007) observed a greater potential for N2O 

loss after 5 years RTDD than CT agriculture in a clay loam soil in Canada. One 

to 4 years after the change to RTDD agriculture higher N2O emissions were 

measured under RTDD than CT agriculture in a silt loam soil in New Zealand 

(Choudhary et al., 2002) and in a silty clay loam soil in Quebec under field 

conditions which was attributed to the higher soil moisture content and BD (Fan 

et al., 1997). Robertson et al. (2000) and Drury et al. (2006) did not measure 

significant differences in N2O-N emissions the first 3 and 8 years after changing 

to RTDD agriculture on a clay loam soil in Canada and on a loam soil in 

Michigan, respectively. Kessavalou et al. (1998) weekly measured lower N2O 

emissions for a RTDD (23 to 25 years) than a CT and RTC field. The differences 

in N2O emissions were highest during spring and became gradually smaller 

throughout the year. Based on the output of linear mixed-effect modelling Six et 

al. (2004b) estimated that the first 5 year after the shift to RTDD agriculture of 

cereal crop rotations under temperate climate N2O-N emissions are 3.8±0.8 kg 

N2O-N ha-1 y-1 higher for RTDD compared to CT fields but after long term RTDD 

agriculture (>20 years) the N2O-N emissions are 4.2±1.8 kg N2O-N ha-1 y-1 

lower in RTDD compared to CT fields. 

No trend in differences of N2O-N emissions between RTC, RTDD and CT fields 

with a maize and soybean crop rotation was found by Hilton et al. (1994), Elmi 

et al. (2003) and Venterea et al. (2005). They concluded that the type, timing 

and amount of fertilizers and organic manure applications have a larger effect on 

the yearly N2O-N emissions under field conditions than the type of tillage. 

 

While RT agriculture is gaining momentum in Western Europe, to date research 

on RT agriculture was focused mainly on the reduction of soil erosion and 

changes in SOC stocks. Little is known about the influence of RTDD and RTC 

agriculture on N2O-N emissions under the specific Western European climatic 

and soil conditions, with crop rotations containing crops that are rather 

uncommon under RT agriculture including an important share of root and tuber 

crops. Therefore, the objective of this study was to looked into the effects of RT 

agriculture on N2O-N emissions for these specific conditions.  
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6.3. MATERIALS AND METHODS 

6.3.1. Nitrous oxide emissions 

N2O emissions were measured on undisturbed soil samples during incubations 

under controlled circumstances in the laboratory on soil samples taken in 

September 2005 and February 2006. 

For the measurements of the N2O-N emissions, soil cores inside PVC tubes with 

a 6.8 cm inner diameter and 7 cm height were used. On each field, visible crop 

residues were removed before sampling. The PVC tubes were pushed into the 

soil to a depth of 5 cm. The tubes were carefully dug out, excess soil from the 

bottom of the core was removed, and the bottom was covered with a PVC cap. 

Duplicate samples from each plot were taken. Two replicate undisturbed soil 

cores with a volume of 98 cm³ were additionally taken from the 0-5 cm depth 

layers close to each PVC tube for the determination of the % WFPS at the time 

of sampling. Oven dry weight was determined after drying at 105 °C (24 hours). 

The BD was based on the soil dry weight and volume of the soil core. 

The soil samples taken in September were not dried prior to incubation because 

the moisture content was on average only 46% WFPS (see Eq. 3) at sampling 

(Table 6.1). The moisture content of the soil samples taken in February 2006 

was on average 74% WFPS (Table 6.2). These soil samples were dried to ±50% 

WFPS prior to the incubation. 

 

On day 0 the undisturbed PVC tubes were placed in glass jars and preincubated 

at a temperature of 15 °C. After 8 hours, demineralised water was added to 

obtain a WFPS of 80% and the jars were closed airtight and incubated at a 

temperature of 15 °C. On day 1, 16 and 24 hours after closure of the jars, the 

concentration of N2O-N in the headspace was measured by sampling 1 ml with a 

gas-tight syringe. The measurements of the concentration of N2O-N in the 

headspace continued twice a day till the production of N2O-N in the headspace 

became undetectable. Every day after the second analysis of the concentration of 

N2O-N in the headspace the jars were left open for 30 minutes to allow 

replenishment of O2.  

The N2O-N concentrations were immediately measured with a gas 

chromatograph equipped with an electron capture detector and 2 packed 

columns (15 and 10 meters respectively, Porabond Q) (Trace GC-ECD, 

Interscience, the Netherlands). The operating conditions were as follows: carrier 

gas N2 (29.9 ml min-1), injector temperature 200 °C, column and oven 

temperature 30 °C and detector temperature 310 °C. The chromatograms were 
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calibrated using N2O-N standard gas (23±1.5 µl l-1 in He). The N2O emissions 

were calculated in g N ha-1 by extrapolating the area of the tube to 1 ha.  

 

The moisture content of the undisturbed soil samples taken in September 2005 

was checked on day 3 and adjusted if needed. Since the addition of water to the 

undisturbed soil samples taken in September 2005 stimulated the N2O 

emissions, the moisture content of the undisturbed soil samples taken in 

February 2006 was not adjusted to avoid extra N2O emissions. 

 

 

6.3.2. Microbial biomass nitrogen and mineral nitrogen 

The MB-N and mineral N content of the incubated soil samples were measured 

at the end of the incubation. 

The MB-N content was determined with the chloroform fumigation extraction 

method (Voroney et al., 1993). Total soluble nitrogen was extracted with 0.5 M 

K2SO4 (1:2 soil weight (g): extractant volume (ml)) and NO3
--N measured 

colorimetrically after oxidization with the persulfate oxidation method 

(Koroleff, 1983) with a ‘continuous flow auto-analyzer’ (Chemlab System 4, 

Skalar, the Netherlands). MB-N was calculated as the difference between NO3
--

N after and before the fumigation and corrected for the extraction efficiency. As 

suggested by Joergensen & Mueller (1996) an extraction efficiency KEN value of 

0.54 was selected. 

 

Mineral N (NO3
--N and NH4

--N) was extracted from the soil samples with 1 M 

KCl (1:2 soil weight (g): extractant volume (ml)) and measured colorimetrically 

with a ‘continuous flow auto-analyzer’ (Chemlab System 4, Skalar, the 

Netherlands). 

 

 

6.3.3. Statistical analysis 

A t-Test was used to determine significant differences between the fields per 

location and sampling time (P = 0.05). A correlation analysis was performed 

using a Pearson’s correlation matrix in SPSS (SPSS version 12.0, SPSS Inc., 

USA). 
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6.4. RESULTS 

6.4.1. Soil samples taken in September 2005 

The % WFPS and BD were higher in fields 1 and 4 in Heestert compared to 

fields 13 and 14 in Villers-le-Bouillet and fields 17 and 18 in Court-Saint-

Etienne (Table 6.1). The amount of mineral N was low in fields 1, 4, 13, 14 and 

17 but high in field 18. In Court-Saint-Etienne, the amount of mineral N of 

RTC_20 field 17 was significantly lower (P = 0.05) than CT field 18. At each 

location, the MB-N content of the RT fields was (significantly) higher than the 

MB-N contents of CT fields. 

 

 
Table 6.1 Bulk density (BD), water filled pore space (WFPS) at sampling, N2O-N 

emission, microbial biomass N (MB-N) and mineral N of the 0-5 cm depth 

layer at the end of the incubation of fields 1 and 4 in Heestert, fields 13 and 

14 in Villers-le-Bouillet and fields 17 and 18 in Court-Saint-Etienne in the 

soil samples from September 2005 

Field BD 

(Mg m-³) 

WFPS at 

sampling 

(%) 

N2O-N emission 

(µg N kg-1 

dry soil day-1) 

MB-N 

(mg N kg-1 

dry soil) 

Mineral N 

(mg N kg-1 

dry soil) 

1 RTC_2 1.32  (0.09) 72  (8)   16.0      (4.9) *   9.5  (1.4) *   3.4    (0.9) 

4 CT 1.41  (0.08) 65  (7)     5.0      (1.8)   5.8  (1.7)   3.4    (1.4) 

13 RTDD_10 1.16  (0.08) 37  (6)     9.4      (3.9) 19.6  (0.8) *   2.4    (0.6) 

14 CT 1.15  (0.10) 31  (7)     9.6      (4.3)   3.3  (1.2)   4.0    (1.7) 

17 RTC_20 1.06  (0.13) * 32  (6)   92.6  (118.4) 11.7  (3.4)   7.1    (2.3) * 

18 CT 1.19  (0.06) 38  (7) 109.5    (56.6)   4.6  (2.2) 51.0  (12.1) 

RTC: reduced with cultivator or soil loosener, RTDD: by direct drilling with in subscript the period in 

years; CT: conventional tillage 

Standard deviation between brackets 

*: Significant differences per location (P = 0.05) (t-Test) 

 

 

Two days after the start of the incubation of the samples taken in September 

2005 an increase in N2O-N emissions was measured on fields 1 and 13, 14, 17 

and 18, while there was practically no increase in N2O-N emission in field 4 

(Figure 6.1). The N2O-N emission decreased on day 3, except for field 18. After 

adjusting the soil moisture content on day 3, an increase in N2O-N emission was 

observed in fields 1, 4, 13, 14 and 18. After 10 days of incubation, the N2O-N 

emission became undetectable. The total N2O-N emission after 10 days for field 

1 (112 g N2O-N ha-1) was significantly higher than for field 4 with only 35 g 

N2O-N ha-1 emitted. The total N2O-N production of fields 13 and 14 in Villers-
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le-Bouillet was similar, namely 66 and 67 g N2O-N ha-1, respectively. The total 

N2O-N emission of fields 17 and 18 from Court-Saint-Etienne were higher than 

for any of the other fields, namely 647 and 766 g N2O-N ha-1, respectively. 
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Significant differences are indicated with different letter (P = 0.05) (t-Test) 

Bars indicate standard deviation 

 

Figure 6.1 N2O-N emission (g ha-1 day-1) (vertical lines = standard deviation) of the 0-

5 cm depth layer of fields 1 (reduced tillage field with cultivator since 2003 

(RTC_2)) and 4 (conventional tillage (CT)) in Heestert, fields 13 (reduced 

tillage field by direct drilling since 1995 (RTDD_10)) and 14 (CT) in Villers-

le-Bouillet and fields 17 (RTC_20) and 18 (CT) in Court-Saint-Etienne in the 

soil samples from September 2005 
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6.4.2. Soil samples taken in February 2006 

The BD of the sampled fields varied from 1.23 to 1.33 Mg m-³. At the three 

locations, the amount of mineral N of the RT fields was low but (significantly) 

higher than that of the CT fields. The MB-N content of the RT fields was 

significantly higher (P = 0.05) than the CT fields (Table 6.2). 

  

 
Table 6.2 Bulk density (BD), water filled pore space (WFPS) at sampling, N2O-N 

emission, microbial biomass N (MB-N) and mineral N of the 0-5 cm depth 

layer at the end of the incubation of fields 1 and 4 in Heestert, fields 13 and 

14 in Villers-le-Bouillet and fields 17 and 18 in Court-Saint-Etienne in the 

soil samples from February 2006 

Field BD 

(Mg m-³) 

WFPS at 

sampling 

(%) 

N2O–N emission 

(µg N kg-1 dry 

soil day-1) 

MB-N 

(mg N kg-1 

dry soil) 

Mineral N 

(mg N kg-1 

dry soil) 

1 RTC_2 1.30  (0.08) 74    (8) / 11.4  (0.9) * 1.9  (0.2) 

4 CT 1.30  (0.11) 70  (10) /   4.6  (0.6) 1.2  (0.2) 

13 RTDD_10 1.30  (0.07) 81    (6) 12.9    (7.1) 14.0  (1.6) * 5.2  (0.7) * 

14 CT 1.31  (0.04) 77    (5)   8.0    (4.5)   5.6  (0.7) 2.6  (0.3) 

17 RTC_20 1.23  (0.11) * 68    (8) 24.7  (21.7) 10.9  (2.9) * 7.5  (2.5) 

18 CT 1.33  (0.06) 74    (8)   6.5    (3.4)   5.3  (1.7) 5.0  (0.6) 

RTC: reduced with cultivator or soil loosener, RTDD: by direct drilling with in subscript the period in 

years; CT: conventional tillage 

Standard deviations between brackets 

/: not available 

*: Significant differences per location (P = 0.05) (t-Test) 

 

 

No measurable N2O-N emissions were observed from fields 1 and 4 in the 

samples taken in February 2006. Two days after the start of the incubation a 

peak of N2O-N emission was measured for fields 13 and 17, while the N2O-N 

emission was slightly increased in fields 14 and 18 on day 5 and 7, respectively 

(Figure 6.2). The N2O-N emission after 8 days incubation of RT fields 13 and 

17 was 91 and 173 g N2O-N ha-1, respectively, while only 56 and 45 g N2O-N 

ha-1 was emitted from fields 14 and 18, respectively. 
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Significant differences are indicated with different letter (P = 0.05) (t-Test) 

Bars indicate standard deviation 

 

Figure 6.2 N2O-N emission (g ha-1 day-1) (vertical lines = standard deviation) of the 0-

5 cm depth layer of fields 13 (reduced tillage field by direct drilling since 

1995 (RTDD_10)) and 14 (CT) in Villers-le-Bouillet and fields 17 (reduced 

tillage field with cultivator since 1985 (RTC_20)) and 18 (CT) in Court-

Saint-Etienne in the soil samples from February 2006 

 

 

6.5. DISCUSSION 

In situ studies of N2O-N emissions are difficult because of the extreme temporal 

and spatial variability associated with nitrification and denitrification processes 

(Well & Myrold, 2002). Spatial variability results from a non-homogeneous 

distribution of available C, NO3
--N and NH4

+-N and soil moisture content 

resulting in “hot spots” of microbial activity (Luo et al., 2000). Even in 

apparently well-aerated soils anaerobic hot spots may be present where 

denitrification occurs. The spatial variability of RT fields tends to be even 

higher than in CT fields. Soil loosening instead of ploughing indeed was found 

to result in a less physical homogeneous soil, because lower soil moisture 

conditions and BD are created on the locations where the tines have worked the 
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soil compared to the unworked part of the soil (Perfect & Caron, 2002; Duiker 

& Beegle, 2006; Roisin, 2007). 

Under field conditions, variables having a strong effect on N2O-N emissions, 

such as soil moisture content and temperature, often override the effect of soil 

variables such as texture and availability of C and N. Part of the high variability 

of N2O-N emissions was controlled in this study by measuring in the laboratory 

under fixed conditions, namely at 80% WFPS and 15 °C. Due to the sampling 

protocol adapted here (undisturbed tubes), the variability in N2O-N emissions 

between the different tubes remained high, especially in RTC_20 field 17 (Table 

6.1 and Table 6.2). However, homogenizing the soil before the incubation in 

order to reduce the variability would have removed the inherent differences in 

soil structure between the RT and CT fields, hence invalidating the comparison 

that we intended to make. The use of disturbed soil cores for measuring and 

comparing N2O emissions could have resulted in decomposition of physically 

protected OM resulting in a higher amount of available C and N and as a 

consequence possibly higher N2O-N emissions.  

Under field conditions a big part of the variability in N2O-N emission is caused 

by the alternation of drying and wetting cycles (Priemé & Christensenn, 2001). 

After adjusting the soil moisture content on day 3 of the samples of September 

2005, a second small peak of N2O-N emissions was observed in fields 1, 4, 13, 

14 and 18 but not in field 17 (Figure 6.1). The small increase in soil moisture 

content seemed to be high enough to cause a detectable increase in N2O-N 

emissions. Since it was thought that this would induce additional variability, no 

water was added during the incubation of the samples of February 2006. 

 

N2O-N emissions were measured on soil samples taken in September 2005 and 

February 2006 in order to determine if the potential N2O-N emissions are 

different in summer and winter. The amount of mineral N was low at the end of 

the incubation in the samples from September 2005, except for field 18 with 51 

mg N kg-1 dry soil (equivalent to 182 kg N ha-1 30 cm-1 ) (Table 6.1). The high 

amount of mineral N in that field can be a result from the application of organic 

manure after the harvest of winter wheat in August 2005. Both fields received 

organic manure in the month prior to sampling. The application of 30 tons of 

cattle manure ha-1 on CT field 18 contained approximately 250 kg N ha-1, of 

which 60 kg N ha-1 was directly available in mineral form. The organic manure 

application (7 Mg chicken manure ha-1) of RTC_20 field 17 contained 

approximately 230 kg N ha-1, including 55 kg mineral N ha-1 (Table 2.15). 

Although similar amounts of N were applied on both fields, a large portion of 

the N that became available was probably immobilized by the straw left on 
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RTC_20 field 17, whereas little immobilization occurred in the CT field where 

straw was removed. Leaving the straw on the field is a typical feature of RT 

agriculture and these inherent differences in RT and CT management should 

explicitly be taken into account when comparing overall N2O emissions between 

both systems. The low mineral N content in the soil samples from CT field 18 

taken in February 2006 was probably to a large extent due to the N uptake by 

the green manure during the autumn and earlier N emissions (Table 2.4). 

 

A positive and significant Pearson correlation of the N2O-N emissions with 

mineral N was found (P = 0.05) (Table 6.3). 

 

 
Table 6.3 Pearson correlation between the N2O-N emissions, clay, bulk density (BD), 

total nitrogen (TN), microbial biomass nitrogen (MB-N) and mineral 

nitrogen  
 Clay 

(%) 

BD 

(Mg m-³) 

TN 

(%) 

MB-N 

(mg N kg-1  

dry soil) 

Mineral N 

(mg N kg-1 

dry soil) 

N2O-N (mg N kg-1 dry soil day-1) 0.143 -0.375 ** -0.035 -0.010 0.391 ** 

Clay (%)  -0.345 ** 0.335 

** 

0.159 0.209 

BD (Mg m-³)   -0.233 * -0.037 -0.094 

TN (%)    0.761 ** -0.172 

MB-N (mg N kg-1 dry soil)     -0.264 * 

Significant differences *: P = 0.05; **: P = 0.01 

 

 

Low N2O-N emissions were measured, independent of the sampling time, for 

the fields with a low amount of NO3
--N, except for RTC_20 field 17 sampled in 

September 2005 with a low amount of NO3
--N but high N2O-N emissions (Table 

6.1 and Table 6.2). 

In situations very favourable to denitrification, namely application of organic 

manure, green manure or crop residues under high soil moisture conditions, 

large peaks up to a few kg N2O-N emissions ha-1 can occur (Schloemer, 1991; 

Beauchamp et al., 1996). If the moisture conditions become favourable for 

denitrification several weeks after the application of organic manure, green 

manure or crop residues smaller peaks of N2O-N emission can occur (±0.05 kg 

N2O-N ha-1) (Aulakh et al., 1984; Vermoesen, 1999; Goossens et al., 2001; 

Stevens & Laughlin, 2002; Rochette et al., 2004). The application of organic 

manure in fields 17 and 18 in August 2005 probably resulted in sufficiently 

large amounts of easily mineralizable C and N in the soil samples taken in 

September 2005, which in combination with the increase of the moisture content 
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up to 80% WFPS, resulted in somewhat higher N2O-N emissions in the soil 

samples from fields 17 and 18 taken in September 2005 than the background 

N2O-N emissions. 

 

The BD in fields 13, 14, 17 and 18 for the soil samples taken in September 2005 

were low because tillage was done only a few weeks prior to sampling (Table 

6.1). The BD in the soil samples of fields 13, 14, 17 and 18 taken in February 

2006 were significantly larger than in September 2005 due to the stabilization of 

the soil. A higher BD can increase the N2O-N emissions. Ball et al. (1999) 

measured higher N2O-N emissions in a CT field in Scotland on the area 

compacted by a roller than on the uncompacted area. Ruser et al. (2006) took 

undisturbed tubes from differently compacted areas (the ridges, the interrow 

area and wheel compacted interrow area) of a silt loam CT field with potatoes in 

Germany to the laboratory, adjusted to different soil moisture contents and 

measured N2O-N emissions. The results showed that for the same % WFPS 

more compacted areas emitted more N2O-N than the less compacted areas. 

Although BD can explain differences in N2O-N emissions within one field, 

other factors may be more important between fields. The BD of RTC field 17 

was lower than CT field 18 in February 2006 (Table 6.2) while the SOC content 

and % TN of RTC field 17 was higher than CT field 18. The higher % TN, in 

combination with the higher MB-N and mineral N content, most probably 

contributed to the higher N2O-N emissions in RTC field 17 compared to CT field 

18 in the samples taken in February 2006. 

 

A higher amount of SOM and crop residues in the upper layer result in a higher 

C availability for the micro-organisms and as a consequence in a higher MB 

amount in the RT compared to the CT fields (e.g. Höflich et al., 1999; 

Stockfisch et al., 1999). At each location the MB-N contents of the RT fields 

were (significantly) higher than the CT fields (Table 6.1 and Table 6.2). After 

the shift from CT to RT agriculture a relative increase in fungal to bacterial 

biomass is observed under RT fields because more crop residues are at the 

surface and the C:N ratio of the upper layer is higher of RT fields (Beare et al., 

1997; Frey et al., 1999; Bossuyt et al., 2001). Moreover, the hyphens of the 

fungi are destroyed at ploughing resulting in a decrease of fungi under CT 

fields. The expected increase in the ratio fungal to bacterial biomass in RT 

compared to CT fields could partly explain why the increase in N2O-N 

emissions was not proportional with the MB-N increase. Per location, the higher 

N2O-N emissions of the RT fields were correlated with a higher MB-N amount. 
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N2O-N emissions are also enhanced with increasing fineness of soil texture 

(Chaterpaul et al., 1980; Groffman & Tiedje, 1989 & 1991; Arah et al., 1991; 

Liang & MacKenzie, 1997). D’Haene et al. (2003) found that the denitrification 

potential of the upper horizons of Flemish arable fields and pastures could be 

divided into three groups: soils with a high clay content (>30% clay) were 

characterised by a high denitrification potential; soils with medium texture had a 

medium denitrification potential and soils with a high sand content (>80% sand) 

had a low denitrification potential. Within each textural group a higher % TN 

resulted in higher denitrification potentials. It looks as if the second factor 

influencing the denitrification potential, % TN, can explain the higher N2O-N 

emissions in RT compared to CT fields. The increase in % TN in the upper layer 

of RT compared to CT fields in this research was, however, lower than 

expected. The Western European crop rotation with sugar beets or potatoes 

causes heavy soil disturbance every 2 or 3 years at harvest. The frequent soil 

disturbance possibly resulted in a lower increase in % SOC and TN under RT 

fields compared to the increase in % TN in the upper layer in experimental 

fields on the shift of management to RT agriculture in America, Canada and 

Australia with cereal - soybean crop rotations (see 5.5.1). As a consequence of 

the lower increase in % TN, even after 21 years RT agriculture, a limited 

increase in N2O-N emissions was measured for RT fields in this research 

compared to the increase in N2O-N emissions measured in experiments on the 

shift of management to RT in America, Canada and Australia. 

