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Introduction 

Problem definition 
 

The quality and availability of freshwater is one, if not the most essential determinants for the 

health of ecosystems and human societies world-wide. Like all living beings, humans are 

seriously dependent on freshwater and exploit its resources heavily in the natural 

environment. By doing so, human activities have severely deteriorated freshwater systems, 

and many functions such as drinking water supply, fishing, … are threatened. Hydrological 

changes, physical disturbances, point and non-point sources of pollution, from both rural and 

urban activities, are all examples of processes responsible for the large-scale deterioration of 

freshwater systems and running waters in particular. This degradation affects the well-being 

of our natural environment and its biodiversity and may also affect freshwater services for 

human consumption. 

 

Due to the pressures of increasing population and developing economy all over the world, the 

present situation of water quality and river management is far from satisfactory (Biswas, 

1991; Haimes, 1992; Plate, 1993; Simonovic, 1996a, b; Falkenmark, 1997; Kundzewicz, 

1997; Xia and Taceuchi, 1999). Because the restoration of river and water systems in general 

entails drastic social and economic consequences, and the management of water resources 

systems is often driven by multiple objectives (Huang and Xia, 2001), the decisions should be 

taken with enough forethought. To enhance sustainable management of water and river 

quality, in-depth research of the related barriers and the relevant mitigation approaches is 

needed. 

 

In order to address the complicated interrelationships between human activities and the state 

of freshwater health, legislation initiatives have been taken and freshwater directives have 

been supported at different levels (e.g. EU Water Framework Directive (WFD) at the 

European level and the Decree of Integrated Water Management at the local Flemish level). In 

contrast to former European guidelines (e.g. EU Nitrate Directive), the present objectives of 

the WFD concerning water quality (EU, 2000) are no longer exclusively focussed on human 

activities. Also the biological communities (fishes, macroinvertebrates, macrophytes, 

phytobenthos and phytoplankton) and their ecological demands have to be taken into account. 

The major aim of the WFD is to reach a good ecological status for all water bodies in the 

member states of the European Union by 2015. A major part of these water bodies can be 
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classified as running waters or rivers. According to the WFD, rivers are to be assessed by 

comparing the actual status to a reference status. To this end, reference communities that 

represent a good ecological status must be described. Additionally, for the development of a 

representative set of metrics for ecological river assessment, one needs to gain insight into the 

relation between the aquatic communities and the human activities affecting these water 

systems. Insights into these relations will also be valuable for detection of causes of particular 

river conditions (environmental impact assessment) as well as for decision-making in river 

restoration and protection management to meet and sustain the requirements set by the WFD. 

 

Recently, technologies are becoming more and more important in water quality and river 

restoration management, due to the rapid development of computational problem-solving 

tools and the enhancement of scientific approaches for information support (Huang and Xia, 

2001). However, at the watershed level, the related physical, chemical and biological 

processes are numerous with complicated interactions. To retrieve these interaction as 

requested by the WFD, significant efforts are required to analyze the relevant information, 

simulate the related processes, evaluate the resulting impacts, and generate sound decision 

alternatives. Mathematical models are useful tools for water quality simulation and prediction. 

They can project consequences of alternative management, planning, or policy level activities, 

such that effective management schemes can be identified. In the last decades, study of water 

quality modelling has been an active aspect in environmental management. In Flanders for 

example, several water system models are already applied by the different governmental 

administrations and institutions (Cauwenberghs, 2003). They include e.g. sewer system 

models (e.g. Hydroworks, InfoWorks CS), nutrient (e.g. SENTWA) and pesticide (e.g. 

SEPTWA) transport models, water quality models (e.g. SIMCAT, Pegase), hydrological (e.g. 

PDM) and hydraulic (e.g. Mike 11, ISIS) models. In spite of the ecological objectives of the 

WFD, ecological models have rarely been used so far to support river management and water 

policy. Ecological models have however several interesting applications in this context. In 

particular, ‘habitat suitability models’ that can predict the habitat requirements of organisms 

based on environmental river characteristics could be very useful. This type of models has 

only very recently been recognized as a significant component of conservation planning (e.g. 

Guisan and Zimmerman, 2000; Austin, 2002; Scott et al., 2002). They are however almost 

exclusively used in ecological research, and to improve the models themselves. Exceptions 

are RIVPACS (River Invertebrate Prediction And Classification System) (Armitage et al., 

1983; Wright et al., 1984; Wright et al., 1993; Wright et al., 2000), AUSRIVAS (Australian 
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River Assessment System) (Norris and Norris, 1995; Smith et al., 1999; Davies, 2000) and 

BEAST (Benthic Assessment of Sediment) (Reynoldson et al., 1995) which are being used to 

support river management and water policy in respectively the UK, Australia and North 

America. To this end, it can be a challenge to develop habitat suitability based models to 

support river management and water policy in Flanders. 

 

A summary of the potential value of (ecological) models in river management is presented by 

Goethals and De Pauw (2001) (Fig. 1). First of all, through these models a better 

interpretation of the river status can be possible, the causes of the status of a river can be 

detected and assessment methods can be optimized. Secondly, these models can allow for 

calculating the effect of future river restoration actions on aquatic ecosystems and supporting 

the selection of the most sustainable options. Thirdly, these models can help to find the major 

gaps in our knowledge of river systems and help to set up cost effective monitoring 

programmes (see also Vanrolleghem et al., 1999). 

 

MONITORIN

MANAGEM

MODELLIN
DATA 

INTERPRETATION

DEVELOPMENT 

OF MONITORING 

SIMULATIONS, 

MANAGEMENT 

 

 

 

 

 

 

 

 

 

Fig. 1. Potential applications of models for information and decision support in river 

management (Goethals and De Pauw, 2001). 

 

Before such ecological models can be effectively applied in river management, however, 

several research challenges still need to be tackled. The following two major actual problems 

are mentioned by Goethals (2005): 

 

1. The availability of reliable datasets, which are needed to develop, train and validate 

ecological models. During the last decades, a lot of ecological data have indeed being 

collected, but these efforts are often too fragmented, resulting in databases that are not 
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compatible, lacking essential variables, ... Often these problems are (were?) related to 

the organizational structure of the water management boards and focussing at too 

specific goals to allow for an integrated water management; 

2. Numerous modelling and data mining techniques have been developed, but the 

particular strengths and weaknesses of these techniques remain unclear. This is partly 

because there is a lack of sound methodologies and criteria (indicators) to assess 

the models’ qualities for practical use in decision support. A major source of 

criticism on the application of ecological models in water management originates from 

a lack of success stories in which models play an essential role. Indeed model studies 

often end after their development and theoretical validation. However model 

developers and water managers can both benefit from feedback studies in which the 

added value of models in the decision making is analyzed once the effect of 

management decisions has taken place. 

 

Based on the above mentioned challenges and gaps, the scope and objectives of this thesis has 

been formulated as follows. 

 

 

Scope and objectives 
 

The overall aim of the present thesis is to determine the appropriate variables and ecosystem 

processes by using a modelling technique, based on Artificial Neural Networks (ANNs), to 

predict the habitat suitability of biological communities present in rivers. This approach 

allows for deriving rules that contribute to a better understanding of river ecosystems and 

support of their management. 

 

The research mainly focussed on macroinvertebrates in brooks and small rivers of the Zwalm 

river basin, a sub-basin of the Upper-Scheldt river basin (Flanders, Belgium). The selected 

sampling sites are characterized by a gradient ranging from nearly natural situations to 

severely impacted (water pollution, physical habitat degradation) ones. 

The applied Artificial Neural Network models in this research are based on a data driven 

approach. In this manner, an a priori and often biased knowledge of ecological experts has 
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not been used during the model development process. However, when discussing the results, 

the outcome of the data driven models has been compared to expert rules from literature. 

 

In general, the assumption is made that ANN models are ‘perfectly mixed’, which means that 

all sites are freely and equally accessible. However, when accessibility is restricted (e.g. 

presence of migration barriers, unbridgeable distance between potential habitats and source 

populations, …), it is necessary to control for the effects of it before conclusions about 

preference and habitat suitability can be drawn. For example, the habitat of a restored river 

section can be predicted as suitable again (after river restoration actions took place) based on 

the habitat suitability models. It is possible however that this restored river section is 

inaccessible for the modelled organism due to the presence of migration barriers or an 

unbridgeable distance between the new potential habitat and the existing source populations. 

Based on habitat suitability models alone, this problem cannot be solved. Dedecker et al. 

(2005d) illustrated this problem. After water quality improvement, Limnephilidae (an 

indicator for good water quality) was predicted present at the restored river sections based on 

the habitat suitability model. However, existing source populations were located more than 

five kilometres away from these potential new habitats. In this way, recolonization of the 

restored sites was very unlikely. Nevertheless, this could not be retrieved from the habitat 

suitability models. To this end, migration models can be very useful as an extension of the 

habitat suitability models to determine the possibility of migration and recolonization. 

 

The developed ANN and migration models have been put in practice to support decision 

making in water management. In this way, a crucial validation step, often lacking in many 

model development and assessment studies has been made and this can probably also help to 

pursue river managers of the added value of such ecological models. Both models can thus 

become essential tools to convince stakeholders to make the necessary investments and/or 

activity changes as desired by society. 

 

More specifically the research objectives of this thesis were fivefold (see also Fig. 2): 

 

• establishment of monitoring networks and ecological databases to develop models 

predicting aquatic macroinvertebrates in rivers; 

• development, optimization and validation of habitat suitability models based on ANNs; 

• ecological interpretation of ANNs by application of input variable contribution methods; 
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• development and validation (based on sensitivity analysis) of migration models for 

macroinvertebrates as extension of the habitat suitability models; 

• prediction and practical evaluation of river restoration scenarios. 

 

MONITORING 

MODEL DEVELOPMENT,  
VALIDATION,  OPTIMIZATION 

AND INTERPRETATION 

SIMULATION OF 
PRACTICAL RIVER 

RESTORATION SCENARIOS 

Physical-chemical 
variables 

River biology 

Structural river 
characteristics 

• Selection of relevant environmental 
and biological variables 

• Number and location of measurements 
• …

• Data analysis, interpretation and 
preparation 

• Selection of model technique 
• Selection of model assessment methods 

• Possible/essential restoration options 
• Objectives of stakeholders and water 

mangers 
• …

Fig. 2. The major steps related to the development and application of ecological models for 

decision support in water management that have been taken into consideration in this thesis.  

 

The individual chapters are grouped in the above five parts and briefly described in the next 

paragraphs which further elucidate the specific goals of the research. The thesis consists of ten 

chapters and a general discussion. 
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Chapter 1 is an introduction into river assessment and river management in Flanders. First, 

the basis for the integrated water management in Flanders, the European Water Framework 

Directive (WFD), is briefly discussed and an overview of the major goals and projects related 

to the WFD is given. Although the Decree of Integrated Water Management (B.S. 14/11/03) 

entered into force in Flanders, the main tasks relating to water and river assessment and 

management are still scattered over several administrations. Therefore, a summary of the 

major responsibilities and examples of specific tasks of the most important administrations 

related to water and river management in Flanders is presented. Although several river models 

are already applied by the different governmental administrations and institutions in Flanders, 

the need of ecological habitat suitability and migration models can be illustrated. In particular 

insights are needed between river characteristics and biological communities for the 

optimization of ecological indices as well as for the prediction of the ecological effects of 

river restoration management. 

 

Chapter 2 gives an overview of the state of the art of Artificial Neural Networks (ANNs) to 

predict macroinvertebrates in rivers. A general introduction on ANN models is given, 

illustrating the structure and theoretical basis on which the model is relying on. Major 

attention is focused on data analysis and processing, input variable selection, model 

architecture, model validation, optimization and interpretation. In addition a review is given 

of recent research discussing case studies on the prediction of macroinvertebrates by means of 

ANNs. 

 

Chapter 3 is an introduction on the migration behaviour of macroinvertebrates is given. In 

addition, an overview of migration models is provided. 

 

Chapter 4 is dealing with the collection of data and ecological information and contains a 

description of the study area, the monitoring networks and methods, the river site selection 

criteria, the database set-up and expert knowledge found in literature on the habitat 

preferences and factors affecting the migration behaviour of the taxa Tubificidae, Asellidae, 

Gammaridae, Baetis and Limnephilidae. In comparison with Goethals (2005) who used only 

two taxa (Asellidae and Gammaridae), five taxa were selected in the present thesis ranging 

from very tolerant to very sensitive and from very common to very rare. A study, discussing 

the variability in the collection of macroinvertebrate data is included. Two databases are 

presented in this chapter. The first database consists of measurements conducted in 60 
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different sites in the entire Zwalm river basin during the period 2000-2003, while Goethals 

(2005) included only three years of data. This database was specifically constructed for the 

development of habitat suitability models. The second additional database was set up during 

the period 2002-2003 and contains also 60 sites. For this ‘short distance’ monitoring network, 

a part of the Zwalm river basin of about 12 km was selected, which consisted of the brooks 

Verrebeek, Dorenbosbeek and the upstream part of the Zwalm river. This database was 

constructed for the development of macroinvertebrate migration models. For both databases, 

macroinvertebrates were collected using hand nets and artificial substrates. In addition, water 

quality and physical habitat variables were used to describe the river characteristics of each 

site. 

