
Microarrays are a valuable source of large-scale and 
detailed information for functional genomics research. 
In the past decade their application helped to answer a 
myriad of scientific questions.

In a first section of this thesis, microarray data are used  
to study the fate of the numerous duplicated genes in the 
plant model organism, Arabidopsis thaliana. Different 
questions are addressed, such as how fast do duplicates 
diverge, does the rate of expression divergence depend 
on a gene pairs’ duplication mechanism or function, and 
do different types of genes show distinct tissue expression 
divergence patterns?

In a second part of this thesis, a detection strategy that 
combines classic motif overrepresentation approaches 
with general comparative footprinting principles is 
applied for the identification of novel regulatory motifs 
in sets of co-expressed genes, delineated by means of 
microarray data.

Co-expression signatures are an important tool for 
studying gene functions and relations. In a third section 
the contribution of genuine biological co-expression 
and cross-hybridisation in correlated microarray signal 
profiles is quantified.

The last major part covers a revision of the work presented 
in the first section, in light of more recent methodological 
progress with (a) microarray data analysis and the 
potential pitfalls of cross-hybridisation, presented in 
section three, and (b) the treatment of the correlation 
structure within the set of duplicated genes.

The materials presented cover both the application 
of microarray data in gene expression studies and 
fundamental research of the use of the microarray 
technology for correlation analysis.
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Malcolm Forbes once got lost floating in one of his famous
balloons across miles and finally landed in the middle of a cornfield.
He spotted a man coming toward him and asked: ”Sir, can you tell
me where I am?”. The man said: ”Certainly, you are in a basket in
a field of corn.” Forbes said: ”You must be a statistician”. The man
said ”That’s amazing, how did you know that?” ”Easy”, said Forbes,
”your information is concise, precise and absolutely useless!”

”Looking ahead: Cross-disciplinary opportunities for statistics”,
by R. Gnanadesiken
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1
Introduction

Any good poet, in our age at least, must begin with the scientific
view of the world; and any scientist worth listening to must be
something of a poet, must possess the ability to communicate to the
rest of us his sense of love and wonder at what his work discovers.

Edward Abbey, The Journey Home

The determination of the human [1] and other organisms’ genomic se-
quence [2–9] enabled genetics in the mid-1990s to shift from gene-focused types
of research approaches to large-scale, genome-wide analyses. Supplemented by
technological advances in transcriptomics and proteomics this encouraged the
emergence of functional genomics, comparative genomics and interdisciplinary
fields like systems biology. Doors were thereby opened to the discovery of genes’
functions, interactions between genes and the genetic architecture of biochemical
and developmental pathways. Bioinformatics, at the interface between biological
and computer sciences, thrived as the need for high-throughput data analysis, data
mining and data integration increased.

Amongst other important discoveries, these projects revealed that gene du-
plication is rampant in eukaryotic genomes [10–18], an observation that had
already been made through early research in comparative cytology (see [19] for
an overview). The first part of this dissertation focuses on the fate of genes



CHAPTER 1

after duplication and makes use of data generated using microarrays, a novel high
throughput technology that had a substantial impact on life sciences. In a second
part, these functional data are used to identify functionally related genes so as to
enhance the identification of regulatory elements in promoter regions. A third part
deals with the concern of cross-hybridisation of molecules with similar sequences
on microarrays, giving rise to spurious correlations.

1.1 Gene duplication: two’s a company, three’s a
party!

The few really big steps in evolution clearly required the acquisition
of new information. But specialisation and diversification took place
by using differently the same structural information.

François Jacob, The Possible and the Actual (1982)

Gene duplication and subsequent divergence, leading to the formation of fam-
ilies of evolutionary related genes, has given rise to an enormous variability in the
number of genes among species. A high prevalence of gene duplicates is common
among all eukaryotes: up to 30%, 38% and 65% of the genes of respectively
yeast [20], human [21] and Arabidopsis [7] are estimated to be part of a gene
family that arose through duplication and subsequent divergence of genes [7].
These duplicates have in turn played an important role in adaptive evolution of
organisms and the origin of organismal complexity [22–28]. Understanding how
gene copies have given rise to the genes present in extant organisms has fascinated
evolutionary biologists for decades (see [19] for an overview). In 1970, well
ahead of his time, geneticist Susumu Ohno highlighted the importance of gene
duplication in a seminal work, Evolution by Gene Duplication:

Had evolution been entirely dependent upon natural selection,
from a bacterium only numerous forms of bacteria would have
emerged. The creation of metazoans, vertebrates and finally mammals
from unicellular organisms would have been quite impossible, for
such big leaps in evolution required the creation of new gene loci
with previously non-existent functions. Only the cistron that became
redundant was able to escape from the relentless pressure of natural
selection. By escaping, it accumulated formerly forbidden mutations
to emerge as a new gene locus.

Ohno thereby recognised that major advances in evolution such as the transition
from single-celled organisms to complex multicellular animals and plants could

2



INTRODUCTION

simply not have been brought about solely through natural selection based on
existing allelic variation at particular genetic loci in populations. He postulated
that large-scale gene duplication events are the principal forces by which extra
raw genetic material is provided for increasing complexity during evolution.
Furthermore, that novelty in evolution is most often based on genomic redundancy
that is initially created by gene and entire genome duplications and which can
act as substrate for subsequent divergent natural selection. He suggested that gene
and genome duplications bring about evolutionary innovation by allowing for gene
functions to diversify and for genes to take on novel functions. Natural selection’s
role in evolution was thereby reduced to fine-tuning the newly created material.

The importance of gene duplication in the evolution of genomes, however,
could at that time not be fully appreciated without knowledge about the extent of
gene duplication in a genome. The explosion of genomic sequence information
and computer power, supplemented by theoretical advances in the design of
algorithms for the detection of duplicated regions, at the dawn of the 21st century,
put formal testing within the realms of possibility. Indications of genome-
wide duplication events have been found at key evolutionary crossroads like the
transition from invertebrates to vertebrates [15, 29–32], the explosive radiation of
the teleost fish that resulted in 22,000 extant species [33–36] and the angiosperm
radiation [37–39]. The debate on the extent of the different duplication events is
ongoing [40,41], but there is no doubt that gene duplication is a ubiquitous feature
of genome evolution.

1.1.1 Generation of duplicated genes
Various events result in the creation of extra gene copies and outcomes range from
the duplication of a few genes known as tandem or dispersed duplications, and du-
plication of subchromosomal-length regions known as segmental duplications, to
the doubling of the entire genome [42–45]. These events include unequal crossing
over, transposition, retrotransposition and polyploidisation and are schematically
presented in Figure 1.1.

Unequal crossing over

Intrachromosomal small-scale duplication can be mediated by the presence of
repetitive elements that cause a chromatid not to line up exactly with its corre-
sponding region in the homologous chromosome (Figure 1.1A) or identical sister
chromatid, resulting in the unequal exchange of DNA [46, 47]. The genetic
information that is contained within this region is respectively gained in one
chromosome or one chromatid and gets lost in the other. Unequal crossing over,

3
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Figure 1.1: Different mechanisms of gene duplication. A hypothetical genome with
two pairs of homologous chromosomes (light & dark blue and light & dark green;
middle left), each having one gene that consists of two exons (shaded rectangles).
The blue chromosome pair also contains repetitive elements (grey rectangles). The
gene on the green chromosome pair is neighboured by inverted repeats. A) Local
gene duplication can arise through unequal crossing over between homologous
chromosomes. B) Dispersed duplicates can result from transposition, whereby a DNA
transposon is moved from a location on one newly replicated DNA segment (dark green
chromosome) into a region of the genome that has yet to be replicated (light blue
chromosome), or C) from retrotransposition where a portion of the mRNA transcript
of a gene is reverse transcribed back into cDNA and inserted into chromosomal DNA.
D) Genome duplication or polyploidisation is a large-scale event in which the whole
genomic content is doubled.

in case of homologous chromosomes, or unequal sister chromatid exchange is
typically responsible for the generation of tandem duplicates and gene clusters
(e.g. Hox [48] and Zinc finger clusters [49, 50]).

High concentrations of short (4 to 10 bp) repeats have been shown to
trigger looping of the newly synthesised strand and mispairing to the template
strand during DNA replication, resulting in an increase in the DNA content,
a process called replication slippage. Typically this process involves short
sequence stretches and generates short repeats, but, in theory if genes reside within
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the looped region, gene duplication could occur [47, 51]. For instance, exon
duplication linked to replication slippage has been described [46].

(Retro)Transposition

Gene transposition refers to the relocation of relatively small genomic segments
from one chromosomal position to another. When accompanied by the duplication
of a genomic segment, this process is responsible for the dispersion of related
sequences and is referred to as duplicative transposition (Figure 1.1B). The process
is denoted as retrotransposition if the transposition occurs by means of an RNA
intermediate that is reverse transcribed into cDNA and inserted into the genome.
A transposable retroelement is flanked by terminal inverted repeats containing
binding sites for the enzyme transposase, that catalyses the transposition. The
transposed duplicate can be recognised by the loss of the intronic region(s), as
compared to the original gene and the presence of the poly-A tail (middle right
of Figure 1.1). Because the process of retrotransposition is prone to various
errors like point mutation owed to inaccurate reverse transcription, truncation
or the absence of regulatory sequences in the novel genomic location, the copy
of a (retro)transposon is bound to get inactivated and turned into a pseudogene.
However, retrotransposition has been described to have generated new functional
genes (retrogenes) in mammalian and invertebrate animal genomes, where DNA
fragments, created by duplicative transposition contain repetitive DNA, portions
of genes and complete genes [52–57] and in the genomes of rice, Arabidopsis and
maize mediated by the Pack-MULE element [58]. The pericentromeric regions
of chromosomes are known to be unstable and duplications followed by insertion
into other chromosomes may be frequent [59].

A possible scenario in which transposition is linked to duplication is cut-and-
paste transposition during DNA replication: a transposon is moved from one newly
replicated DNA segment into a region that has yet to be replicated, resulting in
one daughter copy that contains the transposable element only in its new location
and one copy that has the element in both the original and the novel location
(Figure 1.1C, only the latter daughter copy is shown) [60]. An alternative is
that the transposon itself programs a replication, in which no excision occurs but
where the elements duplicate using a semi-conservative DNA replication [61], a
mechanism that has been widely described in bacteria but also in maize cells [62].
However, the chance that a transposed region includes and succeeds in duplicating
a functional gene is slim.
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Genome-wide duplication

Polyploidisation is the doubling of a complete single genome (autopolyploidy,
Figure 1.1D) or the merging of two or more genetically different genomes
(allopolyploidy). Genome duplication has shaped the genomes of most, if not
all, eukaryotes [10–18, 63, 64] and is, especially for plants, a prominent force in
genome evolution. In particular, it is a hallmark occurring at different frequencies
among angiosperm families but it is not a common feature of gymnosperm
genomes [65, 66]. Genomes of modern angiosperms contain remnants of multiple
rounds of past polyploidization events, often followed by extensive genomic
reorganisation, massive silencing and elimination of duplicated genes. Some
plants exist as stable polyploids including, for example, a large portion of our most
important crops such as wheat, maize, soybean, cabbage, oat, sugar cane, alfalfa,
potato, coffee, cotton and tobacco [67–69], but it is believed that polyploidy is
a transitory state and that polyploid genomes are bound to return to a functional
diploid state through a process called diploidisation. Most, if not all, present-day
diploid angiosperms thus are paleopolyploids.

An important benefit to becoming polyploid is heterosis, or hybrid vigour,
manifested in increased size, fertility, biomass yield, growth rate or other pa-
rameters of the F1 organism over those of the diploid progenitors, resulting
from the increase in heterozygosity [70]. Polyploid plants have, for example,
increased potential to invade new niches and thereby enlarge their geographical
and ecological range and reduce the risk of extinction (see [19] for more
examples). Another key advantage is genetic redundancy that shields the polyploid
from the deleterious effects of mutations [71–74]. Disadvantages of polyploidy
include difficulties encountered during establishment [75], the propensity to
produce aneuploid cells through abnormal division [76–78], disruption effects of
nuclear and cell enlargement [79] and the epigenetic instability that results in non-
additive gene regulation [80].

1.1.2 The fate of a duplicated gene

Different evolutionary models have been proposed to explain the functional
divergence of duplicated genes (see Figure 1.2). Population genetics shows
that the vast majority of duplicates is rapidly non-functionalised right after gene
duplication [81–83]. One of the copies gets either physically lost from the genome
due to genome rearrangements, or degrades into a pseudogene because of the
accumulation of deleterious mutations (Figure 1.2, bottom row) or the absence
of regulatory sequences.

A classical model put forward by Ohno holds that gene duplication creates
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Loss through non-functionalization 

Loss of one subfunction in one duplicate 

Duplicated gene pair

LEGEND: Regulatory elements

Protein coding region

Neo-functionalization

Sub-functionalization

of coding region

Loss through non-functionalization 

Preservation through 

sub-functionalization

Preservation through 

sub-functionalization

Figure 1.2: Possible functional fates of a duplicate gene pair. Following duplication,
one of the copies is most likely to get non-functionalised (bottom right). Novel
gene function can arise either through neo-functionalisation, where the novel duplicate
acquires a new function through rare advantages mutations that are sustained by the
virtue of the redundancy, or through sub-functionalisation of the coding region in
case of genes coding for multi-domain proteins (top right). One subfunction in one
duplicate can be lost by the inactivation of a regulatory element in the promoter region
of a pleiotropic gene pair (left down). Subsequent mutations most likely bring about
the non-functionalisation of one copy (bottom). However, subsequent complementary
inactivation of regulatory elements may partition the functions of the ancestral gene
between both duplicates, leaving both duplicates intact. Squares and rectangles denote
respectively regulatory elements and coding regions. Functional and non-functional
elements are respectively coloured black and white. An element with a modified
function is depicted in purple.

functionally redundant loci where one is free to evolve under lack of functional
constraint and to acquire a new function by random non-deleterious mutations, as
long as the other remains to perform the ancestral task [24] (Figure 1.2, top right).
Examples of neo-functionalisation of both the regulatory and the coding region
have been found [84–86]. Given the little evidence that has been found for genes to
have obtained novel functions in this manner, the large number of duplicated genes
in most eukaryotic genomes, and the alterations that have been put forward to this
model [87, 88], various alternative models were suggested [28, 73, 87, 89–91]. An
obvious one being redundancy, were the two genes have divergent functions but
maintain a partial or complete functional overlap [92–94], is the condition where
both gene copies retain the ancestral gene’s function and are equally maintained
such that the copies can substitute for each other. An important advantage of
this condition seems genetic robustness against mutations [95, 96], but because
redundancy is regarded as evolutionary unstable, most models for conserving
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redundancy over the course of evolution require some degree of symmetry-
breaking, one of the most important ones being the sub-functionalisation model by
Lynch and Force [97] (Figure 1.2, down left from the initial state). These authors
proposed that functional novelty acquired by one or both of the duplicates consists
of a specialisation of its activity to particular developmental stages and tissues,
due to complementary loss of regulatory elements in their promoter region. The
pleiotropy of the ancestral gene is thereby lost and both copies are necessary in
order to maintain the full arsenal of genetic functions.

In spite of the understanding that duplication of genes is of paramount im-
portance in providing raw materials for the evolution of organisms and for genetic
diversity, and that several hypotheses predicting the outcome of a duplication event
have been proposed and reviewed, the relative prevalence of the different outcomes
and factors playing in the process remain unknown.

1.2 Arabidopsis thaliana: the weed that made it to
model organism

Arabidopsis thaliana is a small flowering plant with a broad natural distribution
throughout Europe, Asia and North America. It is a member of the Brassi-
caceae or mustard family, which also includes cultivated members like cabbage,
broccoli, cauliflower, Brussels sprouts, wasabi, horseradish and turnip. In 2000,
Arabidopsis had the unique honour of being the first plant whose genome was
fully sequenced [7]. Although not of major agronomic significance, different
characteristics have made this dicotyledonous angiosperm the model system of
choice for research in plant biology [98]: it has a small genome of 125 megabases
and a short generation time of only six weeks, it is easily transformable, its
small size allows plants to be grown in a greenhouse or laboratory, mature plants
produce siliques with a large number of seeds and its natural pathogens include
a variety of insects, bacteria, fungi and viruses. Knowledge gained from this
organism has greatly increased our understanding in gene function and regulation,
development, resistance to biotic and abiotic stress and metabolism of other plants,
like economically important crops.

Notwithstanding a small genome size, detailed sequence similarity analyses
revealed three genome duplication events in Arabidopsis [7,83,99–101]. The com-
plex duplication structure is presented in Figure 1.3, where the five chromosomes
of Arabidopsis are shown as horizontal lines and genes with a sequence identity
of 80% or higher are connected by coloured lines. The widespread presence of
duplicates in the Arabidopsis genome assumes the study of their dynamics of even
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Figure 1.3: Segmental duplications in the Arabidopsis genome. The horizontal, grey
bars represent its five chromosomes; the coloured lines connect genes with a sequence
identity of 80% or higher. Image generated by GenomePixelizer, and reproduced with
kind permission of Alexander Kozik.

greater significance when it is considered that most, if not all, of our important
crop species also share this characteristic.

1.3 Microarrays

Microarrays constitute a prominent example of a technology that has emerged after
the genome sequencing projects of the mid-1990s to facilitate the execution of
experiments on a large number of genes simultaneously [102, 103]. Through gene
expression profiling, the microarray technology provides biologists deep insights
into the molecular functionality of genes. It aims to measure mRNA levels in
cell or tissue samples, at a particular time or under a particular condition. In
situ synthesised types of microarrays exploits to this end the recently obtained
sequence resources, while arrays based on PCR-product libraries only require
a short sequences of a particular cDNA clone, that contains the desired DNA
fragment, for primer construction. Single strands of complementary DNA for the
genes of interest (’reporters’ [104]) are attached at fixed, known locations (’spots’
or ’features’) arranged in a grid (’array’) on small solid supports, typically a glass
slide or some other material, like a nylon membrane or a quartz wafer (left side of
Figure 1.4). Features are either deposited on the support by a robot, synthesised
by photo-lithography or printed by ink-jet printing. Current high density arrays
contain up to 6.5 million features, each containing a huge number of identical
molecules, of lengths ranging from twenty to hundreds of nucleotides. Ideally
all genes of an organism of interest are represented on an array, but because of
sequence similarity between gene family members, it is not always feasible to
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Figure 1.4: Overview of the design and use of a microarray. First, the genes in a sequenced
genome are identified (left side). For every gene, a string of nucleotides unique in the
genome is searched for and deposited in large amounts on a feature on a solid support.
Expression of these genes is measured by extracting mRNA from a sample of interest
(right side), labelling it and hybridising it to the array (bottom right). In this particular
example, of the two genes shown on the array, only gene 1 is expressed.

identify gene-specific regions for each individual gene. A sample is prepared by
extraction of the mRNA from cells of interest, removal of tRNA and rRNA, reverse
transcription into cDNA, followed by transcription into RNA while attachment of
a fluorescent or radioactive label and fragmentation. The sample is then hybridised
to the array and incubated for 12 to 24 hours (right side of Figure 1.4). The
microarray is then washed in order to remove RNA which has not hybridised to any
reporter, or which has only hybridised weakly due to imperfect complementarity.
Subsequent illumination with an appropriate light source allows the quantification
of the label on each feature. Pre-processing of the data yields an intensity value
for each gene that reflects the abundance of its corresponding mRNA in the sample.

With respect to the hybridised sample, two main types of microarrays exist:
two-channel and single-channel arrays. The two-channel arrays are hybridised
by a mix of two samples, for example the control labelled with fluorophore
Cy3 (green) and the experiment sample with fluorophore Cy5 (red). Molecules
of both samples will bind the few complementary reporters on the array in a
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competitive manner. The array is then scanned for the two fluorophores separately
and relative intensities of each are calculated. These arrays were important in
the early developments of the microarray technology, as spots suffered from
irregularities in shape, size and reporter density, which rendered the ability to
contrast two measurements from the same spot as crucial. Single-channel arrays
are hybridised by one sample only. Absolute intensity values are obtained from
this type of arrays. Another way of distinguishing microarrays is by the type
of reporter: cDNA microarrays are chips whose features contain complementary
DNA (cDNA), typically generated via PCR amplification and attached on the slide
by printing or through electrostatic attraction. High density oligonucleotide array
contain short synthesised oligos, either in situ synthesised or deposited.

Numerous variations to the construction of the array and the protocol to
generate the hybridisation liquid exist. In what follows, only the Affymetrix
GeneChip technology will be introduced in more detail, since data generated with
this type of array are the subject of research conducted for this dissertation.

1.3.1 GeneChip basics

The GeneChip technology was invented by a team of scientists in the late-1980s
and was the basis for the founding of a new company, Affymetrix, in 1991. Thanks
to the standardised procedures of array production, labelling, hybridisation and
data analysis, these high-density oligonucleotide arrays are highly popular and are
used world-wide by pharmaceutical, biotechnological, agrochemical, diagnostics
and consumer product companies and academic, governmental and other non-
profit research institutes to analyse gene expression. On their traditional Gene
Arrays, a locus to be interrogated was represented on such an array by a probe set
that consists of 11 to 20 perfect match and mismatch pairs (top of Figure 1.5) [105].
On their novel array types, like Exon Arrays, reporters are designed to interrogate
the entire length of a gene. The reporters are small DNA fragments of 25
nucleotides that are synthesised during a photolithographic process at specific
locations on a coated quartz surface. A perfect match reporter perfectly matches
its target sequence, while the paired mismatch reporter contains a single mismatch
located in the middle of its sequence (bottom of Figure 1.5). The mismatch
reporters are designed by Affymetrix to quantify the amount of non-specific
binding in their corresponding perfect match reporter, or to determine whether
a gene is turned on or off in the investigated condition1. A mismatch reporter
is located one row below its corresponding perfect match and, to avoid bias
introduced by spatial effects, the different probe pairs of a probe set are dispersed

1Affymetrix offers a presence/absence algorithm which makes use of the difference between the
observed intensity value of the perfect match and its corresponding mismatch
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5' 3'

...ATCCTAGGAGGCAAGTGTCTTGCGCGTTGCATTTCGGTG...

mRNA reference sequence

CTCCGTTCACAGAACGCGCAACGTA
CTCCGTTCACAGCACGCGCAACGTA

Perfect match

Mismatch

Probe set

Probe pair

Figure 1.5: Basics of the Affymetrix GeneChip technology. A gene locus is represented
on the GeneChip by a set of probe pairs that consist of a perfect match and a mismatch
reporter. The sequence of the perfect match reporter is complementary to the locus’
reference sequence, while the mismatch has one mismatch nucleotide in the middle.

across the array.