 

 

6.6. CONCLUSION 

RT agriculture is an effective measure to reduce soil loss from soils susceptible 

to erosion in the short term but is often claimed to increase the N2O emissions. 

N2O-N emissions from RT fields tended to be slightly higher than the N2O 

emissions from CT fields. The higher N2O-N emissions were correlated with a 

higher % TN and MB-N. Under field conditions, the type, timing and amount of 

fertilizers and organic manure applications will have the largest effect on the 

N2O-N emissions. Especially organic manure with easily available C and N can 

result in a peak of N2O-N emission. Leaving the straw on the field, as is a 

common practice for RT fields, results in a lower mineral N content in the soil 

and might reduce the potential N2O-N emissions from RT fields. Next to leaving 

straw on the field, composting of manure to stabilize the available C and N may 

reduce potential N2O-N emissions in the field.  
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7.1. INTRODUCTION 

CsT agriculture was first introduced on a large scale as a very effective measure 

to reduce erosion and store water into the soil (Arshad, 1999; Six et al., 2002b; 

Bautista et al., 2004; Derpsch, 2007). To date the research on the effects of CsT 

compared to CT agriculture were mainly focussed on the crop rotations under 

the climate and soil conditions in the USA, Latin America and Australia. In 

these large arable areas mainly cereals, soybean and sunflower are grown under 

a warm and dry climate (Arshad, 1999; Uri, 1999; Six et al., 2002b; D'Emden & 

Llewellyn, 2004; Derpsch, 2007). The crop rotations in Western Europe with a 

maritime temperate climate often include beets and potatoes, resulting in a high 

disturbance of the soil at the formation of the ridges and at harvest. Erosion 

problems mostly occur with beets, potatoes and maize (Esteve et al., 2004; 

Geelen, 2006) impelling on-site measurements. 

 

In this research, we studied the effect of the shift of management from CT to RT 

agriculture, a type of CsT agriculture which refers to tilling the whole soil 

surface but eliminating one or more of the operations that would otherwise be 

done in a CT system. We’ve researched the effect of the shift of management 

from CT to RT agriculture on the physical and chemical soil properties of soils 

under the specific Western European climatic and soil conditions, with crop 

rotations containing crops that seem less suitable under RT agriculture, 

including an important share of root and tuber crops. However, other factors 

than physical and chemical soil properties have to be taken into account before 

sensible conclusions can be drawn on the potential for RT agriculture in this 

study area. Therefore, we summarized our results and combined them with 

existing data on other aspects of RT agriculture in order to obtain an integrated 

picture of the advantages and drawbacks for RT agriculture in Flanders.  

 

 

We combined data from literature and experiences from RT farmers concerning 

yields, overall C and N dynamics, control of weeds, diseases and pests and 

economics with the effects on the physical and chemical soil properties 

measured in this study in order to put our results in a wider perspective and to 

conclude whether there is potential for RT agriculture in Flanders. 
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7.2. PHYSICAL SOIL PROPERTIES 

In order to investigate the effect of RT on runoff and erosion, the aggregate 

stability and infiltration rate were measured, while the PR and WRC were 

determined to find out if the soil structure and potential for water stockage are 

optimal for root and crop growth in RT fields. 

 

The short term (≤5 years) effect of RT agriculture on the reduction of soil 

erosion and runoff of crop rotations with root and tuber crops had been 

demonstrated before with rainfall simulations under field conditions (Gillijns et 

al., 2002 & 2004; Goyens et al., 2005; Leys et al., 2007; Vermang et al., 2007). 

The residues of the crops or green manure at the soil surface indeed intercept the 

rain and protect the soil against crusting of the soil surface. Moreover, the 

coverage slows down the runoff flow velocity (Layton et al., 1993; Vandergeten 

& Roisin, 2004; Gillijns et al., 2005). The aggregate stability of the upper 10 cm 

depth layer measured with the method of De Leenheer & De Boodt (1959) and 

the three methods of Le Bissonnais (1996) was a short time after the shift to RT 

agriculture higher than under CT agriculture which helps to reduce erosion 

losses (chapter 3). 

 

The trend of a higher infiltration rate under RT compared to CT agriculture can 

be explained by the higher aggregate stability, the canals made by earthworms 

and roots which are not (RTDD) or less (RTC) destroyed compared to ploughing 

(CT) and the vertical cracks from loosening the soil (RTC). The tines of the 

machines used to loosen the soil indeed make vertical cracks in the soil which 

transport the water fast to the deeper depth layers. These vertical cracks can be 

detected for several years with measurements of the PR (chapter 3) 

(Franzluebbers, 2002; Baritz et al., 2004; Vandergeten & Roisin, 2004).  

 

Since roots provide the crops with water and nutrients, a good rooting system is 

necessary for plant nutrition. For an optimal root growth a homogeneous and 

loose soil is needed. Compacted zones and cavities in the soil cause a branching 

or deformation of the roots and as a consequence decrease the crop yield (Pardo 

et al., 2000; Nevens & Reheul, 2003; Vandergeten & Roisin, 2004). If the 

tillage operation and harvest can occur under optimal soil moisture conditions, 

RT agriculture including root and tuber crops (and green manure) can maintain 

but not improve the soil structure (Vandergeten, 2005 & 2006). As a 

consequence it is necessary that the soil structure is optimal before changing the 

management to RT agriculture (Vandergeten & Roisin, 2004; Thomas, 2006).  
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The BD of the 5-10 cm depth layer tended to be lower under RT than CT 

agriculture. The PR was higher in the upper depth layers (10-30 cm) under RTDD 

than CT agriculture and often was higher than the maximum PR of roots (= 3 

MPa). The PR in the 20-30 cm depth layer was only higher under RTC than CT 

agriculture if the working depth was lower (chapter 3). The farmers with RTC 

fields find that the upper depth layers are easier to work compared to CT fields. 

However, if the farmers can not harvest the beets and potatoes under optimal 

soil moisture conditions the soil structure is reduced for several years (D’Haene 

et al., 2007). 

 

An optimal soil structure not only facilitates oxygen and water infiltration but 

can also improve water storage (Franzluebbers, 2002). Since the crop yield 

under RT agriculture is often lower in wet years and higher in dry years than 

under CT agriculture (see 7.4), it was assumed that a higher PASW under RT 

compared to CT agriculture was partly responsible for differences in crop 

yields. However, the fact that no differences in PASW were found between RT 

and CT fields, indicated that other factors were responsible for the differences in 

crop yields. Soil temperature and evaporation under RT agriculture are lower 

than under CT agriculture due to the presence of crop residues or green manure 

at the surface (Drury et al., 1999; Balesdent et al., 2000; Larney et al., 2003; Six 

et al., 2004a) which may result in higher soil moisture contents under RT 

agriculture (chapter 3).  

 

 

7.3. CARBON DYNAMICS AND BUDGET 

A good soil structure is strongly related with SOM. Higher SOM and microbial 

biomass result in a better aggregate stability and a lower risk of erosion and 

therefore it is essential to maintain a high SOM content in the upper depth layer 

(Broninck & Lal, 2005). Maintaining or increasing the SOC stock is also 

important in the framework of “global change” (IPCC, 2000). 

 

The objective of chapter 4 was to study the effect of RT agriculture on the C 

dynamics. RT agriculture resulted in a higher stratification of the % SOC but 

not in higher SOC stocks in the 0-60 cm depth layer of the RT compared to the 

CT fields. The potential to increase C in soils under RT agriculture in Western 

Europe is probably limited because the RT fields are periodically heavily 

disturbed (harvesting of beets and potatoes) which possibly limits the potential 

positive effect of RT (chapter 4). Moreover, although tillage intensity in this 
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study was lower under RT than CT agriculture, the soil disturbance caused by 

tillage remained relatively intense under RT agriculture (chapter 2). 

 

The higher amount of SOC at the soil surface was most pronounced in the labile 

fraction, which may result in a fast loss of SOC when RT fields are ploughed. 

However, the C mineralization rates measured in the laboratory on undisturbed 

and disturbed soil indicated that an intensive soil operation did not result in 

higher C mineralization rates of those silt loam RT fields. 

 

Looking at the overall C budget, the amount of C from fuel use emitted by 

tractors, e.g. during tillage operations, also has to be considered. Due to the 

lower needed tractor time, loosening the stubble, preparing the seedbed and 

sowing RTC fields resulted in a reduction of 33 l ha-1 y-1 (75 compared to 108 l 

ha-1 y-1 under CT) or 24 kg C ha-1 y-1 compared to the field work when sowing 

CT fields in France (Thomas, 2006). If loosening the soil, harrowing and sowing 

were done in one passage the reduction of fuel use under RTC agriculture was 

sometimes twice as high in France and Wallonia (Haan, 2006; Thomas, 2006). 

A reduction of 59 l ha-1 y-1 or 43 kg C ha-1 y-1 was calculated under RTDD 

compared to CT agriculture (Lal, 2002; West & Marland, 2002; Thomas, 2006).  

 

 

7.4. CROP YIELDS 

Ploughing results in a higher soil temperature and dries out the soil under CT 

compared to RT agriculture. As a consequence CT fields can be sown earlier 

and the early season growth of RT fields is delayed compared to CT fields 

(Drury et al., 1999; Balesdent et al., 2000; Larney et al., 2003; Six et al., 

2004a). 

 

The only difference between the RT and CT fields of field experiments is the 

type of tillage. The timing of soil cultivation and harvest and the choice of the 

crop variety are because of practical considerations the same which facilitates 

the comparison of soil properties (Powlson, 2007). Due to the delayed growth of 

crop yields of RT agriculture an underestimation can be observed in field 

experiments. 

 

The inferiority in the crop growth under RTC compared to CT agriculture is 

decreased rather fast. The crop yields of beets, potatoes and cereal crops were 

comparable (85-115%) for RTC and CT agriculture if the soil structure is 
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optimal and tillage operations were done correctly and non superficial (0-25/30 

cm depth layer) (Ekeberg & Riley 1996; Mehdi et al., 1999; El Titi, 2001; 

Debout, 2004; Rücknagel et al, 2004; Vandergeten & Roisin, 2004; Dam et al., 

2005; Riley et al., 2005; Paauw, 2006; Vermang et al., 2007). In dry and wet 

years slightly higher and lower crop yields could sometimes be observed, 

respectively (Debout, 2004). If the tillage operations were not done under 

optimal soil conditions, the crops, especially root crops, could have large 

amounts of branched roots which resulted in a higher amount of soil tare and 

resulted in lower yields, especially in dry years (Vandergeten & Roisin, 2004). 

Undeep loosening of the soil (0-15 cm depth layer) could result in a yield 

decrease under RT compared to CT agriculture (Debout, 2004; Gillijns et al., 

2004; Serlet, 2004; Vandergeten, 2005; Govers et al., 2006).  

 

The crop yields under RTDD agriculture were comparable or lower than CT 

agriculture. The reductions in crop yields under RTDD agriculture were probably 

correlated with the higher PR in the soil profile (Debout, 2004; Gillijns et al., 

2004; Vandergeten, 2005).  

 

 

7.5. NITROGEN DYNAMICS  

Crop growth not only depends on a good soil structure but also an optimal 

nutrient supply. To avoid nutrient losses from plant production or deficiency 

problems, fertilization has to be based on plant needs and consider the input 

through mineral N in the soil, mineralization and deposition (Hofman, 1983; 

Pálmai et al., 1998; Hofman et al., 2000). Since N released by mineralization is 

often a major source of N for plant growth and strongly depends on soil factors, 

extensive data has been collected in the past on the N mineralization rate under 

controlled circumstances in the laboratory (e.g. Coppens et al., 2002) and in the 

field (e.g. Hofman, 1988). However, all these data were pertaining to CT soils. 

  

The objective of chapter 5 was to indicate whether the higher stratification of N 

under RT compared to the CT agriculture results in a higher N mineralization 

rate. Recalculation of the N mineralization rate obtained in the laboratory to N 

mineralization per ha and per year using the monthly average temperatures and 

considering the higher stratification of % TN of RT compared to CT fields 

indicated that the differences in N mineralization in the upper 30 cm between 

CT and RT fields are too small to adapt the N fertilization for RT fields (chapter 

5). 
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To limit NH3 losses, organic manure has to be worked into the soil but this can 

cause higher N2O losses under RT than CT agriculture due to a higher soil 

moisture content and easily available C in the upper layer. This research has 

shown, however, that the background emissions of N2O remain limited under 

RT agriculture (chapter 6). Under field conditions, the type, timing and amount 

of fertilizers and organic manure applications will have a larger effect on the 

N2O-N emissions than the type of tillage. Composting can stabilize the OM 

before application (Baritz et al., 2004) and reduce peaks of N losses after 

application. Compost also has a positive influence on the formation of 

aggregates and soil structure (Broninck & Lal, 2005). 

 

Experiments in Belgium showed that N fertilization for sugar beets does not 

have to be changed for (short term) RTC compared to CT fields (Vandergeten & 

Roisin, 2004). Farmers in Flanders and Wallonia confirm that the N efficiency 

is as good under RT as CT agriculture (D’Haene et al, 2007). However, the 

lower aeration and temperature of the soil of RT fields under field 

circumstances can result in a lower N mineralization rate in the spring which 

can explain the slower germination and early season growth under RT compared 

to CT agriculture (Rieger, 2001). 

 

Another important consideration is the loss of NO3
--N by leaching. In Western 

Europe, the NO3
--N leaching losses mainly occur during winter time and will be 

at least partly determined by the residual NO3
--N in the soil profile in autumn. 

We have measured the nitrate content at the start of October 2006 which gives a 

rough idea of the potential NO3
--N by leaching in the winter 2006-2007. The 

NO3
--N content (kg NO3

--N ha-1) of the 0-90 cm depth layer was comparable 

(RTC_2 field 1 compared to CT field 4 and RTDD_10 field 13 compared to CT 

field 14) or lower (RTC_20 field 17 compared to CT field 18) under RT than CT 

agriculture (Table 7.1). 

 

A provisional allowed target value of 90 kg NO3
--N ha-1 (0-90 cm) between 1 

October and 15 November has been introduced (Anonymous, 2006c) (see 

1.1.3). Only fields 1 and 4, located in Flanders, met the target value of MAP. 

However, not only the residual nitrate nitrogen in the soil profile in autumn and 

weather circumstances effect the NO3
--N leaching. The canals formed by roots, 

earthworms and cracks from loosening the soil result in a good infiltration rate 

of the rainwater under RT agriculture limiting the contact of the rainwater with 

NO3
--N in the soil and resulting in a low NO3

--N leaching of RT fields (Holland, 

2004; Thomas, 2006). 
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The high amount of mineral N in field 18 can be a result from the application of 

organic manure after the harvest of winter wheat in August 2005 (Table 2.15). 

Although similar amounts of N were applied on fields 17 and 18, a large portion 

of the N that became available was probably immobilized by the straw left on 

RTC_20 field 17, whereas little immobilization occurred in the CT field 18 where 

straw was removed. Leaving the straw on the field is a typical feature of RT 

agriculture. 

 

 
Table 7.1 Nitrate nitrogen content (kg NO3

--N ha-1) of the 0-90 cm depth layer of 

some fields sampled on 05/10/2005 (fields 1 and 4) and 06/10/2005 (fields 

13, 14, 17 and 18) 

Depth layer 1 4 13 14 17 18 

(cm) RTC_2 CT RTDD_10 CT RTC_20 CT 

0-20 5 5 52 34 33 102 

20-40 5 4 25 37 19 34 

40-60 3 0 10 18 10 21 

60-80 1 0 13 7 7 16 

80-90 0 0 4 4 2 4 

Total average 13 9 105 100 72 176 

Standard deviation 6 3 15 17 14 21 

RTC: reduced with cultivator or soil loosener, RTDD: by direct drilling with in subscript the period in 

years; CT: conventional tillage 

 

 

7.6. CROP PROTECTION 

One of the main reasons for farmers to plough is to control the weed population. 

As a consequence of changing the management to RT agriculture, the 

abundancy and diversity of weeds can change (Carter et al., 2002; D'Emden & 

Llewellyn, 2004). The germination of weeds that require no burial is limited 

after the shift to RTC or RTDD agriculture by sowing in the crop residues or 

green manure (Johnson et al., 1993; Streit et al., 2002; 2003). Seeds that need a 

period of burial to break dormancy loose their germinative capacity under RTDD 

agriculture (Yenish et al., 1992). A large part of the seeds under RTDD 

agriculture is eaten by mice (van der Weide et al., 2003). 

 

Some RT fields are overgrown with weeds. The weeds and especially the grass 

vegetation can hamper the seedbed preparation. An extra superficial mechanical 

cultivation of the soil with a harrow or cultivator after the emergence of the crop 

or green manure is a possibility to loosen up and dry out the weeds. Mechanical 
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cultivation can also be used to prepare a false seedbed and reduce weeds with a 

broad germination (Drinkwater et al., 2000; Vandergeten & Roisin, 2004; Carter 

et al., 2005; Thomas, 2006; Anonymous, 2007b). The choice to prepare a false 

seedbed depends on the weeds on the field and moment of emergence with 

regard to the sowing time (Thomas, 2006).  

 

Both the presence of more mulch on the soil surface as well as the higher soil 

moisture content can result in more bacterial and fungal infections of the main 

crops under RT compared to CT agriculture. A restricted crop rotation appears 

to include a larger risk for bacterial and fungal infections of the main crops 

under RT compared to CT agriculture (Sturz et al., 1997; Carter & Sanderson, 

2001; Peters et al., 2004 & 2005). RT farmers do not or can not consider the 

specific susceptibilities for bacterial and fungal infections of crops under RT 

agriculture choosing the variety of their crops because seeds for crop varieties 

are selected for an optimal crop yield under CT agriculture.  

 

Reducing the number of passages and the higher concentration of OM at the soil 

surface also results in a higher number of hiding places and cavities in the soil 

and increases the risks of pests. The major pests under RT agriculture are snails, 

mice and larvae (Petheram, 2000; Vandergeten & Roisin, 2004). 

 

Since the presence of mulch at the soil surface of RT fields is expected to result 

in a reduced efficiency of the pesticides (Sadeghi et al., 1998; Streit et al., 

2003), more or more expensive pesticides are often used to control the weed 

population, diseases and pests the first years after the shift of the management to 

RT compared to CT agriculture as a precaution measure (Gillijns et al., 2004; 

2005). Since pesticides can have direct negative effects on the environment by 

affecting unintended target organisms and thus disturbing the functioning of 

ecosystems, other management measures can be selected. An extra mechanical 

cultivation for RT fields to resolve problems with weeds appears contradictory 

at first sight but it does not reduce the anti erosion effect of the mulch and the 

infiltration rate if the mechanical cultivation is not too deep and enough mulch 

remains at the soil surface (Vandergeten & Roisin, 2004). The choice of the 

sowing date, crop rotation and the correct choice of the green manure can also 

minimize problems with weeds and diseases (Guisson, 2006; Legrand & 

Vandergeten, 2006; Thomas, 2006). The green manure has to be selected so that 

diseases and pests are not passed on to the following main crop (Timmer et al., 

2004; Thomas, 2006). Changing the crop rotation is, however, often a 

theoretical but not a practical solution. 
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7.7. SOIL BIOLOGICAL ACTIVITY AND BIODIVERSITY 

As a general rule, disease-causing bacteria and fungi make up only a very small 

proportion of the total number of species in root zone soil. Most bacterial and 

fungal species are beneficial and even crucial for soil functioning and soil 

quality (Sturz et al., 1997).  

 

In this research MB in the upper 10 cm depth layer was 1.5 to 3 times higher 

under RT compared to CT agriculture at the same location (chapter 3 and 4). 

Sometimes more symbiotic relations are observed which results in higher yields 

of these crops (Höfflich et al., 1999). However, no biodiversity measurements 

were done in this study. 

 

The higher amount of earthworms under RT compared to CT agriculture 

(Rasmussen, 1999; Tebrügge & Düring, 1999; Emmerling, 2001; Carter et al., 

2002; Katsvairo et al., 2002; Boonen, 2004; Cunningham et al., 2004; Van den 

Bossche et al., 2007) increases the amount of canals in the soil and has a 

positive influence on the formation of aggregates through the binding ability of 

their excrements (Werner & Dindall, 1990). Earthworms increase soil N 

availability and cycling by stimulating the transfer of N from plant material to 

inorganic forms that can be utilized by microorganisms and plants (Brown et al., 

2000; Cortez et al., 2000). Research from Switzerland, however, suggested that 

crop rotation has a bigger influence on the earthworm population than the type 

of tillage. Crop rotations without root and tuber crops have more earthworms 

than crop rotations including beets and potatoes (Hofer et al., 2002; Maurer-

Troxler et al., 2006).  

 

Other important soil organisms such as nematodes are very sensitive indicators 

of soil quality and essential players in the soil food web. Although this research 

did not deal with these organisms, they are often reported to be much more 

numerous under RT agriculture, and are therefore an indicator of a more healthy 

soil food web under RT agriculture (Holland, 2004). 

 

RT agriculture benefits wildlife mainly by leaving crop residue on the soil 

surface which may be used as cover (Uri et al., 1999). 
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7.8. FINANCIAL IMPACT  

Next to the effect on the soil and crop yield, the financial impact of conversion 

to RT agriculture has to be considered. Haan (2006) calculated that the RTC 

farmers save 10 to 25 euro y-1 by using less fuel compared to CT farmers. 

Gillijns et al. (2004) calculated the costs for tillage operations, fertilization and 

use of pesticides and profits of short term RTC compared to CT agriculture. For 

short term RTC agriculture (with soil loosening >15 cm) the financial output of 

RTC rotations with beets, winter wheat and maize was similar or slightly higher 

to comparable CT rotations despite the more or more expensive pesticides that 

were often unnecessarily used. However, the financial output of short term RTC 

(with soil loosening <15 cm) and RTDD fields could be up to 50% lower than CT 

fields (Gillijns et al., 2004). 

