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Chapter 1 

 
1.1. THE CARDIOVASCULAR SYSTEM: THE BODY’S LIFELINE 

The cardiovascular circulation delivers blood to the individual organs and 

tissues and therefore is of utmost importance to maintain body function and 

survival. The blood flow is set to some degree by the number and size of 

arteries feeding the organ, but also varies according to the metabolic needs 

of the tissue in order to maintain homeostasis. Furthermore, it carries out 

compensatory adjustments to challenges faced in everyday life (e.g. 

gravitational changes or exercise) or in disease (e.g. inflammation, shock or 

hypertension). One of the most important ways to control the blood flow 

through a vascular bed is by alteration of the diameter of the resistance 

vessels. Neural, humoral or local chemical mechanisms dilate or constrict 

the vessels of a tissue, thereby regulating the regional blood supply. The 

systemic circulation is made up of numerous circuits in parallel, which 

permits such wide regional variations in blood flow without affecting the 

total systemic flow. 

 

In the present study, we concentrated on small mesenteric or gastric 

arteries, two vessels belonging to the splanchnic circulation (figure 1). The 

splanchnic circulation refers to the vascular system which brings blood to 

and from the major abdominal organs. It is one of the major blood 

reservoirs of the body, containing between 20 % (under resting conditions) 

and 40 % (after food intake) of total blood volume. The blood flow to the 

abdominal organs is arranged in a series of parallel circuits, with all the 

blood from the stomach, intestines, pancreas and spleen draining via the 

portal vein to the liver. From the liver, the blood continues via the hepatic 

veins to the inferior vena cava. 

 

 2



General introduction 

The gastrointestinal vasculature consists of intramural and extramural 

components. The intramural system contains plexuses in the different 

layers from the wall of the digestive tract and contains specialisations 

adapted to the functions of the different organs. The extramural arterial 

supply to the abdominal organs is provided by three major arteries arising 

from the thoracic aorta: the celiac trunk and the superior and  inferior 

mesenteric arteries (figure 1). The branches of these vessels form an 

arcade network, providing a rich blood supply to the different organs. The 

main arterial blood supply to the stomach, for example, arises from the 

celiac axis. The common hepatic artery branches into the gastroduodenal 

artery and the right gastric artery, which then joins the left gastric artery 

along the lesser curvature of the stomach. Short gastric arteries and the 

right and left gastroepiploic arteries provide the blood supply along the 

greater curvature of the stomach. The intestines, on the other hand, are 

supplied by a series of parallel circulations via branches of the superior and 

inferior mesenteric arteries (figure 1). 

 

Gastrointestinal blood flow varies locally along the alimentary canal. 

Several factors are implicated in the regulation of splanchnic circulation, 

e.g. neurohumoral or paracrine substances or food intake.  The 

gastrointestinal blood flow can be regulated by changes in metabolism, but 

is also controlled by the autonomous nervous system.  

 

Furthermore, some pathological conditions in the gastrointestinal system 

are associated with abnormalities in the splanchnic circulation. 

Gastrointestinal ischemia results from the obstruction of one of the major 

arteries of the splanchnic circulation. Collaterals open immediately to 

compensate for the resulting decrease in arterial pressure. The bowel may 

tolerate remarkable reductions in blood flow without damage. However, 
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below a certain crucial flow level ischemic damage will occur as a result of 

hypoxia. Regions with abundant collateral circulation, such as the stomach, 

duodenum and rectum, show a decreased risk for ischemic injury. Portal 

hypertension is one of the major complications of cirrhosis and results from 

increased resistance to portal blood flow. It is characterized by a pathologic 

increase in portal venous pressure that leads to the formation of an 

extensive network of collaterals that divert a large part of the portal blood to 

the systemic circulation, omitting the liver. In the later state, increased 

portal venous inflow, promoted by an increased splanchnic circulation, 

contributes to maintenance and aggravation of portal hypertension. 

 

 

 

Aorta

Celiac trunk Left gastric artery

Right gastric artery

Gastroduodenal artery

Common hepatic artery

Right gastroepiploic artery

Left gastroepiploic artery

Superior mesenteric artery

Inferior mesenteric artery

 

Figure 1: Schematic overview of the splanchnic circulation, showing the most important 
arteries. 
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Blood flow (F) through a vascular bed is directly proportional to the 

pressure gradient (∆P) over the vascular bed and inversely proportional to 

the resistance (R) of the system to blood flow (F ~ ∆P/R). In conditions of 

laminar flow, vascular resistance (R) is inversely related to the fourth power 

of the radius (r) of the blood vessel, as expressed in the equation of 

Poiseuille: R = 8Lη/πr4 (with L being the length of the vessel and η the 

viscosity of the blood).  Consequently, blood flow is markedly affected by 

small changes in diameter of the vessels. 

 

 

1.2. CARDIOVASCULAR LOCAL CONTROL MECHANISMS 

As mentioned above, local control mechanisms match the perfusion of a 

given organ with its metabolic demands, despite variations in blood 

pressure. Blood flow in a vascular bed is regulated in part by 

autoregulation.  Additionally, it is controlled by circulating or locally 

produced vasoactive metabolites and affected by substances secreted by 

the endothelium or the nerves innervating the vessel. All of these 

mechanisms influence blood flow by altering the diameter of the vessels. 

 

 

1.2.1. Autoregulation 

Most vascular beds have the intrinsic capacity to compensate for moderate 

changes in perfusion pressure by changing the vascular resistance, thereby 

keeping the blood flow relatively constant. This is referred to as 

autoregulation, a mechanism of which the importance varies among 

different vascular beds and seems to depend on the diameter of the 

arteries. It has been shown to be well developed in the kidney 1 and has 
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also been observed in cerebral and coronary arteries and the mesenteric 

vascular bed 2-5. 

 

The exact mechanism by which autoregulation takes place is still elusive, 

but it has been proposed to rely on both myogenic and metabolic 

mechanisms. An increase in perfusion pressure (and thus also an increase 

in transmural pressure) distends the blood vessel wall causing contraction 

of the smooth muscle cells. Similar myogenic control has been shown to 

contribute significantly to autoregulation in different vascular beds such as 

the mesenteric, skeletal muscle, cerebral, renal and coronary circulation 1-4, 

6, 7. However, the exact mechanism responsible for this myogenic response 

remains unclear. Evidence suggests that it is accompanied by 

depolarisation of the membrane potential and an increase of the 

intracellular Ca2+ concentration of the vascular smooth muscle cells via 

activation of voltage operated Ca2+ channels 8, 9. In case of metabolic 

regulation, changes in the concentration of local metabolites contribute to 

the autoregulation. For example, a decrease in perfusion of the vascular 

bed results in accumulation of metabolically produced vasodilatory 

substances and the subsequent dilatation of the blood vessel. 

 

 

1.2.2. Vasoactive factors released by the endothelium 

A single layer of endothelial cells lines the entire vascular system. The cell 

structure and functional integrity are important in the maintenance of the 

vessel wall and circulatory function. The endothelium is strategically located 

between the blood components on one hand and vascular smooth muscle 

cells in the blood vessel wall on the other. In 1980 Furchgott and Zawadzki 

reported that the relaxation response to acetylcholine and other agonists of 
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the muscarine receptor critically depended on the presence of a functional 

endothelium  and hence demonstrated the existence of an endothelium-

derived relaxing factor (EDRF) 10. This pivotal observation in isolated rabbit 

arteries has since been extended to a wide range of arteries from different 

species including human 11.  At present it is known that the endothelium 

produces different vasodilating and vasoconstricting mediators, both under 

basal conditions and in response to different chemical or mechanical 

stimuli. The endothelial cells are activated by a number of agonists acting 

on G-protein-coupled receptors (GPCR), including acetylcholine, 

bradykinin, substance P and histamine or by physical stimuli such as shear 

stress or changes in oxygen levels. The former leads to the activation of 

stretch activated non-selective cation channels 12. Activation of the 

endothelial cells  results in an increase in their intracellular Ca2+ 

concentration ([Ca2+]i), triggering the release of several vasoactive 

mediators from the endothelium. The most important among them are 

discussed below.  

 

 

1.2.2.1. Nitric oxide 

A few years after the discovery of the EDRF, the agent responsible for a 

large portion of the endothelium-dependent relaxation has been identified 

as nitric oxide (NO) 13-15. NO is synthesised from L-arginine by an enzyme 

known as nitric oxide synthase (NOS), which exists in three distinct 

isoforms: the constitutive enzymes endothelial NOS (eNOS) and neuronal 

NOS (nNOS) and the inducible NOS (iNOS). The endothelial eNOS 

catalyses within seconds the formation of small amounts (pM) of NO, 

required to maintain cardiovascular homeostasis. It is a Ca2+ - and 

calmodulin-dependent enzyme and requires a high intracellular Ca2+ 
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concentration 16. The other constitutive enzyme, nNOS, is found in the 

central and the peripheral nervous system 17 and has similar characteristics 

as eNOS. Finally, the inducible isoform iNOS is especially found in inflamed 

or damaged tissues and catalyses the formation of large amounts (nM) of 

NO. Its activation does not require Ca2+ and the release of NO may 

continue for several hours or days. 

 

Upon stimulation of the endothelial cells, the increased free [Ca2+]i  

activates eNOS and thus the production of NO (figure 2). Subsequently, 

NO diffuses to the adjacent vascular smooth muscle cells where it interacts 

with soluble guanylate cyclase (sGC) causing an increase in cytosolic 

cGMP. cGMP subsequently reduces the intracellular Ca2+ concentration 

through multiple signaling pathways, finally causing relaxation (figure 2). 

 

Several mechanisms are involved in this, each requiring a cGMP-

dependent protein kinase. For example, cGMP activates plasma membrane 

Ca2+ ATPases, reducing the intracellular Ca2+ concentration 18-20. On the 

other hand, [Ca2+]i is lowered by stimulation of the Ca2+ reuptake in the 

endoplasmic reticulum through activation of the sarco/endoplasmic 

reticulum Ca2+ ATPase (SERCA) 21. Additionally, cGMP causes Ca2+ 

desensitization of the contractile apparatus by activating myosin light chain 

phosphatases 22. 

 

On the other hand, NO can also directly activate Ca2+-dependent potassium 

channels in the vascular smooth muscle cells, promoting vasodilation 

through a cGMP-independent decrease in [Ca2+]i 23, 24. NO has also been 

reported to activate other K+-channels 25-27 and Na+/K+-ATPases 28. These 

pathways may be of crucial importance in atherosclerotic arteries, in which, 

according to some authors 23, 29, the cGMP-dependent pathway of 
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relaxation is compromised (although other studies report a reduced NO 

bioavailability which can be caused by a lack of L-arginine or cofactors or a 

reduced expression of NOS 30, 31). 

 

 

 

R

Ca2+↑

PGI2 EDHF NO

Ca2+

Agonist Shear stress

L-Arg

NOSCOX

AA

PGI2 EDHF NO

R

AC

ATP cAMP↑

sGC

cGMP↑ GTP

Ca2+↓
RELAXATION

Hyp

SACCSKCa

IKCa

K+

Hyp

EC

VSMC

 
Figure 2: Schematic overview of the different endothelium-derived relaxing factors. EC = 
endothelial cell; VSMC = vascular smooth muscle cell; R = receptor; SACC = stretch 
activated cation channel; L-Arg = L-arginine; NOS = nitric oxide synthase; NO = nitric 
oxide; sGC = soluble guanylate cyclase; AA = arachidonic acid; COX = cyclooxygenase; 
PGI2 = prostacyclin; AC = adenylate cyclase; EDHF = endothelium-derived hyperpolarizing 
factor; SKCa = small conductance Ca2+ activated K+ channels; IKCa = intermediate 
conductance Ca2+ activated K+ channels; hyp = hyperpolarization. 
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Since the discovery of the NO-pathway, several NOS inhibitors have been 

described and used to study the role of NO in endothelium-dependent 

relaxations. The production of NO can be inhibited by calmodulin 

antagonists in most arteries. However, these substances did not affect 

relaxations mediated by NO and evoked by agonists in canine and porcine 

coronary arteries 32. The synthesis of NO can also be inhibited by 

analogues of L-arginine (e.g. Nω-nitro-L-arginine (L-NA) and its methyl ester 

(L-NAME)) or inhibitors for the required cofactors of eNOS (e.g. flavoprotein 

inhibitors or depletors of tetrahydrobiopterin). More recently, selective 

inhibition of the endothelial NO production was obtained in mutant eNOS-/- 

mice where the gene encoding for eNOS was disrupted 33-35. 

 

 

1.2.2.2. Prostaglandins 

Prostaglandins are derivatives of arachidonic acid which are formed in 

various parts of the vascular wall in a reaction catalysed by cyclooxygenase 

(COX). Currently, two COX isoforms are known: COX-1 and COX-2. Both 

enzymes act basically in the same fashion. COX-1 is a constitutive enzyme 

and is expressed in a large number of cells. On the other hand, COX-2 is 

regarded as an inducible enzyme, undetectable in most normal tissues, 

which becomes abundant in activated macrophages and other cells at sites 

of inflammation. However, recent reports about the atherothrombotic side 

effects of some selective COX-2 inhibitors (coxibs), together with 

experimental and clinical studies, have shown that COX-2 can also be 

constitutively expressed in a variety of tissues. For example, constitutive 

expression of COX-2 has been reported in brain, kidney, gastrointestinal 

tissues and vascular endothelium 36-38. 
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Once activated by chemical or mechanical stimuli, the enzyme 

phospholipase A2 in the endothelial cells of the vascular wall converts 

membrane phospholipids to arachidonic acid. COX converts arachidonic 

acid to prostaglandin H2 which is then  acted upon by various synthases 

resulting in the production of potent vasoactive prostaglandins. Prostacyclin 

(PGI2) is the major vasodilator prostaglandin produced by the endothelium 
39, 40 and causes relaxation predominantly through the adenylyl 

cyclase/cAMP transduction pathway (figure 2) 41, 42. The formed cAMP 

activates protein kinase A to phosphorylate selective target proteins, 

thereby causing vasorelaxation 43. Furthermore, several other vasoactive 

prostaglandins are produced by the endothelium upon activation of 

cyclooxygenase, such as the vasodilators PGE2 44 and PGD2. 

 

The production of prostaglandins can be blocked by the use of 

cyclooxygenase inhibitors such as indomethacin 45. Recent studies 

obtained specific inhibition of prostacyclin synthesis with COX knock-out 

mice, in which the gene encoding for the COX-1 isoform was disrupted 34. 

The fact that blood pressure is little affected in these mice, suggests that in 

normal physiological circumstances, prostaglandins play little role. 

 

 

1.2.2.3. Endothelium-derived hyperpolarizing factor 

In many vessels the pharmacological inhibition of both NOS (with L-

arginine analogues) and cyclooxygenase (for example with indomethacin) 

does not result in the total loss of endothelium-dependent relaxations to 

chemical and mechanical stimulation, indicating the involvement of another 

vasodilator mechanism. The cellular action of this putative non-NO/non-

PGI2 vasodilator system is usually associated with a hyperpolarization of 
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the membrane potential of the vascular smooth muscle cells (figure 2) 46, 47. 

There are two primary mechanisms that can account for endothelium-

derived hyperpolarization. On one hand, hyperpolarization of the smooth 

muscle cells can be attributed to the release of a diffusible substance from 

the endothelium, also called the endothelium-derived hyperpolarizing factor 

or EDHF. The identity of this EDHF is still controversial and during the past 

years several candidates have been put forward, such as residual NO, 

H2O2, K+-ions, epoxyeicosatrienoic acids (EETs) and anandamide (figure 3) 
48-52. Therefore, it has been suggested that EDHF is not a single substance 

and that its nature and cellular targets may show considerable tissue and 

species variability 53, 54. An alternative pathway for endothelium-dependent 

hyperpolarization is transmission of the agonist-induced hyperpolarization 

of the endothelial cells to the vascular smooth muscle via myoendothelial 

gap junctions (figure 3). This heterocellular coupling allows the spread of an 

electrical current or the transfer of small hydrophilic messenger molecules 

such as cAMP or IP3 and ions (e.g. Ca2+) 55-58.  

 

It is, however, generally accepted  that the action of EDH(F) is dependent 

on the endothelial release of intracellular Ca2+ and the activation of a 

specific set of K+-channels. The EDH(F)-mediated responses are 

completely blocked by the combination of apamin (a selective inhibitor of 

small conductance Ca2+ sensitive K+-channels (SKCa)) and charybdotoxin 

(inhibitor of intermediate and large conductance KCa-channels (IKCa and 

BKCa, respectively) 59, but not by iberiotoxin (selective inhibitor of BKCa 

channels) 59, 60, suggesting that activation of IKCa- and SKCa-channels on the 

endothelium is involved. This has more recently been confirmed in rat 

carotid and mesenteric arteries by using apamin in combination with the 

new and selective inhibitors of IKCa TRAM-34 and TRAM-39 61-63. 
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Chapter 1 

It has been established that a change in the membrane potential of the 

smooth muscle cells with a few mV can result in a substantial change in 

vessel diameter 64, 65. Furthermore, hyperpolarization of the vascular 

smooth muscle cells produces a rapid effect on contractile tone, compared 

to the relaxation mediated by second messengers. Together with the 

observation that the relative contribution of the endothelium-dependent 

hyperpolarization augments with decreasing vessel diameter 66-68, it is now 

generally accepted that changes in the synthesis or release of EDHF or in 

the magnitude of EDH are of critical importance in the regulation of organ 

blood flow and contribute to pathophysiological states such as hypertension 
69. 

 

 

1.2.2.4. Endothelium-derived contracting factor 

In most vascular diseases, the vasodilator function of the endothelium is 

attenuated or even abolished. It has been reported that under pathological 

conditions the endothelium can induce contractile responses in certain 

vessels. For example, contraction of canine arteries arising during anoxia 

was markedly reduced after removal of the endothelium 70. Therefore, it 

was concluded that under certain, mostly pathological, conditions, the 

endothelium can produce endothelium-derived contracting factors (EDCF). 

The identity of the released EDCFs, however, can differ strongly among 

species, but also among different vascular beds 71. Over the years, several 

EDCFs have been identified, such as vasoconstricting prostaglandins (e.g. 

thromboxane A2) 72, endoperoxides 73, endothelin 74 and superoxide anions 
75, which can be produced by the endothelium in response to various stimuli 

such as stretch, acetylcholine, angiotensin I and II, arachidonic acid, ADP, 

ATP, substance P and noradrenaline. 
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The most potent vasoconstrictor peptide released from the endothelium 

described today is endothelin. Under normal circumstances, endothelin 

plays only a minor role in vascular homeostasis. Any tendency to 

(over)produce the peptide in healthy endothelial cells will be offset by an 

increased release of NO and possibly also of PGI2 and EDHF, which 

themselves reduce the production of endothelin 76, 77. Only when the 

endothelium looses its ability to generate EDRFs, endothelin can be 

produced in sufficient amounts and may contribute to vascular disease 78. 

 

 

1.2.3. Vasoactive factors released from sensory nerves 

Sensory nerves are a type of neurons regulating vascular blood flow. All 

sensory neurons have their cell bodies in the dorsal root ganglia. Their 

function is primary afferent as they send nerve impulses to the spinal cord. 

However, the impulses initiated in sensory nerves can also be relayed 

antidromically down collateral branches of these nerve fibres which directly 

innervate blood vessels. This local neural mechanism is called the axon 

reflex. Through the release of a number of vasoactive peptides including 

substance P, neurokinin A (NKA), neurokinin B (NKB) and calcitonin gene-

related peptide (CGRP), the sensory nerves can produce immediate local 

responses. This phenomenon plays an important role in the reaction to skin 

injury. When the skin is hurt, the axon reflex will cause an immediate 

dilatation of the local capillaries and an increase in their permeability, 

respectively leading to typical reddening (red reaction) and swelling (wheal)  

at the site of injury.  Dilatation of the arterioles is responsible for the 

redness spreading out from the injury (flare).  Sensory nerves are 

capsaicin-sensitive. Capsaicin is a naturally occurring substance derived 

from hot chilli peppers and interacts with vanilloid (TRPV1) receptors on 
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sensory afferents. Chronic exposure to capsaicin stimulates the TRPV1 

receptor and causes local depletion of neuropeptides. 

 

The perivascular sensory nerves may contain different combinations of 

neuropeptides, which usually induce vasodilatation 79. In general, 

substance P, NKA and NKB induce endothelium-dependent vasodilatation 

through the release of NO and EDHF 80, 81. However, contractile responses 

to these peptides have been demonstrated, resulting from the activation of 

smooth muscle receptors 82, 83. CGRP is a potent vasodilator in a number of 

vascular preparations 84. The effects of CGRP are generally due to direct 

activation of receptors on the vascular smooth muscle and a decrease in 

intracellular Ca2+ regulated by adenylate cyclase 85. However, CGRP has 

also been reported to activate ATP-sensitive K+-channels in arterial smooth 

muscle 86, while  in rat aorta the CGRP-mediated vasodilatation is 

endothelium-dependent and involves the release of NO 87, 88. 

 

 

1.3. ENDOTHELIUM-DERIVED HYPERPOLARIZATION 

As mentioned above, several hypotheses have been suggested with regard 

to the mechanism of action and the nature of EDH(F). As outlined in the 

previous chapter,  two principle mechanisms have been proposed by which 

EDH(F) can cause smooth muscle cell hyperpolarization, namely the 

transfer of a diffusible factor (EDHF) across the extracellular space and the 

transmission of endothelial hyperpolarization (EDH) via myoendothelial gap 

junctions. A schematic overview of the different mechanisms proposed for 

EDH(F) is depicted in figure 3. 
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1.3.1. Diffusible factors 

In several arteries, EDHF was reported to be a diffusible factor released 

from the endothelium which initiates hyperpolarization and relaxation of the 

smooth muscle cells by activation of specific smooth muscle cell receptors 

or ion channels. The identity of EDHF is still elusive, but different putative 

candidates have been proposed. Residual NO, H2O2, K+, EETs, 

anandamide, C-type natriuretic peptide (CNP), carbon monoxide and L-

citrulline have all been suggested as an EDHF in certain vascular beds 49, 

51, 52, 89-91. The most important candidates are discussed below. 

 
 

1.3.1.1. Residual NO 

As mentioned above, NO is now accepted to be the major mediator of 

endothelium-dependent smooth muscle relaxation. However, whether or 

not NO can account for the endothelium-dependent hyperpolarization is 

controversial. At least in some vessels such as the guinea-pig uterine 

artery, rabbit aorta and rat small mesenteric artery, exogenous NO caused 

hyperpolarization of the vascular smooth muscle cells 23-25, 92. Also 

prostacyclin has been described to cause hyperpolarization 93. Therefore, 

EDHF responses should always be measured in the continuous presence 

of both inhibitors of NOS and cyclooxygenase. 

 

In rabbit carotid arteries stimulated with acetylcholine, it was shown that the 

application of L-NAME, in a concentration originally considered to be 

sufficient to completely inhibit NOS in most tissues (30 µM), decreased but 

did not completely inhibit the release of NO. The additional application of L-

NA, another inhibitor of NO, further reduced the release of NO and the 

hyperpolarization and relaxation of these vessels to acetylcholine. 
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Therefore, it was suggested that NO was the mediator of both endothelium-

dependent relaxation and hyperpolarization 48. Correspondingly, in several 

other vascular beds it was shown that, although NOS was inhibited with L-

arginine analogues, there was still some resistant NO released from the 

endothelium 53, 91. In rat superior mesenteric arteries 91, acetylcholine still 

evoked relaxations in the presence of L-nitroarginine (L-NA). Since the NO 

scavenger oxyhaemoglobin further reduced these L-NA resistant 

relaxations, it was suggested that they were due to residual NO, which 

could be derived from a source other than L-arginine.  However, in studies 

using both NOS-inhibitors and NO-scavengers a large part of the 

endothelium-derived hyperpolarization persists. 

 

Moreover, if indeed NO fully accounts for the endothelium-dependent 

hyperpolarization in the presence of NOS-inhibitors, exogenous NO should 

be able to evoke comparable hyperpolarizations when applied in 

physiological concentrations. In rat aorta, nitroglycerin (10 µM) induced only 

a hyperpolarization of about 2 mV 94. Similarly, application of other NO-

donors only caused a fraction of the membrane potential change induced 

by acetylcholine 94. Comparable observations were found in the main 

mesenteric artery 95, 96. Moreover, while the membrane potential of the 

smooth muscle cells of these arteries showed comparable sensitivity to 

exogenous NO, the EDHF-induced hyperpolarization was much more 

expressed in the mesenteric artery than in the rat aorta 94-96. Taken 

together, these findings suggest that although residual NO might be 

present in some conditions and contribute to some minor extent in EDH, a 

separate but NO-unrelated EDHF exists 53, 97,98. 

 

 

 

 18



General introduction 

1.3.1.2. Hydrogen peroxide 

H2O2 may be produced in the endothelium from superoxide anions via 

superoxide dismutase and has been implicated as an EDHF, namely in 

human and mouse mesenteric and porcine coronary arteries 49, 99, 100. This 

hypothesis arose from the report that catalase, an enzyme that dismutates 

H2O2 to water and oxygen, inhibited the EDHF-mediated hyperpolarization 

and subsequent relaxation 49, 99, 100. However, this was not consistent with 

several other studies in the same vascular beds, where catalase had no 

effect on the EDHF-response 101, 102. Similarly, in other vascular 

preparations, catalase was unable to inhibit the EDHF response 103, 104. In 

contrast to the reports about its vasodilating action, several studies have 

shown that H2O2 can cause a vasoconstriction and suggested that it might 

act as an EDCF in some vessels 105. Therefore, the physiological relevance 

of H2O2 as an EDHF is questioned. 

 

 

1.3.1.3. Potassium ions 

In some arteries such as the rat hepatic and small mesenteric arteries, K+ 

was proposed as an EDHF 50. More specifically, acetylcholine was shown 

to stimulate the opening of SKCa and IKCa channels of the endothelial cells, 

thereby causing hyperpolarization. The resulting K+ efflux would cause a 

raise in the extracellular K+ concentration ([K+]o) in the restricted 

myoendothelial space 50. In turn, this increase would activate Na+/K+-

ATPases and inwardly rectifying K+-channels (KIR channels) located on the 

adjacent vascular smooth muscle cells, resulting in a hyperpolarization of 

these latter 50. The evidence for the involvement of these mechanisms is 

mainly derived from studies using ouabain and Ba2+, respective blockers of 

Na+/K+-ATPases and KIR channels. In these studies, it has been shown that 
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the hyperpolarization and relaxation induced by small increases in [K+]o 

could be inhibited by these blockers, administered either alone or in 

combination 50, 106, 107. 

 

More recently, however, it was reported that exogenous increases in [K+]o 

elicited relaxation in only 30-40% of preconstricted rat small mesenteric 

arteries, while responses to acetylcholine were always present 108. 

Moreover, the relaxations caused by a raise in [K+]o were endothelium-

dependent and significantly smaller than the acetylcholine responses 108. 

Correspondingly, in small mesenteric arteries from the same species 

mounted isometrically, a raise in [K+]o caused no relaxation of endothelium 

intact and denuded arteries, whereas acetylcholine only failed to relax 

endothelium denuded preparations 109. Furthermore, in pressurised 

arteries, raising [K+]o dilated only 30% of the arteries, while the 

acetylcholine-response was consistently present in all vessels 109. 

 

The absence of K+-induced hyperpolarization in endothelium-denuded rat 

small mesenteric arteries was confirmed after stimulating the vessels with 

phenylephrine 110. Blockers of vascular smooth muscle delayed rectifier and 

large conductance Ca2+-sensitive K+-channels (4-aminopyridine and 

iberiotoxin, respectively) were able to restore the hyperpolarizations in 

these stimulated vessels. It was suggested, therefore, that activation of the 

smooth muscle with phenylephrine, which is known to increase K+ efflux 

from the myocytes by opening of smooth muscle K+ channels 111, resulted 

in a K+-cloud in the myoendothelial spaces, preventing the vasodilator 

action of exogenous added K+ 110. This explains the observation that the K+-

channel blockers could restore the K+-induced hyperpolarization in 

stimulated vessels. A key component in the K+-induced responses is the 

smooth muscle Na+/K+-ATPase 112, a family of proteins of which the 
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different isoforms display different affinities for [K+]o. The α1-containing 

isoforms would perform a ‘housekeeping’ role, and are fully activated at 

physiological concentrations of [K+]o. α2- and α3-containing isoforms, on the 

other hand, are not saturated at normal [K+]o and might be further activated 

by small increases in [K+]o 
113, 114. Therefore, it was suggested that the 

observed K+-induced effects under resting conditions are due to stimulation 

of Na+/K+-ATPases containing α2- and/or α3-subunits. However, 

extracellular accumulation of K+ ions  as the result of activation of the 

smooth muscle cells with phenylephrine (the K+-cloud), would fully activate 

and saturate the Na+/K+ pumps containing α2- and α3-subunits 110, 115, 116, 

favouring the alternative gap junctional pathway for endothelium-dependent 

smooth muscle hyperpolarization 110, 116. The hyperpolarization of the 

endothelial cells thereby is transferred to the underlying smooth muscle 

cells through gap junctional coupling (as discussed in § 1.3.2). 

 

 

1.3.1.4. Epoxyeicosatrienoic acids 

A number of enzymes can metabolise arachidonic acid into a variety of 

metabolites, all of which are able to influence smooth muscle tone. EETs 

are cytochrome P450 (CYP) epoxygenase metabolites of arachidonic acid 

which have been shown to activate smooth muscle BKCa 117, 118, resulting in 

hyperpolarization and subsequent relaxation of cerebral, coronary and 

renal arteries of several species 119-121.  

 

A number of studies suggest that EETs may account for EDHF in a number 

of vascular preparations. They reported that the EDHF response could be 

inhibited by CYP inhibitors 122-125 and was also associated with the release 

of EETs from endothelial cells 51. In addition, in porcine coronary arteries 

the EDHF mediated response was precisely mimicked by 11,12-EET 126. 
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Furthermore, the vasodilator potency of EETs seems to increase with 

decreasing vessel diameter 127, a typical characteristic of EDHF. 

 

However, considerable evidence also argues against the role of EETs as 

“universal” EDHF. Some of the CYP inhibitors used are now known to exert 

non-specific effects. For example, proadifen, clotrimazole and the 

antimycotic imidazole can directly inhibit vascular smooth muscle K+-

channels 128-130. Moreover, in rat hepatic, guinea-pig carotid and porcine 

coronary arteries, chemically unrelated inhibitors of CYP had no effect 

whatsoever on the EDHF-mediated responses 131-133. EETs seem to 

hyperpolarize vascular smooth muscle cells via the activation of iberiotoxin-

sensitive BKCa-channels 117, 134. Taken together, these observations clearly 

show that the hypothesis that EETs represent EDHF, requires further 

investigation and certainly can not be a universal one. 

 

 

1.3.1.5. Anandamide 

The endogenous cannabinoid anandamide (N-arachidonylethanolamine) is 

another arachidonic acid derivative which is formed via the action of a 

transacylase enzyme and has been shown to exert potent vasodilatory 

effects in a number of vascular preparations 52, 135-139. The properties of the 

endogenous cannabinoids (also called endocannabinoids) are discussed in 

more detail in a next paragraph (§ 1.4., p25). 

 

In the perfused mesenteric bed of the rat, where anandamide caused 

endothelium-independent vasodilatation, the cannabinoid receptor 

antagonist SR141716A inhibited the EDHF-mediated response induced by 

carbachol 52. Moreover, the investigators found that anandamide and EDHF 
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exerted similar characteristics in these preparations 140, suggesting they 

were identical. 

 

Nonetheless, a number of later studies could not confirm this proposal and 

proved that anandamide and EDHF did not share the same 

pharmacological and physiological profile 60, 139, 141-145. Further doubt about 

the early reports arose with the report that SR141716A, besides blocking 

cannabinoid receptors, also exerted additional, non-selective effects such 

as disrupting myoendothelial gap junctional communication 146 or 

influencing Ca2+ influx initiated by agonists 147. 

 

 

1.3.2. Gap junctional coupling 

An alternative pathway for endothelium-dependent hyperpolarization is 

transmission of the agonist-induced hyperpolarization of the endothelial 

cells to the adjacent smooth muscle cells via gap junctions. Gap junctions 

are formed by docking of two connexons or hemichannels, supplied by the 

two interacting cells at points of cell-cell contact. They form an aqueous 

pore allowing the spread of electrical current or the transfer of small 

hydrophilic molecules (< 1 kDa), including cAMP, cGMP, IP3, as well as 

inorganic ions, such as Ca2+ 55-57, 148. Gap junctions are seen in virtually all 

cells that contact other cells in tissues. In the vascular wall gap junctions 

can occur between cells of the same type, such as between endothelial 

cells or between smooth muscle cells and are hence called homocellular 

gap junctions. On the other hand, gap junctions can also be formed 

between endothelial cells and vascular smooth muscle cells. These 

heterocellular gap junctions are referred to as myoendothelial gap 

junctions. In many arteries, the endothelial cell layer is coupled to the 
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smooth muscle cell layer by pentalaminar myoendothelial gap junctions 

located at the end of thin projections that originate from the endothelial cells 
149, 150. 