1.3.2 GeneChip data pre-processing
Substantial data pre-processing is required in order to obtain an accurate assess-
ment of the expression level for a specific gene and involves different main steps:
image analysis, background adjustment, normalisation, summarisation and quality
assessment [106].

Image analysis

During image analysis, the raw one-channel pixel intensities produced by the
scanner, contained in a ’.DAT’ file, are converted into numerical values. The
output, the single-number intensity summary combining all pixels in a given
feature, is saved to a ’.CEL’ file. The process involves gridding, to locate
each feature on the slide, and segmentation, to divide a feature-containing
region into foreground and background. Various sources describe this process is
detail [107,108]. Affymetrix GeneChip scanners are standardly equipped with this
software, so this step is usually integrated in the early data generation.

Background adjustment

Background adjustment is conducted to calculate the background signal due to
non-specific hybridisation and optical noise so as to obtain an accurate estimate
of specific binding. For spotted arrays, the pixels of each spot region are divided
in the spot itself and those in the background. There are a number of methods
for doing this. For more detailed information, see [107, 109]. Since features on
Affymetrix chips are densely packed, the intensities of the cells themselves, rather
than the region adjacent to the features, as in cDNA arrays, are used to estimate
the background intensity.
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Normalisation: Getting the numbers comparable

The ultimate goal of working with microarrays is to make arbitrary comparisons
between the gene expression levels of different samples. Various sources of
variation, like chip processing, mRNA preparation, amplification, hybridisation,
scanner settings, grid placement, segmentation and feature quantification obstruct
this aim and add systemic variation to the data. Normalisation is the process of
removing variation that might exist between arrays in a microarray experiment
and that is caused by technology or by sample handling and preparation, rather
than from biological differences. Many different algorithms have been developed
to normalise microarrays, depending on the type and the aim of the study. Specific
normalisation procedures include, for example, local print-tip normalisation for
spotted microarrays, global normalisation to correct for incorporation efficiencies
or scanning properties of the two dyes for cDNA arrays. Additional between-
slide scaling can be conducted when large scale differences between different
slides of one experiment exist. The reader is referred to specialised literature for
detailed explanation regarding cDNA arrays [110–114]. Normalisation methods
for Affymetrix GeneChips will be explained in detail below.

Summarisation: Obtaining an overall expression intensity

A gene can be represented on a microarray by one sole reporter, or alternatively,
like on Affymetrix GeneChips, by a set of reporters, which offers the potential
to calculate statistics and confidence about the measurements and results of the
experiment. The summarisation step aggregates these multiple intensity values
into one single expression value for the particular gene. Different outlier robust
methods have been implemented in the various processing algorithms.

1.3.3 Data pre-processing algorithms
Various methods have been devised for each of the above steps for the pre-
processing of raw Affymetrix GeneChip data [115–119]. Different software tools
integrate the different steps into one algorithm. Only the tools used for this
dissertation will be discussed below.

Single-array approach: MicroArray Suite 5.0

The Microarray Suite 5.0 (MAS5.0) is a method developed by manufacturer
Affymetrix [118, 120]. Expression value calculation involves background cor-
rection, which is comprised of global background correction and perfect match
intensity correction, a summarisation step and global scaling 2.

2Currently, Affymetrix incorporated observations made by different research groups and moved
to a more sophisticated approach, called PLIER. PLIER, or the Probe Logarithmic Intensity ERror,
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Figure 1.6: Background correction in Affymetrix’ MAS5.0. First, the microarray is divided
into 16 zones (white grid) and the mean of the second percentile of all intensity values
in each zone is calculated (white dot). Every cell is then background corrected by
subtracting the inverse-distance weighted trimmed average from every zone. The red
dot is the cell for which the background correction is presented here: the width and
intensity of orange of the arrows denote the weighting of each zone’s mean on this
particular cell in this process.

For global background correction, both the perfect match and mismatch
reporter intensity values are used, as well as the location of the reporter on the
array. First, the array is divided into different zones (default 16) for each of
which a background and noise value is obtained by calculating the average of the
second percentile of all intensities. Subsequently, each cell is background adjusted
by computing a weighted sum of the background and noise value, where the
weighting depends on the inverse distance to each of the 16 zone centres. This step
is illustrated in Figure 1.6. The background is subtracted from the raw intensity.
Unless this would lead to a value less than the noise value, in which case the

produces an improved signal by accounting for experimentally observed patterns for feature behaviour
and handling error appropriately at low and high abundance. See PLIER for more details.
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reporter intensity would be replaced by the noise value. Important adjustment with
respect to background and non-specific hybridisation of the feature-level scores is
made in the next step by calculating and subtracting an Ideal Mismatch value for
each of the perfect match values. These Ideal Mismatch values are calculated to
guarantee a positive value after perfect correction. A study on a typical GeneChip
in 2001 revealed that as many as 30% of the mismatch reporters have an intensity
value that is higher than its corresponding perfect match [121] and thus render
negative values after subtraction. These negative values rule out the use of in
microarray analysis widely-used logarithms. To solve this problem, Affymetrix
came up with their Ideal Mismatch, where they propose to use the mismatch
intensity when it is smaller than the perfect match or a truncated value in other
cases. The data is then log transformed and per probe set, the reporters’ intensity
values are summarised with the one-step Tukey’s bi-weight algorithm that provides
an outlier robust estimator of the mean. This estimate is done for each probe set
on each array separately. The signal output is the anti-log of the resulting value.
Finally, global scaling is done by taking the trimmed mean (2%) of all intensity
values on the array. For a more detailed description, see [118, 120].

Multi-array approach: RMA

The Robust Multi-Array algorithm developed by Irizarry and colleagues [115,122,
123] is basically a three step procedure of background adjustment on each array,
normalisation across arrays and summarisation per probe set.

Because the use of the mismatch reporters for Affymetrix’ original purpose has
been shown to be problematic ( [121] and above) and their exclusion has shown to
lead to expression values and fold change estimates with decreased variance [124],
the authors of this algorithm chose to make use of perfect match intensities only
and to ignore mismatch reporters. The background is estimated based on an
additive background noise and the true signal model: O = N + S, where the
background noise: N ∼ N (µ,σ2) and the true signal: S ∼ exp(α), with S and N
independent of each other. Given O, the observed intensity values are adjusted by
replacing them with the expected signal as follows:

E(S|O = o) = a + b
φ(a

b )− φ( o−a
b )

Φ(a
b ) + Φ( o−a

σ )− 1

where Φ and φ are the standard normal distribution function and density function,
respectively, and a = o−µ−σ2α and b = σ. The parameters to obtain these values
are estimated in an ad-hoc way using all perfect match intensities. The mode of
the non-parametric density estimate of these intensities is used as an estimate of µ.
The variability of the lower tail about µ is used for σ and an exponential is fitted
to the upper tail to estimate α. For more detailed information the reader is referred
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to [125].

The normalisation method implemented in RMA is quantile normalisation,
which is aimed at giving the same empirical distribution of intensities to each
array in the experiment. The basic assumption that is made is that the intensities
of each array originate from the same underlying distribution. The normalisation
distribution itself is obtained by averaging each quantile across the different arrays.

Summarisation is done by robustly fitting a linear model to the logarithm of the
pre-processed perfect match intensities for each probe set over the different arrays:

log2(yij) = µ + βj + αi + εij

where yij is the normalised, background corrected intensity value of perfect match
probe i on array j, αi is the probe effect, βj is the array effect and µ is the
wanted expression value for the respective probe set on array j. The median polish
method [126] is used to fit the model which proceeds by alternatively subtracting
the row and column median of each of the values in the yij matrix, with the
constraints that median (βj) = median (αi) = 0 and mediani(εij) = medianj(εij) =
0. For more detailed information the reader is referred to [125] and [115,122,123].

The effect of normalisation on biological data

Investigating intensity distributions of a set of microarrays and evaluating the
effectiveness of normalisation methods can be done with visualisation tools like
boxplots and scatter plots. This is demonstrated for an experiment where triplicate
samples were taken from 14 different plant tissues. The different rows in Figure 1.7
show the raw data (top), MAS5.0 normalised data (middle) and RMA normalised
data (bottom). The first column contains boxplots of the expression values of all
42 slides. The data of every tissue is shown in a distinct colour with each of its
three replicates all having the same colour. The second column contains for two
replicates of sample 1 so-called MvA plots, in which the log ratio of the intensity
of these two replicates is plotted in function of the average intensity. The red lines
in these three plots denote the ideal situation where the intensities of a gene in both
replicates are identical.
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Figure 1.7: Effect of MAS5.0 and RMA normalisation. The expression data set is sampled
from 14 plant tissues, each replicated three times. The three rows contain the raw data,
MAS5.0 normalised and RMA normalised data. The first column contains boxplots,
where the distribution of each of the 14 samples is plotted in a distinct colour and each
of the triplicates in the same colour. The second column shows MvA plots of two
replicates of tissue 1, where the log ratio of the data of these two replicates is plotted
in function of their average intensity. The red line in all three plots depicts the ideal
situation where a gene has the same intensity in both replicates.

The boxplot of the raw data reveals that the distributions and the median
intensity value are different for the different arrays in this experiment. MAS5.0
normalisation succeeds in centering the distributions of intensity values of the
different arrays. RMA is also effective in that respect, but is in addition effective
in making the distributions of intensity values of the different arrays similar.

The MvA plot of the raw data for the two replicates reveal that many probes
in one replicate have lower intensity values than in the other (since many of the
dots are above the horizontal). The variability of the data is also not equal for
different intensity values (vertical spread along the horizontal). The diagnostic
MvA plots in row two and three, for MAS5.0 and RMA allow to compare the two
normalisation methods in more detail. In the ideal case of sample replication, a
probe set should have a highly similar intensity value on both arrays and hence
have a log ratio of 0 subsequent to normalisation. The MvA plot of the MAS5.0
data reveals that the variability is strongly intensity-dependent: it is greater for
lower than higher average intensity values. Intensity-dependent variability poses
a serious concern for statistical methods that assume common variance. MAS5.0
does with respect to intensity-depend bias an adequate job: only on the very high
intensity values, the dots lie below the horizontal. The bottom MvA plot reveals
that RMA performs better at both criteria. The biggest concern that these data
reveal in this figure is that the variance is considerably larger for MAS5.0 than for
RMA: while RMA produces clean estimates for the equal intensity values in the
two replicates, MAS5.0 produces a very noise estimate, with a slight bias at the
high intensities. This noise can be largely attributed to the use of mismatch values,
which is in fact the reason for ignoring them in RMA.

1.4 Putting the pieces together

Inferred from cytological experiments many decades ago and confirmed by recent
genome sequencing projects, the high prevalence of redundant gene copies is a
hallmark of eukaryotic genomes. Since decades, gene duplication has been granted
acknowledgement as of paramount importance for evolutionary transitions and
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increase in organismal complexity. Various models predicting the outcome of a
gene following duplication have been put up and examples have been described,
but their applicability on a genome-wide scale remains to be investigated. The
microarray technology provides a genome-wide source of functional data and
allows investigation of the relative prevalence of the different fates and factors
proposed to be playing in these processes.

The first part of this dissertation, Chapter 2, focuses on the large set of
duplicated genes in Arabidopsis thaliana. Different kinds of duplicates are
identified, depending on whether the copy came about by large- or small-scale
duplication, hence the mode of duplication, the time since the duplication event,
and the functional class the gene pair belongs to. Expression correlation and tissue
expression patterns measured with Affymetrix GeneChips are used to assess the
extent to which these different factors influence the divergence rate and whether
expression divergence is biased towards certain classes of duplicates.

The availability of genome sequences and gene expression information also
creates the opportunity to unravel gene expression regulation, which is the result
of the complex and tightly regulated interplay of many different constituents, like
chemical or structural modification of the DNA, transcriptional and translational
control, mRNA degradation and post-translational modification. The role of tran-
scriptional regulation is played by transcription factors, who direct the timing and
location of transcriptional activity by either inducing or repressing transcription.
They do this by binding to specific parts of the DNA, so-called transcription factor
binding sites, that are primarily located in the long non-coding sequences upstream
of a gene. They function alone or in complex as different binding sites can organise
into cis-regulatory modules that each integrate the input from a specific set of
cooperating transcription factors. Identification of transcription factor binding
sites and their organisation into modules is important in understanding the process
of gene regulation. Genes that show co-expression are likely co-regulated and
hence are likely to share regulatory elements and/or modules. Chapter 3 describes
the identification of novel regulatory motifs in sets of co-expressed genes that
are delineated by means of microarray data in combination with comparative
genomics.

Microarrays are valuable instruments for obtaining gene co-expression rela-
tionships on a genome-wide scale. Inference tools, for instance of functional
modules and regulatory networks, in systems biology are often based on such
relationships. In Chapter 4, we investigate the basic assumption that correlated
microarray signal profiles indicate biological co-expression of the target genes.
In addition to genuine biological co-expression, signal correlation can also result
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from cross-hybridisation. In this study, we investigate the nature and prevalence
of this problem on a large scale, by studying the extent to which so-called
gene-specific reporters bind off-targets and thereby lead to spurious down-stream
correlations. We also describe a novel method for diagnosing individual probesets
that are likely affected by off-target hybridisation.
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CHAPTER 2

Abstract

Genome analyses have revealed that gene duplication in plants is rampant.
Furthermore, many of the duplicated genes seem to have been created through
ancient genome-wide duplication events. Recently, we have shown that gene
loss is strikingly different for large- and small-scale duplication events and highly
biased towards the functional class to which a gene belongs. Here, we study the
expression divergence of genes that were created during large- and small-scale
gene duplication events by means of microarray data and investigate both the
influence of the origin (mode of duplication) and the function of the duplicated
genes on expression divergence. Duplicates that have been created by large-
scale duplication events and that can still be found in duplicated segments have
expression patterns that are more correlated than those that were created by small-
scale duplications or those that no longer lie in duplicated segments. Moreover,
the former tend to have highly redundant or overlapping expression patterns
and are mostly expressed in the same tissues, while the latter show asymmetric
divergence. In addition, a strong bias in divergence of gene expression was
observed towards gene function and the biological process genes are involved
in. By using microarray expression data for Arabidopsis thaliana, we show
that the mode of duplication, the function of the genes involved, and the time
since duplication play important roles in the divergence of gene expression and,
therefore, in the functional divergence of genes after duplication.

2.1 Background

Recent studies have revealed a surprisingly large number of duplicated genes in
eukaryotic genomes [82, 127]. Many of these duplicated genes seem to have
been created in large-scale, or even genome-wide duplication events [128, 129].
Whole genome duplication is particularly prominent in plants and most of the
angiosperms are believed to be ancient polyploids, including a large proportion
of our most important crops such as wheat, maize, soybean, cabbage, oat, sugar
cane, alfalfa, potato, coffee, cotton and tobacco [67–69, 130]. For over 100 years,
gene and genome duplications have been linked to the origin of evolutionary
novelties, because it provides a source of genetic material on which evolution can
work ( [19] and references therein). In general, four possible fates are usually
acknowledged for duplicated genes. The most likely fate is gene loss or non-
functionalisation [24, 82, 83, 97], while in rare cases one of the two duplicates
acquires a new function (neo-functionalisation) [19]. Sub-functionalisation, in
which both gene copies lose a complementary set of regulatory elements and
thereby divide the ancestral gene’s original functions, forms a third potential
fate [89,131–133]. Finally, retention is recognised for two gene copies that, instead
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of diverging in function, remain largely redundant and provide the organism with
increased genetic robustness against harmful mutations [95, 134, 135].

The functional divergence of duplicated genes has been extensively studied
at the sequence level to investigate whether genes evolve at faster rates after
duplication, or are under positive or purifying selection [136–141]. The recent
availability of functional genomics data, such as expression data from whole-
genome microarrays, opens up completely novel ways to investigate the divergence
of duplicated genes. Several studies using such data have already provided
intriguing new insights into gene fate after duplication. In yeast, for instance, Gu
and co-workers [142] found a significant correlation between the rate of coding
sequence evolution and divergence of expression and showed that most duplicated
genes in this organism quickly diverge in their expression patterns. In addition,
they showed that expression divergence increases with evolutionary time. Makova
and Li [143] analysed spatial expression patterns of human duplicates and came to
the same conclusions. They calculated the proportion of gene pairs with diverged
expression in different tissues, and found evidence for an approximately linear
relationship with sequence divergence. Wagner [144] showed that the functional
divergence of duplicated genes is often asymmetrical because one duplicate
frequently shows significantly more molecular or genetic interactions/functions
than the other. Adams and co-workers [145] examined the expression of 40
gene pairs duplicated by polyploidy in natural and synthetic tetraploid cotton
and showed that, although many pairs contributed equally to the transcriptome,
a high percentage exhibited reciprocal silencing and biased expression and
were developmentally regulated. In a few cases, genes duplicated through
polyploidy events were reciprocally silenced in different organs, suggesting sub-
functionalisation.

In Arabidopsis, Blanc and Wolfe [146] investigated the expression patterns of
genes that arose through gene duplication and found that about 62% of the recent
duplicates acquired divergent expression patterns, which is in agreement with
previous observations in yeast and human. In addition, they identified several cases
of so-called ’concerted divergence’, where single members of different duplicated
genes diverge in a correlated way, resulting in parallel networks that are expressed
in different cell types, developmental stages or environmental conditions. Also in
Arabidopsis, Haberer et al. [147] studied the divergence of genes that originated
through tandem and segmental duplications by using massively parallel signature
sequencing (MPSS) data and concluded that, besides a significant portion of
segmentally and tandemly duplicated genes with similar expression, the expression
of more than two-thirds of the duplicated genes diverged in expression. However,
expression divergence and divergence time were not significantly correlated, as
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opposed to findings in human and yeast (see above). In a small-scale study on
regulatory genes in Arabidopsis, Duarte et al. [148] performed an analysis of
variance (ANOVA) and showed that 85% of the 280 paralogs exhibit a significant
gene by organ interaction effect, indicative of sub- and/or neo-functionalisation.
Ancestral expression patterns inferred across a type II MADS box gene phylogeny
indicated several cases of regulatory neo-functionalisation and organ-specific non-
functionalisation.

In conclusion, recent findings demonstrate that a majority of duplicated genes
acquire different expression patterns shortly after duplication. However, whether
the fate of a duplicated gene also depends on its function is far less understood. The
model plant Arabidopsis has a well-annotated genome and, in addition to many
small-scale duplication events, there is compelling evidence for three genome
duplications in its evolutionary past [99–101,149], hereafter referred to as 1R, 2R,
and 3R. Recently, a non-random process of gene loss subsequent to these different
polyploidy events has been postulated [83,146,150]. Maere et al. [83] have shown
that gene decay rates following duplication differ considerably between different
functional classes of genes, indicating that the fate of a duplicated gene largely
depends on its function. Here, we study the expression divergence of genes
that were created during both large- and small-scale gene duplication events by
means of two compiled microarray datasets. The influence of the origin (mode of
duplication) and the function of the duplicated genes on expression divergence are
investigated.

2.2 Results and Discussion
To examine general gene expression divergence patterns, we analysed two datasets
containing genome-wide microarray data for Arabidopsis genes (see Methods).
The first consisted of 153 Affymetrix ATH1 slides with expression data of
various perturbation and knockout experiments (see Additional data file 1). The
Spearman rank correlation coefficient was computed between the two expression
patterns of every duplicated gene pair. To investigate whether divergence of gene
expression varies for duplicates that were created by small-scale or large-scale
(genome-wide) events, the complete set of duplicated genes was subdivided into
different subgroups and their expression correlation was examined (see Methods;
Figure 2.1).
We refer to anchor genes as duplicated genes that are still lying in recognisable

duplicated segments. Such anchor-point genes, and consequently the segments in
which they reside, are regarded as being created in large-scale duplication events.
Six different sets of genes were distinguished: one set containing duplicates
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all duplicates

3R duplicates
(with 0.4 ! Ks ! 1.0)

1R/2R duplicates
(with 1.5 ! Ks ! 3.7)

3R non-anchor points 3R anchor points 1R/2R anchor points 1R/2R non-anchor points 

Figure 2.1: Six subclasses of duplicated genes in Arabidopsis thaliana. The duplicated
genes of Arabidopsis thaliana were divided into six different subclasses according to
the time and mode of duplication (see Methods for details)

with ages corresponding to 1R/2R (1.5 ≤ KS ≤ 3.7), further subdivided into
two sets of anchor and non-anchor points, and one set of younger duplicates
with ages corresponding to 3R (0.4 ≤ KS ≤ 1.0), again subdivided into two
sets of anchor and non-anchor points (see Methods). Differences in expression
divergence between anchor points and non-anchor points were evaluated by
comparing their distributions of correlation coefficients using a Mann Whitney
U test (see Methods). We further explored the difference between both classes
of genes by means of a second dataset on tissue-specific expression (see Methods
and Additional data file 2) [151]. Here, for each of the subgroups of duplicates
described above we calculated present/absent calls in the 63 different tissues and
computed both the absolute and relative amount of tissues in which the two genes
of a duplicated gene pair are expressed.

In addition, the first dataset was used to identify possible biases toward gene
function. The expression correlation of duplicated gene pairs, represented by the
Spearman correlation coefficient, was studied in relation to the age of duplication,
represented by KS (amount of synonymous substitutions per synonymous site) for
genes belonging to different functional categories (GO slim, see Methods).

2.2.1 Divergence of expression and mode of duplication

First, we investigated whether the mode of duplication that gives rise to the
duplicate gene pairs affects expression divergence. Interestingly, for both younger
(Figure 2.2A) and older (Figure 2.2B) duplicates, anchor points showed a sig-
nificantly higher correlation in expression than non-anchor points (p values of
2.49e−07 and 1.67e−08 for young and old genes, respectively). Even for the
younger duplicates the difference is striking (Figure 2.2A).
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Figure 2.2: Expression correlation for anchor points and non-anchor points. Histograms of
the Spearman correlation coefficients for anchor points (black) and non-anchor points
(grey) for both (A) 3R genes and (B) 1R/2R genes. A Mann-Whitney U test was used
to test whether both distributions are significantly different from each other. Mean
correlation coefficients: 0.40 for 3R anchor points; 0.32 for 3R non-anchor points; 0.28
for 1R/2R anchor points; and 0.11 for 1R/2R non-anchor points.