Sowing green manure has many advantages, however, there are extra expenses 

for buying the seeds, tillage operations and killing (Timmer et al., 2004; 

Huybrechts, 2006). The costs for sowing green manure decrease as for the main 

crop from CT > RTC > RTDD agriculture (Thomas, 2006).  

 

Management agreements for obtaining subsidies for sowing green manure (50 

euro ha-1 y-1) can no longer be obtained in Flanders. The farmers receive money 

for reducing erosion as they receive the “single farm payment” of the MTR 

(Anonymous, 2005a & b). A soil conservation policy recently emerged in 

Flanders subsidising farmers, partly paid with European funds, who implement 

erosion control measures, e.g. grass buffers and RT agriculture, on their fields 

(Anonymous, 1999, 2003a & 2004a). Flemish farmers can receive 80 euro ha-1 

y-1 for RTC fields through a 5 year RTC management agreement. The subsidies 

for a 5 year RTDD management agreement are 200 euro ha-1 y-1. Subsidising 

obviously makes RT agriculture more positive than mentioned before. RTC 

agriculture results in a comparable or better financial output than CT 

agriculture, while RTDD agriculture often leads up to a lower financial output. 

 

Although the financial output of RTDD farming is per ha lower than CT fields, 

the farmers spend less time per ha cultivating their fields (Uri, 2000; FAO, 

2001; Bautista et al., 2003; Wadsworth et al., 2003; Cunnigham et al., 2004) 

which gives them the opportunity to cultivate larger areas. Whereas CT farmers 

work on average 7 to 8 hours ha-1 y-1 with their tractors, this time is reduced by 

3 to 4 hours ha-1 y-1 for RTC farmers (Haan, 2006). Calculations of Velghe & 

Velghe (2004) and the CRA Gembloux confirm the reduction of work time of 4 

to 5 hours ha-1 y-1 for RTC compared to CT fields. The farmer, however, has to 
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invest time to collect the knowledge to adapt his management (van Essen et al., 

2006) since changing the management to RT agriculture also can imply sowing 

green manure, adapting the sowing and harvesting time, changing crop rotation, 

etc.  

 

To get an overall financial picture, we also have to look at the investments e.g. 

sowing into residue crops under RT agriculture requires adapted machinery 

(Timmer et al., 2004). Since the subsidies are only 10% of the total cost, 

Flemish farmers often indicate the need of adapted machinery as a reason why 

they don’t shift to RT agriculture (D’Haene et al., 2007).  

 

 

7.9. THE GREENHOUSE GAS BALANCE  

The “Global Warming Potential” (GWP) is an index for estimating relative 

global warming contribution due to the atmospheric emission of greenhouse 

gases compared to the emission of a kg of CO2. The GWP of a kg of CH4 and 

N2O is 21 and 310, respectively. One kg CO2-C, CH4-C and N2O-N corresponds 

with 3.3, 28.0 and 476.9 CO2 equivalents, respectively (IPCC, 2000 & 2005). 

Using GWP one can evaluate how much the greenhouse gases CO2, CH4 and 

N2O emitted by RT and CT fields contribute to the greenhouse balance. 

 

The difference in emissions of the greenhouse gases was calculated assuming an 

equal amount of fertilization and pesticides (see 5.5.2, 7.5 and 7.6) and an equal 

SOC stock (see 4.4.1 and 7.3) of RT and CT fields under Western European soil 

and climate conditions. 

No trend in differences in N2O-N emissions between RTC, RTDD and CT fields 

with maize and soybean crop rotation was observed under field conditions by 

Hilton et al. (1994), Elmi et al. (2003) and Venterea et al. (2005). They 

concluded that the type, timing and amount of fertilizers and organic manure 

applications have a larger effect on the yearly N2O-N emissions than the type of 

tillage. Therefore we assumed no changes in N2O-N emissions between RT and 

CT fields under field conditions. 

The CH4 uptake is comparable for RTC and CT fields, while the CH4 uptake on 

average is 0.4±0.1 kg CH4-C ha–1 y–1 higher under RTDD compared to CT fields 

(Six et al., 2002b). 

The change in C losses through fuel use depends on the type of RT agriculture 

and on whether green manure is sown or not (West & Marland, 2002 and 

Thomas, 2006). 
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The change of CO2 equivalents ha-1 of arable fields without green manure 

results in lower emissions for RTC and RTDD compared to CT fields (Table 7.2): 

 for  RTC fields:     157 – 244 =    -87 CO2 equivalents ha-1 y-1  

  RTDD fields:     76 – 244 =  -168 CO2 equivalents ha-1 y-1 

 

When green manure is sown under RT but not CT, higher emissions for RTC 

and lower emissions for RTDD are found compared to CT fields (Table 7.2): 

 for  RTC fields:     359 – 244 =   115 CO2 equivalents ha-1 y-1  

  RTDD fields:   208 – 244 =    -36 CO2 equivalents ha-1 y-1 

 

 
Table 7.2 Yearly CH4 uptake and C losses through fuel use at sowing expressed in kg 

ha-1 y-1 en CO2 equivalents ha-1 y-1 and total emissions expressed as CO2 

equivalents ha-1 (CO2 eq. ha-1 y-1) of conventional tillage (CT), reduced 

tillage with cultivator or soil loosener (RTC) and direct drilling (RTDD) 

fields without or with green manure (without or with gm) 

 CH4
† C use in fuel‡ Total 

 
(kg C ha-1  

y-1) 

(CO2 eq. 

 ha-1 y-1) 

(kg C ha-1 

 y-1) 

(CO2 eq.  

ha-1 y-1) 

(CO2 eq. 

ha-1 y-1) 

CT without gm 1.6 -45 79 289 244 

CT with gm 1.6 -45 158 578 533 

RTC without gm 1.6 -45 55 202 157 

RTC with gm 1.6 -45 110 404 359 

RTDD without gm 2.0 -56 36 132 76 

RTDD with gm 2.0 -56 72 264 208 
†: based on Six et al. (2002b) 
‡: based on West & Marland (2002) and Thomas (2006) 

 

 

The GWP calculated with yearly CH4 uptake and N2O-N emissions from fields 

with maize and soybean crop rotations suggest that RT fields have a lower GWP 

than CT fields (Table 7.2). However, the N2O-N emissions from RT fields 

measured under controlled conditions in the laboratory tended to be slightly 

higher than the N2O emissions from CT fields (chapter 6). Therefore, research 

on the effect of yearly CH4 uptake and N2O-N emissions of fields with crop 

rotations including root and tuber crops under RT and CT agriculture is needed 

in order to correctly compare their GWP. 
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7.10. CONCLUSION 

Nowadays farmers shift more and more to RT agriculture, which can partly be 

explained by the gradual improvements in machinery, especially sowing 

machines. Moreover, the economical circumstances force the farmers to reduce 

production costs, while the pressure on the environment stimulates the farmer to 

manage his soil capital better and reduce his runoff and erosion (Vandergeten & 

Roisin, 2004). A few years after the shift to RT farmers often plough once, 

every three years or shift to CT agriculture again. RT agriculture can not 

decrease the plough pan or reduce pests or diseases whereas problems with 

weeds can increase if no control measures are taken. Moreover, there is no 

general cultivation plan that can be followed because management has to be 

adapted to the specific circumstances. RT fields are generally cultivated later in 

spring and have to be harvested later. Farmers with long term RT experience 

advise to first eliminate the plough pan and solve other problems related to soil 

structure before the shift to RT agriculture. 

A correct adoption of RT agriculture is beneficial for the environment by 

reducing erosion, fuel use, while the N efficiency is comparable. However, 

higher overall emissions of greenhouse gases can occur under RT agriculture, 

especially for RTDD agriculture. RT agriculture is also socially more sustainable. 

The lower work pressure allows the farmer to spend more time with his family 

and friends, but can even improve the general perception of agriculture e.g. by 

avoiding contact mud flows on roads because of reduced erosion.  

 

We can conclude that RTC is a form of agriculture that is more sustainable then 

CT agriculture in these loamy soils and that there is actually a potential for RTC 

agriculture in Flanders. RTC agriculture seems to benefit the farmers, society 

and the environment. However, still some improvements are necessary. E.g. 

dedicated selection of crops and green manure for RTC agriculture, better 

subsidies upon conversion from CT to RTC agriculture, and more knowledge on 

the effect of RTC on pests and diseases could further increase the potential for 

RTC agriculture.  

 

This research indicates that short term RTDD agriculture under crop rotations 

with root and tuber crops often result in a lower crop yield, which is probably 

correlated with the higher PR in the 10-30 cm depth layer. No data is available 

for long term RTDD agriculture. Therefore, the potential of RTDD agriculture in 

Flanders is probably limited because of the typical crop rotations that are less 

compatible with this type of agriculture. 
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Untill recently, modern agriculture was focused on maximum food production 

without considering the long term impact on soil fertility or environment. As a 

consequence modern agriculture is nowadays confronted with a number of 

pressing problems. The main problems agriculture experiences in industrialised 

societies are the degradation of physical soil structure resulting in erosion and 

soil compaction, decline in SOM and N losses. 

 

Conservation tillage (CsT) agriculture was first introduced on a large scale on 

fields with mainly cereals, soybean and sunflower in the USA, Latin America 

and Australia as a very effective measure to reduce erosion and store water into 

the soil (Arshad, 1999; Six et al., 2002b). To date research on the positive and 

negative effect of CsT compared to CT agriculture mainly focussed on the soil 

conditions and crop rotations under the warm and dry climatic of the USA, 

Latin America and Australia. The climatic and soil conditions and crop rotations 

in Western Europe are, however, very different. Western Europe has a maritime 

temperate climate and the crop rotations contain crops that seem less suitable 

under CsT agriculture because they often include beets and potatoes, resulting in 

a high disturbance of the soil at the formation of the ridges and at harvest 

(Anonymous, 2006d). The major erosion problems in Belgium are found with 

these root and tuber crops and maize in the loess belt (Anonymous, 2000; 

Geelen, 2006). 

 

Nowadays farmers in Western Europe shift more and more to reduced tillage 

(RT) agriculture, a type of CsT agriculture which refers to tilling the whole soil 

surface but eliminating one or more of the operations that would otherwise be 

done in a CT system. This shift can partly be explained by the progress in 

machines, especially sowing machines, and because of its proven effects on 

reduction of soil erosion (Vandergeten & Roisin, 2004). However, very little 

information is available on the evolution of important soil properties e.g. related 

to C dynamics in RT agriculture under the specific Western European climatic 

and soil conditions and crop rotations. 

 

In this thesis, eighteen fields with a silt loam texture were selected, including the 

different types of RT agriculture running for a different number of years. In the 

study area, very little experimental sites exist where CT practices are compared 

to RT practices. Therefore, we had no choice but to include farmers' fields, 

where inevitably there is no perfect match between CT and RT fields.  
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Despite the high disturbance of the soil every 2 or 3 years of crop rotations 

including sugar beets or potatoes, RT agriculture had a positive effect on the 

measured physical soil properties. The aggregate stability of the upper 10 cm 

depth layer measured with the method of De Leenheer & De Boodt (1959) and 

the three methods of Le Bissonnais (1996) were higher a short time after the 

shift to RT compared to CT agriculture. At each location, bulk density (BD) of 

the 5-10 cm depth layer was mostly lower and saturated soil water content (θs) 

was mostly higher under RT than CT agriculture. The penetration resistance 

(PR) of the upper depth layer under RT by direct drilling (RTDD) is higher than 

under CT agriculture, while the PR in the 20-30 cm depth layer is only higher 

under RT agriculture by cultivator or soil loosener (RTC) if the working depth is 

lower. The trend was a higher field-saturated hydraulic conductivity (Kfs) under 

RT compared to CT agriculture (chapter 3). 

 

RT agriculture resulted in a higher stratification of soil organic carbon (SOC) 

and total nitrogen (TN) in the soil profile. However, the total SOC and TN stock 

was not changed, even after a period of 20 years of RT agriculture. The amount 

of organic carbon and TN in three different particulate organic matter (POM) 

fractions of the 0-10 cm depth layer were found to be (significantly) higher both 

on an absolute and relative basis in the RT compared to the CT fields. In general 

the difference was the highest for the coarse free POM fraction, which is the 

most labile fraction. The higher SOC, TN and microbial biomass (MB) content 

in the upper depth layer of RT fields resulted in a higher carbon (C) and 

nitrogen (N) mineralization rate in undisturbed soil under controlled conditions 

in the laboratory. Simulating ploughing by disturbing the soil resulted both in 

lower and higher mineralization rates of the silt loam soils, but due to the large 

variability of the estimated mineralization parameters, the differences were not 

significant. It seems that under the specific management and climatic conditions 

of Western Europe, RT agriculture increase the SOC and TN content and 

microbial activity in the top layers, but do not result in enhanced sequestration 

when the entire soil profile is considered (chapter 4 and 5). 

Nitrous oxide nitrogen (N2O-N) emissions from RT fields tended to be slightly 

higher than CT fields. The higher N2O-N emissions of RT compared to CT 

fields were correlated with a higher % TN and MB-N (chapter 6). 

 

This study indicates that RTC agriculture is beneficial for the farmers, society 

and environment. However, the potential for RTDD agriculture in Flanders is 

probably limited because of the typical crop rotations that are less compatible 

with this type of agriculture (chapter 7). 
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Omwille van de bevolkingexplosie was de moderne landbouw van de 20ste eeuw 

gericht op maximale voedselproductie zonder rekening te houden met de lange-

termijn effecten op het milieu en de bodemvruchtbaarheid. Daarom wordt de 

moderne landbouw in West-Europa momenteel met verschillende problemen 

geconfronteerd. Het belangrijkste negatieve gevolg van de moderne productie-

methodes voor de landbouwer is waarschijnlijk de degradatie van de fysische 

bodemstructuur, resulterend in erosie en compactie. De economische schade 

aangericht door erosie heeft niet alleen betrekking op het landbouwbedrijf zelf 

(on-site) (wegspoelen van zaaigoed, meststoffen en bestrijdingsmiddelen…). Er 

worden ook belangrijke off-site problemen veroorzaakt. Erosie komt in België 

vooral voor bij wortel- en knolgewassen en maïs geteeld op de leembodems 

(Verstraeten & Poesen, 1999; Esteve et al., 2004). Naast erosie vormt ook diepe 

compactie onder de normale werkdiepte een ernstige bedreiging voor de bodem-

productiviteit (Ide et al., 1984 & 1987; Ide & Hofman, 1990). 

 

Erosie en compactie hangen sterk af van het management. De voornaamste 

menselijke oorzaken van de degradatie van de fysische bodemstructuur zijn 

eenzijdige teeltrotaties, het frequent betreden van percelen met zware landbouw-

voertuigen ook in ongunstige omstandigheden, intensieve bodembewerkingen, 

en een tekort aan organische stof (OS) in de bodem (Esteve et al., 2004; Jones et 

al., 2004). Recente studies toonden aan dat het gehalte OS van akker-

bouwbodems in Vlaanderen significant gedaald is tussen 1990 en 1999 (Sleutel 

et al., 2003a & b). Zodoende valt het te vrezen dat de problematiek van erosie 

en compactie in de komende jaren nog nijpender zal worden. 

 

Door het overvloedige gebruik van minerale en organische meststoffen heeft de 

degradatie van de fysische bodemstructuur nog niet geleid tot een daling van de 

chemische bodemvruchtbaarheid. Stikstof (N), het belangrijkste nutriënt voor 

het bekomen van een gewasproductie en -kwaliteit, heeft via verliezen een 

belangrijke impact op de kwaliteit van het milieu (De Clercq et al., 2001).  

 

 

Conserveringslandbouw (ConsL) werd op grote schaal in Amerika, Latijns-

America en Australië geïntroduceerd als een effectieve maatregel tegen erosie 

en om water in de bodem op te slaan (Arshad, 1999; Six et al., 2002b). De 

resten van de teelten en groenbemester aan de oppervlakte beschermen immers 

de bodem tegen de rechtstreekse regeninslag, verminderen de verslemping van 

de bodem en vertragen de snelheid van het afstromend water (Vandergeten & 

Roisin, 2004). 
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Tot op heden werden de effecten van CsL in vergelijking met conventionele  

(Conv) landbouw voornamelijk onderzocht onder de klimaats- en bodem-

omstandigheden in Amerika, Latijns-America en Australië. Meestal worden in 

deze grote akkerbouwgebieden graangewassen, soja enz. onder een warm en 

droog klimaat geteeld (Arshad, 1999). In West-Europa met een maritiem 

gematigd klimaat komen in de teeltrotaties vaak bieten en aardappelen voor 

(Anonymous, 2006d), die bij de aanmaak van de ruggen bij aardappelen en de 

oogst van bieten en aardappelen voor een grote verstoring van de bodem zorgen.  

 

Momenteel wordt landbouw met gereduceerde bodembewerkingen (Red), een 

vorm van ConsL waarbij één of meerdere bodembewerkingen geëlimineerd 

worden die onder Conv landbouw zouden plaatsvinden, ook in West-Europa 

omwille van zijn positief effect op erosie gepromoot (o.a. Gillijns et al., 2002 & 

2004; Goyens et al., 2005). De overschakeling van het management van Conv 

naar Red landbouw wordt ook verklaard door de vooruitgang in machines, 

voornamelijk de zaaimachines (Vandergeten & Roisin, 2004). Er is echter 

weinig informatie over de effecten van de verandering van het management van 

Conv naar Red landbouw op de fysische en chemische bodemvruchtbaarheid 

onder de West-Europese klimaats- en bodemomstandigheden en teeltrotaties 

met wortel- en knolgewassen.  

 

 

 

Er werden achttien percelen met een leemtextuur geselecteerd. Ze omvatten de 

verschillende types van Red landbouw lopende gedurende 2 tot 20 jaar. In het 

studiegebied zijn er weinig experimenten waar Red en Conv management met 

elkaar vergeleken worden. Daarom moesten er percelen van landbouwers 

geselecteerd waardoor onvermijdelijk de Red en Conv percelen geen perfect 

evenbeeld zijn. Bij de selectie van de gepaarde percelen werd ervoor gezorgd 

dat het bodemtype en management vergelijkbaar zijn.  

 

 

Ondanks de regelmatige verstoring van de bodem bij teelrotaties met bieten en 

aardappelen blijkt dat aggregaatstabiliteit bepaald met de methode van De 

Leenheer & De Boodt (1959) en de drie methoden van Le Bissonnais (1996), 

van de bodemlaag 0-10 cm al op een korte termijn na omschakeling naar Red 

landbouw hoger waren dan onder Conv landbouw wat gedeeltelijk de lagere 

erosieverliezen verklaart (hoofdstuk 3). De trend was een verhoogde infiltratie-

snelheid onder Red landbouw in vergelijking met Conv landbouw wat mogelijk 
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te verklaren is door de hogere aggregaatstabiliteit, omdat de regenworm- en 

wortelgangen niet (Red met directe inzaai [RedDI]) of minder (Red met 

cultivator of woeler [RedC]) verstoord worden in vergelijking met het keren van 

de bodem bij ploegen (Conv) en door de verticale scheuren gevormd tijdens de 

bodembewerkingen (RedC). Deze verticale scheuren gevormd tijdens het 

losbreken van de bodem waren zichtbaar bij de metingen van de penetratie-

weerstand (hoofdstuk 3) (Franzluebbers, 2002; Vandergeten & Roisin, 2004).  

 

Voor een optimale wortelgroei is een homogene en losse bodemstructuur nodig. 

Verhoogde penetratieweerstand door verslempingen (zelfs lichte), verdichte 

zones en holten kunnen tot een vervorming van de wortels leiden, wat nadelig 

kan zijn voor de opbrengst van gevoelige teelten zoals bieten (Vandergeten & 

Roisin, 2004; Vandergeten, 2005 & 2006). Ons onderzoek toonde aan dat de 

penetratieweerstand toeneemt bovenaan het profiel onder RedDI landbouw, vaak 

ook boven de maximum penetratieweerstand (= 3MPa) die een wortel kan 

overwinnen. De penetratieweerstand in de bodemlaag 20-30 cm was alleen 

hoger onder RedC dan Conv landbouw indien de bodembewerkingen ondieper 

waren (hoofdstuk 3). De BD van de bodemlaag 5-10 cm was meestal lager 

onder Red dan Conv landbouw terwijl het vochtgehalte bij verzadiging meestal 

hoger was. 

 

 

De stratificatie van het % organische koolstof (OC) in de bodemlaag 0-60 cm 

was groter voor de Red dan Conv percelen maar de totale OC stock in de bodem 

was niet noodzakelijk hoger. Het potentieel voor koolstof (C) opslag in Red 

percelen in Vlaanderen is dan ook wellicht minimaal. De bodems onder Red 

landbouw zijn immers periodisch onderhevig aan vrij zware verstoringen 

(oogstwerkzaamheden van bieten en aardappelen) wat mogelijk het potentiële 

positieve effect van Red landbouw beperkt (hoofdstuk 4). Bovendien zijn de 

bodembewerkingen onder Red landbouw nog steeds relatief intensief. Over het 

algemeen was de OC toename aan de oppervlakte het meest uitgesproken in de 

meest labiele fractie, namelijk de fractie grof vrij particulair organisch materiaal. 

Het opnieuw overschakelen naar Conv landbouw zou kunnen resulteren in een 

snel verlies van de OC. Metingen van de C mineralisatie snelheid van 

onverstoorde en verstoorde bodems geven echter aan dat na een sterke 

eenmalige verstoring van de bodem er geen directe toename is van de C 

mineralisatie snelheid. 
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Naast de verandering aan C in de bodem moet er ook gekeken worden naar de 

hoeveelheid C in de diesel verbruikt door de tractoren vb. tijdens de bodem-

bewerkingen. Door de verminderde tijd nodig voor het veldwerk onder Red 

landbouw is het diesel- en dus C verbruik lager (West & Marland, 2002; 

Thomas, 2006).  

 

 

De stratificatie van het percentage TN in de bodemlaag 0-40 cm was ook groter 

onder Red dan Conv landbouw. Onder labo omstandigheden nam de N 

mineralisatie snelheid van de bodemlaag 0-15 cm toe. Herberekening van de N 

mineralisatie snelheid bepaald in het labo naar N mineralisatie snelheid per ha 

en per jaar gebruik makend van de gemiddelde maandtemperaturen en rekening 

houdend met de verschillende stratificatie onder Red en Conv landbouw gaf aan 

dat de verschillen in N mineralisatie snelheid van de bodemlaag 0-30 cm te 

klein zijn om de N bemesting van Red percelen aan te passen (hoofdstuk 5). 