 

Chapter 5 describes the analysis of the collected data. Data driven models are built solely 

from the examples presented during the training phase, which are together assumed to 

implicitly contain the information necessary to establish the relation between input and 

output. As a result, these models are unable to extrapolate beyond the range of the data used 

for training. Therefore, a first and basic step before model development and application is 

getting insight into the range of inputs and outputs, what determines also the maximum 

application range of the ANN models. In addition, the mutual correlation between input 

variables and between input and output variables is calculated to help identify ‘noise’ 

variables. A visual relation analysis between input and output variables is conducted to get 

insight into outliers, the data clusters and distributions, missing or scarce variable 

combinations in certain ranges, … Also the geographical distribution of the variables over the 

study areas is presented based on a Geographical Information System to identify the priority 

sites for river restoration. 

 

Chapter 6 describes the development, analysis and optimization of habitat suitability models 

based on Artificial Neural Networks (ANNs) for the prediction of macro-invertebrates. Based 

on the available datasets, ANN models were therefore applied. While Goethals (2005) applied 

a standard network architecture including 10 neurons in the hidden layer and 3-fold cross-

validation (two third of the dataset used for training, one third for testing) as the standard 

validation method, the specific aim of the present study was to discuss different neural 

network models to obtain the best model configuration for the prediction of the selected 

macroinvertebrate taxa (Tubificidae, Asellidae, Gammaridae, Baetis, Limnephilidae). Based 

on this, the following actions were considered in this chapter: 
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• Since the size of the training and test set influences respectively the generalization 

capability of the model and accuracy of the model performance, the optimal size of 

training and test set was discussed. Therefore, nine cross-validation methods (2-, 3-, 4-, 5-

, 6-, 7-, 8-, 9- and 10-fold cross-validation) were tested; 

• the optimal ANN architecture for the five selected macroinvertebrates in both databases is 

searched for using the optimal training and test size concerning two questions: 

 how many hidden layers should exist in the ANN architecture? 

 how many neurons should be present in the hidden layer(s)? 

Additionally, the optimal ANN architecture was analyzed, examining the effect of annual 

testing. ANN models for the entire Zwalm river basin were trained with measured input 

and output data of 3 years, while data of the remaining independent year was used for 

testing. Similarly, the ANN models for the ‘short distance’ monitoring network were 

trained with data of one year and tested with data of the other year. 

 

To retrieve the best ANN models, two evaluation criteria were applied. In this way, this 

chapter can be seen as the mathematical validation step of the habitat suitability models. 

 

Chapter 7 describes the application of several methods, in addition and combined with the 

ANN models, to analyze the contribution of environmental variables to predict 

macroinvertebrates in a reliable manner and to detect the major river characteristics to 

describe the habitat suitability of the different taxa. In this manner, insight into the effect of 

river conditions on the presence/absence of macroinvertebrates is obtained and the outcomes 

of the models can be compared with ecological expert knowledge from literature. Based on 

this, Chapter 7 can perform as the ecological validation step of the habitat suitability models. 

 

Ecosystem models can act as interesting tools to support decision-making in river restoration 

management. In particular, models such as ANNs, that can predict the habitat requirements of 

organisms, can be very useful. In general however, habitat suitability models do not include 

spatial and temporal relationships. Migration dynamics of the predicted organisms and 

migration barriers along the river may therefore deliver important additional information on 

the effectiveness of the restoration plans as illustrated before. In this context, migration 

models for Gammaridae (Crustacea, Amphipoda), Baetis (Insecta, Ephemeroptera) and 

Limnephilidae (Insecta, Trichoptera) were developed for the Zwalm river basin (Chapter 8). 
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Chapter 9 describes the application of sensitivity analysis to the migration models developed 

in Chapter 8. Therefore, the impact of the resistance values on the calculated migration cost of 

Gammaridae, Baetis and Limnephilidae is studied. To this end, resistance values ascribed to 

the different environmental characteristics determining the migration were modified. This 

sensitivity analysis can be seen as a theoretical validation of the developed migration models 

in Chapter 8. 

 

Chapter 10 combines the predictive habitat suitability models (ANNs) and the migration 

models to allow for a more transparent and rational evaluation of the effects of specific 

management options. A crucial validation step is made by analyzing the practicability of 

using this type of data driven models in combination with migration models to solve practical 

management problems. This chapter tries in this manner to illustrate the added value of 

models in water management to select sustainable restoration options and can as such be seen 

as the practical validation step of the developed habitat suitability and migration models. 

 

At the end, the thesis is closed with a general discussion with recommendations for further 

research. 
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1.1. River management 
 

1.1.1. The Water Framework Directive as a guideline for integrated river basin 

management in Europe 

 

On 23 October 2000, the ‘Directive 2000/60/EC of the European Parliament and of the 

Council establishing a framework for the Community action in the field of water policy’ or 

short the EU Water Framework Directive (WFD) was finally adopted. The Directive that was 

published in the Official Journal (OJ L 327) on 22 December 2000, entered into force the 

same day (EU, 2000) (http://europa.eu.int/comm/environment/water/waterframe-

work/index_en.html). An important shift compared to other European Directives related to 

water policy (e.g. Drinking Water Directive, Urban Waste Water Directive) is that an 

integrated approach was taken. The objectives of water management are not only defined with 

regard to human needs but attention is also paid to the ecological demands of the aquatic 

ecosystem (Elbersen et al., 2003). With the implementation of the WFD, the different 

Member States are committed to invest in river management to improve river health. To 

guarantee that the WFD is implemented in a common way in all the Member States, a 

‘Common Implementation Strategy’ (CIS) was adopted (EU, 2001). 

 

In general, the directive distinguishes two major goals for rivers. First, the development of a 

management system has to be based on natural river basin districts which are the main units 

for river management (Blöch, 1999). Further, river basins and sub-basin are to be 

distinguished. The second goal of the directive is the development of river basin management 

plans and programmes of measures to achieve at least a ‘good surface water status’ in 2015 

for al European rivers. In terms of environmental objectives, a ‘good surface water status’ 

means the status achieved by a surface water body is at least ‘good’ for both its ecological 

status, or its ecological potential for a heavily modified or an artificial water body, and its 

chemical status. The ecological status of a water body includes a combined effect of 

biological (phytoplankton, phytobenthos, macrophytes, macroinvertebrates and fishes), 

morphological and physical-chemical characteristics. A good chemical status implies that the 

environmental quality standards are respected for particular pollutants. The directive sets a 

number of monitoring obligations (surveillance, operational and investigative monitoring 

programmes). The results of these monitoring programmes are to be used for the 
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implementation of a programme of measures in order to achieve good status for each type of 

water body, a status representative of the conditions at the site in the absence of interference 

by man (Chave, 2001). In addition, for each type of water body, reference conditions have to 

be established for the biological, hydromorphological and physical-chemical quality elements. 

Based on these type-specific reference conditions, an overall Ecological Quality Ratio (EQR 

= observed value/reference value) has to be defined. This EQR has a value between 0 (= 

minimal, bad ecological status) and 1 (= maximal, high ecological status), and distinguishes 5 

classes going from a very good to a very bad ecological status (Wallin et al., 2003). 

 

Until now, several European Union-related research projects have been supported by the 

European Commission and are contributing to the implementation of the WFD. Examples are: 

 

• AQEM (The Development and Testing of an Integrated Assessment System for the 

Ecological Quality of Streams and Rivers throughout Europe using Benthic 

Macroinvertebrates) (EVK1-CT-1999-00027) (http://www.aqem.de/); 

• STAR (Standardisation of River Classification) (EVK1-CT-2001-00089) 

(http://www.eu-star.at/); 

• FAME (Development, Evaluation and Implementation of a Standardised Fishbased 

Assessment Method for the Ecological Status of European Rivers) (EVK1-CT-2001-

00094) (http://fame.boku.ac.at/); 

• REFCOND (Development of a protocol for identification of reference conditions, and 

boundaries between high, good and moderate status in lakes and watercourses) 

(http://www-nrciws.slu.se/REFCOND/); 

• PAEQANN (Predicting Aquatic Ecosystem Quality using Artificial Neural Networks: 

impact of environmental characteristics on the structure of aquatic communities (Algae, 

Benthic and Fish Fauna)) (EVK1-CT1999-00026) (http://aquaeco.ups-tlse.fr/); 

• CITYFISH (Modelling the Ecological Quality of Urban Rivers: Ecotoxicological 

Factors Limiting Restoration of Fish Populations) (EVK1-1999-00041) 

(http://www.biosciences.bham.ac.uk/labs/taylor/CITYFISH.htm); 

• EUROLAKES (Integrated water resource management for important deep European 

lakes and their catchment areas) (EVK1-CT-1999-00004) 

(http://pcs0.hydromod.de/Eurolakes/index.html) 
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• MANTRA east (Integrated Strategies for the Management of Transboundary Waters 

on the Eastern European Fringe – The Pilot Study of Lake Peipsi and its Drainage Basin) 

(EVK1- CT-2000-00076) (http://www.mantraeast.org/). 

 

 

1.1.2. Integrated water management in Flanders 

 

In Belgium, different water policies are being developed for the Flemish, Brussels and 

Walloon regions. Because parts of the major river basins (the Scheldt and the Meuse river 

basins, Fig. 1.1) are situated in these three regions, the water policies are often conflicting and 

resulting in ineffective and inefficient management of these water systems (e.g. many 

investments during the nineties so far did not result in a clear improvement of the ecosystem 

quality in several river systems). Particular examples are water quality management, flood 

control and restoration of fish migration. These are issues that need an integrated approach 

over all regions, because one particular region is not able to restore or control these aspects 

within the borders of its territory and related responsibility. On top of this, responsibilities 

relating to water and river assessment and management are scattered over several 

administrations in Belgium and Flanders, often resulting in specific and conflicting targets for 

the responsible managers. 

 

In Flanders, the main tasks concerning river management have been allocated to the Flemish 

Environment Agency (VMM), the Flanders Waste Water Company (AQUAFIN), the 

Administration Watercourses and Sea Issues (AWZ), the Administration Environment, 

Nature, Land and Water Management (AMINAL), the Association of Flemish Provinces 

(VVP), the Association of Flemish Cities and Municipalities (VVSG), the Association of 

Flemish Polders and Waters (VVPW) and the Flemish Land Agency (VLM). A summary of 

their major responsibilities and examples of specific tasks concerning river management is 

given in Table 1.1.  
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Table 1.1. Summary of the major responsibilities and examples of specific tasks of key-role 

players related to water and river management in Flanders 

Authority Major responsibilities Examples of specific tasks 
VMM Planning, reporting, 

collecting, informing, 
measuring and advising 
about surface water and 
sediment quality of 
watercourses 

• Monitoring of the surface water and sediment 
quality (physical-chemical and biological) 

• Long-term planning for water treatment (the 
General Water Quality Plans, AWPs) 

• Giving advice in respect of the environmental 
permits issued within the VLAREM framework 

• Determining and collecting the levy on water 
pollution 

AQUAFIN Responsible for waste 
water treatment 

• Financing, building and operating sewage 
processing systems, collectors and waste water 
treatment plants 

• Advising on the type of sewerage and treatment 
works 

AWZ River management of 
navigable watercourses 

• Flood control 
• Increase the mobility of people and goods 

through a suitable and save shipping traffic 
• Guarantee an economical use of water  
• Stimulate recreation along the watercourses 

AMINAL River management of non-
navigable watercourses 1st 
category 

• Combat flooding 
• Ecological design of watercourses 1st category  

(re-meandering, ecological river restoration, 
remove fish migration barriers, …) 

• Rat control 
VVP River management of non-

navigable watercourses 2nd 
category 

• Maintenance of watercourses 2nd category (e.g. 
mowing, sludge removal and bank 
reinforcement) 

• Investment works (e.g. construction of controlled 
flood areas, weirs, fish passage and pumping-
engines) 

VVSG River management of non-
navigable watercourses 3rd 
category 

• Suppress erosion 
• Install sewers 
• Maintenance of watercourses 3rd category (e.g. 

mowing, sludge removal) 
VVPW River management of non-

navigable watercourses 2nd 
and 3rd category located 
within the polder areas 

• Protection of polder areas against water 
inconvenience 

• Achieve a favourable water economy for 
agriculture, nature conservation, fishing, … in 
the polder areas 

VLM • Co-ordination of project 
regarding land 
consolidation, land use 
and nature planning 

• Manure bank 
• The Support Centre GIS 

Flanders 

• Collection and making available of card material 
about Flanders (VHA atlas, ecological typology 
of watercourses, DTM, …) 

• Design of small-scale water treatment plants 
• Ecological design of watercourses (re-

meandering, bank and buffer strips, ecological 
river restoration, …) 
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Although the organization of river management in Flanders is relatively complex, the ‘Decree 

Integrated Water Management’, which mainly implements the principles of the EU Water 

Framework Directive, gives a basis for an integrated assessment and management of river 

basins in Flanders (Van Bockstal, 2002). The Decree entered into force the 24th of November 

2003 and assigned the organization of the integrated water management in Flanders to the 

Coordination Committee for Integrated Water Management (CIW) in which delegated 

managers of VMM, AMINAL, AWZ, AROHM, VVP, VVSG and VVPW interact to obtain 

the best integrated management solution. In this way, the different stakeholders take part in 

these debates (water quantity managers, land-use planners, wastewater collection and 

treatment managers, drinking water production companies, ecologists, …). 