 

Each connexon is constructed from six connexin (Cx) protein subunits 

traversing the cell membrane 151, 152. Several Cx isotypes have been 

identified 153, 154 and are named according to their predicted molecular 

weights in kDa. A hemichannel may be comprised of a single Cx isotype or 

multiple isotypes, resulting in the formation of homomeric or heteromeric 

connexons, respectively. Complete gap junction channels may be either 

homotypic, if comprised of two identical hemichannels, or heterotypic if the 

hemichannels supplied by each cell are different 155. Changes in Cx 

composition can have significant effects on the properties of gap junctions 

present in a tissue. This explains why different Cx are observed in different 

tissues, providing their distinct characteristics. 

 

Within the vascular tissue, four connexins have been reported so far: Cx37, 

Cx40, Cx43 and Cx45 156. The endothelial cells lining the arterial lumen are 

well coupled and have been found to express Cx37, Cx40 and Cx43. Cx37, 

Cx40 are the most abundant connexins and have been detected in 

endothelial cells of most vessels, while Cx43 is the least well expressed 

and is even absent in some vessels such as the intramural coronary 

arteries 156, 157. In the vascular smooth muscle Cx43 is the most abundant, 

followed by Cx40 and 45 158. Cx37 is usually thought to be restricted to the 

endothelial cells, but it has also been found in smooth muscle cells 159.  

Although the exact Cx isotype present in myoendothelial gap junctions 

remains unknown, recent evidence suggest that Cx40 plays a critical role in 

heterocellular signalling 160. 

 

 24



General introduction 

It has been hypothesised that myoendothelial gap junctions are more 

important in resistance than in conduit arteries 161, 162, which may explain 

the predominance of EDH in the resistance vasculature. However, the role 

of myoendothelial gap junctions in the EDH remains controversial since the 

specificity of the gap junction uncouplers used in most studies was 

questioned. Indeed, agents such as heptanol, 18α- and 18ß-glycyrrhetinic 

acid and carbenoxolone all have been shown to exert non-specific effects 

in a dose- and tissue-dependent manner 163-165. Therefore, a more specific 

inhibitor has been designed, based on the amino acid sequence of a 

portion of the extracellular loop of Cx43. This peptide, Gap 27, contains 11 

amino acids and prevents the formation of the connexon hemichannel 163, 

166, 167. Another problem in the study of gap junctional coupling is that none 

of the used uncouplers, including Gap 27, can selectively inhibit the 

myoendothelial cell coupling versus coupling between adjacent endothelial 

cells or smooth muscle cells 168, 169. Therefore, additional studies are 

required before the contribution of myoendothelial gap junctions in 

endothelium-derived hyperpolarizations can be further established. 

 

 

1.4. ENDOCANNABINOIDS 

The hemp plant (Cannabis sativa) has been used for millennia as a 

medicine and for social and religious purposes. The term cannabis is 

generally used to describe a single entity. However, research in the past 

century has revealed that cannabis is the source of more than 60 different 

compounds, collectively referred to as cannabinoids 170, 171. Cannabinol was 

the first of these plant cannabinoids to be isolated and described. The most 

abundant cannabinoid, primarily responsible for the psychotropic effects of 

cannabis, is ∆9-tetrahydrocannabinol (THC). Other, well described naturally 
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occurring cannabinoids are ∆8-THC and cannabidiol 172. Compared to ∆9-

THC, cannabinol has much more lower potency as a psychotropic agent, 

whereas cannabidiol lacks any psychotropic activity. At first, cannabinoid 

experiments focused mainly on the psychotropic properties. However, later 

studies showed that cannabinoids could also exert potent cardiovascular 

effects 173, 174. 

 

To date, two distinct receptor subtypes for cannabinoids have been 

identified and cloned. Type 1 cannabinoid (CB1) receptors 175 are mainly 

localised on neurons but are also present in some peripheral tissues 

including heart, lung and gastrointestinal tissues and in vasculature 136, 176-

178. On the other hand, type 2 cannabinoid (CB2) receptors 179 are primarily 

expressed in immune cells, although there is some evidence that these 

receptors are also expressed by neuronal tissue 180. In several arteries, the 

vasorelaxant effect of cannabinoids has been reported to be mediated by 

stimulation of CB1 receptors, since SR141716A, a CB1 receptor antagonist, 

inhibits relaxations by anandamide 52, 136, 181. Recently, it was suggested 

that in some vessels the vasodilator response to cannabinoids is mediated 

by stimulation of a novel, not yet identified, non-CB1/CB2 receptor located 

on the endothelium 182-184. 

 

In the early 1990’s, endogenous cannabinoids have been identified. The 

first of these endocannabinoids described was anandamide 185. In addition 

to their neurobehavioral effects, they have a profound influence on the 

cardiovascular system 173. Both, endogenous and synthetic cannabinoids 

have potent vasodilatory effects in a variety of isolated vascular 

preparations 52, 135, 136, 186. Their precise mechanisms of action, however, are 

still unknown and seem to vary with species, vessel type and size 139, 187. 

Also the site of action, whether they act on the endothelial cells, the 
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vascular smooth muscle cells or the perivascular nerves of the vessel wall 

is still elusive (figure 4). 
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Figure 4: Schematic presentation of the possible mechanisms of action of 
(endo)cannabinoids in the vessel wall. EC = endothelial cell; VSMC = vascular 
smooth muscle cell; PVN = perivascular nerves; EDHF = endothelium-derived 
hyperpolarizing factor; PGI2 = prostacyclin; NO = nitric oxide; hyperpol = 
hyperpolarization; NPept = neuropeptides; CGRP = calcitonin gene-related 
peptide; CB1 = type 1 cannabinoid receptor; CB2 = type 2 cannabinoid receptor; 
CBx = non-CB1/non-CB2 cannabinoid receptor; TRPV1 = type 1 vanilloid 
receptor; TRPV4 = type 4 vanilloid receptor. 
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In some vascular preparations, the anandamide-induced responses have 

been shown to be entirely endothelium-dependent 137, 146, 183, and 

associated with the release of prostanoids 135, 188, NO 136 or EDHF 146. Most 

studies, however, have shown that the vasorelaxations caused by 

anandamide are completely 52 or partly 146 endothelium-independent.  

 

The endothelium-independent pathway by which cannabinoids induce 

vasodilatation is still elusive. Some studies report that cannabinoids directly 

stimulate cannabinoid receptors on the vascular smooth muscle cells 52, 136, 

146. Moreover, some studies demonstrated that, in the isolated perfused 

mesenteric bed of the rat,  the endothelium-dependent vasodilator 

response of bradykinin was also inhibited by the CB1 inhibitor SR141716A 

and concluded that anandamide could be EDHF in these arteries 52. 

However, later studies have provided convincing evidence against this 

hypothesis, so that it is now generally accepted that EDHF and 

anandamide are different factors with other physiological and 

pharmacological properties 60, 139, 141, 143, 189, 190.  

 
Besides as an endocannabinoid, anandamide could also act as an 

endovanilloid in a number of vascular preparations. Indeed, the 

vasorelaxant influence of cannabinoids has been reported to be due to 

stimulation of vanilloid TRPV1 receptors on the perivascular sensory nerves 

and the subsequent release of sensory neuropeptides such as the powerful 

vasodilator calcitonin gene related peptide (CGRP). It has been shown that 

anandamide binds and activates TRPV1 receptors. Moreover, its 

vasorelaxant response was antagonised by the TRPV1 receptor antagonist 

capsazepine and the CGRP receptor antagonist CGRP(8-37), but not by the 

CB1 receptor antagonist SR141716A 138.  The picture is further complicated 

by more recent studies that identified endocannabinoids as potential 
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activators of the vanilloid TRPV4 receptor 191. This receptor is highly 

expressed on vascular endothelial cells, and its stimulation enhances Ca2+ 

influx, an essential trigger to release various vasoactive factors including 

NO, prostaglandins and the EDHF mechanism 192. Moreover, the TRPV4 

receptor was recently also found in the myocytes of cerebral arteries, and 

its activation was shown to cause smooth muscle cell hyperpolarization via 

BKCa channel activation 193. The endocannabinoids stimulate the TRPV4 

receptor indirectly, after conversion to its metabolite 5’,6’-

epoxyeicosatrienoic acid 191.  

 

 

1.5. STUDY AIM 

During the past 25 years, the important paracrine role of the vascular 

endothelium in the regulation of blood vessel tone and blood flow has 

become increasingly clear. While the role of the endothelium-derived 

vasorelaxing factors nitric oxide (NO) and prostacyclin (PGI2) is well 

established,  the mechanism underlying the endothelium-dependent 

hyperpolarization in various vessels is still debated. Several hypotheses 

have been put forward and there seem to be considerable tissue and 

species differences. The starting point of this work was to further explore 

the identity and the characteristics of the endothelium-derived 

hyperpolarizing factor (EDHF). 

 

In resting rat hepatic and small mesenteric arteries, K+ was proposed as 

EDHF 50, 116. On the other hand, the endothelium-derived hyperpolarization 

in stimulated rat hepatic and mesenteric arteries seemed to rely more on 

gap junctional coupling 115, 116. It was proposed, therefore, that the 

increased K+ efflux from the myocytes upon activation of the smooth 
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muscle with phenylephrine, resulted in a K+-cloud in the myoendothelial 

space. This process would saturate Na+/K+-pumps and favour the gap 

junctional pathway for smooth muscle hyperpolarization 110, 116. In chapter 3  

we further explore the functional consequences of modulation of basal 

smooth muscle K+ efflux for endothelium-dependent hyperpolarizations. We 

more specifically investigate the involvement of gap junctional coupling, 

Na+/K+-ATPases and inward rectifying K+ (KIR) channels in the 

acetylcholine-induced hyperpolarization of smooth muscle cells of rat small 

mesenteric arteries. 

 

Previous tension measurements performed in our lab revealed the 

existence of endothelium-dependent, but NO- and PGI2-independent 

vasorelaxations in rat gastric arteries stimulated with acetylcholine 194. 

However, as far as we knew, no data were available of endothelium-

derived membrane potential responses in these arteries. In chapter 4 we 

extend these observations by directly measuring the membrane potential 

responses of the gastric arteriolar smooth muscle cells to acetylcholine. We 

further characterise the observed endothelium-dependent 

hyperpolarizations by investigating the involvement of KIR-channels and 

Na+/K+-ATPases. 

 

Since the discovery of the existence of EDHF, several candidates have 

been proposed and their properties were intensively investigated and 

compared with those of EDHF. The endogenous cannabinoid anandamide, 

a derivative of arachidonic acid, has also been suggested as EDHF 52. 

Later studies, however, found convincing evidence against this hypothesis 

and it is now generally accepted that anandamide and EDHF are different 

factors. Nonetheless, endocannabinoids are potent vasodilators in a variety 

of vascular preparations. Previous work showed that anandamide and its 
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stable analogue methanandamide exert potent hyperpolarizing effects in rat 

mesenteric arteries, possibly through the activation of vanilloid TRPV1 

receptors on perivascular nerves and the subsequent release of the 

vasodilatory neuropeptide calcitonin gene-related peptide (CGRP) 139. In 

chapter 5 we examine the influence of these cannabinoids on the 

membrane potential in isolated small gastric arteries and compare this with 

the responses to exogenous CGRP. We further investigate the  

involvement of TRPV1 receptors in the cannabinoid responses using the 

specific antagonist capsazepine. Chapter 6 explores the relaxant effects of 

cannabinoids in small gastric arteries. More specifically, we characterise 

the relaxation induced by methanandamide and compared this with the 

response to exogenous CGRP. We assess the involvement of TRPV1 

receptors and the different types of cannabinoid receptors in the 

methanandamide response. Finally, we test the hypothesis that the 

relaxation induced by methanandamide could be due to an inhibitory action 

on voltage activated Ca2+ channels. 

 

The processes of vasorelaxation and vasoconstriction of arteries involves 

changes in intracellular Ca2+ concentration in the vascular smooth muscle 

cells. In chapter 7 we attempt to visualise and characterise changes in the 

intracellular Ca2+ concentration in smooth muscle cells of isolated small 

mesenteric arteries in response to different vasorelaxing and 

vasoconstricting substances using microscope Ca2+ imaging techniques. 
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2.1. INTRODUCTION 

Vasodilatation plays an important role in the regulation of blood flow and 

blood supply to the organs. Several techniques have been developed to 

study the pharmacodynamics of isolated small resistance arteries. Such in 

vitro experiments with segments of isolated arteries offer a useful approach 

to analyse the influence of local mechanisms controlling blood flow, without 

other interfering with other regulatory mechanisms as may be present in in 

vivo experiments. 

 
In the studies composing this work, different techniques have been used to 

study the mechanism of action of endothelium derived hyperpolarizing 

factor and endocannabinoids. Membrane potentials of the vascular smooth 

muscle cells were measured using electrophysiological microelectrode 

techniques. Tension measurements were performed in a wire myograph to 

study relaxation and contractile responses. Finally, intracellular Ca2+ 

changes were monitored using fluorescent dyes and confocal microscopy. 

 

 

2.2. TISSUE PREPARATION 

All experiments were performed on isolated arterial ring segments from 

adult female Wistar rats (180 – 280 g) and were approved by the ethical 

committee on animal research of Ghent University. The animals were 

anesthetized by a lethal dose (200 mg kg-1) of pentobarbitone and killed by 

cervical dislocation.  

 

For the studies described in this thesis, small mesenteric or gastric arteries 

were used. Therefore, the mesentery or the stomach, as appropriate, were 

rapidly excised and placed in cold (4°C) Krebs-Ringer bicarbonate (KRB) 
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solution. Second and third order branches of the arteries were dissected 

free and transferred to fresh KRB solution, gassed with 5% CO2 in O2 (pH 

7.4). Then the vessels were cleaned from surrounding connective tissue. 

For the electrophysiological and tension measurements, the isolated 

vessels were cut into segments of about 4 mm in length and transferred to 

the respective experimental chambers. For the Ca2+ imaging studies, larger 

segments were used. These vessel segments were cannulated with a thin 

glass capillary (borosilicate glass, Hilgenberg, Malsfeld, Germany) with 

flame polished tip that was inserted into the lumen over the entire segment 

length. The diameter of the glass capillary was slightly (~15 %) larger than 

the vessel lumen diameter and cannulation was done to stabilize the 

preparation against possible movement upon stimulation with low 

concentrations of norepinephrine. 

 
 

2.3. ELECTROPHYSIOLOGICAL EXPERIMENTS 

Hyperpolarization of the vascular smooth muscle cells is one of the 

possible ways to induce vasorelaxation and subsequent vasodilation. It is 

generally accepted that a change in the membrane potential of a few mV 

can result in a substantial change in vessel diameter 1, 2. Furthermore, 

hyperpolarization of the vascular smooth muscle cells produces a rapid 

effect on blood flow. Therefore, membrane potential measurements are of 

great importance in the study of vasodilatation. 

 

 

2.3.1. Experimental setup 

The experimental set-up for membrane potential measurements is depicted 

in figure 1. A small cut-away (with a volume of approximately 5 ml) in a 
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Perspex block (6 x 8 x 8 cm), heated by a Lauda bath (37 °C, Haake, 

Berlin, Germany), forms the experimental chamber. Since vibration is to be 

avoided to allow cell impalements for an extended period, the whole 

experimental set-up is mounted on a pneumatic vibration isolation table. 
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Figure 1: Experimental set-up for membrane potential measurements: (1) vessel segment 
pinned down to a silicone base with insect pins and fixed to the bottom of the experimental 
chamber; (2) bath-clamp; (3) pre-amplifier for impedance compensation; (4) amplifier; (5) the 
measured membrane potential is monitored on an oscilloscope and a computer and traced 
with a pen recorder. 
 

The isolated arterial rings are pinned down to a silicone base using two 

small insect pins. Small incisions are made at the distal endings to facilitate 

diffusion of added vasoactive agents to the lumenal side. The preparations 

are then fixed on the bottom of the experimental chamber under an angle of 

45°, permitting visualisation from the front with a binocular microscope, the 

penetrating microelectrode being in focus with the preparation. The 

chamber is perfused with warmed KRB solution (35 °C), gassed with 95% 

O2 and 5% CO2 in an external bath. A roller pump (minipuls 2, Gilson) 
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transfers the solution through a polyethylene tubing to the experimental 

chamber at a flow rate of 5 ml/min. Before reaching the vessel segment, 

the solution passes a spiral shaped glass tubing at the bottom of the 

experimental block, to compensate for possible cooling during the transfer. 

The volume in the organ chamber is kept as low as necessary just to cover 

the vessel by adjusting the outflow, facilitating impalements and 

visualisation of the preparations through the binocular microscope. After 

mounting in the experimental chamber, the arteries are equilibrated for at 

least 60 minutes before starting the microelectrode impalements. 

 

 

2.3.2. Membrane potential measurements 

The experimental bath was continuously clamped at ground potential using 

a bath clamp circuit. The operational amplifier of this circuit is connected at 

the non-inverting input with the virtual ground, while the inverting input is 

connected to the bath through an Ag/AgCl electrode. The output of the 

amplifier is connected back to the experimental bath fluid via an agar-KCl 

bridge. Hereby, possible fluctuations of the ground potential are 

immediately corrected by supplying the appropriate current to the bath. 

Hence, the bath potential is always clamped at the same virtual ground 

level. 

 

Transmembrane potentials of the vascular smooth muscle cells are 

measured by penetrating the cells with conventional microelectrodes pulled 

with a vertical pipette puller (David Kopf, Tujunga, CA) from filamented 

borosilicate glass tubings (1 mm o.d., Hilgenberg, Malsfeld, Germany). The 

microelectrodes are filled with 1 M KCl and fixed on a preamplifier which is 

mounted on an oil driven micromanipulator (Narishige MO-388, Nikon) . A 
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short Ag/AgCl wire provides electrical contact between the preamplifier and 

the solution in the electrode. The electrical resistance of the 

microelectrodes, measured in normal KRB solution, ranges from 40 – 80 

MΩ. The used preamplifiers have high impedance compared with the 

microelectrode (MOS/FET operational amplifier with an impedance of 1.5 x 

103 MΩ) and hence serve for impedance compensation. The electrodes 

and the pre-amplifier are shielded by an aluminium plate, protecting them 

from environmental electrostatic influences (Faraday cage). The output of 

the preamplifier is connected to an amplifier where the bath potential is 

subtracted from the measured potential. The resulting potential is 

monitored on an oscilloscope and followed on a computer monitor after AD-

conversion using a data acquisition processor board (Microstar 

Laboratories) with appropriate software (DAPview Plus 1.10; Microstar 

Laboratories). The measured potential is also traced with a pen recorder at 

low speed. In some experiments, the recorded pen traces are digitized off-

line with a digitizing tablet connected to a PC. 

 

The micromanipulator allows advancing the electrodes in very small steps 

until stable cell penetration is reached. Successful impalements of the 

vascular smooth muscle cells are characterised by an extremely sharp 

voltage deflection on entering the cell and a fast return to the baseline on 

exit of the microelectrode from the cell. Absolute values for the membrane 

potential (Em) are taken as the difference of the stabilised potential after cell 

impalement and the zero potential as obtained upon electrode 

dislodgement. During a successful impalement, membrane potential 

responses produced by vasoactive substances are measured under control 

conditions and after preincubation with inhibitors. All drugs are added into a 

know volume in the outside mixing chamber and perfused at known 

concentrations into the experimental chamber.  
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2.4. TENSION MEASUREMENTS 
 

The mechanical properties of ring segments of small resistance vessels 

were investigated using a wire myograph. This technique allows the study 

of the contractile reactivity of isolated arteries. It is based on the methods 

developed by Mulvany and Halpern (1976) 3. Briefly, vessel segments are 

mounted in the organ chamber of a wire myograph onto two thin (40 µm 

diameter) wires (figure 2). One of the wires is connected to a force 

transducer, which allows measurement of isometric tension changes of the 

ring segments. 

 

 

2.4.1. The wire myograph 

For the tension measurements, a manual wire myograph was used 

constructed by the technical staff of our laboratory (Mr. Dirk De Gruytere 

and Mr. Cyriel Mabilde). Each preparation is mounted under a dissecting 

microscope onto two thin stainless steel wires that are fixed at two holders. 

One holder is connected to a micrometer which is used to change the 

distance between the wires in the beginning of the experiment, in order to 

apply a passive force on the vessel. The other holder was connected to a 

force-displacement transducer that measures the isometric tension 

changes in the vessel segment (figure 2). 

 
 

2.4.2. Mounting of a ring segment 

Before mounting, the first thin wire is cut to length (approximately 2.5 cm) 

and is clamped between the two holders in the organ bath (figure 3A). The 
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far end of the wire is then fixed on the left holder with a screw. The near 

end, pointing towards the operator, is kept free so that a ring segment can 

be slipped over it (figure 3B and C). Next, using a pair of extra fine 

tweezers, the arterial ring is pulled over the free end of the wire, taking care 

not to injure the endothelium (figure 3D). The holders are then set apart 

and the vessel is drawn further over the wire, until it is situated between the 

holders (figure 3E). The near end of the wire can then be fixed with a screw 

to the other side of the left holder (figure 3F).  

FORCE
TRANSDUCER

MICRO-
METER

 
Figure 2: A photograph of the organ bath of the wire myograph and a schematic detail of a 
pair of holders. Arterial segments are mounted on two thin wires, fixed on the two holders in 
the organ bath. One holder is connected to a micrometer which is used to change the 
distance between the wires. The other holder is connected to a force transducer which 
allows measurement of isometric tension changes in the vessel segment 
 

The second wire can now be guided carefully through the lumen of the 

artery (figure 3G).  The holders are brought together, and both ends of the 
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second wire are fixed on the right holder. It should be noted that wires must 

be levelled, so that they both lay in the same horizontal plane (figure 3H 

and I). Once the vessel is mounted, the length of the segment (l) is 

measured with a micrometer eyepiece (Zeiss, Germany). The preparations 

are then allowed to equilibrate for at least 30 minutes in gassed KRB 

solution (pH 7.4) at 37 °C before proceeding with the experiment. 
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Figure 3: Schematic presentation of the different steps involved in the mounting of an 
arterial segment on two thin stainless steel wires, fixed on the holders 
 

 
 
2.4.3. The normalisation procedure 

In small arteries, the vascular smooth muscle cells are circumferentially 

arranged. Hence, stretching the vessel will influence the length of these 

smooth muscle cells 4. Since active force development of a muscle cell 

depends on its length 4, 5, the vessels must be distended to bring the actin-
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myosin fibres into alignment for optimal force development. It is generally 

accepted that the active force development in vascular tissue peaks at a 

certain internal circumference or diameter, which corresponds to a 

particular length of the smooth muscle cell. Therefore, at the beginning of 

each experiment, the vessels should be stretched to their optimal lumen 

diameter, affording optimal experimental conditions. 

 

It has been found experimentally, that active force production is maximal 

when the internal circumference is 0.9 times the internal diameter that the 

relaxed vessel would have under a transmural pressure of 100 mmHg 

(IC100). The normalisation procedure allows us to calculate the IC100 for the 

mounted vessel and to determine the position of the holders stretching the 

segment to its ideal internal circumference. Additionally, the size of the 

vessel can be calculated through this normalisation procedure. The size of 

a vessel is defined as its size when fully relaxed and under a transmural 

pressure of 100 mmHg. 

 

Prior to the normalisation procedure, the micrometer setting corresponding 

to a force of 0 mN is determined. Therefore, the holders are brought 

together until the two wires touch. This is characterized by a negative force 

registered by the transducer. The holders are then gently pulled back until 

the registered force returns to baseline. At this point, the force registered by 

the transducer is 0 mN (y0) and the distance between the two wires is 0 µm. 

The corresponding micrometer setting is x0. 

 

During the normalisation procedure the vessel is stretched in steps by 

moving the micrometer as required to drift the wires apart. One minute after 

each step (i), the corresponding micrometer setting (xi) and force (yi) are 

registered. These measurements allow the calculation of the internal 
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circumference (ICi) and the wall tension (Ti). With these values, the 

transmural pressure (Pi) can be calculated that would yield this ICi in the 

ring segment.  

 

 Calculation of the internal circumference (ICi) 

The ICi is calculated from the distance between the wires (xi – x0) and 

the diameter of the mounting wires (40 µm) (figure 4): 

 

ICi  = 2 x ((2π x 20 µm) / 2) + 4 x 20 µm + 2 x (xi – x0) 

= 205.66 µm + 2 x (xi – x0) 

 

 Calculation of the wall tension (Ti) 

The Ti is the measured force (yi) divided by the length of the vessel wall. 

Since there is both an upper and a lower wall, the total length of the 

vessel wall equals two times the length of the vessel as measured with 

the micrometer eyepiece (l) after mounting. 

Ti = yi / (2 x l) 

 

 Calculation of the transmural pressure (Pi) 

The pressure (Pi) leading to the calculated ICi can be deduced from the 

law of Laplace, which states that in a cylinder, wall tension is 

proportional to the pressure times the radius of the cylinder. Since the 

radius (r) can be calculated from the ICi (ICi = 2π r), the Pi can be 

determined with the following formula: 

 

Pi = Ti / (ICi / 2π) 
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It should be noted that the calculated pressure is only an estimate for 

the intraluminal pressure that would be necessary to stretch the vessel 

to the measured ICi. 

 

 

40 µm

20 µm (xi-x0)

(2
π

x 
2
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Figure 4: A schematic representation of the blood vessel after distention i. 

 
For each pair of readings (xi and yi), the corresponding pressure is 

calculated. The stepwise stretching of the vessel segments is stopped 

when the pressure exceeds 100 mm Hg (= 13.3 kPa). Subsequently, a 

graph is constructed expressing the pressure in function of the 

corresponding internal circumference. The points are fitted on an 

exponential curve of the form y = a.ebx (figure 5). On this curve, the point 

corresponding with a pressure of 100 mm Hg represents the IC100. Next, 

the ideal position of the holders to obtain an internal circumference of 0.9 x 

IC100 can be calculated by inserting this value in the formula for ICi. At the 

end of the normalisation procedure, the holders are set in this position and 

the experiment can be started. Furthermore, the IC100 value allows us to 
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calculate the diameter the ring segment would have when exposed to a 

transmural pressure of 100 mm Hg (IC = 2π r). 

 

 

2.4.4. A detailed example of a normalisation procedure 

The following example shows the different steps in the normalisation 

procedure for a rat gastric artery with a length of 2.52 mm. 

 
Starting parameters: 

y0 = 0.00 mN  (force registered by the transducer at the beginning of the 

normalisation procedure) 

x0 = 3611 µm (position of the micrometer when the distance between the 

two wires is 0 µm) 

P0 = 0.00 kPa (at the start of the normalisation procedure, there is no 

force on the wall of the vessel, so there is no pressure) 

1 minute after the first distension: 

y1 = 3.92 mN 

x1 = 3889 µm 

x1 –x0 (distance between the wires) = 278 µm 

From these values, we can calculate the following parameters: 

IC1 = 205.66 µm + (2 x (x1 – x0)) µm = 761.66 µm 

T1 = y1 / (2 x l) = 3.92 mN /  (2 x 2.52 mm) = 0.778 mN/mm 

P1 = T1 / (IC1 / 2π) = 0.778 mN/mm /(0.121 mm) = 6.42 kPa  

 
The same calculations were made for the following distensions. The 

readings of xi and yi, obtained 1 minute after each distension, and the 

calculated values of ICi, Ti and Pi are summarized in table 1. 
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Table 1: values of yi, xi, xi-x0, ICi, Ti and Pi for each distension step in the normalisation 
procedure of a rat gastric artery with a length of 2.52 mm.  

Step (i) 
yi  

(mN) 

xi  

(µm) 

xi-x0  

(µm) 

ICi  

(µm) 

Ti  

(mN/mm) 

Pi  

(kPa) 

1 3.92 3889 278 761.66 0.778 6.42 

2 6.44 3940 329 863.66 1.278 9.30 

3 8.68 3971 360 925.66 1.722 11.69 

4 10.64 3993 382 969.66 2.111 13.68 

 
The relation between the internal circumference and the pressure is then 

expressed in an exponential curve, presented in figure 5. On this curve, the 

point corresponding with a pressure of 13.3 kPa corresponds with an IC100 

of  961.6 µm. With this value, both the ideal position of the holders and the 

size of the artery can be calculated: 

 

The ideal internal circumference IC90 = 0.9 x IC100 = 865.44 µm 

The ideal micrometersetting (x1’) yielding this IC90 can be calculated with 

the following equation: IC90 = 205.66 µm + (2 x (x1’ – x0)) µm  

⇒  x1’ = ((IC90 -205.66 µm)/2) + x0 µm = 3941 µm 

The diameter of the ring segment, when it would be exposed to a transmural 

pressure of 13.3 kPa (l100) can also be calculated: 

l100 = IC100 / π = 306.1 µm 

 

Before the start of the experiment, the micrometer is set at 3941 µm. 
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Figure 5: Relation between the internal circumference of the ring segment and the 
corresponsding intraluminal pressure necessary to extend the vessel to this internal 
circumference. The calculated points are fitted on an exponential curve (The equation for the 
curve in this example is: y=0.40048.e0.00364264x). From this curve, the internal circumference 
can be deduced corresponding to a pressure of 13.3 kPa. 
 
 
2.4.5. The experiment 

After the normalisation procedure, the preparations are repeatedly 

activated with KRB solution containing 120 mM K+ (K120) and 10-5 M 

norepinephrine. 

 

During the actual experiments, the arterial segments are contracted by 

adding 10-5 M norepinephrine to the organ bath or by replacing the 

standard KRB solution in the organ bath by a KRB solution containing 120 

mM K+. When a stable contraction is obtained, concentration-response 

curves are constructed by cumulative addition of an agonist under control 
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conditions or in the presence of an antagonist. The presence of functional 

endothelium is assessed at the start of each experiment by the ability of 10-

5 M acetylcholine to induce more than 80 % relaxation. 

 

In some experiments, the influence of methanandamide on the influx of 

extracellular Ca2+ through plasma membrane Ca2+ channels is studied. 

Therefore, intracellular Ca2+ stores are first depleted by washing the 

vessels with nominally Ca2+-free KRB solution (same composition as 

normal KRB solution, but without added CaCl2), exposing them 

subsequently to Ca2+-free, EGTA (1 mM) containing solution, and 

repeatedly challenging the vessels to 10-5 M norepinephrine. After 

thoroughly washing the preparations with Ca2+-free KRB solution, 

norepinephrine (10-5 M) is added and a concentration-contraction curve for 

CaCl2 (10-5 to 10-2 M) is constructed in control conditions and after 30 min 

preincubation with 10-5 M methanandamide. Contractions are expressed as 

a percentage of the maximum contraction induced by CaCl2 in control 

conditions. 

 

In some experiments the endothelium has to be removed from the vessels. 

For this purpose, the arteries are first unstretched in the myograph. Then, 

an L-shaped micropipette is placed at the proximal end of the segment and 

gas (95 % O2 and 5 % CO2) is bubbled through the lumen of the 

preparations for 2 min. Subsequently, the vessels were again stretched to 

their optimal lumen diameter. After an equilibration period of 30 min, the 

absence of functional endothelium was confirmed by the lack of relaxation 

to acetylcholine. 
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2.5. CALCIUM IMAGING 

In the Ca2+ imaging experiments, Ca2+ responses are studied in the smooth 

muscle cells of intact small mesenteric arteries using confocal microscopy. 

Briefly, the vessel preparations are loaded with the Ca2+ indicator fluo-3 

(fluo-3) which is essentially non-fluorescent unless bound to Ca2+. This 

allows us to visualize changes in free intracellular Ca2+ concentration upon 

addition of several agonists by measuring changes in fluorescence. 

Differences in efficiency of loading between different reparations were 

annihilated by setting baseline fluorescence as 100% and expressing 

changes in fluorescence as percentage of this baseline.  

 

 

2.5.1. Confocal microscopy 

Conventional light microscopes are probably the most well-known and used 

research tools, affording an easy and direct method for studying cells. 

Using transillumination or epifluorescence microscopy, one is able to obtain 

a lot of information from a single layer of cells. However, when studying for 

example cell-cell interactions in living cells or Ca2+ dynamics in tissues, 

these microscopes are unusable. Furthermore, images obtained with these 

microscopes often appear blurred and have poor contrast, due to light 

scattered around the image. A confocal laser scanning microscope is 

capable of observing selected thin layers of a thick specimen. Such 

microscope is not only able to produce three dimensional reconstructions of 

preparations, but it also creates sharp images of a specimen that would be 

hazy when viewed with a conventional microscope. 

 

If light is incident on a molecule, it may absorb the light and subsequently 

emit light of a different colour. This process is known as fluorescence. In 
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the experiments performed for this thesis, excitation was done with the 488 

nm line of an argon-laser (blue light). When a molecule of the fluorescent 

dye loaded in the cells of the preparation absorbs a photon of this high 

energetic light, its energy increases, subsequently bringing it to an 

electronically excited state (S1 in figure 6). Some of the absorbed energy is 

quickly lost internally through collisions with surrounding molecules, which 

brings the molecule to a lower energy level (S1’ in figure 6). Finally, the 

molecule can fall back to its original energetic state (S0 in figure 6), thereby 

causing spontaneous emission of light with a larger wavelength than the 

excitation light (λ=520 nm, corresponding with green light). 

 

 

S1

S1
’

S0

1

2

3Excitation Emission

 
Figure 6: Single photon excitation of a fluorescent probe. The fluorescent probe may absorb 
a photon of light (blue light, λ=488 nm), increasing the energy of the molecules and causing 
an electron to jump to a singlet excited state (1). The electron jumps from a lower, but stable 
energy level (S0) to a higher unstable level (S1). The molecule quickly loses some of the 
absorbed energy through collisions with neighbouring molecules, causing the electron to 
drop (2) to a lower energy level (S1’). Finally, the electron returns (3) to its ground state (S0), 
thereby losing the remaining energy by emitting light of a longer wavelength (green light, 
λ=520 nm). 
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The term “confocal” refers to the fact that only light from the focal point of 

the objective lens is used to construct the image. This is obtained using a 

pinhole (figure 7) which only allows light from the focal point to pass, 

resulting in a sharper image (figure 8).  