Proeven in België tonen aan dat het bij Red landbouw niet noodzakelijk is om 

het N bemestingsniveau aan te passen (Vandergeten & Roisin, 2004). 

 

Dit onderzoek toonde aan dat de N verliezen in de vorm van N2O beperkt 

blijven onder Red landbouw. De iets hogere N2O-N verliezen in het labo waren 

gecorreleerd met een hogere % TN en MB-N hoeveelheid. Onder veld-

omstandigheden heeft de hoeveelheid, soort en tijdstip van bemesting een 

grotere invloed op de N2O-N verliezen dan het type landbouw (hoofdstuk 6).  

 

Het gehalte MB-C en MB-N in de bovenste 10 cm was 1.5 tot 3 maal hoger in 

de percelen onder Red in vergelijking met de Conv percelen op dezelfde locatie 

(hoofdstuk 4 en 5). 

 

 

 

Om te kunnen besluiten of er potentieel voor Red landbouw is in Vlaanderen 

werden de bekomen resultaten van de fysische en chemische bodem-

vruchtbaarheid samengevoegd met een C en N budget, onkruid- en ziektedruk, 

opbrengsten en financieel rendement om een geïntegreerd beeld te krijgen van 

de voor- en nadelen van Red landbouw in Vlaanderen. 

 

Eén van de belangrijkste redenen om te ploegen is de onkruiddruk beperken. 

Onder Red landbouw kan zowel de onkruiddruk toenemen als de onkruidflora 

veranderen. Een bijkomende bewerking met een rotoreg of ontstoppelaar is een 
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mogelijkheid om de grassen los te maken en te laten uitdrogen of  om een vals 

zaaibed aan te leggen en kan nuttig zijn om het potentieel van onkruiden met 

een gespreide opkomst, te verminderen  (Drinkwater et al., 2000; Vandergeten 

& Roisin, 2004; Thomas, 2006; Anonymous, 2007b).  

 

De aanwezigheid van oogresten aan de oppervlakte en het hogere vochtgehalte 

kunnen de kans op bacteriële en schimmelinfecties verhogen onder Red in 

vergelijking met Conv landbouw (Sturz et al., 1997; Carter & Sanderson, 2001; 

Peters et al., 2004 & 2005). Landbouwers gebruiken dan ook vaak preventief 

meer of duurdere gewasbeschermingsmiddelen (Gillijns et al., 2004 & 2005). 

 

Onder Red landbouw werden meestal meer regenwormen dan onder Conv 

landbouw gemeten (e.g. Boonen, 2004; Van den Bossche et al., 2007) wat een 

positieve invloed heeft op de vorming van horizontale gangen en de 

aggregaatstabiliteit (Werner & Dindall, 1990).  

 

De opbrengsten van bieten, aardappelen en granen waren vergelijkbaar onder 

RedC en Conv landbouw op voorwaarde dat de bodemstructuur goed was en de 

teeltbewerkingen correct en niet oppervlakkig (0-25/30 cm) uitgevoerd werden. 

In droge jaren was er een kleine meeropbrengst terwijl in natte jaren een kleine 

minderopbrengst werd vastgesteld. Wanneer RedC landbouw echter niet op 

optimale wijze gebeurde, vertoonden de bieten grote hoeveelheden vertakte 

wortels. Bij ondiep (0-10 cm) losbreken en een slechte bodemstructuur werden 

er opbrengstverliezen tot 20% onder RedC t.o.v. Conv percelen gemeten 

(Debout, 2004; Vandergeten & Roisin, 2004; Vandergeten, 2005). 

De opbrengsten onder RedDI waren vergelijkbaar of lager met Conv percelen. 

De lagere opbrengsten bij RedDI percelen zijn waarschijnlijk gecorreleerd met 

de hogere penetratieweerstand bovenaan het profiel (Debout, 2004; Gillijns et 

al., 2004; Vandergeten, 2005).  

 

Naast de verlaagde werkdruk en het financiële voordeel voor de landbouwer, 

vermindert RedC landbouw ook de maatschappelijke kosten van de landbouw 

omdat de kosten voor het opruimen van de wegen en uitbaggeren van de 

waterlopen verlaagd worden.  
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We kunnen besluiten dat RedC landouw een meer duurzame vorm van landbouw 

is dan ConvL en dat er potentieel is voor RedC landouw in de leembodems in 

Vlaanderen. RedC landbouw is zowel voordelig voor de landbouwer, de 

maatschappij als het milieu. Er zijn echter nog een aantal zaken die verbeterd 

kunnen worden vb. de selectie van de variëteiten van de teelten en tussenteelten 

rekening houdend met de specifieke gevoeligheden onder RedC landouw, betere 

subsidies bij omschakeling van Conv naar RedC landbouw en een meer 

uitgebreide kennis van de effecten van RedC landbouw op ziektes en 

onkruiddruk onder de Vlaamse teeltrotaties zouden het potentieel voor RedC 

landbouw nog kunnen doen toenemen. 

 

Uit onderzoek naar RedDI landbouw onder de Vlaamse teeltrotatie blijkt er op 

korte termijn vaak een daling van de opbrengst onder RedDI ten opzichte van 

Conv landbouw,wat mogelijk gecorreleerd is met de hogere penetratieweerstand 

in de bodemlaag 10-30 cm. Over langetermijn RedDI landbouw zijn er geen 

gegevens. Een betere kennis van het microbiële leven en hun invloed op de 

bodemstructuur en ziektes kan mogelijk de negatieve gevolgen van RedDI 

landbouw verlagen. 

 

 



 

 



 

 

 

 

 

BIBLIOGRAPHY 

 

 



Chapter 8 

 

 

 154 

Abbasi, M.K., Adams, W.A., 2000. Gaseous N emission during simultaneous 
nitrification-denitrification associated with mineral N fertilization to a grassland soil 
under field conditions. Soil Biol. Biochem. 32, 1251-1259. 

Adams, W.A., 1973. The effect of organic matter on the bulk and true densities of some 
uncultivated podzolic soils. J. Soil Sci. 24, 10-17. 

Ahl, C., Joergensen, R.G., Kandeler, E., Meyer, B., Woehler, V., 1998. Microbial 
biomass and activity in silt and sand loams after long-term shallow tillage in central 
Germany. Soil Till. Res. 49, 93-104. 

Al-Kaisi, M.M., Yin, X.H., Licht, M.A., 2005a. Soil carbon and nitrogen changes as 
affected by tillage system and crop biomass in a corn-soybean rotation. Appl. Soil Ecol. 
30, 174-191. 

Al-Kaisi, M.M., Yin, X., Licht, M.A., 2005b. Soil carbon and nitrogen changes as 
influenced by tillage and cropping systems in some Iowa soils. Agr. Ecosyst. Environ. 
105, 635-647. 

Allison, F.E., 1968. Soil aggregation – some facts and fallacies as seen by a 
microbiologist. Soil Science 106, 136-143. 

Alvarez, R., 2005. A review of nitrogen fertilizer and conservation tillage effects on soil 
organic carbon storage. Soil Use Manage. 21, 38-52. 

Alvarez, R., Diaz, R.A., Barbero, N., Santanatoglia, O.J., Blott, L., 1995. Soil organic 
carbon, microbial biomass and CO2-C production from three tillage systems. Soil Till. 
Res. 33, 17-28. 

Amezketa, E., Singer, M.J., Le Bissonnais, Y., 1996. Testing a new procedure for 
measuring water-stable aggregation. Soil Sci. Soc. Am. J. 60, 888-894. 

Anderson, J.P.E., 1982. Soil respiration. In: Page, A.L., Miller, R.H., Keeney, D.R. 
(Eds.), Methods of soil analysis part 2: Chemical and microbiological properties, 2nd edn. 
American Society of Agronomy (ASA), Soil Science Society of America (SSSA), 
Madison, Wisconsin, p. 831-871. 

Andrén, O., Baritz, R., Brandao, C., Breure, T., Feix, I., Franko, U., Gronlund, A., 
Leifeld, J., Maly, S., 2004. Soil biodiversity. In: Van-Camp, L., Bujarrabal, B., Gentile, 
A-R., Jones, R.J.A., Montanarella, L., Olazabal, C., Selvaradjou, S.-K. (Eds.), Reports of 
the technical working froups established under “Thematic strategy for soil protection”. 
Office for official publications of the European Communities, Luxembourg, EUR 21319 
EN/3, p. 357-397. 

Angers, D.A., Bolinder, M.A., Carter, M.R., Gregorich, E.G., Drury, C.F., Liang, B.C., 
Voroney, R.P., Simard, R.R., Donald, R.G., Beyaert, R.P., Martel, J., 1997. Impact of 
tillage practices on organic carbon and nitrogen storage in cool, humid soils of eastern 
Canada. Soil Till. Res. 41, 191-201. 

Anonymous, 1991a. Council directive 91/676/EEC of 12 December 1991 concerning the 
protection of waters against pollution caused by nitrates from agricultural sources. J. Eur. 
Commun. L 375, 1-8. 



Bibliography 

 

 

 155 

Anonymous, 1991b. Decreet inzake de bescherming van het leefmilieu tegen de veront-
reiniging tegen meststoffen. Belgisch Staatsblad 3829-3838, amended by decreet van 25 
juni 1992, decreet van 18 december 1992, decreet van 22 december 1993, decreet van 20 
december 1995, decreet van 19 december 1997, decreet van 11 mei 1999, decreet van 3 
maart 2000, decreet van 8 december 2000, decreet van 9 maart 2001, decreet van 21 
december 2001, decreet van 19 juli 2002, decreet van 7 februari 2003, decreet van 28 
maart 2003, decreet van 18 juli 2003, decreet van 12 december 2003, decreet van 30 april 
2004, decreet van 22 april 2005, decreet van 23 december 2005 and decreet van 30 juni 
2006. 

Anonymous, 1999. Commission regulation (EC) No 1257/1999 of 17 May 1999 on 
support for rural development from the European Agricultural Guidance and Guarantee 
Fund (EAGGF) and amending and repealing certain regulations L 160/80-102. J. of the 
Eur. Commun. L 231, 24-55, amended by commission regulation (EC) No 817/2004 of 
29 April 2004 laying down detailed rules for the application of council regulation (EC) 
No 1257/1999 on support for rural development from EAGGF. 

Anonymous, 2000. Code van goede landbouwpraktijken. Deel 1: Algemene principes en 
aandachtspunten in verband met bemesting, groenbedekking, erosie. Afdeling Duurzame 
Landbouwontwikkeling (ADLO), Departement Landbouw en Visserij, Brussels, 47 p. 

Anonymous, 2002a. Bepaling van de hoeveelheid minerale stikstof in de bodem als 
beleidsinstrument. End report part 1: literatuurstudie. N-(eco)², Vlaamse Landmaat-
schappij (VLM), Brussels, 81 p. 

Anonymous, 2002b. Bepaling van de hoeveelheid minerale stikstof in de bodem als 
beleidsinstrument. End report part 2: opbouw databank, mineralisatie en denitrificatie, 
proefveldonderzoek, kalibratie en validatie. N-(eco)², Vlaamse Landmaatschappij 
(VLM), Brussels, 247 p. 

Anonymous, 2002c. Bepaling van de hoeveelheid minerale stikstof in de bodem als 
beleidsinstrument. End report part 4: scenario analyse, afleiding van de normen en 
aanbevelingen aan de landbouwers. N-(eco)², Vlaamse Landmaatschappij (VLM), 
Brussels, 270 p. 

Anonymous, 2002d. Besluit van de Vlaamse regering van 7 december 2001 houdende de 
subsidiëring van de kleinschalige erosiebestrijdingsmaatregelen die door de gemeenten 
uitgevoerd worden. Belgisch staatsblad 1242-1250, amended by besluit van de Vlaamse 
regering van 23 september 2005 and besluit van de Vlaamse regering van 1 september 
2006. 

Anonymous, 2002e. Communication from the commission to the council, the European 
parliament, the economic and social committee and the committee of the regions towards 
a thematic strategy for soil protection COM(2002) 179 final, 16/04/2002, Brussels. 
http://eur-lex.europa.eu/LexUriServ/site/en/com/2002/com2002_0179en01.pdf (accessed 
on 07/03/20017). 

Anonymous, 2002f. Decision No 1600/2002/EC of the European parliament and of the 
council of 22 July 2002 laying down the sixth community environment action 
programme. J. of the Eur. Commun. L 242, 1-15. 



Chapter 8 

 

 

 156 

Anonymous, 2003a. Besluit van de Vlaamse regering van 10 oktober 2003 betreffende 
het sluiten van beheersovereenkomsten in uitvoering van de verordening (EEG) nr. 
1257/1999 van de raad van 17 mei 1999 inzake steun voor plattelandsontwikkeling. 
Belgisch Staatsblad 56758-56763, amended by ministerieel besluit van 18 december 
2003, ministerieel besluit van 11 juni 2004, besluit van de Vlaamse regering van 11 juni 
2004, ministerieel besluit van 17 juni 2004, ministerieel besluit van 14 juni 2005, 
ministerieel besluit van 21 oktober 2005, besluit van de Vlaamse regering van 21 oktober 
2005 and ministerieel besluit van 28 juli 2006. 

Anonymous, 2003b. Council Regulation (EC) No 1782/2003 of 29 September 2003 
establishing common rules for direct support schemes under the common agricultural 
policy and establishing certain support schemes for farmers and amending regulations 
(EEC) No 2019/93, (EC) No 1452/2001, (EC) No 1453/2001, (EC) No 1454/2001, (EC) 
1868/94, (EC) No 1251/1999, (EC) No 1254/1999, (EC) No 1673/2000, (EEC) No 
2358/71 and (EC) No 2529/2001, J. of the Eur. Commun. L 270, 1-69, amended by (EC) 
No 583/2004 of 22 March 2004, (EC) No 864/2004 of 29 April 2004, (EC) No 
2217/2004 of 22 December 2004, (EC) No 118/2005 of 26 January 2005 and (EC) No 
2183/2005 of 22 December 2005 and corrected by corrigendum OJ L 94 31.3.2004 
(1782/2003).  

Anonymous, 2004a. Arrêté du gouvernement wallon de 28 octobre 2004 relatif à l'octroi 
de subventions agri-environnementales. Belgisch Staatsblad 86609-86626, amended by 
arrêté du gouvernement wallon modifiant l'arrêté du gouvernement wallon du 28 octobre 
2004 relatif à l'octroi de subventions agri-environnementales. 

Anonymous, 2004b. Proposal for a council regulation on support for rural development 
by the European Agricultural Fund for Rural Development (EAFRD) COM(2004)490 
final, 2004/0161(CNS), Brussels, 14.7.2004. 
http://ec.europa.eu/agriculture/capreform/rurdevprop_en.pdf (accessed on 07/03/2007). 

Anonymous, 2005a. Besluit van de Vlaamse regering van 8 juli 2005 tot instelling van 
een bedrijfstoeslagregeling en tot vaststelling van bepaalde steunregelingen voor 
landbouwers en tot toepassing van de randvoorwaarden. Belgisch Staatsblad 34220-
34224, amended by ministerieel besluit van 25 november 2005, besluit van de Vlaamse 
regering van 13 januari 2006, ministerieel besluit van 5 april 2006, ministerieel besluit 
van 19 juni 2006 and besluit van de Vlaamse regering van 8 september 2006. 

Anonymous, 2005b. Arrêté du gouvernement wallon de 10 mars 2005 déterminant les 
modalités, les conditions et la date limite d’introduction des demandes de révision des 
droits provisoires relatifs au régime de paiement unique dans le cadre de la politique 
agricole commune. Belgisch Staatsblad 12838-12840, amended by arrêté du 
gouvernement wallon de 7 juillet 2005, arrêté du gouvernement wallon de 23 fevrier 
2006, arrêté du gouvernement wallon de 22 juin 2006 and arrêté du gouvernement wallon 
de 7 juillet 2006. 

Anonymous, 2005c. The financing of the Common Agricultural Policy (CAP). 
http://europa.eu/scadplus/leg/en/lvb/l60024.htm (accessed on 07/03/2007). 

Anonymous, 2006a. A strategy to keep Europe's soils robust and healthy. 
http://ec.europa.eu/environment/soil/index.htm (accessed on 07/03/2007). 



Bibliography 

 

 

 157 

Anonymous, 2006b. Communication from the commission to the council, the European 
parliament, the European economic and social committee and the committee of the 
regions. Thematic strategy for soil protection, COM(2006) 231 final, Brussels, 
22.9.2006. http://ec.europa.eu/environment/soil/pdf/com_2006_0231_en.pdf (accessed 
on 07/03/2007). 

Anonyous, 2006c. Decreet van 22 december 2006 houdende de bescherming van water 
tegen de verontreiniging door nitraten uit agrarische bronnen - het Mestdecreet. Belgisch 
Staatsblad 76368-76401. 

Anonymous, 2006d. Landbouwtelling mei 2006. FOD Economie - Algemene Directie 
Statistiek en Economische Informatie, Brussels. http://www.statbel.fgov.be/ (accessed on 
16/08/2006). 

Anonymous, 2006e. Proposal for a directive of the European parliament and of the 
council establishing a framework for the protection of soil and amending directive 
2004/35/EC, COM(2006) 232 final, 22/09/2006, Brussels. 
http://ec.europa.eu/environment/soil/pdf/com_2006_0232_en.pdf (accessed on 
07/03/2007). 

Anonymous, 2006f. Questions and answers on the thematic strategy on soil protection, 
MEMO/06/341. 
http://europa.eu/rapid/pressReleasesAction.do?reference=MEMO/06/341 (accessed on 
07/03/2007). 

Anonymous, 2006g. Single legal framework for financing the CAP. 
http://europa.eu/scadplus/leg/en/lvb/l11096.htm (accessed on 07/03/2007). 

Anonymous, 2007a. Agenda 2000. Strengthening the Union and preparing the 2004 
enlargement. http://ec.europa.eu/agenda2000/index_en.htm (accessed on 07/03/2007). 

Anonymous, 2007b. Code van goede landbouwpraktijken gewasbescherming. Afdeling 
duurzame landbouwontwikkeling (ADLO), Departement Landbouw en Visserij, 
Brussels, 146 p. 

Anonymous, 2007c. http://ec.europa.eu/agriculture/foodqual/index_en.htm (accessed on 
26/05/2007). 

Arah, J.R.M., Smith, K.A., Crichton, I.J., Li, H.S., 1991. Nitrous-oxide production and 
denitrification in Scottish arable soils. J. Soil Sci. 42, 351-367. 

Arshad, M., 1999. Editorial. Tillage and soil quality. Tillage practices for sustainable 
agriculture and environmental quality in different agroecosystems. Soil Till. Res. 53, 1-2. 

Aulakh, M.S., Doran, J.W., Mosier, A.R., 1992. Soil denitrification - Significance, 
measurement, and effects of management. In: Stewart, B.A. (Ed.), Adv. Soil Sci. 18, 
Springer-Verlag, New York, p. 1-57. 

Aulakh, M.S., Doran, J.W., Walters, D.T., Mosier, A.R., Francis, D.D., 1991a. Crop 
residue type and placement effects on denitrification and mineralization. Soil Sci. Soc. 
Am. J. 55, 1020-1025. 



Chapter 8 

 

 

 158 

Aulakh, M.S., Doran, J.W., Walters, D.T., Power, J.F., 1991b. Legume residue and soil 
water effects on denitrification in soils of different textures. Soil Biol. Biochem. 23, 
1161-1167. 

Aulakh, M.S., Rennie, D.A., Paul, E.A., 1983. The effect of various clover management 
practices on gaseous N losses and mineral N accumulation. Can. J. Soil. Sci. 63, 593-605. 

Aulakh, M.S., Rennie, D.A., Paul, E.A., 1984. The influence of plant residues on 
denitrification rates in conventional and zero tilled soils. Soil Sci. Soc. Am. J. 48, 790-
794. 

Balesdent, J., Chenu, C., Balabane, M., 2000. Relationship of soil organic matter 
dynamics to physical protection and tillage. Soil Till. Res. 53, 215-230. 

Ball, B.C., Scott, A., Parker, J.P., 1999. Field N2O, CO2 and CH4 fluxes in relation to 
tillage, compaction and soil quality in Scotland. Soil Till. Res. 53, 29-39. 

BARACA, 2007. http://www.baraca.be/ (accessed on 07/03/2007). 

Barber, R., 2000. Principal tillage methods. In: Manual on integrated soil management 
and conservation practices. Food and Agriculture Organization (FAO), Rome, p. 55-80. 

Baritz, R., De Neve, S., Barancikova, G., Gronlund, A., Leifeld, J., Katzensteiner, K., 
Koch, H.-J., Palliere, C., Romanya, J., Schaminee, J., 2004. Land use practices and SOM. 
In: Van Camp, L., Bujarrabal, B., Gentile, A.R., Jones, R.J.A., Montanarella, L., 
Olazabal, C., Selvaradjou, S.-K. (Eds.), Reports of the technical working groups 
established under “Thematic strategy for soil protection”. Office for official publications 
of the European Communities, Luxembourg, EUR 21319 EN/3, p. 443-470. 

Barthès, B., Roose, E., 2002. Aggregate stability as an indicator of soil susceptibility to 
runoff and erosion: validation at several levels. Catena 47, 133-149. 

Bautista, S., Martínez Vilela, A., Arnoldussen, A., Bazzoffi, P., Böken, H., De la Rosa, 
D., Gettermann, J., Jambor, P., Loj, G., Mataix Solera, J., Mollenhauer, K., Olmeda-
Hodge, T., Fernández-Llebrez, J.M.O., Poitrenaud, M., Redfern, P., Rydell, B., Sánchez 
Díaz, J., Strauss, P., Theocharopoulus, S.P., Vandekerckhove, L., Zúquete, A., 2003. 
Measures to combat soil erosion. Interim report of the technical working groups 
established under “Thematic strategy for soil protection”. Office for official publications 
of the European Communities, Luxembourg, 21 p. 
http://forum.europa.eu.int/Public/irc/env/soil/library?l=/erosion/workingsgroup/interimsr
eports/tasksgroupsreportsandvm=detailedandsb=Title (accessed on 07/03/2007). 