 

Integrated water management assumes that the water system itself should determine water 

policy rather than the administrative borders. Therefore, the ‘Decree Integrated Water 

Management’ starts from a territorial approach. In this way, water systems are divided into 

river basins and river basin districts, according to the WFD. Within the Flemish Region, four 

major river basins can be distinguished: the Scheldt river basin, the Meuse river basin, the 

Yzer river basin and the Bruges Polders (Fig. 1.1). They are grouped into two river basin 

districts: the Scheldt (including the Scheldt river basin, the Yzer river basin and the Bruges 

Polders) and the Meuse river basin district. Both river basin districts cross the Flemish 

borders. The Flemish part is subdivided into eleven river (drainage) basins (Fig. 1.1), each 

containing several sub-basins.  

 

At each of these levels river basin management plans have to be created. These management 

plans should be geared to one another. At the level of the river basin districts, the 

International Scheldt Commission (ISC) and the International Meuse Commission (IMC) are 

responsible for the development of a single river basin management plan for both the entire 

international Scheldt and Meuse river basin district. According to the WFD, these should be 

achieved by the end of 2009. The Flemish contribution to both management plans are 

coordinated by the CIW. In addition, the CIW explains in a policy document the vision of the 

Flemish Government on integrated water management including water quality, durable water 

consumption, flood control, … For each of the eleven river (drainage) basins in Flanders, a 

river basin committee has been appointed. Their river basin management plans should be 

achieved by the end of 2006. Finally, sub-basin management plans (also called DuLo 

(sustainable and local) water plans) should be created at the sub-basin level. 
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To reach the objectives of the WFD and the ‘Decree Integrated Water Management’, 

numerous investment programmes will have to be carried out by river managers during the 

coming years. A well-considered decision support of river management will be currently 

needed in Flanders during the coming years in order to reach an improved (= good) quality 

and a high biodiversity value in the running waters. This will include: (1) setting priorities in 

river management; (2) reaching a cost-efficient river management and (3) assessing mitigation 

and restoration options/actions in rivers. This decision support system needs to offer a broad 

view of the impact of river management on all ecosystem components and at different scales 

of importance for the biological communities (Adriaenssens, 2004). 

 

(a) 

Meuse river basin 
Scheldt river basin 
Yzer river basin 
Bruges Polders 

(b) 

 
Fig. 1.1. Location of the four river basin districts across Flanders (a) and the division into 

eleven river (drainage) basins (b). 
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1.2. Decision support in river management 
 

At present, ecological decision support of river management in Flanders is mainly based on 

biological assessment methods: the Belgian Biotic Index (BBI) (De Pauw and Vanhooren, 

1983; De Pauw and Vannevel, 1991) and the Belgian Sediment Index (BSI) (De Pauw and 

Heylen, 2001). Both are based on diversity and pollution tolerance of macroinvertebrate taxa. 

Besides, the Index of Biotic Integrity (IBI) is used, based on a multimetric index for fish 

communities (Belpaire et al., 2000; Breine et al., 2004). Although such methods are useful for 

summarizing and presenting data, they only make use of a small proportion of the information 

contained in the data set. The BBI for example is not differentiated per river type but is 

applied in a uniform way for all watercourses in Flanders (Fig. 1.2). In addition to these 

regional constraints, the existing indices do not include sufficient diverse response variables, 

which can distinguish among different types of impacts (Goethals and De Pauw, 2001). 
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ig. 1.2. Evolution of the biological quality of running waters based on the Belgian Biotic 

have to be realized in the field. After all, restoration of deteriorated river systems for example 

F

Index (BBI) (Flanders, period 1989 – 2003) (MIRA-T, 2004). 

 

Integrated water management however supposes a thorough foundation when the juridical 

armamentarium is applied, water management plans are prepared or restoration measures 
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can entail drastic social and economical consequences. In order to take valuable measures to 

restore disturbed water systems, it is not enough to perform ad hoc monitoring, launch 

dividual project-based studies and apply the current assessment methods to evaluate them. 

 

y of the assessment measures, to allow a b ults, to 

h sary to improve assess ion-making in river 

anagement (Goethals and De Pauw, 2001). 

nders, seve al administra

anagement devel chni ecisions. In addition, a 

umber of universities, consultancies and institu cting 

under government order. An overview of the ed river models applied by the 

erent governme  institutions is given in Table 1.2 (Cauwenberghs, 

able 1.2. Overview of the currently used river models applied by the different governmental 

ns and e 003) 
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development of effective and efficient monitoring networks) and assessment (e.g. to reduce
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currently us

diff ntal administrations and
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administratio  institutions in Flanders (bas d on Cauwenberghs, 2

Model users Model MODEL AP

AMINAL Water PDM g Hydrological modellin
 ISIS, InfoWorks RS 

Sediment transport modelling 
Hydraulic modelling 

MM SIMCAT, Pegase Water quality modelling 

Hydraulic modelling 
 FloodWorks Operational river basin modelling 
AQUAFIN Hydroworks, InfoWorks CS Sewer system modelling 
 WEST, CHAT Modelling of Waste Water Treatment Plants 
AWZ NAM Hydrological modelling 
 Mike 11, Delft 3D, ISIS Hydraulic modelling 
 Floodwatch Operational modelling 
 Delft 3D Morphological and sediment transport 

modelling 
IN ITORS-Vl, NICHE-Vl Eco-hydrological modelling 
 Multsed 
VLM ISIS 
V
 SENTWA Nutrient transport modelling 
 SEPTWA Pesticide transport modelling 
Province of 
Antwerp 

PDM, ISIS, InfoWorks-RS Hydraulic modelling 

Province of 
Flemish Brabant 

PDM, ISIS, InfoWorks-RS Hydraulic modelling 

Province of East 
Flanders 

ISIS Hydraulic modelling 
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In addition to the water quantity (hydraulic, hydrological) and quality models applied so far, 

also predictive models will be necessary to relate the different components within a system 

and get insight into the effect of the variables on each other. In particular models that can 

provide a predictive link between management actions and ecosystem response need to be 

developed. One way to assist predicting the ecological effect of specific management options 

 to develop habitat models, based on various hypotheses as to how environmental factors 

sed on dynamical and chemical characteristics 

nked with shallow groundwater. This model is based on a multiple logistic regression 

ethod (IN, 2002). On the other hand, NICHE-Vl predicts the development and composition 

f groundwater dependent vegetation based on the habitat characteristics soil type, hydrology, 

utritional richness and acidity. 

 decision support system for river management based on predictive habitat suitability 

itats 

r different species of wildlife and simulate management activities that modify features and 

simulated activities in terms of changes in habitat suitability and the 

ssociated management costs (Adriaenssens, 2004). It should be an interactive tool, it should 

 

is

control the distribution of species. 

 

Predictive modelling by means of habitat suitability models recently gaining importance as a 

tool in environmental management has been reviewed by Guisan and Zimmerman (2000). 

Only two ecological models however are actually used by the Flemish government: ITORS-

Vl and NICHE-Vl (Cauwenberghs, 2003). ITORS-Vl predicts the habitat suitability for 

several macrophytes and vegetation types dependent on groundwater in the river valleys of 

the Kempen, Hageland and Loam region ba

li

m

o

n

 

A

models can be defined as a system that is able to evaluate the suitability of different hab

fo

obtain results from 

a

enable resource managers the ability to develop ‘what if’ scenarios, and should allow for 

graphically displaying changes in habitat suitability resulting from simulated alterations 

within a GIS (Garcia and Armbruster, 1997). 
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1.3. Habitat suitability modelling based on macroinvertebrates 
 

1.3.1. Introduction 

g both natural and human caused influences, a wide variety of modelling techniques 

r models exist. Ecological models, however, can be described as taking the ecology, more 

 as habitat suitability models. In the habitat suitability modelling approach, 

ne wants to either express the suitability of a habitat for a specific species or use the 

formation concerning the physical habitat of a certain species in order to predict the species’ 

bsence/presence or abundance. Often these models are also referred to as ‘habitat distribution 

odels’ (e.g. Guisan and Zimmerman, 2000) or simply ‘habitat models’ (e.g. Yamada et al., 

 

Predictive ecological models for environmental management are part of a much broader 

environmental modelling approach. The final objective of environmental modelling is to link 

hydrological, geomorphologic and ecological models to each other. The model can then be 

used to predict the effects of different land uses and water management scenarios on the 

selected ecosystems (Nilsson et al., 2003). To describe these environmental processes, 

includin

o

specifically the biota (and their interactions) as the main component of the models. These 

models try to reveal the influence of environmental variables on living organisms by linking 

abiotic with biotic variables. 

 

Models developed with the aim of describing the habitat of a certain species in a predictive 

way are referred to

o

in

a

m

2003). 

 

The analysis of species-environment relationships, in particular the relationships between 

macroinvertebrates and their environment, has always been a main issue in ecology. Since the 

focus of this study is on macroinvertebrates, in the next paragraph an overview of the 

advantages and disadvantages of using macroinvertebrates in river monitoring, assessment 

and modelling is given. Afterwards, habitat suitability models based on macroinvertebrates 

will be discussed. 
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1.3.2. Advantages and disadvantages of macroinvertebrates 

 

Predictive ecological models for use in river management can differ in biological endpoint. 

This can both depend on the conservation value of a specific group of organisms or either on 

their functionality as biological indicators of river conditions. For example, The EU WFD 

formulates its biological endpoints, referred to as biological quality elements for rivers, into 

owever, does not respond to a taxonomical concept but to an artificial 

elimitation of part of the groups of invertebrate animals. In general, in running waters, one 

croinvertebrates has a benthic life and inhabits the bottom 

ubstrates (sediments, debris, logs, macrophytes, filamentous algae, …). For this reason, 

five elements: phytoplankton, phytobenthos, macrophytes, macroinvertebrates and fish. 

Among these biological communities living in running waters, macroinvertebrates are good 

candidates to monitor ecological changes caused by human impacts (De Pauw and Hawkes, 

1993; Karr and Chu, 1999). They are by far the most frequently used group for bioindication 

in standard water management (Woodiwiss, 1980; Helawell, 1986; De Pauw et al., 1992; 

Rosenberg and Resh, 1993; Metcalfe-Smith, 1994; Hering et al., 2004). The term 

‘macroinvertebrates’ h

d

considers macroinvertebrates as those organisms large enough to be caught with a net or 

retained on a sieve with a mesh size of 250 to 1000 µm, and thus can be seen without 

magnification. In fact most of them are larger than 1 mm (e.g. Sladecek, 1973; Cummins, 

1975; Wiederholm, 1980; De Pauw and Vanhooren, 1983; Rosenberg and Resh, 1993; Tachet 

et al., 2002). 

The majority of aquatic ma

s

literature about biological water quality assessment methods is often referring to them as 

benthic macroinvertebrates or macrozoobenthos (Rosenberg and Resh, 1993). Other 

representatives of the macroinvertebrates, however, also serving as bioindicators, are pelagic 

and freely swimming in the water column, or pleustonic and associated with the water surface 

(Tachet et al., 2002).  

 
The reasons for macroinvertebrates being so popular in bioassessment are numerous (e.g. 

Sladecek, 1973; Hawkes, 1979; Helawell, 1986; Metcalfe, 1989; Rosenberg and Resh, 1993; 

Hering et al., 2004). Macroinvertebrates are ubiquitous and abundant throughout the entire 

river system in the crenal, rhitral as well as the potamal part (Illies, 1961). They play an 

essential role in the functioning of the river continuum food web (e.g. Vannote et al., 1980; 

Giller and Malmqvist, 1998). 
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Since macroinvertebrates are a heterogeneous collection of evolutionary diverse taxa, this 

means that at least some will react to specific changes in the aquatic environment, natural as 

well as imposed. They are not merely affected by different types of physical-chemical 

ollution (e.g. organic enrichment, eutrophication, acidification), but as well by physical 

ver sediment 

uality assessment tools based on macroinvertebrates, namely the Belgian Biotic Index (BBI) 

ty, 

specially in relation to invertebrates. Since these factors differ along the river in different 

p

changes and anthropogenic manipulation of the aquatic habitat (e.g. canalization, 

impoundment, river regulation). Macroinvertebrates can thus be used for the assessment of 

the water as well as the habitat quality (Armitage et al., 1983) and enable a holistic 

assessment of streams. In this way, macroinvertebrates are ideally suited to predict and 

evaluate the effect of river restoration scenarios. In addition, there has been a tradition of 

macroinvertebrate monitoring in Flanders in relation to river quality assessment. More than 

twenty years of monitoring history has led to the development of river and ri

q

(De Pauw and Vanhooren, 1983) and the Belgian Sediment Index (BSI) (De Pauw and 

Heylen, 2001). Water quality assessment based on macroinvertebrates forms as such the core 

of tools that is used by the government to assess and manage rivers nowadays, aside the Index 

of Biotic Integrity (IBI) that relies on fish communities (Belpaire et al., 2000). 

 

Macroinvertebrates have furthermore the advantage to be relatively easy to collect and 

identify, and to be confined for most part of their life to one locality (in contrast to fishes) on 

the river bed and are therefore indicative of the changing water qualities. As such, they act as 

continuous monitors of the water flowing over them as opposed to chemical samples of the 

water taken at one time. Having long life spans, macroinvertebrates integrate environmental 

conditions over longer periods (weeks, months, years) and thus sampling may be less frequent 

(De Pauw and Hawkes, 1993; Giller and Malmqvist, 1998; Tachet et al., 2002). 