 

In-focus light
Out-of-focus light

photomultiplier
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Figure 7: Diagram showing the principle of confocal microscopy.  Light from a laser reflects 
off a dichroic mirror directing it through the objective lens to the preparation. The dye in the 
preparation is excited by the laser light and fluoresces. The returning fluorescent light of 
longer wavelength is allowed to pass through the dichroic mirror. The light that makes it 
through the pinhole is measured by the photomultiplier. 
 

Using this principle, it is possible to view one cell layer in a multilayer 

preparation, namely the layer situated in the focus of the objective lens. By 

changing the depth of scanning, different cell layers can be focused 

separately. Under optimal conditions, preparations of about 100 µm thick 
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can be visualised.  When the preparation depth is larger than 100 µm, the 

intensity of the excitation light is insufficient to produce enough emission 

light, gradually decreasing the quality of the captured images. 

 

10 µm

A CB

 
Figure 8: Image of a fluorescein-labeled pollen grain (taken from a slice containing mixed 
fluorescent pollen grains (30-4264; Carolina Biological Supply)). Comparison of the images 
obtained with a conventional epifluorescence microscope (A) and a confocal microscope 
(B&C) (x 40 oil immersion objective, NA 1.30). (A) Image obtained in epifluorescence mode 
(excitation at 470 nm (bandpass, 40 nm bandwidth); emission at 520 nm (longpass)). In 
epifluorescence mode, out-of-focus light significantly blurs the image and reduces the 
contrast. (B & C) Images of the same preparation taken with the confocal microscope 
(excitation at 488 nm; emission at 522 nm (bandpass, 25 nm bandwidth)), using a large and 
a very small pinhole, respectively. The spiculae protruding from the spherical soma of the 
pollen grain can be best appreciated in C. The focal plane was situated close to the 
spherical soma surface.   
 

 
Briefly, the laser light reflects off a dichroic mirror, which directs it through 

the objective lens to the preparation. The dye in the specimen (Fluo-3 in 

our experiments) is excited by the laser light and fluoresces. Returning 

fluorescent (green) light is of longer wavelength and is allowed to pass 

through the dichroic mirror. Thereafter, it is focused onto a pinhole. Only 

light from the focal point of the objective lens can make it through the 

pinhole and is measured by a detector such as a photomultiplier. For 

visualisation, the detector is coupled to a computer which builds up the 

image pixel per pixel. 
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2.5.2. Calcium imaging 

In our experiments we use laser scanning confocal microscopy in 

combination with the fluorescent Ca2+ probe Fluo-3 (figure 9A) to measure 

the free Ca2+ concentration. Fluo-3 is part of a group of Ca2+ indicators 

which are excitable by visible light. Figure 9B shows its Ca2+-dependent 

emission spectrum for excitation at 488 nm (argon-laser sources) 6. 

Fluorescent Ca2+ indicators excited with visible light offer several 

advantages over UV light-excitable indicators (e.g. Fura-2 and indo-1). For 

example, they show efficient excitation with most laser-based 

instrumentation and exhibit less cellular photodamage and light scatter. 

Also, there is a reduced interference from sample autofluorescence and 

due to stronger absorption by the dye, lower concentrations may be used, 

reducing phototoxicity. Fluo-3 is essentially non-fluorescent unless bound 

to Ca2+ and exhibits a Kd for Ca2+ of 390 nM. It shows a very large increase 

in fluorescence intensity in response to Ca2+ binding, resulting in sensitive 

detection of Ca2+ transients. The Fluo-3 used in the present experiments 

exhibits an at least 100-fold Ca2+-dependent increase in fluorescence.  The 

acetoxymethyl (AM) ester derivative of Fluo-3 is an uncharged molecule 

that can easily permeate the cell membranes. The intact acetoxymethyl 

(AM) ester derivative of fluo-3 is also non-fluorescent, unlike the AM esters 

of fura-2. Once inside the cells, the molecule is cleaved by non-specific 

esterases resulting in a charged form able to bind Ca2+ ions. 

 

The cannulated arterial segments are loaded with the Ca2+ dye by 

incubation overnight at 4°C in a loading buffer (Hanks’ balanced salt 

solution buffered with 25 mM HEPES (HBSS-HEPES)) containing 20 µM 

Fluo-3-AM and 0.05 % pluronic. The morning of the experiments, the 

preparations are transferred to loading buffer (same fluo-3-AM 

 71



Chapter 2 

concentration) now at 37°C and incubated for 90 min. The arteries are then 

washed in HEPES-buffered physiological salt solution (PSS, pH 7.4). 

 

A.

B.

 
Figure 9: (A) Structure formula of the visible light-excitable Ca2+ indicator Fluo-3. (B) Ca2+ 
dependent Fluorescence emission spectra of Fluo-3 at various levels of free [Ca2+]i. (From: 
Invitrogen/Molecular Probes – A Guide to Fluorescent Probes and Labeling Technologies) 
 

 

Ca2+ imaging is done with a custom developed real-time laser scanning 

microscope built around a Nikon Eclipse TE300 (Analis, Ghent, Belgium) 7 

and a x40 oil immersion objective with high numeric aperture (CFI Plan 

Fluo, Nikon - 1.4 NA). A cannulated vessel segment is placed on a glass 
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coverslip and immobilized by covering it with a fine nylon mesh attached to 

a ring. The coverslip with the vessel is placed on the stage of the inverted 

microscope and is continuously superfused in situ with PSS at a rate of 1 

ml/min. Excitation is done with the 488 nm line of an argon-laser (type 

543R-AP-A01, Melles Griot, Carlsbad, CA, U.S.A.), the dichroic is a dual-

wavelength dichroic XF2043 (490-550DBDR) and the emission light is 

bandpass filtered at 522 nm (25 nm bandwidth - all filters from Omega 

Optical, Brattleboro, VT, U.S.A. - details can be found in Leybaert et al., 

J.Microscopy 7). Images of an optical section of the arterial wall (~ 123 µm x 

93 µm and containing about 30-40 cells) are obtained at 2 frames s-1 and 

transferred directly to a PC equipped with an image acquisition and 

processing board (DT3155, Data translation, Marlboro, MA, USA). Off-line 

image analysis is done with software (Fluoframes) developed in Microsoft 

Visual C.  

 

 

2.5.3. Experimental procedures and analysis 

The experiments are performed at room temperature. After recording 2 min 

(240 images) in control conditions, norepinephrine (10-6 M) is added to the 

superfusate and recording is continued for another 3 min (360 images). 

Thereafter, still in the presence of norepinephrine, the tissues are exposed 

to various pharmacological agents and the responses are monitored over 

another 8 min (960 images) or 3 min (360 images), as appropriate. The first 

stage image analysis consists of counting the number of cells showing 

clear Ca2+ responses under control conditions, in the presence of 

norepinephrine and in the presence of the various pharmacological 

substances. The responding cells are subdivided in those showing 

oscillatory spiking activity upon stimulation with norepinephrine and those 
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reacting with an increase in fluorescence relative to the baseline level. In a 

second stage of the analysis, the number of Ca2+ spikes per cell, the 

spiking frequency (over the last 240 frames, expressed as spikes per 

minute) and the change in fluorescence relative to the baseline level is 

calculated (from the last 150 frames, baseline level was assumed 100 %).  
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Abstract 

In rat small mesenteric arteries, the influence of modulation of basal 
smooth muscle K+-efflux on the mechanism of endothelium-dependent 
hyperpolarization was investigated. The membrane potentials of the 
vascular smooth muscle cells were measured using conventional 
microelectrode techniques. Incubation of resting arteries with the gap 
junction uncoupler carbenoxolone (20 µM) decreased the endothelium-
dependent hyperpolarization elicited by a submaximal concentration of 
acetylcholine (3 µM) to about 65 % of the control. In the presence of 
Ba2+ (200 µM), which depolarized the membrane potential by 10 mV, 
the acetylcholine-induced membrane potential response was doubled in 
magnitude, reaching values not different from control. Moreover, the 
hyperpolarization was more resistant to carbenoxolone in these 
conditions. Finally, both in the absence and in the presence of 
carbenoxolone, the combined application of Ba2+ and ouabain (0.5 mM) 
did not abolish the acetylcholine response. These results suggest that 
gap junctional coupling plays a role in endothelium-dependent 
hyperpolarization of smooth muscle cells of resting rat small mesenteric 
arteries. Additionally, these findings show that the hyperpolarization 
does not rely on activation of inward rectifying K+ channels. Although a 
minor contribution of Na/K-pumping cannot be excluded, the Ba2+ 
experiments show that the membrane electrical response is mediated by 
activation of a Ba2+-resistant K+ conductance.  
 
Keywords: EDHF, carbenoxolone, potassium channels, vascular smooth 
muscle cell membrane potential, vasodilation 
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3.1. INTRODUCTION 

Agonists such as acetylcholine dilate blood vessels through several 

endothelium-dependent mechanisms. These include the synthesis and 

release of nitric oxide (NO) and prostacyclin by the endothelial cells. 

Moreover, in various arteries an endothelium-dependent vasodilation 

resistant to inhibitors of NO synthases and cyclooxygenases has been 

demonstrated. This type of relaxation of the vascular tissue is associated 

with a hyperpolarization of the smooth muscle cells 1,2. 

 

Earlier evidence suggested that the NO- and prostacyclin-independent 

smooth muscle hyperpolarization is caused by a factor diffusing from the 

endothelial cells. This humoral substance has been termed endothelium-

derived hyperpolarizing factor (EDHF). As yet, the identity of EDHF is still 

elusive. Epoxyeicosatrienoic acids (EETs), K+ ions, anandamide, H2O2 and 

C-type natriuretic peptide have all been suggested as an EDHF in certain 

vascular beds 3-7. An alternative pathway for endothelium-dependent 

hyperpolarization is transmission of the agonist-induced hyperpolarization 

of the endothelial cells to the vascular smooth muscle via myoendothelial 

gap junctions. This heterocellular coupling, which is also documented in rat 

mesenteric arteries 8, allows the spread of electrical current or the transfer 

of a small hydrophilic messenger molecule such as cAMP 9-12.  

 

In rat hepatic and small mesenteric arteries, K+ was proposed as EDHF 5. 

More specifically, acetylcholine was shown to stimulate the opening of 

apamin- and charybdotoxin-sensitive K+-channels in the endothelial cell 

membrane (causing hyperpolarization), and the resulting K+ efflux would 

transiently raise the extracellular K+-concentration ([K+]o) in the restricted 

myoendothelial spaces within the vessel wall 5. In turn, this increase would 
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activate the Na/K-ATPases and inwardly rectifying K+ channels (KIR 

channels) in the membrane of the adjacent smooth muscle cells, as is 

documented for exogenous small increases in [K+]o in some vessels 13,14. 

This activation results in the hyperpolarization of the vascular smooth 

muscle cells 5. More recently, however, it was reported that exogenous 

increases in [K+]o elicited relaxation in only 30% - 40% of preconstricted rat 

small mesenteric arteries, while all vessels relaxed in response to 

acetylcholine 15. Moreover, relaxations caused by a rise in [K+]o were 

significantly smaller than the acetylcholine-responses and were absent 

after removal of the endothelium 15. In another study, raising [K+]o similarly 

dilated only 30% of pressurized rat small mesenteric arteries, while all 

vessels dilated to acetylcholine 16. Moreover, in this study an increase in 

[K+]o caused no relaxation of preconstricted arteries that were isometrically 

mounted, either with or without destroyed endothelium 16.  

 

The absence of K+-induced hyperpolarization in endothelium-denuded rat 

small mesenteric arteries was confirmed after stimulating the vessels with 

phenylephrine 17. Since blockers of vascular smooth muscle K+ channels 

restored hyperpolarizations in these stimulated vessels, it was suggested 

that activation of the smooth muscle, which is known to increase K+ efflux 

from the myocytes 18, resulted in a K+ cloud in the myoendothelial spaces. 

This extracellular accumulation of K+ ions would saturate Na/K-pumps 
17,19,20 and favour the alternative gap junctional pathway for smooth muscle 

hyperpolarization 17,20.  

 

In this paper, we further explore the possible existence of local depletions 

and (or) accumulations of extracellular K+ within the vessel wall, and 

assessed the functional consequences of modulation of basal smooth 

muscle K+ efflux for endothelium-dependent hyperpolarization. More 
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specifically, we measured the acetylcholine-induced hyperpolarization of 

the smooth muscle cells in rat mesenteric arteries, and investigated the 

separate and combined influence of inhibition of gap junctional coupling 

with carbenoxolone and of membrane Na/K-ATPases with ouabain in the 

absence and the presence of the KIR channel inhibitor Ba2+. Low 

concentrations of Ba2+ are known to specifically block KIR currents 21, and 

blocking tonically open KIR channels is expected to reduce resting K+ efflux 

and consequently, diminish the K+ load in the myoendothelial spaces. 

 

 
3.2. MATERIALS AND METHODS 
 

3.2.1. Preparations 

Small mesenteric arteries from female Wistar rats (180 – 230 g) were used. 

The animals were treated in accordance with the principles and guidelines 

of the Canadian Council on Animal Care for the use of laboratory animals. 

Experiments were approved by the ethical committee on animal research of 

Gent University. The rats were killed by cervical dislocation. Branches of 

the mesenteric arteries were rapidly removed and placed in cold (4°C) 

Krebs-Ringer bicarbonate solution containing the following (in mM): NaCl, 

135; KCl, 5; NaHCO3, 20; CaCl2, 2.5; MgSO4.7H2O, 1.3; KH2PO4, 1.2; 

EDTA, 0.026; glucose, 10. The solution was bubbled with 95% O2 – 5% 

CO2. 

 

Second and third order arteries were cleaned from surrounding connective 

tissue and cut into segments of about 4 mm in length. The vessels were 

pinned down to the bottom of an experimental chamber and were 

continuously superfused with the Krebs-Ringer solution (37 °C) of the 
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above composition, supplemented with NG-nitro-L-arginine (L-NA)(10-4 M) 

and indomethacin (5×10-5 M) to avoid interference from NO and 

prostacyclin, respectively. The solution was continuously gassed with a 

95% O2 – 5% CO2 gas mixture (pH ~ 7.4). The preparation was allowed to 

equilibrate for at least 60 min. 

 

 

3.2.2. Electrophysiological measurements 

Membrane potentials of the vascular smooth muscle cells were measured 

with sharp microelectrodes, pulled from filamented borosilicate glass 

tubings (Hilgenberg, Malsfeld, Germany) with a vertical pipette puller (David 

Kopf Instruments, Tujunga California, USA), and filled with 1 M KCl. 

Electrical signals were monitored on an oscilloscope and recorded with a 

pen recorder. Successful cell impalements were characterized by an 

extremely sharp voltage deflection on entering the cell and a fast return to 

the baseline upon withdrawal of the microelectrode. Values of the 

transmembrane potential (Em) were taken as the difference between the 

stabilized membrane potential after cell impalement and the zero potential 

upon dislodgement of the electrode from the cell. Changes in membrane 

potential produced by exposing the cells to acetylcholine in control 

conditions and after incubation with various substances (Ba2+, 

carbenoxolone, ouabain) were measured. 

 

Ba2+ was added to the superfusate for at least 10 min before application of 

acetylcholine to the preparations. In the experiments where the influence of 

carbenoxolone and the combined influence of carbenoxolone and ouabain 

were tested, the preparation was pre-exposed for at least 20 min to these 

drugs. 
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3.2.3. Drugs 

Acetylcholine chloride, carbenoxolone, indomethacin, L-NA, ouabain and 

BaCl2 were obtained from Sigma Chemical Co. (St. Louis, Mo). All 

concentrations mentioned are the final molar concentrations in the 

experimental chamber. Stock solutions of 10-2 M acetylcholine were made 

in 50 mM potassium hydrogen phthalate buffer, pH 4.0. Further dilutions 

(1:10 or 1:1000) were made in the control fluid. L-NA, BaCl2, and 

carbenoxolone were dissolved in water while stock solutions of 

indomethacin were made in anhydrous ethanol. Ouabain was added as a 

solid directly to the superfusate. 

 

 

3.2.4. Statistics 

Results are expressed as means ± SEM. Statistical evaluation was 

performed using student’s t test for paired or unpaired data, as appropriate. 

Values of P < 0.05 were considered significantly different. The number of 

preparations, each obtained from a different rat, is indicated as n. 

 
 

3.3. RESULTS 

In control conditions (in the presence of L-NA and indomethacin), the 

resting membrane potential of the mesenteric artery smooth muscle cells 

averaged -60.3 ± 0.9 mV (n = 30). Preliminary experiments showed that 

acetylcholine (3 µM) evoked submaximal hyperpolarizations of the 

membrane potential in these vessels. In endothelium-denuded arteries, the 

membrane potential does not appreciably change after application of 

acetylcholine 22. 
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3.3.1. Influence of carbenoxolone 

In a first series of experiments (n=10), we compared the hyperpolarization 

elicited by acetylcholine (3 µM) in the absence and in the presence of the 

gap junction inhibitor carbenoxolone (figure 1). In control conditions, the 

addition of the endothelium-dependent vasodilator to the superfusate 

induced a hyperpolarization of the smooth muscle cell membrane potential, 

averaging 7.8 ± 0.6 mV, to a peak value of -68.9 + 1.9 mV (n = 10). After 

reaching this peak change, the membrane potential slowly recovered 

towards its control level, recovery of which was accelerated by washout of 

the agonist (figure 1).  

 

 
Figure 1: Tracing of rat mesenteric artery smooth muscle cell membrane potential (Em) 
responses to application of acetylcholine (ACh, 3 µM) in control conditions and after pre-
exposure to carbenoxolone (cbx, 20 µM). 
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Pre-exposure to carbenoxolone (20 µM) did not significantly change the 

resting membrane potential (-61.9 ± 1.8 mV vs -61.6 ± 1.8 mV in this 

subset of experiments, n=10). In the presence of carbenoxolone, the 

hyperpolarization elicited by acetylcholine was significantly decreased. The 

membrane potential reached a peak value of -67.0 ± 1.9 mV, significantly 

different from -68.9 ± 1.9 mV (P < 0.05). The average value for the 

hyperpolarization in the presence of the gap junction inhibitor, 5.1 ± 0.7 mV 

(P < 0.001), represents a reduction to 64.4 ± 6.8 % of that in control 

conditions. 

 

 

3.3.2. Influence of Ba2+ and of Ba2+/carbenoxolone 

In the next series of experiments, the influence of carbenoxolone was 

tested after inhibition of the inward rectifying K+ channels with Ba2+. Pre-

exposure to 200 µM Ba2+ depolarized the resting Em to -50.5 ± 1.1 mV 

(mean depolarization of 9.5 ± 0.8 mV, n = 20). In the presence of the KIR 

inhibitor, the amplitude of the hyperpolarization caused by acetylcholine 

was more than doubled (-17.0 ± 1.0 mV as compared with -7.8 mV; n = 

20)(figure 2). A mean peak value of -67.4 ± 1.3 mV (n=20) was reached, 

being not significantly different from the membrane potential reached in the 

control acetylcholine exposures (-68.9 ± 1.9 mV, P = 0.51).  

After additional pre-exposure to carbenoxolone (20 µM), the 

hyperpolarization induced by acetylcholine was significantly reduced. The 

mean hyperpolarization (-15.4 ± 1.2 mV, n = 7, P < 0.005 from that in Ba2+ 

alone) represents 79.5 ± 3.2 % of the membrane potential response to 

acetylcholine in Ba2+ alone (figure 3). The mean peak value of -64.0 ± 3.0 
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mV was slightly but not significantly less negative than that reached in the 

control exposures (-68.9 ± 1.9 mV) or in Ba2+ alone (-67.4 ± 1.3 mV).  

 

 

 
Figure 2: Smooth muscle cell membrane potential (Em) hyperpolarization induced by 
acetylcholine (ACh, 3 µM) in control conditions and after pre-exposure to Ba2+ (200 µM). 

 

Since carbenoxolone apparently had less influence after inhibition of the KIR 

channels, a next series of experiments was performed with a higher 

concentration of the gap junction inhibitor. 

 

Application of 100 µM carbenoxolone in the continuous presence of Ba2+ 

increased the membrane potential by 3.4 ± 1.2 mV to -57.1 ± 0.7 mV (n=7). 

In the combined presence of 200 µM Ba2+ and 100 µM carbenoxolone, the 
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peak hyperpolarization induced by acetylcholine was reduced from 14.7 ± 

0.5 mV to 9.7 ± 0.9 mV (n = 7; P < 0.001; figure 4), or to 65.3 ± 5.0 % of the 

peak change observed in the absence of carbenoxolone in Ba2+. This 

degree of inhibition is comparable to that observed with the lower 

concentration of carbenoxolone in the absence of Ba2+ (cf. figure 3). The 

peak Em value reached after addition of acetylcholine in the presence of 

carbenoxolone and Ba2+ (-66.8 ± 1.1 mV, n = 7) was not significantly 

different from that in Ba2+ alone (-67.4 ± 1.3 mV).  

 

 

 
Figure 3: Comparison of the influence of carbenoxolone in the absence and the presence of 
Ba2+. The columns represent the hyperpolarization obtained in the presence of 20 µM or 100 
µM carbenoxolone (cbx 20 or 100) before and after pre-treatment with 200 µM Ba2+, as 
indicated by the lower horizontal bar. Values are means ± SEM of 7 to 10 experiments. In 
each experiment, the hyperpolarization observed in the absence of carbenoxolone served 
as the control reference (100%). * P<0.005; ** P<0.001). 
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Figure 4: Recording of the membrane potential (Em) responses to acetylcholine (ACh, 3 µM) 
in the presence of Ba2+ (200 µM) and in the combined presence of Ba2+ and carbenoxolone 
(cbx, 100 µM). Parallel vertical deflections in the trace indicate a moment of microelectrode 
dislodgement and reimpalement. 
 

 

3.3.3. Influence of ouabain and of ouabain + carbenoxolone 

In the next series of experiments, the influence of ouabain (0.5 mM) on the 

acetylcholine-induced hyperpolarization was investigated. In the presence 

of Ba2+, the additional application of ouabain depolarized the membrane 

potential by 4.0 ± 0.8 mV (n = 4). In the combined presence of Ba2+ and 

ouabain, the peak Em change elicited by acetylcholine was reduced to 10.0 

± 1.6 mV as compared with 13.1 ± 1.0 mV in Ba2+ alone. 
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Simultaneous application of ouabain and carbenoxolone (20 µM) in the 

continuous presence of Ba2+ depolarized the smooth muscle cells by 5.7 ± 

0.6 mV (n = 5). In the combined presence of Ba2+, ouabain and 

carbenoxolone, the acetylcholine-induced hyperpolarization was 

significantly reduced to 10.4 ± 2.0 mV (n = 6, P < 0.001) as compared with 

the amplitude measured in the presence of Ba2+ alone (-16.8 ± 2.7 mV, n = 

6). A representative experiment is depicted in figure 5. The peak Em value 

reached after addition of acetylcholine in the combined presence of 

ouabain, carbenoxolone and Ba2+ (-55.8 ± 3.5 mV, n = 6) was significantly 

different (P < 0.02) from that in Ba2+ alone (-67.4 ± 1.3 mV).  

 

 

 
Figure 5: Tracing of the smooth muscle cell membrane potential (Em) responses to 
acetylcholine (ACh, 3 µM) in the presence of Ba2+ and in the combined presence of Ba2+, 
ouabain (oua, 0.5 mM) and carbenoxolone (cbx, 20 µM).  
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3.4. DISCUSSION 

In the present study, we used the KIR channel inhibitor Ba2+ as a possible 

modulator of myoendothelial extracellular K+ concentration, and examined 

the contribution of gap junctional coupling to the acetylcholine-induced 

hyperpolarization. The main findings of the present study are that: (1) 

carbenoxolone partially inhibited the endothelium-dependent 

hyperpolarization elicited by acetylcholine, (2) after inhibition of the KIR 

channels, the acetylcholine-induced membrane potential response was 

more resistant to carbenoxolone, and (3) the combined application of Ba2+ 

and ouabain, either in the absence or in the presence of the gap junction 

inhibitor, did not abolish the acetylcholine-response. 

 

It is generally accepted that the mechanism of endothelium-dependent 

hyperpolarization is heterogeneous and varies among different species and 

vascular beds 1,2. Furthermore, the state of activation of a vessel might 

influence the way hyperpolarization comes about 23. In resting rat hepatic 

and small mesenteric arteries, K+ was proposed as the diffusible EDHF 5,20, 

while stimulated hepatic and mesenteric vessels would rely more on gap 

junctional coupling 5,20. Other studies, however, reported that gap junctions 

play a critical role in endothelium-dependent hyperpolarization of resting rat 

mesenteric arteries 24,25.  

 

In the present findings, carbenoxolone (20 µM) did not abolish the 

acetylcholine-induced membrane potential response to acetylcholine, but 

decreased the peak hyperpolarization by about 35 %. This is consistent 

with earlier relaxation experiments in rat mesenteric arteries 26, in which 

100 µM of the gap junction uncoupler 18α-glycyrhetinic acid (18α-GA) had 

no dramatic inhibitory effect on the endothelium-dependent relaxation. In 
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these arteries a depressed dilatation in response to acetylcholine was 

found with the uncouplers Gap27 (300 µM) and 18α-GA (100 µM) 16. Also 

membrane potential measurements confirm the rather limited effect of gap 

junctional uncouplers on the response to acetylcholine in this vessel. Thus, 

a small reduction (by about 25 %) of the acetylcholine-induced 

hyperpolarization of the vascular smooth muscle cells of resting rat small 

mesenteric arteries was observed with 100 µM of carbenoxolone 19. In this 

vessel the amplitude of the EDHF-mediated hyperpolarization was reduced 

to 33 % of the control after incubation with 300 µM Gap27 24. Another study 

recently described that 100 µM 18α-GA partially inhibited, while 300 µM 

carbenoxolone completely abolished the acetylcholine-induced 

hyperpolarization 25. However, since the endothelium-independent 

hyperpolarization in response to levcromakalim, a direct opener of ATP-

dependent K+ channels, was also inhibited by 300 µM carbenoxolone but 

not by 100 µM 18α-GA 25, the possibility that higher concentrations (300 

µM) of carbenoxolone have non-specific effects might be considered 12,27. 

 

In resting rat hepatic and mesenteric arteries, the endothelium-dependent 

hyperpolarization was described to be largely insensitive to carbenoxolone 

and Gap27 19, and completely inhibited by the combined application of Ba2+ 

and ouabain 19, indicating the importance of stimulation of KIR channels and 

Na/K-pumps by K+ ions liberated from the endothelium. Molecular 

experiments using the RT-PCR technique indicated that messenger RNA 

encoding for a KIR isoform (KIR2.1) is present in rat mesenteric vascular 

smooth muscle cells 28. In a second series of experiments, therefore, we 

examined the influence of Ba2+. Low concentrations of Ba2+ are known to 

block the KIR-current 21 and correspondingly, in the present study, the 

addition of 200 µM Ba2+ significantly depolarized the smooth muscle cell 

membrane. After inhibition of the KIR channels, the magnitude of the 
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acetylcholine-induced hyperpolarization was doubled. This is consistent 

with earlier results from our laboratory 29. Inhibition of the KIR channels of 

the vascular smooth muscle cells is expected to increase the membrane 

resistance and, therefore, to enlarge the impact of any hyperpolarizing 

current on the membrane potential. However, this decrease in membrane 

conductance is unlikely to double the amplitude of the acetylcholine-

induced hyperpolarization. An additional increase, therefore, results from 

the Ba2+-induced depolarization of the membrane potential, enlarging the 

driving force on K+. This depolarization is unlikely to drastically influence 

Na/K-pump activity since both the inwardly directed Na+ and the outwardly 

directed K+ electrochemical gradients are simultaneously altered. 

Therefore, the substantially increased acetylcholine-induced 

hyperpolarization in the presence of Ba2+ indicates that an EDHF acts by 

opening of a Ba2+-insensitive conductance rather than by pump stimulation. 

The additional application of ouabain, indeed, did not abolish the EDHF 

response, although it was somewhat decreased. These results are fully 

consistent with activation of an outwardly rectifying K+ current, insensitive to 

Ba2+ and (or) ouabain, underlying the hyperpolarization due to EDHF 12. 

 

After stimulation of hepatic and mesenteric arteries with phenylephrine, 

endothelium-dependent membrane potential responses became more 

sensitive to gap junction inhibitors 19. It was proposed, therefore, that the 

activation of Na/K-ATPases and KIR channels was hampered by a 

presumed K+-cloud in the vessel wall, originating from an increased basal 

K+-efflux from the smooth muscle cells in these conditions, and making the 

endothelium-dependent hyperpolarization more dependent on the 

alternative pathway, gap junctional coupling. In the present experiments 

with Ba2+, the reverse might be expected. Thus, on assuming a restricted 

diffusion of extracellular K+-ions within the vessel wall, blocking tonically 
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open KIR channels (as shown by the evoked membrane depolarization) by 

pre-exposure to Ba2+ might be expected to lower the steady state 

extracellular K+ concentration around the smooth muscle cells and, hence, 

to increase any K+ efflux dependent hyperpolarizing mechanism that is 

Ba2+-insensitive when switched on by EDHF. The present finding that, after 

pre-exposure to Ba2+, carbenoxolone was less efficient at inhibiting the 

acetylcholine-response is fully consistent with the view that in these 

conditions the endothelium-dependent hyperpolarization relies to less 

extent on gap junctional coupling. Therefore, the substantially potentiated 

EDHF-mediated hyperpolarization in the continuous presence of Ba2+ might 

also be due, in addition to the above mentioned influence on membrane 

conductance and on membrane potential, to a decreased steady state 

extracellular K+ concentration in the vessel wall. This would both enlarge 

the outward driving force on K+ ions and make more Na/K-pumps available 

for activation by EDHF. However, the experiments in which we additionally 

applied ouabain preclude a substantial role for Na/K-pump activation in the 

response to EDHF. To inhibit all Na/K-ATPase isoforms, high 

concentrations (0.5 mM) of the inhibitor were used 30,31. In the presence of 

Ba2+, the application of ouabain reduced acetylcholine-responses to the 

level observed in control conditions. Also after inhibition of both the gap 

junctional and the membrane inward rectifying K+ conductances by 

simultaneous treatment with carbenoxolone and Ba2+, the additional 

application of ouabain did not abolish endothelium-dependent 

hyperpolarization. These findings are not consistent with Na/K-pump 

activation by endothelially derived K+ ions being the main gap junction-

independent hyperpolarizing mechanism in these resting vessels. In this 

respect, increasing extracellular K+ concentration by 4 or 5 mM was 

previously found to consistently and reproducibly depolarize the smooth 

muscle cells of rat mesenteric arteries at rest 29. 
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Besides some possible contribution of increased Na/K-pumping to the 

EDHF-mediated hyperpolarization, several alternatives might underlie the 

somewhat diminished hyperpolarization after pre-exposure to ouabain. 

First, ouabain might cause a depolarization of the endothelial cell 

membrane, which decreases the driving force for Ca2+ entry upon 

stimulation with the agonist 32,33. Because it is generally accepted that a rise 

in intracellular Ca2+ is a crucial step in the release of endothelial factors 
34,35, a smaller response might be expected under these conditions. A 

second possibility for the inhibitory action of ouabain on the acetylcholine-

response arises from the reported attenuation of intercellular gap junctional 

communication exerted by this substance 36. Furthermore, besides 

decreasing the intracellular K+ concentration, ouabain pre-exposure 

eventually might increase the steady state extracellular K+ concentration in 

the vessel wall, both of which influence the outward gradient for K+ efflux. 

 

In conclusion, we found that gap junctions play some role in the 

endothelium-dependent hyperpolarization of rat small mesenteric arteries. 

Our data also demonstrate that this endothelium-derived hyperpolarization 

does not rely on the activation of KIR channels. Although a minor 

contribution of activation of Na/K-ATPases can not be excluded, our results 

rather point to the activation of an as yet unidentified but Ba2+-resistant 

conductance underlying a significant fraction of the endothelium-dependent 

hyperpolarization. Furthermore, our results are consistent with the 

hypothesis that basal K+ efflux might influence local extracellular K+ 

concentration within the vessel wall, pointing toward K+ channels mediating 

the endothelium-dependent hyperpolarization. It is stressed, however, that 

presumed local accumulations or depletions of extracellular K+ will not only 

influence the steady state activity of the Na/K-pumps (and their capacity to 
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respond to EDHF), but are likely to affect all transmembrane potassium 

fluxes. 
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Abstract 

Objective: In many blood vessels, stimulation of the endothelium with 
various vasoactive substances induces, besides the nitric oxide (NO) and 
prostacyclin pathways, a third mechanism evoking dilatation. It is based 
on hyperpolarization of the vascular smooth muscle cell membrane. In 
the present study, we investigated the existence of endothelium-
dependent hyperpolarization in small gastric arteries of the rat and 
explored its underlying mechanism. Methods: Membrane potentials 
were recorded by conventional microelectrode techniques in isolated 
segments of small gastric arteries, the normalized diameter of which 
was determined from the passive wall tension-internal circumference 
characteristics as measured with a myograph. Results: After blocking 
NO and prostaglandin synthesis, application of acetylcholine (3 x 10-7 M) 
resulted in a membrane hyperpolarization in endothelium intact but not 
in endothelium-denuded arteries. This membrane potential change was 
increased by pre-exposure to a low concentration (30 µM) of Ba2+, which 
selectively inhibits inward rectifying potassium channels. Moreover, the 
acetylcholine-induced hyperpolarization was unaffected by additional 
pre-exposure to high concentrations (0.5 mM) of the Na+/K+- ATPase 
inhibitor ouabain, which by itself caused a secondary slow endothelium-
independent hyperpolarization after an initial peak depolarization. 
Conclusions: We conclude that acetylcholine produces endothelium-
dependent hyperpolarization in gastric small arteries, which does not 
rely on activation of smooth muscle cell inward rectifying K+ channels or 
Na+/K+-pumps, and might prove to be another important regulator of 
gastric mucosal blood flow.    
 