Bautista, S., Martínez Vilela, A., Arnoldussen, A., Bazzoffi, P., Böken, H., De la Rosa, 
D., Gettermann, J., Jambor, P., Loj, G., Mataix Solera, J., Mollenhauer, K., Olmeda-
Hodge, T., Fernández-Llebrez, J.M.O., Poitrenaud, M., Redfern, P., Rydell, B., Sánchez 
Díaz, J., Strauss, P., Theocharopoulus, S.P., Vandekerckhove, L., Zúquete, A., 2004. 
Measures to Combat Soil Erosion. In: Van-Camp, L., Bujarrabal, B., Gentile, A-R., 
Jones, R.J.A., Montanarella, L., Olazabal, C., Selvaradjou, S.-K. (Eds.), Reports of the 
technical working groups established under “Thematic strategy for soil protection”. 
Office for official publications of the European Communities, Luxembourg, EUR 21319 
EN/2, p. 203-218. 



Bibliography 

 

 

 159 

Beare, M.H., Cabrera, M.L., Hendrix, P.F., Coleman, D.C., 1994. Aggregate-protected 
and unprotected organic matter pools in conventional- and no-tillage soils. Soil Sci. Soc. 
Am. J. 58, 787-795. 

Beare, M.H., Hus, S., Coleman, D.C., Hendrix, P.F., 1997. Influences of mycelial fungi 
on soil aggregation and organic matter storage in conventional and no-tillage soils. Appl. 
Soil Ecol. 5, 211-219. 

Beauchamp, E.G., Bergstrom, D.W., Burton, D.L., 1996. Denitrification and nitrous 
oxide production in soil fallowed or under alfalfa or grass. Comm. Soil Sci. Plant Anal. 
27, 87-99. 

Bergstrom, D.W., Beauchamp, E.G., 1993. Relationship between denitrification rate and 
determinant soil properties under barley. Can. J. Soil Sci. 73, 567-578. 

Bielders, C.L., Ramelot, C., Persoons, E., 2003. Farmer perception of runoff and erosion 
and extent of flooding in the silt-loam belt of the Belgian Walloon Region. Environ. Sci. 
Policy 6, 85-93. 

Boardman, J., Poesen, J., Evans, R., 2003. Socio-economic factors in soil erosion and 
conservation. Environ. Sci. Policy 6, 1-6 

Bogaert, N., Vermoesen, A., Salomez, J., Hofman, G., Van Cleemput, O., 1998. The N 
cycle on soil level. In: Van Huylenbroeck, G., Jacobs, G. (Eds.), Towards a sustainable 
grassland and roughage management. Instituut tot Aanmoediging van het Weten-
schappelijk Onderzoek in Nijverheid en Landbouw (IWONL), Brussels, p. 51-84. 

Boonen, J., 2004. Minimale bodembewerking en zijn invloed op aggregaatstabiliteit en 
regenwormpopulatie. Thesis, Katholieke Hogeschool Kempen, Geel, 139 p. 

Bossuyt, H., Denef, K., Six, J., Frey, S.D., Merckx, R., Paustian, K., 2001. Influence of 
microbial populations and residue quality on aggregate stability. Appl. Soil Ecol. 16, 
195-208. 

Breland, T.A., Hansen, S., 1996. Nitrogen mineralization and microbial biomass as 
affected by soil compaction. Soil Biol. Biochem. 28, 655-663. 

Bremer, E., Janzen, H.H., Johnston, A.M., 1994. Sensitivity of total light fraction and 
mineralizable organic-matter to management-practices in a Lethbridge soil. Can. J. Soil 
Sci. 74, 131-138. 

Bremner, J.M., 1978. Effects of soil processes on the atmospheric concentration of 
nitrous oxide. In: Nielsen, D.R., MacDonald, J.G. (Eds.), Nitrogen in the environment. 
Academic Press, New York, 1, 477-491. 

Bronick, C.J., Lal, R., 2005. Soil structure and management: a review. Geoderma 124, 3-
22. 

Brown, G.G., Barois, I., Lavelle, P., 2000. Regulation of soil organic matter dynamics 
and microbial activity in the drilosphere and the role of interactions with other edaphic 
functional domains. Eur. J. Soil Biol. 36, 177-198. 



Chapter 8 

 

 

 160 

Carels, K., Platteau, J., Samborski, V., Van Gijsegehem, D., 2006. Programmerings-
Document voor PlattelandsOntwikkeling (PDPO) 2000-2006: Een terugblik. Afdeling 
Monitoring en Studie (AMS), Departement Landbouw en Visserij, Brussels, 41 p. 

Carter, M.R., 1991. The influence of tillage on the proportion of organic carbon and 
nitrogen in the microbial biomass of medium-textured soils in a humid climate. Biol. 
Fertil. Soils 11, 135-139. 

Carter, M.R., Sanderson, J.B., 2001. Influence of conservation tillage and rotation length 
on potato productivity, tuber disease and soil quality parameters on a fine sandy loam in 
eastern Canada. Soil Till. Res. 63, 1-13. 

Carter, M.R., Holmstrom, D., Sanderson, J.B., Ivany, J., De Haan, R., 2005. Comparison 
of conservation with conventional tillage for potato production in Atlantic Canada: crop 
productivity, soil physical properties and weed control. Can. J. Soil Sci. 85, 453-461. 

Carter, M.R., Sanderson, J.B., Holmstrom, D.A., Ivany, J.A., De Haan, D.A, 2007. 
Influence of conservation tillage and glyphosate on soil structure and organic carbon 
fractions through the cycle of a 3-year potato rotation in Atlantic Canada. Soil Till. Res. 
93, 206-221. 

Carter, M.R., Sanderson, J.B., Ivany, J.A., White, R.P., 2002. Influence of rotation and 
tillage on forage maize productivity, weed species, and soil quality of a fine sandy loam 
in the cool-humid climate of Atlantic Canada. Soil Till. Res. 67, 85-98. 

Chaterpaul, L., Paul, E.A., Calaco, W., 1980. Denitrification in Saskatchewan soils under 
field conditions. Abstracts of the 80th Annual Meeting. American Society for 
Microbiology (ASM), Soil Science Society of America (SSSA), 11-16/05/1980, Miami 
Beach, p. 11-16.  

Chaves, B., 2006. Manipulating nitrogen release from vegetable crop residues by use of 
on- and off-farm organic wastes. Dissertation, Ghent University, Ghent, 216 p.  

Chaves, B., De Neve, S., Boeckx, P., Berko, C., Van Cleemput, O., Hofman, G., 2006. 
Manipulating the N release from 15N labelled celery residues by using straw and 
vinasses. Soil Biol. Biochem. 38, 2244-2254.  

Choudhary, M.A., Akramkhanov, A., Saggar, S., 2002. Nitrous oxide emissions from 
New Zealand cropped soil: tillage effects, spatial effects and seasonal variability. Agr. 
Ecosyst. Environ. 93, 33-43. 

Clayton, H., McTaggart, I.P., Parker, J., Swan, L., Smith, K.A., 1997. Nitrous oxide 
emissions from fertilised grassland: A 2-year study of the effects of N fertiliser form and 
environmental conditions. Biol. Fertil. Soils 25, 252-260. 

Conant, R.T., Easter, M., Paustian, K., Swan, A., Williams, S., 2007. Impacts of periodic 
tillage on soil C stocks: A synthesis. Soil Till. Res. 95, 1-10. 

Coppens, F., D’Haene, K., Moreels, E., De Neve, S., Boeckx, P., Merckx, R., Van 
Cleemput, O., Hofman, G., 2002. Stikstofmineralisatie en denitrificatie in Vlaamse 
bodems: nieuwe wijn in oude vaten? In: Proceedings of the Koninklijke Vlaamse 
Ingenieursvereniging (KVIV) workshop “Stikstofproblematiek in de landbouw. 
Evaluatie, maatregelen, consequenties”. KVIV, 17/10/2002, Meise, p. 35-57. 



Bibliography 

 

 

 161 

Coppens, F., Merckx, R., Recous, S., 2006. Impact of crop residue location on carbon 
and nitrogen distribution in soi land water-stable aggregates. Eur. J. Soil Sci. 57, 570-
582. 

Cornelis, W.M., Khlosi, M., Hartmann, R., Van Meirvenne, M., De Vos, B., 2005. 
Comparison of unimodal analytical expressions for the soil-water retention curve. Soil 
Sci. Soc. Am. J. 69, 1902-1911. 

Cortez, J., Billes, G., Bouché, M.B., 2000. Effect of climate, soil type and earthworm 
activity on nitrogen transfer from a nitrogen-15-labelled decomposing material under 
field conditions. Biol. Fertil. Soils 30, 318-327. 

Colbourn, P., 1998. The influence of drainage and cultivation on denitrification losses 
from arable clay soil. In: Jenkinson, D.S., Smith, K.A. (Eds.), Nitrogen efficiency in 
agricultural soils. Elsevier, Londen, 283-294. 

Colbourn, P., Harper, I.W., 1987. Denitrification in drained and undrained arable clay 
soil. J. Soil Sci. 38, 531-539. 

Crescimanno, G., Lane, M., Owens, P.N., Rydel, B., Jacobsen, O.H., Düwel, O., Böken, 
H., Berényi-Üveges, J., Castillo, V., Imeson, A., 2004. Links with organic matter and 
contamination working group and secondary soil threats. In: Van-Camp, L., Bujarrabal, 
B., Gentile, A-R., Jones, R.J.A., Montanarella, L., Olazabal, C., Selvaradjou, S.-K. 
(Eds.), Reports of the technical working groups established under “Thematic strategy for 
soil protection”. Office for official publications of the European Communities, 
Luxembourg, EUR 21319 EN/2, p. 245-278. 

Cunningham, H.M., Chaney, K., Bradbury, R.B., Wilcox, A., 2004. Non-inversion tillage 
and farmland birds: a review with special reference to the UK and Europe. Ibis 2, 192-
202. 

Dam, R.F., Mehdi, B.B., Burgess, M.S.E., Madramootoo, C.A., Mehuys, G.R., Callum, 
I.R., 2005. Soil bulk density and crop yield under eleven consecutive years of corn with 
different tillage and residue practices in a sandy loam soil in central Canada. Soil Till. 
Res. 84, 41-53. 

De Boodt, M., De Leenheer, L., 1967. Aggregate stability determination in the field. In: 
De Boodt, M., Frese, H., Low, A.J., Peerlkamp, P.K. (Eds.), West European methods for 
soil structure determination. Rijkslandbouwhogeschool Gent, Ghent, p. 60-61. 

Debout, H., 2004. Erosiebestrijding: Probleemstelling, preventie en bestrijding van 
watererosie in de Belgische akkerbouw. Thesis, Katholieke Hogeschool Kempen, Geel, 
34 p. 

De Clercq, P., Gertsis, A.C., Hofman, G., Jarvis, S.C., Neeteson, J.J., Sinabell, F., 2001. 
Nutrient management legislation in European countries. Wageningen Pers, Wageningen, 
347 p.  

Deen, W., Kataki, P.K., 2003. Carbon sequestration in a long-term conventional versus 
conservation tillage experiment. Soil Till. Res. 74, 143-150. 

De Leenheer, L., 1959. Werkwijzen van de analysen aan het Centrum voor 
Grondonderzoek. Rijkslandbouwhogeschool Gent, Ghent, 117 p. 



Chapter 8 

 

 

 162 

De Leenheer, L., De Boodt, M., 1959. Determination of aggregate stability by the change 
in mean weight diameter. Mededelingen van landbouwhogeschool en de opzoeking-
stations van de staat te Gent 24, 290-300. 

D'Emden, F., Llewellyn, R.S., 2004. No-till adoption and cropping issues for Australian 
grain growers. In: Fischer, T., Turner, N., Angus, J., McIntyre, L., Robertson, M., 
Borrell, A., Lloyd, D. (Eds.), Proceedings of the 4th International Crop Science Congress 
(ICSC) “New directions for a diverse planet”. The Regional Institute Ltd., 26/09-
01/10/2004, Brisbane.   
http://www.cropscience.org.au/icsc2004/symposia/6/4/928_emdenfh.htm (accessed on 
07/03/2007) 

Demyttenaere, P., 1991. Stikstofdynamiek in de bodems van de Westvlaamse 
groentestreek. Dissertation, Ghent University, Ghent, 203 p. 

Denef, K., Six, J., Bossuyt, H., Frey, S.D., Elliott, E.T., Merckx, R., Paustian, K., 2001a. 
Influence of dry-wet cycles on the interrelationship between aggregate, particulate 
organic matter, and microbial community dynamics. Soil Biol. Biochem. 33, 1599-1611. 

Denef, K., Six, J., Merckx, R., Paustian, K., 2004. Carbon sequestration in 
microaggregates of no-tillage soils with different clay mineralogy. Soil Sci. Soc. Am. J. 
68, 1935-1944. 

Denef, K., Six, J., Paustian, K., Merckx, R., 2001b. Importance of macroaggregate 
dynamics in controlling soil carbon stabilization: short-term effects of physical 
disturbance induced by dry–wet cycles. Soil Biol. Biochem. 33, 2145-2153. 

De Neve, S., Hofman, G., 2002. Quantifying soil water effects on nitrogen mineralization 
from soil organic matter and from fresh crop residues. Biol. Fertil. Soils 35, 379-386. 

De Neve, S., Pannier, J., Hofman, G., 1996. Temperature effects on C- and N-
mineralization from vegetable crop residues. Plant Soil 181, 25-30. 

De Neve, S., Sleutel, S., Hofman, G., 2003. Carbon mineralization from composts and 
food industry wastes added to soil. Nutr. Cycl. Agro. Ecosyst. 67, 13-20. 

Derpsch, R., 2005. The extent of conservation agriculture adoption worldwide: 
Implications and impact. Proceedings of the III world congress on conservation 
agriculture on CD. 03-07/10/2005, Nairobi.  
http://www.aapresid.org.ar/english/note.asp?did=2117 (accessed on 18/02/2007). 

Derpsch, R., 2007. Historical review of no-tillage cultivation of crops. 
http://www.rolf-derpsch.com/notill.htm (accessed on 18/02/2007). 

Dexter, A., 2004. Soil physical quality Part III: Unsaturated hydraulic conductivity and 
general conclusions about S-theory. Geoderma 120, 227-239. 

D’Haene, K., Moreels, E., De Neve, S., Chaves Daguilar, B., Boeckx, P., Hofman, G., 
Van Cleemput, O., 2003. Soil properties influencing the denitrification potential of 
Flemish agricultural soils. Biol. Fertil. Soils 38, 358-366. 



Bibliography 

 

 

 163 

D’Haene, K., Serlet, L., Van den Bossche, A., Vermang, J., Mahieu, J., Gabriels, D., De 
Neve, S., Hofman, G., 2006. Conserveringslandbouw in Vlaanderen. Ghent University, 
27/10/2006, Oudenaarde, 40 p. 

D’Haene, K., Sleutel, S., De Neve, S., Gabriels, D., Hofman, G., 2007. Conserverings-
landbouw in Vlaanderen: invloed op bodemcompactie en -structuur, C en N dynamiek en 
C vastlegging. Instituut voor Innovatie door Wetenschap en Technologie (IWT), Ghent, 
180 p. 

Diaz-Zorita, M., Grove, J.H., Perfect, E., 2002. Aggregation, fragmentation, and 
structural stability measurement. http://web.utk.edu/~eperfect/Papers/Diaz-Zorita02b.pdf 
(accessed on 18/11/2005). 

Dick, W.A., Blevins, R.L., Frye, W.W., Peters, S.E., Christenson, D.R., Pierce, F.J., 
Vitosh, M.L., 1998. Impacts of agricultural management practices on C sequestration in 
forest-derived soils of the eastern Corn Belt. Soil Till. Res. 47, 235-244. 

Dictor, M.C., Tessier, L., Soulas, G., 1998. Reassessement of the KEC coefficient of the 
fumigation-extraction method in a soil profile. Soil Biol. Biochem. 30, 119-127. 

Dolan, M.S., Clapp, C.E., Allmaras, R.R., Baker, J.M., Molina, J.A.E., 2006. Soil 
organic carbon and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen 
management. Soil Till. Res. 89, 221-231. 

Doran, J.W., 1987. Microbial biomass and mineralizable nitrogen distributions in no-
tillage and plowed soils. Biol. Fertil. Soils 5, 68-75. 

Dorren, L., Bazzoffi, P., Sánchez Díaz, J., Arnoldussen, A., Barberis, R., Böken, B.Ü.H., 
Sánchez, V.C., Düwel, O., Imeson, A., Mollenhauer, K., de la Rosa Volker Prasuhn, D., 
Theocharopoulos, S.P., 2004. Impacts of soil erosion. In: Van-Camp, L., Bujarrabal, B., 
Gentile, A-R., Jones, R.J.A., Montanarella, L., Olazabal, C., Selvaradjou, S.-K. (Eds.), 
Reports of the technical working groups established under “Thematic strategy for soil 
protection”. Office for official publications of the European Communities, Luxembourg, 
EUR 21319 EN/2, p. 191-202. 

Dou, H., Hons, F.M., 2006. Tillage and nitrogen effect on soil organic matter fractions in 
wheat-based systems. Soil Sci. Soc. Am. J. 70, 1896-1905. 

Drinkwater, L.E., Janke, R.R., Rossoni-Longnecker, L., 2000. Effects of tillage intensity 
on nitrogen dynamics and productivity in legume-based grain systems. Plant Soil 227, 
99-113. 

Drury, C.F., Reynolds, W.D., Tan, C.S., Welacky, T.W., Calder, W., McLaughlin, N.B., 
2006. Emissions of nitrous oxide and carbon dioxide: influence of tillage type and 
nitrogen placement depth. Soil Sci. Soc. Am. J. 270, 570-581. 

Drury, C.F., Tan, C.S., Welacky, T.W., Oloya, T.O., Hamill, A.S., Weaver, S.E., 1999. 
Red clover and tillage influence on soil temperature, water content, and corn emergence. 
Agron. J. 91, 101-108. 

Duiker, S.W., Beegle, D.B., 2006. Soil fertility distributions in long-term no-till, 
chisel/disk and moldboard plow/disk systems. Soil Till. Res. 88, 30-41. 



Chapter 8 

 

 

 164 

ECAF, 2005. Situation of conservation agriculture in Europe. European Conservation 
Agriculture Federation (ECAF), Brussels. http://www.ecaf.org/ (accessed on 
29/08/2006). 

EEA, 2003. Assessment and reporting on soil erosion. Background and workshop report. 
European Environment Agency (EEA), Copenhagen, 103 p. 

Ekeberg, E., Riley, H.C.F., 1996. Effects of mouldboard ploughing and direct planting on 
yield and nutrient uptake of potatoes in Norway. Soil Till. Res. 39, 131-142. 

Elmi, A. A., Madramootoo, C., Hamel, C., Liu, A., 2003. Denitrification and nitrous 
oxide to nitrous oxide plus dinitrogen ratios in the soil profile under three tillage systems. 
Biol. Fertil. Soils 38, 340-348. 

Elrick, D.E., Reynolds, W.D., Tan, K.A., 1989. Hydraulic conductivity measurements in 
the unsaturated zone using improved well analyses. Ground Wat. Monit. Rev. 9, 184-
193. 

El Titi, A., 2001. Non-inversion tillage in integrated farming concepts: prospects and 
constraints of cropping systems in Southwest of Germany. In: García-Torres, L., Benites, 
J., Martínez-Vilela, A. (Eds.), Conservation agriculture, a worldwide challenge. Volume 
I: Keynote contributions, Environment, farmers’ experiences, innovations, socio-
economy and policy. Springer, Córdoba, p. 201-209. 

Emmerling, C., 2001. Response of earthworm communities to different types of soil 
tillage. Appl. Soil Ecol. 17, 91-96. 

Esteve, J.F., Imeson, A., Jarman, R., Barberis, R., Rydell, B., Sánchez, V.C., 
Vandekerckhove, L., 2004. Pressures and drivers causing soil erosion. In: Van-Camp, L., 
Bujarrabal, B., Gentile, A-R., Jones, R.J.A., Montanarella, L., Olazabal, C., Selvaradjou, 
S.-K. (Eds.), Reports of the technical working groups established under “Thematic 
strategy for soil protection”. Office for official publications of the European 
Communities, Luxembourg, EUR 21319 EN/2, p. 133-149. 

Etana, A., Håkansson, I., Zagal, E., Bučas, S., 1999. Effects of tillage depth on organic 
carbon content and physical properties in five Swedish soils. Soil Till. Res. 52, 129-139. 

Fan, M.X., MacKenzie, A.F., Abbott, M., Cadrin, F., 1997. Denitrification estimates in 
monoculture and rotation corn as influenced by tillage and nitrogen fertilizer. Can. J. Soil 
Sci. 77, 389-396. 

FAO, 2001. The economics of conservation agriculture. Food and Agriculture 
Organization (FAO). http://www.fao.org/docrep/004/Y2781E/Y2781E00.HTM (accessed 
on 07/03/2007). 

Feller, C., 2007. The humus and the sieve: A historical approach of the concept of SOM 
functionaliy. In: Chabbi, A. (Ed.), Proceedings of the international symposium “Organic 
matter dynamics in agro-ecosystems”. Institut Scientifique de Recherche Agronomique 
(INRA), 16-19/07/2007, Poitiers, p. 27-28. 

Firestone, M.K., 1982. Biological denitrification. In: Stevenson, F. (Ed.), Nitrogen in 
agricultural soils. Agronomy 22, American Society of Agronomy (ASA), Soil Science 
Society of America (SSSA), Madison, Winconson, p. 289-326. 



Bibliography 

 

 

 165 

Firestone, M.K., Davidson, E.A., 1989. Microbiological basis of NO and N2O production 
and consumption in soil. In: Andreae, M.O., Schimel, D.S. (Eds.), Exchange of trace 
gases between terrestrial ecosystems and the atmosphere. John Wiley & Sons Ltd., New 
York, p. 7-21. 

Franco, A.A., Munns, D.N., 1982. Plant assimilation and nitrogen cycling. Plant Soil 67, 
1-13. 

Franzluebbers, A.J., 1999. Potential C and N mineralization and microbial biomass from 
intact and increasingly disturbed soils of varying texture. Soil Biol. Biochem. 31, 1083-
1090. 

Franzluebbers, A.J., 2002. Water infiltration and soil structure related to organic matter 
and its stratification with depth. Soil Till. Res. 66, 197-205. 

Franzluebbers, A.J., Haney, R.L., Honeycutt, C.W., Arshad, M.A., Schomberg, H.H., 
Hons, F.M., 2001. Climatic influences on active fractions of soil organic matter. Soil 
Biol. Biochem. 33, 1103-1111. 