 

Using macroinvertebrates as monitors of river (water) quality however also has its limitations 

(De Pauw and Hawkes, 1993). Quantitative sampling for example is difficult because of their 

non-random distribution in the river bed. Because of the seasonality of the life cycles of some 

invertebrates, e.g. insects, they may not be found at some times of the year (e.g. Linke et al., 

1999; D’heygere et al., 2002; Tachet et al., 2002). An appreciation of this seasonality enables 

this to be taken into account in interpreting the data. Factors other than water quality are also 

important determinants of benthic communities. Of these the related factors of flow velocity 

and nature of the substrate are overriding ones determining the nature of the communi

e
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zones, different communities become established at different sites with the same water quality 

ible, sampling sites having 

imilar benthic conditions are selected or a typology is developed consisting of distinct river 

ore, because of their geographic distribution, species at the edge of their natural 

istribution range are theoretically more sensitive to additional stress – pollution than those at 

the n ssible to have a universal system of 

bio i ame species/taxa (Sandin et al., 2000). 

(Giller and Malmqvist, 1998). Therefore, in practice where poss

s

types with adapted sampling and assessment systems (e.g. Hering et al., 2004). Some 

assessment systems, e.g. RIVPACS (Wright et al., 1993), even predict the reference 

communities on the basis of a set of local river features as a basis for the assessment. A last 

limitation of macroinvertebrates is their restricted geographic distribution, the incidence and 

frequency of occurrence of some species being different in rivers throughout the region. 

Furtherm

d

 ce tre of their distribution. It would therefore not be po

log cal assessment based on the response of the s

 

 

1.3.3. Habitat suitability models based on macroinvertebrates 

 

Models can either be descriptive or predictive, i.e. they describe the functioning of a natural 

system or they make predictions of future functioning. To describe the natural functioning of 

rivers and streams, a wide variety of modelling techniques or models exist. In this study, the 

focus is on modelling techniques and models that link abiotic data with habitats for 

macroinvertebrates. Habitat models can be subdivided into two main categories (Harby et al., 

2004): 

 

• process-based population or bio-energetic models; 

• empirical-based habitat suitability models.  

 

Process-based population or bio-energetic models incorporate knowledge on population 

dynamics of species and/or energy budgets for feeding, growth or other functions to describe 

biological processes. These models can either be linked upon the results of a physical habitat 

model or be directly linked with certain data describing the physical and physiographic 

environment. Bio-energetic models are a special type of biological process models where 

optimal species location is based on energy budgets (Jorgensen, 2002b). These models 

compute how much energy an organism uses as a function of flow velocity or turbulence and 
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of food intake. The budget of energy intake and energy loss due to the current denotes the 

opt

 

Ho s stated 

by i s are in general empirical. These 

em c a description of the abiotic environment of 

spe s

the s link abiotic characteristics with 

abitat suitability. Univariate functions consider individual characteristics, while multivariate 

resence of macroinvertebrate communities 

imal location for the organism. 

wever, the stress of this work is on the development of habitat suitability models. A

Gu san and Zimmerman (2000), habitat suitability model

piri al habitat suitability models are based on 

cie  that is subsequently linked with the biotic system of flora and fauna described with 

 habitat concept. Univariate or multivariate function

h

analysis takes into account the interaction of physical variables and determines the species 

response to the cumulative effect of a number of environmental characteristics. Several 

habitat suitability models based on the multivariate approach have been applied in water 

quality assessment using macroinvertebrates (Norris and Georges, 1993). Examples are 

(Harby et al., 2004): 

 

• regression (Montgomery and Peck, 1982) (e.g. multiple and logistic regression); 

• ordination techniques using indirect and direct gradient analyses (Jongman et al., 

1995) (e.g. Principle Component Analysis, Canonical Correspondence Analysis); 

• Artificial Neural Networks (Lek and Guégan, 1999); 

• fuzzy rule-based functions (Zadeh, 1965); 

• classification and regression trees (Breiman et al., 1984), often referred to as decision 

trees when discussing both methods (Quinlan, 1986). 

 

Until the last decade of the 20th century, limnology was mainly descriptive and diagnostic 

and less oriented towards prediction. However, bio-manipulation experiments not only 

highlighted the functioning (bottom up versus top down) of freshwater ecosystems, but also 

demonstrated that the achieved predictive capacity was sufficient for successful management 

of freshwater ecosystems (Zalewski and Roberts, 2003). At the end of the last century, 

RIVPACS (River Invertebrate Prediction And Classification System) (Armitage et al., 1983; 

Wright et al., 1984; Wright et al., 1993; Wright et al., 2000) has led to an increasing interest 

of the use of predictive models for river management. RIVPACS was the first model with a 

predictive capacity for use in river management. It was developed for assessing the ecological 

quality of rivers in Great Britain and based on the p
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(Wright et al., 1984). The RIVPACS philosophy is to develop statistical relationships, using 

ince the new millennium, a shift in use from multivariate statistical (based on data 

distribution functions, e.g. regression and ordination) to soft computing (based on heuristic 

search methods, e.g. artificial neural networks, decision trees) techniques has started. Reviews 

concerning the recently used techniques for the purpose of ecological modelling in general are 

given by Jorgensen (2002a), Recknagel (2002), Verdonschot and Nijboer (2002a), 

Adriaenssens (2004) and Goethals (2005). A more general review on the theoretical basis of 

most of the techniques can be found in Berthold and Hand (1999). The review of Verdonschot 

and Nijboer (2002a) can be situated within the European PAEQANN-project. The main 

applied objective of this project was to propose a set of predictive tools, mainly based on 

Artificial Neural Networks, for water management and water policies in order to allow 

assessment of the ecological quality and perturbations of river ecosystems. Since Artificial 

Neural Network models are also applied in this PhD study, this method will be described and 

reviewed in more detail in Chapter 2. Emphasis will be given on their use for the prediction of 

macroinvertebrates in rivers. 

 

the multivariate statistical technique of multiple discriminant analysis, between the fauna and 

the environmental characteristics of a large set of high quality reference sites that can be used 

to predict the macroinvertebrate fauna which is expected to occur at any site in the absence of 

pollution or other environmental stresses. The observed fauna at new test sites can then be 

compared with their site-specific expected fauna to derive indices of ecological quality 

(Clarke et al., 2003). Based on the RIVPACS approach, other similar models have been 

developed: AUSRIVAS (Australian River Assessment System) in Australia (Norris and 

Norris, 1995; Smith et al., 1999; Davies, 2000) and BEAST (Benthic Assessment of 

Sediment) in North America (Reynoldson et al., 1995). However, the RIVPACS type model 

is empirical and descriptive and its primary use is as a tool for estimating and monitoring the 

ecological quality of river sites. RIVPACS cannot be used with any confidence as a dynamic 

model to predict the impact of environmental changes because data from impaired sites are 

not included (De Pauw, 2000; Clarke et al., 2003). 

 

S
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Chapter 2 
State of the art of Artificial Neural Networks (ANNs) to predict 

macroinvertebrates in rivers 
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Applications of artificial neural networks predicting macroinvertebrates in freshwaters. 
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2.1. Introduction 

 

Artificial Neural Networks (ANNs) are non-linear mapping structures that can be applied for 

predictive modelling and classification. The choice of the type of network depends on the 

nature of the problem to be solved. The most popular ANNs are multi-layer feed-forward 

neural networks with the backpropagation algorithm, i.e. backpropagation networks 

(Rumelhart et al., 1986; Hagan et al., 1996) and Kohonen Self-Organizing Maps (SOMs) 

(Kohonen, 1982). As the latter are mainly interesting for clustering data, they will not be 

further discussed in this review on predictive models for macroinvertebrates. The 

backpropagation network constructs a model based on examples of data with known outputs. 

It has to build up the model solely from the examples presented, which are together assumed 

to contain the information necessary to establish the relation. An example of a relation can be 

the presence/absence or abundances of a number of macroinvertebrate taxa (such as 

Gammaridae (Crustacea, Amphipoda), Baetidae (Insecta, Ephemeroptera), Chironomidae 

(Insecta, Diptera)) which are being predicted based on a number of environmental variables 

such as dissolved oxygen, flow velocity, percentages of clay, silt and sand in the sediment, 

river depth, pH, … 

 

 

2.2. General description of ANNs 
 

The backpropagation network typically comprises three types of neuron layers: an input layer, 

one or more hidden layers and an output layer each including one or more neurons (Fig. 2.1). 

In a backpropagation network neurons from one layer are connected to all neurons in the 

following layer, but no lateral connections within any layer, nor feed-back connections are 

possible. With the exception of the input neurons, which only connect one input value with its 

associated weight values, the net input for each neuron is the sum of all input values xn, each 

multiplied by its weight wji, and a bias term bj which may be considered as the weight from a 

supplementary input equalling one (Fig. 2.2): 

 

jiji bxw +∑=           ja (3.1) 
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The output value, yj, can be calculated by feeding the net input into the transfer function of 

the neuron: 

 

)( jj afy =            (3.2) 

 

 
Fig. 2.1. Schematic illustration of a three-layered feed forward neural network including one 

input layer, one hidden layer and one output layer. 

 

x1

x2 wj1. wj2 Neuron J
.
. yj

xi wji.
. wjn. bj
xn

yj = f(aj) aj = Σ  wjixi + bj

 
Fig. 2.2. Scheme of a neuron in a backpropagation network receiving input values from n 

neurons, each associated with a weight, as well as a bias bj. The resulting output value yj is 

computed according to the presented equations. 

 

Before training, the values of the weights and biases are initially set to small random 

numbers. Subsequently, a set of input/output vector pairs is presented to the network. For 

ach input vector, the output vector is calculated by the neural network model, and an error e

term is calculated for the outputs of all hidden and output neurons, by comparing the 

calculated output vector and the actual output vector. Using this error term, the weights and 
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biases are updated in order to decrease the error, so future outputs are more likely to be 

correct. This procedure is repeated until the errors become small enough or a predefined 

maximum number of iterations is reached. This iterative process is termed ‘training’. After the 

aining, the ANN can be tested using independent data. A more detailed description can be 

und in Lek and Guégan (1999). 

his chapter analyses ANN development and application studies to predict 

quatic ecosystems, as these communities have been 

roven to be good indicators for the assessment of surface waters as illustrated in the previous 

, suggestions to improve model development, assessment and 

pplication in ecological river management are presented. 

ention during the training process, they should be standardized. In addition, 

e variables have to be scaled in such a way as to be commensurate with the limits of the 

ctivation functions used in the output layer (Maier and Dandy, 2000). Several authors (Chon 

t al., 2001, 2002; Gabriels et al., 2002; Gabriels et al., 2005; Obach et al., 2001; Park et al., 

003a, 2003b; Schleiter et al., 1999; Schleiter et al., 2001; Wagner et al., 2000) 

roportionally normalized the data between zero and one [0 1] in the range of the maximum 

 Dedecker et al. (2004), Dedecker et al. (2005d), Gabriels et al. (2002) 

nd Goethals (2005) on the other hand, rescaled the variables to be included within the 

tr

fo

 

T

macroinvertebrates communities in a

p

chapter. Based on this overview

a

 

 

2.3. Development of predictive ANNs 
 

2.3.1. Data analysis and processing 

 

2.3.1.1. Data processing 
 

Generally, different variables span different ranges. In order to ensure that all variables 

receive equal att

th

a

e

2

p

and minimum values.

a

interval [−1 1].  

 

 

 

 

 

 43



Chapter 2: State of the art of Artificial Neural Networks (ANNs) to predict macroinvertebrates in rivers 

2.3.1.2. Band width 
 

Lek and Guégan (1999) stated that ANN models are built solely from the examples presented 

during the training phase, which are together assumed to implicitly contain the information 

necessary to establish the relation between input and output. As a result, ANNs are unable to 

extrapolate beyond the range of the data used for training. Consequently, poor predictions can 

be expected when the validation data contain values outside of the range of those used for 

aining (Maier and Dandy, 2000). Dedecker et al. (2005b) tested the sensitivity and 

bustness of the ANN models when data, containing variables with values beyond the range 

as added. Therefore, they created a virtual dataset based on 

cological expert knowledge to introduce ‘extreme’ values to the model. The obtained results 

model 

puts are critical. However, presenting a large number of inputs to ANN models, and relying 

tr

ro

of the data for initial training, w

e

indicated that ‘extreme’ outputs in the test set were predicted significantly better when the 

number of ‘extreme’ examples in the training set increased. However, the overall predictive 

power of the ANN models decreased when a relatively large virtual dataset in the training set 

was applied. 

 

 

2.3.2. Input variable selection 

 

Data driven approaches, such as ANN models, have the ability to determine which 

in

on the network to determine the critical model inputs, usually increases network size. This has 

a number of disadvantages, for example decreasing processing speed and increasing the 

amount of data required to estimate the network parameters efficiently (Maier and Dandy, 

2000). In this way, selection of input variables can be stated as an important task. It can 

considerably reduce the necessary labour of data collection. Complex systems can be reduced 

to easily surveyed models with low measuring and computing effort. Therewith they are 

particularly suitable for (bio-)indication in aquatic ecosystems (Schleiter et al., 2001).  

 

According to Walczak and Cerpa (1999), three steps can be followed to determine the optimal 

set of input variables. The first one is to perform standard knowledge acquisition. Typically, 

this involves consultation with multiple domain experts. Walczak (1995) has indicated the 

requirement for extensive knowledge acquisition utilizing domain experts to specify ANN 

input variables. The primary purpose of the knowledge acquisition phase is to guarantee that 
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the input variable set is not under-specified, providing all relevant domain criteria to the 

ANN. Once a base set of input variables is defined through knowledge acquisition, the set can 

be pruned to eliminate variables that contribute noise to the ANN and consequently reduce the 

ANN generalization performance. ANN input variables should not be highly correlated. 