Keywords: blood flow, vascular smooth muscle membrane potential, 
vasoactive agents, endothelial factors  
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4.1. INTRODUCTION 

Gastric mucosal blood flow is of primary importance in maintaining the 

integrity of the mucosa. The blood provides oxygen, nutrients and 

gastrointestinal hormones to maintain mucosal function and turnover. The 

production and secretion of mucus, and the secretion of bicarbonate ions 

which protect the mucosa, are fully dependent on this blood flow. Moreover, 

the circulating blood removes waste materials and back-diffusing hydrogen 

ions. Therefore, disturbances in the mucosal microcirculation can result in 

mucosal injury and influence the development of peptic ulcers 1. 

  

An increase in gastric mucosal blood flow is brought about by dilation of 

submucosal arterioles. Systemic as well as local factors such as 

prostaglandins, leukotrienes and other endogenous chemical mediators of 

the mucosa influence arteriolar tone. Moreover, gastric blood flow is 

substantially increased by stimulation of cholinergic vasodilator nerves, 

within seconds 2, and the reduction in blood flow immediately after 

vagotomy suggests a basal vasodilatory tone exerted by the vagus nerve 3. 

Often, the vasodilators act primarily on the arteriolar endothelial cells to 

stimulate the production of endothelium derived relaxing substances. 

 

During the last two decades, the important paracrine role of the vascular 

endothelium in regulation of blood vessel tone has become increasingly 

clear. Nitric oxide (NO), formed by the constitutive NO synthase (NOS) in 

response to stimulation by acetylcholine and other vasodilators, is a well 

known endothelium-dependent relaxing factor 4,5, also involved in the 

regulation of the gastric mucosal blood flow 6-8. Besides NO, prostacyclin 

(PGI2) is liberated by the endothelial cells upon stimulation with various 

agonists, similarly eliciting vasorelaxation 9. Moreover, in the presence of 

 99



Chapter 4 

inhibitors of NOS and prostaglandin synthesis, endothelium-dependent 

dilation persists in most arteries. This NO- and PGI2-independent relaxation 

is associated with a hyperpolarization of the membrane of the vascular 

smooth muscle cells 10,11. Hyperpolarization of the membrane potential 

immediately brings about dilatation of blood vessels 12. It decreases the 

open probability of voltage dependent Ca2+ channels, lowering Ca2+ influx 
13. In addition, it reduces Ca2+ release from internal stores 14 and also 

diminishes the impact of intracellular Ca2+ on the contractile proteins by 

altering their Ca2+ sensitivity 15. 

 

The mechanism underlying the endothelium-dependent hyperpolarization in 

various vessels is still debated (for recent reviews, see refs. 16-18. In hepatic 

and small mesenteric arteries of the rat, a transient rise in K+ concentration 

in the restricted myoendothelial extracellular space, resulting from K+ efflux 

through agonist-induced activation of Ca2+-dependent K+ channels on the 

endothelial cells, was reported 19,20 to act as endothelium derived 

hyperpolarizing factor (EDHF). Indeed, in some vessels, small increases in 

extracellular K+ might influence the inward rectifier and stimulate the 

Na+/K+-ATPases of vascular smooth muscle cells, producing the expected 

membrane potential change. In the superior mesenteric artery of the rabbit, 

however, it was shown that acetylcholine-induced EDHF-mediated 

relaxation requires the transfer of a cytosolic factor from the endothelial 

cells to the smooth muscle cells via heterocellular gap junctions 21. In 

smaller arteries, such as intestinal submucosal arterioles, the flow through 

gap junctions of hyperpolarizing current from endothelial cells might be 

sufficient to hyperpolarize the electrotonically coupled smooth muscle cells 
22,23. It appears, therefore, that different hyperpolarizing mechanisms may 

exist in different vascular beds. Moreover, the smooth muscle cells of some 

 100



Endothelium-dependent hyperpolarization in gastric arteries 

arteries such as the femoral artery of the rat are devoid of endothelium-

dependent hyperpolarization responses 24.   

 

In previous tension measurements, we showed endothelium-dependent, 

NO- and PGI2-independent vasorelaxations to occur in isolated small 

gastric arteries stimulated with acetylcholine 25. In the present study, we 

extended these observations by directly measuring the membrane potential 

responses of the gastric arteriolar smooth muscle cells to acetylcholine 

using electrophysiological techniques. Moreover, the endothelium-

dependent hyperpolarization was further characterized by investigating the 

involvement of inward rectifying K+ channels and Na+/K+-ATPases by the 

use of the blockers Ba2+ and ouabain, respectively. To the best of our 

knowledge, this study reports the first detailed measurements of 

endothelium-dependent membrane potential responses in small gastric 

arteries.  

 

 

4.2. MATERIALS AND METHODS 
 
4.2.1. Animals 

Young female Wistar rats (200-250 g body weight) were purchased from 

Iffa Credo (Brussels, Belgium). The animals were treated in accordance 

with the Guide for the Care and Use of Laboratory Animals published by 

the US National Institutes of Health (NIH Publication No 85-23, revised 

1996).  
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4.2.2. Preparation 

Experiments were approved by the ethical committee on animal research of 

Ghent University. Animals were killed with an intraperitoneal injection of a 

lethal dose (200 mg/kg) of pentobarbitone and laparotomized. The stomach 

was rapidly excised and transferred to a chilled medium of the following 

composition (mM): NaCl 135, KCl 5, NaHCO3 20, CaCl2 2.5, MgSO4.7H2O 

1.3, KH2PO4 1.2, EDTA 0.026 and glucose 10, gassed with 95% O2, 5% 

CO2.  Several segments of first and second order branches of the gastric 

artery were dissected and transferred to fresh oxygenated medium. After 

removal of the adherent tissue, one of these segments was reduced to 1.5 

mm, taking care not to injure the endothelium, and transferred to a small 

recording chamber where it was continuously superfused at 35 °C with 

control fluid. The control fluid consisted of the isolation medium 

supplemented with NG-nitro-L-arginine (10-4 M) and indomethacin (5 x 10-5 

M), to exclude interference from NO and prostanoids, respectively. In some 

experiments, the endothelium was removed from the arteries by rubbing 

the intimal surface.   

 

For electrophysiological recordings, the preparation was pinned down to 

the silicone bottom of the experimental chamber using small pins. Near 

both attachment sides, the vessel was incised such as to facilitate later 

access of acetylcholine to the endothelium. After mounting, the vessel 

segment was allowed to equilibrate for at least 60 min before starting the 

microelectrode impalements. Microelectrode penetrations were performed 

from the adventitial side. At the end of the experiments, some representative 

vessels were moved to an automated wire myograph (model 500A, JP 

Trading, Aarhus, Denmark) in order to calculate their internal diameter. For 

this purpose, two stainless steel wires were guided through the lumen, one 
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was connected to a force transducer and the other fixed to a micrometer, and 

the passive wall tension-internal circumference characteristics were 

determined. From this relation, the mean internal diameter of these vessels at 

an effective transmural pressure of 100 mm Hg was calculated according to 

the method of Mulvany and Halpern 26.  

 

 

4.2.3. Electrophysiological measurements 

Transmembrane potentials were measured with standard microelectrode 

techniques, as described previously 27,28. Briefly, conventional micro-

electrodes were pulled with a vertical pipette puller (David Kopf, model 750, 

Tujunga, CA) from 1 mm o.d. filamented glass tubings (Hilgenberg, 

Germany). Micropipettes were filled with 1 M KCl and connected to the input 

stage of a laboratory made MOS/FET operational amplifier. The electrical 

resistance of the microelectrodes, measured in the normal Krebs-Ringer 

solution, ranged from 40 to 80 MΩ. The measured potential was followed on 

an oscilloscope and traced with a pen recorder at low speed. Absolute values 

of membrane potential were taken as the difference of the stabilized potential 

after cell impalement and the zero potential upon withdrawal of the 

microelectrode from the cell. Changes in membrane potential produced by 

applications of acetylcholine in control conditions and after experimental 

intervention (Ba2+, ouabain) were usually measured in the same cell during 

continuous recordings. Barium chloride was added to the superfusate for at 

least 10 min before challenging the preparations with acetylcholine. With 

ouabain, pre-exposure time was minimally 5 min but varied between 

experiments, as described in the Results. Exposures to Ba2+ and 

acetylcholine were made by addition of these substances from the 

appropriate stock solutions to the superfusion solution.  
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4.2.4. Chemicals 

Indomethacin, L-NA, acetylcholine chloride, ouabain and barium chloride 

were obtained from Sigma (St. Louis, MO). All concentrations are expressed 

as final molar concentrations in the superfusion chamber. Stock solutions of 

L-NA and BaCl2 were made in pure water, indomethacin was dissolved in 

anhydrous ethanol. Acetylcholine was dissolved in 50 mM potassium 

hydrogen phthalate buffer, pH 4.0, as a 10-2 M solution. Further dilutions (1:10 

or 1:100) were made in the control fluid immediately before addition of 

aliquots to the superfusate. Ouabain was dissolved directly in the warmed 

superfusion solution. 

 

 

4.2.5. Statistics  

Results are expressed as means + SEM. Statistical significance was evalua-

ted using Student's t test for paired or unpaired observations, as appropriate, 

a P value < 0.05 indicating a significant difference; n indicates the number of 

preparations, each obtained from a different animal. 

 

 

4.3. RESULTS 

The small gastric arteries used in this study had an average normalized 

diameter (at a transmural pressure of 100 mm Hg) of 214 ± 26 µm, as 

determined in 4 preparations at the end of the experiments (see Materials 

and Methods).  Smooth muscle cells of such arteries, superfused wih the 

normal L-NA (10-4 M) and indomethacin (5x10-5 M) containing Krebs-Ringer 

solution, had a stable resting membrane potential with a mean value of -

64.5 ± 1.3 mV (n=15).  
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Exposure of intact vessels to a submaximal concentration of acetylcholine 

(3x10-7 M), a concentration previously shown to relax norepinephrine 

preconstricted gastric arteries by about 50% of the developed active 

tension, induced a transient peak hyperpolarization of 5.1 ± 0.6 mV (n=14). 

In the continuous presence of the vasodilator, the membrane potential 

slowly recovered towards its control level. Recovery was accelerated by 

washout of the agonist (figure 1A).  

 

 

 

 

Figure 1: Endothelium-dependent hyperpolarization induced by acetylcholine (ACh). Typical 
tracings of the membrane potential (Em) recorded in smooth muscle cells from small gastric 
arteries during application of 0.3 µM ACh in the presence (A, C) and the absence (B) of a 
functional endothelium (E) and after pre-exposure to 30 µM of Ba2+, an inhibitor of inward 
rectifying K+ channels (C). Notice the larger endothelium-dependent membrane potential 
response in the presence of Ba2+. 
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In endothelium-denuded arteries (cf. figure 1B) the smooth muscle cells 

had a mean resting membrane potential not significantly different from the 

control vessels (-65.0 ± 3.1 mV, n=4). Hyperpolarization of the membrane 

potential did not occur after exposing endothelium-denuded arteries to 

acetylcholine. 

 

In a next series of experiments (n=8), the influence on the membrane 

potential and its response to acetylcholine of pre-exposure to low 

concentrations of Ba2+, known to inhibit the inward rectifying K+ channels, 

was tested. Figure 1C shows an original trace from a representative 

experiment. Superfusion with 30 µM Ba2+ containing fluid caused a 

depolarization of the resting membrane potential by 5.6 ± 0.5 mV. Pre-

exposure to this inhibitor, however, did not decrease the magnitude of the 

endothelium-dependent hyperpolarization elicited by acetylcholine. 

Conversely, in this series of experiments an increase of the endothelium-

dependent hyperpolarization was observed. The peak hyperpolarization 

induced by acetylcholine in the presence of Ba2+ averaged 6.2 ± 0.8 mV, 

vs. 4.7 ± 0.6 mV in control conditions in this subset of arteries. This 

difference is statistically significant (p < 0.05). 

 
Application of a large concentration (0.5 mM) of ouabain in the continuous 

presence of Ba2+ produced a transient peak depolarization followed by a 

slow return of the membrane potential towards baseline. Traces from two 

succesfull long-term impalements in which the microelectrode was kept in a 

cell for several hours are shown in figure 2A and 2B. Due to the more 

compressed time scale used to construct these figures, acetylcholine-

induced hyperpolarizations merely appear as inverted peaks. 
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Figure 2: Influence of additional pre-exposure to the Na+/K+-ATPase inhibitor ouabain. 
Original recordings of the membrane potential (Em) recorded in smooth muscle cells of small 
gastric arteries, showing its responses to superfusion with acetylcholine (0.3 µM) containing 
fluid (as indicated by the short horizontal lines) in control conditions, in the presence of Ba2+ 
(30 µM), and during and after additional exposure to ouabain (0.5 mM). 
 
 

Ouabain depolarized the smooth muscle cells by 6.4 ± 0.7 mV (n=8). When 

acetylcholine was applied shortly after exposure to ouabain, at a time when 

the membrane potential was still more depolarized with respect to its level 

in Ba2+ alone (cf. figure 2A and 2B), the endothelium-dependent 

hyperpolarization averaged 7.0 ± 1.7 mV (n=4), a value not significantly 

different from that observed in the absence of ouabain. After prolonged pre-

exposure to ouabain, acetylcholine still evoked membrane 

hyperpolarization, averaging 4.3  ± 0.8 mV (n=4), a value slightly but not 

significantly smaller than that observed in the absence of ouabain. Effective 

inhibition of the Na+/K+-pump by ouabain was additionally demonstrated by 
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the transient hyperpolarizations of the smooth muscle cells after washout of 

the drug, being, evidently, more important with increasing exposure time to 

the inhibitor (figure 2A and 2B). From all ouabain experiments, the mean 

values for the resting membrane potential before application of 

acetylcholine and for the magnitude of the peak vasodilator-induced 

hyperpolarization are summarized in figure 3. In the combined presence of 

Ba2+ and ouabain, the endothelium-dependent hyperpolarization evoked by 

acetylcholine was not significantly different from that in Ba2+ alone, or from 

that in control conditions. 

 

 

Figure 3: Acetylcholine-induced hyperpolarizations of gastric artery smooth muscle cells in 
control conditions (Co), in the presence of barium (Ba2+, 30 µM) and after additional 
application of ouabain (Ba2+/ouabain). Data are means + SEM (n=8) and represent the 
membrane potential (Em) values before and after application of acetylcholine. * Significantly 
different from control value (P<0.05). 
 

It might be argued that the rather unexpected secondary hyperpolarization 

of the membrane potential in the continuous presence of 0.5 mM ouabain is 

due to incomplete inhibition of all membrane Na+/K+-ATPases, some 
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residual pump activity being stimulated by the rise in intracellular sodium 

concentration caused by the inhibited pumps. To test this possibility, the 

ouabain concentration was doubled during the slow hyperpolarization 

phase in some experiments. Increasing the concentration of the glycoside 

from 0.5 to 1 mM did not further depolarize the membrane or otherwise 

modify the course of the slow hyperpolarization (figure 4A). Moreover, the 

slow membrane potential change in the presence of ouabain was 

independent of an intact endothelium, as depicted in figure 4B (n=4).  

 

 

Figure 4: Typical tracings showing the effect of doubling the ouabain concentration (A) and 
of endothelium (E) removal (B) on the membrane potential (Em) of gastric artery smooth 
muscle cells. Vessels were exposed to Ba2+ (30 µM) throughout. Short horizontal lines in A 
show times of application of acetylcholine (0.3 µM). 
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4.4. DISCUSSION 

The membrane potential of the smooth muscle cells is an important 

determinant of arterial tone 12. In this study, the resting membrane potential 

of smooth muscle cells of small gastric arteries was measured, and the 

membrane response to cholinergic stimulation of the intact vessel was 

quantified and characterized.  

 

A physiological concentration (3x10-7 M) of acetylcholine, previously shown 

to relax norepinephrine-stimulated arteries in an NO- and prostacyclin-

independent way to about 50 % of their preconstriction level, caused a 5 

mV hyperpolarizing shift of the smooth muscle cell membrane potential 

from a resting level of about -65 mV. The experiments with the 

endothelium-denuded arteries showed that the acetylcholine-induced 

hyperpolarization was completely endothelium-dependent, and that the 

agonist did not exert a direct depolarizing action on the smooth muscle 

cells as has been reported for some arteries.  These direct measurements, 

therefore, confirm the existence of endothelium-dependent 

hyperpolarization in gastric arteries, as has been suggested from earlier 

tension measurements 25,29. 

 

The magnitude of the membrane potential response to the submaximal 

acetylcholine concentration might seem relatively small. However, it should 

be noted that a change in membrane potential of just a few millivolts can 

result in a substantial change in vessel diameter 30. In rat mesenteric 

arteries in the presence of NG-nitro-L-arginine, an acetylcholine induced 

hyperpolarization of 1 mV corresponded to a 4.3 % decrease of the induced 

tone 31. This implies, therefore, that the endothelium-dependent 

hyperpolarization as measured in the present study makes an important 
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contribution to the regulation of the diameter of small gastric arteries in situ. 

Moreover, alterations of the membrane potential generally evoke faster 

changes in arteriolar diameter than those mediated by second messengers, 

which more slowly influence gastric blood flow. 

 

Low concentrations of Ba2+ are known to specifically block the inward 

rectifier K+ current in vascular tissue. In the present conditions, we found 30 

µM of Ba2+ to significantly depolarize the smooth muscle cells of small 

gastric arteries, indicating that the inward rectifier contributes to the setting 

of the resting membrane potential in these vessels. After inhibition of the 

inward rectifyer, however, endothelium-dependent smooth muscle cell 

responses to submaximal concentrations of acetylcholine were not inhibited 

but significantly increased. This excludes a role for inward rectifying K+ 

channels in the acetylcholine-induced endothelium-dependent 

hyperpolarization of small gastric arteries. It also suggests that in tonically 

contracted vessels, in which the membrane potential is similarly 

depolarized with respect to resting conditions, endothelium-dependent 

hyperpolarization might be larger than observed in the resting arteries as 

used in the present study. The increased response might be due to the 

enhanced driving force on intracellular K+ after Ba2+-induced depolarization, 

or to the diminished total membrane conductance after blocking the open 

K+ channels with Ba2+, enlarging the impact of any hyperpolarizing current 

on the smooth muscle cell membrane potential. With submaximal 

concentrations of acetylcholine, this current is not expected to drive the 

membrane potential to values as negative as EK, explaining the less 

negative absolute level of membrane potential after the Ba2+-induced 

depolarization. Similarly, in smooth muscle cells from guinea-pig coronary 

arteries, 100 µM BaCl2 increased EDHF-attributed hyperpolarization 32, 

while in cells of ilial submucosal arterioles and of mesenteric arterioles of 
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the same species 500 µM Ba2+ was used to depolarize the membrane 

potential away from the K+ equilibrium potential in order to observe 

significant endothelium-dependent hyperpolarizations after application of 

acetylcholine 22,33. 

 

In gastric arteries, the additional inhibition of the Na+/K+-pump with 0.5 mM 

ouabain further depolarized the smooth muscle cells, as expected from the 

sudden loss of electrogenic pump activity. Since the Kd value for ouabain of 

the ubiquitous low affinity α1-isoform containing Na+/K+-ATPase in rat tissue 

is about 15 µM 34, and the other isoenzymes are much more sensitive to 

the cardiotonic steroid 35, it can reasonably be assumed that in the present 

conditions all pump isoenzymes are effectively inhibited by 0.5 mM of the 

cardiotonic steroid. In mesenteric arteries of the rat, the vasodilation 

occurring on readmission of K+ ions after K+-free perfusion was completely 

inhibited by 100 µM of ouabain 36. Moreover, in the present study the 

complete inhibition of Na+/K+-ATPase activity by 0.5 mM ouabain was 

directly verified by the lack of additional depolarization on doubling the 

ouabain concentration.  

 

In the combined presence of barium and ouabain, the magnitude of the 

endothelium-dependent hyperpolarization induced by acetylcholine was not 

significantly changed. These observations strongly suggest that small 

gastric artery smooth muscle cells do not rely on their inward rectifiers and 

Na+/K+-pumps to produce this hyperpolarization. In a previous study, it was 

found that small increases in extracellular K+ concentration were unable to 

consistently relax preconstricted gastric arteries 25. Taken together, these 

findings argue against a role for extracellular K+ to act as an EDHF in this 

preparation.  
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In the prolonged presence of ouabain, the membrane potential slowly 

became more hyperpolarized than before exposure to the cardiotonic 

glycoside, in an endothelium-independent way. A plausible explanation for 

this observed shift is that the ouabain-induced rise in intracellular Na+ 

concentration leads, via an influence on the Na/Ca exchanger, to a 

secondary rise in intracellular Ca2+ concentration, as has been documented 

in several cell types. This raised Ca2+ is expected to subsequently open the 

Ca2+-dependent K+ channels of the smooth muscle cell. In the pancreatic B-

cell, e.g., ouabain was shown to increase 86Rb (used as a tracer for K+) 

outflow 37. Thus, a gradually increasing membrane K+ conductance might 

explain both the slow hyperpolarization as well as the observed tendency 

for the endothelium-dependent hyperpolarization to decrease in magnitude 

after prolonged ouabain exposure. 

 

In a previous study, shorter exposures to ouabain were found to inhibit the 

EDHF-mediated relaxation of gastric arteries 25. The present measurements 

showing that the endothelium-dependent hyperpolarization of the vascular 

smooth mucle cells is not affected by the pump inhibitor suggest, therefore, 

a defective coupling between the change in membrane potential and the 

mechanical response, presumably involving a hampered Ca2+ extrusion. 

Moreover, they stress the importance of electrophysiological 

measurements when studying the EDHF phenomenon 38. 

 

In summary, we have shown that acetylcholine hyperpolarizes the 

membrane potential of the vascular smooth muscle cells of small gastric 

arteries. This electrical change, expected to exert a substantial influence on 

vessel tone and resistance, is entirely dependent on an intact endothelium, 

but independent from the endothelial NO/prostacyclin pathways. The 

mechanism underlying the endothelium-dependent hyperpolarization does 
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not seem to rely on the stimulation of inward rectifying K+ channels or 

Na+/K+-pumps, as was shown for rat hepatic arteries. Endothelium-

dependent hyperpolarization might prove to be another important and rapid 

regulator of gastric mucosal blood flow, of utmost importance in the 

maintenance of mucosal function and integrity. 
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Abstract 
 
Endogenous as well as synthetic cannabinoids have potent vasodilatory 
actions in a variety of vascular preparations. Their precise mechanism of 
action is as yet unclear but several studies point to the activation of type 
1 vanilloid (TRPV1) receptors on primary afferent perivascular nerves, 
stimulating the release of calcitonin gene-related peptide (CGRP). Given 
the documented gastroprotective function of these nerves, and the 
various gastrointestinal effects reported for cannabinoids, we explored a 
possible link between these systems in the gastric circulation by 
comparing responses of small gastric arteries to cannabinoids and to 
CGRP using conventional microelectrode techniques. Exposure of small 
gastric arteries to the stable endocannabinoid analogue 
methanandamide caused a hyperpolarization of the vascular smooth 
muscle cells, which was completely abolished by the vanilloid receptor 
antagonist capsazepine (p<0.01). Exposure to exogenous CGRP evoked 
fully reproducible (p>0.05) hyperpolarizations with similar time course, 
unaffected by capsazepine. Preincubation with glibenclamide, an 
inhibitor of ATP-sensitive potassium (KATP) channels, reversed both 
responses to methanandamide (p<0.01) and CGRP (p<0.05). Similar 
results were found in rat mesenteric arteries. These findings show that 
cannabinoids stimulate TRPV1 receptors, presumably causing the release 
of CGRP, which hyperpolarizes the smooth muscle cells by activation of 
KATP channels. Since membrane hyperpolarization is a powerful mediator 
of vasorelaxation, this novel pathway might prove to be an important 
mechanism affording gastroprotection. 
 
Keywords: vascular smooth muscle membrane potential, vasoactive 
agents, endothelial factors, blood flow, cannabinoids
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5.1. INTRODUCTION 

Plant derived, synthetic as well as endogenous cannabinoids have a 

pronounced influence on gastrointestinal motility and secretion 1-4. Effects 

reported for stimulation of type I cannabinoid receptors (CB1) include 

inhibition of gastric acid secretion and reduction of the development of 

stress-induced gastric ulcers in rats 5,6. The integrity of the gastric mucosa, 

however,  also depends on an appropriate microcirculatory blood flow. 

Indeed, the production and secretion of mucus, and the secretion of 

bicarbonate ions which protect the mucosa, are fully dependent on this 

circulation. Moreover, the blood removes waste materials and back-

diffusing hydrogen ions. Disturbances in the mucosal microcirculation 

therefore lead to mucosal injury and peptic ulcers 7. Among the defence 

mechanisms, a group of sensory neurons originating from the dorsal root 

ganglia constitute a separate alarm system in the stomach 8. They express 

type 1 vanilloid (TRPV1) receptors, which are activated by noxious stimuli 

including molecules with a vanillyl moiety such as capsaicin, but also by 

heat and protons. Stimulation of this receptor triggers the local release of 

neuropeptides from their peripheral endings, the most important of which is 

the powerful vasodilator calcitonin gene related peptide (CGRP) 9. CGRP 

containing nerves are also present in the human gastric mucosa, and with 

increased density at the margin of ulcers 10. The gastroprotective role of 

CGRP released from sensory nerves has been shown in various studies, 

and results from the rise in mucosal blood flow the peptide produces11-13. 

CGRP might act directly on the vascular smooth muscle cells and/or 

stimulate the endothelium to release relaxing substances such as nitric 

oxide (NO), prostacyclin and the as yet unidentified endothelium-derived 

hyperpolarizing factor (EDHF) 14,15. 
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Since the original observation that vasorelaxation by cannabinoids can be 

mediated by stimulation of TRPV1 receptors on CGRP containing 

perivascular nerves 16, several recent studies have documented TRPV1 

stimulation by the endogenous CB1 agonist anandamide, and stressed that 

the agent should be considered both an endocannabinoid and an 

endovanilloid 17,18. In a previous study, we showed that the cannabinoids 

anandamide and its stable derivative methandamide produce a substantial 

hyperpolarization of smooth muscle cells of isolated small mesenteric rat 

arteries, an effect attributed to cannabinoid-induced release of CGRP from 

the perivascular nerves 19. CGRP-induced hyperpolarization of vascular 

smooth muscle cells, indeed, immediately brings about dilation of the blood 

vessels. 

 

Given the documented important role played by primary afferent nerves in 

the gastric mucosa, we explored the influence of cannabinoids on the 

membrane potential of smooth muscle cells in isolated small gastric 

arteries, compared this with their response to exogenous CGRP, and 

investigated the involvement of TRPV1 receptors using the specific 

antagonist capsazepine. Their effect was compared with that of the 

endothelium-dependent vasodilator acetylcholine. To the best of our 

knowledge, this study reports the first detailed measurements of membrane 

potential responses to cannabinoids and to CGRP in gastric arteries. It 

shows that cannabinoids locally stimulate TRPV1 receptors releasing a 

substance like CGRP, which hyperpolarizes the blood vessels by opening 

ATP-dependent potassium channels. This local action of cannabinoids 

might prove to constitute an alternative pathway affording gastroprotection.  
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5.2. MATERIALS AND METHODS 
 
5.2.1. Preparations 

Small gastric and mesenteric arteries from female Wistar rats (180 – 280 g) 

were used. The animals were treated in accordance with the Guiding 

Principles in the Care and Use of Animals and the experiments were 

approved by the ethical committee on animal research of Ghent University. 

The animals were anesthetized by a lethal dose (200 mg kg-1) of 

pentobarbitone and killed by cervical dislocation. Both the stomach and the 

mesentery were rapidly excised and placed in cold (4°C) normal Krebs-

Ringer bicarbonate solution, bubbled with a 95% O2 – 5% CO2 gas mixture. 

Second and third order branches of the gastric and mesenteric arteries 

were dissected free and transferred to fresh and gassed medium, where 

they were cleaned from surrounding connective tissue and cut into 

segments of about 2 mm in length.  

 

 

5.2.2. Tension measurements 

For tension measurements, the arterial segments were mounted into the 

organ bath of an automated dual small-vessel myograph (model 500 A; J. 

P. Trading, Aarhus, Denmark), filled with 10 ml Krebs-Ringer bicarbonate 

solution. Two stainless steel wires (40 µm in diameter) were guided through 

the lumen of the segments. Each wire was fixed to a holder of the 

myograph: one holder was connected to a micrometer which was used to 

change the distance between the wires, the other holder was connected to 

a force-displacement transducer to measure the isometric tension changes. 

After mounting, the preparations were allowed to equilibrate for at least 30 

min in warmed (37 °C), oxygenated (5% CO2 in O2; pH 7.4) Krebs-Ringer 
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bicarbonate solution. At the start of each experiment the vessels were 

stretched to their optimal lumen diameter for active force development, as 

calculated on the basis of the passive wall tension-internal circumferences 

relationship 20. Subsequently, the arteries were repeatedly activated with a 

Krebs-Ringer bicarbonate solution containing 120 mM K+ and 10-5 M 

norepinephrine to assess maximal contractility. After this preparation 

procedure, the gastric arteries were contracted by adding 10-5 M 

norepinephrine to the standard Krebs-Ringer bicarbonate solution in the 

organ bath. When a stable contraction was reached, a concentration-

response curve was constructed by cumulative additions of 

methanandamide.  

 

 

5.2.3. Electrophysiological measurements 

For the membrane potential measurements, the isolated segments were 

pinned down to the silicone bottom of an experimental chamber and were 

continuously superfused with warmed (35 °C), oxygenated (5% CO2 in O2; 

pH 7.4) Krebs-Ringer solution, supplemented with NG-nitro-L-arginine (L-

NA, 10-4 M) and indomethacin (5 × 10-5 M) to rule out the interference of NO 

and prostanoids, respectively. After mounting, the preparations were 

allowed to equilibrate for at least 60 min before starting the 

electrophysiological measurements. 

 

Membrane potentials of the vascular smooth muscle cells were measured 

using standard microelectrode techniques as described previously 21,22. 

Conventional sharp microelectrodes were pulled from filamented 

borosilicate glass tubings (Hilgenberg, Germany) with a vertical pipette 

puller (David Kopf Instruments, Tujunga California). Micropipettes were 
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filled with 1 M KCl. Their electrical resistance, measured in normal Krebs-

Ringer solution, ranged from 40 to 80 MΩ. The measured potential was 

monitored on an oscilloscope and traced with a pen recorder. Successful 

impalements of the vascular smooth muscle cells were characterized by a 

sharp voltage deflection on entering the cell and a fast return to the 

baseline upon dislodgement of the microelectrode from the cell. Absolute 

values for the membrane potential (Em) were taken as the difference of the 

stabilized potential after cell impalement and the zero potential as obtained 

upon electrode dislodgement. At the beginning of each experiment, the 

presence of a functional endothelium was assessed by the ability of 

acetylcholine (3 µM) to induce a substantial hyperpolarization. Changes in 

membrane potential produced by application of anandamide (10 µM), 

methanandamide (10 µM), CGRP (3 × 10-9 M) or acetylcholine (3 µM) in 

control conditions and in the presence of various inhibitors (capsazepine, 3 

µM; glibenclamide, 10 µM) were measured. Given the technical difficulty of 

the experiments and the limited time period a cell impalement could be 

maintained, only one concentration of the respective dilator was tested. 

Glibenclamide was added to the superfusate for at least 10 min before 

application of a vasodilator, whereas in the experiments in which the 

influence of capsazepine was tested, pre-exposure time was minimally 20 

min. All tested agents were added from the appropriate stock solutions to 

the superfusate. 

 

 
5.2.4. Chemicals 

All experiments were performed in a Krebs-Ringer bicarbonate solution of 

the following composition (in mM): NaCl 135, KCl 5, NaHCO3 20, CaCl2 2.5, 

MgSO4.7H2O 1.3, KH2PO4 1.2, EDTA 0.026 and  glucose 10. Acetylcholine 
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chloride, anandamide, indomethacin, L-NA, norepinephrine, capsazepine 

and glibenclamide were purchased from Sigma-Aldrich (St. Louis, MO). 

Methanandamide was obtained from two different sources: Research 

Biochemicals International (Natick, MA) and Tocris (Bristol, UK). CGRP 

was obtained from Tocris (Bristol, UK). Acetylcholine was dissolved in 50 

mM potassium hydrogen phtalate buffer, pH 4.0. L-NA, norepinephrine and 

CGRP were dissolved in water; indomethacin, anandamide, 

methanandamide and capsazepine in anhydrous ethanol and glibenclamide 

in dimethyl sulfoxide. All concentrations mentioned are expressed as final 

molar concentrations in the experimental chamber. 