Frey, S.D., Elliott, E.T., Paustian, K., 1999. Bacterial and fungal abundance and biomass 
in conventional and no-tillage agroecosystems along two climatic gradients. Soil Biol. 
Biochem. 31, 573-585. 

Friedel, J.K., Munch, J.C., Fischer, W.R., 1996. Soil microbial properties and the 
assessment of available soil organic matter in a haplic Luvisol after several years of 
different cultivation and crop rotation. Soil Biol. Biochem. 28, 479-488. 

Gale, W.J., Cambardella, C.A., Bailey, T.B., 2000. Surface residue- and root-derived 
carbon in stable and unstable aggregates. Soil Sci. Soc. Am. J. 64, 196-201. 

Geelen, P.M.T.M., 2006. Handleiding erosiebestrijding. Interregproject erosiebestrijding, 
Hasselt, 100 p. http://www.erosiebestrijding.info/1034611_Boek_Erosie.pdf (accessed on 
24/07/2007). 

Gillijns, K., Govers, G., Poesen, J., Mathijs, E., Bielders, C., 2005. Stand van zaken 
bodemerosie in België. Koninklijk Instituut voor het Duurzaam Beheer van de 
Natuurlijke Rijkdommen (KINT), Brussels, 73 p. 

Gillijns, K., Govers, G., Poesen, J., Van Hecke, E., Verbist, K., Gabriels, D., 2004. 
Proefvelden niet-kerende bodembewerking en directe inzaai. In: Reductie van 
sedimentaanvoer naar waterlopen vanuit landelijke gebieden: begroting en evaluatie van 
controlemaatregelen: minimale bodembewerking en grasbufferstroken. Aminal Water, 
Brussels, 32 p. 

Gillijns, K., Verbist, K., Gabriels, D., Govers, G., Poesen, J., Van Hecke, E., 2002. 
Reductie van sedimentaanvoer naar waterlopen vanuit landelijke gebieden: begroting en 
evaluatie van controlemaatregelen. Aminal Water, Brussels, 49 p. 

Gobin, A., Govers, G., 2003. Pan-European soil erosion risk assessment project (Pesera). 
Third annual report to the European Commission, EC Contract No QLK5-CT-1999-
01323. European Environment Agency (EEA), Copenhagen, 144 p. 



Chapter 8 

 

 

 166 

Goidts, E., Van Wesemael, B., 2007. Regional assessment of soil organic carbon changes 
under agriculture in southern Belgium (1955-2005). In: Chabbi, A. (Ed.), Proceedings of 
the international symposium “Organic matter dynamics in agro-ecosystems”. Institut 
Scientifique de Recherche Agronomique (INRA), 16-19/07/2007, Poitiers, p. 44-45. 

Goossens, A., De Visscher, A., Boeckx, P., Van Cleemput, O., 2001. Two-year field 
study on the emission of N2O from coarse and middle-textured Belgian soils with 
different land use. Nutr. Cycl. Agroecosys. 60, 23-34. 

Govers, G., Gillijns, K., Leys, A., 2006. Erosiebestrijding: meten is weten. 
Interregproject erosiebestrijding final symposium, 18/05/2006, Landen. 

Goyens, S., Schiettecatte, W., Verbist, K., Serlet, L., Verelst, M., Mahieu, J., Taverniers, 
V., Cornelis, W.M., Gabriels, D., 2005. Impact of alternative tillage techniques on 
erosion and runoff during early crop development. In: Reorganizing field and landscape 
structures in a context of building strategies for water and soil protection, Book of 
abstracts of COST 634. Institute of Agrophysics, 17-18/09/2005, Lublin, p. 14-15. 

Granli, T., Bøckman, O.C., 1994. Nitrous oxide from agriculture. Norweg. J. Agr. Sci. 
Supplement 12, 1-127. 

Groffman, P.M., Tiedje, J.M., 1989. Denitrification in north temperate forest soils: 
spatial and temporal patterns at the landscape and seasonal scale. Soil Biol. Biochem. 21, 
613-620. 

Groffman, P.M., Tiedje, J.M., 1991. Relationships between denitrification, CO2 
production and air-filled porosity in soils of different texture and drainage. Soil Biol. 
Biochem. 23, 299-302. 

Guisson, P., 2006. Erosiebestrijding: oorzaken en bestrijdingstechnieken. Katholieke 
Hogeschool Geel, Geel, 61 p. 

Haan, P.-M., 2006. Socio-economische analyse op bedrijfsniveau. Maatregelen tegen 
Erosie en Sensibilisatie van Agrariërs ter bescherming van het Milieu (MESAM) 
workshop “De rol van het beleid in de strijd tegen bodemerosie”, 10/03/2006, Kortijk. 

Halvorson, A.D., Wienhold, B.J., Black, A.L., 2002. Tillage, nitrogen, and cropping 
system effects on soil carbon sequestration. Soil Sci. Soc. Am. J. 66, 906–912.  

Hamza, M.A., Anderson, W.K., 2005. Soil compaction in cropping systems review of the 
nature, causes and possible solutions. Soil Till. Res. 82, 121-148.  

He, Z.L., Wu, J., ODonnell, A.G., Syers, J.K., 1997. Seasonal responses in microbial 
biomass carbon, phosphorus and sulphur in soils under pasture. Biol. Fertil. Soils 24, 
421-428. 

Hénin, S., Dupuis, M., 1945. Essai du bilan de la matière organique du sol. Annales 
Agronomiques 15, 17-29. 

Hermawan, B., Bomke, A.A., 1997. Effects of winter cover crops and successive spring 
tillage on soil aggregation. Soil Till. Res. 44, 109-120. 



Bibliography 

 

 

 167 

Hilton, B.R., Fixen, P.E., Woodward, H.J., 1994.  Effects of tillage, nitrogen placement, 
and wheel compaction on denitrification rates in the corn cycle of a corn-oats rotation. J. 
Plant Nutr. 17, 1341-1357. 

Hofer, P., Chervet, A., Sturny, W.G., 2002. Semis direct de betteraves sucrières: Des 
résultats encourageants. Workshop “Betterave à sucre: de la graine au cristal 
Zuckerrüben: von der farbigen Pille zum weissen Kristall?”, 07/02/2002, Changins and 
01/03/2002, Zürich- Reckenholz.  
http://www.acw.admin.ch/themen/00568/00732/00967/01147/index.html?lang=fr 
(accessed on 20/11/2006) 

Hoffmann, C., Linden, S., Koch, H.J., 1996. Influence of soil tillage on net N-
mineralization under sugar beet. J. Plant Nutr. Soil Sci. 159, 79-85. 

Hoffmann, C., Platte, H., Lickfett, T., Koch, H.J., 1997. Microbial biomass and N 
mineralization in relation to N supply of sugar beet under reduced tillage. J. Plant Nutr. 
Soil Sci. 160, 187-193. 

Höflich, G., Tauschke, M., Kuhn, G., Werber, K., Frielinghaus, M., Hohn, W., 1999. 
Influence of long-term conservation tillage on soil and rhizosphere microorganisms. Biol. 
Fertil. Soils 29, 81-86. 

Hofman, G., 1973. Kritische studie van de instabiliteit van bodemaggregaten en de 
invloed op de fysische bodemvruchtbaarheid. Dissertation, Ghent University, Ghent, 155 
p. 

Hofman, G., 1983. Evolutie van minerale stikstof in profielen van zandleembodems. 
Teacher's certificate thesis, Ghent University, Ghent, 183 p. 

Hofman, G., 1988. Nitrogen supply from mineralization of organic matter. Biol. Waste 
26, 315-324. 

Hofman, G., Van Cleemput, O., 2001. Gaseous N losses from field crops. Acta Hortic. 
563, 155-162. 

Hofman, G., Boeye, D., Vandendriessche, H., Verheyen, R.F., Vlassak, K., 1995. Weten-
schappelijke verantwoording van de voorgestelde normen in het voorliggende 
mestactieplan. In: Proceedings of the Koninklijke Vlaamse Ingenieursvereniging (KVIV) 
workshop “Een Mestactieplan, ja maar…”. KVIV, 23/05/1995, Antwerp, p. 5-31. 

Hofman, G., De Neve, S., Salomez, J., 2003. Nutriëntenbeheer. Ghent University, Ghent, 
254 p. 

Hofman, G., Salomez, J., De Neve, S., Van Cleemput, O., 2000. The nitrogen cycle in 
the soil-plant system. In: Parente, G., Frame, J. (Eds.), Crop development for the cool 
and wet regions of Europe. COST 814, European Communities, Brussels, p. 351-361. 

Holland, J.M., 2004. The environmental consequences of adopting conservation tillage in 
Europe: reviewing the evidence. Agr. Ecosyst. Environ. 103, 1-25. 

Hussain, I., Olson, K.R., Ebelhar, S.A., 1999. Long-term tillage effects on soil chemical 
properties and organic matter fractions. Soil Sci. Soc. Am. J. 63, 1335-1341. 



Chapter 8 

 

 

 168 

Huybrechts, M., 2006. Kosten-baten analyse. Interregproject erosiebestrijding final 
symposium, 18/06/2006, Landen. 

Ide, G., Hofman, G., 1990. The influence of subsoiling a plough-sole on the yield of 
agricultural crops. Soil Technol. 3, 259-268. 

Ide, G., Hofman, G., Ossemerct, C, Van Ruymbeke, M., 1984. Root growth of winter 
barley in response to subsoiling. Soil Till. Res. 4, 419- 431. 

Ide, G., Hofman, G., Ossemerct, C., Van Ruymbeke, M., 1987. Subsoiling: Time 
dependency of its beneficial effects. Soil Till. Res. 10, 213-223. 

IFA, 1992. World fertilizer use manual. Wirchmann, W. (Ed.), International Fertilizer 
Industry Association (IFA), Paris, 632 p.  
http://www.fertilizer.org/ifa/publicat/html/pubman/manual.htm (accessed on 20/11/2006) 

IPCC, 2000. Land use, land-use change, and forestry. Watson, R.T., Noble, I.R., Bolin, 
B., Ravindranath, N.H., Verardo, D.J., Dokken, D.J. (Eds.), a special report of the 
Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, 
Cambridge.  
http://www.grida.no/climate/ipcc/land_use/index.htm (accessed on 07/03/2007). 

IPCC, 2005. Special Report on Safeguarding the Ozone Layer and the Global Climate 
System: Issues Related to Hydrofluorocarbons and Perfluorocarbons.  Metz, B., Kuijpers, 
L., Solomon, S., Andersen, S.O., Davidson, O., Ponds, J., de Jager, D., Kestin, T., 
Manning, M., Meyer, L.A. (Eds.), Intergovernmental Panel on Climate Change (IPCC), 
Cambridge University Press, Cambridge, 488 p. 

Janssens, I.A., Freibauer, A., Schlamadinger, B., Ceulemans, R., Ciais, P., Dolman, A.J., 
Heimann, M., Nabuurs, G.-J., Smith, P., Valentini, R., Schulze, E.-D., 2005. The carbon 
budget of terrestrial ecosystems at country-scale – a European case study. 
Biogeosciences 2, 15-26. 

Jarecki, M., Lal, R., 2003. Crop management for soil carbon sequestration. Crit. Rev. 
Plant Sci. 22, 1-32. 

Jenkinson, D.S., Brookes, P.C., Powlson, D.S., 2004. Measuring soil microbial biomass. 
Soil Biol. Biochem. 36, 5-7. 

Joergensen, R.G., Mueller, T., 1996. The fumigation-extraction method to estimate soil 
microbial biomass: Calibration of the kEN value. Soil Biol. Biochem. 28, 33-37. 

Johnson, G.A., Defelice, M.S., Helsel, Z.R., 1993. Cover crop management and weed-
control in corn. Weed Technol. 7, 425-430. 

Johnson, J.M.F., Reicosky, D.C., Allmaras, R.R., Sauer, T.J., Venterea, R.T., Dell, C.J., 
2005. Greenhouse gas emissions and mitigation potential of agriculture in central USA. 
Soil Till. Res. 83, 73-94. 

Jones, R.J.A., Le Bissonnais, Y., Bazzoffi, P., Díaz, S.J., Düwel, O., Loj, G., Øygarden, 
L., Prasuhn, V., Rydell, B., Strauss, P., Üveges, J.B., Vandekerckhove, L., Yordanov; Y., 
2004. Nature and extent of soil erosion in Europe. In: Van-Camp, L., Bujarrabal, B., 
Gentile, A-R., Jones, R.J.A., Montanarella, L., Olazabal, C., Selvaradjou, S.-K. (Eds.), 



Bibliography 

 

 

 169 

Reports of the technical working groups established under “Thematic strategy for soil 
protection”. Office for official publications of the European Communities, Luxembourg, 
EUR 21319 EN/2, p. 150-190. 

Kader, M.A., Sleutel, S., D'Haene, K., De Neve, S., Hofman, G., 2006. Effect of tillage 
management on the distribution of organic carbon in different soil fractions. In: 
Proceedings of 5th international symposium Agro Environ “Agricultural constraints 
within the soil-plant-atmosphere continuum”. Ghent University, 04-07/09/2006, Ghent, 
p. 265-271. 

Kader, M.A., Sleutel, S., D'Haene, K., De Neve, S., Hofman, G., 2008. Impact of tillage 
management on organic matter fractions in silt loam soils. J. Plant Nutr. Soil Sci., 
submitted. 

Kandeler, E., Böhm, K.E., 1996. Temporal dynamics of microbial biomass, xylanase 
activity, N-mineralisation and potential nitrification in different tillage systems. Appl. 
Soil Ecol. 4, 181-191. 

Kandeler, E., Palli, S., Stemmer, M., Gerzabek M.H., 1999a. Tillage changes microbial 
biomass and enzyme activities in particle-size fractions of a Haplic Chernozem. Soil 
Biol. Biochem. 31, 1253-1264. 

Kandeler, E., Tscherko, D., Spiegel, H., 1999b. Long-term monitoring of microbial 
biomass, N mineralisation and enzyme activities of a Chernozem under different tillage 
management. Biol. Fert. Soils 28, 343-351. 

Katsvairo, T., Cox, W.J., van Es, H., 2002. Tillage and rotation effects on soil physical 
characteristics. Agron. J. 94, 299-304. 

Kay, B.D., Vanden Bygaart, A.J., 2002. Conservation tillage and depth stratification of 
porosity and soil organic matter. Soil Till. Res. 66, 107-118. 

Kessavalou, A., Mosier, A.R., Doran, J.W., Drijber, R.A., Lyon, D.J., Heinemeyer, O., 
1998. Fluxes of carbon dioxide and methane in grass sod and winter wheat-fallow tillage 
management. J. Environ. Qual. 27, 1094-1104. 

Kettler, T.A., Lyon, D.J., Doran, J.W., Powers, W.L., Stroup, W.W., 2000. Soil quality 
assessment after weed-control tillage in a no-till wheat-fallow cropping system. Soil Sci. 
Soc. Am. J. 64, 339-346. 

Khlosi, M., Cornelis, W., Gabriels, D., Sin, G., 2006. Simple modification to describe the 
soil water retention curve between saturation and oven dryness. Water Resour. Res. 
42(11) doi: 10.1029/2005WR004699. 

Klemedtsson, L., Svensson, B.H., Rosswall, T., 1988. Relationships between soil 
moisture content and nitrous oxide production during nitrification and denitrification. 
Biol. Fert. Soils 6, 106-111. 

KMI, 2007. Statistieken.  
http://www.meteo.be/the Netherlandss/pages/Klimatologisch/century/statistieken.html 
(accessed on 30/03/2007). 



Chapter 8 

 

 

 170 

Koroleff, F., 1983. Simultaneous oxidation of nitrogen and phosphorus compounds by 
persulfate. In: Grasshoff, K., Eberhardt, M., Kremling, K. (Eds.), Methods of seawater 
analysis, 2nd edn. Verlag Chemie, Weinheim, p. 168-169. 

Kristensen, H.L., McCarty, G.W., Meisinger, J.J., 2000. Effects of soil structure 
disturbance on mineralization of organic soil nitrogen. Soil Sci. Soc. Am. J. 64, 371-378. 

Lahmar, R., 2006. Adoption of conservation agriculture in Europe. Lessons of the 
KASSA project. COST 634, 30/09-03/10/2006, Wageningen. 
http://www.esw.wur.nl/NR/rdonlyres/10A6164E-24A4-4E54-8201-
3F275831B6B8/30040/K1Rabah_Lahmar.pdf (accessed on 30/03/2007). 

Lal, R., 1989. Conservation tillage for sustainable agriculture: tropic versus temperate 
environments. Adv. Agron. 42, 85-197. 

Lal, R., 2002. Soil carbon dynamics in cropland and rangeland. Environ. Pollut. 116, 
353-362. 

Lal, R., Reicosky, D.C., Hanson, J.D., 2007. Evolution of the plow over 10000 years and 
the rationale for no-tillage farming. Soil Till. Res. 93, 1-12. 

Larney, F.J., Ren, J., McGinn, S.M., Lindwall, C.W., Izaurralde, R.C., 2003. The 
influence of rotation, tillage and row spacing on near-surface soil temperature for winter 
wheat in southern Alberta. Can. J. Soil Sci. 83, 89-98. 

Layton, J.B., Skidmore, E.L., Thompson, C.A., 1993. Winter-associated changes in dry-
soil aggregation as influenced by management. Soil Sci. Soc. Am. J. 57, 1568-1572. 

Le Bissonnais, Y., 1996. Aggregate stability and assessment of soil crustability and 
erodibility: I. Theory and methodology. Eur. J. Soil Sci. 47, 425-437. 

Le Bissonnais, Y., Cros-Cayot, S., Gascuel-Odoux, C., 2002. Topographic dependence of 
aggregate stability, overland flow and sediment transport. Agron. 22, 489-501. 

Legrand, G, Vandergeten, J.-P., 2006. Bodembedekkers: de juiste keuze vóór het zaaien 
van de suikerbiet. De Bietenplanter 430, 7-8. 

Leinweber, P., Schulten, H., 1995. Composition, stability and turnover of soil organic 
matter: investigation by off-line pyrolysis and direct pyrolysis-mass spectrometry. J. 
Anal. Pyr. 32, 91-110. 

Leroy, B.L.M., Herath, H.M.S.K., De Neve, S., Gabriels, D., Bommele, L., Reheul, D., 
Moens, M., 2007. The application of vegetable, fruit and garden waste (VFG) compost in 
addition to cattle slurry in a silage maize monoculture: effects on soil physical properties. 
Compost Sci. Util., in press. 

Leys, A., Govers, G., Gillijns, K., Poesen, J., 2007. Conservation tillage on loamy soils: 
explaining the variability in interrill runoff and erosion reduction. Eur. J. Soil Sci. 58, 
1425-1436. 

Liang, B.C., MacKenzie, A.F., 1997. Seasonal denitrification rates under corn (Zea mays 
L) in two Quebec soils. Can. J. Soil Sci. 77, 21-25. 



Bibliography 

 

 

 171 

Liebig, M.A., Tanaka, D.L., Wienhold, B.J., 2004. Tillage and cropping effects on soil 
quality indicators in the northern Great Plains. Soil Till. Res. 78, 131-141. 

Linn, D.M., Doran, J.W., 1984. Effect of water-filled pore space on carbon dioxide and 
nitrous oxide production in tilled and nontilled soils. Soil Sci. Soc. Am. J. 48, 1267-1272. 

Lipiec, J., Kuś, J., Slowińska-Jurkiewics, A., Nosalewics, A., 2006. Soil porosity and 
water infiltration as influenced by tillage methods. Soil Till. Res. 89, 210-220. 

Liu, X.J., Mosier, A.R., Halvorson, A.D., Reule, C.A., Zhang, F.S., 2007. Dinitrogen and 
N2O emissions in arable soils: Effect of tillage, N source and soil moisture. Soil Biol. 
Biochem. 39, 2362-2370. 

Logan, T.J., Lal, R., Dick, W.A., 1991. Tillage systems and soil properties in North-
America. Soil Till. Res. 20, 241-270. 

Luo, J., Tillman, R.W., Ball, P.R., 2000. Nitrogen loss through denitrification in a soil 
under pasture in New Zealand. Soil Biol. Biochem. 32, 497-509. 

Lupwayi, N.Z., Arshad, M.A., Rice, W.A., Clayton, G.W., 2001. Bacterial diversity in 
water-stable aggregates of soils under conventional and zero tillage management. Appl. 
Soil Ecol. 16, 251-261. 

Martens, D.A., 2000. Plant residue biochemistry regulates soil carbon cycling and carbon 
sequestration. Soil Biol. Biochem. 32, 361-369. 

Maurer-Troxler, C., Chervet, A., Ramseier, L., Sturny, W.G., Oberholzer, H.-R., 2006. 
Biologie du sol après 10 ans de semis direct ou de labour. Revue suisse Agric. 38, 89-94. 
http://www.vol.be.ch/lanat/aul/f/PUBLIKATIONEN/OBA%20Biologie%20f.pdf 
(accessed on 13/01/2007). 

McCarty, G.W., Meisinger, J.J., Jenniskens, F.M.M., 1995. Relationships between total-
N, biomass-N and active-N in soil under different tillage and N fertilizer treatments. Soil 
Biol. Biochem. 27, 1245-1250. 

McLauchlan, K., 2006. The nature and longevity of agricultural impacts on soil carbon 
and nutrients: a review. Ecosys. 9, 1364-1382. 

McVay, K.A., Budde, J.A., Fabrizzi, K., Mikha, M.M., Rice, C.W., Schlegel, A.J., 
Peterson, D.E., Sweeney, D.W., Thompson, C., 2006. Management effects on soil 
physical properties in long-term tillage studies in Kansas. Soil Sci. Soc. Am. J. 70, 434-
438. 

Mehdi, B.B., Madramootoo, C.A., Mehuys, G.R., 1999. Yield and nitrogen content of 
corn under different tillage practices. Agron. J. 91, 631-636. 

Mengel, K., Kirkby, E.A., 1982. Principles of plant nutrition, 3rd Edition. Chapter 7. 
Nitrogen. International Potash Institute, Worblaufen-Bern, p. 335-368. 

MESAM, 2007. Waar gaat onze bodem heen? Watererosie en bodemconservering in 
Vlaanderen, Wallonië en Nord-Pas de Calais. Maatregelen tegen Erosie en Sensibilisatie 
van Agrariërs ter bescherming van het Milieu (MESAM), Beitem. 