We explored the second dataset on tissue-specific expression and first consi-
dered the absolute number of tissues in which genes are expressed, resembling the
expression breadth (see Methods). Regarding anchor points, both genes are usually
expressed in a high number of tissues (Figure 3A). This is only partly true for non-
anchor points (or genes assumed to have been created in small-scale duplications),
where many duplicates are expressed in a much smaller number of tissues (shown
for young duplicates in Figure 3B). To further discriminate between redundancy,
complementarity and asymmetric divergence, and thus to investigate if genes are
expressed in the same tissues, we computed the relative number of tissues a gene
is expressed in, which is the number of tissues in which a gene is expressed
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Anchor point genes Non-anchor point genes

Non-anchor point genesAnchor point genes

Figure 2.3: Tissue co-expression of duplicated gene pairs. Smoothed colour density
representations of the scatterplots of the (A,B) absolute and (C,D) relative numbers
of tissues in which the genes of a duplicated gene pair are expressed, for both (A,C)
3R anchor points and (B,D) non-anchor points. From (A,C) we can conclude that many
anchor point genes are both expressed in a high number of tissues, and that many of
these tissues are actually identical. On the other hand, (B,D) show that non-anchor
point genes frequently show asymmetric divergence because many genes are expressed
in a high number of tissues, while their duplicate is not. The plots were made using
the ’smoothScatter’ function, implemented in the R package ’prada’ [152], by binning
the data (in 100 bins) in both directions. The intensity of blue represents the amount of
points in the bin, as depicted in the legend.

divided by the total number of tissues in which either one of the two duplicates is
expressed. As schematically represented in Figure 2.4, two duplicated genes that
remain co-expressed in the same tissues will both have a relative number equal to
1 (redundant genes; Figure 2.4A), whereas asymmetrically diverged genes, where
one gene is expressed in a very small number of tissues as opposed to its duplicate
that is expressed in a high number of tissues, can be identified by relative numbers
close to 0 and close to 1, respectively (Figure 2.4B). The intermediate situation,
where two duplicate genes are expressed in an equal number of different tissues,
will result in both copies having a relative number equal to 0.5 (Figure 2.4C).
When assuming that the ancestral gene was expressed in all tissues in which the
two duplicate genes are expressed, the latter case hints at sub-functionalisation
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Duplicated genes

Relative Number_____________

Symmetric divergence

Duplicate 1: 3/6 = 0.50

Duplicate 2: 3/6 = 0.50

Redundancy

Duplicate 1: 6/6 = 1.00

Duplicate 2: 6/6 = 1.00

Asymmetric divergence

Duplicate 1: 1/6 = 0.17

Duplicate 2: 6/6 = 1.00

A

B

C

Figure 2.4: Possible scenarios for tissue-specific expression of a duplicated gene pair.
Hypothetical example showing possible scenarios for tissue-specific expression of two
duplicates. A black box depicts expression in a particular tissue, whereas a white box
represents no expression in that particular tissue. Following duplication of a gene that
is expressed in six different tissues, the two copies can (A) both remain expressed in
all six tissues (redundancy), (B) diverge asymmetrically, where one gene is expressed
in only a small subset of the tissues, while its duplicate remains expressed in the
original six tissues, or (C) diverge symmetrically, where tissue-specific expression is
complementarily lost between both duplicates. The absolute number of tissues in which
a gene is expressed is six for both duplicates in (A) and for the second duplicate in (B),
one for the first duplicate in (B) and three for both duplicates in (C). The total number
of tissues in which the pair is expressed is 6 in all three cases. The relative number is
the fraction of the previous two, and is 1 for the two genes in (A) and for the second
duplicate in (B), 0.17 for the first duplicate in (B) and 0.5 for both duplicates in (C).
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after duplication. Figure 2.3C and D show these relative numbers for 3R anchor
points and non-anchor points, respectively, and show that redundancy is much
more common among anchor points (Figure 2.3C) than among nonanchor points
(Figure 2.3D) of similar ages. Moreover, gene pairs resulting from small-scale
duplications not only seem to have diverged more often than those created by
segmental or genome duplications, but they also have diverged asymmetrically,
where one gene is expressed in a high number of tissues, as opposed to its duplicate
that is expressed in a small number of tissues (Figure 2.3D, top left and bottom
right). Similar findings on tissue-specific expression were observed for the 1R/2R
genes (results not shown).

The current study clearly shows that duplicated genes that are part of still
recognisable duplicated segments (so-called anchor points) show higher corre-
lation in gene expression than duplicates that do not lie in paralogons, despite
their similar ages. In addition, the former have highly redundant or overlapping
expression patterns, as they are mostly expressed in the same tissues. This is in
contrast with what is observed for the non-anchor point genes, where asymmetric
divergence is more widespread. There might be several explanations for these
observations. The set of non-anchor point genes include genes created by tandem
duplication, transpositional duplication, or genes translocated after segmental
duplication events. One explanation might lie in different gene duplication
mechanisms. Single-gene duplications, mostly caused by unequal crossing-
over and duplicative transposition [153], are much more prone to promoter
disruption than genes duplicated through polyploidy events, which might lead to
the altered (or observed asymmetric) expression of genes after small-scale gene
duplication events. Similarly, translocation of genes that originated from large-
scale duplication events can also disrupt promoters, again contributing to the
overall increase of expression divergence [88, 154].

Alternatively, the higher correlation of anchor points might result directly
from co-expression of neighbouring genes, regardless of their involvement in the
same pathway, as shown recently by Williams and Bowles [155]. It was also
shown that genome organisation, and more in particular the chromatin structure,
can affect gene expression [155–160]. Such additional structural and functional
constraints might, therefore, reduce the freedom to diverge and, as a consequence,
cause the expression patterns of genes in duplicated regions to remain similar, as
observed here. Related to our observations, Rodin et al. ( [161] and references
therein) reported that position effects play an important role in the evolution of
gene duplicates. Repositioning of a duplicate to an ectopic site is proposed to
epigenetically modify its expression pattern, along with the rate and direction of
mutations. This repositioning is believed to rescue redundant anchor point genes
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from pseudogenisation and accelerate their evolution towards new developmental
stage-, time-, and tissue-specific expression patterns [161].

As previously stated, non-anchor point genes not only appear to show higher
expression divergence than anchor-point genes, they appear to diverge asymmetri-
cally, where one gene is expressed in a high number of tissues, while its duplicate is
expressed in a lower number of tissues. It should be noted that we cannot establish
whether one duplicate is becoming highly specialised and dedicated to a very small
number of tissues or whether it is losing much of its functionality (that is, turning
into a pseudogene), nor can we distinguish between the gain of expression in new
tissues for one gene versus the loss of expression for the other gene duplicate, as we
would therefore need to know the expression pattern of the ancestral gene. In this
respect, it is interesting to note that it is currently not known whether the ancient
genome doublings in (the ancestor of) Arabidopsis thaliana resulted from auto- or
allopolyploidisation. In the former case, the anchor point duplicates are in fact real
paralogs, while in the latter case the expression of the two gene copies might have
(slightly) differed from the start ( [162,163] and references therein). Nevertheless,
our data clearly show that the duplicates that still lie in duplicated segments show
high expression correlation and have highly overlapping expression patterns, as
opposed to those that arose through small-scale duplication events or have been
translocated afterwards.

In concordance with the results discussed above, Wagner [144] described
asymmetric divergence of duplicated genes in the unicellular organism Saccha-
romyces cerivisiae. He reported that both the number of stressors to which two
duplicates respond and the number of genes that are affected by the knockout
of paralogous genes are asymmetric. He therefore proposed an evolutionary
model in which the probability that a loss-of-function mutation has a deleterious
effect is greatest if the two duplicates have diverged symmetrically. Asymmetric
divergence of genes therefore leads to increased robustness against deleterious
mutations. This seems to be confirmed by our results. Indeed, also in Arabidopsis
thaliana, asymmetric divergence, rather than symmetric divergence, seems to be
the fate for two duplicates, at least when they do not lie in duplicated segments.

2.2.2 Divergence of expression and gene function

Next, we studied how the expression correlation, measured as the Spearman
correlation coefficient, changes over time for genes of ages up to a KS of 3.7.
Loess smoothers, which locally summarise the trend between two variables (see
full black lines in Figure 2.5), clearly indicate that correlation of expression, in

30



NON-RANDOM DIVERGENCE OF GENE EXPRESSION FOLLOWING GENE AND

GENOME DUPLICATIONS IN THE FLOWERING PLANT Arabidopsis thaliana

general, is high for recently duplicated genes, declines as time increases, and
saturates at a certain time point. Interestingly, considerable differences can be
observed between genes belonging to different functional classes (Figure 2.5;
Additional data file 3). For example, genes that are involved in signal transduction
and response to external stimulus appear to have diverged very quickly after
duplication (Figure 2.5A and B, respectively). Similar trends can be observed for
genes involved in response to biotic stimuli and stress, cell communication, car-
bohydrate and lipid metabolism, and for genes with hydrolase activity (Additional
data file 3). Interestingly, genes of many of these classes are involved in reactions
against environmental changes or stress (signal transduction, cell communication,
response to external and biotic stimuli and stress, lipid metabolism), which might
suggest that Arabidopsis (or better its ancestors) quickly put these newborn genes
into use by means of altered and diverged expression patterns, as compared to their
ancestral copy, to survive and cope with environmental changes.

Slowly diverging expression patterns were found for proteins involved in,
for example, macromolecule biosynthesis (Figure 2.5C) and structural molecule
activity (Figure 2.5D) as reflected in the large number of young gene pairs
with high correlation coefficients. Analogous trends can be observed for other
functional classes containing genes involved in cell organisation and biogenesis,
nucleic acid, macromolecule, protein and primary metabolism, biosynthesis and
response to endogenous stimulus (Additional data file 3). Apparently, although
duplicated genes within these classes are being retained, their fast diversification
at the expression level is selected against, probably due to the essential nature and
sensitive regulation of these highly conserved processes. Other classes of genes,
like those having nucleotide binding capacity (Figure 2.5E) and those involved in
regulation of biological processes (Figure 2.5F), show moderate divergence rates.
The DNA binding, transcription, protein modification, and genes with catalytic,
transcription factor and transporter activity (Additional data file 3) classes of genes
show similar divergence patterns. We also tested whether the divergence patterns
described above are significantly different from each other by interchanging the
fitted models between functional classes (fit the locfit line of a particular class
to the data of another class) and evaluating the model quality. Our results
confirmed that there are indeed significant differences between slowly, moderately
and quickly diverging genes (results not shown).

As opposed to Haberer et al. [147], but in agreement with Gu et al. [142] and
Makova and Li [143], who described expression divergence of duplicated genes
in yeast and human, respectively, we here show that in Arabidopsis, expression
patterns of duplicates diverge as time increases. In addition, the rate of divergence
seems to be highly dependent on the molecular function of the gene or the
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Figure 2.5: Expression divergence in function of time for genes of different functional
classes. Scatter plots of the correlation coefficient in function of the KS value of the
gene pairs belonging to different functional classes. The full black line represents the
local regression (locfit) line fitted to the data of that particular class, together with its
95% confidence interval (dashed line). (A-B) Gene pairs that have diverged quickly
after birth have an intercept of the regression line with the y-axis close to zero; (C-D)
whereas slow divergence is reflected by an intercept with the y-axis close to one and
a steep slope. (E-F) A more average situation can be observed for most classes.
Data of the following classes are displayed: (A) signal transduction; (B) response to
external stimuli; (C) macromolecule biosynthesis; (D) structural molecule activity; (E)
nucleotide binding; (F) regulation of biological process. Plots of other functional classes
of genes can be found in Additional data file 3.
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biological process in which it is involved. The rate of expression divergence ranges
from very slow, for highly conserved proteins, such as ribosomal proteins, or genes
involved in conserved processes, such as biosynthesis pathways or photosynthesis,
to very quickly, for instance genes involved in adaptation to and reaction against
changing environments.

Note that, because we removed expression data of genes without a unique
probeset (see Methods), there are actually more young duplicates than the ones
that were plotted in Figure 2.5. Although the current microarray technology does
not allow measuring their expression, we can assume that their presence would
increase the overall correlation, especially in the low value range of KS . As the
difficulty to design a gene-specific probeset is not related to the functional class,
we assume that all functional classes suffer from this caveat to the same extent and
that the differences we observe are reliable.

2.3 Conclusions

Investigating gene and genome duplication events as well as the subsequent
functional divergence of genes is of fundamental importance in the understanding
of evolution and adaptation of organisms. Previously, large-scale gene duplication
events have been shown to be prominent in different plant species. Only recently,
a pattern of gene retention after duplication has emerged that is biased towards
function, time and mode of duplication [83,130,150]. For instance, genes involved
in signal transduction and transcriptional regulation were shown to have been
preferentially retained after large-scale duplication events, while genes of other
important functional categories (such as DNA metabolism and cell cycle) were lost
[83, 130, 150]. Still other categories of genes, such as those involved in secondary
metabolism, are highly retained after small-scale gene duplication [83]. Here,
we have studied the expression divergence of these retained duplicates by means
of the genome-wide microarray expression data available for Arabidopsis genes.
As clearly shown in the current study, there is not only a bias in the retention
of genes after duplication events, but also in the rate of divergence of expression
for different functional categories of genes. Surprisingly, this bias is much more
outspoken for genes created by small-scale duplication events than for genes that
have been created through large-scale segmental or entire genome duplication
events. The latter genes, provided they are still found in duplicated segments, show
much higher expression correlation and highly overlapping expression patterns
compared to those duplicates that are created by small-scale duplication events or
that no longer lie in duplicated segments.
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2.4 Methods

2.4.1 Duplicated genes

To identify duplicated genes, an all-against-all protein sequence similarity search
was performed using BLASTP (with an E value cut-off of e−10) [164], followed
by the application of a criterion based on length and sequence similarity, according
to Li et al. [21]. To determine the time since duplication, the fraction of
synonymous substitutions per synonymous site (KS) was estimated. These
substitutions do not result in amino acid replacements and are, in general,
not under selection. Consequently, the rate of fixation of these substitutions
is expected to be relatively constant in different protein coding genes and,
therefore, to reflect the overall mutation rate. First, all pairwise alignments of
the paralogous nucleotide sequences belonging to a gene family were made by
using CLUSTALW [165], with the corresponding protein sequences as alignment
guides. Gaps and adjacent divergent positions in the alignments were subsequently
removed. KS estimates were then obtained with the CODEML program [166]
of the PAML package [167]. Codon frequencies were calculated from the
average nucleotide frequencies at the three codon positions (F3 x 4), whereas
a constant KN/KS (nonsynonymous substitutions per nonsynonymous site over
synonymous substitutions per synonymous site, reflecting selection pressure) was
assumed (codon model 0) for every pairwise comparison. Calculations were
repeated five times to avoid incorrect KS estimations because of suboptimal local
maxima.

To compare expression patterns of duplicated genes that had arisen through
genome duplication events with those created in small-scale duplication events,
the complete set of duplicated genes was subdivided into six different subgroups
(Figure 2.1), namely:

1. Set 1 containing all genes that are assumed to have been duplicated at a time
coinciding with the most recent (3R) polyploidy event.

2. Set 2 containing all genes that are assumed to have been duplicated at a time
coinciding with the two (1R/2R) older polyploidy events.

3. Set 3 is a subset of Set 1 and only contains the anchor points (pairs of
duplicated genes that still lie on so-called paralogons [101], homologous
duplicated segments that still show conserved gene order and content).
These genes are thus assumed to have been created by 3R.

4. Set 4 containing the non-anchor point duplicates of Set 1.
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5. Set 5 containing the anchor points of Set 2 assumed to have been created by
1R/2R.

6. Set 6 containing the non-anchor points of Set 2.

Previously, through modelling the age distribution of duplicated genes, we
estimated that genes created during the youngest genome duplication have a KS

between 0.4 and 1.0, while genes that originated during the oldest two genome
duplications were estimated to have a KS between 1.5 and 3.7 [83]. The latter
genes were grouped because it was difficult to unambiguously attribute them to 1R
or 2R [83, 100]. The duplicated gene pairs that arose through genome duplication
events (anchor points) had been identified previously (complete list available upon
request) [101].

2.4.2 Gene Ontology functional classes
Duplicated genes were assigned to functional categories according to the Gene
Ontology (GO) annotation. The GO annotation for Arabidopsis thaliana was
downloaded from TAIR (version 24 June 2005) [168]. We studied genes belonging
to the Biological Process (BP) and the Molecular Function (MF) classes of
the GO tree. Rather than considering all categories from different levels in
the gene ontology, we used the plant specific GO Slim process and function
ontologies [169]. In these GO Slim ontologies, categories close to the leaves of
the GO hierarchy are mapped onto the more general, parental categories. A gene
pair is included in a functional class only when both genes of the pair have been
assigned to that particular functional class. Functional classes containing fewer
than 200 pairs of duplicated genes were excluded from the analysis.

2.4.3 Microarray expression data
This study was based on gene expression data generated with Affymetrix ATH1
microarrays (Affymetrix, San Diego, CA, USA) [170] during various experiments,
all of which are publicly available from the Nottingham Arabidopsis Stock Centre
(NASC) [171, 172]. Two datasets were examined that both comprise microarrays
that were replicated at least once. The first set includes 153 microarrays that were
generated under a broad range of experimental conditions, including, for example,
diverse knockout mutants and chemical and biological perturbations (Additional
data file 1). Raw data were subjected to robust multi-array average (RMA)
normalisation, which is available through Bioconductor [173, 174]. The probe set
data of all arrays were simultaneously normalised using quantile normalisation,
which eliminates systematic differences between different chips [115, 122, 123].
The log-transformed values were used instead of the raw intensities because of the
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variance-stabilising effect of this transformation. Because of the high sequence
similarity of recently duplicated genes and the risk of artificially increased
correlation due to cross-hybridisation, we selected expression data only from those
genes for which a unique probe set is available on the ATH1 microarray (probe sets
that are designated with an ’ at’ extension, without suffix). Next, the genes were
non-specifically filtered based on expression variability by arbitrarily selecting the
10,000 genes with the highest interquartile range. This was done in an attempt to
filter out those genes that show very little variability in gene expression, thereby
artificially increasing the overall expression correlation. The mean intensity value
was calculated for the replicated slides, resulting in 66 data points for every gene.
Next, for each of the 16 different experimental conditions, a treated plant and
its corresponding wild-type plant (control experiment without treatment, knock-
out or perturbation) were identified (Additional data file 1). To adjust the data
for effects that arise from variation in technology rather than from biological
differences between the plants, for every gene the intensity value of the wild-
type was subtracted from that of the treated plant. The final dataset contained 49
expression measures per gene. For each of the six subsets of duplicates described
above 1,279, 8,510, 550, 708, 109, and 8,389 gene pairs, respectively, remained
after filtering the microarray data.

The second dataset contains the expression data of genes in 63 plant tissues that
were generated within the framework of the AtGenExpress project (Additional
data file 2) [151]. The ’mas5calls’ function in Bioconductor was used to study
tissue-specific gene expression [173, 174]. This software evaluates the abundance
of each transcript and generates a ’detection p value’, which is used to determine
the detection call, indicating whether a transcript is reliably detected (present)
or not (absent or marginal). The parameters used correspond to the standard
Affymetrix defaults in which a gene with a p value of less than 0.04 is marked as
’present’ [175, 176]. We again selected only expression data from those genes for
which a unique probe set is available on the ATH1 microarray. The dataset contains
triplicated microarrays and we assigned a gene to be present if it was assigned with
a present call in at least one of the three samples. In all other cases an absent call
was assigned. We plotted both the absolute (or expression breadth) and relative
(or expression divergence of two duplicates) number of tissues in which the genes
of a duplicated gene pair are expressed. The latter is defined as the number of
tissues in which a gene has a present call divided by the total number of present
calls of the duplicated gene pair. Pairs of genes without any present calls were
removed from the dataset, resulting in 6,193, 37,838, 1,387, 4,736, 269, 37,438
genes, respectively, for each of the six subsets described above. Both of the above
described datasets are available upon request.
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2.4.4 Correlation analysis
To measure the expression divergence of two duplicated genes, the Spearman
Rank correlation coefficient ρ was calculated. We chose to use this non-
parametric statistic because our dataset is a compilation of data from uncorrelated
experiments, and might therefore contain outliers. The formula used was:

ρ = 1− 6ΣD2

N(N2 − 1)

where D is the difference between the ranks of the corresponding expression
values of both duplicated genes and N is the number of samples. In evaluating
and comparing the distributions of the correlation coefficients of the expression of
a set of genes, we used the Mann-Whitney U test (two sided, not paired) that is
incorporated in the statistical package R [152].

2.4.5 Regression analysis
The relation between expression correlation, measured as the Spearman correla-
tion coefficient, and time, measured as the number of synonymous substitutions
per synonymous site KS , was studied using ’locfit’, an R package to fit curves
and surfaces to data, using local regression and likelihood methods [152, 177].
We hereby included all duplicated genes with a KS value smaller than or equal
to 3.7 (see above). A local regression model was fitted to the data of each of
the functional classes of genes and we looked for biases in expression divergence
between the different functional classes by interchanging the fitted models. The
model fitted to the data of a particular class was fitted to the data of another
class and the quality of the fit was evaluated by assessing the relation between the
residuals and fitted values. Residuals that show a clear trend (which is reflected
in a non-random distribution around Y = 0 with zero mean) indicate that the fitted
regression model is inappropriate (that is, the model fitted to the data of the former
class is not applicable to the data of the latter).

Additional data files
The following additional data are available with the online version of this paper.
Additional data file 1 is a description of dataset 1. Additional data file 2 is a
description of dataset 2. Additional data file 3 presents scatterplots of genes
belonging to different functional classes. Supplemental material is also available
online at [178].
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Abstract

Transcriptional regulation plays an important role in the control of many biological
processes. Transcription factor binding sites (TFBSs) are the functional ele-
ments that determine transcriptional activity and are organised into separable cis-
regulatory modules, each defining the cooperation of several transcription factors
required for a specific spatio-temporal expression pattern. Consequently, the
discovery of novel TFBSs in promoter sequences is an important step to improve
our understanding of gene regulation. Here, we applied a detection strategy that
combines features of classic motif overrepresentation approaches in co-regulated
genes with general comparative footprinting principles for the identification of
biologically relevant regulatory elements and modules in Arabidopsis thaliana,
a model system for plant biology. In total, we identified 80 TFBSs and 139
regulatory modules, most of which are novel, and primarily consist of two or
three regulatory elements that could be linked to different important biological
processes, such as protein biosynthesis, cell cycle control, photosynthesis and
embryonic development. Moreover, studying the physical properties of some
specific regulatory modules revealed that Arabidopsis promoters have a compact
nature, with cooperative TFBSs located in close proximity of each other. These
results create a starting point to unravel regulatory networks in plants and to study
the regulation of biological processes from a systems biology point of view.