 

 
5.2.5. Statistics 

Data were computed as means ± S.E.M. and evaluated statistically using 

student’s t-test for paired or unpaired samples or repeated measures 

ANOVA with Bonferroni’s post hoc test when appropriate. A p value < 0.05 

indicates a significant difference. n represents the number of preparations 

tested, each obtained from a different rat. In the tension measurements, 

relaxation is expressed as the percentage decrease in norepinephrine-

induced tone. 

 

 

5.3. RESULTS 
 
5.3.1. Tension measurements 

The small gastric arteries as used in the present relaxation measurements 

had a mean normalized diameter of 307.4 ± 28.5 µm (n=5). After 

norepinephrine (10-5 M) had induced a stable contraction (10.2 ± 1.8 mN; 
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n=5), cumulative addition of the anandamide analogue methanandamide 

(from 10-7 M to 10-5 M) elicited concentration-dependent relaxations (n=5; 

figure 1). Since hyperpolarization is one mechanism to induce relaxation, 

we further performed electrophysiological measurements to investigate and 

characterize the influence of the cannabinoid on the smooth muscle 

membrane potential of gastric arteries. 

 

 

 
Figure 1: Relaxation induced by methanandamide in rat gastric arteries. Concentration-
response curve for methanandamide (n=5) in arteries precontracted with norepinephrine. 
Relative responses are expressed as the percentage relaxation induced by the cannabinoid. 
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5.3.2. Electrophysiological measurements 
 
5.3.2.1. Characterization of the membrane electrical response 

to the cannabinoid methanandamide and to CGRP 
 

In the continuous presence of L-NA (10-4 M) and indomethacin (5 × 10-5 M), 

smooth muscle cells of rat small gastric arteries had a stable resting 

membrane potential with a mean value of –54.7 ± 1.2 mV (n=23). 

 

The addition of acetylcholine (3 µM) evoked hyperpolarizations peaking 

within the first 2 min of application at a mean level 7.9 ± 1.4 mV (n=7) more 

negative than the resting membrane potential. In the presence of 

acetylcholine, membrane potential slowly recovered towards its control 

level. A typical tracing is depicted in figure 2.  

 
After washout of the agonist, the membrane potential quickly recovered to 

its initial level. After exposure of intact vessels to methanandamide (10 µM), 

the membrane potential rather slowly hyperpolarized by a mean value of 

8.5 ± 1.2 mV. The maximal change was reached 8.8 ± 0.9 min (n=4) after 

application of the cannabinoid. As can be seen more clearly in figure 3A, in 

which continuous recordings from the same cell are shown, the membrane 

potential recovered very slowly from exposure to methanandamide. 

Moreover, a second application of the cannabinoid after a washout period 

of at least 30 min hardly evoked any electrical response (+1.3 ± 1.3 mV 

upon second exposure vs –3.7 ± 0.5 mV at first exposure in this subset of 3 

experiments; p<0.05).  
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Figure 2: Original tracing of the membrane potential (Em) recorded in a vascular smooth 
muscle cell of a small gastric artery, showing the different time course of the 
hyperpolarization elicited by acetylcholine (ACh, 3 × 10-6 M)and methanandamide (METH, 
10-5 M). During the break in the trace, the artery was continuously superfused with the 
control fluid for about 30 min without dislodgement of the microelectrode from the cell. 
 
 

The application of calcitonin gene related peptide to the vessels produced 

hyperpolarizations of the membrane potential comparable to those obtained 

with methanandamide (figure 3B). With 3 × 10-9 M a mean change of –8.8 ± 

1.8 mV (n=5) was observed. As was observed with the cannabinoid, the 

membrane potential slowly recovered toward its control level after washout 

of the peptide. However, the effect of CGRP was fully reproducible. A 

second exposure of the preparations to CGRP, after a washout period of at 

least 20 min, caused a hyperpolarization of -8.5 ± 0.7 mV (n=5; p>0.05) 

(figure 3B). CGRP also hyperpolarized vessels which were previously 
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exposed to methanandamide. A representative tracing is shown in figure 

3A. 

 

 
Figure 3: Original long-term recordings of the membrane potential (Em)  recorded in 
vascular smooth muscle cells of small gastric arteries, showing substantial hyperpolarization 
in response to CGRP (3 × 10-9 M) after a first application and washout of (A) 
methanandamide (METH, 10-5 M) or (B) CGRP (3 × 10-9 M). Notice the reproducibility of the 
response to CGRP. 
 

 130



Cannabinoids and hyperpolarization 

5.3.2.2. Influence of blocking the TRPV1 receptor 

In a next series of experiments, we investigated the influence of 

capsazepine, a selective antagonist of the TRPV1 receptors, on 

hyperpolarizations induced by methanandamide and CGRP. Incubation 

with capsazepine (3 µM) slightly depolarized the resting membrane 

potential of the vascular smooth muscle cells (1.3 ± 1.3 mV). In the 

presence of the antagonist, the response to methanandamide was 

completely abolished (0.0 ± 0.0 mV; n=4; p<0.01). A representative tracing 

is shown in figure 4A, while the mean values are given in figure 5A. The 

hyperpolarization induced by acetylcholine in these preparations was 

completely unaffected (-7.0 ± 2.7 mV; n=4) (figure 4A, 5A).  In contrast to 

the methanandamide-induced response, the hyperpolarization induced by 

exogenous CGRP was totally  unaffected by preincubation with 

capsazepine (-6.9 ± 1.1 mV vs –6.8 ± 1.2 mV in control conditions; n=4; 

p>0.05; or vs –7.3 ± 0.8 mV in all control experiments; n=14; p>0.05) 

(figure 4A, 5A). 

 

 

5.3.2.3. Effect of glibenclamide 

In a separate series of experiments, the role of ATP-sensitive potassium 

(KATP) channels in the membrane electrical response to CGRP, 

methanandamide and acetylcholine was investigated using the selective 

inhibitor glibenclamide (10 µM). In the presence of glibenclamide, the 

hyperpolarizing responses to CGRP and to methanandamide were 

completely abolished (figure 4B). In fact, the mean membrane potential 

change obtained from 4 experiments in which CGRP was tested (figure 5B) 

was a slight depolarization of the resting potential (2.1 ± 1.2 mV, p<0.05). 
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Similar findings were obtained with methanandamide. In the presence of 

glibenclamide, the cannabinoid significantly (p<0.01) depolarized the 

smooth muscle cells (1.1 ± 0.4 mV, n=4, figure 5B). Conversely, 

hyperpolarizations in response to acetylcholine were not affected (figure 

4B). 

 

 
Figure 4: (A) Tracing of rat gastric artery smooth muscle cell membrane potential (Em) 
responses to application of methanandamide (METH, 10-5 M), acetylcholine (ACh, 3 × 10-6 
M) and exogenous CGRP (3 × 10-9 M) after pre-exposure to capsazepine (3 × 10-6 M), a 
selective vanilloid receptor antagonist. The latter trace was obtained from a different 
preparation. (B) Influence of CGRP (3 × 10-9 M), methanandamide (METH, 10-5 M) and 
acetylcholine (ACh, 3 × 10-6 M) on the membrane potential in the presence of glibenclamide, 
a KATP channel inhibitor. 
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Figure 5: (A) Influence of capsazepine (CZP, 3×10-6 M) on the membrane potential 
response of gastric artery smooth muscle cells to methanandamide (METH, 10-5 M), CGRP 
(3×10-9 M) and acetylcholine (ACh, 3×10-6 M). (B) Influence of glibenclamide (GLIB, 10-5 M) 
on the membrane potential response of gastric artery smooth muscle cells to CGRP (3×10-9 
M) and methanandamide (10-5 M). Data are means ± SEM and  represent the change in 
membrane potential from the resting level (∆Em) before and after application of the inhibitors. 
*, p<0.05; #, p<0.01. 
 

Essentially similar results were obtained in small mesenteric arteries. Thus 

the application of anandamide or methanandamide produced slowly 

developing hyperpolarizations averaging 9.6 ± 1.3 mV (n=7) and 3.9 ± 0.6 

mV (n=7), respectively (figure 6). The acetylcholine-induced 

hyperpolarizations in these subsets of experiments averaged –11.4 ± 2.0 

mV (n=3) and –9.6 ± 1.3 mV (n=7), respectively. While the responses to the 

cannabinoids desensitized, exogenous CGRP caused fully reproducible 

hyperpolarizations displaying a similar time course (-7.0 ± 0.3 mV and –6.5 

± 0.7 mV after a washout period of at least 20 min, n=3, p>0.05) (figure 

7A).  
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Figure 6: Comparison of the influence of glibenclamide on the hyperpolarization induced by 
anandamide (ANAND, 10-5 M), methanandamide (METH, 10-5 M), acetylcholine (ACh, 3×10-

6 M) and CGRP (3×10-9 M) in small mesenteric arteries. The columns represent the 
hyperpolarization before and after preincubation with glibenclamide (10-5 M). Values are 
means ± SEM. *, p<0.05; #, p<0.01. 
 
 
 

 
Figure 7: Typical tracings of the membrane potential (Em) of rat small mesenteric arteries 
smooth muscle cells showing (A) the responses to two successive applications of CGRP 
(3×10-9 M), and (B) the effect of preincubation with glibenclamide (10-5 M), an inhibitor of 
KATP channels, on the response to CGRP (3×10-9 M).  
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After pre-exposure to the KATP channel inhibitor glibenclamide the 

membrane potential responses to anandamide and methanandamide were 

significantly inhibited (-1.1 ± 0.8 mV, n=5, p<0.05 and -1.1 ± 0.9 mV, n=6, 

p<0.05, respectively) while there was no effect on the hyperpolarizations to 

acetylcholine in these preparations (respectively -13.0 ± 1.0 mV, n=4, 

p>0.05 and -8.0 ± 1.6 mV, n=5, p>0.05 in these subsets of experiments). 

Moreover, the hyperpolarizations to CGRP were completely abolished by 

glibenclamide (+0.5 ± 0.5 mV vs 7.4 ± 0.5 mV in control conditions, n=4, 

p<0.01) (figure 6, figure 7B). 
 

 

5.4. DISCUSSION 

In the present study, we explored the influence of cannabinoids on the 

membrane potential of small gastric artery smooth muscle cells, compared 

it with that observed in mesenteric arteries, and investigated their 

mechanism of action. The main new findings are that (1) in gastric arteries, 

methanandamide hyperpolarizes the smooth muscle cells; (2) this effect is 

mediated by stimulation of vanilloid TRPV1 receptors since completely 

inhibited by capsazepine; (3) CGRP causes a comparable, but reproducible 

hyperpolarization in both rat small gastric and mesenteric arteries; (4) both 

the responses to CGRP and to methanandamide are completely abolished 

by glibenclamide, in gastric as well as in mesenteric arteries. 

 

In this study, we found methanandamide to induce concentration-

dependent relaxation of small gastric arteries of the rat, consistent with the 

known potent vasodilatory effect described for cannabinoids in a variety of 

other vascular preparations 16,23-26. Since in rat small mesenteric and 

guinea-pig carotid arteries, anandamide and methanandamide have been 
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shown to hyperpolarize the membrane potential of the smooth muscle cells 
19,27, a change absent in some vessels which fail to show tension responses 

to these cannabinoids 27, it was reasonable to assume that at least part of 

the observed vasorelaxation is due to the associated membrane potential 

change. Besides confirming the potent hyperpolarizing action of 

anandamide and methanandamide in small mesenteric arteries 19, the 

present study reports a similar electrical response in small gastric arteries. 

To the best of our knowledge, gastric artery smooth muscle cell membrane 

potential changes to cannabinoids have not been reported before either. 

 

The mechanism by which cannabinoids induce vasodilation is as yet 

unclear. While some studies propose a direct activation of CB1 receptors on 

the vascular smooth muscle 24,25,28-32, several others report an indirect 

action, either by activation of endothelial receptors stimulating the release 

of vasorelaxing substances such as NO or EDHF 25,27,33, or by activation of 

TRPV1 receptors on perivascular sensory nerves, causing the release of 

vasodilatory neuropeptides such as CGRP 16,31,32,34. Moreover, recent 

evidence suggests that the vasodilation to cannabinoids is mediated by 

stimulation of a novel non CB1/CB2 receptor 35-38. Earlier membrane 

potential measurements in rat mesenteric arteries showed that the 

hyperpolarization was abolished by capsaicin pre-treatment and blocked by 

capsazepine 19, supporting the involvement of TRPV1 receptors on 

perivascular nerves in the electrical response to anandamide 19. In the 

present membrane potential measurements in gastric arteries, we similarly 

found that the methanandamide-induced hyperpolarization was completely 

inhibited by capsazepine. Unless the used agonists/antagonists have 

unknown or aspecific actions, this shows the central role of the perivascular 

nerve TRPV1 receptor in promoting the cannabinoid-induced 

hyperpolarization in these vessels.  
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Exogenous application of CGRP similarly produced a substantial 

hyperpolarization of the membrane potential, both in  small gastric and 

mesenteric arteries. The time-course of this response was comparable to 

that of the cannabinoids, both in onset and recovery. In contrast to the 

cannabinoid response, the hyperpolarization induced by exogenous CGRP 

was completely unaffected by preincubation with capsazepine.  

 

Whereas exogenous CGRP caused fully reproducible hyperpolarizations, a 

second application of cannabinoids failed to affect the membrane potential. 

Consistent with the expected desensitizing influence of cannabinoids on 

peptidergic primary afferent nerves in isolated vessel preparations 39, our 

findings suggest that the irreversibility of methanandamide-induced 

hyperpolarization in the present in vitro experiments might be due to 

depletion of CGRP and/or desensitization of TRPV1 receptors of the 

perivascular nerves, and further confirm the role of these nerves in the 

hyperpolarization to cannabinoids. 

 

Glibenclamide fully abolished or even reversed the CGRP-induced 

membrane potential change in gastric and in mesenteric arteries, 

suggesting that activation of KATP channels is responsible for the 

hyperpolarization induced by the peptide. This is consistent with literature 

reports on the action of CGRP. In rabbit mesenteric arteries, glibenclamide 

similarly blocked the CGRP-induced membrane potential change 40. In rats, 

an increase in gastric mucosal blood flow was reported after administration 

of exogenous CGRP, sensitive to glibenclamide 41. In the present study, 

also the hyperpolarizations to methanandamide were found to be abolished 

in the presence of glibenclamide in small mesenteric as well as in gastric 

arteries, extending earlier observations with anandamide in mesenteric 

arteries 27. Therefore, the similar mechanism of hyperpolarization induced 
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by cannabinoids and by CGRP at the level of the smooth muscle cells 

further corroborates the view that the former stimulate TRPV1 receptors on 

perivascular nerves, thereby releasing CGRP  which activates the smooth 

muscle KATP channels. 

 

Several vasodilators such as acetylcholine relax arteries by releasing 

vasoactive substances from the endothelium, such as NO, prostacyclin and 

an as yet unidentified EDHF. In some arteries, also CGRP induces 

endothelium-dependent relaxation 15,42. To exclude the involvement of NO 

and prostanoids, the present experiments were all performed in the 

combined presence of L-NA and indomethacin. The hyperpolarization 

caused by acetylcholine, therefore, might be totally attributed to EDHF. This 

hyperpolarization, however, which had a completely different time course 

than that observed with the cannabinoids or with exogenous CGRP, was 

found to be resistant to glibenclamide, both in mesenteric and gastric 

arteries. These findings exclude a role for EDHF in the membrane electrical 

response to CGRP or cannabinoids in these vessels. For the mesenteric 

artery, this is consistent with earlier reports showing that the 

hyperpolarization or the relaxation induced by cannabinoids 19, by CGRP 
43,44 or by activating the primary afferent nerves 14,43 is entirely endothelium-

independent. The present findings suggest a similar direct action of CGRP 

on the vascular smooth muscle cells in gastric arteries. Moreover, they 

show that in gastric arteries the endocannabinoid anandamide is not an 

EDHF, as was reported for other vessels 19,30,45. 
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5.5. CONCLUSION 

In summary, we have shown that methanandamide hyperpolarizes the 

membrane potential of the vascular smooth muscle cells of rat isolated 

small gastric and mesenteric arteries. This hyperpolarization is due to 

activation of KATP channels of the vascular smooth muscle cells and the 

response is mimicked by exogenous CGRP. The similarity of the 

membrane potential changes induced by exogenous CGRP, their similar 

sensitivity to glibenclamide, the desensitizing action of the cannabinoids 

and their full inhibition by capsazepine all point to stimulation of TRPV1 

receptors on perivascular CGRP containing nerves as primary cause for 

the cannabinoid-induced hyperpolarization of the arteries. Since membrane 

hyperpolarization is a powerful mediator of vasorelaxation, this local action 

of the cannabinoids might prove to be a novel mechanism providing 

gastroprotection. 
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Abstract 

In the present study, the relaxant effect of the cannabinoid 
methanandamide was explored in rat gastric arteries. Since in some 
vessels cannabinoids have been shown to release CGRP from 
perivascular nerves, the influence of methanandamide was compared 
with that of exogenous CGRP. Methanandamide and CGRP elicited 
concentration-dependent, endothelium-independent relaxations. 
Methanandamide-induced relaxations were unaffected by the CB1 
receptor antagonist AM251, the CB2 receptor antagonists AM630 and 
SR144528 and combined pre-exposure to AM251 and SR144528. Pre-
exposure to O-1918, an antagonist of a novel non-CB1/CB2 cannabinoid 
receptor, did not influence the relaxations to methanandamide. 
Capsaicin or capsazepine treatment slightly inhibited methanandamide-
induced relaxations. Preincubation with 30 mM extracellular K+ or TEA 
had no significant effect on the responses elicited by methanandamide, 
but reduced CGRP-induced relaxations. Relaxation to 10-5 M 
methanandamide was significantly blunted by Bay-K8644 and by 
preincubation with nifedipine. Furthermore, 10-5 M methanandamide 
significantly inhibited CaCl2-induced contractions in norepinephrine-
stimulated vessels previously depleted of intra- and extracellular Ca2+. 
Finally, preincubation with 10-5 M methanandamide almost completely 
abolished high K+-induced contractions. These findings suggest that the 
vasorelaxant action of methanandamide in rat gastric arteries is not 
mediated by stimulation of known cannabinoid receptors, and only partly 
related to stimulation of TRPV1 receptors on perivascular nerves. At high 
concentrations, methanandamide might induce relaxation by reducing 
Ca2+ entry into the smooth muscle cells. 
 
Keywords: vasoactive agents, endothelial factors, vasorelaxation, 
cannabinoid receptors, vanilloid receptors 
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6.1. INTRODUCTION 

Plant derived cannabinoids have been used for centuries for their 

psychoactive properties. In the early 1990s, endogenous cannabinoids 

were described. The first of these endocannabinoids identified was N-

arachidonoylethanolamide (anandamide) 1. Since their discovery, the 

effects of both synthetic and endogenous cannabinoids have been 

extensively examined. In addition to their neurobehavioral effects, they 

have a profound influence on the cardiovascular system 2. Moreover, they 

influence gastrointestinal function. Reported effects include inhibition of 

gastrointestinal motility and of gastric acid secretion 3. In rats, cannabinoids 

were accordingly found to reduce stress-induced gastric ulceration 4. 

 

Mucosal injury and peptic ulcers may also result from disturbances in 

gastric mucosal blood flow. The production and secretion of mucus, the 

secretion of bicarbonate ions which protect the mucosal barrier, and the 

removal of back-diffusing protons all depend on an appropriate mucosal 

microcirculation. The influence of cannabinoids on mucosal blood flow, 

however, has not been studied yet. 

 

In a variety of isolated vascular preparations, potent vasodilatory effects of 

synthetic and endogenous cannabinoids have been shown 5-8. Their 

mechanisms of action, however, are complex and seem to vary with 

species, vessel type and even size 9, 10. To date, two distinct receptor 

subtypes for cannabinoids have been identified and cloned. CB1 receptors 

are mainly localized on neurons but are also present in some peripheral 

tissues including heart, lung and gastrointestinal tissues and in vasculature 
11. In contrast, CB2 receptors are primarily expressed in immune cells, 

although there is some evidence that these receptors are also expressed 
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by neuronal tissue 11. Both receptor types are coupled through G-proteins 

to adenylyl cyclase and mitogen activated protein kinase. Cannabinoids 

reduce the cAMP concentration via pertussis toxin-sensitive G-proteins 12, 

13. 

 

In several arteries, the vasorelaxant effect of cannabinoids is mediated by 

stimulation of CB1 receptors. Indeed, SR141716A, a CB1 receptor 

antagonist, inhibits relaxations by anandamide in rat mesenteric arteries,  

coronary arteries and kidney arterioles 6, 7, 14 and in cat cerebral arteries 15. 

However, recent evidence suggests that, at least in some vessels, the 

vasodilator response of cannabinoids is caused by stimulation of an as yet 

unidentified non-CB1/CB2 receptor 10, 16, 17. On the other hand, the 

vasorelaxant influence of cannabinoids has also been reported to be due to 

stimulation of vanilloid TRPV1 receptors on primary afferent perivascular 

nerves and the subsequent release of sensory neuropeptides such as the 

powerful vasodilator calcitonin gene related peptide (CGRP). In rat hepatic 

and small mesenteric arteries, the vasorelaxant influence of anandamide 

was antagonised by the TRPV1 receptor antagonist capsazepine and the 

CGRP receptor antagonist CGRP(8-37), but not by the CB1 receptor 

antagonist SR141716A 8. The picture is further complicated by more recent 

studies that identified endocannabinoids as potential activators of the 

endothelial vanilloid TRPV4 receptor 18. 

 

Stimulation of the CB1 receptor modulates the activity of several types of 

ion channels via G-proteins. For example, it has been shown that 

(endo)cannabinoids block voltage gated N-, L- and P/Q-type Ca2+-channels 
15, 19-21 and stimulate inwardly rectifying K+-channels 20, 22. Moreover, 

endocannabinoids can directly target and inhibit voltage gated Ca2+-
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channels 23-26, Na+-channels 27 and various types of K+-channels 28-31, 

although usually at higher concentrations. 

 

In the present study, we analysed the influence of methanandamide on 

isolated small gastric arteries. This cannabinoid is a stable derivative of 

anandamide with slightly higher affinity for the CB1 receptor (Anandamide: 

Ki=89 nM and 371 nM at CB1 and CB2 receptors respectively; 

methanandamide: Ki=20 nM and 815 nM at CB1 and CB2 receptors 

respectively 32-34). Since CGRP containing sensory neurons were described 

in the gastric mucosa 35, we compared the response to methanandamide 

with that exerted by exogenous CGRP to assess a possible action of the 

cannabinoid via stimulation of perivascular nerves. Furthermore, by using 

selective agonists and antagonists, we investigated the involvement of CB1, 

CB2, non CB1/CB2 and TRPV1 receptors in the observed vasorelaxation to 

methanandamide. This vasorelaxation, however, was found to be 

endothelium-independent and largely independent from an action at the 

classical cannabinoid, the non CB1/CB2 or the TRPV1 receptor, but 

probably related to reduction of Ca2+ influx into vascular smooth muscle 

cells.  

 

 

6.2. MATERIALS AND METHODS 
 
6.2.1. Preparations 

The investigation conforms to the Guide for the Care and Use of Laboratory 

Animals (1996, published by National Academy Press, 2101 Constitution 

Ave. NW, Washington, DC 20055, USA). The experiments were performed 

on isolated small gastric artery ring segments taken from female Wistar rats 
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(180 – 280 g). Experiments were approved by the ethical committee on 

animal research of Ghent University. After the rats were killed by cervical 

dislocation, the stomach was rapidly excised and placed in cold (4°C) 

normal Krebs-Ringer bicarbonate (KRB) solution, bubbled with a 95% O2 – 

5% CO2 gas mixture. Second and third order branches of the gastric artery 

were dissected free and transferred to fresh oxygenated and chilled fluid, 

where they were cleaned from surrounding connective tissue and cut into 

segments of about 2 mm in length. 

 

 

6.2.2. Tension measurements 

The arterial segments were mounted into the organ bath of a small-vessel 

myograph, filled with 10 ml KRB solution. Two stainless steel wires (40 µm 

in diameter) were guided through the lumen of the segments. Each wire 

was fixed to a holder of the myograph: one holder was connected to a 

micrometer which was used to change the distance between the wires, the 

other holder was connected to a force-displacement transducer to measure 

the isometric tension changes. After mounting, the preparations were 

allowed to equilibrate for at least 30 min in warmed (37 °C), oxygenated 

(5% CO2 in O2; pH 7.4) KRB solution. The arteries were then normalised to 

obtain optimal conditions for active force development 36. The optimal 

lumen diameter of the vessels was calculated on the basis of the passive 

wall tension-internal circumferences relationship 36. At the start of each 

experiment the vessels were stretched to their optimal lumen diameter 

(316.3 ± 6.6 µm, n=151). Subsequently, all segments were repeatedly 

activated with a KRB solution containing 120 mM K+ (K120) and 10-5 M 

norepinephrine.  
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Thereafter, the gastric arteries were contracted by adding 10-5 M 

norepinephrine to the organ bath or by replacing the standard KRB solution 

in the organ bath by a KRB solution containing 120 mM K+. When a stable 

contraction was obtained, concentration-response curves were made by 

cumulative addition of an agonist under control conditions or in the 

presence of an antagonist. The presence of functional endothelium was 

assessed by the ability of 10 µM acetylcholine to provoke more than 80 % 

relaxation. It was noted that after a first application of methanandamide 

(from 10-7 to 10-5 M), norepinephrine (10-5 M) was unable to induce a 

substantial contraction level in most preparations tested. Therefore, all 

vessels were exposed to methanandamide only once and the experiments 

were performed unpaired. 

 

In some experiments, the influence of methanandamide on the influx of 

extracellular Ca2+ through plasma membrane Ca2+ channels was studied. 

For this purpose, intracellular Ca2+ stores were first depleted by washing 

the vessels with nominally Ca2+-free KRB solution (same composition as 

normal KRB solution, but without added CaCl2), exposing them 

subsequently to Ca2+-free, EGTA (1 mM) containing solution, and 

repeatedly challenging the vessels to 10-5 M norepinephrine. After 

thoroughly washing the preparations with Ca2+-free KRB solution, 

norepinephrine (10-5 M) was added and a concentration-contraction curve 

for CaCl2 (10-5 to 10-2 M) was constructed in control conditions and after 30 

min preincubation with 10-5 M methanandamide. Contractions were 

expressed as a percentage of the maximum contraction induced by CaCl2 

in control conditions (in the presence of norepinephrine). 

 

In some experiments the endothelium was removed from the vessels. For 

this purpose, the arteries were first unstretched in the myograph. Then, an 
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L-shaped micropipette was placed at the proximal end of the segment and 

gas (95 % O2 and 5 % CO2) was bubbled through the lumen of the 

preparations for 2 min. Subsequently, the vessels were again stretched to 

their optimal lumen diameter. After an equilibration period of 30 min, the 

absence of functional endothelium was confirmed by the lack of relaxation 

to acetylcholine.  

 

6.2.3. Drugs 

All experiments were performed in a Krebs-Ringer bicarbonate solution of 

the following composition (in mM): NaCl 135, KCl 5, NaHCO3 20, CaCl2 2.5, 

MgSO4.7H2O 1.3, KH2PO4 1.2, EDTA 0.026 and glucose 10. A KRB 

solution containing 30 mM or 120 mM K+ (K30 or K120 respectively) was 

obtained by equimolar substitution of NaCl with KCl.  Acetylcholine 

chloride, Nω-nitro-L-arginine (L-NA), indomethacin, norepinephrine, 

glibenclamide, capsazepine, EGTA, (S)-(−)-1,4-dihydro-2,6-dimethyl-5-

nitro-4-[2-(trifluoromethyl)phenyl]-3-pyridinecarboxylic acid methyl ester 

((S)-(−)-Bay K8644), nifedipine and tetraethyl ammonium chloride (TEA) 

were purchased from Sigma-Aldrich (St. Louis, MO). Noladin ether, (R)-(+)-

methanandamide, (-)-cannabidiol, levcromakalim, calcitonin gene-related 

peptide (CGRP Rat), JWH-015, AM251 and AM630 were obtained from 

Tocris (Bristol, UK). E-Capsaicin was purchased from Calbiochem (La 

Jolla, CA), AM1241 from Alexis Benelux (Zandhoven, Belgium) and O-1918 

from Cayman Chemical (Ann Arbor, MI). SR144528 was a kind gift from 

Sanofi-Synthélabo Recherche (Montpellier, France).  

 

For stock solutions, acetylcholine was dissolved in 50 mM potassium 

hydrogen phtalate buffer, pH 4.0. L-NA, CGRP, TEA and norepinephrine 

were dissolved in water; indomethacin, methanandamide, noladin ether, 
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cannabidiol, capsaicin, capsazepine and Bay K8644 in anhydrous ethanol; 

glibenclamide, levcromakalim, JWH-015, AM251, AM630, AM1241, 

SR144528 and nifedipine in dimethyl sulfoxide and O-1918 in methyl 

acetate. The final concentration of ethanol or dimethyl sulfoxide in the 

organ bath never exceeded 0.1%. All concentrations mentioned are 

expressed as final molar concentrations in the experimental chamber. 

 

 
6.2.4. Statistics 

Data were computed as means ± S.E.M. and evaluated statistically using 

Student’s t test for paired or unpaired data or repeated measures ANOVA 

with Bonferroni’s post hoc test, as appropriate. A P value < 0.05 indicates a 

significant difference. n represents the number of preparations tested, each 

obtained from a different rat. Relaxations are expressed as the percentage 

decrease in active tone. 

 

 

6.3. RESULTS 
 
6.3.1. Characterisation of vasorelaxing responses to 

methanandamide and CGRP 

In endothelium-intact norepinephrine-precontracted small gastric arteries, 

methanandamide (from 10-7 M to 10-5 M) elicited concentration-dependent 

relaxations (figure 1A). Similarly, the addition of exogenous CGRP (from 

10-10 M to 10-8 M) concentration-dependently relaxed precontracted arteries 

(figure 1B). 
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Figure 1: Effects of endothelium removal on the vasorelaxant responses to (A) 
methanandamide (control: n=10, -endothelium: n=5), (B) exogenous CGRP (n=5) and (C) 
acetylcholine (n=5). Effect of the combined exposure to indomethacin and L-NA on the 
vasorelaxant responses to (D) methanandamide (control: n=10, indo + L-NA: n=5), (E) 
CGRP (n=7) and (F) acetylcholine (n=5). Data are expressed as the percentage decrease of 
the tone induced by 10 µM norepinephrine (* p<0.05, **p<0.01). 

 
Removal of the endothelium, which significantly inhibited the relaxations 

induced by acetylcholine (10-9 M to 10-5 M, figure 1C), did not affect the 

responses to methanandamide or CGRP. Both, the relaxations elicited by 

methanandamide and CGRP were even larger after removal of the 

endothelium (figure 1A and B). Similarly, relaxing responses to both 

methanandamide and CGRP were not affected by pre-exposure of the 

vessels to the combination of L-NA (10-4 M) and indomethacin (10-5 M) to 

block the formation of NO and prostanoids respectively (figure 1D and E). 
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Although these inhibitors tended to decrease the responses to 

acetylcholine, this effect was not statistically significant (figure 1F). 

 

 

6.3.2. Role of cannabinoid receptors in the methanandamide-
induced vasorelaxation 

In contrast to methanandamide, the selective CB1 receptor agonist noladin 

ether (10-7 M to 10-5 M) only weakly affected tone of precontracted gastric 

arteries, suggesting a minor importance of CB1 receptors in these 

preparations (figure 2A). JWH-015 and AM1241, two selective agonists of 

the CB2 receptor, caused concentration-dependent relaxations similar to 

those elicited by methanandamide (figure 2A). Preincubation with the CB1 

receptor antagonist AM251 (10-6 M for 10 min; Ki = 7.49 nM at CB1) 37 did 

not significantly affect the relaxations elicited by methanandamide (figure 

2B). Pre-exposure to the CB2 receptor antagonists AM630 (10-5 M for 10 

min; Ki = 31.2 nM at CB2) 38 or SR144528 (10-5 M for 10 min; Ki = 0.3 nM) 39 

did not inhibit the relaxation response to methanandamide (figure 2C and 

D). Correspondingly, relaxing responses to methanandamide were not 

affected by pre-exposure of the vessels to the combination of AM251 and 

SR144528 to block both types of cannabinoid receptors (figure 2E). 

 

Preincubation with O-1918 (10-5 M), an antagonist of the novel non-

CB1/non-CB2 cannabinoid receptor which does not bind to CB1 or CB2 

receptors at concentrations up to 3 × 10-5 M 40, did not influence the 

relaxations induced by methanandamide (figure 2F). The influence of 

another reported antagonist of this receptor, cannabidiol, could not be 

tested on methanandamide-induced relaxations since the substance (3 × 

10-7 M to 10-5 M) relaxed the gastric arteries by itself.  
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Figure 2: Role of cannabinoid receptors in the methanandamide response in small gastric 
arteries. (A) Concentration response curves for the CB1 agonist noladin ether (n=4) and for 
the CB2 agonists JWH-015 (n=4) and AM1241 (n=7). (B-F) Concentration-response curves 
for methanandamide in control conditions (n=21) and after preincubation with (B) the CB1 
receptor antagonist AM251 (n=7), (C) the CB2 antagonist AM630 (n=4), (D) the CB2 
antagonist SR144528 (n=12), (E) combined CB1/CB2 antagonism by SR144528 + AM251 
(n=4) or (F) the non CB1/CB2 cannabinoid receptor antagonist O-1918 (n=4). 