Chapter 8 

 

 

 172 

Mikha, M.M., Rice, C.W., 2004. Tillage and manure effects on soil and aggregate-
associated carbon and nitrogen. Soil Sci. Soc. Am. J. 68, 809-816.  

Mulier, A., Hofman, G., Baecke, E., Carlier, L., De Brabander, D., De Groote, G., De 
Wilde, R., Fiems, L., Janssens, G., Van Cleemput, O., Van Herck, A., Van 
Huylenbroeck, G., Verbruggen, I., 2001. Emissiepreventie in de landbouw door middel 
van nutriëntenbalansen. Vlaamse Landmaatschappij (VLM), Brussels, 239 p. 

Mulier, A., Nevens, F., Hofman, G., 2006. Daling van de organische stof in Vlaamse 
landbouwgronden. Analyse van mogelijke oorzaken en aanbevelingen voor de toekomst. 
Publicatie 24. Steunpunt Duurzame Landbouw (Stedula), Gontrode, 63 p. 

Murty, D., Kirschbaum, M.U.F., McMurtrie, R.E., McGilvray, H., 2002. Does 
conversion of forest to agricultural land change soil carbon and nitrogen? A review of the 
literature. Glob. Change Biol. 8, 105-123. 

Neeteson, J., Greenwood, D., Draycott, A., 1988. A dynamic model to predict the 
optimum nitrogen fertilizer application rate for potatoes. In: Jenkinson, D., Smith, K. 
(Eds.), Nitrogen Efficiency in Agricultural Soil. Elsevier, London, p. 384-393. 

Nevens, F., Reheul, D., 2003. The consequences of wheel-induced soil compaction and 
subsoiling for silage maize on a sandy loam soil in Belgium. Soil Till. Res. 70, 175-184. 

OECD, 2003. Report on the OECD expert meeting on soil erosion and soil biodiversity 
indicators: summary and recommendations. Expert meeting of Organisation for 
Economic Co-operation and Development (OECD). OECD, 13-15/05/2003, Kyoto.  
http://webdomino1.oecd.org/comnet/agr/landconserv.nsf (accessed on 07/03/2007). 

Ogle, S.M., Breidt, F.J., Paustian, K., 2005. Agricultural management impacts on soil 
organic carbon storage under moist and dry climatic conditions of temperate and tropical 
regions. Biogeochemistry 72, 87–121. 

Oorts, K., 2006. Effect of tillage systems on soil organic matter stocks and C and N 
fluxes in cereal cropping systems on a silt loam soil in Northern France. Dissertation, 
KULeuven, Leuven, 178 p. 

Oorts, K., Bossuyt, H., Labreuche, J., Merckx, R., Nicolardot, B., 2007. Carbon and 
nitrogen stocks in relation to organic matter fractions, aggregation and pore size 
distribution in no-tillage and conventional tillage in northern France. Eur. J. Soil Sci. 58, 
248-259. 

Paauw, J.G.M., 2006. Aan de slag met erosie. Ploegloze grondbewerking in beweging. 
PPO nr. 5115105. Praktijkonderzoek Plant & Omgeving (PPO), Wageningen.  
http://dlg2.vertis.nl - kennisakker - Samenvatting 'Aan de slag met erosie' (accessed on 
26/10/2007). 

Pálmai, O., Horváth, J., Németh, T., 1998. Farmfield N-fertilization based on Nmin-
method. In: Van Cleemput, O., Haneklaus, S., Hofman, G., Schnug, E., Vermoesen, A. 
(Eds.), Proceedings of the 11th world fertilizer Centre International des Engrais 
Chimiques (CIEC) congress “Fertilization for sustainable plant production and soil 
fertility”. CIEC, 7-13/09/1997, Ghent, Volume II, p. 326-331. 



Bibliography 

 

 

 173 

Pardo, A., Amato, M., Chiaranda, F.Q., 2000. Relationships between soil structure, root 
distribution and water uptake of chickpea (Cicer arietinum L.). Plant growth and water 
distribution. Eur. J. Agron. 13, 39-45. 

Peoples, M.B., Feney, J.R., Mosier, A.R., 1995. Minimizing gaseous losses of nitrogen. 
In: Bacon, P.E. (Ed.), Nitrogen fertilization in the environment. Marcel Dekker Inc., New 
York, p. 565-602. 

Perfect, E., Caron, J., 2002. Spectral analysis of tillage-induced differences in soil spatial 
variability. Soil Sci. Soc. Am. J. 66, 1587-1595. 

Peters, R.D., Sturz, A.V., Carter, M.R., Sanderson, J.B., 2004. Influence of crop rotation 
and conservation tillage practices on the severity of soil-borne potato diseases in 
temperate humid agriculture. Can. J. Soil Sci. 84, 397-402. 

Peters, R.D., Sturz, A.V., Carter, M.R., Sanderson, J.B., 2005. Crop rotation can confer 
resistance to potatoes from Phytopthora erythroseptica attack. Can. J. Plant Sci. 85, 523-
528. 

Petheram, R.J., 2000. Tools for participatory R&D in dryland cropping areas. Publication 
00/132, Rural Industries Research and Development Corporation (RIRDC), Canberra, p. 
113-116. 

Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., Crist, S., 
Shpritz, L., Fitton, L., Saffouri, R., Blair, R., 1995. Environmental and economic cost of 
soil erosion and conservation benefits. Science 267, 1117-1123. 

Powlson, D.S., 2007. Long-term experiments as research facilitates for studying soil 
organic matter dynamics and soil functioning. In: Chabbi, A. (Ed.), Proceedings of the 
international symposium “Organic matter dynamics in agro-ecosystems”. Institut 
Scientifique de Recherche Agronomique (INRA), 16-19/07/2007, Poitiers, p. 72-73. 

Priemé, A., Christensen, S., 2001. Natural perturbations, drying-wetting and freezing-
thawing cycles, and the emission of nitrous oxide, carbon dioxide and methane from 
farmed organic soils. Soil Biol. Biochem. 33, 2083-2091. 

Puget, P., Lal, R., 2005. Soil organic carbon and nitrogen in a Mollisol in central Ohio as 
affected by tillage and land use. Soil Till. Res. 80, 201-213. 

Pulleman, M.M., Six, J., Van Breemen, N., Jongmans, G.A., 2005. Soil organic matter 
distribution and microaggregate characteristics as affected by agricultural management 
and earthworm activity. Eur. J. Soil Sci. 56, 453-467. 

Rasmussen, K.J., 1999. Impact of ploughless soil tillage on yield and soil quality: A 
Scandinavian review. Soil Till. Res. 53, 3-14. 

Renard, K.G., Foster, G.R., Weesies, G.A., Porter, J.P., 1991. RUSLE: Revised 
Universal Soil Loss Equation. J. Soil Water Conserv. 46, 30-33. 

Reynolds, W.D., Elrick, D.E., 1990. Ponded infiltration from a single ring: I. Analysis of 
steady state flow. Soil Sci. Soc. Am. J. 54, 1233-1241. 



Chapter 8 

 

 

 174 

Reynolds, W.D., Elrick, D.E., 2002. Falling head soil core (tank) method. In: Dane, J.H., 
Topp, G.C. (Eds.), Methods of soil analysis, Part 4: Physical methods. Soil Science 
Society of America (SSSA) Book Series No. 5. SSSA, Madison, p. 809-812. 

Reynolds, W.D., Bowman, B.T., Brunke, R.R., Drury, C.F., Tan, C.S., 2000. Comparison 
of tension infiltrometer, pressure infiltrometer, and soil core estimates of saturated 
hydraulic conductivity. Soil Sci. Soc. Am. J. 64, 478-484. 

Rieger, S.B., 2001. Impacts of tillage systems and crop rotation on crop development, 
yield, and nitrogen efficiency. Dissertation, Swiss Federal Institute of Technology (ETH) 
Zurich, Zurich, 138 p. 

Riley, H.C.F., 1998. Soil mineral-N and N-fertilizer requirements of spring cereals in two 
long-term tillage trials on loam soil in southeast Norway. Soil Till. Res. 48, 265-274. 

Riley, H.C.F., Bleken, M.A., Abrahamsen, S., Bergjord, A.K., Bakken, A.K., 2005. 
Effects of alternative tillage systems on soil quality and yield of spring cereals on silty 
clay loam and sandy loam soils in the cool, wet climate of central Norway. Soil Till. Res. 
80, 79-93. 

Robert, M., Nortcliff, S., Yli-Halla, M., Pallière, C., Baritz, R., Leifeld, J., Bannick, C.G., 
Chenu, C., 2004. Functions, roles and changes in SOM. In: Van-Camp, L., Bujarrabal, 
B., Gentile, A-R., Jones, R.J.A., Montanarella, L., Olazabal, C., Selvaradjou, S.-K. 
(Eds.), Reports of the technical working groups established under “Thematic strategy for 
soil protection”. Office for official publications of the European Communities, 
Luxembourg, EUR 21319 EN/3, p. 317-332. 

Robertson, G.P., Paul, E.A., Harwood, R.R., 2000. Greenhouse gases in intensive 
agriculture: contributions of individual gases to the radiative forcing of the atmosphere. 
Science 289, 1922-1925. 

Rochette, P., Angers, D.A., Chatigny, M.H., Bertrand, N., Côté, D., 2004. Carbon 
dioxide and nitrous oxide emissions following fall and spring applications of pig slurry to 
an agricultural soil. Soil Sci. Soc. Am. J. 68, 1410-1420. 

Roisin, C.J.C., 2003. Quantification de l’hétérogénéité structurale des sols agricoles à 
partir de données pénétrométriques. Dissertation, Faculté Universitaire des Sciences 
Agronomiques de Gembloux (FUSAGx), Gembloux, 257 p. 

Roisin, C.J.C., 2007. A multifractal approach for assessing the structural state of tilled 
soils. Soil Sci. Soc. Am. J. 71, 1-12. 

Rücknagel, J., Hofman, B, Christen, O., 2004. Effect of soil-tillage on soil physical 
properties, total organic carbon content and winter barley yield in a long-term experiment 
in Germany. In: Fischer, T., Turner, N., Angus, J., McIntyre, L., Robertson, M., Borrell, 
A., Lloyd, D. (Eds.), Proceedings of the 4th International Crop Science Congress (ICSS) 
“New directions for a diverse planet”. The Regional Institute Ltd., 26/09-01/10/2004, 
Brisbane. http://www.cropscience.org.au/icsc2004/ (accessed on 05/05/2005). 

Ruser, R., Flessa, H., Russow, R., Schmidt, G., Buegger, F., Munch, J.C., 2006. 
Emission of N2O, N2 and CO2 from soil fertilized with nitrate: Effect of compaction, soil 
moisture and rewetting. Soil Biol. Biochem. 38, 263-274. 



Bibliography 

 

 

 175 

Sadeghi, A.M., Isensee, A.R., Shelton, D.R., 1998. Effect of tillage age on herbicide 
dissipation: a side-by-side comparison using microplots. Soil Sci. 163, 883-890. 

Saini, G.R., 1966. Organic matter as a measure of bulk density of soil. Nature 210, 1295-
1296. 

Salomez, J., 2004. Growth, nitrogen uptake and nitrate concentration of lettuce: 
optimisation of a greenhouse soil's nitrogen balance. Dissertation, Ghent University, 
Ghent, 173 p. 

Schiettecatte, W., 2006. Assessment of sediment and phosphorus transport from 
laboratory to watershed scale. Disseration, Ghent University, Ghent, 214 p. 

Schloemer, S., 1991. Denitrification losses from a horticultural soil as affected by 
incorporation of fresh plant residues. Zeitschr. Pflanz. Bodenk. 154, 265-269. 

Serlet, L., 2004. Minimale bodembewerkingen. Maatregelen tegen Erosie en 
Sensibilisatie van Agrariërs ter bescherming van het Milieu (MESAM) workshop 
“Erosiebestrijding over de grenzen heen”, 16/12/2004, Antoing. http://www.west-
vlaanderen.be/jahia_upload/leefomgeving/mesam/ResultatenMESAMminimalebodembe
werking.pdf (accessed on 24/07/2007). 

Sextone, A.J., Parkin, T.B., Tiedje, J.M., 1985. Temporal response of soil denitrification 
rates to rainfall and irrigation. Soil Sci. Soc. Am. J. 49, 99-103.  

Singh, B., Malhi, S.S., 2006. Response of soil physical properties to tillage and residue 
management on two soils in a cool temperate environment. Soil Till. Res. 85, 143-153. 

Six, J., 2007. Carbon and nitrogen cycling in agroecosystems: trade-offs across scales. In: 
Chabbi, A. (Ed.), Proceedings of the international symposium “Organic matter dynamics 
in agro-ecosystems”. Institut Scientifique de Recherche Agronomique (INRA), 16-
19/07/2007, Poitiers, p. 34-35. 

Six, J., Bossuyt, H., Degryze, S., Denef, K., 2004a. A history of research on the link 
between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Till. Res. 
79, 7-31. 

Six, J., Conant, R.T., Paul, E.A., Paustian, K., 2002a. Stabilization mechanisms of soil 
organic matter: Implications for C-saturation of soils. Plant Soil 241, 155-176. 

Six, J., Elliott, E.T., Paustian, K., 2000a. Soil macro-aggregate turnover and micro-
aggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil 
Biol. Biochem. 32, 2099-2103. 

Six, J., Elliott, E.T., Paustian, K., Doran, J.W., 1998. Aggregation and soil organic matter 
accumulation in cultivated and native grassland soils. Soil Sci. Soc. Am. J. 62, 1367-
1377. 

Six, J., Feller, C., Denef, K., Ogle, S.M., de Moraes, J.C.S.A., Albrecht, A., 2002b. Soil 
organic matter, biota and aggregation in temperate and tropical soils - Effects of no-
tillage. Agron. 22, 755–775. 

Six, J., Merckx, R., Kimpe, K., Paustian, K., Elliott, E.T., 2000b. A re-evaluation of the 
enriched labile soil organic matter fraction. Eur. J. Soil Sci. 51, 283-293. 



Chapter 8 

 

 

 176 

Six, J., Ogle, S.M., Breidt, F.J., Conant, R.T., Mosier, A.R., Arvin, R., Paustian, K., 
2004b. The potential to mitigate global warming with no-tillage management is only 
realized when practised in the long term. Glob. Change Biol. 10, 155–160. 

Six, J., Paustian, K., Elliott, E.T., Combrink, C., 2000c. Soil structure and soil organic 
matter: I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil 
Soc Sci. Am. J. 64, 681-689. 

Sleutel, S., De Neve, S., Hofman, G., 2003a. Estimates of carbon stock changes in 
Belgian cropland. Soil Use Manage. 19, 166-171. 

Sleutel, S., De Neve, S., Hofman, G., 2007a. Assessing causes of recent organic carbon 
losses from cropland soils by means of regional-scaled input balances for the case of 
Flanders (Belgium). Nutr. Cycl. Agroecosyst. 78, 265-278. 

Sleutel, S., De Neve, S., Hofman, G., Boeckx, P., Beheydt, D., Van Cleemput, O., 
Mestdagh, I., Lootens, P., Carlier, L., Van Camp, N., Verbeeck, H., Vande Walle, I., 
Samson, R., Lust, N., Lemeur, R., 2003b. Carbon stock changes and carbon sequestration 
potential of Flemish cropland soils. Glob. Change Biol. 9, 1193-1203. 

Sleutel, S., De Neve, S., Németh, T., Tóth, T., Hofman, G., 2006a. Effect of manure and 
fertilizer application on the distribution of organic carbon in different soil fractions in 
long-term field experiments. Eur. J. Agron. 25, 280-288. 

Sleutel, S., De Neve, S., Singier, B., Hofman, G., 2006b. Organic C levels in intensively 
managed arable soils – long-term regional trends and characterization of fractions. Soil 
Use Manage. 22, 188-196. 

Sleutel, S., Huisz, A., Tóth, E., Németh, T., De Neve, S., Hofman, G., 2005. Effect of 
cropland management on the distribution of organic carbon in different soil fractions: 1° 
influence of tillage operations in the Józsefmajor field experiment. In: Cockx, L., Van 
Meirvenne, M., Tóth, T., Hofman, G., Németh, T. (Eds.), Monitoring space-time 
dynamics of soil chemical properties to improve management and environmental quality. 
Ghent University, 08-09/12/2005, Ghent, p. 95-106. 

Sleutel, S., Kader, M.A., D'Haene, K., De Neve, S., Leinweber, P., 2006c. Chemical 
composition of soil organic matter examined by Py-FIMS in different soil fractions as 
affected by tillage. In: Proceedings of 5th international symposium Agro Environ  
“Agricultural constraints within the soil-plant-atmosphere continuum”. Ghent University, 
04-07/09/2006, Ghent, p. 273-279. 

Sleutel, S., Kader, M.A., Leinweber, P., D'Haene, K., De Neve, S., 2007b. Tillage 
management alters surface soil organic matter composition: a pyrolysis mass 
spectroscopy study. Soil Sci. Soc. Am. J., 1620-1628. 

Smit, A.L., 1994. Stikstofbenutting. In: Themadag in de vollegrondsgroenteteelt. Proef-
station voor de Akkerbouw en Groenteteelt in de Vollegrond (PAVG), Lelystad, p. 9-22. 

Soon, Y.K., Arshad, M.A., Haq, A., Lupwayi, N., 2007. The influence of 12 years of 
tillage and crop rotation on total and labile organic carbon in a sandy loam soil. Soil Till. 
Res. (doi:10.1016/j.still.2006.10.009). 



Bibliography 

 

 

 177 

Spedding, T.A., Hamel, C., Mehuys, G.R., Madramootoo, C.A., 2004. Soil microbial 
dynamics in maize-growing soil under different tillage and residue management systems. 
Soil Biol. Biochem. 36, 499-512. 

Stemmer, M., Von Lützow, M., Kandeler, E., Pichlmayer, F., Gerzabek, M.H., 1999. The 
effect of maize straw placement on mineralization of C and N in soil particle size 
fractions. Eur. J. Soil Sci. 50, 73-85. 

Stenberg, M., Stenberg, B., Rydberg, T., 2000. Effects of reduced tillage and liming on 
microbial activity and soil properties in a weakly-structured soil. Appl. Soil Ecol. 14, 
135-145. 

Stenger, R., Barkle, G.F., Burges, C.P., 2002. Mineralization of organic matter in intact 
versus sieved/refilled soil cores. Aust. J. Soil Res. 40, 149-160. 

Stenger, R., Priesack, E., Beese, F., 1995. Rates of net nitrogen mineralization in 
disturbed and undisturbed soils. Plant Soil 171, 323-332. 

Stevens, R.J., Laughlin, R.J., 2002. Cattle slurry applied before fertilizer nitrate lowers 
nitrous oxide and dinitrogen emissions. Soil Sci. Soc. Am. J. 66, 647-652. 

Stockfisch, N., Forstreuter, T., Ehlers, W., 1999. Ploughing effects on soil organic matter 
after twenty years of conservation tillage in Lower Saxony, Germany. Soil Till. Res. 52, 
91-101. 

Strauss, P., Swoboda, D., Blum, W.E.H., 2003. How effective is mulching and minimum 
tillage to control runoff and soil loss? – a literature review. In: Gabriels, D., Cornelis, W. 
(Eds.), Proceedings of the international symposium “25 years of assessment of erosion”. 
Ghent University, 22-26/09/2003, Ghent, p. 545-550. 

Streit, B., Rieger, S.B., Stamp, P., Richner, W., 2002. The effect of tillage intensity and 
time of herbicide application on weed communities and populations in maize in central 
Europe. Agr. Ecosyst. Environ. 92, 211-224. 

Streit, B., Rieger, S.B., Stamp, P., Richner, W., 2003. Weed populations in winter wheat 
as affected by crop sequence, intensity of tillage and time of herbicide application in a 
cool and humid climate. Weed Res. 43, 20-32. 

Sturz, A.V., Carter, M.R., Johnston, H.W., 1997. A review of plant disease, pathogen 
interactions and microbial antagonism under conservation tillage in temperate humid 
agriculture. Soil Till. Res. 41, 169-189. 

Stuykens, F., 2002. Nutrientenproblemen in Vlaanderen. Koninklijke Vlaamse 
Ingenieursvereniging (KVIV) workshop “Stikstofproblematiek in de landbouw. 
Evaluatie, maatregelen, consequenties”. KVIV, 17/10/2002, Meise, 33 p. 

Swerts, M., Vandekerckhove, L., 2007. Het erosiebesluit in Vlaanderen en Europa. 
Koninklijke Vlaamse Ingenieursvereniging (KVIV) workshop “Erosiebestrijding in 
theorie en praktijk”. KVIV, 25/10/2007, Melle. 

Taylor, S.A., Ashcroft, G.M., 1972. Physical edaphology. The physics of irrigated and 
nonirrigated soils. Freeman & Co, San Francisco, California, 533 p. 



Chapter 8 

 

 

 178 

Tebrügge, F., Düring, R.-A., 1999. Reducing tillage intensity: a review of results from a 
long-term study in Germany. Soil Till. Res. 53, 15-28. 

Tessier, L., Gregorich, E.G., Topp, E., 1998. Spatial variability of soil microbial biomass 
measured by the fumigation extraction method, and KEC as affected by depth and manure 
application. Soil Biol. Biochem. 30, 1369-1377. 

Thomas, F., 2006. L’agriculture de conservation et les engrais verts. Interregproject 
erosiebestrijding workshop, 17/11/2006, Strée-lez-Huy. 

Tiessen, H., Stewart, J.W.B., 1983. Particle size fractions and their use in studies of soil 
organic matter: II Cultivation effects on organic matter composition in size fractions. Soil 
Sci. Soc. Am. J. 47, 509-514. 

Tiessen, H., Stewart, J.W.B., Moir, J.O., 1983. Changes in organic and inorganic 
phosphorous composition of two grassland soils and their particle size fractions during 
60-90 years of cultivation. J. Soil Sc. 34, 815-823. 

Timmer, R.D., Korthals, G.W., Molendijk, L.P.G., 2004. Teelthandleiding groen-
bemesters. Praktijkonderzoek Plant & Omgeving (PPO), Wageningen. 
http://dlg2.vertis.nl/pls/dlg/docs/FOLDER/KENNISAKKER_NEW/KENNISCENTRU
M/HANDLEIDINGEN/TEELTHANDLEIDING_GROENBEMESTERS_INHOUDSOP
GAVE.HTM (accessed on 27/03/2007). 