3.1 Background

Regulation of gene expression plays an important role in a variety of biological
processes such as development and responses to environmental stimuli. In
plants, transcriptional regulation is mediated by a large number (> 1, 500) of
transcription factors (TFs) controlling the expression of tens or hundreds of target
genes in various, sometimes intertwined, signal transduction cascades [179, 180].
Transcription factor binding sites (TFBSs; or DNA sequence motifs, or motifs
for short) are the functional elements that determine the timing and location of
transcriptional activity. In plants and other higher eukaryotes, these elements are
primarily located in the long non-coding sequences upstream of a gene, although
functional elements in introns and untranslated regions have been described as
well [181,182]. Moreover, regulatory motifs organise into separable cis-regulatory
modules (CRMs; modules for sort), each defining the cooperation of several TFs
required for a specific spatio-temporal expression pattern (for a review, see [183]).
As a consequence of this complex organisation, understanding the combinatorial
nature of transcriptional regulation at a genomic scale is a major challenge, as
the number of possible combinations between TFs and targets is enormous. On
top of this, it is important to realise that not all motifs present in a promoter
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are functional elements or simultaneously active, since the cooperation between
TFs is context dependent [184]. In the absence of already characterised TFBSs
or systematic genome-wide location (that is, chromatin immunoprecipitation-
chip) data revealing interactions between TFs and target genes, sequence and
expression data are the only sources of information that can be combined to
identify CRMs [185–187].

The discovery of regulatory motifs and their organisation in promoter se-
quences is an important first step to improve our understanding of gene expression
and regulation. Since co-expressed genes are likely to be regulated by the
same TF, the identification of shared and thus overrepresented motifs in sets
of potentially co-regulated genes provides a practical solution to discover new
TFBSs. Complementarily, the identification of significantly conserved short
sequences (or footprints) in the promoters of orthologous genes in related species
points to candidate regulatory motifs for a particular gene [188]. In yeasts and
animals both overrepresentation of motifs in co-regulated genes and comparison
of orthologous sequences have been successfully applied to delineate regulatory
elements (for an overview, see [189, 190]); in plants, however, mainly analyses
on co-regulated genes for particular biological processes (for example, stress,
hormone and lightresponse, cell cycle control) have been reported [180].

Two problems interfering with comparative approaches for the detection of
regulatory motifs in orthologous plant sequences are the limited amount of
genomic sequence information for related species (but see [191]) and the high
frequency of both small- and large-scale duplication events that hamper the
delineation of correct orthologous relationships [128, 192]. Finally, the correct
identification of functional TFBS is more complex in higher eukaryotes compared
to prokaryotes or yeast because of the longer intergenic sequences. Consequently,
characterising properties of regulatory elements and modules is not trivial due
to the inclusion of large amounts of false positives in sets of putative target
genes. To overcome these problems, several approaches integrate local sequence
conservation between orthologous upstream regions to exclude non-conserved
regions from the search space and to make more accurate predictions about the
presence of regulatory signals [193–198]. Nevertheless, this methodology requires
that genomic data from closely related species are available and that correct (one-
to-one) orthologous relationships can be identified for nearly all genes.

Here, we present a detection strategy that integrates features of classic ap-
proaches looking for overrepresented motifs with general comparative footprinting
principles for the systematic characterisation of biologically relevant TFBSs and
CRMs in Arabidopsis thaliana, a dicotyledonous plant model system. In a first
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stage, a classic Gibbs-sampling approach is used to identify TFBSs in sets of
co-expressed genes. Next, these TFBSs are presented to an evolutionary filter
to select functional regulatory elements based on the global conservation of
TFBSs in target genes in a related species, Populus trichocarpa (poplar). In a
second stage, a two-way clustering procedure combining the presence/absence of
motifs and expression data is used to identify additional new TFBSs. The Gene
Ontology (GO) vocabulary combined with the original expression data is used to
functionally annotate sets of genes containing a particular regulatory element or
module. As a result, 80 TFBSs are reported, of which more than half correspond
with previously described plant cis-regulatory elements. More interesting, we
were able to identify numerous regulatory modules driving different biological
processes, such as protein biosynthesis, cell cycle, photosynthesis and embryonic
development. Finally, the physical properties of some modules are characterised
in more detail.

3.2 Results and Discussion

3.2.1 General overview

The input data for our analysis were genome-wide expression data and the
genome sequence from Arabidopsis, plus genomic sequence data from a re-
lated dicotyledon, poplar [199]. Whereas the expression data are required for
creating sets of co-regulated genes that serve as input for the detection of
TFBSs using MotifSampler (see Methods), the genomic sequences are used to
delineate orthologous gene pairs between Arabidopsis and poplar, forming the
basis for the evolutionary conservation filter. This filter is used to discriminate
between potentially functional and false motifs and is based on the network-
level conservation principle, which applies a systems-level constraint to identify
functional TFBSs [200, 201]. Briefly, this method exploits the well-established
notion that each TF regulates the expression of many genes in the genome, and that
the conservation of global gene expression between two related species requires
that most of these targets maintain their regulation. In practice, this assumption is
tested for each candidate motif by determining its presence in the upstream regions
of two related species and by calculating the significance of conservation over
orthologous genes (see Methods and Figure 3.1A). Whereas the same principle
of evolutionary conservation is also applied in phylogenetic footprinting methods
to identify TFBSs, it is important to note that, here, the conservation of several
targets in the regulatory network is evaluated simultaneously. This is in contrast
with standard footprinting approaches, which only use sequence conservation in
upstream regions on a gene-by-gene basis to detect functional DNA motifs.

42



IDENTIFICATION OF NOVEL REGULATORY MODULES IN DICOTYLEDONOUS PLANTS

USING EXPRESSION DATA AND COMPARATIVE GENOMICS

A

B

Figure 3.1: Network-level conservation filter. (A) The occurrence of a candidate TFBS
in the set of orthologous Arabidopsis-poplar gene pairs was determined and the
significance of the overlap is measured using the hypergeometric distribution [201]. The
NCS is defined as the negative logarithm of the hypergeometric p value. (B) Distribution
of NCS values for 1,000 randomly generated TFBSs (grey) and the motifs found using
the co-expression (black) and the two-way clustering (white) procedure. The left and
right y-axis show the frequency for the random and the potentially functional TFBSs,
respectively.

After applying motif detection on a set of co-expressed Arabidopsis genes
in a first stage, all TFBSs retained by the network-level conservation filter are
subsequently combined with the original expression data to identify CRMs and
additional regulatory elements (’two-way clustering’; Figure 3.2). Both objectives
were combined because it has been demonstrated that the task of module discovery
and motif estimation is tightly coupled [202]. We reasoned that, for a group
of genes with similar motif content but with dissimilar expression profiles,
additional TFBSs may exist that explain the apparent discrepancy between motif
content and expression profile.

Whereas the procedure for detecting TFBS in co-expressed genes combined
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with the evolutionary filter is highly similar to the methodology described by
Pritsker and co-workers [200], the second stage of TFBS detection using the two-
way clustering procedure is, to our knowledge, novel. The inference of regulatory
modules is related to the work of Kreiman [195], although, in the current study, no
a priori physical constraints were used to exhaustively search for CRMs.

3.2.2 Identification of individual TFBSs using co-expressed
genes

Applying the Cluster Affinity Search Technique (CAST) algorithm to the data
set measuring the expression of 19,173 Arabidopsis genes over 489 different
experiments (1,168 Affymetrix ATH1 slides; see Additional data file 5) yielded
122 clusters of co-regulated genes covering 5,664 genes (see Methods). After
running MotifSampler, applying the network-level conservation filter and re-
moving redundant motifs (see Methods), 34 motifs with a significant (p value
< 0.01) Network-level Conservation score (NCS) were retained (Figure 3.1B).
Interestingly, 25 of the identified TFBSs can be functionally annotated based on
overrepresented GO Biological Process or Molecular Function terms in the set
of putative target genes (Table 3.1). Overall, nearly 60% (20/34) of all motifs
correspond with known plant regulatory elements. Throughout this paper, for
motifs corresponding with known regulatory elements described in PLACE [203]
and PlantCARE [204] the original name is used, whereas for new elements the
consensus motif will be used.
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Figure 3.2: Detection of TFBSs using two-way clustering. Starting from the available
set of 34 TFBSs identified using sets of co-expressed genes (see text for details),
clusters of genes with similar TFBS combinations in their promoter are delineated.
Next, within each set of genes with similar TFBS content, groups of co-expressed
genes are identified. Finally, motif detection is applied and evolutionarily conserved
TFBSs are retained. The panel on the right shows the identification of the TFBS
HA HSE2 involved in zygotic embryogenesis. The top picture depicts a subset of
all 573 Arabidopsis genes containing the module consisting of two distinct G-boxes.
The two images below show the three groups of co-expressed genes and the newly
identified TFBSs found in a set of 22 genes containing both G-boxes in their promoter
and showing embryo-specific expression. Note that the section indicated with the dotted
line corresponds with the motif-detection approach applied on co-expressed genes in the
first stage.
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The telo-box (TELOBOXATEEF1AA1) is the TFBS with the highest NCS
value (40.06), indicating that this motif is highly conserved in orthologous target
genes between Arabidopsis and poplar. The GO annotation reveals that this motif
is highly enriched in the promoter of genes involved in ribosome biogenesis and
assembly (p value < 10−12; 4.4-fold enrichment), confirming the role of the
telo-box in regulating components of the translational machinery [205]. Other
motifs with high NCS values together with their functional annotation correspond
to well-described plant TFBSs, such as the E2F box and the MSA element
involved in DNA replication and microtubule motor activity during the cell
cycle [206], the UP1 box mediating the transcription of protein synthesis [207],
and the G box inducing the transcription of photosynthesis genes in response to
light [208]. The observation that 71% of these motifs are located within the first
500 base-pairs (bp) upstream of the translation start site (Additional data file 1) for
conserved orthologous Arabidopsis-poplar targets confirms previous findings that
Arabidopsis promoters are generally compact [209, 210].

3.2.3 Combining motif and expression data to identify addi-
tional TFBSs

Although the motif detection approach using co-expressed genes revealed a first
set of TFBSs, it is clear that expression data alone are insufficient to unravel
the complex nature of transcriptional regulation in higher plants. Therefore, we
applied a two-way clustering procedure combining motif and expression data to
identify additional regulatory elements. We again used MotifSampler combined
with the networklevel conservation filter to identify potential TFBSs in clusters
of co-expressed genes, but now also incorporated the prior knowledge about the
presence of particular TFBSs in a gene’s promoter. Thus, first all genes with a
particular motif combination (module) in the Arabidopsis genome were identified
after which the expression profiles of these genes were used to delineate subgroups
of co-expressed genes, which were then again presented to the motif detection
routine (MotifSampler and network-level conservation filter; Figure 3.2). The
rationale behind this approach is that additional TFBSs may exist that explain the
different expression patterns within the set of genes containing the same module.
As shown below, these new motifs can be missed in the first detection stage on
co-expressed genes since the fraction of genes containing this TFBS within the
set of co-expressed genes is too small for reliable detection by MotifSampler. By
evaluating all possible combinations (from two up to four motifs) using all 34
initial TFBSs, we found 1,249 modules containing more than 40 genes. Next,
we determined groups of co-expressed genes for each set of genes characterised
by a specific module using the CAST algorithm (as described before). In total,

49



CHAPTER 3

695 regulons, containing genes with a particular module and similar expression
profiles, were found, covering 4,100 Arabidopsis genes. Note that the way of
grouping genes with identical modules is compatible with the combinatorial nature
of transcriptional control in higher eukaryotes, since the presence of additional
TFBSs in a gene’s promoter does not interfere with the gene clustering based on
TFBS content (for example, gene i with motifs A, B and C can theoretically occur
in the clusters containing module A-B, A-C, B-C and A-B-C; see Methods).

After running MotifSampler and the network-level conservation filter on all
regulons, 46 new TFBSs were found (Additional data file 6). Again, the high
fraction (25/46, or 54%) of TFBSs with similarity to previously described ones
indicates that we most probably identified an extra set of genuine regulatory ele-
ments. As an illustration, we discuss the discovery of the HA HSE2 motif, which
is an element inducing gene expression during zygotic embryogenesis [211].
Initially, 573 Arabidopsis genes were grouped containing a combination of
two distinct G-boxes in their promoters (AT G-box kCCACGTn and ST G-box
yyACrCGT; Table 3.1). Subsequent clustering of the expression profiles of these
genes, enriched for the GO terms embryonic development (sensu Magnoliophyta)
and seed development (both with p value < 10−2; 7.4fold and 8.1-fold enrichment,
respectively), yielded three regulons, of which one showed expression in seeds,
a second one expression in leaves and shoots, and a third one expression in the
globular and heart stage embryo. Running the motif detection routine on the
22 genes in this last regulon resulted in the discovery of the HA HSE2 motif
(NCS 7.91). This motif was not identified in the first TFBS detection run using
expression data only, since the genes in this regulon were part of a big set of 645
co-expressed genes not yielding any significant TFBSs. This finding confirms that
splitting up co-expressed genes into smaller subsets based on prior knowledge of
motif content can enhance the identification of new TFBSs.

3.2.4 Inferring functional regulatory modules
To get a general overview of the involvement of all 80 TFBSs (34 from co-
expressed genes in the first stage plus 46 from two-way clustering in the second
stage) and the derived CRMs in different biological processes, we identified all
modules with two to four motifs (containing at least 20 Arabidopsis genes) and
again used overrepresented GO terms for functional annotation. Briefly, we
selected all Arabidopsis genes with a particular motif combination present in
their upstream regions and verified whether any GO Biological Process term was
significantly enriched within this set of putative target genes.
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Figure 3.3: Motif synergy map for 139 modules with significant GO Biological Process
annotation. The full and dotted lines connect motifs cooperating in modules containing
two and three TFBSs, respectively. Line colours indicate the GO Biological Process
enrichment for Arabidopsis genes containing this module (see also Additional data file
7).

Figure 3.3 shows the motif synergy map depicting the cooperation of different
TFBSs for which the GO enrichment score is stronger for the module than for
the individual TFBS (within that module). Applying this criterion is necessary
to specifically identify the functional properties of the module, because the GO
enrichment for many modules is caused by the presence of an individual TFBS
and not by the specific TFBS combination in the CRM. In total, 139 modules
with significant functional GO Biological Process enrichment were identified, of
which 97 consist of a combination of two and 42 of three TFBSs (Additional data
file 7). Moreover, 69 identified TFBSs in this study could be allocated to one or
more CRM with significant functional annotation. The module with the strongest
GO enrichment in the synergy map consists of a telo-box and the UP1 motif and
targets protein biosynthesis (p value < 10−51) and ribosome biogenesis (p value
< 10−25) genes (for example, 40S and 60S ribosomal proteins, translation initiator
factors). In total, 851 Arabidopsis genes contain this module and the expression
coherence [187] of these genes (EC = 0.14; see Methods) illustrates that this
module is responsible for similar expression profiles in a large number of these
genes. Detailed information about target genes and functional annotation for the
different CRMs can be consulted on our website [178].

Analysing the topology of the motif synergy map reveals some highly con-
nected TFBSs (for example, UP1ATMSD, TELOBOXATEEF1AA1, sGCrGAGA,
BOXIINTPATPB, AT G-box kCCACGTn), which control, in cooperation with
other TFBSs, different biological processes. A set of modules contain a G-box and
confirm its role in controlling light-dependent processes such as photosynthesis
(module 2.M6107, AT G-box kCCACGTn + I-box-like ATAATCCA; module
2.M6144, AT G-box kCCACGTn + OS AACA motif; module 2.M6069, AT G-
box kCCACGTn + SREATMSD) and embryonic development (module 2.M6103,
AT G-box kCCACGTn + CGAsCnAn; module 2.M6125, AT G-box kCCACGTn
+ BO HSE3 box). The cooperation between the G-box and the I-box-like motif
in the module with GO enrichment ’photosynthesis’ targets genes coding for
chlorophyll binding proteins, different photosystem I reaction centre subunits,
photosystem II associated proteins, and ferredoxin. The high expression of these
genes in plant tissues exposed to light suggests a function for this module as a
composite lightresponsive unit [212]. Combining the clusters of co-expressed
genes used in the first detection stage with the targets of the different modules
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Figure 3.4: Correlation between cis-regulatory modules and clusters of co-expressed genes.
Rows depict co-expression clusters with their corresponding cluster number and brief
description, if available, whereas columns show modules with their corresponding GO
descriptions. The number of genes within each co-expression cluster is indicated
in parentheses. Only expression clusters enriched for one (or more) modules are
shown. Enrichment was calculated using the hypergeometric distribution and p values
were corrected for multiple hypotheses testing with the false discovery rate method (q
value) [213].

(Figure 3.4) shows a highly significant overlap of expression cluster 3 with the
photosynthesis modules 2.M6069, 2.M6144, 2.M6107 and 2.M6081 (AT G-box
kCCACGTn + UP1 box). These strong associations indicate that these motif
combinations are involved in (light-regulated) primary energy production.

Three modules (2.M6086, 2.M6103 and 2.M6125) targeting genes involved
in embryonic development (>7-fold GO enrichment; Additional data file 7) are
strongly associated with expression cluster 9, which shows high transcriptional
activity in seedlings and embryo (Figure 3.4). The presence of these modules,
all containing a G-box, in some well-described embryogenesis genes within this
expression cluster (for example, late embryogenesis-abundant proteins, zinc-finger
protein PEI1 and NAM transcriptional regulators [214, 215]) confirms our finding
that these modules play an important role in transcriptional control during embryo
development.

The motif sGCrGAGA is involved in 26 different modules and is, to our
knowledge, a new TFBS. Whereas the full set of Arabidopsis genes containing this
motif shows a functional enrichment for ’energy derivation by oxidation of organic
compounds’ (Table 3.1), more than a quarter of all modules (7/ 26) containing this
regulatory element seem to have a role in transcriptional control of sugar, amino
acid or alcohol metabolism. Examples of biosynthesis pathways mediated by these
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modules according to the GO Biological Process annotation include glycolysis,
amine catabolism and branched chain family amino acid metabolism (Additional
data file 7).

Another module (2.M6825) controls the progression through the cell cycle and
consists of a combination of the known MSA element together with the OS GC
motif. A large number of genes associated with mitosis and cytokinesis, such
as those encoding B-type cyclins, kinesin motor proteins and microtubule and
phragmoplast-associated proteins, contain this CRM and are linked with expres-
sion cluster 62 (Figure 3.4). Comparing the occurrence of this module in a set
of approximately 1,000 periodically expressed genes determined in Arabidopsis
cell suspensions by Menges and co-workers [216] confirms a strong enrichment
towards M-phase specific genes (hypergeometric probability distribution; p value
< 10−21 ). Nevertheless, because the frequency of the individual MSA element
is higher in the set of M-phase specific genes compared to the occurrence of the
module (87/198 MSA element and 40/198 module, respectively), this indicates that
the presence of the individual MSA box is sufficient for M-phase expression during
cell division and that additional cooperative elements only moderately mediate
the level of transcription, as recently shown [217]. Likewise, despite the fact
that several modules (for example, 2.M547, 2.M6460 and 2.M6451) consisting
of the NT E2Fa motif and one or more cooperative TFBS are targeting genes
involved in DNA replication (>10-fold enrichment) and are strongly associated
with expression cluster 44 (Figure 3.4) containing many DNA replication genes
(for example, DNA replication licensing factor, PCNA1-2), it is currently unclear
whether additional motifs, apart from one or more E2F elements, are essential for
transcriptional induction during S-phase in plants [210].

Another module driving endogenous light-regulated response contains the
ST 4cl-CMA2a and OS TGGCA boxes and targets genes involved in circadian
rhythm (2.M8255, ’circadian rhythm’ >24-fold enrichment). Examples of genes
containing this module are CONSTANS, a zinc finger protein linking day length
and flowering [218], as well as APRR5 and APRR7, pseudo-response regulators
subjected to a circadian rhythm at the transcriptional level [219]. One of the TFBSs
within this module, motif OS TGGCA with sequence [GT]C [AT]A [AG]TGG,
is highly similar to the SORLIP3 motif (CTCAAGTGA; Pearson correlation
coefficient (PCC) = 0.56 between linearised PWM and SORPLIP3), a sequence
found to be overrepresented in light-induced promoters [220].
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3.2.5 Properties of cis-regulatory modules

Due to the frequent nature of large-scale duplication events in plants, a one-to-
one orthologous relationship with poplar could be ensured for only a minority of
Arabidopsis genes (17%). Therefore, applying across-species conservation on a
genome-wide scale to predict functional TFBSs, as done in mammals and yeast,
is not straightforward in plants. Similarly, studying cooperative TFBSs within
regulatory modules also suffers from the inclusion of potentially false-positives
when selecting genes in one species containing a putative module. Therefore, we
exploited the conservation of TFBSs between Arabidopsis and poplar orthologs to
study the properties of some modules in more detail. Based on all 139 modules
and the set of 3,167 (one-to-one) orthologous genes between Arabidopsis and
poplar, we only retained 30 modules with five or more conserved target genes for
further analysis. By applying this stringent filtering step of five or more conserved
orthologous targets, we wanted to study the physical properties - motif order and
spacing - of CRM in a set of Arabidopsis target genes enriched for functional
TFBSs (and with a minimum number of false-positives; data not shown). Since
no a priori information about such properties was included in the identification of
TFBSs and CRMs, we used this data set to verify whether such constraints exist
and are used by the transcriptional apparatus to control gene expression in plants.

First, for each module the overrepresented motif order was quantified in all
conserved target genes (for example, 9/11 of all conserved Arabidopsis target
genes for module 2.M7010 contain pattern [TELOBOXATEEF1AA1 spacer
UP1ATMSD spacer start codon]). Grouping all these results indicates that, on
average, 68% (136/200) of all Arabidopsis targets contain an overrepresented
motif order (Additional data file 8). Nevertheless, the observation that, on average,
approximately 64% of the orthologous poplar targets contain the same motif
order suggests that, although a preferred motif order might be present for some
modules (Additional data file 2), this configuration is evolutionarily rather weakly
conserved. Measuring the distance between cooperative TFBSs reveals that, for
11/30 modules, the average distance is significantly smaller than expected by
chance (Additional data file 8). Moreover, the overall distribution of distances
between TFBSs measured for all 200 targets within these 30 modules is, in
both Arabidopsis and poplar, significantly different from a random distribution
(Mann-Whitney U test p value < 0.001;Figure 3.5). This indicates that, like in
other eukaryotic species (for example, see [195, 221, 222]), the distance between
cooperative motifs within a module is important for functionality.
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Figure 3.5: Motif distance distributions for 30 conserved modules in orthologous target
genes between Arabidopsis and poplar Motif distance distributions for 30 conserved
modules in orthologous target genes between Arabidopsis and poplar. For all modules,
the distance (in bp) between cooperative TFBS was measured in 200 conserved
orthologous target genes and plotted in a histogram for Arabidopsis and poplar. The
white boxes denote the cumulative fraction.