Correlated variables degrade ANN performance by interacting with each other as well as 

other elements to produce a biased effect. From an ecological point of view, relationships 

between environmental variables and taxonomic richness should be considered with caution, 

as these analyses, based on correlation, do not necessarily involve relevant ecological 

processes. However, the only way to establish reliable causal relationships between input and 

output, is to use experimental designs (Beauchard et al., 2003). For macroinvertebrates, this 

can be done on the basis of spiking tests in situ or with artificial river systems for instance. A 

rst filter to help identify ‘noise’ variables is to calculate the correlation of pairs of variables. 

gner et al. (2000) applied 

 special variant of the backpropagation network type, the so-called senso-net, to determine 

fi

If two variables are strongly correlated, then one of these two variables may be removed 

without adversely affecting the ANN performance. The cut-off value for variable elimination 

is a heuristic value and must be determined separately for every ANN application, but any 

correlation absolute value of 0.20 or higher indicates a probable noise source to the ANN 

(Walczak and Cerpa, 1999). When a significant correlation (P<0.01) was found between two 

variables, Brosse et al. (2003) removed the one accounting for less variation in the single-

scale models.  

 

In addition, there are distinct advantages in using analytical techniques to help determine the 

inputs for ANN models (Maier and Dandy, 2000). However, these methods can merely be 

applied when large datasets are available. Beauchard et al. (2003), Obach et al. (2001), 

Schleiter et al. (1999) and Schleiter et al. (2001) used a stepwise procedure to identify the 

most influential variables. In this approach, separate networks are trained for each input 

variable. The network performing best is retained and the effect of adding each of the 

remaining inputs in turn is assessed. This process is repeated for three, four, five, ... input 

variables, until the addition of extra variables does not result in a significant improvement in 

model performance. On the other hand, one can start with all the available variables and 

remove one by one the least important ones (e.g. Beauchard et al., 2003). Disadvantages of 

these approaches are that they are computationally intensive and that they are unable to 

capture the importance of certain combinations of variables that might be insignificant on 

their own. Obach et al. (2001), Schleiter et al. (1999, 2001) and Wa

a
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the most important input variables (sensitivity analysis). Senso-nets include an additional 

on representing the relevance (sensitivity) of the corresponding 

put parameter for the neural model. The sensitivities are adapted during the training process 

ecture of the neural network, and the complexity of the problem studied. 

he architecture is the only of these three factors that can be influenced in the modelling 

rocess, making it a crucial step, which should be considered carefully. 

alczak and Cerpa (1999) distinguish four design criteria for artificial neural networks which 

n networks can handle noise in the training data (and may actually generalize 

weight for each input neur

in

of the network. Appropriate subsets of potential input variables can be selected according to 

these sensitivities. A third technique which is frequently used is genetic algorithms (e.g. 

D’heygere et al., 2005b; Obach et al., 2001; Schleiter et al., 2001). This technique 

automatically selects the relevant input variables (Goldberg, 1989). 

 

 

2.3.3. Model architecture 

 

According to Haykin (1999), generalization capability of a neural network is influenced by 

three factors: the size of the training set and how representative it is of the environment of 

interest, the archit

T

p

 

W

should be decided upon in subsequent steps: knowledge-based selection of input values, 

selection of a learning method, design of the number of hidden layers and selection of the 

number of hidden neurons for each layer. Input variable selection was already discussed in the 

previous section. 

 

 

2.3.3.1. Learning method 
 

The suitability of a particular method is often a trade-off between performance and calculation 

time. The majority of the ANNs used for prediction are trained with the backpropagation 

method (e.g. Cherkassky and Lari-Najafi, 1992; Maier and Dandy, 2000). Because of its 

generality (robustness) and ease of implementation, backpropagation is the best choice for the 

majority of ANN-based predictions. Backpropagation is the superior learning method when a 

sufficient number of relatively noise-free training examples are available, regardless of the 

complexity of the specific domain problem (Walczak and Cerpa, 1999). Although 

backpropagatio
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better if some noise is present in the training data), too many erroneous training values may 

g stable (Hagan et al., 1996). A momentum term is 

sually included in the training algorithm in order to improve learning speed (Qian, 1999) and 

onvergence (Hagan et al., 1996) and takes into account the previous weight update. The 

n 1.0, otherwise the training procedure does not converge 

ai and Macbeth, 1997). Dai and Macbeth (1997) suggest a learning rate of 0.7 with a 

prevent the ANN from learning the desired model. When only a few training examples or 

very noisy training data are available, other learning methods should be selected instead of 

backpropagation (Walczak and Cerpa, 1999). Radial basis function networks perform well in 

domains with limited training sets (Barnard and Wessels, 1992 in Walczak and Cerpa, 1999) 

and counterpropagation networks perform well when a sufficient number of training examples 

is available, but may contain very noisy data (Fausett and Elwasif, 1994 in Walczak and 

Cerpa, 1999). 

 

In order to optimize the performance of backpropagation networks, it is essential to note that 

the performance is a function of several internal parameters including the transfer function, 

error function, learning rate and momentum term. The most frequently used transfer functions 

are sigmoid ones such as the logistic and hyperbolic tangent functions (Maier and Dandy, 

2000). However, other transfer functions may be used, such as hard limit or linear functions 

(Hagan et al., 1996). The error function is the function that is minimized during training. The 

most commonly used error function is the mean squared error (MSE) function. However, in 

order to obtain optimal results, the errors should be independently and normally distributed, 

which is not the case when the training data contain outliers (Maier and Dandy, 2000). To 

overcome this problem, Liano (1996) proposed the least mean log squares (LMLS) error 

function. The learning rate is directly proportional to the size of the steps taken in weight 

space. Traditionally, learning rates remain fixed during training (Maier and Dandy, 2000) and 

optimal learning rates are determined by trial and error. However, heuristics have been 

proposed which adapt the learning rate as training progresses to keep the learning step size as 

large as possible while keeping learnin

u

c

momentum term should be less tha

(D

momentum term of at least 0.8 and smaller than 0.9 or a learning rate of 0.6 with a momentum 

term of 0.9. Qian (1999) derived the bounds for convergence on learning rate and momentum 

parameters, and demonstrated that the momentum term can increase the range of learning 

rates over which the system converges. 
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2.3.3.2. Number of hidden layers 

ables an ANN to improve its closeness-of-fit, while a 

maller quantity improves the smoothness or extrapolation capabilities of the ANN (Walczak 

e hidden neurons 

sult in a longer training period, while fewer hidden neurons provide faster training at the 

nge [0 1] and No outputs can be 

presented exactly by a feed-forward network with 2Ni+1 hidden neurons. 

arious authors propose rules of thumb for determining the number of hidden neurons. Some 

aining samples available. Walczak and Cerpa (1999) warn that these 

tics do not use domain knowledge for est quantity of hidden nodes and may 

productive. Table 2.1 shows the rul t the number of hidden neurons 

ber of input (Ni) and/or output

 

A greater number of hidden layers en

s

and Cerpa, 1999). Theoretically, an ANN with one hidden layer can approximate any function 

as long as sufficient neurons are used in the hidden layer (Hornik et al., 1989). Flood and 

Kartam (1994) suggest using two hidden layers as a starting point. However, it must be 

stressed that optimal network geometry is highly problem dependent. 

 

 

2.3.3.3. Number of hidden neurons 
 

The number of neurons in the input layer is fixed by the number of model inputs, whereas the 

number of neurons in the output layer equals the number of model outputs. The critical aspect 

however is the choice of the number of neurons in the hidden layer. Mor

re

cost of having fewer feature detectors (Bebis and Georgiopoulos, 1994). For two networks 

with similar errors on training sets, the simpler one (the one with fewer hidden units) is likely 

to produce more reliable predictions on new cases, while the more complex model implies an 

increased chance of overfitting on the training data and reducing the model’s ability to 

generalize on new data (Hung et al., 1996; Özesmi and Özesmi, 1999). Hecht-Nielsen (1987) 

showed that any continuous function with Ni inputs in the ra

re

 

V

of these rules are based on the number of input and/or output neurons, whereas others are 

based on the number of tr

heuris imating the 

be counter es that sugges

based on the num  (No) nodes. 
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Table 2.1. Rules suggesting the number of hidden neurons based on the number of input (Ni) 

and/or output (No) nodes 

Rule Reference 
(2/3) * Ni Wang, 1994 
0.75 * Ni Lenard et al., 1995 
0.5 * (Ni + No) Piramuthu et al., 1994 

 Goss, 1993; Patuwo et al., 1993 
i i 997 

2 * Ni + 1 
 N  or 3 * N

Fletcher and
2 * Kanellopoulos and Wilkinson 1
 

Some authors suggest rules to determine the ne ples (S) based 

e number of connection weights. Give samples is fixed, 

verting these rules gives an indication of the maximum number of connection weights to 

ce 

cessary number of training sam

on th n the number of training 

in

avoid overfitting (Table 2.2). 

 

Table 2.2. Indication of the maximum number of connection weights to avoid overfitting 

based on the number of training samples (S) 

Maximum number of connection weights Referen
S after Rogers and Dowla, 1994 
S/2 after Masters, 1993 
S/4 after Walczak and Cerpa, 1999 
S/10 after Weigend et al., 1990 
S/30 after Amari et al., 1997 
 

Rules of thumb are clearly divergent and when selecting the number of hidden neurons, one 

should take both S and Ni into account. Assuming only one hidden layer is used, the number 

f connection weights should not exceed, say, S/10 and the number of hidden neurons should 

nd Cerpa (1999), the number of hidden neurons in the last layer 

hould be set equal to the number of decision factors used by domain experts to solve the 

actors are the distinguishable elements that serve to form the unique 

Nabhan and Zomaya (1994) and Anders and Korn (1999). 

o

be at least, roughly, (Ni + No)/2. Evidently, in order to be able to meet both constraints, the 

number of training samples has to be sufficiently large. 

 

According to Walczak a

s

problem. Decision f

categories of the input vector space. The number of decision factors is equivalent to the 

number of heuristic rules or clusters used in an expert system (Walczak and Cerpa, 1999). 

 

Alternatively, techniques for automatically selecting ANN architecture with the required 

number of hidden units may be used. Such techniques were proposed by e.g. Bartlett (1994), 
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2.3.4. Model validation 
 

2.3.4.1. Validation 
 

To test the model performance, a set with data independent from the training set is required 

(Lek and Guégan, 1999; Maier and Dandy, 2000). In the testing phase, the input patterns are 

fed into the network and the desired output patterns are compared with those given by the 

ANN model. The agreement or disagreement of these two sets gives an indication of the 

performance. As mentioned before, the data used for testing has to be within the range of the 

data used for training. It is also imperative that the training and test sets are representative of 

the same population. The optimal solution is to have two independent databases (Lek and 

Guégan, 1999). In this way, the first can be used for training and the second for testing of the 

model (e.g. Mastrorillo et al., 1998; Obach et al., 2001). However, when limited data are 

available, it might be necessary to split the available data into a training and a test set. A 

frequently used procedure, is the k-fold cross-validation method (e.g. Dedecker et al., 2002; 

edecker et al., 2004, 2005b, c, d; D’heygere et al., 2005b). In this case, the data set is 

qually divided into k parts. The ANN model may be trained with (k-1) parts, and tested with 

 al. (2003), Brosse et al. (2001), Brosse et al. (2003) and 

macroinvertebrates is predicted, the percentage of Correctly 

lassified Instances (CCI) is frequently used to assess model performance. There is however 

easures, 

hich are based on a c nfusion matrix (Table osed to assess the performance of 

resence/absence models (Table 2.4), Fielding and Bell (1997) and Manel et al. (1999) 

ed Cohen’s appa as a reliable performance measure, since the effect of 

D

e

he remaining part. Beauchard ett

Guégan et al. (1998) for example used the ‘leave-one-out’ cross-validation method (Efron, 

1983). This procedure is a generalization of the k-fold cross-validation, where k equals the 

sample size. This procedure is also appropriate when the amount of data is limited and/or 

when each sample is likely to have ‘unique information’ (Efron, 1983). Moreover, it has been 

found to be efficient for ANN modelling. 

 

 

2.3.4.2. Performance measures 
 

Based on the output, different performance measures can be distinguished. When 

presence/absence of the 

C

clear evidence that this CCI is affected by the frequency of occurrence of the test organism(s) 

being modelled (Fielding and Bell, 1997; Manel et al., 1999). Among the different m

w o  2.3), prop

p

recommend  k
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prevalence on Cohen’s kappa appeared to be gible (e.g. Dedeck al., 2004, 2005d; 

D’heygere et al., 2005b). 

 Observed 

negli er et 

 

Table 2.3. The confusion matrix as a basis for the performance measures with true positive 

values (TP), false positives (FP), false negatives (FN) and true negative values (TN) 

 

  - + 

+ TP FP Predicted 

- FN TN 

 

Measures based on the confusion matrix to assess the performance of 

presence/absence models (after Fielding and Bell, 1997). CCI is the percentage Correctly 

es, MI is the normalized mutual information statistic and N is the total 

 instances 

CALCULATION 

Table 2.4. 