Tirez, K., 2007. Code van goede praktijk bodembescherming. Afdeling Land en 
Bodembescherming, Ondergrond, Natuurlijke Rijkdommen (ALBON), Departement 
Leefmilieu, Natuur en Energie, Brussels, 14 p. 
http://www.emis.vito.be/EMIS/Media/referentielabo_LNE_code_van_goede_praktijk.pdf 
(accessed on 07/11/2007). 

Tisdall, J.M., Oades, J.M., 1982. Organic matter and water stable aggregates. J. Soil Sci. 
33, 141-163. 

Uri, N.D., 1999. Factors affecting the use of conservation tillage in the United States? 
Water Air Soil Pollut. 116, 621-638. 

Uri, N.D., 2000. An evaluation of the economic benefits and costs of conservation tillage. 
Environ. Geol. 39, 238-248. 

Uri, N.D., Atwood, J.D., Sanabria, J., 1999. The Environmental benefits and costs of 
conservation tillage. Environ. Geol. 38, 111-124. 

Van Cleemput, O., 1998. Subsoils, chemo- and biological denitrification, N2O and N2 
emissions. Nutr. Cycl. Agroecosyst. 52, 187-194. 

Van den Bossche, A., Leroy, B., De Neve, S., Hofman, G., 2007. Effect of reduced 
tillage on the stratification of biological activity in soil. In: Chabbi, A. (Ed.), Proceedings 
of the international symposium “Organic matter dynamics in agro-ecosystems”. Institut 
Scientifique de Recherche Agronomique (INRA), 16-19/07/2007, Poitiers, p. 255-256. 

Vandergeten, J.-P., 2005. Demonstratie bodembewerking ploegloze technieken in de 
suikerbietenteelt. De Bietplanter 421, 8-10. 



Bibliography 

 

 

 179 

Vandergeten, J.-P., 2006. Enkele leringen uit de proeven over de ploegloze 
suikerbietenteelt in 2005. De Bietplanter 425, 7. 

Vandergeten, J.-P., Roisin, C., 2004. Ploegloze teelttechnieken in de suikerbietenteelt. De 
technische gidsen van het Koninklijk Belgisch Instituut tot Verbetering van de Biet 
(KBIVB). KBIVB, Tienen, 22 p. 

van der Weide, R., Bleeker, P., Lotz, B., 2003. Voorkomen beter dan wieden. 
http://www.ekoland.vwg.net/htmlpags/wieden.html (accessed on 05/11/2006). 

van Essen, P., Toepoel, A., Defrijn, S., Stolte, J., Mathijs, E., de Graaff, J., 
Verzandvoort-van Dijck, S., 2006. Acceptatie van erosiebestrijdingmaatregelen. Alterra, 
Wageningen, 48 p. 
http://www.erosiebestrijding.info/Eindrapport%20Acceptatie%20erosiebestrijding.pdf 
(accessed on 24/07/2007). 

van Genuchten, M.Th., 1980. A closed-form equation for predicting the hydraulic 
conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892-898.  

van Genuchten, M.Th., Leij, F.J., Yates, S.R., 1991. The RETC code for quantifying the 
hydraulic functions of unsaturated soils. R. S. Kerr Environmental Research Laboratory, 
U.S. Environmental Protection Agency (EPA), Ada, Oklahoma, Report No. EPA/600/2-
91/065, 85 p. 

Van Hove, J., 1969. Variatie van het gehalte aan organisch material en van de C/N-
verhoudingen in de oppervlaktehorizonten van de bodems van Laag- en Midden-België. 
Teacher's certificate thesis, Ghent University, Ghent, 291 p. 

Van Rompaey, A., Govers, G., Van Oost, K., Van Muysen, W., Poesen, J., 2000. 
Bodemerosiesnelheden op landbouwpercelen in Vlaanderen. Aminal Land, Brussels, 18 
p. 

Velghe, J.-M., Velghe, J.-M., 2004. Landbouwbedrijf Jean-Marie en Jean-Marc Velghe. 
Maatregelen tegen Erosie en Sensibilisatie van Agrariërs ter bescherming van het Milieu 
(MESAM) workshop “Erosiebestrijding over de grenzen heen”, 16/12/2004, Antoing. 
http://www.west-vlaanderen.be/jahia_upload/leefomgeving/mesam/GetuigenisJean-
MarieVelghe.pdf (accessed on 24/07/2007). 

Venterea, R.T., Burger, M., Spokas, K.A., 2005. Nitrogen oxide and methane emissions 
under varying tillage and fertilizer management. J. Environ. Qual. 34, 1467-1477. 

Vermang, J., Serlet, L., Goyens, S., Schiettecatte, W., Cornelis, W., Mahieu, J., Gabriels, 
D., 2007. Impact of conservation tillage on soil erosion and crop yields for maize in 
monoculture and for a maize – wheat – sugar beet rotation. In: proceedings of the 5th 
International Congress of the European Society for Soil Conservation (ESSC) “Changing 
soils in a changing world: the soils of tomorrow”, 25-30/06/2007, Palermo, p. 392. 

Vermoesen, A., 1999. Aspects of nitrogen losses from grassland. Dissertation, Ghent 
University, Ghent, 212 p. 

Verstraeten, G., Poesen, J., 1999. The nature of small-scale flooding, muddy floods and 
retention pond sedimentation in central Belgium. Geomorphology 29, 275-292. 



Chapter 8 

 

 

 180 

Verstraeten, G., Poesen, J., Goossens, D., Gillijns, K., Bielders, C., Gabriels, D., 
Rysschaert, G., Van Den Eeckhaut, M., Vanwalleghem, T., Govers, G., 2006. 1.30. 
Belgium.  In: Boardman, J., Poesen, J. (Eds.), Soil Erosion in Europe. John Whiley & 
Sons Ltd., Chichester, p. 385-411. 

Verstraeten, G., Poesen, J., Govers, G., Gillijns, K., Van Rompaey, A., Van Oost, K., 
2003a. Integrating science, policy and farmers to reduce soil loss and sediment delivery 
in Flanders, Belgium. Environ. Sci. Policy 6, 95-103. 

Verstraeten, G., Van Rompaey, A., Van Oost, K., Govers, G., Poesen, J, 2003b. Milieu- 
en natuurrapport Vlaanderen, Achtergronddocument 2.21b Kwaliteit Bodem: erosie. 
Vlaamse Milieumaatschappij (VMM), Erembodegem, p. 345-355. 

Vigil, M.F., Kissel, D.E., 1991. Equations for estimating the amount of nitrogen 
mineralized from crop residues. Soil Sci. Soc. Am. J. 55, 757-761. 

Vlassak, K., 1970. Total soil nitrogen and nitrogen mineralization. Plant Soil, 32: 27-32. 

Vleeshouwers, L.M., Verhagen, A., 2002. Carbon emissions and sequestration by 
agricultural land use: a model study for Europe. Glob. Change Biol. 8, 519-530. 

Voroney, R.P., Winter, J.P., Beyaert, R.P., 1993. Soil microbial biomass C and N. In: 
Carter, M.R. (Ed.), Soil Sampling and Methods of Analysis. Lewis Publishers, Boca 
Raton, Florida, p. 277-286. 

Vos, J., MacKerron, D.K.L., 2000. Basic concepts of the management of supply of 
nitrogen and water in potato production. In: Haverkort, A.J., MacKerron, D.K.L. (Eds.), 
Management of nitrogen and water in potato production. Wageningen Pers, Wageningen, 
p. 15-33. 

Wadsworth, R.A., Carey, P.D., Heard, M.S., Hill, M.O., Hinsley, S.A., Meek, W.R., 
Pannell, D.J., Ponder, V., Renwick, A.W., James, K.L., 2003. A review of research into 
the environmental and socio-economic impacts of contemporary and alternative arable 
cropping systems. Centre for Ecology and Hydrology (CEH) Monks Wood, Huntingdon, 
87 p. 

Wahl, N.A., Bens, O., Buczko, U., Hangen, E., Hüttl, R.F., 2004. Effects of conventional 
and conservation tillage on soil hydraulic properties of a silty-loamy soil. Phys. Chem. 
Earth 29, 821-829. 

Walkley, A., Black, I.A., 1934. An examination of the Degtjareff method for determining 
soil organic matter, and a proposed modification of the chromic acid titration method. 
Soil Sci. 34, 29-38. 

Wander, M.M., Bidart, M.G., 2000. Tillage practice influences on the physical 
protection, bioavailability and composition of particulate organic matter. Biol. Fertil. 
Soils 32, 360-367. 

Wander, M.M., Bollero, G.A., 1999. Soil quality assessment of tillage impacts in Illinois. 
Soil Sci. Soc. Am. J. 63, 961-971. 

Warkentin, B.P., 2001. The tillage effect in sustaining soil functions. J. Plant Nutr. Soil 
Sci. 164, 345-350. 



Bibliography 

 

 

 181 

Well, R., Myrold, D.D., 2002. A proposed method for measuring subsoil denitrification 
in situ. Soil Sci. Soc. Am. J. 66, 507-518. 

Werner, M.R., Dindall, D.L., 1990. Eartworm community dynamics in conventional and 
low-input agroecosystems. Revue d’Ecologie et de Biologie du Sol 26, 427-437. 

Wesseling, J.G., 1991. Meerjarige simulaties van grondwateronttrekking voor 
verschillende bodemprofielen, grondwatertrappen en gewassen met het model SWATRE. 
Rep. 152. Winand Staring Centre, Wageningen. 

West, T.O., Marland, G., 2002. A synthesis of carbon sequestration, carbon emissions, 
and net carbon flux in agriculture: comparing tillage practices in the United States. Agr. 
Ecosys. Environ. 91, 217-232. 

West, T.O., Post, W.M., 2002. Soil organic carbon sequestration rates by tillage and crop 
rotation: a global data analysis. Soil Sci. Soc. Am. J. 66, 1930-1946. 

West, T.O., Six, J., 2007. Considering the influence of sequestration duration and carbon 
saturation on estimates of soil carbon capacity. Climatic Change 80, 25-41. 

Wienhold, B.J., Tanaka, D.L., 2000. Haying, tillage, and nitrogen fertilization influences 
on infiltration rates at a conservation reserve program site. Soil Sci. Soc. Am. J. 64, 379-
381. 

Wustenberghs, H., De Haes, E., Lauwers, L., Lenders, S., Vervaet, M., Maes, F., 
Douvere, F., Platteau, J., Van Gijseghem, D., Verstraeten, G., Overloop, S., 2004. 
Milieu- en natuurrapport Vlaanderen (MIRA), MIRA Achtergronddocument 2004, 
Vlaamse Milieumaatschappij (VMM), Mechelen, 179 p. http://www.milieurapport.be 
(accessed on 28/02/2005). 

Yang, X.M., Kay, B.D., 2001. Rotation and tillage effects on soil organic carbon 
sequestration in a typic Hapludalf in Southern Ontario. Soil Till. Res. 59, 107-114. 

Yang, X.-M., Wander, W.M., 1999. Tillage effects on soil organic carbon distribution 
and storage in a silt loam soil in Illinois. Soil Till. Res. 52, 1-9. 

Yenish, J.P., Doll, J.D., Buhler, D.D., 1992. Effect of tillage on vertical distribution of 
weed seed in soils. Weed Sci. 40, 429-433. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

APPENDICES 

 

 



Appendix I 

 

 

 184 

Table I.1  Granulometric composition and pHKCl (with standard deviation between 

brackets) of the 10-20, 20-30 and 30-40 cm layer of the 18 selected fields 

Depth layer Field  Sand (%) Silt (%) Clay (%) pHKCl 

10-20 cm 1 RTC_2 34.0 52.4 13.6 7.0 (0.5) 

 2 RTC_2 37.4 50.1 12.5 6.5 (0.3) 

 3 RTC_2 28.8 59.3 12.0 6.7 (0.4) 

 4 CT 37.8 49.8 12.4 6.4 (1.1) 

 5 RTC_5 33.2 48.4 18.4 6.4 (0.0) 

 6 CT 25.0 58.3 16.7 5.3 (0.2) 

 7 RTC_5 28.1 60.6 11.3 6.7 (0.1) 

 8 CT 28.3 60.3 11.4 6.7 (0.2) 

 9 RTC_10 8.8 69.9 21.3 5.9 (0.2) 

 10 CT 10.5 76.1 13.4 6.2 (0.2) 

 11 RTDD_10 7.4 71.8 20.8 6.6 (0.4) 

 12 CT 6.5 74.8 18.7 6.6 (0.0) 

 13 RTDD_10 5.9 76.8 17.3 6.6 (0.2) 

 14 CT 9.0 75.7 15.3 5.7 (0.1) 

 15 RTDD_10 13.8 70.7 15.5 5.9 (0.1) 

 16 CT 10.3 72.3 17.4 6.3 (0.0) 

 17 RTC_20 12.4 72.5 15.1 6.3 (0.4) 

 18 CT 8.4 74.9 16.6 5.7 (0.2) 

20-30 cm 1 RTC_2 34.5 51.0 14.5 7.1 (0.5) 

 2 RTC_2 32.2 55.5 12.3 6.6 (0.2) 

 3 RTC_2 28.4 59.6 12.0 6.9 (0.4) 

 4 CT 32.8 52.9 14.3 6.3 (0.9) 

 5 RTC_5 30.8 47.3 21.9 6.2 (0.1) 

 6 CT 23.8 58.7 17.5 5.4 (0.1) 

 7 RTC_5 28.8 58.2 13.0 6.6 (0.2) 

 8 CT 28.6 59.6 11.8 6.7 (0.3) 

 9 RTC_10 7.4 70.8 21.8 5.9 (0.1) 

 10 CT 9.3 76.6 14.1 6.3 (0.3) 

 11 RTDD_10 5.7 68.8 25.6 6.4 (0.5) 

 12 CT 5.5 69.8 24.7 6.5 (0.1) 

 13 RTDD_10 5.5 69.6 24.9 6.5 (0.2) 

 14 CT 7.5 75.7 16.8 5.8 (0.1) 

 15 RTDD_10 8.3 69.8 21.9 5.7 (0.1) 

 16 CT 8.9 71.1 20.0 6.4 (0.4) 

 17 RTC_20 10.9 71.8 17.3 6.4 (0.6) 

 18 CT 7.4 74.2 18.4 5.8 (0.1) 
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Table I.1  (continuation) Granulometric composition and pHKCl (with standard 

deviation between brackets) of the 10-20, 20-30 and 30-40 cm layer of the 

18 selected fields 

Depth layer Field  Sand (%) Silt (%) Clay (%) pHKCl 

30-40 cm 1 RTC_2 35.8 47.3 16.9 7.1 (0.6) 

 2 RTC_2 34.4 52.4 13.2 6.5 (0.2) 

 3 RTC_2 32.1 55.2 12.8 6.8 (0.4) 

 4 CT 31.9 54.1 14.0 6.4 (1.0) 

 5 RTC_5 31.1 46.9 22.0 6.2 (0.1) 

 6 CT 25.3 57.6 17.1 5.4 (0.1) 

 7 RTC_5 27.5 59.7 12.8 7.0 (0.3) 

 8 CT 29.2 58.1 12.7 6.6 (0.2) 

 9 RTC_10 8.5 69.6 21.9 5.8 (0.1) 

 10 CT 8.4 76.2 15.4 6.1 (0.1) 

 11 RTDD_10 7.4 67.5 25.1 6.1 (0.0) 

 12 CT 4.5 72.8 22.7 6.4 (0.1) 

 13 RTDD_10 4.9 71.5 23.6 6.3 (0.1) 

 14 CT 8.0 74.3 17.6 5.8 (0.1) 

 15 RTDD_10 8.8 70.9 20.3 5.7 (0.1) 

 16 CT 10.4 69.4 20.2 6.4 (0.1) 

 17 RTC_20 12.8 69.3 17.9 6.3 (0.4) 

 18 CT 35.8 47.3 16.9 5.8 (0.1) 
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Table II.1  Total and readily plant available soil water (TPASW and RPASW) and S of 

5-10 cm depth layer of the selected fields (with standard deviation between 

brackets) 

Field  TPASW 

(m3 m–3) 

RPASW 

(m3 m–3) 

S 

1 RTC_2 0.135 (0.018) ab 0.017 (0.002) a 0.042 (0.003) a 

2 RTC_2 0.143 (0.014) ab 0.018 (0.001) a 0.044 (0.004) a 

3 RTC_2 0.140 (0.006) a 0.018 (0.001) a 0.045 (0.003) a 

4 CT 0.106 (0.005) b 0.014 (0.001) b 0.036 (0.004) a 

5 RTC_5 0.129 (0.043) a 0.012 (0.003) a 0.038 (0.014) a 

6 CT 0.111 (0.018) a 0.012 (0.000) a 0.032 (0.005) a 

7 RTC_5 0.161 (0.016) a 0.022 (0.002) a 0.055 (0.005) a 

8 CT 0.135 (0.019) a 0.018 (0.001) b 0.046 (0.001) b 

9 RTC_10 0.105 (0.017) b 0.013 (0.002) b 0.033 (0.006) b 

10 CT 0.174 (0.008) a 0.021 (0.003) a 0.053 (0.003) a 

11 RTDD_10 0.145 (0.044) a 0.014 (0.003) a 0.042 (0.013) a 

12 CT 0.168 (0.028) a 0.017 (0.003) a 0.049 (0.010) a 

13 RTDD_10 0.156 (0.012) a 0.017 (0.002) a 0.045 (0.004) a 

14 CT 0.169 (0.011) a 0.016 (0.004) a 0.050 (0.004) a 

15 RTDD_10 0.158 (0.021) a 0.019 (0.003) a 0.048 (0.007) a 

16 CT 0.144 (0.006) a 0.017 (0.001) a 0.042 (0.002) a 

17 RTC_20 0.115 (0.020) a 0.013 (0.001) a 0.033 (0.005) a 

18 CT 0.135 (0.008) a 0.015 (0.001) a 0.039 (0.001) a 

RTC: reduced with cultivator or soil loosener, RTDD: by direct drilling with in subscript the period in 

years; CT: conventional tillage 

same letters indicate no significant differences between tillage treatments per location (P=0.05) (one 

way ANOVA/Duncan post hoc test, Welch/Games-Howell post hoc test or t-Test) 
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Table II.2  Total and readily plant available soil water (TPASW and RPASW) and S of 

25-30 cm depth layer of the selected fields (with standard deviation 

between brackets) 

Field TPASW 

(m3 m–3) 

RPASW 

(m3 m–3) 

S 

1 RTC_2 0.127 (0.006) a 0.016 (0.001) b 0.038 (0.002) b 

2 RTC_2 0.129 (0.015) a 0.017 (0.001) ab 0.043 (0.001) ab 

3 RTC_2 0.148 (0.004) a 0.019 (0.001) a 0.047 (0.002) a 

4 CT 0.120 (0.014) a 0.016 (0.002) b 0.040 (0.005) b 

5 RTC_5 0.133 (0.045) a 0.014 (0.003) a 0.039 (0.013) a 

6 CT 0.126 (0.009) a 0.016 (0.002) a 0.040 (0.005) a 

7 RTC_5 0.163 (0.009) a 0.023 (0.001) a 0.056 (0.002) a 

8 CT 0.166 (0.004) a 0.022 (0.001) a 0.054 (0.002) a 

9 RTC_10 0.119 (0.030) b 0.015 (0.004) b 0.036 (0.009) b 

10 CT 0.170 (0.005) a 0.020 (0.001) a 0.052 (0.001) a 

11 RTDD_10 0.125 (0.013) a 0.015 (0.001) a 0.037 (0.003) a 

12 CT 0.145 (0.032) a 0.016 (0.004) a 0.042 (0.011) a 

13 RTDD_10 0.134 (0.011) a 0.016 (0.002) a 0.039 (0.004) a 

14 CT 0.165 (0.026) a 0.017 (0.004) a 0.050 (0.009) a 

15 RTDD_10 0.149 (0.003) a 0.018 (0.002) a 0.045 (0.003) a 

16 CT 0.146 (0.006) a 0.016 (0.000) a 0.042 (0.002) a 

17 RTC_20 0.115 (0.015) a 0.013 (0.002) a 0.034 (0.005) a 

18 CT 0.127 (0.011) a 0.015 (0.002) a 0.037 (0.004) a 

RTC: reduced with cultivator or soil loosener, RTDD: by direct drilling with in subscript the period in 

years; CT: conventional tillage 

same letters indicate no significant differences between tillage treatments per location (P=0.05) (one 

way ANOVA/Duncan post hoc test, Welch/Games-Howell post hoc test or t-Test) 
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                                                      *: reduced tillage field with cultivator or soil loosener (RTC) 

                                                     **: reduced tillage by direct drilling field (RTDD) 

 

                                                                                     A:   2 years RTC  

                                                                                     B:   5 years RTC 

                                                                                     C: 10 years RTC or RTDD  

                                                                                     D: 20 years RTC 

 

 

 

 

same letters indicate no significant differences between tillage treatments per location (P=0.05) (one 

way ANOVA/Duncan post hoc test, Welch/Games-Howell post hoc test or t-Test) 
 

Figure III.1 Relative distribution of the nitrogen (N) content (g 100 g-1 N) in the coarse 

free particulate organic matter (fPOM) (>250 µm), fine fPOM (53-250 µm), 

intra-aggregate organic matter (iPOM) (53-250 µm) and <53 µm fraction 

isolated according to physical fractionation method of Six et al. (2000a) 

(vertical lines=standard deviation) of the 0-10 cm depth layer of the 18 

selected fields 
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                                                                *: reduced tillage field with cultivator or soil loosener (RTC) 

                                                              **: reduced tillage by direct drilling field (RTDD) 

 

                                                                              A:   2 years RTC 

                                                                              B:   5 years RTC 

                                                                              C: 10 years RTC or RTDD  

                                                                              D: 20 years RTC 

 

 

same letters indicate no significant differences between tillage treatments per location (P=0.05) (one 

way ANOVA/Duncan post hoc test, Welch/Games-Howell post hoc test or t-Test) 

only one measurement of iPOM and <53µm was done for field 7 

 

Figure III.2 Ratio of the organic carbon to nitrogen content (C:N ratio) in the coarse free 

particulate organic matter (fPOM) (>250 µm), fine fPOM (53-250 µm), 

intra-aggregate organic matter (iPOM) (53-250 µm) and <53 µm fraction 

isolated according to physical fractionation method of Six et al. (2000a) 

(vertical lines=standard deviation)  of the 0-10 cm depth layer of the 18 

selected fields 
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