3.3 Conclusions

The results of this study confirm that TFBS detection using expression data
within an evolutionary context offers a powerful approach to study transcriptional
control [195, 197, 200]. Especially, the exploitation of sequence conservation
between related species offers a good control against false-positives when per-
forming motif detection on co-regulated genes [223–226]. Using clusters of
co-expressed genes, MotifSampler, two-way clustering and the network-level
conservation principle, 80 distinct TFBSs could be identified, of which 45
correspond to known plant cis-regulatory elements. From these, 139 regulatory
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modules with biological functional annotation could be inferred and several CRMs
were highly associated with distinct expression patterns. Despite the limited
amount of comparative sequence data for dicotyledonous plants, which hinders the
systematic identification of conserved and probably functional binding sites within
a promoter, the regulatory modules identified here suggest that, like in yeast and
animals, combinatorial transcriptional control plays an important role in regulating
transcriptional activity in plants. For sure, the application of more advanced CRM
detection methods (for example, [202, 227, 228]) integrating physical constraints
acting on CRMs (as shown here) on more detailed expression data will lead to
the discovery of additional plant CRMs. Finally, the sequencing of additional and
less diverged plant species in the near future [229] should provide a more solid
comparative framework to study the organisation and evolution of transcriptional
regulation within the green plant lineage.

3.4 Methods
3.4.1 Expression data
A total of 1,168 Affymetrix ATH1 microarrays monitoring the transcriptional
activity of more than 22,000 Arabidopsis genes in different tissues and under
different experimental conditions were retrieved from the Nottingham Arabidopsis
Stock Centre (NASC [171]; 1,151 slides) and The Arabidopsis Information
Resource (TAIR [168]; 17 slides). An overview of all data sets is shown in
Additional data file 5. Raw data were normalised using the MicroArray Suite
5.0 (MAS) implementation in Bioconductor (’mas5’ function) [173]. To remove
potentially cross-hybridising probes, only genes for which a unique probe set is
available on the ATH1 microarray (probe sets with a ’ at’ extension without suffix)
were retained. Next, the genes were filtered based on the detection call that is
assigned to each gene by the ’mas5calls’ function implemented in Bioconductor.
This software evaluates the abundance of each transcript and generates a detection
p value indicating whether a transcript is reliably detected (p value < 0.04
for present value). Only genes that were called present in at least 2% of the
experiments were retained for further analysis. Finally, the mean intensity value
was calculated for the replicated slides, resulting in 489 measurements for 19,173
genes in total.

3.4.2 Clustering of expression data
To group genes with similar expression profiles, we used the CAST algorithm with
the PCC as affinity measure [230]. Advantages of CAST clustering over more
classic algorithms such as hierarchical or K-means clustering are that only two
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parameters have to be specified (the affinity measure, here defined as PCC ≥ 0.8,
and the minimal number of genes within a cluster, here set to 10) and that
it independently determines the total number of clusters and whether a gene
belongs to a cluster. We used an additional heuristic to choose the gene with
the maximum number of neighbours (that is, the total number of genes having a
similar expression profile) to initiate a new cluster. An overview of the cluster
stability when randomly removing experiments from the complete expression data
set is given in Additional data file 3.

3.4.3 Detection of transcription factor binding sites

For each cluster S, grouping nS co-regulated genes returned by the CAST
algorithm, we used MotifSampler [231] to identify an initial set of TFBSs. We
restricted the search to the first 1,000 bp upstream of the translation start site. For
some genes the upstream sequence was shorter because the adjacent upstream gene
is located within a distance smaller than 1,000 bp. The parameters used were 6th

order background model (computed from all Arabidopsis upstream sequences),
−n 2 (number of different motifs to search for), −r 100 (number of times the
MotifSampler should be repeated) and −w (length of the motif) set to 8nt. For
each cluster, the 20 best and non-redundant motifs (represented as a position
weight matrix (PWM)) according to their log-likelihood score were retained using
MotifRanking (default parameters; shift parameter −s set to 2).

To create a non-redundant set of all motifs found in the different clusters of
co-expressed genes, we first compared the similarity between two motifs as the
PCC of their corresponding PWM. Each motif of length w was represented using
a single vector, by concatenating the rows of its matrix (obtaining a vector of
length 4 ∗ w). Subsequently, the PCC between every alignment of two motifs
was calculated, as they are scanned past each other, in both strands [195, 232].
Then, all motifs with a PCC >0.75 were considered as similar and only the motif
with the highest NCS (see below) was retained.

The presence of a motif (represented by its corresponding PWM) in a DNA
sequence was determined using MotifScanner, which uses a probabilistic sequence
model (default parameters; prior probability −p set to 0.1). Both MotifRanking
and MotifScanner, together with MotifSampler, are part of the INCLUSIVE
package [233].
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3.4.4 Clustering based on TFBS content

To group genes containing similar motifs in their promoter and incorporating
the possibility that not all motifs in a promoter are functional, we generated all
groups of genes having two or more motifs in common. Starting from the set of
nonredundant motifs mapped on all promoters, all motif combinations from two
to four motifs were generated and only clusters with at least 20 genes containing
that combination were retained. Note that, for a particular motif combination, the
presence of additional motifs in a gene’s promoter was ignored, resulting in the
creation of overlapping clusters.

3.4.5 Network-level conservation score

We identified 3,167 orthologous Arabidopsis-poplar gene pairs through phy-
logenetic tree construction (see below). Due to the high frequency of gene
duplication in both Arabidopsis and poplar [101, 234, 235], we preferred to apply
phylogenetic tree construction to delineate orthologous relationships instead of
sequence similarity approaches based on reciprocal best hit (for example, [201,
236]). Whereas the latter only uses similarity or identity scores to define putative
orthology and is highly sensitive to incomplete associations due to in-paralogs, tree
construction methods use an evolutionary model to estimate evolutionary distances
and give a significance estimate through bootstrap sampling.

For each candidate TFBS and for all Arabidopsis-poplar orthologs, we first
identified the set of Arabidopsis genes that have at least one occurrence matching
the PWM in their upstream regions. Then, we also identified the poplar genes that
have at least one occurrence matching the PWM in their upstream regions. Next,
we calculated the overlap of matches in orthologs between both sets of sequences.
Note that the matches can be anywhere in the upstream region and on any strand.
For both Arabidopsis and poplar, the search was again restricted to the first 1,000
bp upstream from the translation start site or to a shorter region if the adjacent
upstream gene is located within a distance smaller than 1,000 bp. The statistical
significance of the overlap, which will be high for PWM representing functional
TFBSs according to the network-level conservation principle, is measured using
the hypergeometric distribution (for details, see [201]). Because the NCS, which
is defined as the negative logarithm of the hypergeometric p value, is a relative
measure of network-level conservation, the observed scores are compared against a
distribution of scores obtained from random motifs. Thousand random motifs were
generated by running the MotifSampler on clusters containing randomly selected
genes. All NCS values larger than 5.3, which correspond to the 99th percentile of
the random NCS distribution, were considered as significant.
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3.4.6 Orthology determination

The full proteomes (that is, all proteins in a genome) of Arabidopsis, poplar, rice,
and Ostreococcus tauri, together with proteins inferred from cDNA sequences for
Pinus taeda, Pinus pinaster and Physcomitrella patens were used to delineate gene
families using protein clustering. First, an all-against-all sequence comparison was
performed using BLASTP [164] and relevant hits were retained [21]. Briefly,
two proteins are considered homologous only when they share a substantially
conserved region on both molecules with a minimum amount of sequence identity.
In this manner, multi-domain proteins for which the sequence only partially
overlaps because of shared single protein domains, which occasionally leads to
significant E values in BLAST searches, are not retained as homologs. The
proportion of identical amino acids in the aligned region between the query and
target sequence is recalculated to I ′ = IxMin(n1/L1, n2/L2), where Li is the
length of sequence i and ni is the number of amino acids in the aligned region
of sequence i. This value I ′ is then used in the empirical formula for protein
clustering proposed by Rost [237]. Finally, all valid homologous protein pairs are
subject to a simple-linkage clustering routine to delineate protein gene families.
Arabidopsis and rice sequences were downloaded from TIGR (releases 5.0 and
3.0, respectively), Ostreococcus sequences from [238,239], poplar sequences from
the JGI consortium [240], and pine and moss data from the Sequence platform
for Phylogenetic analysis of Plant Genes database (SPPG) [241]. The coding
sequences for Ostreococcus and poplar correspond to the genes predicted by the
EuGene gene prediction software [242].

For all 7,038 gene families containing one or more Arabidopsis and poplar
gene (and covering in total 20,273 and 31,894 genes, respectively), protein
multiple alignments were created using T-coffee [243]. Alignment columns
containing gaps were removed when a gap was present in >10% of the sequences.
To reduce the chance of including misaligned amino acids, all positions in the
alignment left or right of the gap were also removed until a column in the sequence
alignment was found where the residues were conserved in all genes included in
our analyses. This was determined as follows: for every pair of residues in the
column, the BLOSUM62 value was retrieved. Next, the median value for all these
values was calculated. If this median was ≥ 0, the column was considered as
containing homologous amino acids. Neighbor-Joining phylogenetic trees were
constructed with PHYLIP [244] using the Dayhoff PAM matrix and 100 bootstrap
samples. Trees were rooted if a non-dicotyledonous species was present within the
gene family. In total, 3,167 orthologous gene pairs were identified as speciation
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nodes in the trees grouping one Arabidopsis and one poplar gene with high
bootstrap support (≥ 70). An overview of the one-to-many and many-to-many
orthologous relationships is shown in Additional data file 4. Note that these 3,167
orthologous gene pairs are not biased towards a particular functional GO class and
thus can be used to estimate the conservation of candidate TFBSs between both
plant genomes.

3.4.7 Functional annotation

GO [245] associations for Arabidopsis proteins were retrieved from TIGR [246].
The assignments of genes to the original GO categories were extended to include
parental terms (that is, a gene assigned to a given category was automatically
assigned to all the parent categories as well). All GO categories containing less
than 20 genes were discarded from further analysis. Enrichment values were
calculated as the ratio of the relative occurrence in a set of genes to the relative
occurrence in the genome. The statistical significance of the functional enrichment
within sets of genes was evaluated using the hypergeometric distribution adjusted
by the Bonferroni correction for multiple hypotheses testing. Corrected p values
smaller than 0.05 were considered significant. Only CRMs with significant GO
Biological Process annotation and an enrichment score higher than 5 were retained
in the final data set.

3.4.8 Expression coherence

The expression coherence, which is a measure of the amount of expression
similarity within a set of genes, was calculated as described by Pilpel and co-
workers [187]. Here, the PCC was used as a measure for similarity between
expression profiles instead of the Euclidian distance used in the original imple-
mentation. Based on the similarity between expression profiles for 1,000 random
genes (1,000 x 999 x 0.5 gene pairs), a PCC threshold of 0.5 (corresponding with
the 95th percentile of this random distribution) was used to detect significantly
co-expressed genes.

Additional data files
The following additional data are available with the online version of this paper
and at http://bioinformatics.psb.ugent.be/supplementary data/. Additional data file
1 is a figure showing the location of 34 conserved motifs (found in co-expressed
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genes) in Arabidopsis promoters (2,445 genes) and of all conserved motifs in
Arabidopsis promoters with more than 3 kb un-annotated upstream space (with
distance <1,000 bp between position in Arabidopsis and poplar; 125 genes).
Additional data file 2 is a figure giving an overview of the motif organization
in orthologous Arabidopsis (left) and poplar (right) targets for module 2.M7010.
Additional data file 3 is a figure showing the stability of clusters of co-expressed
genes when randomly removing experiments from the complete expression data
set. Additional data file 4 is a figure that gives an overview of the number
of one-to-many and many-to-many orthologous relationships in the phylogenetic
trees. Additional data file 5 is a table giving an overview of the 489 Arabidopsis
microarray experiments. Additional data file 6 is a table giving an overview of the
TFBSs identified using two-way clustering. Additional data file 7 is a table giving
an overview of the 139 cis-regulatory modules. Additional data file 8 is a table
showing the motif order and spacing for 30 cis-regulatory modules.
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Abstract

Microarray co-expression signatures are an important tool for studying gene func-
tion and relations between genes. In addition to genuine biological co-expression,
correlated signals can result from technical deficiencies like hybridisation of
reporters with off-target transcripts. An approach that is able to distinguish
these factors permits the detection of more biologically relevant co-expression
signatures. We demonstrate a positive relation between off-target reporter align-
ment strength and expression correlation in data from oligonucleotide genechips.
Furthermore, we describe a method that allows the identification, from their
expression data, of individual probe sets affected by off-target hybridisation. The
effects of off-target hybridisation on expression correlation coefficients can be
substantial, and can be alleviated by more accurate mapping between microarray
reporters and the target transcriptome. We recommend attention to the mapping
for any microarray analysis of gene expression patterns.

4.1 Background

Microarrays are a valuable tool in functional genomics research. The breadth of
their applications is reflected by the myriad of computational methods that have
been developed for their analysis in the last decade. One popular practice is to
compare expression patterns of genes by calculating correlation coefficients on
expression level estimates across a set of conditions. Many downstream analysis
tools are based on the presence or absence of correlation in the expression profiles
of genes, like the inference of co-expression [247–251], gene regulatory [252] and
Bayesian networks [253–256] and the study of gene family evolution [130, 257].
From a biological point of view, these approaches are useful and informative,
but here we show that if care has not been taken as to how these correlations
are calculated and how the reporters for each transcript are selected, incorrect
conclusions can be drawn.
A gene is represented on a microarray by one or more reporters, i. e. nucleotide
sequences that are designed to uniquely match its transcript, or transcripts if
different splice variants exist [104]. Affymetrix GeneChips are the most widely
used microarray platform, and a wealth of data measured on these arrays is
publicly available. Affymetrix reporters are 25-mer oligonucleotides whose
sequence is complementary to the intended target. Each target is represented by
a set of reporters, called composite sequences [104] or probe set [258]. Probe set
size varies between 11 and 20, depending on the type of array, but is the same
for the majority of the probe sets within one array. The signals of these different
individual reporters are combined into one expression value for the probe set in a
step called summarisation [115, 117, 258].
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The composition of the probe sets and the identifier of their gene transcript is
contained in what is referred to as a CDF, a chip description file. Affymetrix, as
array manufacturer, provides this information, and thanks to the openness of their
technology specification, users can also construct their own custom-made CDFs.
For Affymetrix’ CDFs, probe set compositions are considered static and probe
set annotation dynamic: with an updated annotation of a genome, the assignment
of a probe set to a particular target gene can change, but never the content of
its reporters [259]. For custom-made CDFs, this restriction is not necessary, as
reporters can be arbitrarily assigned to targets.
Microarray technology confronts researchers with various challenges. Our under-
standing of transcriptomes is incomplete, and our estimates of which transcripts
exist in a genome are constantly evolving. Therefore, for the analysis of microarray
data it is important to ascertain that a reporter does in fact measure the transcript
it was intended to target when the array was designed. Another concern is
cross-hybridisation, where transcripts other than the ones intended hybridise to
a reporter. The signal that is obtained for such a reporter will be that of a
combination of multiple different transcripts.
The widespread use of expression arrays encouraged different research groups
to study the extent and effect of hybridisation of cDNA molecules to reporters
with mismatches in more detail. The cardinal importance of reporter annotation
was underscored by observations made and evaluation tools developed by several
research groups [260–263]. Dai et al. [263] conducted a comparative analysis of
GeneChip data with original and redefined probe set definitions and described a
discrepancy of 30 to 50% difference in the lists of reported genes using various
analyses. These authors provide up-to-date reporter mapping files for various
types of GeneChips that match individual reporters to transcripts. Based on the
same observation of problematic reporter annotation, Zhang et al. [262] conducted
an in-depth analysis of the reporter assignment on specific microarrays and
pinpointed consistent but inaccurate signals across multiple experiments resulting
from problematic reporters that are either non-specific or miss their target. They
concluded that up to around 10% of the reporters on widely used arrays are non-
specific in that they target multiple transcripts and another 10% miss their target.
Different efforts have also aimed to model hybridisation strength and extent of
cross-hybridisation to improve the design of high affinity reporters that are less
prone to cross-hybridisation [264–267]. In addition, tools have been developed
to infer the extent of cross-hybridisation of individual reporter sets subsequent to
data analysis [268].
The technical aspect of the microarray technology has also been tackled: Eklund
et al. [269] reported that replacing cRNA with cDNA hybridisation targets
substantially reduces cross-hybridisation. Alternative technologies to detect cross-
hybridisation on microarrays have also been suggested [270].

65



CHAPTER 4

Wren et al. [271] described a positive relationship between the observed signal and
the amount of contiguous hydrogen bonds involved in duplex formation during
reporter-transcript binding. Okoniewski and Miller [272] conducted a large-scale
analysis to map all interactions between reporters, probe sets and transcripts on the
HGUI33A array. First, a set of basic motifs were defined to identify families of
interacting probe sets as in some cases a reporter can bind more than one transcript,
or a transcript can bind more than one reporter. The motifs were then used to
build a bipartite graph of interactions with the probe sets and transcripts as nodes
and matches as edges. The authors were able to identify several hub probe sets,
whose expression combines the signals of many available transcripts. A detailed
investigation of the expression signals revealed that reporters targeting multiple
transcripts had higher absolute expression signal than those targeting a unique
transcript, and that probe sets that contain reporters with multiple matches had
increased expression correlation between them.
A different approach in situ was taken by Wu et al. [265] for the construction
of a free energy model for cross-hybridisation. These authors observed a clear
relationship between the known concentrations of spiked-in transcripts in different
experiments and the measured signals of reporters not designed to target these
specific transcripts. Based on the sequences of these affected reporters, the authors
constructed a free energy model to assess the sequence dependence of cross-
hybridisation which can be used to refine the algorithms used in reporter design.
These different studies intelligibly show that cross-hybridisation is a critical
concern for microarray analysis. It is clear that a reporter can bind different
transcripts or that a transcript can bind to different reporters if stable, partial
binding occurs or if hairpin structures are formed [273]. As a result, the signals
of the reporters a transcript binds will be similar and correlation coefficients,
calculated on these signals during downstream analysis, will be artifactual. The in
situ effect of sequence similarity on expression correlation is however not known.
For this study we worked with the ATH1 Affymetrix GeneChip that was designed
for the analysis of gene expression in Arabidopsis thaliana. Arabidopsis is the
most commonly studied model plant organism and a wealth of high quality data
has been generated with this GeneChip. We investigated the relationship between
reporter-to-transcript sequence similarity and correlation of expression signals.
We assessed the extent to which inclusion of off-target reporters in probe sets,
i. e. reporters that are highly alignable to another transcript than the intended one,
influences this correlation. The conventional probe set design, as defined by the
manufacturer of the microarray was evaluated with respect to cross-hybridisation
and compared to our custom-made probe set composition.
We show that numerous probe sets on a widely used commercial array contain
off-target reporters, and that inclusion of these reporters in a probe set gives rise
to a signal pattern that is highly similar to that of the unintended probe set. We
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illustrate our findings with examples and demonstrate the effect of individual
reporters through simulation. Furthermore, we put forward a novel method to
detect unreliable probe set to transcript hybridisation events. Our results show that
excluding reporters that align well to another transcript diminishes this effect to
a substantial extent and provides a method to pinpoint the occurrence of cross-
hybridisation in existing microarray datasets. We conclude from this study that
reporter-to-transcript sequence alignment strength can be a source of error in
studies of correlation of expression signals and that proper probe set composition
is effective in minimising the effect of cross-hybridisation.

4.2 Results and Discussion

4.2.1 Two definitions of probe set annotation

The ATH1 is an Affymetrix GeneChip for the analysis of gene expression in the
premier plant model organism Arabidopsis thaliana. A wealth of high quality data
measured with this array is publicly available and has been widely used for various
applications, such as the inference of gene co-expression networks and the study of
functional aspects of the evolution of gene families [130,247–251,257] (reviewed
in [274]).
For the Affymetrix CDF of the ATH1, a probe set was assigned to a gene if nine
or more of its reporters had perfect sequence identity with the gene’s transcript
consensus sequence. If this condition was fulfilled for multiple genes, the probe
set was assigned to all of them. In this way, 22,810 probe sets were assigned to
more than 24,000 genes. A probe set can thus contain up to eight reporters that
align perfectly to another gene’s transcript without being assigned to it [259].
We built a custom-made CDF with alternative probe set definitions and anno-
tations. We aligned each 25-mer reporter sequence to the predicted transcripts
of Arabidopsis thaliana (see Methods for details). A reporter was assigned to a
gene if it had perfect sequence identity with its transcript(s) and did not align to
any other gene’s transcript with zero or one mismatches. We removed reporters
that had multiple hits in the genome, and reporters that had hits in the reverse
complementary direction. Probe sets were defined as eight or more reporters all
assigned to a particular gene’s transcript(s). This resulted in 19,937 probe sets with
unique assignments to 19,937 target genes. Table 4.1 shows some statistics on the
probe set definitions. The approach we took is highly similar to the one introduced
by Dai et al. [263].
In those cases where their probe set annotations are based on the UniGene
database, Dai and colleagues require perfect hits to unigene clusters and unique
hits of a reporter to a genomic location. For their CDFs that are based on databases
other than UniGene, the rule of one transcript assignment per reporter does not
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CDF Affymetrix Custom-made CDF

Number of probe sets: 22,810 19,937
Number of reporters: 251,078 217,811
Number of alignment scores: 6,926,739,864 6,008,969,868

Total number of transcripts in TAIR6: 27,588

Table 4.1: Statistics of probe set definitions. The first 2 rows contain the number of probe
sets and reporters in the Affymetrix and the custom-made CDF. The number of reporters
times the number of predicted transcripts, in the bottom row, results in the total number
of reporter-to-transcript alignment scores (see also Figure 4.1).

apply [263], so reporters can be assigned to multiple transcripts. As this is
currently the case for the ATH1 array, for which the CDF of Dai et al. is based
on the TAIR annotation, we computed a custom CDF that requires uniqueness.
Hence, we expect that our results can be generalised to other arrays for which
Dai et al. have computed CDFs with 1:1 reporter-target mapping, and in the
future, when their ATH1 CDF will be changed to unique 1:1 mapping (personal
communication), it could be used instead of our custom CDF.

4.2.2 Off-target alignments

Our aim was to investigate the relationship between correlation coefficients of
microarray gene expression profiles and potential off-target sensitivity of reporters
and probe sets. Figures 4.1A and B explain our procedure of calculating the score
for off-target sensitivity. For a probe set with n reporters designed to target gene
X , and another gene Y , we computed the alignment scores {a1, . . . , an} of X’s
reporters to Y ’s transcript sequence(s) with Needle [275], a Needleman-Wunsch
alignment [276] program. A global alignment algorithm was used to align the full
length of the reporter to the target while allowing for gaps and hairpin-forming.
Furthermore, we used an exact algorithm to ensure that the optimal alignment was
reached. Needle scores an identical match with a positive score of 5 and penalises
a mismatch score with−4. The gap open penalty was set to−50 and gap extension
penalty to−0.5. The reporters have a length of 25, so a perfectly matching reporter
will have a score of 125. Some interesting scores are shown in Table 4.2.