Classified Instanc  N

number of

Performance 
measure 
CCI ( )

N
TNTP +  

Misclassification 
te ra

( )
N

FNFP +  

Sensitivity 
( )FNTP

TP
+

 

Specificity 
( )TNFP

TN
+

 

Positive 
predictive power ( )FPTP

TP
+

 

Negative 
( )TNFN

TN
+

 predictive power 
Odds-ratio ( )

( )TNFN
FPTP

×
×  

Cohen’s kappa [ ]
[ ])/)))(())((((

)/)))(())(((()(
FPTPFNTPN

NTNFNTNFPFPTPFNTPTNTP
++−

+
NTNFNTNFP +++

++++−+  

NMI  
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( )( )[ ]TNFPTNFPFNTPFNTPNN

TNFNTNFNFPTPFPTPTNTNFNFNFPFPTPTP
+++++−

++++++−−−−
ln.ln.ln.

ln.ln.ln.ln.ln.ln.

 

model consists of the species abundance, richness, diversity, 

density or a derived index, commonly used performance measures are the correlation (r) or 

When the output of the ANN 
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determination (R²) coefficient and the (root) mean squared error ((R)MSE) or a derivative 

between observed (O) and predicted (P) values (Table 2.5). 

able 2.5. Measures based on observed (O) and predicted (P) values to assess the 

using abundance, richness, diversity, density or a derived index 

s model output. N is the total number of instances 

 

T

performance of ANN models 

a

Performance measure Calculation 
Correlation coefficient (r) 

)
))(

()
)(

(

)(
)(

2
2

2
2 ∑ ∑∑ ∑

∑ ∑∑

−×−

×
−×

N
O

O
N
P

P

N
OP

OP
 

Determination coefficient (R2) 2

2
2

2
2 )

))(
()

)(
(

)(
)(

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−×−

×
−×

∑ ∑∑ ∑

∑ ∑∑

N
O

O
N
P

P

N
OP

OP
 

Root Mean Squared Error (RMSE) 
( )21 ∑ −OP

N
 

Mean Squared Error (MSE) ( )21 ∑ −OP
N

 

 

 

2.3.5. Model interpretation 
 

Although in many studies ANNs have been shown to exhibit superior predictive power 

compared to traditional approaches, they have also been labelled as a ‘black box’ because 

they provide little explanatory insight into the relative influence of the independent variables 

in the prediction process (Olden and Jackson, 2002). This lack of explanatory power is a 

major concern to ecologists since the interpretation of statistical models is desirable for 

gaining knowledge of the causal relationships driving ecological phenomena. As a 

consequence, various authors have explored this problem and proposed several algorithms to 

illustrate the role of variables in ANN models. Sensitivity analysis is frequently used (Brosse 

et al., 2003; Chon et al., 2001; Dedecker et al., 2002, 2005d; Guégan et al., 1998; Hoang et 

al., 2001, 2002; Laë et al., 1999; Marshall et al., 2002; Mastrorillo et al., 1997a; Olden and 

Jackson, 2002) and is based on a successive variation of one input variable while the others 

are kept constant at a fixed value (Lek et al., 1995, 1996a, b). The ‘Perturbation’ method (Yao 

et al., 1998; Scardi and Harding, 1999) assesses the effect of small changes in each input on 

 52



Chapter 2: State of the art of Artificial Neural Networks (ANNs) to predict macroinvertebrates in rivers 

the neural network output (e.g. Park et al., 2003a; Gevrey et al., 2003; Dedecker et al., 2005b, 

c). This method can thus be seen as a local sensitivity analysis. Gevrey et al. (2003), 

Dedecker et al. (2005b, c) and Beauchard et al. (2003) used the ‘PaD’ method (Dimopoulos et 

al., 1995; Dimopoulos et al., 1999) which consists in a calculation of the partial derivatives of 

the output according to the input variables. Several authors (Brosse et al., 1999, 2001, 2003; 

Dedecker et al., 2005b, c; Gevrey et al., 2003; Mastrorillo et al., 1997b; Olden and Jackson, 

2002) applied Garson’s algorithm (Garson, 1991; Goh, 1995). This algorithm is based on a 

computation using the connection weights. Gevrey et al. (2003) and Dedecker et al. (2005b, 

) applied the ‘Stepwise’ procedure, as discussed earlier, to identify the most influential 

mi (1999) described the Neural Interpretation Diagram (NID) to 

rovide a visual interpretation of the connection weights among neurons. The relative 

c

variables. Özesmi and Özes

p

magnitude of each connection weight is represented by line thickness and line shading 

represents the direction of the weight. Olden and Jackson (2002) proposed a randomization 

test for input-hidden-output connection weight selection in ANN models. By eliminating 

connection weights that do not differ significantly from random, they simplified the 

interpretation of neural networks by reducing the number of axon pathways that have to be 

examined for direct and indirect (i.e. interaction) effects on the response variable, for instance 

when using NIDs. Olden et al. (2004) compared these methodologies using a Monte Carlo 

simulation experiment with data exhibiting defined numeric relationships between a response 

variable and a set of independent predictor variables. By using simulated data with known 

properties, they could accurately investigate and compare the different approaches under 

deterministic conditions and provide a robust comparison of their performance. 

 

 

2.3.6. Model optimization 
 

Traditionally, optimal network geometries have been found by trial and error (Maier and 

Dandy, 2000). However, a number of systematic approaches for determining optimal network 

geometry have been proposed, including pruning and constructive algorithms. The basic 

thought of pruning algorithms is to start with a network that is large enough to capture the 

desired input-output relationship and to subsequently remove or disable unnecessary weights 

and/or neurons. A review of pruning algorithms is given by Reed (1993). Constructive 

algorithms approach the problem of optimising the number of hidden layer neurons from the 

opposite direction to pruning algorithms. The smallest possible network is used at the start. 
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Hidden layer neurons and connections are then added one at a time in an attempt to improve 

model performance. A review of constructive algorithms is given by Kwok and Yeung 

997a). Several disadvantages of these approaches are mentioned in the literature (Maier and 

andy, 2000). For example, the networks generally have to be trained several times, i.e. each 

d constructive algorithms are susceptible to becoming trapped in 

eline et al., 1994). In addition, they ‘only investigate restricted 

pological subsets rather than the complete class of network architectures’ (Angeline et al., 

o be seen as model optimization. This has already been discussed in 

ection 2.3.2. 

s an overview of articles discussing case studies on the prediction of 

acroinvertebrates by means of ANNs. A total of 27 cases were found in literature. These 

papers mentioned the software package used for modelling. Three 

ifferent packages were cited: MATLAB, WEKA and NNEE. Several of the modellers not 

(1

D

time a hidden neuron is added or deleted (Kwok and Yeung, 1997b). It has also been 

suggested that the pruning an

structural local optima (Ang

to

1994). Algorithms based on evolutionary programming and genetic algorithms have been 

proposed to overcome these problems and have been used successfully to determine optimal 

network architecture (e.g. Fang and Xi, 1997; Kim and Han, 2000; Zhao et al., 2000; Wicker 

et al., 2002). Evolutionary approaches are significantly different from the previous techniques 

described. They produce more robust solutions because they use a population of networks in 

the search process. A complete review of the use of evolutionary algorithms in neural 

networks is given by Yao (1993). Beside the optimization of the network geometry, input 

variable selection can als

S

 

 

2.4. Applications of macroinvertebrate predictions using ANNs in 

water management 
 

Table 2.6 give

m

papers were however produced by a far smaller number of research groups, since most of the 

research groups published more than one paper on the subject. Among them, there is a 

French, Belgian, German, British, South-Korean and Australian research group, counting up 

to 6 groups although this number is debatable because the groups do not work completely 

independently, as some cooperative papers clearly testify. All papers are very recent, the 

oldest being from 1998. 

 

About one out of two 

d
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mentioning the software package use their own code, implemented in an existing modelling 

environment such as MATLAB. Evidently, the software package used should not influence 

the modelling results although neither the use of own programming nor existing software is an 

absolute guarantee that small errors will not occur, which means that any system should be 

used with care. 

 

The number of input variables ranged from 3 to 39, usually between 5 and 15. These variables 

included geographical, seasonal and habitat quality parameters (sinuosity, vegetation, … ) as 

well as physical-chemical properties (dissolved oxygen, water temperature, pH, nutrient 

oncentrations, COD, …) and characteristics of toxicity. The performance of neural networks 

nberg-Marquardt algorithm, general regression, a 

near neural network and/or counterpropagation were tested. The real-time recurrent neural 

work was 

ained with backpropagation. 

he same order of magnitude as the number of input nodes. Network 

rchitecture was determined, if stated, by ‘trial and error’ (7 cases), ‘empirically’ (2 cases) or 

c

with more input variables was not necessarily higher, as shown in some studies (e.g. Walley 

and Fontama, 1998). The target variables were usually presence/absence (10 cases) or 

abundance (7 cases) of macroinvertebrate taxa or derived properties such as taxa richness, 

ASPT score or exergy. 

 

The neural networks were almost in all cases of the feed-forward connection type, in some 

cases combined with a Self-Organising Map. Exceptions included real-time recurrent neural 

networks, an Elman recurrent neural network and a forward only neural network. Most Self-

Organising Maps were trained with the Kohonen learning rule, one was trained with a radial 

basis function. Most feed-forward neural networks were trained with backpropagation or a 

modification of it. In some cases the Leve

li

networks were trained with recurrent learning and the Elman recurrent neural net

tr

 

The network architecture was reported in most cases. The number of hidden layers was 

usually one and in none of the reported cases higher than two. The number of hidden neurons 

was usually of t

a

‘arbitrarily chosen’ (1 case). In the majority of the cases, the choice of network architecture 

was not discussed at all. Clearly, this crucial step in the modelling process is poorly 

documented for this type of applications. In general, rules of thumb were not (explicitly) used 

while trial and error was applied without a clear strategy. However, it is recommended to use 

rules of thumb as a starting point for a trial and error process in order to refine and validate 
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e limits of the transfer function when rescaling the outputs. 

 et al., 2001) an interval smaller than the transfer function 

sence, the percentage of CCI was the most frequently used 

ance measure. In some cases Cohen’s kappa was calculated and in one case also the 

RMSE. When predicting continuous variables such as abundance or taxa richness, a variety of 

criteria were calculated in the cited case-studies: r, R², MSE, RMSE. Also the cross-validation 

error (CVE) and or the proportion (PI) of predictions within a specified distance of the 

observed value were applied as alternatives to these more common performance measures. 

Two other measures were used after transforming the abundance outputs into abundance 

classes: CCI and Cohen’s kappa. Some of the performance criteria used may however result 

in a biased representation of performance, e.g. CCI (e.g. Fielding and Bell, 1997; Manel et al., 

2001). A good recommendation would be to use several performance measures to acquire a 

more reliable model evaluation. 

 

Among the articles that specify the number of samples used for training, the number ranges 

from 40 to 650. The ratio of the number of training samples versus the number of hidden 

neurons ranges from 4.5 to 52.5 with an average of 16.8, when all specified combinations are 

taken into account. 

 

the choice of neural network architecture. In addition, techniques for model optimization were 

hardly used to optimize network geometry. 

 

The transfer functions, where specified, were of the sigmoid transfer function type. 

 

The data were generally rescaled to the interval [-1 1] or [0 1]. Maier and Dandy (2000) 

recommend avoiding the extrem

However, in only one study (Park

allows was used. 

 

A variety of performance measures was used, strongly related to the type of output parameter. 

For predictions of presence/ab

perform



 

Table 2.6. Overview of publications discussing case studies on the prediction of macroinvertebrates by means of artificial neural networks 
Reference  Software

package 

Input variables Output Location(s) Connection 
type 

Training 
algorithm

Network 
architecture

No. train. 
samples – 
No. test 
samples 

Determination 
of network 
architecture 

Transfer 
functions 

Scaling of 
variables 

Perf. 
measure 

Beauchard et 
al., 2003 

? A, P, Lo, R, DISTs, SDA richn Morocco, 
Algeria, 
Tunisia 

FF        BP 7-4-1 210-1
(leave-one-
out) 

Empirically STF ? r

Brosse et al., 
2001 

MATLAB A, SDA, SO, CA, VEG, 
AE, D, W, S 

div        

     

       

     

 

      

      

Taieri river
(New 
Zealand) 

 FF BP 10-4-1 96-1 (leave-
one-out) 

? STF ? r, PI

Brosse et al., 
2003 

MATLAB LU, SDA, A, CA, PR, 
SO, W, D, S 

div Taieri river
(New 
Zealand) 

 FF BP (10, 8)-4-1 96-1 (leave-
one-out) 

? STF ? r, MSE

Céréghino et 
al., 2003 

? A, SO, DISTs, T richn Adour-
Garonne 
river basin 
(France) 

FF BP 4-5-1 130-25 Trial and error ? ? r 

Chon et al., 
2001 

? MI, FV, D, OM, S comm Yangjae 
stream 
(Korea) 

RTRC RL (7+4)-13-7 ? Trial and error ? [0 1] r 

Chon et al., 
2002 

? MI
 
 
MI, FV, D, OM, S 

dens 
 
 
comm 

Yangjae 
stream 
(Korea) 

FF 
 
ERC 
RTRC 

BP 
 
BP 
RL 

(5-25)-(8-
30)-5 
5-30-5 
(7+4)-13-7 

? Empirically STF [0 1] r

Dedecker et 
al., 2002 

MATLAB T, pH, DO, Cond, SS, D, 
W, S, Sh, VEG, FV, Me, 
HRB, PR, AE 

pr/ab Zwalm river
basin 
(Belgium) 

 FF BP 15-10-1 40-20 (3-
fold) 
45-15 (4-
fold) 

Trial and error STF ? CCI 

Dedecker et 
al., 2004 

MATLAB T, pH, DO, Cond, SS, D, 
W, S, Sh, VEG, FV, Me, 
HRB, PR, AE 

pr/ab Zwalm river
basin 
(Belgium) 