 

 

6.3.3. Role of vanilloid (TRPV1) receptors in the 
methanandamide-induced vasorelaxation 

Addition of capsaicin, which depletes perivascular nerves by stimulating the 

TRPV1 receptor, caused small concentration-dependent relaxations of 

precontracted gastric arteries, confirming the presence of perivascular 
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nerves in these vessels (figure 3A). However, the responses were 

significantly less pronounced than those to methanandamide. 

Nevertheless, the small relaxations induced by the vanilloid receptor 

agonist were significantly inhibited by preincubation of the preparations with 

the TRPV1 antagonist capsazepine (3 × 10-6 M for 10 min; figure 3A). 

 
Figure 3: Role of TRPV1 receptors in the methanandamide-induced vasorelaxation. (A) 
Concentration-response curves for capsaicin in control conditions (n=8) and after 
preincubation with capsazepine (3 × 10-6 M, n=4). (B) Concentration-response curves for the 
relaxation induced by methanandamide in control conditions (n=21), in the presence of 
capsazepine (3 × 10-6 M, n=6) and after 1h preincubation with capsaicin (10-5 M, n=4). (* 
p<0.05, **p<0.01, control versus capsaicin or capsazepine) 
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As shown in figure 3B, relaxations to the smaller concentrations of 

methanandamide (3 × 10-7 M to 3 × 10-6 M) were slightly inhibited after 

depletion of the perivascular sensory nerves with capsaicin (10-5 M for 60 

min). This effect was significant at a concentration of 3 × 10-6 M 

methanandamide. Relaxation to the highest dose of methanandamide, 

however, was not affected. Similarly, preincubation with the TRPV1 receptor 

antagonist capsazepine (3 × 10-6 M for 10 min) tended to decrease the 

relaxations elicited by the lower concentrations of methanandamide while 

having no influence on the response to 10-5 M methanandamide. 

 

 

6.3.4. Involvement of potassium channel activation 

In a first subset of experiments, preparations were precontracted with a 

norepinephrine containing KRB solution supplemented with 30 mM K+, 

which is known to abolish membrane hyperpolarization in response to 

various vasorelaxant substances. After contractions reached steady state, 

concentration-response curves for methanandamide and CGRP were 

constructed. Although a tendency was noted for the relaxations induced by 

the lower concentrations of methanandamide to decrease in these 

conditions, this did not reach statistical significance (figure 4A). On the 

other hand, the relaxations induced by CGRP were significantly reduced by 

30 mM K+ (figure 4D).  

 

The involvement of KATP-channels in the relaxations induced by 

methanandamide and CGRP was tested by pre-treatment of the 

preparations with glibenclamide (10-5 M for 10 min), an inhibitor of KATP-

channels. Pre-exposure to glibenclamide, which completely inhibited 

relaxations by the KATP-opener levcromakalim (data not shown), had no 
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influence on the relaxations induced by both methanandamide and 

exogenous CGRP (figure 4B and E). 

 

 
Figure 4: Influence of an increased concentration of K+-ions (K30) on the relaxations 
induced by (A) methanandamide (control: n=21; K30: n=7) and (D) CGRP (n=7). Effect of 
treatment with 10-5 M glibenclamide on relaxations elicited by (B) methanandamide (control: 
n=10; glibenclamide: n=5) and (E) exogenous CGRP (n=4). Influence of preincubation with 
3 × 10-3 M TEA on the relaxing responses to (C) methanandamide (control: n=21; TEA: n=7) 
and (F) CGRP (n=5) in rat small gastric arteries (** p<0.01). 

 
 

The role of Ca2+ activated K+-channels (KCa) in the responses to 

methanandamide and CGRP was tested by preincubation of the 

preparations with 3 × 10-3 M tetraethyl ammonium (TEA, 20 min). At this 

concentration, TEA is known to be selective for KCa channels 41. The 
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relaxations induced by methanandamide were not significantly inhibited by 

TEA (figure 4C). The CGRP-induced responses, however, were 

significantly reduced (figure 4F). 

 

 

6.3.5. K120-induced contractions 

Replacing the standard KRB by K120 solution resulted in a stable 

contraction of 8.2 ± 0.6 mN (n=20).  Active tone in these conditions is 

increased mainly by Ca2+ influx through voltage-dependent Ca2+ channels, 

since the L-type Ca2+ channel blocker nifedipine  (10-9 to 10-6 M) totally 

relaxed the K120-preconstricted arteries, an effect counteracted by 10-6 M of 

the Ca2+ channel activator Bay K8644 (figure 5A). Methanandamide also 

caused concentration-dependent relaxation of the K120-precontracted 

vessels (figure 5B). As shown in this figure, activation of the L-type Ca2+ 

channels with Bay K8644 was similarly able to significantly blunt the 

relaxant response to the higher concentrations of the cannabinoid (95.6 ± 

0.5 % relaxation in the absence vs. 42.4 ± 6.0 % in the presence of Bay 

K8644, p<0.005). 

 

Since a second norepinephrine (10-5 M) application was found to be unable 

to re-induce active tension in most arteries which had been exposed to 

increasing concentrations of methanandamide, we tested whether the 

cannabinoid also inhibited contractions elicited by 120 mM K+. After 

preincubation of the vessel segments with methanandamide (10-5 M, 20 

min), increasing K+ to 120 mM caused an increase in active tension of 0.4 ± 

0.3 mN, substantially smaller than the mean stable contraction of 5.4 ± 0.8 

mN observed in these preparations before exposure to the cannabinoid 

(figure 5C). 
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Figure 5: Influence of treatment with 10-6 M (S)-(−)-Bay K8644 on the relaxations induced by 
(A) nifedipine (n=4) and (B) methanandamide (control: n=21; Bay K8644: n=4) in 
preparations contracted with K120. Data are expressed as the percentage decrease of the 
tone induced by K120. (C) Effect of preincubation with 10-5 M methanandamide on the K120-
induced contraction in small gastric arteries (n=4) (* p<0.05, ** p<0.01, # p<0.005). 

 
 

6.3.6. Influence of nifedipine-pretreatment on methanandamide-
induced relaxations 

Preparations were preincubated for 10 min with 10-6 M nifedipine. After 

stable contraction was reached with norepinephrine (10-5 M), a 

concentration-response curve for methanandamide was constructed. 

Although the relaxation induced by the lower concentrations of 
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methanandamide were not affected, preincubation with nifedipine 

significantly inhibited the responses to 10-5 M methanandamide (figure 6A). 

 

 

Figure 6: (A) Influence of preincubation with 10-6 M nifedipine on the relaxations induced by 
methanandamide (n=4). (B) Influence of preincubation with 10-5 M methanandamide on 
CaCl2-induced contractions in norepinephrine-stimulated vessels previously depleted of 
intracellular Ca2+ (n=4) (* p<0.05, # p<0.005; $ p<0.001). 
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6.3.7. Effect of methanandamide on CaCl2-contractions induced 
in the presence of norepinephrine 

After depletion of the intracellular Ca2+ stores and removal of extracellular 

Ca2+, preparations were exposed to norepinephrine (10-5 M) while kept in 

Ca2+-free KRB solution. Under these conditions, readdition of CaCl2 (10-5 to 

10-2 M) induced concentration-dependent contractions which were maximal 

at 10-3 M. Preincubation with methanandamide (10-5 M), substantially 

inhibited contractions to CaCl2 (figure 6B). Contraction to  10-3 M Ca2+ was 

reduced by more than 75 %. 

 

6.4. DISCUSSION 

In the present study we explored the influence and the mechanism of action 

of the stable endocannabinoid analogue methanandamide in gastric 

arteries. The main findings are that methanandamide produces 

concentration-dependent relaxations which are endothelium-independent 

and not mediated by stimulation of the known cannabinoid receptors. The 

responses to low concentrations of methanandamide are mediated in part 

by stimulation of TRPV1 receptors, while relaxations to higher 

concentrations of the cannabinoid are independent of membrane 

hyperpolarization and might be due to interference with Ca2+ influx through 

voltage activated Ca2+ channels or a further step in the contractile activation 

process.  

 

The site and precise mechanism of action of cannabinoids seem to differ 

among different vessels. In some vessels like the bovine coronary artery 42, 

the relaxant effect of anandamide is entirely dependent of the presence of a 

functional endothelium. Most studies, however, have shown that the 
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vasorelaxations caused by anandamide are completely 6 or partly 43 

endothelium-independent. In the present study we found that 

methanandamide elicited concentration-dependent vasorelaxations of rat 

gastric arteries which were not inhibited by removal of the endothelium. 

This endothelium-independency rules out the possible role of endothelium-

derived relaxing factors which have been reported to be involved in the 

cannabinoid induced relaxations in some isolated vascular preparations 5, 7.  

 

The endothelium-independent pathway by which cannabinoids induce 

vasodilatation is still elusive. Some studies report that cannabinoids directly 

stimulate cannabinoid receptors on the vascular smooth muscle cells 6, 43, 44. 

CB1 receptor expression was shown in cultured human aortic smooth 

muscle cells 45, acutely isolated cat cerebral artery myocytes 15 and in the 

medial wall of rat cerebral arteries in situ 46. In isolated cerebral artery 

smooth muscle cells, stimulation of the CB1 receptor by anandamide 

causes relaxation by concentration-dependent inhibition of L-type Ca2+ 

channels via pertussis toxin-sensitive G-proteins. Maximal inhibition (32 %) 

was found with 3 x 10-7 M of the cannabinoid 15. In the present study, the 

same concentration of methanandamide, which is slightly more selective for 

the CB1 receptor, hardly produced relaxation of gastric arteries. Moreover, 

the potent and selective CB1 receptor antagonist AM251 did not antagonise 

the relaxant effect of methanandamide, indicating that CB1 receptors play 

little role. This is consistent with the relatively small relaxations observed 

with noladin ether, an endogenous and selective agonist of the CB1 

receptor. Moreover, two structurally unrelated selective CB2 antagonists, 

AM630 and SR144528 did not antagonize the relaxations induced by 

methanandamide, ruling out the involvement of CB2 receptors. The finding 

that even the combined presence of AM251 and SR144528 did not 

attenuate methanandamide induced vasorelaxation further corroborates the 
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conclusion that neither CB1 nor CB2 receptors are involved. More recent 

studies propose that in some vessels the vasodilator response to 

cannabinoids is mediated by stimulation of a novel, not yet identified, non-

CB1/CB2 receptor located on the endothelium 10, 16, 17, 17, 47. However, we 

found that methanandamide induced relaxations of gastric arteries were 

completely unaffected by O-1918, a selective antagonist of this novel 

receptor 10, 40. Taken together with the finding that the effects of the 

cannabinoid are endothelium-independent, this strongly argues against the 

involvement of this endothelial non-CB1/CB2 receptor as well.  

 

The cannabinoid anandamide has also been shown to activate TRPV1 and 

TRPV4 receptors. The TRPV4 receptor is highly expressed on vascular 

endothelial cells, and its stimulation enhances Ca2+ influx, an essential 

trigger to release various vasoactive factors including NO, prostaglandins 

and the EDHF mechanism 48. Moreover, TRPV4 recently was also found in 

the myocytes of cerebral arteries, and its activation was shown to cause 

smooth muscle cell hyperpolarization via BKCa channel activation 49. In the 

present study in which methanandamide was found to induce endothelium-

independent relaxation, also the activation of a putative smooth muscle cell 

TRPV4 receptor can be ruled out, however, since the non-hydrolysable 

analogue methanandamide was used, whereas anandamide is known to 

stimulate TRPV4 indirectly, after conversion to its metabolite 5’,6’-

epoxyeicosatrienoic acid 18.  

 

TRPV1 receptors are activated by noxious stimuli including molecules with 

a vanilloid moiety such as capsaicin, but also by heat and protons. In the 

stomach, these TRPV1 receptors have been shown to be localized on 

perivascular, primary afferent nerves. Stimulation of this receptor triggers 

the local release of neuropeptides from these nerve endings, the most 
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important of which is the powerful vasodilator CGRP 50. The 

gastroprotective role of CGRP released from sensory nerves has been 

shown in various studies, and results from the vasodilatation and the 

emanating rise in mucosal blood flow 51-53. CGRP might act directly on the 

vascular smooth muscle cells and/or indirectly, by stimulating the 

endothelial cells to release their relaxing factors 54, 55. In the present study, 

application of exogenous CGRP evoked fully reproducible, concentration-

dependent relaxations of gastric arteries which were totally endothelium-

independent. Furthermore, preincubation with L-NA and indomethacin had 

no effect on the responses to CGRP, again eliminating the release of the 

endothelium-derived relaxing factors NO and prostacyclin and pointing to a 

direct relaxing influence of the peptide on the vascular smooth muscle cells. 

In addition, the functional presence of perivascular TRPV1 containing 

nerves in the isolated small gastric arteries used in our study was 

demonstrated by the fact that exposure to capsaicin decreased 

norepinephrine-induced tone, an effect abolished by treatment with the 

TRPV1 antagonist capsazepine. 

 

Since the original observation that vasorelaxation by cannabinoids can be 

mediated by stimulation of TRPV1 receptors on CGRP containing 

perivascular nerves 8, several studies have documented TRPV1 stimulation 

by anandamide or by methanandamide, and stressed that anandamide 

should be considered both an endocannabinoid and an endovanilloid 56, 57. 

In the present study, we found that the potency of capsaicin as a 

vasorelaxant was much lower than that observed for methanandamide or 

exogenous CGRP, suggesting a rather minor importance of the sensory 

nerves in our isolated preparations. Possibly, this might be related to the 

pre-exposures to 120 mM K+ before the start of the experiments (see 

methods). Nevertheless, the vasorelaxation produced by low 
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concentrations of methanandamide in the present conditions was 

completely inhibited after depletion of the perivascular nerves by pre-

exposure to capsaicin. Moreover, relaxations tended to decrease in the 

presence of the TRPV1 antagonist capsazepine. These findings suggest, 

therefore, that at least the lower concentrations of methanandamide act on 

capsaicin sensitive TRPV1 receptors on perivascular nerves in gastric 

arteries and stimulate the release of the vasorelaxing CGRP. The main 

route by which vasorelaxation is produced, however, involves another 

mechanism, probably located at the level of the smooth muscle. This is 

further corroborated by the different sensitivity to potassium channel 

blockers of the relaxations produced by methanandamide and by 

exogenous CGRP. The vasorelaxation produced by exogenous CGRP was 

sensitive to 30 mM extracellular K+ and to 3 × 10-3 M TEA, but not affected 

by the KATP channel inhibitor glibenclamide which indicates that smooth 

muscle membrane hyperpolarization at least contributes to the 

vasodilatation induced by CGRP. Conversely, relaxations to high 

concentrations of methanandamide were completely unaffected by 30 mM 

K+ and by the K+ channel blockers TEA or glibenclamide, pointing to a 

mechanism not requiring smooth muscle cell hyperpolarization. It should be 

remarked, however, that for these interventions that affected the CGRP 

response (30 mM K+, TEA), again a tendency was noted to diminish the 

vasorelaxing effect of the lower concentrations of methanandamide, 

although this failed to reach statistical significance.  

 

In a recent study in gastric arteries, we found that both methanandamide 

and exogenous CGRP caused a hyperpolarization of the membrane 

potential of the smooth muscle cells 58. Since these membrane potential 

changes were completely abrogated by glibenclamide, an activator of KATP 

channels seems to be mediating the response to both substances. The 

 167



Chapter 6 

apparent discrepancy that in the present tension measurements 

vasorelaxation to CGRP is sensitive to TEA and not to glibenclamide 

whereas in the membrane potential study hyperpolarization to CGRP was 

sensitive to the KATP channel blocker, suggests that the neuropeptide-

activated pathway (involving cAMP and PKA, see 59) might eventually result 

in the recruitment of a different K+ channel depending on the contractile 

tone of the artery. Thus, while in resting gastric arteries KATP channels are 

opened, in norepinephrine-stimulated vessels, the higher intracellular free 

Ca2+ concentration might facilitate the opening of KCa channels by PKA 

dependent phosphorylation. Perhaps, this might explain some of the 

controversy in literature concerning the type of K+ channel activated by 

CGRP 60-63. The membrane potential-independent, direct relaxing influence 

of high concentrations of methanandamide might overwhelm a similar 

mechanism occurring at the lower concentrations. 

 

Besides activating cannabinoid and vanilloid receptors, some cannabinoids 

such as anandamide and methanandamide have been shown to directly 

bind to other membrane proteins such as delayed rectifier K+ channels 29, 31 

and voltage activated Ca2+ channels 23-26, especially at higher 

concentrations. IC50 values reported for anandamide binding to different 

sites of the L-type Ca2+ channel protein, e.g., are 4, 8 and 15 µM 23, 64. 

Recently, also methanandamide has been shown to inhibit dihydropyridine 

binding to the voltage gated Ca2+ channel, with an IC50 value of 7 × 10-6 M 
65. In mesenteric arteries of the rat, anandamide at 10-5 M, but not at 10-6 M, 

inhibited contractions to readdition of Ca2+, directly indicating an 

interference with Ca2+ influx through voltage gated channels 26. In the 

present study, the L-type Ca2+-channel blocker nifedipine produced 

pronounced concentration-dependent relaxations of K120-precontracted 

arteries. This was expected, since tension development in depolarizing high 
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K+ solution is mediated almost entirely through opening of voltage gated 

Ca2+ channels 66. Bay K8644 significantly inhibited these relaxations, 

proving its effectiveness as Ca2+-channel activator. Bay K8644 also 

dramatically blunted the relaxations to the high concentration (10-5 M) of 

methanandamide, directly showing that activation of the Ca2+ channels is 

able to counteract at least part of the cannabinoid induced vasorelaxation. 

Furthermore, preincubation of the preparations with the selective L-type 

Ca2+ channel blocker nifedipine, significantly inhibited the relaxation 

induced by the highest concentration of methanandamide, while the 

responses to the lower concentrations of the cannabinoid were unaffected. 

This strongly argues for interference by 10-5 M methanandamide at the 

dihydropyridine binding site of the Ca2+ channel 65. The fact that 

norepinephrine and K120 were unable to induce contraction in arteries pre-

exposed to methanandamide, even suggests that the cannabinoid hardly 

dissociates from this binding site.  

 

Further evidence for the involvement of voltage activated Ca2+ channels in 

the response to methanandamide was obtained in the experiments in which 

we examined the effects of methanandamide on contractions induced by 

cumulative readdition Ca2+ to norepinephrine stimulated arteries previously 

depleted of intracellular Ca2+.  In these conditions, contractions obtained 

with CaCl2 are mainly due to Ca2+ influx through voltage activated Ca2+ 

channels on the vascular smooth muscle cells. Methanandamide 

substantially inhibited the CaCl2-induced contractions, suggesting a direct 

action on the voltage activated Ca2+ channels. Taken together with the 

aforementioned literature reports on inhibition of L-type Ca2+ channels by 

cannabinoids, these findings strongly suggest that high concentrations of 

methanandamide might relax the gastric arteries by inhibition of Ca2+ influx 

in the smooth muscle cells, although interference with a further intracellular 
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step in the contractile activation process may not be excluded. The 

experiments in which methanandamide almost abolished K120-induced 

contractions of these arteries further support this view.  

 

We previously described the existence of endothelium-dependent 

hyperpolarization in rat gastric arteries 67. The noted lack of influence of L-

NA and indomethacin on the vasorelaxation elicited by acetylcholine in the 

present study, points to a major role of the endothelium-dependent 

hyperpolarization in the endothelium-dependent relaxation response to 

acetylcholine. As mentioned, the relaxation induced by CGRP is at least 

partly mediated by hyperpolarization, whereas eventual hyperpolarization 

induced by the highest concentration of methanandamide does not seem to 

be necessary to cause the relaxation by the cannabinoid. This is fully 

consistent with the data supporting inhibition of L-type Ca2+ channels by the 

cannabinoid, since this is a downstream mechanism and Ca2+ channels, 

once inhibited, do not respond anymore to changes in membrane potential. 

 

In conclusion, the present study has demonstrated that methanandamide is 

a potent vasodilator in isolated rat small gastric arteries. The cannabinoid-

induced vasorelaxation is endothelium-independent, does not involve the 

activation of the classical CB1 or CB2 receptor or the non CB1/CB2 receptor, 

and is largely independent of membrane hyperpolarization. Activation of 

TRPV1 receptors on perivascular nerves might contribute to the relaxations 

induced by the lower concentrations of the cannabinoid. Higher 

concentrations (> 10-6 M) might interfere with Ca2+ influx into the smooth 

muscle cells. 
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Abstract 

Many cellular functions are regulated by changes in the intracellular Ca2+ 
concentration ([Ca2+]i). Those Ca2+ signals are highly organized in both 
time and space. It is generally accepted that modulation of [Ca2+]i is a 
critical determinant of vascular smooth muscle tone. Using confocal 
microscopy and fluorescent dyes, we examined the dynamic Ca2+ 
responses in smooth muscle cells of intact small mesenteric arteries of 
the rat. We observed the effect of stimulation with norepinephrine and 
evaluated the influence of membrane potential changes on the induced 
Ca2+ oscillations. It was found that stimulation with norepinephrine 
(3x10-6 M) evoked asynchronous Ca2+ spikes which were usually 
accompanied by a raise in basal fluorescence. After prolonged exposure 
to norepinephrine, the preparations showed a slight but significant 
reduction in both spiking activity and basal fluorescence. Addition of 
depolarizing concentrations of K+ (15 mM) to arteries stimulated with 
norepinephrine resulted in the synchronization of the Ca2+ oscillations 
and significantly increased both spiking frequency and basal 
fluorescence. In contrast, hyperpolarization of the membrane potential 
with levcromakalim (3x10-7 M) significantly reduced the spiking 
frequency and the level of basal fluorescence. This decline was larger 
than the spontaneous decrease observed in the prolonged presence of 
norepinephrine alone. Similar results were found with the vasodilatory 
neuropeptide calcitonin gene-related peptide (3x10-9 M). Small increases 
in the extracellular K+ concentration (5 mM) also significantly decreased 
the Ca2+ responses, suggesting a hyperpolarization of the membrane 
potential. Addition of the cannabinoid methanandamide significantly 
augmented the mean spiking rate and showed a slight but significant 
decrease of the basal fluorescence. Taken together, these findings 
confirm that stimulation with norepinephrine induces asynchronous Ca2+ 
oscillations in the vascular smooth muscle cells of small mesenteric 
arteries. Our results further suggest that depolarization is essential to 
synchronize these responses, while hyperpolarizing the membrane 
potential tends to decrease the Ca2+ dynamics. 
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7.1. INTRODUCTION 

Intracellular Ca2+ is an important second messenger mediating a variety of 

vascular endothelial and smooth muscle cell functions. The regulation of 

hemodynamics by variations in the vascular diameter results from the 

contraction and relaxation of the smooth muscle cells in the vascular wall. It 

is generally known that vasoactive agents constrict arteries by 

simultaneously increasing the mean cytosolic Ca2+ concentration ([Ca2+]i) in 

all smooth muscle cells of the vascular wall 1-4. Smooth muscle contraction 

has been thought to rely on both Ca2+ influx in the cell and Ca2+ release 

from intracellular stores. Contraction is initiated by Ca2+-calmodulin-induced 

activation of myosin light chain kinase, resulting in the formation of cross 

bridges between actin and myosin filaments of the contractile apparatus.  

 

Recently, it has been shown that the overall vessel Ca2+ concentration is 

not representative for the Ca2+ dynamics in the individual vascular smooth 

muscle cells 5-9. The smooth muscle cells respond to biological activators 

with oscillatory and propagating rises in [Ca2+]i caused by Ca2+ release from 

the sarcoplasmatic reticulum. These Ca2+ oscillations and Ca2+ waves are 

highly organized in both time and space and their frequency depends on 

the agonist concentration. Another type of Ca2+ signalling are Ca2+ sparks 

caused by local Ca2+ release events through ryanodine-sensitive Ca2+ 

release channels in the sarcoplasmatic reticulum 10-12.  

 

Much of the knowledge about Ca2+ signalling in vascular smooth muscle 

cells has been based on studies using enzymatically isolated or cultured 

cells. When stimulated, isolated and cultured smooth muscle cells show 

elevations of the intracellular free Ca2+ concentration ([Ca2+]i), which 

typically progress over the entire cell length, giving it the appearance of a 
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wave 13. However isolated cells display different characteristics as 

compared to smooth muscle cells in situ, in which intact gap junctions 

provide intercellular communication. The possible mechanism for the 

generation of agonist-induced Ca2+ waves in a smooth muscle cell begins 

with an elevation of inositoltrisphosphate (IP3) and a rise in [Ca2+]i. Binding 

of ligands with G-protein coupled receptors stimulates phospholipase C 

which catalyzes the hydrolysis of membrane phosphatidylinositol 4,5-

bisphosphate into IP3. IP3 activates the IP3 receptors on the sarcoplasmatic 

reticulum and sensitizes them to Ca2+. When the [Ca2+]i reaches a threshold 

concentration, the Ca2+ release channels open and Ca2+ is set free, 

resulting in a Ca2+ spike. The resulting increase in [Ca2+]i in the cytoplasm 

promotes the opening of adjacent channels, which gives rise to a Ca2+ 

wave which propagates down the length of the cell.  

 

Recent advances in digital imaging techniques on the subcellular level have 

made it possible to study vascular cells in intact vessels and explore the 

spatiotemporal characteristics of Ca2+ spikes and waves. It has been shown 

that in rat tail artery, individual smooth muscle cells show asynchronous 

Ca2+ oscillations after electrical and pharmacological stimulation 14. The 

Ca2+ oscillations are not in phase among different individual cells and 

oscillatory features are lost when the Ca2+ response was averaged. It was 

shown that the two sources of Ca2+ may work in a collaborative manner. 

Upon stimulation with norepinephrine, Ca2+ stores were released 

intermittently to produce Ca2+ oscillations. The influx of Ca2+ is used mainly 

to assist replenishment of the Ca2+ stores. These results have later been 

confirmed in the same vessel type 15 and in intact pressurized mesenteric 

small arteries of the rat 16. Sometimes, especially in experiments with 

higher levels of activation,  the Ca2+ oscillations in different smooth muscle 

cells synchronize to yield overall oscillations in intracellular Ca2+ and, 
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hence, in vascular tone, called vasomotion 7, 17. However, the exact 

mechanism responsible for the conversion of asynchronous into 

synchronous oscillations is as yet unclear. It has been postulated that, at 

least in rat mesenteric arteries, Ca2+ released from the sarcoplasmatic 

reticulum activates a depolarizing current, which spreads to all smooth 

muscle cells 8. When this current reaches a sufficient magnitude, it causes 

simultaneous depolarization of all cells 18 with subsequent synchronous 

influx of Ca2+ through voltage dependent Ca2+ channels. This leads to a 

synchronized release of Ca2+ from the sarcoplasmatic reticulum and hence 

produces synchronous Ca2+ oscillations. It has been shown that 

vasomotion or synchronous Ca2+ oscillations do not appear when the 

membrane potential is clamped and is only present with high levels of 

cGMP. Also, a current pulse or another brief depolarization was sufficient to 

synchronise cells 8. 

 

As far as we know, only little information exists about the influence of the 

membrane potential on Ca2+ signalling in the vascular smooth muscle cells. 

In the present experiments we investigated the influence on the 

noradrenaline induced Ca2+ responses of levcromakalim, calcitonin gene-

related peptide (CGRP) and 5 mM KCl, which have all been shown to 

hyperpolarize the membrane potential in several vascular preparations. We 

furthermore studied the effect of methanandamide on the Ca2+ oscillations, 

since we have shown in earlier reports that this cannabinoid has also a 

hyperpolarizing action on rat small mesenteric artery smooth muscle cells 
19, 20. Finally, we tested the influence of a depolarizing concentration of K+-

ions on the Ca2+ dynamics in the vascular wall. 
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7.2. MATERIALS AND METHODS 
 
7.2.1. Tissue Preparation 

Small mesenteric arteries from female Wistar rats (180 – 280 g) were used. 

The experiments were approved by the ethical committee on animal 

research of Ghent University. The animals were anaesthetised by a lethal 

dose (200 mg kg-1) of pentobarbitone and killed by cervical dislocation. 

Branches of the small mesenteric arteries were dissected from the 

abdominal cavity and rapidly placed in cold (4°C) normal Krebs-Ringer 

bicarbonate (KRB – composition defined further) solution bubbled with a 

95% O2 – 5% CO2 gas mixture. The arteries were cleaned from 

surrounding connective tissue and cut into segments of about 5 mm in 

length. 

 

Subsequently, the vessel segments were cannulated with a thin glass 

capillary (borosilicate glass, Hilgenberg, Malsfeld, Germany) with flame 

polished tip that was inserted into the lumen over the entire segment length 

(figure 1A). The diameter of the glass capillary was slightly (~15 %) larger 

than the vessel lumen diameter and cannulation was done to stabilize the 

preparation against possible smooth muscle contractions after challenging 

with norepinephrine. Imaging experiments showed that the endothelium 

was absent in most preparations. Figure 2 shows an image of an optical 

section of the arterial wall, as perceived when focussing more luminally. 

Autofluorescence of the internal elastic lamina was observed, and no 

endothelial cells were detected.  
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Figure 1: Illustration of the method of recording Ca2+ dependent fluo-3 fluorescence in intact 
small mesenteric arteries of the rat. (A) Schematic diagram of an artery cannulated with a 
thin glass capillary. Cannulae were slightly larger than the vessel lumen diameter. The 
arrows labelled ‘x’ and ‘y’ indicate the plane of laser scanning. For ease of illustration, the 
scanning plane was drawn on the upperface of the artery. In the actual experiments, 
however, the bottom of the arteries was scanned. (B) Optical section of the arterial wall, as 
observed after fluo-3 loading, with the smooth muscle cells vertically oriented. The arrows 
correspond to those similarly labelled in panel A. Images were typically 123 x 93 µm. 
 

20 µm

 
Figure 2: Optical section of the arterial wall, showing the internal elastic lamina (IEL). The 
wholes in this IEL represent fenestrae, through which projections of the endothelial cells 
contact adjacent smooth muscle cells, allowing formation of myoendothelial gap junctions. 
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7.2.2. Calcium imaging 

Ca2+ was measured with the fluorescent Ca2+ probe fluo-3 in combination 

with laser scanning confocal microscopy. The cannulated arterial segments 

were loaded with the Ca2+ dye by incubation overnight at 4°C in a loading 

buffer (Hanks’ balanced salt solution buffered with 25 mM HEPES (HBSS-

HEPES)) containing 20 µM fluo-3-AM and 0.05 % pluronic. The morning of 

the experiments, the preparations were transferred to loading buffer (same 

fluo-3-AM concentration) now at 37°C and incubated for 90 min. The 

arteries were then washed in HEPES-buffered physiological salt solution 

(PSS, pH 7.4).  

 

Ca2+ imaging was done with a custom developed real-time laser scanning 

microscope built around a Nikon Eclipse TE300 (Analis, Ghent, Belgium) 21 

and a x40 oil immersion objective with high numeric aperture (CFI Plan 

Fluo, Nikon - 1.4 NA). A cannulated vessel segment was placed on a glass 

coverslip and immobilized by covering it with a fine nylon mesh attached to 

a ring. The coverslip with the vessel was placed on the stage of the 

inverted microscope and was continuously superfused in situ with PSS at a 

rate of 1 ml/min. Excitation was done with the 488 nm line of an argon-laser 

(type 543R-AP-A01, Melles Griot, Carlsbad, CA, U.S.A.), the dichroic mirror 

was a dual-wavelength type (490-550DBDR) and the emission light was 

bandpass filtered at 522 nm (25 nm bandwith - all filters from Omega 

Optical, Brattleboro, VT, U.S.A. - details can be found in 21). Images of an 

optical section of the arterial wall (~ 123 µm x 93 µm and containing about 

30-40 cells, figure 1B) were obtained at 2 frames s-1 and transferred directly 

to a PC equipped with an image acquisition and processing board 

(DT3155, Data translation, Marlboro, MA, USA). Off-line image analysis 

was done with software (Fluoframes) developed in Microsoft Visual C.  
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7.2.3. Experimental procedures and analysis 

After recording 2 min (240 images) in control conditions, norepinephrine (3 

x 10-6 M) was added to the superfusate and recording was continued for 

another 3 min (360 images). Thereafter, still in the presence of 

norepinephrine, the tissues were exposed to various pharmacological 

agents and the responses were monitored over another 8 min (960 images; 

for levcromakalim, CGRP, 5 mM KCl or methanandamide) or 3 min (360 

images; for 15 mM KCl), as appropriate.  

 

The first stage image analysis consisted of counting the number of cells 

showing clear Ca2+ responses under control conditions, in the presence of 

norepinephrine and in the presence of the various pharmacological 

substances. The responding cells were subdivided in those showing 

oscillatory spiking activity upon stimulation with norepinephrine and those 

reacting with an increase in fluorescence relative to the baseline level. 