To quantify the potential off-target affinity of a probe set, different percentiles
Qp

XY were calculated of the reporter alignment scores {a1, . . . , an}, where p ∈
[0, 100] is the percentile, X is the intended target gene of the probe set and Y is
the potential off-target. For the results presented in this paper, we used p = 75,
but qualitatively equivalent results were obtained with other values of p.
This analysis was carried out for each probe set against every sequence of the
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Figure 4.1: Illustration of our approach: A) for a given probe set x, assigned to measure
the expression of gene X and the transcript of a given gene Y , two variables Qp

XY

and ρXY were calculated. B) Qp
XY is a summary statistic (e. g. p = 75 for the

75% percentile) of the alignment scores of the reporters of X to the transcript of Y .
C) ρXY is the correlation coefficient of the expression signals of genes X and Y .
This procedure was repeated for each probe set against every other transcript of the
Arabidopsis transcriptome.

transcriptome of Arabidopsis (as found in the TAIR6 sequence database http:
//www.arabidopsis.org), which results in a total number of 6,926,739,864 align-
ments for the Affymetrix CDF and 6,008,969,868 for the custom-made CDF (see
Table 4.1). Figure 4.2 shows a histogram of the highest alignment scores of the
pairs of the two CDFs.

4.2.3 Correlation of microarray expression profiles

Pearson correlation coefficients, ρXY were calculated for every pair of probe
sets X and Y on two different ATH1 microarray datasets. One dataset contains
expression data in 14 different plant tissues and the other is a dataset of nine
stress conditions and consists of 60 datapoints (see Methods). Both datasets were
generated by the AtGenExpress project [277].
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Matches Matches Matches

P M Score P M Score P M Score

25 0 125 22 3 98 17 0 85
24 0 120 21 2 97 20 4 84
24 1 116 20 1 96 19 3 83
23 0 115 19 0 95 18 2 82
23 1 111 21 3 93 17 1 81
22 0 110 20 2 92 20 5 80
23 2 107 19 1 91 16 0 80
22 1 106 18 0 90 19 4 79
21 0 105 21 4 89 18 3 78
22 2 102 20 3 88 17 2 77
21 1 101 19 2 87 16 1 76
20 0 100 18 1 86 19 5 75

Table 4.2: Table with some of the highest Needleman-Wunsch scores. P and M stand for the
number of perfect and mismatch scores. Gap openings and extensions in the alignment
were penalised with -50 and -0.5, respectively.

4.2.4 Probe set off-target sensitivity and expression correlation

The relation between expression correlation, ρXY and off-target sensitivity, Q75
XY

is shown in Figure 4.3. Figure 4.3A shows the results we obtained with all probe
set pairs of the Affymetrix CDF and Figure 4.3C shows those of the custom-made
CDF. These boxplots reveal a positive relation between the two variables: a gene
whose expression is measured by reporters that align well to a different gene’s
transcript tends to have an expression signal that is correlated with that of the
other gene.
Because a positive trend between (reporter) alignment strength and expression
correlation is not unexpected for functionally related genes like paralogous genes
or genes that share protein domains, we defined a filtering criterion to set aside
gene pairs that aligned to each other with BLAST [278] in at least one direction
with an E-value smaller than 10−10 (see Methods). Figure 4.3B and Figure 4.3D
show the data for the remaining probe set pairs of the Affymetrix and the custom-
made CDF, respectively. For both, we see that for Q75

XY values of up to around
70, the distribution of signal correlations of the probe set pairs is centred around
zero. Pairs with higher Q75

XY values are however accompanied by elevated signal
correlation, even though for the gene pairs no functional relation is suggested by
their sequence comparison. For a probe set with 11 reporters, the Q75

XY summary
statistic with p = 75 corresponds to the third strongest off-target reporter. A
reporter alignment score value larger than 70 results from 15 or more perfect
matches (cf. Table 4.2). Hence, our results imply that three or more well-
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Figure 4.2: Custom-made versus Affymetrix CDF: barplot of the off-target sensitivity
scores Q75

XY of all probe set pairs in the Affymetrix (in pink) and the custom-made
CDF (in light blue). This figure only shows pairs with an Q75

XY ≥ 80.

aligning off-target reporters in a probe set are associated with elevated expression
correlation. Figures 4.3A and B also reveal that some probe sets in the Affymetrix
CDF contain three or more reporters with perfect sequence identity to an off-target
gene. These probe sets are in the rightmost boxes of these figures, corresponding
to the score interval (112, 125]. The custom-made CDF does not contain such
reporters, since all reporters uniquely map to their target gene’s transcript and
have at least two mismatches with any other sequence. As a result, the rightmost
score interval in Figures 4.3C and D does not contain any probe sets, and the
second-highest interval (100, 112] contains only a few. A slight trend however
remains. The results shown in Figure 4.3 were calculated on the tissue dataset,
similar results were obtained for the stress dataset.
Different forces can give rise to the trend we observe here. First of all, genes with
partially similar sequences can show biologically relevant expression correlation.
Even though many such pairs will have been removed by the above filtering
criterion, some may still remain in our dataset. Second, the trend can be due
to cross-hybridisation, where the cDNA of a gene’s transcript binds to both the
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Figure 4.3: Boxplots depicting the expression correlation coefficients, ρXY stratified by
off-target sensitivity score, Q75

XY . Figures A and C show the data for all probe set
pairs; for Figures B and D gene pairs with a BLAST hit in at least one direction with
an E-value smaller than 10−10 were omitted. A-B) Results obtained with Affymetrix’
CDF. C-D) Results obtained with the custom-made CDF. The widths of the boxes are
proportional to the number of observations in each group. ρXY was calculated on the
tissue microarray dataset. The plots show results for all pairs with Q75

XY ≥ 55.

reporters of its own probe set and those of other genes’ probe sets. Both effects,
functional relatedness and cross-hybridisation, can play at the same time.

4.2.5 Reporter off-target sensitivity and expression correlation
In an attempt to discern cross-hybridisation from functional relatedness and to
identify incidences of unreliable reporter to transcript hybridisation, we designed
a method that studies the behaviour of off-target sensitivity and signal correlation
of different reporters within a probe set. For a probe set X and an off-target
gene Y , we calculated the metacorrelation cor(ρXiY , ai) between the alignment
scores ai of X’s reporters to Y ’s transcript sequence and the Pearson correlation
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Figure 4.4: A boxplot showing the metacorrelation coefficients cor(ρXiY , ai) of all probe
set pairs of the Affymetrix CDF, stratified by their off-target sensitivity score Q75

XY .
Only pairs with Q75

XY ≥ 55 are included. The correlation coefficients were calculated
on the intensities measured in the tissue dataset.

coefficients of the reporters’ signal patterns to the expression pattern of Y . We
reasoned that if cross-hybridisation occurs, a positive trend between reporter to
off-target correlation and the alignment score ai can be detected. Conversely, lack
of such a trend may indicate that cross-hybridisation is negligible.

Figure 4.4 depicts this metacorrelation coefficient for all probe set pairs with
Q75

XY ≥ 55 of the Affymetrix CDF stratified by their off-target sensitivity score
Q75

XY . The results for the custom-made CDF are similar, except for the highest
score interval (112, 125], which does not occur with the custom-made CDF.
The distribution of the metacorrelations of most probe set pairs corresponds to a
random distribution centred around zero. However, for those strata with high off-
target sensitivity scores the distribution is shifted upwards. This means that within
these probe sets some reporters do not correlate with the off-target, while others
do, depending on their alignments score.
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4.2.6 Examples

The metacorrelation method we developed was used to search for examples that
illustrate our findings. Three examples are discussed in detail, each of which are
presented in a row of Figure 4.5. The plots in the first column of this figure contain
the summarised expression values of a probe set X (in blue) and an off-target
gene Y (in orange) in the tissue dataset. The plots in the second column show
the background corrected, normalised signal profiles of X’s reporters. The colour
used to plot such a profile corresponds to the alignment score of that reporter to Y ’s
transcript and is explained in the legend in Figure B. In the third column, for each
reporter ρXiY , the Pearson correlation coefficient calculated between its signal
profile and that of Y (orange in A-D-G) is plotted in function of its alignment
score aXiY . The colours are identical to those used in the second column.
Probe set X in our first example is 245875 at, which was designed to target
gene AT1G26240, an extensin-like family protein. As shown in Figure 4.5A, the
expression profile of this gene resembles that of AT3G28550, a protein that belongs
to a zinc finger family. The Pearson correlation coefficient of these expression
patterns is 0.63 in the tissue and 0.62 in the stress dataset. Figures 4.5B and
C show that six of X’s reporters with aXiY ≥ 80 have a signal profile that is
highly correlated with that of AT3G28550. The remaining five have lower off-
target sensitivity values and have a signal profile that is correlated less well with it.
The Q75

XY value of 245875 at to AT3G28550 is 89, the metacorrelation coefficient
of the reporters of 245875 at is 0.89.
The second example is of probe set 250857 at, which was designed for AT5G04790,
and gene AT1G75180. The function of both genes is unknown. Their ρXY

is 0.70 and 0.89 in the tissue (in Figure 4.5D) and stress dataset respectively.
Figures 4.5E and F reveal a positive relationship between off-target sensitivity
and signal correlation. Interestingly, four reporters of probe set 250857 at have
25 identical matches to AT1G75180 and show an expression profile with ρ > 0.8.
Two other reporters, with lower sensitivity to this off-target (107 and 89) also
show high signal correlation to it. The Q75

XY value of probe set 250857 at to gene
AT1G75180 is 125, the metacorrelation coefficient of the reporters of 250857 at is
0.62.
Figure 4.5G shows the expression patterns of probe set 258508 at and AT3G06650.
258508 at was designed to target AT3G06640, a protein kinase family protein.
AT3G06650 is a gene that encodes a subunit of the trimeric enzyme ATP citrate
lyase. AT3G06650 and AT3G06640 are neighbouring genes that align for a stretch
of about 50 base pairs with sequence similarity of > 90%. The Pearson correlation
coefficients of their expression profiles in the tissue and stress dataset are 0.30 and
0.16, respectively. Three reporters of 258508 at have an off-target sensitivity to
AT3G06650 of 107 (Figure 4.5H and I). Two of them have a ρXiY ≥ 0.6, but the
mean intensity of all three is higher than that of the other reporters. The Q75

XY
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value of this gene pair is 102.5, the metacorrelation coefficient of the reporters of
probe set 258508 at is 0.55.
The examples presented here show that reporters that align best to the off-target
Y have the most correlated signal with it and that the number of well aligning
reporters plays an important role in the effect of cross-hybridisation. For example,
the X probe set in our second example has several reporters with highly correlated
signal profiles to the target: the four reporters that have perfect sequence similarity
with it, as well as two others with alignment scores of 107 and 89. The Pearson
correlation coefficient of the summarised expression pattern of this probe set pair is
high in both expression datasets (0.70 and 0.89). In the first example five reporters
show relatively high signal correlation to the off-target gene. The correlation of the
summarised probe set values are 0.63 and 0.62. Different to these two, the probe
set pair in our third example has a comparable Q75

XY value but only two reporters
show high signal correlation to gene Y . The correlation coefficient of this pair’s
expression pattern is much lower (0.30 and 0.16).

4.2.7 Effect of individual reporters on probe set summaries

It may come as a surprise that a few reporters out of 11 can affect the summarised
expression profile of a probe set to the extent that their inclusion coerces it to
resemble that of another gene. To better understand how this can happen, consider
the following simulated data example. Assume that a gene A has a sinusoidal
expression pattern over the course of 14 time points in an experiment.

Figure 4.6A shows the signal profiles of the 11 reporters of this gene’s probe
set, with data simulated using an established error model for microarray data [279].
The 11 reporters of a probe set B in Figure 4.6B show random signals without any
underlying trend. Nine of the reporters of probe set C have identical signals as
nine reporters of probe set B, while the remaining two reporters cross-hybridise
with the transcript of gene A (Figure 4.6C). The summarised expression values
obtained by applying the median polish method [122] are shown in Figure 4.6D.
Interestingly, the Pearson correlation between probe set A and B is -0.07, while
the correlation between A and C is 0.73. What is the explanation for this? The
RMA method [115, 122, 123] exploits the fact that sensitivity to target abundance
is strongly reporter-dependent and repeatable across arrays. RMA fits a model
that explains the measured intensities as the product of a reporter effect and
the target abundance. It estimates the model parameters, and hence the target
abundance, with an outlier resistant method called median polish. These estimates
can, however, be susceptible to subtle changes in the data, especially when the data
from the reporters disagree, like here in our simulation [119].
We also explored other summarisation methods. With dChip [117, 280] for
example, the effect of the two contaminating reporters is even stronger: the
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correlation between A and B is 0.30, while it is 0.95 between A and C.
The statistical model that dChip uses is similar to the one of RMA, however,
there are differences in the variance assumptions and the robust estimation
algorithm. Affymetrix’ MAS 5 software uses an algorithm called one-step Tukey’s
Biweight [120]. This algorithm appears to be less influenced by the two off-target
reporters: the correlation between probe set A and B is -0.22, while it is -0.19
between A and C.

4.3 Conclusions
Microarrays are an important source of functional data. Many inferential tools are
based on the presence or absence of correlation in the expression profiles of genes,
for example when inferring co-expression networks [247–251], in the study of the
evolution of gene duplicates or families [130, 257] and in the inference of gene
regulatory networks [252] or Bayesian networks [253–256].
Different research groups have pinpointed the critical concern of cross-hybridisation
for microarray analysis [260–272]. Dai et al. [263] and Zhang et al. [262]
highlighted problematic reporter annotation and underscored the importance of
up-to-date reporter mappings. Zhang et al. [262] showed that about 10% of
the reporters on widely-used arrays are non-specific in that they target multiple
transcripts and approximately another 10% miss their target. Okoniewski and
Miller [272] constructed a network of different levels of interactions between
reporters and transcripts, as some reporters are able to bind more than one
transcript, and some transcripts can bind more than one reporter. In this network
they were able to identify several hub probe sets that show a higher absolute
expression signal of reporters targeted by multiple transcripts than those that target
a unique transcript because they combine the signals of many available transcripts.
Moreover, their analysis revealed that probe sets whose reporters have multiple
matches also show higher expression correlation with each other. Wu et al. [265]
described a linear relationship between spiked-in concentrations and the measured
signals of reporters that were not designed to target these particular transcripts.
We described a positive relationship between the correlation of microarray gene
expression profiles and the off-target sensitivity of microarray probe sets, as
estimated by sequence alignment of microarray reporters to off-target genes. Probe
sets that contain reporters that align well to off-target genes show correlated
intensity values to these other genes (Figure 4.3A and C).
In many cases, this positive relationship is likely not due to functional relatedness
of the genes, but to a cross-hybridisation artifact. Three lines of argument
support this statement: first, the positive trend is present even between gene pairs
that do not share longer stretches of sequence similarity and where the reporter
to off-target alignment is only based on short near-matches (Figures 4.3A ver-
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sus B and C versus D). Second, this effect can be observed within probe sets
(Figures 4.4 and 4.5). Third, omitting reporters liable to cross-hybridisation
results in decreased artifactual correlation coefficients between probe sets (Fig-
ures 4.3B versus D).
Different summarisation methods perform differently when dealing with cross-
hybridising reporters: methods that do majority weighting of reporters, such as
RMA [115], can become unstable when there are two disagreeing groups of
reporters that are close to balancing each other and when small changes can lead
to a flip of the majority from one side to the other. Examples for this are shown
in Figures 4.5 and by simulation. Simpler methods that are based on averages or
trimmed averages, such as MAS [120], appear to be less affected by this problem,
however, such methods suffer from the serious disadvantage of an overall smaller
sensitivity [119,124]. The latter thus cannot be regarded as a solution for the cross-
hybridisation problem.
The standard probe set definition, as made available by the manufacturer of the
array, Affymetrix, was compared to a custom-made one. In Affymetrix’ definition,
a probe set is a fixed set of reporters that is annotated to those genes to which a
particular number of its reporters align perfectly. Probe sets can contain up to a
certain number of reporters with perfect sequence identity to an off-target gene.
In the custom-made CDF, a probe set is a set of reporters that align perfectly and
uniquely to one gene’s transcript. The use of more stringent probe set mapping
and annotation results in decreased artifactual correlation coefficients. This will
improve the quality of downstream analysis results. Our probe set definition
is highly similar to the one used by Dai et al. [263]. Our results support and
provide further evidence for the beneficial effect of probe set reorganisation they
and others [262] reported.
In conclusion, off-target sensitivity is a factor that should be taken into account
when doing correlation analysis from microarray data. High-quality assignment
of reporters to target genes is essential for inferring genuine biological expression
correlations. The correlation coefficient calculated between alignment strength
and expression correlation coefficients, the metacorrelation coefficient, is a novel
method to identify instances of unreliable reporter behaviour.

4.4 Methods

All analyses, except for the alignments, were done with development versions of
R 2.6.0 [281] and Bioconductor 2.1 [173] packages. An R package, XhybCasneuf,
containing a reproducible compendium of the datasets and scripts used for this
study, is made available and is distributed through Bioconductor http://www.
bioconductor.org.

77



CHAPTER 4

4.4.1 Two Chip Description Files

This analysis was carried out on the GeneChip Arabidopsis ATH1 genome array of
Affymetrix (http://www.affymetrix.com/products/arrays/specific/arab.affx). For
Affymetrix’ annotation of the probe sets, a file was downloaded from the
Affymetrix website (https://www.affymetrix.com/Auth/analysis/downloads/na21/
ivt/ATH1-121501.na21.annot.csv.zip) on August 12th, 2007. Affymetrix requires
a 100% match of reporter’s sequence to a consensus gene sequence and assigns a
probe set to a particular locus if nine or more of the reporters in the probe set match
it. We filtered out probe sets which Affymetrix assigned to multiple transcripts in
addition to those that are assigned to a gene model that is not present in the TAIR6
(http://www.arabidopsis.org) sequence database.
For the custom-made chip description file, Exonerate [282] was used to map
reporters onto the genome and transcripts. The target sequences were the predicted
transcripts from the TAIR6 release, including mitochondrial and chloroplast-
encoded genes. These sequences include UTRs but not introns. The fasta file was
downloaded from TAIR (ftp://ftp.arabidopsis.org/home/tair/home/tair/Sequences/
blast datasets/) on August 10th, 2007. We selected reporters that have perfect
sequence identity with a single target gene’s transcript. Reporters that hybridise
with one mismatch to another gene’s transcript are filtered out. We also filtered out
reverse complementary matching reporters, and reporters that hybridise multiple
times on the genomic sequence. The latter was done in order to remove reporters
that match unannotated sequences. We included probe sets in this study if they
consisted of at least eight reporters which resulted in 19,937 unique probe sets.
The custom-made CDF is also available and distributed through Bioconductor
( http://www.bioconductor.org, tinesath1cdf ).

4.4.2 Reporter-to-transcript alignments

Reporter-to-transcript alignment scores were obtained with Needle, a global
Needleman-Wunsch [276] alignment tool [275]. The analysis was carried out on
the TAIR6 release of the Arabidopsis genome. The target sequences were the
predicted transcripts, including mitochondrial and chloroplast-encoded genes and
include UTRs but not introns. These cDNA sequences were downloaded from
TAIR 1 on November 9, 2006. We ran the alignment analysis twice, with a gap
penalty of -10 and -50. The same conclusions were reached but our findings were
stronger when this penalty was set to -50. This means that higher correlation
coefficients can be observed for reporter-to-transcript alignments without gaps.

1ftp://ftp.arabidopsis.org/home/tair/Genes/TAIR6 genome release/TAIR6 cdna 20060907
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4.4.3 Microarray data
The microarray data we used were generated within the framework of the
AtGenExpress project [277]. The first set is a subset of the development dataset2

and contains the expression data of genes in 14 plant tissues. The second
contains expression data of plants under nine different abiotic stress condi-
tions http://www.weigelworld.org/resources/microarray/AtGenExpress/Sample%
20list%20%28Abiotic%20stress%29, measured over six different time points.
Both datasets were normalised using RMA [115, 122, 123], summarised using a
median polish algorithm and averaged over replicates.

4.4.4 Identification of gene pairs with long stretches of se-
quence similarity

To identify possibly functionally related gene pairs, we carried out a within-
genome, all-against-all BLASTP [278]. Gene pairs with an E-value smaller than
10−10 in at least one direction were set aside during different parts of this study.

4.4.5 Metacorrelation
The metacorrelation was obtained as follows: for a probe set pair X and Y , the
Pearson correlation coefficient was calculated between the alignment scores of
X’s reporters to the transcript sequence of Y and the (Pearson) signal correlation
coefficient of these reporters to the expression pattern of Y . We used the non-
parametric measure for this metacorrelation because of the limited number of
datapoints for each observation.
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Figure 4.5: Three examples of cross-hybridisation: each of the three rows presents an
example of cross-hybridisation. Each time, the first of the plots (A-D-G) shows the
summarised expression values of probe set X (in blue) and probe set Y (in orange)
in 14 different plant tissues. The plots in the second column (B-E-H) present the
background corrected, normalised expression patterns of X’s reporters. The signal
profile of the reporter is plotted in a colour that corresponds to its alignment score
to Y and is explained in the legend of plot B. In the third column (C-F-I) for each of
X’s reporters, ρXiY , calculated between its signal profile to that of Y , is plotted against
its alignment score, aXiY . Colours correspond to those used in the plot in the second
column.
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Figure 4.6: A) The expression profiles of the reporters of a probe set A that binds the
transcript of a target gene with a sinusoidal expression pattern. Each reporter is drawn
in a different colour. B) The expression profiles of eleven reporters of a probe set B that
show random signals without any underlying trend. Each reporter is drawn in a different
colour. C) Nine of the reporters of a probe set C have identical expression values as
nine of those of probe set B. Two other reporters of this probe set cross-hybridise with
the transcript of gene A and thus have a expression pattern that is highly similar to the
reporters of probe set A. The expression values of these two reporters are coloured red.
The other nine have the same colours as the corresponding reporters of probe set B in
Figure 4.6B. D) The expression patterns of these three probe sets after summarisation
with median polish [115, 122, 123].
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5
Application of the Microarray

Technology to the Study of Evolution
and Functional Divergence of

Duplicated Genes

Comparative biologists may understandably feel frustrated upon
being told that they need to know the phylogenies of their groups in
great detail, when this is not something they had much interest in
knowing. Nevertheless phylogenies are fundamental to comparative
biology; there is no doing it without taking them into account.