 FF BP, LM 15-(2, 5, 10, 
20, 25)-(5, 
10)-1 

108-12 (10-
fold) 

Trial and error STF [-1 1] CCI, CK 

Dedecker et 
al., 2005b 

MATLAB T, pH, DO, Cond, SS, D, 
W, S, FV, Me, HRB, PR, 
AE, NO3

-, PO4
3-, NH4

+, 
COD, Ph, Ni, SO, 
DISTm 

abu Zwalm river
basin 
(Belgium) 

 FF BP 24-10-1 119-60 (3-
fold) 

? STF IN? r 
OUT[log 
(abu+1)] 

Dedecker et 
al., 2005c 

MATLAB T, pH, DO, Cond, SS, D, 
W, S, FV, Me, HRB, PR, 
AE, NO3

-, PO4
3-, NH4

+, 
COD, Ph, Ni, SO, 
DISTm 

abu Zwalm river
basin 
(Belgium) 

 FF BP 24-10-1 119-60 (3-
fold) 

? STF IN? r 
OUT[log 
(abu+1)] 

 



 

Dedecker et 
al., 2005d 

MATLAB T, pH, DO, Cond, SS, D, 
W, S, Sh, VEG, FV, Me, 
HRB, PR, AE 

pr/ab Zwalm river
basin 
(Belgium) 

 FF BP, LM 15-?-1 108-12 (10-
fold) 

Trial and error STF [-1 1] CCI, CK 

D’heygere et 
al., 2005b 

WEKA Day, W, D, FV, S, T, 
pH, DO, Cond, TOX, 
TOC, OM, Ni, Ph 

pr/ab         

        

  

 

    

       

        

       

   

     

        

Flemish
river 
sediment 
(Belgium) 

FF BP (6-17)-10-2 324-36 (10-
fold) 

? ? ? CCI, CK,
RMSE 

Gabriels et 
al., 2002 

MATLAB S, DM, T, pH, DO, 
Cond, TOC, OM, Ni, Ph 

abu Flemish
river 
sediment 
(Belgium) 

FF BP 20-10-92 250-95 Arbitrarily
chosen 

? IN[-1 1],
OUT[0, 1] 

 r, CCI 

Gabriels et 
al., 2005 

? Day, W, D, FV, S, pH, 
DO, Cond, Ni, Ph 

pr/ab Flemish
river 
sediment 
(Belgium) 

FF BP 12-?-(1, 92) 294-49 (7-
fold) 

Trial and error ? [-1 1] CCI, CK 

Goethals et 
al., 2002 

MATLAB T, pH, DO, Cond, SS, D, 
W, S, Sh, VEG, FV, Me, 
HRB, PR, AE 

pr/ab Zwalm river
basin 
(Belgium) 

 FF BP 15-10-52 40-20 Trial and error STF ? CCI 

Goethals, 
2005 

MATLAB T, pH, DO, Cond, SS, D, 
W, S, FV, Me, HRB, PR, 
AE, NO3

-, PO4
3-, NH4

+, 
COD, Ph, Ni, SO, 
DISTm 
Day, W, D, FV, S, T, 
pH, DO, Cond, TOX, 
TOC, OM, Ni, Ph, Met 

pr/ab and 
abu 

Zwalm river 
basin 
(Belgium) 
 
 
Flemish 
river 
sediment 
(Belgium) 

FF BP 24-10-1 119-60
 
 
 
 
228-114 

? STF ? CCI, CK, r 

Hoang et al., 
2001 

? A, SO, R, SoilT, VEG, 
S, T, … 

pr/ab Queensland
streams 
(Australia) 

 FF BP 39-15-37 650-167 ? STF ? CCI

Hoang et al., 
2002 

? SO, Lo, Ni, … pr/ab Queensland 
streams 
(Australia) 

FF BP ? ? ? STF ? CCI

Marshall et 
al., 2002 

? A, SO, R, SoilT, VEG, 
S, T, … 

pr/ab Queensland
streams 
(Australia) 

 FF BP 39-15-37 650-167 ? STF ? CCI

Obach et al., 
2001 

? T, DI, P abu Hesse 
(Germany) 

FF 
FF 
FF 
SOM 

Mod BP 
GRNN 
LNN 
RBF 

? 
 
 
?-120 

? ? ?
 
 
N/A 

[0 1] R², RMSE 

Park et al., 
2001 
 

? Ex
Comm 
 

 
Ex 

Suyong river 
(Korea) 
 

SOM 
FF 

KLR 
BP 

? 
?-5-? 
 

? ? N/A
STF 

[0.01 
0.99] 
 

r 

 



 

 

      Park et al., 
2003a 

? EPTC
A, SO, DISTs, T 

EPTC Adour-
Garonne 
river basin 
(France) 

SOM 
FF 

KLR 
BP 

?-140 
4-?-1 

130-25 ? N/A
? 

[0 1] r 

Park et al., 
2003b 

? S, VEG, DO, W, Cond, 
T, FV, D, NO3

-, PO4
3-, 

NH4
+, … 

richn, SH The 
Netherlands 

Forward 
only 

CPN       

          

         

      

? 500-164 ? ? [0 1] r

 
 
 
Schleiter et 
al., 1999 

 
 
 
? 

 
 
 
T, P, pH, DO, Cond, D, 
W, S, DI, NO3

-, NO2
-, 

NH4
+, COD, BOD, Ph, 

… 

 
 
 
abu 

 
 
 
Kuhbach, 
Lahn and 
Breitenbach 
(Germany) 

 
 
 
FF 

 
 
 
BP 

 
 
 
? 

 
 
 
150-150 
200-100 
225-75 

 
 
 
? 

 
 
 
? 

 
 
 
[0 1] 

 
 
 
MSE, R² 

Schleiter et 
al., 2001 

NNEE pr/ab, abu BOD,
Cond, 
NH3, 
NO3

-, 
NO2

-, 
NH4

+, Ni, 
pH, Ph, T, 
DO, SI 

Hesse 
(Germany) 

FF 
FF 
FF 

Mod BP 
GRNN 
LNN 

? 45-6 ? ? [0 1] R²,
RMSE, 
CVE 

Wagner et 
al., 2000 

? T, P, DI abu Breitenbach 
(Germany) 

 

FF BP ? 216-54 ? ? [0 1] R²

Walley and 
Fontama, 
1998 

? Coord, DISTs, SL, Alk, 
DI, A, S, W, D 

ASPT, 
NFAM 

UK FF BP 13-6-6-1 307-307 (2-
fold) 

? ? No, log
(DISTs), 
log(SL) 

 r 

?=not specified; N/A=not applicable; NNEE=Neural Network Experimental Environment; Input and output variables A=altitude; abu=abundance; Alk=alkalinity; 
AE=artificial embankment structures; ASPT=average score per taxon; BOD=biological oxygen demand; CA=catchment area; COD=chemical oxygen demand; 
Cond=conductivity; Comm=community data; Coord=X and Y coordinates; D=depth; Day=day; dens=density; DI=discharge; DISTs=distance from river source; 
DISTm=distance to mouth; div=diversity; DM=dry matter; DO=dissolved oxygen; EPTC=richness of Ephemeroptera, Plecoptera, Trichoptera and Coleoptera; Ex=exergy 
from the MI communities; FV=flow velocity; HRB=hollow river banks; Lo=longitude; LU=land use; Me=meandering; Met=metals; MI=macroinvertebrates; NFAM=number 
of families; NH3=ammonia; NH4

+=ammonium; Ni=nitrogen; NO2
-=nitrite; NO3

-=nitrate; OM=organic matter; P=precipitation; Ph=phosphorus; PO4
3-=phosphate; 

PR=pool/riffle; pr/ab=presence/absence; richn=species richness; S=substrate; SDA=surface of the drainage area; SH=Shannon diversity index; Sh=shadow; SI=saprobic 
index; SL=slope; SO=stream order; SoilT=soil type; SS=suspended solids; T=water temperature; TOC=total organic carbon; TOX=toxicity; VEG=vegetation; W=width; 
Connection type ERC=Elman recurrent neural network; FF=feed-forward; RTRC=real-time recurrent neural network; SOM=Kohonen self-organizing mapping; Training 
algorithm BP=backpropagation; CPN=counterpropagation network; GRNN=general regression neural network; KLR=Kohonen learning rule; LM=Levenberg-Marquardt; 
LNN=linear neural network; Mod BP=modified backpropagation; RBF=radial basis function; RL=recurrent learning; Transfer functions STF=sigmoid transfer function; 
Scaling of variables IN=input; OUT=output; Performance measure CCI=percentage of correctly classified instances; CK=Cohen’s kappa; CVE=cross-validation error; 
MSE=mean squared error between observed and estimated values; PI=performance index (proportion of predictions within 10% of the observed value); r=correlation 
coefficient between observed and predicted values; R²=determination coefficient between observed and predicted values; RMSE=root mean squared error between observed 
and estimated values 



Chapter 2: State of the art of Artificial Neural Networks (ANNs) to predict macroinvertebrates in rivers 
 

Actually, there is almost no insight into the practical usefulness of ANN models in decision 

support systems. Most articles only discuss the development of the models and evaluate these 

by means of one or more performance measures. The choice of an evaluation measure 

however should be driven primarily by the goals of the study. This may possibly lead to the 

attribution of different weights to the various types of prediction errors (e.g. omission, 

commission or confusion). Testing the model in a wider range of situations (in space and 

time) will permit to define the range of applications for which the model predictions are 

suitable. In turn, the qualification of the model depends primarily on the goals of the study 

that define the qualification criteria and on the applicability of the model, rather than on 

statistics alone (Guisan and Zimmermann, 2000). 

 

The contribution of input variables, is another very important aspect that needs more research. 

Many variables are not part of the dataset, while others have a high variability, that can be 

caused by measurement difficulties, but also by the natural dynamics in the river systems (e.g. 

flow velocities, water temperatures). Therefore, also the effect of monitoring methods needs 

more research, in particular the incorporation of ‘new’ variables which are less 

straightforward to be used in a model. This is in particular the case for structural and 

morphological variables that often need to be visually monitored, but also for heavy metals 

and other potential toxicants, since their effects often are related to the environment in which 

they are released (bio-availability, accumulation, …). These toxicants may be a new challenge 

in the field of soft computing models to predict river communities, in particular 

macroinvertebrates. 

 

So far, several rules of thumb for determining model geometry have been proposed. 

Alternatively, techniques for automatically selecting model architecture are suggested. 

However, in most of the studies discussing the prediction of macroinvertebrates in aquatic 

systems, model geometry was decided with trial and error. Consequently, there is a need to 

develop guidelines to clearly identify the circumstances under which particular approaches 

should be used and how to optimize the parameters that control neural network architecture. 

 

Presently, there is a lack of comparative papers (e.g. Skidmore et al., 1996; Manel et al., 

1999) in which more than two statistical methods have been applied to the same data set. 

Most published ecological modelling studies use only one of the many techniques that may be 

properly used, and little information is available on the respective predictive capacity of each 
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approach. The debate is usually restricted to the intrinsic suitability of a particular method for 

a given data set. When starting a static modelling study the choice of an appropriate method 

would be much facilitated by having access to publications that show the advantages and 

disadvantages of different methods in a particular context (Guisan and Zimmermann, 2000).  

 

When looking at the different soft computing techniques, they all seem to have particular 

strengths and weaknesses. ANNs can give for instance well performing models, but the 

integration of expert knowledge is difficult. Fuzzy logic can be used to develop models 

merely on expert knowledge, but the number of input variables is very limited, because the 

rule sets become very complex when more than five input variables are used. Bayesian Belief 

Networks have the interesting characteristic to be able to reveal how different variables 

interact, on the other hand, the information necessary to build these networks and to set up the 

variable distributions is also huge.  

 

Therefore, based on the rather limited set of case studies in which several methods were 

compared, it is up to now nearly impossible to have clear insight into when to use what kind 

of method. On top of this, also several methods such as Bayesian Belief Networks and fuzzy 

logic were rarely applied yet in ecology, so the methods themselves need further exploration. 

Important to note is that many different measures are used to evaluate model performance, 

which makes it difficult to compare different studies Additionally, it must be mentioned that 

the practical applicability of the models for decision support (ecological knowledge 

extraction, predictions) is also a crucial quality aspect. 

 

Recently, several practical concepts and software systems were developed related to 

environmental decision support (e.g. Rizolli and Young, 1997; Paggio et al., 1999; Reed et 

al., 1999; Young et al., 2000; Argent and Grayson, 2001; Booty et al., 2001; Lam and 

Swayne, 2001; Argent, 2004; Lam et al., 2004; Voinov et al., 2004; Poch et al., 2004).  

 

Ceccaroni et al. (2004) stress the importance of ontology in this context for sharing and 

reusing knowledge, by careful consideration of the general and specific application areas of 

the applied models, to avoid a wrong extrapolation or coupling of existing knowledge or 

models. In particular when also knowledge from laboratory tests is to be included in the 

models, e.g. eco-toxicological relations as in Babut et al. (2003), the in-field relevancy needs 

to be checked. From a technical point of view, one can opt to build a new model for each 
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application or to utilize existing models where possible. The first approach has the benefit of 

control in the models’ design and linkage, but requires longer development time. The second 

approach saves on the development time, but requires additional work to link up existing 

models (Lam et al., 2004). However, when a lot of models are already available, it is probably 

the best option. The use of the linked models can also be a good start to gain the required 

knowledge about those processes which are of major importance for the different simulations 

and which can be neglected. Thus model integration by the use of simplified and inter-tuned 

models can probably as well be a feasible option. A major issue in this context is the selection 

of the most convenient inference techniques, hereby considering a realistic process 

description, relevant outputs for the users and a low simulation time. Also here an interesting 

role can be played by ANN models to link several variables of the different system 

components. In particular in the field of hydrological modelling, several studies proved that 

also ANN models can provide good results combined with short calculation times. 