 

In a second stage of the analysis, the number of fluorescence peaks per 

cell (peaks with an amplitude of at least two times the amplitude of the 

noise were considered as true Ca2+ spikes), the spiking frequency (over the 

last 240 frames, expressed as spikes per minute) and the change in 

fluorescence relative to the baseline level was calculated (from the last 150 

frames, baseline level was set to 100%). The experimental traces illustrated 

represent averaged fluorescence signals from the imaged vessel part in 

view or the fluorescence change in a single cell, as indicated in the text.  
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7.2.4. Solutions and drugs 

The used KRB solution had the following composition (in mM): NaCl, 135; 

KCl, 5; NaHCO3, 20; CaCl2, 2.5; MgSO4.7H2O, 1.3; KH2PO4, 1.2; EDTA, 

0.026; glucose, 10. The solution was gassed with 95% O2 – 5% CO2  (pH 

7.4). HBSS-HEPES contained (in mM): NaCl, 137; KCl, 5.36; Na2HPO4. 

2H2O, 0.18; CaCl2.2 H2O, 0.95; MgSO4.7H2O, 0.81; KH2PO4, 0.44; HEPES, 

25 mM; glucose, 5.55 (pH 7.4, adjusted with NaOH). PSS contained (in 

mM): NaCl, 130; KCl, 5; NaH2PO4. H2O, 1; CaCl2, 1; MgSO4.7H2O, 0.5; 

HEPES, 20 mM; glucose, 10 (pH 7.4, adjusted with NaOH). 

 

Norepinephrine was purchased from Sigma-Aldrich (St. Louis, MO). 

Methanandamide, levcromakalim and CGRP were obtained from Tocris 

(Bristol, UK). Fluo-3 acetoxymethyl ester (fluo-3-AM) and pluronic were 

obtained from Molecular Probes (Eugene, Oregon, USA). Norepinephrine 

and calcitonin gene-related peptide (CGRP Rat) were dissolved in water; 

methanandamide in anhydrous ethanol and levcromakalim, fluo-3-AM and 

pluronic in anhydrous dimethyl sulfoxide. All concentrations mentioned are 

expressed as final molar concentrations in the experimental chamber. 

 

 

7.2.5. Statistics 

Results are expressed as means ± SEM. Statistical evaluation was 

performed using student’s t test for paired or unpaired data, as appropriate. 

Values of P<0.05 were considered significantly different. The number of 

cells is indicated as n. When appropriate, the number of preparations was 

mentioned. For one single series of experiments, preparations of at least 3 

different animals were used. 
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7.3. RESULTS 

7.3.1. Influence of norepinephrine 

In the 44 different vessel segments studied, on average 6.4 ± 0.7 cells per 

frame showed spontaneous and asynchronous Ca2+ spiking activity in the 

absence of norepinephrine. Addition of norepinephrine (3 x 10-6 M) 

significantly increased the number of spiking cells to 13.9 ± 0.9 per frame 

(n=44, P<0.05, figure 3). Spiking activity remained non-synchronized and 

was usually associated with an increase in fluo-3 fluorescence and thus 

[Ca2+]i. Typical examples of fluorescence traces in individual cells are 

shown in figure 4 (A-C). Figure 4 D illustrates the time course of 

fluorescence changes averaged over the whole frame in view. A mean 

fluorescence increase from 100 %  in control to 107.1 ± 3.5 % in 

norepinephrine (P<0.05, n=44) was observed in these experiments. 

Because of the asynchronous nature of spiking activity, the spikes 

disappeared in the whole frame trace. 

In a subset of these experiments we investigated the effect of prolonged 

(660 sec) exposure to norepinephrine. Figure 4 shows representative 

traces of such an experiment, and the results are summarized in figure 5 

(CTRL). In these experiments, 67 cells showed oscillatory spiking activity in 

response to norepinephrine (figure 5A), while 58 cells showed an increase 

in fluorescence (figure 5B) (data from 3 different preparations). In the 

preparations with spiking activity, the mean number of spikes per minute 

was 3.4 ± 0.2 (n=67, figure 5C). The largest part (n=62) of the cells 

oscillating in response to addition of norepinephrine still showed spike 

activity after prolonged exposure. Thus, in 32 cells spiking activity was 

unchanged, in 12 cells it was increased, whereas it was decreased in 23 

cells (figure 5A).  
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Figure 3: Ca2+ responses in small mesenteric arteries of the rat in response to stimulation 
with 3 x 10-6 M norepinephrine. The images represent a detailed fragment of the original 
confocal images and show the fluorescence change over time in different smooth muscle 
cells upon stimulation with norepinephrine. The images are taken at 16 time points, with 5 
seconds time difference (taken from a series of images recorded at 1 frame s-1). ‘*’ indicates 
the entrance of norepinephrine in the bath. In control conditions, little or no cells showed 
Ca2+ oscillations, while stimulation with norepinephrine induced asynchronous Ca2+ 
oscillations in most cells. 

 
 
However, the spiking rate slightly, but significantly decreased to 3.0 ± 0.2 

spikes per minute (n=67, P<0.05). Furthermore, in 32 of the 58 cells 
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reacting with an increase in basal fluorescence upon stimulation with 

norepinephrine, the level of fluorescence decreased with exposure time. In 

fact, the fluorescence significantly diminished from 169.9 ± 5.2 % to 135.2 ± 

5.4 % (n=58, P<0.0001, figure 5D). 

 
Figure 4: Representative tracings of the fluorescence change in smooth muscle cells of rat 
mesenteric arteries upon addition of 3 x 10-6 M norepinephrine (NOR). (A-C) Representative 
changes in fluorescence in selected individual smooth muscle cells; (D) mean fluorescence 
change averaged over the whole frame in view. (A.U. = arbitrary units) 
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Figure 5: (A, B) Comparison of the influence of levcromakalim (LEVCR), CGRP,  5 mM K+ 
(K5), 15 mM K+ (K15), and methanandamide (METH), administered 3 min after induction of 
spiking activity (A) or an increase in basal fluorescence (B), with the influence of prolonged 
exposure to norepinephrine alone (CTRL). The total number of cells responding to 
norepinephrine in each series of experiments is indicated under the bars. The numbers on 
top of each bar represent the number of cells showing an equal (=), an increase (+) or a 
decrease (-) in spiking activity (A) or basal fluorescence (B). For ease of comparison 
between series, Y-values were expressed as the percentage of cells. (C, D) Average 
number of peaks per minute (C) or absolute fluorescence (D) in the responding cells during 
the first 3 min after norepinephrine exposure and in the prolonged presence of 
norepinephrine alone (CTRL) or following addition of levcromakalim (LEVCR), CGRP,  5 mM 
K+ (K5), 15 mM K+ (K15), and methanandamide (METH). Average fluorescence is 
expressed relative to the fluorescence level in control conditions before exposure to 
norepinephrine, which is set to 100 %.  * p<0.05; § p<0.01; ** p<0.005; # p<0.0001. 
 

7.3.2. Influence of levcromakalim 

In the next series of experiments, we used levcromakalim, an opener of 

ATP sensitive K+- channels (KATP), to assess the influence of 

 192



Membrane potential and Ca2+-oscillations 

hyperpolarization of the membrane potential of the vascular smooth muscle 

cells on the Ca2+ dynamics. In this series, spiking activity in response to 

norepinephrine was observed in 50 cells, while 37 cells reacted with an 

increase in fluorescence level relative to baseline (data from 5 different 

preparations, figure 5). Levcromakalim (3x10-7 M) accentuated the 

spontaneous small decrease in spiking rate and [Ca2+]i observed in the 

prolonged presence of norepinephrine. Typical examples are depicted in 

figure 6 (A-C).  

 
Figure 6: Representative tracings showing the influence of levcromakalim (LEVCR) on the 
Ca2+ responses evoked by norepinephrine (NOR). (A-C) Representative changes in 
fluorescence in selected individual smooth muscle cells; (D) Trace of the mean fluorescence 
averaged from over the whole frame. (A.U. = arbitrary units) 
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It can be clearly seen that in this preparation, spiking activity decreased 

after application of levcromakalim. From the 50 cells which oscillated in 

response to norepinephrine, 35 cells (70 %) showed a reduction in spike 

frequency, while only 4 cells (8 % of the total number of responding cells) 

respond with an increase (figure 5A). This ratio is much larger than in 

control conditions where only 34 % (23 out of 67 cells) of the responding 

cells showed a decrease. Additionally, the mean spike frequency 

significantly decreased from 1.6 ± 0.1 spikes per minute in norepinephrine 

to 1.0 ± 0.1 peaks per minute in the presence of levcromakalim (n=50, 

p<0.0001, figure 6C). Moreover, in the presence of levcromakalim, the 

majority of the cells (24 cells from 37) showed a decrease in fluorescence 

compared to the level in the presence of norepinephrine alone (figure 5B). 

The average fluorescence (from the entire frame) was significantly reduced 

from 131.6 ± 2.8 % in norepinephrine to 105.2 ± 2.8 % in levcromakalim 

(n=37, P<0.0001, figure 5D). 

 

 

7.3.3. Influence of calcitonin gene-related peptide 

Similar changes were observed with calcitonin gene-related peptide 

(CGRP), which is also known to cause substantial hyperpolarization in this 

preparation 20. From the 126 cells oscillating in the presence of 

norepinephrine, 70 smooth muscle cells displayed a reduction in the spiking 

frequency after addition of CGRP (3x10-9 M, figure 5A) (data from 8 

different preparations). More specifically, the mean spike rate was 

significantly lowered from 3.5 ± 0.1 spikes per minute in norepinephrine to 

2.9 ± 0.1 spikes per minute in the combined presence of norepinephrine 

and CGRP (n=126, P<0.0001, figure 5C). In this subset of experiments, 98 

cells responded to incubation with norepinephrine with an increase in 
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fluorescence relative to baseline. In 54 of these cells, application of CGRP 

induced a lowering of the fluorescence (figure 5B). The average 

fluorescence was lowered from 147.3 ± 4.0 % to 123.7 ± 5.0 % (n=98, 

P<0.0001, figure 5D). 

 

 

7.3.4. Influence of addition of 5 mM K+ 

In the experiments in which we increased the KCl concentration of the KRB 

solution with 5 mM (yielding 10 mM K+ in total), 49 cells oscillated in 

response to norepinephrine (data from 5 different preparations). Typical 

examples are depicted in figure 7 (A-C). After addition of 5 mM KCl, the 

spiking activity decreased in the majority of these cells (n=40, figure 5A, 

figure 7). The mean spike frequency was significantly reduced from 2.8 ± 

0.2 peaks per minute in norepinephrine to 1.3 ± 0.2 peaks per minute in the 

presence of 5 mM K+ (n=49, P<0.0001, figure 5C). Additionally, from the 51 

cells showing an increase in fluorescence after addition of norepinephrine, 

this fluorescence decreased in 34 cells after incubation with 5 mM KCl 

(figure 5B, figure 7C). The average fluorescence significantly lowered from 

119.5 ± 2.1 % to 97.4 ± 2.7 % (n=51, P<0.0001, figure 5D). 

 

7.3.5. Influence of  addition of 15 mM K+ 

In a next series of experiments, we investigated the influence of the extra 

addition of 15 mM K+ on the Ca2+ responses elicited by norepinephrine. 

This concentration is expected to depolarize the smooth muscle cell 

membrane potential by about 20 mV 22. Incubation of the vessels with 15 

mM K+ increased spiking activity. Of the 97 cells oscillating in response to 

norepinephrine, 70 cells showed a higher spiking activity in the presence of 
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15 mM KCl (figure 5A) (data from 6 different preparations). 

Correspondingly, the number of spikes per minute increased significantly 

from 2.2 ± 0.1 in norepinephrine to 4.0 ± 0.2 in the presence of 15 mM KCl 

(n=97, P<0.0001, figure 5C). Individual traces are depicted in figure 8 (A-

C).  

 
Figure 7: Representative tracings showing the influence of an extra 5 mM K+ on the Ca2+ 
responses evoked by norepinephrine in selected individual smooth muscle cells from the 
same preparation. (A.U. = arbitrary units) 
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Figure 8: Representative tracings showing the influence of 15 mM K+ on the Ca2+ 
responses evoked by norepinephrine (NOR). (A-C) Representative changes in fluorescence 
in selected individual smooth muscle cells; (D) trace of the mean fluorescence averaged 
over the whole frame. Note that application of 15 mM K+ synchronizes the spiking activity 
which is reflected in the tracing of the average fluorescence (D). (A.U. = arbitrary units) 
 

 197



Chapter 7 

Furthermore, the observed oscillations became synchronized as 

demonstrated by the appearance of oscillations in the tracing of the 

average fluorescence from the entire frame, illustrated in figure 8D. The 

enhanced spiking activity was associated with an increase in [Ca2+]i. From 

the 55 cells responding with a increase in fluorescence to norepinephrine, 

36 cells further increased fluorescence after addition of 15 mM K+ (figure 

5C). The average fluorescence significantly increased from 112.5 ± 3.2 % 

to 143.4 ± 5.2 (n=55, P<0.0001, figure 5D). 

 

 

7.3.6. Influence of methanandamide 

In the last series of experiments we tested the influence of 

methanandamide (10-5 M) on the Ca2+ responses. Some representative 

tracings of individual smooth muscle cells are depicted in figure 9 (A-C). In 

these preparations 128 cells oscillated in response to norepinephrine. 

Addition of methanandamide did not notably alter the number of oscillating 

cells, 56 of them responding with an increased spiking activity (data from 8 

different preparations). However, as can be observed in figure 5A, the 

slowly decreasing trend as observed in the prolonged presence of 

norepinephrine was clearly reversed, although not to the same level as 

obtained with 15 mM K+. Indeed, the number of cells reacting with an 

increase in spiking activity is twice as large as the number of cells showing 

a decrease (56 vs 28 cells, respectively). Moreover, the mean spike rate 

was significantly augmented (from 3.4 ± 0.2 spikes per minute in 

norepinephrine to 3.9 ± 0.2 spikes per minute in the presence of 

methanandamide, n=128, P<0.01, figure 5C). Apart from addition of 15 mM 

K+, the application of methanandamide is the only condition in which 

spiking rate increases (figure 5C). In the presence of methanandamide, 
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oscillations remained asynchronous. The changes in spiking activity were 

accompanied by a small, but significant decrease in [Ca2+]I as fluorescence 

lowered from 143.8 ± 3.5 % in norepinephrine versus 130.3 ± 3.0 % after 

addition of methanandamide (n=89, P<0.005, figure 5D), slightly less than 

observed in the prolonged presence of norepinephrine alone. 

 

 
Figure 9: Representative tracings showing the effect of methanandamide (METH) on the 
Ca2+ responses evoked by norepinephrine (NOR). The different traces (A-C) represent 
selected individual smooth muscle cells from the same preparation. (A.U. = artbitrary units) 
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7.4. DISCUSSION 

In the present study we investigated smooth muscle cell Ca2+ responses 

induced by norepinephrine and the way they were influenced by changes of 

the membrane potential. As far as we know, this study is the first to 

investigate the role of the membrane potential in the Ca2+ dynamics of 

vascular smooth muscle cells. We found that most smooth muscle cells of 

small mesenteric arteries of the rat showed substantial Ca2+ responses 

upon stimulation with low concentrations of norepinephrine: asynchronous 

spiking activity was usually accompanied by an increase in basal 

fluorescence. Agents known to hyperpolarize the membrane potential, such 

as levcromakalim and CGRP, significantly suppressed the increase in 

intracellular Ca2+ and spiking activity triggered by norepinephrine. Similarly, 

addition of low concentrations of extracellular K+ tended to decrease the 

Ca2+ activity. In contrast, depolarizing concentrations of K+ increased Ca2+ 

responses and synchronized spiking activity of the smooth muscle cells.  

 

 

Vessels activated with vasoconstrictors such as norepinephrine, 

phenylephrine or vasopressin, show an increase in spatially averaged or 

whole tissue [Ca2+] to a maintained level 1, 23. However, it has recently been 

shown that this sustained increase of the Ca2+ concentration is not 

representative for the Ca2+ dynamics in the individual smooth muscle cells 

of both arteries and veins 5-9, 24. In a variety of smooth muscle cells, it has 

now been clearly demonstrated that agonists produce cytosolic Ca2+ 

oscillations which are highly organized in both time and space. It has been 

shown that upon activation, the cellular Ca2+ level oscillates with a 

frequency that varies with agonist concentration and that changes in Ca2+ 

propagate as Ca2+ waves during exposure to the agonist 14-16. In general, 
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low concentrations of an agonist elicit asynchronous Ca2+ oscillations and 

waves 6-9, 24, while high concentrations present synchronous Ca2+ 

responses and elicit vasomotion 7, 17. 

 

The exact mechanism leading to synchronization of the Ca2+ responses is 

not yet fully understood. It has been suggested that Ca2+ released from the 

sarcoplasmatic reticulum activates a depolarizing current which can spread 

to the adjacent smooth muscle cells, probably through gap junctions, finally 

causing simultaneous depolarization of all smooth muscle cells 18. The 

resulting synchronous Ca2+ influx through voltage dependent Ca2+ channels 

will likely result in a synchronized Ca2+ release from the sarcoplasmatic 

reticulum 25. The Ca2+ waves in the individual smooth muscle cells are then 

synchronized, initiating vasomotion 8. 

 

The influence of changes in the membrane potential on the Ca2+ responses 

is still elusive. Studies in rat mesenteric arteries revealed that applying a 

current pulse or an other brief depolarization to arteries stimulated with 

norepinephrine was sufficient to change the asynchronous oscillations into 

synchronized Ca2+ responses 8. Hyperpolarizing the membrane potential 

with pinacidil, however, seemed to have no influence on the Ca2+ 

responses in this study. 

 

In the present study we investigated the Ca2+ oscillations in vascular 

smooth muscle cells of mesenteric arteries of the rat. Under control 

conditions, in the absence of norepinephrine, only a very small fraction of 

the smooth muscle cells in the vascular wall exhibited spontaneous Ca2+  

oscillations. This is consistent with previous reports in these arteries 6, 16. 

Upon stimulation with norepinephrine asynchronous Ca2+  oscillations 

appeared in a significantly larger number of cells. Since asynchronous 
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transients do not sum, this oscillatory response was not reflected in the 

tracings of averaged fluorescence determined over the whole frame. 

Furthermore, the asynchronous spiking activity was usually accompanied 

by a rise in fluorescence and thus [Ca2+]i. However, after prolonged 

exposure to norepinephrine our preparations showed a decrease of the 

spiking activity and a slight but significant reduction of the fluorescence 

increase. This is consistent with other reports in smooth muscle cells of 

small mesenteric arteries, showing that the mean Ca2+ level 9, 26 and the 

oscillation frequency 6, 7 decreased during maintained exposure to 

vasoconstrictors. These effects could be due to receptor or channel 

desensitization. 

 

In our experiments, addition of depolarizing concentrations of K+ (15 mM) 

resulted in the synchronization of the Ca2+ oscillations, as observed in the 

traces of fluorescence averaged over the whole frame. Moreover, these 

high concentrations of K+ increased the spiking frequency and further 

raised the fluorescence. Taken together, these results are consistent with 

the view that a membrane depolarization is essential to synchronize the 

Ca2+ oscillations 8. 

 

Since depolarization and an increased Ca2+ influx through voltage 

dependent Ca2+ channels are able to increase oscillatory activity, it might 

be expected that hyperpolarization of the membrane potential could have 

the inverse effect. However, earlier reports had shown that hyperpolarizing 

the membrane potential did not influence the Ca2+ responses 8. In the 

present study, application of levcromakalim to preparations previously 

stimulated with norepinephrine influenced the Ca2+ activity in the smooth 

muscle cells. In the presence of this hyperpolarizing agent, the majority of 

the active smooth muscle cells showed a reduction of the spiking frequency 
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and the fluorescence level was significantly reduced. This decline in the 

Ca2+ responses was larger than the spontaneous decrease observed in the 

prolonged presence of norepinephrine alone, suggesting that the induced 

hyperpolarization additionally attenuated the Ca2+ activity in the vascular 

smooth muscle cells. Similar results were found for calcitonin gene-related 

peptide (CGRP). CGRP is a powerful vasodilator in a number of vascular 

preparations 27, 28 and was recently demonstrated to cause substantial 

hyperpolarization in isolated small mesenteric and gastric arteries of the rat 

through the activation of KATP channels 20.  

 

Contradicting reports have been published concerning the mechanism of 

action of small rises in the extracellular K+ concentration and its effect on 

the vascular smooth muscle cells. Some studies in mesenteric and hepatic 

arteries of the rat reported that increasing the extracellular K+ concentration 

with 5 mM induced a hyperpolarization of the smooth muscle membrane 

potential both in intact and endothelium-denuded unstimulated arteries 29-31. 

Upon stimulation with phenylephrine, the K+-induced hyperpolarizations 

turned endothelium-dependent and became more sensitive to gap junction 

uncoupling 29. It was suggested that small increases in extracellular K+ 

activate smooth muscle Na+/K+ ATPases and inward rectifying K+ (KIR) 

channels and hence induce hyperpolarization. However, stimulation of 

smooth muscle cells with phenylephrine, which is known to increase basal 

K+ efflux from the myocytes, might saturate the Na+/K+ pumps and may 

favour the spread of endothelial hyperpolarization through myoendothelial 

gap junctions. Other studies in guinea-pig carotid, porcine coronary and rat 

gastric arteries reported, however, that small increases in the extracellular 

K+ concentration had no significant hyperpolarizing effect on the membrane 

potential of resting arteries 32, 33. Strikingly, in norepinephrine-stimulated rat 

gluteal arteries 34 non cumulative additions of small amounts of K+ (1 to 5 
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mM) induced large vasorelaxations. In the present study, increasing the 

extracellular concentration of K+ with 5 mM had similar effects as seen with 

the application of levcromakalim and CGRP. The majority of the cells 

responded with a significant decrease of the spiking frequency and the 

average basal fluorescence was significantly lowered. These results were 

similar to those obtained with levcromakalim and CGRP, suggesting that 

small amounts of K+ may indeed hyperpolarize the membrane potential. 

 

In a last series of experiments we tested the influence of methanandamide, 

a stable derivative of the endocannabinoid anandamide. Methanandamide 

slightly but significantly decreased the norepinephrine-induced rise in basal 

fluorescence but clearly reversed the decrease of the spiking rate observed 

in the prolonged presence of norepinephrine. Taken together with the 

results obtained with the hyperpolarizing agents, we can conclude that 

methanandamide does not substantially hyperpolarize the smooth muscle 

cells but, taking into account the increase in spiking activity, might have a 

small depolarizing effect in the present conditions. It should be noted that 

previous studies in the same preparation 19, 20 reported substantial 

hyperpolarizations of the membrane potential induced by methanandamide. 

This hyperpolarization was ascribed to the stimulation of TRPV1 receptors 

on the perivascular nerves, since fully blocked in the presence of 

capsazepine and capsaicin. However, under the present experimental 

conditions only little contribution of the perivascular nerves could be 

expected, since prolonged incubation has been reported to deplete the 

perivascular nerves 35. Therefore, these results are fully consistent with 

earlier results, showing that methanandamide causes a small 

depolarization of the membrane potential after elimination of the influence 

of the perivascular nerves 19, 20. 

 

 204



Membrane potential and Ca2+-oscillations 

Taken together, the present study demonstrates that norepinephrine 

induces asynchronous Ca2+ spiking activity in rat mesenteric arteries, which 

is usually associated with a rise in the average intracellular free Ca2+ 

concentration. Hyperpolarizations induced by levcromakalim, CGRP, and 

presumably by small increases in the extracellular K+ concentration 

diminish these responses. Finally, depolarization of the vascular smooth 

muscle initiates the synchronization of Ca2+ spiking activity. 
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8.1. GENERAL DISCUSSION 

The blood supply to a given vascular bed is regulated by neuronal, humoral 

or local chemical mechanisms altering the diameter of the vessels of the  

specific tissue. It is now generally accepted that the vascular endothelium 

plays a crucial role in the control of blood vessel tone and blood flow. 

However, the endothelium is not the sole mediator of vascular tone. For 

example, several substances released from the perivascular nerves may 

also influence the cardiovascular system. In the present study we 

investigated the role of substances released from both the endothelium and 

the perivascular nerves in the reactivity of the vascular wall. 

 
Although the role of the endothelium-dependent vasorelaxing factors NO 

and PGI2 is well established, the exact mechanism involved in endothelium-

dependent hyperpolarization is, despite extensive research, still a subject of 

intense discussion. While some studies point to a diffusible factor (EDHF) 

released from the endothelial cells, other reports support the idea of an 

electrical current or small messenger molecule being spread through 

myoendothelial gap junctions. 

 
 
Endothelium-dependent hyperpolarization in rat gastric arteries: an 
important mediator of gastric mucosal blood flow? 
 

During the search for the mechanism underlying endothelium-dependent 

hyperpolarization, it has become clear that there are considerable tissue 

and species differences 1, 2. It has therefore been generally accepted that 

different hyperpolarizing mechanisms may exist in different vascular beds. 

Moreover some arteries such as the femoral artery of the rat even lack any 
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endothelium-dependent hyperpolarizing responses 3. Thusfar, most of the 

membrane potential experiments in our lab were performed in small 

mesenteric arteries of the rat. The existence of EDHF in these arteries has 

been described in detail and the search for its exact mechanism of action 

has been a subject of many investigations. Since previous studies in our 

lab demonstrated endothelium-dependent, but L-NA and indomethacin 

resistant vasorelaxations in isolated small gastric arteries of the rat in 

response to acetylcholine 4, we performed membrane potential 

measurements to confirm the existence of an endothelium-derived 

hyperpolarizing factor in these vessels. Indeed, we found that acetylcholine 

hyperpolarizes the membrane potential of the vascular smooth muscle cells 

of small gastric arteries. This hyperpolarization seemed to be totally 

endothelium-dependent but independent of the NO or PGI2 pathway. Since 

membrane potential is expected to alter vessel tone immediately, this first 

demonstration of endothelium-dependent hyperpolarization in gastric 

arteries could reveal an important and rapid regulator of gastric mucosal 

blood flow. However, the identity of EDHF and its mechanism of action in 

gastric arteries are far from revealed. We found, although, that the EDHF 

response in gastric arteries did not seem to rely on the stimulation of KIR 

channels or Na+/K+-ATPases on the smooth muscle cells.  

 

 

Endothelium-dependent hyperpolarization in rat mesenteric arteries: a 
story about K+-clouds and myoendothelial gap junctions. 
 

Since the discovery of the existence of endothelium-dependent 

hyperpolarizing factors, extensive research has been performed to unravel 

the exact mechanism of action. Several possible candidates for the EDHF 

have been proposed, among which K+. In resting rat hepatic and small 
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mesenteric arteries it was proposed that stimulation with acetylcholine 

results in an IKCa- and SKCa-mediated hyperpolarization of the endothelial 

cells with accompanying endothelial release of K+ in the myoendothelial 

space (figure 1A). It was found that the EDHF-response was significantly 

inhibited by the combination of Ba2+ and ouabain, selective inhibitors of KIR 

channels and Na+/K+-ATPases, respectively. Therefore it was suggested 

that local transient increases in the extracellular K+ concentration would 

activate Na+/K+ -ATPases and KIR channels in the membrane of the 

adjacent smooth muscle cells, leading to their hyperpolarization 5, 6. 

However, other studies found no evidence for the presence of KIR in smooth 

muscle cells of rat small mesenteric arteries and suggested that these 

channels were restricted to the endothelial cells7. In the present study, no 

evidence was found for the involvement of KIR channels in the endothelium-

dependent hyperpolarization of rat small mesenteric arteries, while the 

involvement of Na+/K+-ATPases could not be completely excluded. This is 

somewhat different from the results obtained in gastric arteries, where the 

involvement of both KIR channels and Na+/K+-ATPases could be excluded. 

Our results in rat mesenteric arteries rather point to the activation of an as 

yet unidentified, but Ba2+ resistant K+ current accounting for a significant 

fraction of the endothelium-dependent hyperpolarization of the smooth 

muscle cells (figure 1A). On the other hand, we found that gap junctions 

play some role in the acetylcholine-induced hyperpolarization of the smooth 

muscle cells since carbenoxolone decreased the responses (figure 1A). 

This is consistent with other studies in rat mesenteric arteries, indicating 

that both K+-coupling and gap junctional communication play a role in the 

EDHF-response.  
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Figure 1: Schematic presentation of the proposed pathway for the endothelium-derived 
hyperpolarization (EDH) in rat small mesenteric arteries. (A) In control conditions (in the 
presence of L-NA and indomethacin), both gap junctions (GJ) and an as yet unidentified, but 
Ba2+ resistant K+ current (Kx) play a role in the endothelium-dependent hyperpolarization 
induced by acetylcholine (ACh). The involvement of Na+/K+-ATPases could not be 
completely excluded. (B) After pre-incubation with Ba2+, to modulate the myoendothelial 
extracellular K+ concentration, the presumed local depletion in extracellular K+ decreases 
the role of GJ in the EDH-pathway and favours K+ efflux through KX. (oua = ouabain; cbx = 
carbenoxolone; KIR = inwardly rectifying K+ channel; IKCa = intermediate conductance Ca2+ 
activated K+ channel; SKCa = small conductance Ca2+ activated K+ channel; hyperpol = 
hyperpolarization; EC = endothelial cell; VSMC = vascular smooth muscle cell; R = receptor) 
 
 

Under basal conditions, Na+/K+-ATPases containing α2- and/or α3-subunits 

are suggested to be responsible for the observed K+-induced effects 8. 

Moreover, it was found that stimulation of the arteries with phenylephrine 

favoured the gap junctional pathway for smooth muscle hyperpolarization 6, 

9. Therefore, it was suggested that activation of the smooth muscle cells, 

which is known to increase K+ efflux from the myocytes, results in a K+ 

cloud in the myoendothelial spaces in these conditions 10. This would fully 

activate and saturate Na+/K+-pumps containing α2- and/or α3-subunits on 
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the smooth muscle cells so that the acetylcholine-induced endothelium-

dependent hyperpolarization would now rely more on gap junctional 

coupling.  

 

If local accumulations of extracellular K+ favour gap junctional coupling, 

local depletion might be expected to have the adverse effect. In the present 

study, we used the KIR channel inhibitor Ba2+ to modulate the 

myoendothelial extracellular K+ concentration (figure 1B). Blocking the KIR 

channels by preincubation with Ba2+ might indeed be expected to reduce 

the steady state extracellular K+ concentration around the smooth muscle 

cells. We found that under these circumstances, the endothelium-

dependent hyperpolarization relies to a lesser extent on gap junctional 

coupling (figure 1B). This is fully consistent with the hypothesis in the 

mesenteric arteries that local accumulations in basal K+ concentration 

would shift the acetylcholine-activated  EDHF mechanism to gap junctional 

coupling. However, since in our experiments KIR channels are not involved, 

the hyperpolarization of the smooth muscle cells possibly relies on another 

mechanism. In part, this may include Na+/K+-pumping. It should be noted, 

however, that depletions or accumulations of basal extracellular K+ not only 

affect the activity of the Na+/K+-pumps, but are likely to affect all 

transmembrane K+ fluxes.  

 

Other evidence for the hypothesis that EDHF relies on both K+-coupling 

and gap junctional communication was obtained from experiments in which 

the extracellular K+ concentration was raised with a few mM. However, 

contradicting reports have been published concerning this topic, even in the 

same vessel type. Studies in hepatic and small mesenteric arteries of the 

rat showed that increasing the extracellular K+ concentration with 5 mM 

induced a hyperpolarization of the smooth muscle membrane potential in 
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both intact and endothelium-denuded resting arteries 9, 10. Upon stimulation 

with phenylephrine, the K+ responses became endothelium-dependent and 

relied more on gap junctional coupling. This is consistent with the 

hypothesis of a K+-cloud, as a result of stimulation with phenylephrine, 

which saturates the Na+/K+-pumps and makes the hyperpolarizing effects of 

K+ on the endothelial cells more important. The hyperpolarization of the 

endothelial cells is subsequently transferred to the smooth muscle cells via 

myoendothelial gap junctions. Consistently, in rat gastric arteries 

(unpublished data) and in rat gluteal arteries 11 stimulated with 

norepinephrine, small increases in the extracellular K+ concentration with 1-

5 mM induced large, concentration-dependent vasorelaxations. In contrast, 

other studies in guinea-pig and porcine coronary arteries reported that 

small increases in the extracellular K+ concentration had no significant 

hyperpolarizing effect on the membrane potential of resting arteries 12. 

Similarly, no K+-induced hyperpolarizations were obtained in resting rat 

gastric arteries 4. In the same study, cumulative addition of K+ (up to 15 

mM) to norepinephrine precontracted arteries caused no substantial 

relaxation.  

 

The present study supports the view that in rat small mesenteric arteries, a 

small increase in the extracellular K+ concentration might induce a 

hyperpolarization of the membrane potential of the smooth muscle cells. 

Indeed, the results obtained with the Ca2+ imaging experiments also 

suggest a hyperpolarization of the membrane potential induced by 

increasing the extracellular K+ concentration with 5 mM. Since in rat gastric 

and gluteal arteries, such small increases in the K+ concentration induce 

potent relaxation, a membrane potential change as suggested in the 

present study could be the principle mediator of vasorelaxation.  
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Endocannabinoids: multiple pathways leading to vasodilatation. 
 

Another candidate proposed as EDHF was the endocannabinoid 

anandamide 13. However, this hypothesis has widely been argued and it is 

now generally accepted that anandamide is not EDHF. Besides their 

neurobehavioral effects, both endogenous and synthetic cannabinoids 

influence the cardiovascular system and have potent vasodilator effects in 

a number of vascular preparations 13-15. This was confirmed in our 

experiments. We found that methanandamide, a stable analogue of 

anandamide, potently hyperpolarized the smooth muscle cells of both rat 

gastric and mesenteric arteries. This hyperpolarization showed a different 

time course and pharmacological profile as compared to the EDHF-

response, excluding a role for EDHF in the membrane electrical response 

to cannabinoids in these preparations. 