Felsenstein, 1985



CHAPTER 5

Abstract

Our in-depth study of off-target transcript hybridisation to reporters on microarrays
revealed a positive relation between alignment strength and expression correlation.
The knowledge thereby gained about cross-hybridisation is applied here to the
study of evolution and functional divergence of duplicated genes in Arabidopsis
thaliana. The use of an up-to-date and, with respect to sequence similarity, strin-
gent probe set definition allows accurate assessment of the divergence pattern of
independent duplicates belonging to various functional categories. The molecular
function of a gene and the biological process in which it functions are important
players in the divergence tale of duplicated genes.

5.1 Background

Microarrays allow genome-wide monitoring of gene expression levels across
different experimental conditions or treatments. The technology has empowered
significant proceedings on various research topics, amongst them in the study of
gene duplicate evolution, as discussed in the Background and Conclusions sections
of Chapter 2 of this dissertation. In this Chapter 2, we described non-random
expression divergence for duplicated genes generated by different duplication
mechanisms and belonging to different functional classes. In the approach
we took, we however did not incorporate information about the phylogenetic
relationships of the genes under study. Because gene expression levels can be
viewed as quantitative traits, improvement to our analysis could be introduced by
making use of statistically more sophisticated, phylogenetic comparative methods,
as proposed by Gu et al [283], Oakley et al [284] and Guo et al [285] or ANOVA-
types (nested design) of approaches, as proposed by Duarte et al [148] and Gu et
al [286]. However, some issues hinder their wide-spread application. As with any
comparative method that studies evolution, one of the assumptions that is made
is that each of the branches of a phylogenetic tree can be used as an independent
data point when testing for the correlation of traits among different outer leaves
of the tree [287, 288]. Therefore, in a bifurcating tree with n leaves, there will
always be 2n − 1 apparent degrees of freedom, but for two reasons, there may
be actually be fewer. If an ancestral node is in state 0, then each of its radiating
daughter nodes is constrained to either change to 1 or not change at all: they
cannot change from 1 to 0. Second, the ancestral state is not known and is in
fact estimated from the characteristics of the outer leaves, which also introduces
dependence. In this respect, the current generation of sequence and expression
data of closely-related species can complement our present-day knowledge and
greatly increase confidence about the estimates of the ancestral state. For research
on duplicated genes, this means that contemporary data points in the outer leaves,
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that are connected via multiple internal nodes, are not independent. They share an
evolutionary history up until their last common node, except from the relatively
small amount of independent evolution since their split from this last common
ancestor. Also, the exact divergence pattern of duplicated genes remains to be
elucidated, as is the level of mutual dependence of duplicates. For instance, in
the case of sub- or neo-functionalisation, selection pressure is hypothesised to
constrain the divergence of both or one of the duplicates in order to maintain the
functionality of the ancestral gene.

Our in-depth study of off-target transcript hybridisation to reporters on mi-
croarrays, described in Chapter 4, revealed a positive relation between alignment
strength and expression correlation. We observed that genes that share long
stretches of high sequence similarity are susceptible to severe bias of inferred co-
expression relationships from microarray data. We learned that up-to-date and,
more importantly stringent reporter-to-transcript assignment is of great importance
when studying duplicate gene evolution.

In this chapter, insights in both the study of evolutionary traits [287, 288]
and the microarray technology (Chapter 4) are applied to improve our analysis
of divergence patterns of duplicated genes belonging to different functional
categories in Arabidopsis thaliana. This analysis confirms that the molecular
function of a gene and the biological process in which it is involved play
an important role in the divergence rate of duplicates and is responsible for
dissimilarities of divergence rates of genes belonging to different functional
classes.

5.2 Results and Discussion

5.2.1 Independent duplicated genes

Regarding the selection of paralogs for our investigation in Chapter 2, namely all
that were identified with BLASTP and passed the filtering step according to Li et
al [21], is the approach we took an efficient, but pragmatical one. For the analysis
in this Chapter, a possible improvement concerning the dependency of duplicated
genes was implemented. Independent pairs were selected by taking into account
the duplication relationships. For the paralogs identified with the above-mentioned
method, clusters were formed of genes with mutual duplication relationships, the
result of which is very similar to the construction of gene families. Independent
duplicates were then selected in each cluster starting with the pair with the smallest
KS value. After excluding both genes from further selection, additional pairs
were selected by extracting the gene pair with the smallest KS value among the

85



CHAPTER 5

remaining genes. A gene can thus only be assigned to one pair. The independence
of these pairs lies in the fact that this way only the outer leaves of the phylogenetic
tree will be studied. The selected gene pairs have evolved independently since the
split from their last common ancestor.

5.2.2 Functional annotation and expression data

The goal of this investigation was to compare the divergence rates of duplicates
with different molecular functions or that are involved in different biological
processes. To that end, independent pairs were assigned to functional classes to
which both members are annotated in the Gene Ontology (see Methods section).
Their gene expression divergence patterns were then analysed by calculating the
Spearman rank correlation coefficient on a data set of nine stress conditions (see
Methods). These microarray data were pre-processed according to the probe set
definition introduced in Chapter 4. For this custom-made CDF, a reporter was
assigned to a gene if it had perfect sequence identity with the transcript and did not
align to any other gene’s transcript with zero or one mismatches. Reporters with
multiple hits in the genome were removed, as are reporters with hits in the reverse
complementary direction. Probe sets were defined as eight or more reporters being
assigned to the same gene. This CDF contains 19,937 probe sets with unique
assignments.

5.2.3 Expression divergence in different functional classes

Figures 5.1, 5.2 and 5.3 show the Spearman correlation coefficients of gene pairs
in function of the time since their duplication. Duplicates with KS values up to
1.5 are shown, as this is the estimated upper bound for duplicates generated by the
last whole-genome duplication (3R) [83]. To show and compare the underlying
divergence rate trends, a local regression line (blue solid) is fitted to each of the
classes. The 95% confidence intervals are depicted with a dashed blue line. These
plots reveal notable differences across the various functional classes.

Gene pairs with slow expression divergence

The duplicates in the classes depicted in Figure 5.1 show high correlated expres-
sion patterns: especially among the youngest pairs high expression correlation
can be observed but also for the older the correlation coefficients are centred
around 0.5. Duplicates that retain highly correlated expression patterns are genes
involved in organelle organisation and biogenesis, biosynthetic processes (such
as of macromolecules, shown here) and binding (nucleic acid and its child, DNA
binding, shown here). Other classes of slowly diverging genes are genes with
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transcription regulator and structural molecule activity.
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Figure 5.1: Duplicates belonging to functional classes of slowly diverging genes.

Gene pairs with quick expression divergence

For the gene pairs of some other classes, a considerable different picture can be
observed: genes that are involved in developmental processes and biopolymer
modification and enzymatic genes, such as those with kinase and oxidoreductase
activity and response genes, like to chemical stimuli and stress, turn out to have
diverged quickly after duplication. Few of the young pairs in these functional

87



CHAPTER 5

classes have high correlated expression patterns and the correlation coefficients of
the older duplicates is centred somewhere around 0.25.
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Figure 5.2: Duplicates belonging to functional classes of quickly diverging genes.

Gene pairs with intermediate expression divergence

Genes belonging to some other classes show divergence patterns with intermediate
rates. Examples thereof include genes that are involved in cell communication
and regulation of metabolic processes and genes with transporter and hydrolyse
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activity.
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Figure 5.3: Duplicates belonging to functional classes of moderately diverging genes.

5.3 Conclusions
From our in-depth investigation of off-target transcript hybridisation to reporters
on microarrays we learned that cross-hybridisation is a factor that should be taken
into account when inferring expression relationships, as it possibly causes spurious
correlations. Advances from this study are combined with improvements in the
selection of duplicated genes for the study of evolution and functional divergence
of duplicated genes in Arabidopsis thaliana.
Carried out on gene pairs that are selected based on statistically more sound
criteria and expression data that was pre-processed with a probe set composition
and definition that minimises the effect of cross-hybridisation, this study confirms
the observations made in Chapter 2. Clear differences in divergence rates exist
between duplicate pairs belonging to different functional classes. For some
classes, fast expression diversification is selected against, probably due to the
essential nature and sensitive regulation of these highly conserved processes.
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Other genes that are involved in development and reactions against environmental
changes or stress and enzymatic genes are confirmed to have diverged quickly
after duplication which might suggest that the ancestors of Arabidopsis quickly put
these newborn genes into use by means of altered and diverged expression patterns,
as compared to their ancestral copy, to survive and cope with environmental
changes.
Compared to the plots shown in this Chapter, the distributions of data points in
Figure 2.5 are centred towards lower values of correlation coefficients. In the
latter, numerous gene duplicates that are connected via one or multiple internal
nodes are included. Most likely, these duplicates have diverged to such an extent
that their expression patterns are unrelated and similar to random pairs with no
expression correlation.
In short, the molecular function of a gene and the biological process in which it
functions are important players in the divergence tale of duplicated genes.

5.4 Methods

5.4.1 Identification of independent duplicated genes

To identify duplicated genes, an all-against-all protein sequence similarity search
was performed using BLASTP (with an E value cut-off of e−10) [164], followed
by the application of a criterion based on length and sequence similarity, according
to Li et al. [21]. If different splice variants exist, the gene with the longest transcript
sequence was selected. Transposons/able elements were filtered out by searching
the annotations of the genes for retrotransposon, retro, Mutator, hAT-like, hobo,
mutator-like, CACTA-like, transposase, reverse, copia-like, retroelement, Athila,
non-LTR, IS-element, IS4 and hAT dimerization, as according to Thomas et
al [289].

To determine the time since duplication, the fraction of synonymous substi-
tutions per synonymous site (KS) was estimated. These substitutions do not
result in amino acid replacements and are believed to be, in general, not under
selection. Consequently, the rate of fixation of these substitutions is expected to be
relatively constant in different protein coding genes and, therefore, to reflect the
overall mutation rate. First, all pairwise alignments of the paralogous nucleotide
sequences belonging to a gene family were made by using CLUSTALW [165],
with the corresponding protein sequences as alignment guides. Gaps and adjacent
divergent positions in the alignments were subsequently removed. KS estimates
were then obtained with the CODEML program [166] of the PAML package [167].
Codon frequencies were calculated from the average nucleotide frequencies at
the three codon positions (F3 x 4), whereas a constant KN/KS (nonsynonymous
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substitutions per nonsynonymous site over synonymous substitutions per synony-
mous site, reflecting selection pressure) was assumed (codon model 0) for every
pairwise comparison. Calculations were repeated five times to avoid incorrect KS

estimations because of suboptimal local maxima.

In a next step gene clusters were formed of all gene pairs with mutual
duplication relationships, according to the criteria defined above, that in practice
are very similar to gene family clusters. The formation of this clusters was done in
R (2.6, 2007-07-02 r42107) using the RBGL and Rgraphviz libraries. Within each
cluster, independent duplicates were singled out, starting by selecting the pair with
the smallest KS value and proceeding with every increasing KS value. A gene
could only be picked once: once selected, it could not be included in another pair.

5.4.2 Gene Ontology functional categories

Independent duplicate gene pair were then assigned to Gene Ontology (GO)
categories. The annotation file was downloaded from the GO website1 on
Thursday, August 23rd, 2007. The GO annotation of gene is the term it is assigned
with in this file, in addition to each of the ancestors in the GO tree, a step that
is conducted in R, with the GO package. An independent gene pair is assigned
to a gene category if both members were annotated with the particular category.
Assignments with all evidence codes were included, but even if a more stringent
approach is taken where genes assigned with evidence codes ’IC’, ’IDA’, ’IGC’,
’IGI’, ’IMP’, ’IPI’, ’NAS’, ’RCA’ and ’TAS’ were included, the results hold.
However, application of this filtering step renders much fewer data points so that
regression is difficult.

5.4.3 Microarray data

The microarray data used for this analysis were generated within the framework of
theAtGenExpress project [277] and contains expression data of Arabidopsis plants
under nine different abiotic stress conditions [290], measured over six different
time points. The data were normalised using RMA [115, 122, 123], summarised
using a median polish algorithm and averaged over replicates. Our custom-made
CDF (’tinesath1cdf’) was used, where each reporter is assigned uniquely to a sole
transcript and are excluded if it aligns to a different transcript with 24 or more
perfect matches (see Chapter 4).

1http://cvsweb.geneontology.org/cgi-bin/cvsweb.cgi/go/gene-associations/gene association.tair.gz
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5.4.4 Correlation analysis
Expression correlation of two duplicated genes was calculated in R [152], using
the non-parametric Spearman Rank correlation coefficient ρ:

ρ = 1− 6ΣD2

N(N2 − 1)

where D is the difference between the ranks of the corresponding expression
values of both duplicated genes and N is the number of samples.

5.4.5 Regression analysis
The relation between expression correlation, measured as the Spearman correla-
tion coefficient, and time, measured as the number of synonymous substitutions
per synonymous site KS , was studied using ’locfit’, an R package to fit curves
and surfaces to data, using local regression and likelihood methods [152,177]. All
duplicated genes with a KS value smaller than or equal to 1.5 were included.
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6
Concluding Remarks

If we begin with certainties, we shall end in doubts; but if we begin
with doubts, and are patient in them, we shall end in certainties.

Francis Bacon

Partnered by major technological advances, the accumulation of diverse
genome sequences at the beginning of this century brought about various exciting
breakthroughs in life sciences, such as the identification of the gene set of
which genomes are comprised by genome annotation, perspectives on genomic
structures as a result of major gene expansion and loss events by evolutionary and
comparative genomics, the determination of biodiversity by population genomics,
and the determination of genes’ functions through functional genomics. This
build-up of information enabled life science research to shift from gene-focused
studies to exhaustive systems biology approaches in which the role that each
individual gene plays in the greater picture of the functioning cell is revealed.
Assumptions and hypotheses previously inferred from observational studies were
to be assessed and verified.



CONCLUSION

Non-Random Divergence of Gene Expression

Significant advances have also been made in the study of duplicated genes. Based
on experimental and observational evidence, gene duplication had since long been
put forward as an important source of genetic novelty and had been linked to
important advances in evolution. The availability of genome-wide expression data
of various organisms allowed formal testing of the different models explaining the
fate of duplicated genes that had been suggested previously. Functional analysis
in human [143], yeast [142,144], cotton [145] and Arabidopsis [130,147,148] had
revealed that duplicated genes acquire distinct expression patterns quickly after
duplication. The importance of factors playing in this process, such as mode of
duplication and gene function, had however not been appreciated.

Gene duplication has been particularly prevalent in plants, including in the
model system Arabidopsis thaliana, who has been shown to have undergone
several rounds of large-scale, whole-genome duplication and many smaller,
local duplication events [99–101, 149]. Investigation of gene and genome
duplication events as well as the subsequent functional divergence of genes is
of fundamental importance in the understanding of evolution and adaptation
of organisms. Previous work conducted in our research group [83] involved
the categorisation of duplicates in the Arabidopsis genome [101, 291, 292] and
modelling of gene duplication events in this plant model organism [83]. To
simulate the duplication dynamics of genes in Arabidopsis for different functional
classes, we developed an evolutionary model in which all three whole-genome
duplication events and a continuous mode of gene duplication were considered and
fitted to the observed age distributions of duplicated genes [83]. Our study revealed
that decay rates and retention are strikingly different for large- and small-scale
events and highly biased towards the functional class to which a gene belongs.
Results that were confirmed by subsequent studies [289, 293–295].

The above findings urged us to quantify the extent to which these factors direct
the fate of retained duplicates [257]. Using microarray data, we conducted on
in-depth analysis of expression divergence of duplicated genes with respect to
time and mode of duplication and their encoded functions. Duplicated gene pairs
were identified by conducting an all-against-all transcript sequence comparison
and applying a criterion based on length and sequence similarity, according to Li
et al. [21]. The number of synonymous substitutions per synonymous site were
used as a proxy for their age. The duplicates were then divided according to
their age and into sets of duplicates that arose through either large- or small-scale
duplication events. An in-house developed tool, iADHoRe [291] for the detection
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of homologous regions, was employed to this end. The extent of expression pattern
divergence was assessed through the use of a publicly available perturbation
microarray data set of Arabidopsis.

Our study revealed that genes that arose via large-scale events diverge slower
than those that got duplicated through local small-scale events. In addition,
analysis of their transcriptional absence and presence in fourteen different plant
tissues showed that duplicates that the latter tend to diverge asymmetrically, in the
sense that one member of the pair is expressed in a large number of tissues while
the other is expressed in few tissues. The duplication mechanism clearly is an
important determinant in the divergence tale of the newly-created gene pair. We
hypothesised that small-scale duplicates, produced by unequal crossing-over and
duplicative transposition [153], are likely much more prone to promoter disruption
than genes duplicated through large-scale events. Similarly, translocation of a
duplicate could also disrupt promoters and dislodges a gene from its transcriptional
settings Both appear to result in the altered expression, and even asymmetric
divergence of duplicates [88, 154]. A similar, more recent study, by Cusack
and Wolfe investigated asymmetric sequence divergence of duplicated genes and
reported that the degree of rate asymmetry of gene pairs where one copy has
been relocated is greater than in pairs formed by local duplication events [296].
The authors take the asymmetry as evidence of natural selection’s ability to
discriminate between two duplicate copies and that it subjects them to different
levels of purifying selection, or even permits adaptive evolution of one or both
copies. Like us, they state that neighbouring duplicates share genomic context, i.e.
cis-regulatory and distal elements, chromatin domain and gene neighbourhood,
gene relocation has a strong impact on the asymmetry between genes, of protein
evolutionary rates, in the case of their study. A similar observation on a small gene-
family in diploid and tetraploid wheats has been made by Akhunov et al [297].

Our study also revealed remarkable differences in expression divergence rates
of genes belonging to different molecular functions or that are involved in different
biological processes. For instance, genes involved in signal transduction and
response to stimuli, like stress and external stimuli, diverge relatively quickly,
which could be the result of an evolutionary mechanism that the ancestor of
Arabidopsis has evolved to meet the challenges of a changing environment.
Particular highly conserved proteins, such as ribosomal proteins, or genes involved
in conserved processes, such as biosynthesis pathways or photosynthesis, on the
other hand turned out to maintain highly correlated expression patterns.

Our analyses have been limited to the study of general divergence patterns
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and identification of factors that play a role in this. Future challenges involve
making the distinction between diversification of the coding sequence and changes
in regulatory control to which functional divergence can be attributed [298] and
establishment of whether the asymmetric divergence patterns we observe result
from non-, neo - or sub-functionalisation [299]. It would also be interesting to
identify the co-evolution of genes that are for instance functioning in a particular
pathway [130], or to study how the evolution of sequences of transcription factors
affects the transcription binding pattern [300–303]. Sequence information on
closely related species, together with expression compendia and genome-wide
and across-species knowledge of regulatory elements, will allow the generation
of reliable phylogenetic trees and the inference of the ancestral expression state,
so as to identify expression pattern shifts and to establish the exact divergence
histories.

Identification of Novel Regulatory Modules
A major goal in the post-genomic era is the identification of all functional elements
of which genomes are comprised, including those that regulate expression.
The elucidation of the exact dynamics by which transcription is regulated is
important, as reflected in the examples of diseases that alterations of transcriptional
components bring about [304]. Basic regulation of the timing, level and location
of gene expression operates through binding of transcription factors to elements
in the promoter regions of genes. The difficult task that the identification of
these short and degenerate cis-regulatory elements constitutes can be alleviated
by complementation with knowledge about evolutionary conservation (ortholo-
gous genes) and shared regulatory control (co-expressed genes). Comparative
genomics is a powerful tool to improve the detection because functional noncoding
sequences are often evolutionary conserved across species [194, 305–310]. Genes
that share regulatory elements in their upstream regions are thought to be co-
regulated and as a result show similar expression patterns [311–313]. By taking the
reverse approach, i.e. treating expression levels as quantitative traits, calculating
the correlation between expression patterns of genes and clustering them, shared
elements can be identified.

The identification of novel regulatory elements in plants was the focus of
our research conducted in Chapter 3 of this dissertation, in which advantage
was taken from the accumulation microarray data for Arabidopsis thaliana
and the availability of the genomic sequence of a related species, Populus
trichocarpa [314]. First, transcription factor bindings sites were identified in sets
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of co-expressed genes by applying a classic Gibbs-sampling approach. Functional
elements were then selected by presenting the output to an evolutionary filter,
based on conservation in orthologous genes in Populus. Next, a two-way clustering
procedure that combined the presence or absence of motifs and expression data
was used to identify additional novel regulatory elements. Sets of genes containing
a particular element or motif, a combination of elements, were then annotated by
making use of the Gene Ontology annotation. This resulted in the identification
of 80 transcription factor binding sites and 139 regulatory modules, most of which
are novel. These modules consist primarily of two or three regulatory elements
that could be linked to different important biological processes, such as protein
biosynthesis, cell cycle control, photosynthesis and embryonic development.
Moreover, study of the physical properties of some specific regulatory modules
revealed that Arabidopsis promoters have a compact nature, with cooperative
transcription factor binding sites located in close proximity of each other.

Genes are expressed by the orchestrated interplay of numerous proteins,
amongst which kinases, polymerases, transcription factors and coactivators, and
events that include cellular signalling, activation and repression, DNA methyla-
tion, histone modification and chromatin remodelling [315–317]. Future work
involves the development of computational approaches for the integration of
information from the more than 600 genomes that have completely been sequenced
at present (http://gold.imbb.forth.gr/, [318]) and various sources and levels of
functional data [319], from technologies such as yeast two-hybrid screens,
tandem affinity purification, cDNA and protein microarray experiments, chromatin
immunoprecipitation assays, mass spectrometry, fluorescence microscopy and
protein structure prediction. Comprehensive systems biology approaches will
have to be taken to annotate all transcriptional regulatory elements, to provide in-
depth views on entire gene regulatory mechanisms and to clarify the importance of
cis-regulatory modification for adaptation and morphological and developmental
evolution.

Cross-Hybridisation on Microarrays
Microarrays are valuable instruments for measuring gene expression on a genome-
wide scale. Co-expression relationships thereby obtained are often used in systems
biology to infer functional modules and regulatory networks. Many of the
downstream analysis tools are based on the presence or absence of correlation
in the expression profiles of genes, like the inference of co-expression [247–251],
gene regulatory [252] and Bayesian networks [253–256] and the study of gene
family evolution [130, 257]. From a biological point of view, these approaches
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are useful and informative, but with the analysis presented in Chapter 4 of this
dissertation, we show that if care has not been taken as to how these correlations
are calculated and how the reporters for each transcript are selected, incorrect
conclusions can be drawn.

The microarray technology confronts researchers with various challenges.
Our understanding of transcriptomes is incomplete, and our estimates of which
transcripts exist in a genome are constantly evolving. Because microarrays are
often designed based on sequence information of early releases of a genome, it
is important to ascertain that a reporter in fact picks up the mRNA of the target
gene it was intended to pick at the time of array design. The cardinal importance
of reporter annotation was underscored by studies conducted by several research
groups [260–263]. Another concern is cross-hybridisation, where off-target
transcripts, i.e. other than the intended ones, hybridise to a reporter. Cross-
Hybridisation can in fact occur at the level of the reporter, when a single-stranded
DNA sequence binds to a reporter which is not completely complementary, or at
the probe set level, where a reporter of the probe set is complementary to an off-
target transcript. The signal that is obtained for such a reporter or probe set will be
that of a combination of multiple different transcripts. Cross-Hybridisation leads
to spurious positive correlations and thus poses a critical concern to inferential
tools, as these are often based on the presence or absence of correlation in the
gene expression profiles. Different research efforts have aimed at investigating the
phenomenon [264–268, 272].

In the study described in Chapter 4, we investigated the relationship between
reporter-to-transcript sequence similarity and correlation of expression signals in
different experimental datasets of the ATH1 GeneChip for Arabidopsis thaliana.
We assessed the extent to which inclusion of off-target reporters in probe sets
influences this correlation, and investigated the relation between expression
correlation and reporter-to-transcript sequence alignment strength. To this end,
we developed a custom-made probe set composition and annotation in which
reporters are uniquely assigned to Arabidopsis transcripts, according to strict rules
of transcript complementarity.

Our analysis showed that numerous probe sets on this widely used commercial
array platform contain off-target reporters, and many show a signal pattern that is
highly similar to that of unintended transcripts. In addition, a positive correlation
was revealed between off-target alignment strength and the magnitude of the
correlation with their off-target. Taken together this means that probe sets that
contain reporters that align well to off-target genes show correlated intensity
values to these other transcripts. As the positive trend can be observed even
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between gene pairs that do not share longer stretches of sequence similarity but
where the reporter to off-target alignment is only based on short near-matches and
because the effect can be observed within probe sets we suggest that this positive
relationship is likely not due to functional relatedness of the genes, but to a cross-
hybridisation artifact.

We demonstrated that omitting reporters liable to cross-hybridisation results in
decreased artifactual correlation coefficients between probe sets and thus conclude
that careful reporter mapping alleviates cross-hybridisation effects to a substantial
extent. Furthermore, we described a novel method for diagnosing individual
probesets that are likely affected by off-target hybridisation.

In summary, our analysis represents a significant advance to analyses that rely
on the absence or presence of expression correlation. Cross-Hybridisation of off-
target transcripts to reporters is a serious concern that should be taken into account
and can be alleviated by accurate mapping between microarray reporter and the
target transcriptome.
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7
Nederlandstalige Samenvatting

–Summary in Dutch–

Bijgestaan door belangrijke technologische innovaties heeft de komst van ver-
schillende genoomsequenties aan het begin van deze eeuw verscheidene grote
doorbraken in de biologische wetenschappen met zich meegebracht. De be-
schikbaarheid van verschillende soorten genoom-wijde biologische data sets heeft
het mogelijk gemaakt dat genetisch onderzoek kon evolueren van studies waarin
het gen centraal staat naar grootschalige benaderingen, waarin de rol van elk
individueel gen in de totaliteit van de functionerende cel blootgelegd wordt.
Wetenschappers kregen instrumenten ter beschikking die hen in staat stelden
assumpties te verifiëeren en hypotheses te testen die eerder opgesteld waren aan
de hand van experimentele studies.

Microarrays vormen een prominent voorbeeld van een toen ontwikkelde
techniek, die het simultaan bestuderen van de expressie van een groot aantal
genen toelaat [102, 103]. De technologie heeft belangrijke bevindingen mogelijk
gemaakt, onder andere in het onderzoek van gedupliceerde genen. Afgeleid
van cytologische experimenten verschillende decennia geleden, en bevestigd door
recente sequeneringsprojecten, is de aanwezigheid van grote aantallen redundante
kopijen een kenmerkende eigenschap van eukaryote genomen. Sinds decennia
geniet gen duplicatie de erkenning als van primordiaal belang bij evolutionaire
transities en bij de aangroei in complexiteit van organismen. Gen duplica-
tie is bijzonder veel voorkomend in planten, waaronder het model organisme



SUMMARY IN DUTCH

Arabidopsis thaliana, waarvan aangetoond werd dat het verscheidende rondes
van grootschalige, genoom-wijde duplicaties en talrijke kleinschalige, locale
duplicaties ondergaan heeft in de loop van zijn evolutie [99–101, 149].

De studie van gen en genoom duplicatiegebeurtenissen, evenals die van de
daaropvolgende functionele divergentie van genen, is fundamenteel voor het
begrijpen van evolutie en adaptatie van organismen. Twee studies uitgevoerd
binnen onze onderzoeksgroep vullen elkaar in dat opzicht aan: in 2005 [83]
toonden we aan dat genretentie na duplicatiegebeurtenissen gebiased is naar
duplicatie mechanisme en de functie van het gen. De daaropvolgende studie,
beschreven in Hoofdstuk 2 van dit proefschrift, benadrukt het belang van deze
eigenschappen op de snelheid van expressie divergentie. We pasten de microarray
technologie toe om de evolutie en functionele divergentie van gedupliceerde genen
in Arabidopsis thaliana te analyseren [257]. Ons onderzoek toonde aan dat genen
die ontstaan zijn door grootschalige gebeurtenissen relatief trager divergeren dan
diegene die ontstaan zijn door kleinschalige, lokale duplicaties. Deze laatsten
vertonen daarenboven de neiging asymmetrisch te divergeren, in die zin dat één
van beide geëxpresseerd wordt in een groot aantal weefsels, terwijl de andere
slechts in een klein aantal weefsels tot expressie komt. Onze data geven ook
aan dat de functie van een gen en het biologisch proces waarin het speelt een
substantieel effect hebben op de divergentie snelheid.

In Hoofdstuk 3 werd microarray data analyse gecombineerd met comparative
genoomanalyse benaderingen ten einde nieuwe cis-regulatorische elementen en
hun hogere orde combinaties, modules, te identificeren [314]. Idealiter wor-
den zulke elementen geı̈dentificeerd met methodes die bepaling toelaten van
de bindingsplaatsen voor transcriptiefactoren op het genoom, zoals ChIP-chip
experimenten [320]. In de afwezigheid van zulke data op grote schaal kan
de detectie uitgevoerd worden op sets van gecoëxpresseerde genen, daar deze
waarschijnlijk door eenzelfde transcriptiefactor gereguleerd worden [311–313].
Wij hebben voordeel gehaald uit de toenemende hoeveelheid microarray data
die beschikbaar werd voor Arabidopsis en uit het beschikbaar worden van de
genoomsequentie van een gerelateerd species, Populus trichocarpa. In totaal
hebben we 80 transcriptiefactor bindingsplaatsen en 139 regulatorische modules
geı̈dentificeerd, waarvan de meeste voordien ongekend waren. Deze modules
bestaan hoofdzakelijk uit twee à drie regulatorische elementen die gelinkt konden
worden aan verschillende belangrijke biologische processen, zoals eiwitsynthese,
controle van de cel cyclus, fotosynthese en embryologische ontwikkeling. Daaren-
boven heeft de studie van de fysische eigenschappen van sommige regulatorische
modules aangetoond dat de promoters van Arabidopsis een compacte structuur
hebben, waarbij samenwerkende transcriptiefactor bindingsplaatsen in elkaars
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nabijheid ondergebracht zijn.

Expressie correlatie relaties, gemeten met behulp van microarray data worden
in systeembiologie frequent gebruikt voor deductie van functionele modules en
regulatorische netwerken. Veel downstream analyse tools zijn gebaseerd op de
aan- of afwezigheid van correlatie tussen expressie patronen van genen, zoals bij
de deductie van coëxpressie [247–251], gen regulatorische [252] en Bayesiaanse
netwerken [253–256], en de studie van de evolutie van gen families [130, 257].
Vanuit biologisch standpunt zijn deze benaderingen informatief en zinvol, maar
onze analyse in Hoofdstuk 4 van dit proefschrift toont aan dat indien geen
voorzorgen getroffen worden bij het berekenen van deze correlaties en bij het
toewijzen van de probes aan de transcripten, onjuiste conclusies getrokken kunnen
worden.

De microarray technologie confronteert wetenschappers met uiteenlopende
uitdagingen. Onze kennis van transcriptomen is onvolledig en onze ramingen
van welke transcripten in genomen leven evolueren continu. Daarom is het bij
de analyse van microarray data belangrijk na te gaan of een probe werkelijk de
expressie meet van het gen waaraan hij toegewezen werd toen de array werd
ontwikkeld. Een andere bekommernis is cross-hybridisatie, waarbij transcripten,
andere dan de geambieerde, op een probe hybridiseren. Het bekomen signaal van
een zulke probe zal dat van een combinatie van verscheidene transcripten zijn.

Met behulp van de veelgebruikte Affymetrix GeneChip voor Arabidopsis,
hebben we de relatie bestudeerd tussen signaal correlatie en probe-tot-transcript
sequentie alignement sterkte. Daarnaast werd de invloed gemeten van de inclusie
van een off-target probe in probe sets, i.e. een probe die niet enkel aligneert
aan het toegewezen maar eveneens aan andere transcripten, op deze correlatie.
Het traditioneel probe set ontwerp, zoals gedefinieerd door de fabrikant van de
microarray, werd hiertoe vergeleken met een zelf gedefiniëerde probe set annotatie,
waarbij probes slechts aan één enkel transcript van Arabidopsis toegewezen
werden, dit volgens strikte regels van off-target transcript complementariteit. Met
betrekking tot de probe set compositie en annotatie, toonden onze data aan dat
talrijke probe sets op dit veelgebruikte commercieel array platform off-target
probes bevatten en dat veel van die probe sets een signaal patroon vertonen dat
hoogst gelijkaardig is aan dat van die off-target transcripten. Met behulp van
onze zelf gedefinieërde probe set annotatie toonden we aan dat het weglaten van
probes die vatbaar zijn voor cross-hybridisatie resulteert in gedaalde kunstmatige
correlatie coefficiënten tussen probe sets. Met betrekking tot cross-hybridisatie
werd een positieve relatie aangetoond tussen off-target alignement sterkte van
probes en de omvang van signaal correlatie met die off-target. Tezamen betekent
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dit dat probe sets die probes bevatten die goed aligneren aan off-target transcripten
sterk gecorreleerde signaal patronen vertonen aan deze andere transcripten. Daar
deze positieve trend daarenboven geobserveerd kan worden tussen genparen die
geen grote stukken van sequentie similariteit vertonen, maar waarbij de probe tot
off-target alignement enkel gebaseerd is op korte bijna-identieke sequenties, en
aangezien het effect zichtbaar is binnen probe sets, suggereren wij dat dit positief
verband niet te wijten is aan functionele verwantschap van de genen, dan wel aan
een cross-hybridisatie artefact.

Onze analyse vertegenwoordigt een significante vooruitgang voor studies
die gebaseerd zijn op de aan- of afwezigheid van expressie correlatie. Cross-
hybridisatie van off-target transcripten op probes is een ernstige complicatie die
in rekening gebracht moet worden en die opgeheven kan worden door nauwkeurig
mappen van microarray probes op het doelwit transcriptoom. Daarenboven hebben
wij in onze studie een nieuwe methode beschreven voor het diagnoseren van
individuele probe sets die mogelijk vatbaar zijn voor off-target hybridisatie.
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English Summary

Together with major technological advances, the accumulation of genome se-
quences at the beginning of this century brought about various exciting break-
throughs in life sciences. The availability of different types of genome-wide
biological data sets enabled genetic research to shift from gene-focused studies
to exhaustive systems biology approaches, in which the role that each individual
gene plays in the greater picture of the functioning cell is revealed. Scientists were
handed the tools to assess and verify assumptions and hypotheses that previously
had been inferred from observational studies.

Microarrays constitute a prominent example of a platform that emerged to
facilitate the expression profiling of a large number of genes simultaneously [102,
103]. Among other fields, this technology enabled significant advances in the
study of duplicated genes. Inferred from cytological experiments many decades
ago, and confirmed by recent genome sequencing projects, the high prevalence
of redundant gene copies is a hallmark of eukaryotic genomes. Since decades,
gene duplication had been granted acknowledgement as of paramount importance
for evolutionary transitions and increases in organismal complexity. Gene
duplication has been particularly prevalent in plants, including in the model system
Arabidopsis thaliana, which has been shown to have undergone several rounds
of large-scale, whole-genome duplication and many smaller, local duplication
events [99–101, 149].

Investigating gene and genome duplication events as well as the subsequent
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functional divergence of genes is of fundamental importance in the understanding
of evolution and adaptation of organisms. Two studies conducted by our research
group complement each other in this respect: in 2005 [83] we provided proof
for a bias in gene retention after duplication events towards the duplication mode
and a gene’s functionality. The subsequent study, described in Chapter 2 of this
dissertation, uncovered the importance of these characteristics on the expression
divergence rate. To this end, we applied the microarray technology to analyse the
evolution and functional divergence of duplicates in Arabidopsis thaliana [257].
We conducted a genome-wide investigation of expression divergence of duplicated
genes with respect to time and mode of duplication and their encoded functions.
Our study revealed that genes that arose via large-scale events diverge relatively
slower than those that got duplicated through local small-scale events. Moreover,
the latter tend to diverge asymmetrically, in the sense that one member of the pair
is expressed in a large number of tissues while the other is expressed in few tissues.
Our data also revealed that a gene’s function, or the biological process it is involved
in, also have an substantial effect the expression divergence rate.

In Chapter 3 of this dissertation, we combined microarray data analysis
with a comparative genomics approach for the discovery of novel cis-regulatory
elements and their higher-order combinations, modules [314]. Ideally, these
elements are identified with a method that allows the determination of the
locations to which transcription factors bind, like ChIP-chip assays [320]. In
the absence of such systematic data, the detection can be carried out on sets of
co-expressed genes, as these are likely to be regulated by the same transcription
factor [311–313]. We took advantage of the accumulation of microarray data for
Arabidopsis thaliana and the availability of the genomic sequence of a related
species, Populus trichocarpa. In total, we identified 80 transcription factor binding
sites and 139 regulatory modules, most of which are novel. These modules
consist primarily of two or three regulatory elements that could be linked to
different important biological processes, such as protein biosynthesis, cell cycle
control, photosynthesis and embryonic development. Moreover, study of the
physical properties of some specific regulatory modules revealed that Arabidopsis
promoters have a compact nature, with cooperative transcription factor binding
sites located in close proximity of each other.

Expression correlation relationships measured with microarray data are often
used in systems biology to infer functional modules and regulatory networks.
Many of the downstream analysis tools are based on the presence, or absence,
of correlation in the expression profiles of genes, like the inference of co-
expression [247–251], gene regulatory [252] and Bayesian networks [253–256]
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and the study of gene family evolution [130, 257]. From a biological point of
view, these approaches are useful and informative, but with the analysis presented
in Chapter 4 of this dissertation, we show that if care has not been taken as to
how these correlations are calculated and how the reporters for each transcript are
selected, incorrect conclusions can be drawn.

The microarray technology confronts researchers with various challenges.
Our understanding of transcriptomes is incomplete, and our estimates of which
transcripts exist in a genome are constantly evolving. Therefore, for the analysis
of microarray data it is important to ascertain that a reporter does in fact measure
the transcript it was intended to target when the array was designed. Another
concern is cross-hybridisation, where transcripts, other than the ones intended,
hybridise to a reporter. The signal that is obtained for such a reporter will be that
of a combination of multiple different transcripts.

Using the Affymetrix GeneChip for Arabidopsis, we investigated the relation
between signal correlation and reporter-to-transcript sequence alignment strength
and assessed the extent to which inclusion of off-target reporters in probe sets , i.e.
reporters that align not only to their intended transcript but also to other transcripts,
influences this correlation. The conventional probe set design, as defined by
the manufacturer of the microarray, was compared to a custom-made probe set
annotation, in which reporters are uniquely assigned to Arabidopsis transcripts,
according to strict rules of transcript complementarity. With respect to probe set
composition and annotation, our data revealed that numerous probe sets on this
widely used commercial array platform contain off-target reporters, and that many
show a signal pattern that is highly similar to that of unintended transcripts. With
our custom-made probe set definition we demonstrated that omitting reporters
liable to cross-hybridisation results in decreased artifactual correlation coefficients
between probe sets. With respect to cross-hybridisation, a positive correlation was
revealed between off-target alignment strength of reporters and the magnitude of
the signal correlation to their off-target. Taken together this means that probe
sets that contain reporters that align well to off-target transcripts show correlated
signal patterns to these other transcripts. As the positive trend can be observed
even between gene pairs that do not share longer stretches of sequence similarity
but where the reporter to off-target alignment is only based on short near-matches,
and because the effect can be observed within probe sets, we suggest that this
positive relationship is likely not due to functional relatedness of the genes, but to
a cross-hybridization artifact.

Our analysis represents a significant advance to analyses that rely on the
absence or presence of expression correlation. Cross-hybridisation of off-target
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transcripts to reporters is a serious concern that should be taken into account
and can be alleviated by accurate mapping between microarray reporter and the
target transcriptome. Furthermore, we described a novel method for diagnosing
individual probesets that are likely affected by off-target hybridisation.
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A
Glossary

Allopolyploid An organism from which the genome came about
by the merging of two or more genetically different
genomes

Aneuploidy The occurrence of one or more extra or missing
chromosomes leading to an unbalanced chromosome
complement

Autopolyploid An organisms from which the genome came about by
the doubling of a complete single genome

Batch effect Experimental factors that add systematic biases to
the measurements of microarrays and that may vary
between different subsets or stages of the experiment

cDNA microarray Microarrays whose spots contain complementary DNA,
generated via e.g. PCR amplification

Comparative genomics The study of the similarities and differences in struc-
ture and function of hereditary information across
taxa



APPENDIX A

Duplicative transposition A mechanism of transposition that results in a copy
of the element at both the excision and acceptor site.
This can occur even after excision of the element by
the process of gap repair

DNA transposon Transposable elements that do not use a reverse-
transcription step to integrate copies into the genome

Epigenetic A heritable change that is not caused by a genetic
mutation

Homologous genes An all-or-nothing concept describing whether or not,
two genes derived from the same gene in a common
ancestor

Neo-functionalisation When one of two duplicate genes acquires a mutation
in coding or regulatory sequences that allows the gene
to take on a new and for the organism useful function

Non-functionalisation When one of two duplicate genes acquires a mutation
in coding or regulatory sequences that renders it non-
functional

Oligo(nucleotide) A short fragment of a single-stranded DNA that is
typically 5 to 50 nucleotides long.

Orthologous genes Duplicate genes that originated by speciation

Paralogous genes Duplicate genes that originated by gene duplication

Promoter The nucleotide sequence upstream of a gene to which
RNA polymerase attaches at the beginning of tran-
scription

Purifying selection Selection against deleterious alleles
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GLOSSARY

Reporter Or probe, the single stranded DNA sequence that is
attached to a microarray

Retrotransposon Transposable elements that use a reverse-transcription
step to integrate copies into the genome; also known
as retroposons

Terminal inverted repeat Repeats that flank most DNA transposons and lie in
an inverted orientation

Transposable elements All mobile DNA segments in the genome, regardless
of their mechanism of transposition
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B
List of Acronyms

BLAST Basic Local Alignment Search Tool
BP Biological Process
CAST Cluster Affinity Search Technique
CRM Cis-Regulatory Module
GO Gene Ontology
KS The number of synonymous substitutions per synony-

mous site
KA The number of nonsynonymous substitutions per non-

synonymous site
MF Molecular Function
NCS Network-level Conservation Score
PCC Pearson Correlation Coefficient
PLIER Probe Logarithmic Intensity Error
PWM Position Weight Matrix
RMA Robust Multiple-array Average
TFBS Transcription Factor Binding Sites
TF Transcription Factor
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Modeling gene and genome duplications in
eukaryotes
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Abstract
Recent analysis of complete eukaryotic genome sequences has revealed that
gene duplication has been rampant. Moreover, next to a continuous mode of
gene duplication, in many eukaryotic organisms the complete genome has been
duplicated in their evolutionary past. Such large-scale gene duplication events
have been associated with important evolutionary transitions or major leaps in
development and adaptive radiations of species. Here, we present an evolutionary
model that simulates the duplication dynamics of genes, considering genome-wide
duplication events and a continuous mode of gene duplication. Modeling the
evolution of the different functional categories of genes assesses the importance
of different duplication events for gene families involved in specific functions
or processes. By applying our model to the Arabidopsis genome, for which
there is compelling evidence for three whole-genome duplications, we show that
gene loss is strikingly different for large-scale and small-scale duplication events
and highly biased toward certain functional classes. We provide evidence that
some categories of genes were almost exclusively expanded through large-scale
gene duplication events. In particular, we show that the three whole-genome
duplications in Arabidopsis have been directly responsible for ¿90% of the increase
in transcription factors, signal transducers, and developmental genes in the last
350 million years. Our evolutionary model is widely applicable and can be used
to evaluate different assumptions regarding small- or large-scale gene duplication
events in eukaryotic genomes.
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Microarrays are a valuable source of large-scale and 
detailed information for functional genomics research. 
In the past decade their application helped to answer a 
myriad of scientific questions.

In a first section of this thesis, microarray data are used  
to study the fate of the numerous duplicated genes in the 
plant model organism, Arabidopsis thaliana. Different 
questions are addressed, such as how fast do duplicates 
diverge, does the rate of expression divergence depend 
on a gene pairs’ duplication mechanism or function, and 
do different types of genes show distinct tissue expression 
divergence patterns?

In a second part of this thesis, a detection strategy that 
combines classic motif overrepresentation approaches 
with general comparative footprinting principles is 
applied for the identification of novel regulatory motifs 
in sets of co-expressed genes, delineated by means of 
microarray data.

Co-expression signatures are an important tool for 
studying gene functions and relations. In a third section 
the contribution of genuine biological co-expression 
and cross-hybridisation in correlated microarray signal 
profiles is quantified.

The last major part covers a revision of the work presented 
in the first section, in light of more recent methodological 
progress with (a) microarray data analysis and the 
potential pitfalls of cross-hybridisation, presented in 
section three, and (b) the treatment of the correlation 
structure within the set of duplicated genes.

The materials presented cover both the application 
of microarray data in gene expression studies and 
fundamental research of the use of the microarray 
technology for correlation analysis.
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