 

The exact mechanism by which cannabinoids induce vasodilatation is still 

unknown. Some studies have reported that they directly stimulate 

cannabinoid CB1 or CB2 receptors on the smooth muscle cells. 13, 14, 16. 

Recently, it was suggested that in some vessels, the response to 

cannabinoids could be ascribed to the stimulation of a not yet identified 

non-CB1/non-CB2 receptor located on the endothelial cells. Several studies, 

including previous experiments in our own laboratory 17, have identified 

anandamide as an endovanilloid, acting by stimulation of TRPV1 receptors 

on perivascular nerves, causing the release of vasodilator neuropeptides 

such as CGRP. We studied and compared the membrane electrical 

responses to methanandamide and exogenous CGRP. We found that 

methanandamide and exogenous CGRP caused similar membrane 

potential changes which were sensitive to the KATP channel inhibitor 

glibenclamide. Furthermore, hyperpolarizations induced by 

 216



General discussion, limitations & future perspectives 

methanandamide, unlike those elicited by CGRP, were sensitive to 

inhibition of TRPV1 receptors with capsazepine. We concluded that 

stimulation of TRPV1 receptors on perivascular CGRP containing nerves is 

the primary cause for the cannabinoid-induced hyperpolarization in the 

mesenteric and gastric arteries. The released CGRP subsequently 

hyperpolarizes the resting vascular smooth muscle cells through activation 

of KATP channels (figure 2A). 

 

Strikingly, the Ca2+ imaging experiments do not point to a hyperpolarization 

induced by methanandamide, since the addition of methanandamide 

seemed to have only little direct influence on the membrane potential in the 

norepinephrine-stimulated arteries. Maybe a small depolarization might 

possibly be expected. Taken the long incubation period and the fact that 

the preparations were loaded at 4°C, a rather small contribution of the 

perivascular nerves is expected under these experimental circumstances. 

Indeed, it has been shown that cooling abolishes the vasodilator response 

to (endo)cannabinoids, probably by desensitization and/or degeneration of 

the perivascular nerves 18. After desensitization of the perivascular nerves 

with capsaicin 17 or inhibition of the TRPV1 receptor with capsazepine 

(present study) in the membrane potential measurements, 

methanandamide was unable to induce hyperpolarization, and in some 

preparations even caused a small depolarization of the membrane 

potential. Therefore, the Ca2+ imaging experiments are consistent with the 

hypothesis that methanandamide induces hyperpolarization of the 

membrane potential by stimulation of the perivascular sensory nerves.  
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Figure 2: Schematic presentation of the proposed pathway for the methanandamide (Meth)-
induced responses. (A) Membrane potential measurements in rat gastric and mesenteric 
arteries (in the presence of L-NA and indomethacin (indo)) suggest that Meth stimulates 
TRPV1 receptors on perivascular nerves (PVN), causing the release of vasodilator 
neuropeptides such as CGRP. CGRP subsequently hyperpolarizes (Hyperpol) the vascular 
smooth muscle cells (VSMC) through the activation of ATP sensitive potassium channels 
(KATP). (B) Tension measurements suggested that low concentrations of Meth might 
stimulate TRPV1 receptors on the PVN, inducing the release of CGRP, followed by 
relaxation of the VSMC. On the other hand, higher concentrations of Meth were shown to 
inhibit the influx of Ca2+ in the VSMC through voltage gated Ca2+ channels (VGCC).(EC = 
endothelial cell; NO = nitric oxide; N Pept = neuropeptides; EDHF = endothelium-derived 
hyperpolarizing factor; PGI2 = prostacyclin; glib = glibenclamide; CAPS = capsaicin; CZP = 
capsazepine; NIF = nifedipine) 
 

 
Since membrane hyperpolarization can be a powerful mediator of 

vasorelaxation, we characterized the vasorelaxing properties of 

cannabinoids in the gastric arteries. We found that methanandamide is also 
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a powerful vasorelaxant in isolated small gastric arteries of the rat. The 

induced vasorelaxation was endothelium-independent, consistent with 

reports in other arteries 13, 16. In the present tension measurements we 

found no evidence that methanandamide induced relaxation through 

activation of one of the above mentioned cannabinoid receptors. While the 

hyperpolarization seemed to rely completely on activation of TRPV1 

receptors on perivascular nerves (figure 2A), we found that this mechanism 

could not fully account for the methanandamide-induced relaxation. 

However, it might contribute to the relaxations induced by the lower 

concentrations of the cannabinoid (figure 2B).  

 

Taken together with the results obtained from the membrane potential 

measurements, these findings suggest that hyperpolarization only plays a 

minor role in the relaxation induced by cannabinoids in norepinephrine 

contracted gastric arteries and that the main route by which higher 

concentrations produce vasorelaxation involves another mechanism. This 

was further corroborated by the fact that CGRP and methanandamide 

showed different sensitivity to potassium channel blockers. Studies with 

high K+, TEA and glibenclamide showed that membrane hyperpolarization 

was at least involved in the vasorelaxation to exogenous CGRP, while the 

methanandamide-induced relaxation did not require smooth muscle cell 

hyperpolarization.  

 

Interestingly, we found that higher concentrations of methanandamide 

might eventually relax the arteries by inhibition of Ca2+ influx in the smooth 

muscle cells (figure 2B). The former possibility is consistent with other 

reports about the direct inhibitory action of cannabinoids on voltage 

dependent Ca2+ channels or a further step in the excitation-contraction 

coupling 19-21. In the Ca2+ imaging study, we found that addition of 
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methanandamide slightly, but significantly decreased the basal free Ca2+ 

concentration of the smooth muscle cells.  

 

 

Membrane potential and Ca2+ oscillations. 

Vasorelaxation and vasoconstriction involve changes of the mean cytosolic 

Ca2+ concentration of the smooth muscle cells in the arteriolar wall. It has 

been shown that the overall vessel Ca2+ concentration is not representative 

for the Ca2+ reactions in the individual smooth muscle cells 22-26. Upon 

stimulation with vasoconstrictors, smooth muscle cells of rat tail artery and 

small mesenteric arteries showed asynchronous Ca2+ oscillations which 

were not reflected in the average Ca2+ responses 27-29. When higher 

concentrations of contracting agents were used, the Ca2+ waves appeared 

synchronously between the different smooth muscle cells and give rise to 

oscillations in vascular tone, called vasomotion 24, 30. It has been suggested 

that the switch to synchronisation of the Ca2+ oscillations and waves 

involves a simultaneous depolarization of all the smooth muscle cells. 

Indeed, application of a depolarizing current was sufficient to synchronise 

the cells 25. In the last part of this thesis, we studied the influence of the 

membrane potential on norepinephrine-induced Ca2+ oscillations in smooth 

muscle cells of intact small mesenteric arteries of the rat. We found that 

stimulation with low concentrations of norepinephrine induces 

asynchronous Ca2+ spikes in the smooth muscle cells usually accompanied 

by a sustained increase of the basal fluorescence. A small reduction of the 

responses was seen in the prolonged presence of the vasoconstrictor. 

Depolarizing concentrations of K+ increased the Ca2+ responses and 

initiated synchronization of the oscillations, confirming other reports about 

the initiation of vasomotion. Taken into account the effect of a 
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depolarization on the oscillatory behaviour, it could be expected that a 

hyperpolarization of the membrane potential would have inverse effects. 

Indeed, addition of hyperpolarizing agents such as levcromakalim 

significantly reduced the Ca2+ responses. Similar results were obtained with 

exogenous CGRP. It is suggested, therefore, that while methanandamide is 

unable to induce release of CGRP in these conditions, the exogenous 

application of this peptide directly acts on the vascular smooth muscle cells 

causing hyperpolarization. As mentioned, increasing [K+]o with 5mM 

similarly causes a membrane hyperpolarization, although not as large as 

obtained with levcromakalim. 

 

 

8.2. GENERAL CONCLUSIONS 

The results of the present study emphasize the importance of EDHF in the 

gastrointestinal circulation. Furthermore, the mechanism by which agents 

derived from the endothelium or the perivascular nerves modulate the 

reactivity of the vessel wall is further elucidated. The main findings 

presented in this thesis can be summarized as follows: 

 Endothelium-dependent hyperpolarization is present in mesenteric and 

gastric arteries and might play an important role in the regulation of the 

gastro-intestinal circulation. 

 In mesenteric arteries, endothelium-dependent hyperpolarization 

involves both gap junctional coupling and activation of an as yet 

unidentified, but Ba2+-resistant, K+ current. 
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 The hyperpolarization induced by methanandamide in gastric and 

mesenteric arteries involves the stimulation of the TRPV1 receptor on 

perivascular nerves and the subsequent release of CGRP. 

 The relaxation induced by methanandamide in gastric arteries might 

involve multiple pathways: low concentrations may stimulate the TRPV1 

receptor on CGRP-containing perivascular nerves, while higher 

concentrations elicit their effects by inhibition of voltage dependent Ca2+ 

channels in the smooth muscle cells. 

 Stimulation of mesenteric arteries with norepinephrine induces 

asynchronous Ca2+ oscillations in the vascular smooth muscle cells, 

which become synchronized upon depolarisation of the membrane 

potential. Hyperpolarization tends to decrease the Ca2+ dynamics. 

 

 

8.3. LIMITATIONS OF THIS STUDY 
Some limitations should be mentioned for the experiments used in this 

thesis. First, based on the knowledge that EDHF shows tissue and species 

specificity, the use of only two different arteries from a single species 

implies some restraints. Furthermore, it has been shown that different 

EDHFs might even exist within the same vascular bed, depending on the 

size of the arteries and the used experimental conditions. Therefore, 

extrapolation of the obtained results to other vessels or species, or to 

human level, should be done with great caution. 

  

Second, in the present in vitro studies, the influence of neuropeptides 

(CGRP) released by the perivascular sensory nerves is investigated. 

Sensory neurons all have their cell bodies in the dorsal root ganglia, where 

the neuropeptides are synthesised. Upon isolation of the arteries, however, 
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the perivascular nerves are cut, so that after depletion, the nerve endings 

can not be refilled with freshly synthesised neuropeptides (CGRP). This is 

most likely the reason why the hyperpolarizing effect of methanandamide is 

not reproducible in our study. Therefore, it is very important in in vitro 

studies to pay attention to the reproducibility of a response. On the other 

hand, it should also be noted that, if the present in vitro studies point to an 

important role for the release of CGRP, then one could expect that its 

involvement would be considerably more important in vivo. 

 

Third, three different techniques were used to obtain the results comprised 

in this thesis. The distinct techniques used in the present study were 

performed in totally different experimental conditions. While the results 

obtained with one technique were often consistent with results from another 

and corroborative for general conclusions, this was not always the case. 

The main apparent discrepancy arose from the findings that 

methanandamide caused substantial hyperpolarization, whereas relaxation 

measurements implied a minor role for this hyperpolarization because the 

substance apparently affected a downstream mechanism in the excitation-

contraction coupling. This can be taken as a typical case for many 

conflicting data and discrepancies in literature. It illustrates the risks 

involved e.g. when extrapolating results from relaxation studies to 

conclusions about membrane potential, or vice versa. 

 

 

8.4. FUTURE PERSPECTIVES 

In this study, the importance of endothelium-dependent hyperpolarization 

(EDH) has been demonstrated for the first time in isolated gastric arteries of 

rats. Although the involvement of Na+/K+ ATPases and KIR channels has 
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been ruled out, the exact mechanism by which acetylcholine hyperpolarizes 

the smooth muscle cells has not been elucidated yet. Therefore, additional 

electrophysiological and tension measurements would be useful to further 

investigate the exact mechanism of action of EDH in these arteries and to 

reveal its identity. For example, the involvement of myoendothelial gap 

junctions can be studied using known gap junction uncouplers such as the 

peptide gap-27. Furthermore, the involvement of possible EDHF candidates 

can be tested using specific inhibitors, such as cytochrome P450 inhibitors 

to assess the involvement of epoxyeicosatrienoic acids. 

 

A second series of membrane potential experiments suggested the 

involvement of an as yet unidentified, but Ba2+-resistant K+ channel in the 

acetylcholine-response in rat mesenteric arteries. In the future, it would be 

interesting to further extend these results with patch clamp techniques, to 

learn more about the characteristics and the identity of Ba2+-resistant K+ 

currents accounting for a significant fraction of the endothelium-dependent 

hyperpolarization. 

 

To further investigate if the suggested hypothesis of the K+-cloud 10 is 

correct, the results should be extended with additional membrane potential 

and tension measurements. For example, we could test if indeed small 

increases in the extracellular K+ concentration induce hyperpolarizations of 

the membrane potential of norepinephrine-stimulated vessels and could 

cause relaxation of small mesenteric arteries. If this is the case, the 

pharmacological properties of these responses should be further 

investigated. 

 

Furthermore, it might be interesting to test the influence of both 

methanandamide and CGRP on the membrane currents of isolated smooth 
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muscle cells of the gastric arteries, using patch-clamp techniques. Also, 

further Ca2+ imaging experiments could be useful to clarify the exact 

mechanism by which methanandamide relaxes the smooth muscle cells. In 

this perspective, it would be useful to develop a set-up for simultaneous 

tension and Ca2+ measurements. 

 

Finally, in the Ca2+ imaging experiments, glass cannulae were inserted into 

the lumen of the arteries to avoid motion artefacts. However, under these 

circumstances, it was impossible to apply intralumenal pressure and the 

arteries could not develop myogenic tone. Also, endothelium-dependent 

agonists such as acetylcholine could not be tested, because the cannulae 

damaged the endothelium. Therefore, experiments with pressurized and 

perfused arteries could be of interest for future experiments. Such an 

experimental set-up would allow studies on the effect of EDHF on the Ca2+ 

responses in the vascular smooth muscle cells and make it possible to 

investigate endothelial effects. However, this is limited to the resistance 

arteries since preparation depth is a limiting factor in these experiments 

and it would not be possible to visualise the endothelium in preparations 

thicker than 100 µm. 
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Vascular blood flow is regulated by a complex series of mechanisms which, 

by altering the diameter of the vessels of a given tissue, maintain tissue 

homeostasis. Vasodilatation plays an important role in the regulation of the 

perfusion of vascular beds. The aim of this thesis was to investigate the 

importance and the mechanism of action of several vasodilatory 

substances in isolated gastric and small mesenteric arteries of the rat and 

to elucidate their role in gastrointestinal blood flow. We measured 

membrane potential changes with conventional microelectrode techniques, 

isometric tension changes with a wire myograph and observed the Ca2+ 

dynamics in the smooth muscle cells using confocal microscopy. These 

techniques are extensively described in chapter 2. 

 

It is now generally accepted that the vascular endothelium plays a crucial 

role in the control of blood vessel tone and blood flow and the role of the 

endothelium-dependent vasorelaxing factors nitric oxide (NO) and 

prostacycline (PGI2) is well established. However, despite extensive 

research, the exact mechanism involved in endothelium-dependent 

hyperpolarization is still a subject of intense discussion. While some studies 

point to a diffusible factor (EDHF) released from the endothelial cells, other 

reports support the idea of an electrical current or small messenger 

molecule spread through myoendothelial gap junctions. In chapter 3, we 

found that gap junctions indeed play some role in the endothelium-

dependent hyperpolarization of rat small mesenteric arteries, while no 

evidence was found for the involvement of inward rectifying K+ (KIR) 

channels in this response. The involvement of Na+/K+ pumps could not be 

totally excluded, however, our results point to the activation of an as yet 
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unidentified, but Ba2+ resistant K+ current accounting for a significant 

fraction of the endothelium-dependent hyperpolarization. We used the KIR 

channel inhibitor Ba2+ to reduce the steady state extracellular K+ 

concentration around the smooth muscle cells. We found that under these 

circumstances, the endothelium-dependent hyperpolarization relies to a 

lesser extent on gap junctional coupling.  

 

During the search for the mechanism underlying endothelium-dependent 

hyperpolarization, it has become clear that there are considerable tissue 

and species differences and that various hyperpolarizing mechanisms may 

exist in different vascular beds. Moreover, some arteries even lack any 

endothelium-dependent hyperpolarizing responses. In chapter 4, we 

demonstrated the existence of an EDH(F) in rat gastric arteries stimulated 

with acetylcholine. The induced hyperpolarization seemed to be 

endothelium-dependent but independent of the NO or PGI2 pathway and 

did not seem to rely on the stimulation of KIR channels or Na+/K+ pumps. 

The demonstration of endothelium-dependent hyperpolarization in these 

arteries could reveal an important and rapid regulator of gastric mucosal 

blood flow. 

 

Since the discovery of the existence of EDHF, several possible candidates 

have been proposed, among which the endocannabinoid anandamide. 

However, this hypothesis has widely been argued and it is now generally 

accepted that anandamide is not EDHF. This was further confirmed in 

chapter 5 for rat mesenteric and gastric arteries. We found that 

methanandamide, a stable analogue of anandamide, potently 

hyperpolarized the smooth muscle cells of both rat gastric and mesenteric 

arteries. This hyperpolarization, however, showed a different time course 

and pharmacological profile as compared to the EDHF-response, excluding 
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a role for EDHF in the membrane electrical response to cannabinoids in 

these preparations. We showed that stimulation of TRPV1 receptors on 

perivascular CGRP containing nerves is the primary cause for the 

cannabinoid-induced hyperpolarization in the mesenteric and gastric 

arteries. The released CGRP subsequently hyperpolarizes the vascular 

smooth muscle cells through activation of ATP sensitive K+ (KATP) channels. 

 

Membrane hyperpolarization is a powerful mediator of vasorelaxation. 

Therefore, in chapter 6 we characterized for the first time the 

vasorelaxation to cannabinoids in rat gastric arteries. We showed that 

methanandamide is a powerful vasorelaxant in isolated rat small gastric 

arteries. The induced relaxation is endothelium-independent and does not 

involve the activation of the CB1 or CB2 cannabinoid receptor or the 

recently described non CB1/CB2 cannabinoid receptor. We found that 

activation of TRPV1 receptors does not fully account for the 

methanandamide-induced relaxation, but might contribute to the relaxations 

induced by the lower concentrations of the cannabinoid. Furthermore, 

higher concentrations of methanandamide might possibly relax the arteries 

by inhibition of Ca2+ influx in the smooth muscle cells.  

 

In chapter 7 we studied the Ca2+ dynamics in the smooth muscle cells of 

rat small mesenteric arteries. More specifically, we observed the influence 

of hyperpolarization and depolarization of the membrane potential on 

norepinephrine-induced Ca2+ oscillations in smooth muscle cells of intact 

small mesenteric arteries of the rat. We confirmed that stimulation with low 

concentrations of norepinephrine induces asynchronous Ca2+ spikes in the 

smooth muscle cells usually accompanied by a sustained increase of the 

basal fluorescence. Depolarization (with 15 mM KCl) caused a significant 

increase in the Ca2+ responses and synchronized the oscillations. In 
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contrast, hyperpolarization (with levcromakalim, CGRP or eventually with 5 

mM KCl) significantly reduced the Ca2+ responses. 

 

In conclusion, the different studies compiled in this thesis further elucidate 

the characteristics and the mechanism of action of EDHF and 

endocannabinoids, both important mediators of the arterial tone. 

Additionally, the influence of the membrane potential on the Ca2+ dynamics 

of the smooth muscle cells was to some extent clarified. 
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Weefseldoorbloeding wordt geregeld door een complexe reeks 

mechanismen die, hoofdzakelijk door het regelen van de diameter van de 

bloedvaten, zorgen voor het behoud van de weefselhomeostase. 

Vasodilatatie speelt een belangrijke rol in de regeling van de doorbloeding 

van een bepaald vaatbed. Het voornaamste doel van het onderzoek 

verricht in het kader van deze thesis, was meer te weten te komen over het 

belang en de werkingsmechanismen van verschillende vasodilaterende 

stoffen in geïsoleerde maag- en mesenterische arteriën van de rat om zo 

tot een beter inzicht te komen over hun rol in de gastro-intestinale 

doorbloeding. In dit onderzoek werd gebruik gemaakt van verschillende in 

vitro technieken op geïsoleerde bloedvaten: membraanpotentiaalmetingen 

met behulp van conventionele micro-elektroden, isometrische 

tensiemetingen met een draadmyograaf en calcium bepalingen door middel 

van confocale microscopie. Deze technieken werden uitvoerig beschreven 

in hoofdstuk 2. 

 

Het is op heden algemeen aanvaard dat het vaatendotheel een belangrijke 

rol speelt in de controle van de vaattonus en de bloedstroom. Terwijl de rol 

van de endotheel-afhankelijke vasorelaxerende factoren stikstof monoxide 

(NO) en prostacycline (PGI2) al grondig gekend is, heeft men het exacte 

mechanisme verantwoordelijk voor de endotheel-afhankelijke 

hyperpolarisatie nog steeds niet achterhaald. Volgens sommige studies 

betreft het een diffunderende factor die vrijgesteld wordt uit het endotheel 

(EDHF). Andere experimenten wijzen eerder op een elektrische stroom of 

kleine boodschappermolecule die de hyperpolarisatie van het endotheel 

naar de gladde spiercellen overbrengt via gap juncties. In hoofdstuk 3 
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werd aangetoond dat gap juncties inderdaad een rol spelen in de 

endotheel-afhankelijke hyperpolarisatie in mesenterische arteriën van de 

rat. Er werd geen bewijs gevonden dat KIR kanalen betrokken zijn in deze 

respons, terwijl een rol voor de Na+/K+ pompen niet kon worden uitgesloten. 

Onze resultaten suggereren eerder dat de activering van een nog niet 

geïdentificeerde, Ba2+ resistente K+ stroom verantwoordelijk is voor een 

aanzienlijk deel van de endotheel-afhankelijke hyperpolarisatie. Met behulp 

van Ba2+, een KIR inhibitor, reduceerden we de extracellulaire K+ 

concentratie in de omgeving van de gladde spiercellen, wat ertoe leidde dat 

gap juncties minder inbreng kregen in de endotheel-afhankelijke 

hyperpolarisatie. 

 

In de loop der jaren is gebleken dat endotheel-afhankelijke 

hyperpolarisaties heel wat weefsel- en speciesverschillen vertonen. Diverse 

hyperpolariserende mechanismen kunnen voorkomen in verschillende 

vaatgebieden, maar ze kunnen in bepaalde bloedvaten ook helemaal 

ontbreken. In hoofdstuk 4 werd endotheel-afhankelijke hyperpolarisatie 

aangetoond in rat gastrische arteriën na toevoegen van acetylcholine. Deze 

hyperpolarisatie bleek volledig onafhankelijk van NO en PGI2. Er werd 

aangetoond dat zowel KIR als Na+/K+ ATPasen helemaal geen rol spelen in 

deze respons. Deze hyperpolarisatie zou een belangrijke en snelle 

regulator kunnen betekenen voor de maagdoorbloeding. 

 

Sinds de ontdekking van EDHF zijn al uiteenlopende kandidaten naar voor 

geschoven, onder wie de endocannabinoid anandamide. Op heden is het 

echter algemeen aanvaard dat anandamide geen EDHF kan zijn. Dit werd 

bevestigd in hoofdstuk 5 voor de gastrische en de mesenterische arteriën 

van de rat. Daarin werd aangetoond dat methanandamide, de stabielere 

analoog van anandamide, een sterke hyperpolarisatie veroorzaakt in de 
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gladde spiercellen van zowel de maag- als de mesenterische bloedvaten. 

Het tijdsverloop en de farmacologische eigenschappen verschillen echter 

zeer sterk van deze van de EDHF-respons. Uit onze resultaten bleek dat 

methanandamide de membraanpotentiaal hyperpolariseert door stimulatie 

van de TRPV1 receptoren op de perivasculaire zenuwen. De 

daaropvolgende vrijstelling van CGRP hyperpolariseert de membraan van 

de gladde spiercellen door activering van ATP-gevoelige K+ (KATP) kanalen. 

 

Hyperpolarisatie ligt vaak aan de basis van vasorelaxatie. In hoofdstuk 6 

hebben we de relaxerende eigenschappen van cannabinoiden onderzocht 

in de maagarterie van de rat. Methanandamide lokte sterke endotheel-

onafhankelijke relaxaties uit, maar hyperpolarisatie bleek hier slechts een 

beperkte rol in te spelen. Bovendien toonden we aan dat geen enkele van 

de beschreven cannabinoid receptoren betrokken is in deze relaxaties. 

Activering van de TRPV1 receptor op de perivasculaire zenuwen droeg 

enkel bij tot de relaxaties veroorzaakt door de lagere concentraties 

methanandamide. Hogere concentraties van de cannabinoid zouden de 

arteriën kunnen relaxeren door inhibitie van de Ca2+ influx in de gladde 

spiercellen. 

 

Tot slot hebben we in hoofdstuk 7 de Ca2+ veranderingen bestudeerd in 

de gladde spiercellen van de mesenterische arteriën van de rat. 

Meerbepaald hebben we de invloed nagegaan van veranderingen in de 

membraanpotentiaal op Ca2+-oscillaties geïnduceerd door norepinephrine. 

Er werd aangetoond dat stimulatie met deze agonist asynchrone Ca2+ 

spikes uitlokt in de gladde spiercellen, die meestal gepaard gaan met een 

toename van de basale fluorescentie. Depolarisatie van de 

membraanpotentiaal (met 15 mM KCl) veroorzaakte een significante 

toename van de Ca2+ responsen en leidde tot synchronisatie van de 
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oscillaties. Daar tegenover staat dat hyperpolarisatie (met levcromakalim, 

CGRP en mogelijk ook met 5 mM KCl) zorgde voor een significante afname 

van de responsen. 

 

In conclusie, de verschillende studies gebundeld in deze thesis bieden 

meer inzicht in de eigenschappen en de werkingsmechanismen van EDHF 

en van cannabinoiden bij kleine bloedvaten. Daarnaast werd de rol van de 

membraanpotentiaal in de Ca2+ dynamiek van de gladde spiercellen 

uitgediept. 
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Tot slot had ik een woord van dank willen richten tot alle mensen die in de 

afgelopen zes jaar direct of indirect hebben bijgedragen tot het 

verwezenlijken van mijn doctoraat. Zo zijn er de mensen waarmee ik 

intensief heb samengewerkt in blok B en die stuk voor stuk hebben 

meegeholpen aan het realiseren van alle data die zich in dit proefschrift 

bevinden. Maar er zijn ook heel wat mensen die steeds voor me 

klaarstonden met raad en daad, die voor de nodige niet-wetenschappelijke 

afleiding zorgden en die me oppepten en me alles leerden relativeren als 

het me even teveel werd… Op deze laatste pagina’s hoop ik duidelijk te 

kunnen maken hoe elk van jullie zijn steentje heeft bijgedragen tot deze 

doctoraatsthesis. 

 

Vooreerst wil ik mijn promotor Prof. Bert Vanheel bedanken voor de kans 

die ik zes jaar geleden kreeg om dit onderzoek uit te voeren en voor de 

hulp om het tot een goed einde te brengen.  U leerde me de knepen van de 

elektrofysiologie en de trucjes voor het welslagen van de o zo delicate 

membraanpotentiaal metingen. Daarnaast waardeer ik ook uw hulp bij het 

uitvoeren van de experimenten, het schrijven van artikels en het 

presenteren van mijn onderzoeksresultaten. 

 

Mijn bijzondere dank gaat ook uit naar Prof. Johan Van de Voorde, voor 

zijn interesse en bezorgdheid, het kritisch nalezen van manuscripten (geen 

dubbele spatie kon aan uw oog ontglippen!) en vooral voor de prettige 

samenwerking. U heeft me wegwijs gemaakt in de wereld van de relaxaties 

en contracties en in de periode dat de resultaten met de 

membraanpotentiaal metingen wat tegenvielen kon ik op de tweede 
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verdieping terecht voor enkele tensiemetingen. Uw enthousiasme en inzet 

kenden geen grenzen, wat ik enorm heb geapprecieerd. 

 

Prof. Luc Leybaert zou ik willen bedanken voor het ter beschikking stellen 

van de confocale microscoop en het kritisch nalezen van artikels. U hebt 

me binnengeleid in de wereld van de Ca2+-golven, hielp me bij het 

opmaken van de vele foto’s en beelden en stond steeds klaar voor een 

woordje uitleg. Ook Prof. Gaspard De Ley zou ik willen bedanken voor de 

samenwerking tijdens de practica. 

 

Prof. Dr. Em. J. Weyne en Prof. Dr. J.-L. Pannier, vakgroepvoorzitters van 

de vakgroep Fysiologie en Fysiopathologie, ben ik dankbaar voor het ter 

beschikking stellen van de middelen en het personeel van het labo. Prof. 

Weyne, u volgde mijn werk met veel enthousiasme en ik kon steeds 

rekenen op uw hulp en begrip. 

 

Prof. Dr. H. Bult, Prof. Dr. G. Callewaert, Prof. Dr. W. Derave, Prof. Dr. R. 

Lefebvre, Prof. Dr. G. Joos, Prof. Dr. J. Van de Voorde en Prof. Dr. L. 

Leybaert, de leden van de examencommissie, wil ik graag bedanken voor 

hun kritische evaluatie van deze thesis en voor hun opbouwende 

suggesties. 

 

Tijdens de jaren onderzoek die een doctoraat voorafgaan kom je heel wat 

verwachte en onverwachte hindernissen tegen en dankzij de hulp van heel 

wat mensen op het labo ben ik er in geslaagd deze stuk voor stuk te 

overwinnen.  Indien ik alles op mijn eentje had moeten verwezenlijken, dan 

ben ik er steevast van overtuigd dat ik vaak zou zijn blijven steken zijn in 

‘onoverkomelijke’ problemen. Julien, jij was steeds het zonnetje in blok B 

en zorgde voor de nodige ‘entertainment’. Voor praktische probleempjes 
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kon ik steeds bij jou terecht: jij toverde in een handomdraai de nodige 

draadjes, naaldjes of buisjes tevoorschijn. Daarnaast zorgde je steeds dat 

iedereen voldoende energie had om zijn proeven uit te voeren: chocolade, 

snoepjes, koffiekoeken, ijsjes, fruit,…je legde ons echt in de watten! Dirk, jij 

stond niet alleen paraat om computer- en andere technische problemen op 

te lossen, maar je was ook steeds te vinden voor een gezellige babbel. Nu 

je op pensioen bent zullen de computerfrustraties in blok B 

hoogstwaarschijnlijk sterk toenemen. Ook Cyriel zou ik willen bedanken 

voor de technische hulp. Eric zou ik willen bedanken voor de hulp bij het 

uitvoeren van de tensiemetingen en het maken van oplossingen. André 

was steeds op post voor het oplossen van administratieve en 

organisatorische problemen en heeft menigmaal gefunctioneerd als 

‘telefoonboek’ van blok B. Marc stond altijd klaar met advies en hulp bij het 

maken van figuren en posters en was een vaste waarde voor de practica. 

Graag wil ik ook Eliane Dewulf bedanken, die tot haar pensioen instond 

voor het maken van de perfusie en de vele oplossingen. Ook Daniël zou ik 

willen bedanken voor de organisatorische hulp. 

 

Ik mag ook zeker mijn collega doctoraatsstudenten niet vergeten! De 

frustraties, tegenslagen en ‘dipjes’ verdwijnen in het niets als ik terugdenk 

aan de vele fijne uurtjes die we in blok B hebben beleefd. Koen, Siska en 

Ine, de anciens, wil ik bedanken voor de leuke koffiekletskes, de soms 

hilarische momenten, maar ook voor de hulp bij proeven, de steun en het 

luisterend oor. Daarnaast wil ik ook Sofie en Nele en de vele andere 

(ex)doctoraatsstudenten bedanken die mijn verblijf in het labo aangenaam 

gemaakt hebben. 
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Ook mijn familie, schoonfamilie en vrienden verdienen een woordje van 

dank voor hun nimmer aflatende steun, interesse en vooral voor de nodige 

afleiding na de werkuren. 

 

Een speciaal plaatsje in dit dankwoord is voorbehouden aan mijn ouders. 

Mama en papa, het is een onmogelijke opdracht in enkele regels te 

omschrijven hoe groot jullie bijdrage was aan dit eindresultaat. Jullie gaven 

me de kans om te studeren, zorgden dat ik nooit iets tekort kwam en 

steunden me bij elke beslissing. Jullie leerden me door te bijten en alles te 

relativeren als het eens moeilijk ging. Ik kon steeds bij jullie terecht om mijn 

hart te luchten en jullie deelden mijn geluk. Jullie stonden ook steeds klaar 

voor mij en boden zoveel hulp als jullie maar konden: taxidienst, 

boodschappenservice, restaurant, lay-out advies, noem maar op,… 

Hartelijk dank daarvoor! 

 

Kristof, mijn doctoraat is af! Ik kan je voor zoveel dingen bedanken. 

Ondanks je drukke praktijk en de lange werkdagen die je klopt, bleef je me 

door dik en dun steunen. Je luisterde naar mijn werk-frustraties, toonde 

begrip, overleefde mijn kuren en motiveerde mij om door te zetten in 

moeilijker tijden. Je zorgde voor de nodige afleiding op de momenten dat ik 

die nodig had. Je bent er één-uit-de-duizend! 

 

Allemaal zeer hartelijk dank! 

 

Joke 
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