 

In particular for river and lake restoration management, there is a need for tools to guide the 

investments necessary to meet a good ecological status as set by the European Water 

Framework Directive. Although many ecological modelling methods exist for several 

decennia, their practical application to support river and lake management is rather limited. 

Many river managers are still unaccustomed using these ecological models. One of the 

reasons is that the required knowledge to use these methods is not straightforward and readily 

available. In addition these managers are not always involved in the model development 

process resulting in a reserved attitude towards these models and their results. Although there 

is quite some experience gained with data driven models to predict macroinvertebrates, 

several key-questions remain unanswered with regard to the optimal architecture, the input 

variables and the ecological relevance of the models.  

 

Therefore, in this thesis (Chapter 6) the optimal ANN model architecture for the prediction of 

five macroinvertebrates, having a different sensitivity to pollution and prevalence in the study 

area (Chapter 4), based on environmental river characteristics is investigated. The use of 

sensitivity analyses is probably a major need to increase the credibility of these often called 

‘black box’ methods to ecologists and river managers. Additionally, the contribution of 

ecologically relevant input variables, is another crucial aspect that needs more research. The 

latter two bottlenecks are tackled in this thesis (Chapter 7) applying three input variable 
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contribution methods to the ANN models. In this way, the ‘black box’ models could be 

clarified and the ecological relevance of the input variables could be assessed. 
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3.1. Migration behaviour of macroinvertebrates in running waters 
 

3.1.1. Introduction 

 

In a stream, many activities take place over a broad range of spatial and temporal scales. The 

benthic macroinvertebrates have actually been described as being in a state of ‘continuous 

redistribution’ (Townsend and Hildrew, 1976). One obvious reason for movement relates to 

the flowing nature of the water in rivers and streams. The drag force of flow can cause 

dislodgement and subsequent downstream transport of individuals (Williams and Williams, 

1993). However, also other physical, chemical and biological factors are involved (Williams 

and Feltmate, 1992), hence movements are not purely passive in nature. For 

macroinvertebrates, movements include downstream drift in the water (= passive), swimming 

or crawling from upstream or downstream (= active), and for insects aerial movements by 

adult stages along or between river channels. Macroinvertebrates are generally considered to 

have high dispersal capabilities, but these migration and mobility abilities do vary 

considerable among invertebrate taxa (Giller and Malmqvist, 1998). 

 

A difference should however be made between small-scale and medium- to large-scale 

movements (Giller and Malmqvist, 1998). Many macroinvertebrates appear to show small-

scale daily changes in their distribution on individual stones, tending to occupy lower surfaces 

during the day, but upper surfaces at night (Elliott, 1971a; Glozier and Culp, 1989). This 

activity is usually seen for grazer/scraper species (such as many mayflies) and is associated 

with daily patterns in feeding. Short-term small-scale movements also include the response to 

the presence of predators or competitors. Movements into refugia during periods of peak flow 

are of a similar scale. Studies on individual fish have also shown daily movements and 

swimming between pools and riffles (Greenberg and Giller, 2000). Movements of individuals 

over relatively longer time periods and larger spatial scales, give some idea of the potential 

size of the home range of the individual (the area over which the macroinvertebrate normally 

migrates) and perhaps the net movement over the lifetime of an individual (e.g. Erman, 1986). 

Large-scale dispersal between streams and rivers normally requires some terrestrial or aerial 

migration and is thus largely restricted to insects. The extent of such movements for insects 

has been relatively poorly studied, but is clearly the most important route of colonization of 

severely disturbed river basins or new channels (Giller and Malmqvist, 1998). 
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As discussed before, migration behaviour and in particular the upstream and downstream 

movement of animals within and between habitats is of specific ecological significance and is 

essential for the maintenance of gene flow and genetic diversity, and also for colonization and 

re-colonization of potential habitats (Clobert et al., 2001; Bullock et al., 2002).  

 

In the following parts, the major aspects of migration like drift and active upstream and 

downstream movements are discussed in more detail. 

 

 

3.1.2. Downstream migration behaviour of macroinvertebrates: drift and active 

movements 

 

In running waters, the drift of macroinvertebrates is one of the most ubiquitous and widely 

studied phenomenon (Waters, 1965; Brittain and Eikeland, 1988). The term ‘invertebrate 

drift’ describes the downstream dispersal in the water of benthic invertebrates that usually live 

on or amongst the substratum of stream and rivers (Elliott, 2002a, b, c). Drift enables 

organisms to escape unfavourable conditions and gives them the potential to colonize new 

habitats (Brittain and Eikeland, 1988). 

 

Drift can be classified into four categories based on Waters (1972) and Brittain and Eikeland 

(1988): 

 

• constant drift: continuous, accidental displacement; 

• distributional drift: a method of dispersal, especially in the very young stages soon 

after egg hatching; 

• catastrophic drift: movements resulting from major physical and chemical 

disturbances (e.g. high discharge); 

• behavioural drift: periodical, resulting from daily patterns of activity or avoidance of 

predators, competitors or other stressors. The latter form of behavioural drift is often 

termed ‘active drift’, to distinguish it from drift due to general activity. 

 

Many biotic and abiotic variables have been cited as factors influencing drift: 

current/discharge, photoperiod (daily or seasonal patterns), water chemistry, benthic densities, 
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predators and life-cycle stage (Brittain and Eikeland, 1988). Passive drift can occur through 

simple accidental erosion by the force of moving water during the course of normal activity 

and increasing shear stress. Other physical stresses such as rapid flow reduction and pollution 

also increase drift. One problem in determining what causes drift is that it can be difficult to 

prove whether entry to the drift is accidental (= passive) or not (= active), which in turn 

relates to the various causes of drift (Giller and Malmqvist, 1998). In some of these responses, 

active entry is probable, as it provides an immediate escape mechanism (e.g. escape from 

predators and competitors). The use of drift may also provide a useful mechanism of actively 

searching for new food patches or preferred habitat (Kohler, 1985). Any behaviour that 

increases the probability of exposure to the eroding current can increase the chance of passive 

drift entry, however. This may occur if macroinvertebrates increase their activity on the top 

surfaces of stones. Drift entry is almost certainly determined to an extent by accidental 

dislodgement resulting from such daily changes in foraging movements and activity (Giller 

and Malmqvist, 1998). 

 

 

3.1.3. Active upstream migration behaviour of macroinvertebrates 

 

Upstream migration of many different taxa has been reviewed by Söderström (1987). Unlike 

drift, upstream movements are against the current direction and are thus always non-

accidental but active. The major reasons for upstream migration seem to be: 

 

• search for new habitat and food (Bishop and Hynes, 1969; Hildrew, 1996); 

• avoidance of unfavourable abiotic conditions (Hayden and Clifford, 1974; Olsson and 

Söderström, 1978); 

• search for suitable emergence, pupation or mating sites (Hultin et al., 1969; 

Goedmaker and Pinkster, 1981); 

• a compensation for drift in order to maintain a basal population within a certain habitat 

(Hayden and Clifford, 1974; Goedmaker and Pinkster, 1981).  
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3.1.4. Aerial migration behaviour of macroinvertebrates 

 

This type of migration is largely restricted to the adult stages of insects. Aerial migration is 

for insects relatively poorly studied, but is clearly the most important route of colonization of 

severely disturbed river basins or new channels. The rates of recolonization depend on the 

size of the disturbed area and the proximity of a source population and hence distance that 

these organisms must travel (Giller and Malmqvist, 1998). These rates of colonization also 

depend on the taxa, largely because the taxa themselves vary in their propensity to move and 

modes of movement. Newly opened stream channels connected to other river stretches for 

example can be rapidly colonized by small-scale movements (drift or active upstream 

migration). Isolated streams or restored river sections far from potential source populations 

however can only be recolonized by means of aerial migration. 

 

 

3.1.5. The ‘drift paradox’ 

 

Discussing the downstream drift and upstream movement of macroinvertebrates without 

mentioning the ‘drift paradox’ is however inappropriate. The ‘drift paradox’ is indeed a well-

known and frequently discussed concept in the ecological literature. The ‘drift paradox’ arises 

because the upper reaches of the streams remain colonized by aquatic insects despite an 

apparently considerable reduction in their numbers. This reduction is due to the tendency of 

aquatic invertebrates to drift downstream with the current (Brittain and Eikeland, 1988; Allan, 

1995; Giller and Malmqvist, 1998). The compromise has generally been that upstream 

compensation flight (whether directed or as part of random, undirected dispersal) by some 

pre-ovipositing adult females may be the key factor that resolves the paradox (Hershey et al., 

1993; Allan, 1995). But how does one explain the persistence of the many species that are 

commonly found to drift but do not have an aerial adult stage (Humphries and Ruxton, 2002)? 

Speirs and Gurney (2001) and Humphries and Ruxton (2002) demonstrated that long-distance 

flight by aerial adults is not required to prevent extinction of upstream reaches. It can be 

achieved by very small upstream movements of individuals along the substrate. 
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3.2. Models to simulate migration behaviour 
 

Models are seen as useful tools to simulate migration behaviour of all kinds of fauna and 

flora. During the preceding years, several models are developed for the dispersal of mammals 

(e.g. Andrén, 1994; Ferreras, 2001; Verbeylen et al., 2003), birds (e.g. Graham, 2001; Green 

and Alerstam, 2002; Erni et al., 2003; Tankersley and Orvis, 2003), insects (e.g. Kareiva, 

1983; Pitcher and Taylor, 1998; Baguette et al., 2003; Chardon et al., 2003), plants (e.g. Jung 

et al., 2004), … However, these studies were mainly describing movements of terrestrial 

organisms. The objectives of these migration studies were very diverse: biological 

conservation, ecological research, examining the effect of human impacts, optimizing the 

models themselves, … Migration studies concerning aquatic organisms have mainly been 

focussing on fish. Several examples can be found in the literature (e.g. Schonfisch and 

Kinder, 2002; Hubbard et al., 2004; Humston et al., 2004; Magnusson et al., 2004; Mommsen, 

2004; Nykanen et al., 2004; Steel et al., 2004). These models have generally been designed 

from a commercial point of view. 

 

Although there is a lot of knowledge available describing migration behaviour of 

macroinvertebrates, studies modelling their migration possibilities are rare. Literature, 

covered by the ISI Web of KnowledgeSM from 1972 till 2005, was reviewed. This search 

resulted in only six papers describing the application of models to simulate migration 

behaviour of macroinvertebrates (Hayes et al., 2003; Largier, 2003; Ellien et al., 2004; 

Englund and Hambäck, 2004a, b; Weber et al., 2004), which are reviewed in Table 3.1.  
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Table 3.1. Overview of the studies discussing the migration of macroinvertebrates based on 

literature, covered by the ISI Web of KnowledgeSM from 1972 till 2005 

Reference Model type Migration
component 
modelled (modelled 
species) 

Objective of the model Model 
scale 

Ellien et al., 
2004 

2D 
hydrodynamic 
model 

Dispersion 
(Pectinaria koreni) 

Analyse the processes 
involved in the transport 
and dynamics of larval 
populations 

Bay of 
Seine 

Englund 
and 
Hambäck, 
2004a, b 

1D and 2D 
analytical and 
random walk 
model 

Upstream and 
downstream 
migration (Baetis sp. 
and Asellus 
aquaticus) 

Analyse the patch-scale-
dependence of migration 
rates 

Micro-
meso 
habitat 
scale 

Hayes et 
al., 2003 

2D hydraulic 
model 

Drift Predict the food available 
to drift feeding brown trout

Reach 
scale 

Largier, 
2003 

Advection-
diffusion 
model 

Dispersion (coastal 
populations) 

Determine the larval 
dispersal distances and 
larval origins in 
oceanography 

Coastal 
zones 

Weber et 
al., 2004 

3D fluid 
dynamic model

Drift (Gammarus 
pulex, Simuliidae, 
Baetidae) 

Predict the food available 
to drift feeding fishes 

Reach 
scale 
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The studies describing the migration of river macroinvertebrates examined only aquatic 

dispersion (drift, up and downstream migration). In general, the models were very detailed 

applying for example a particle tracking technique in which the macroinvertebrates were 

treated as particles that enter the stream (e.g. Weber et al., 2004). Additionally, the developed 

models could only be applied over a small scale (micro-meso habitat scale to reach scale). 

However, if models have to be used in river restoration or conservation management (i.e. to 

investigate the connectivity between population patches or the possibility to migrate from a 

source population to recolonize a restored river section), also migration over land / through 

the air covering a broader scale should be included. To this end, these models were less 

appropriate and more robust ones are required. 

 

Recently however, some studies used ‘least-cost’ modelling as an approach to incorporate 

detailed geographical information as well as behavioural aspects in a measure of connectivity 

and migration (e.g. Michels et al., 2001; Schadt et al., 2002; Adriaensen et al., 2000, 2003; 

Chardon et al., 2003). Based on this type of models, upstream and downstream migration 

through the river, as well as migration through the air (based on the species’ movement 

behaviour through the water and the air, and the river and environmental characteristics 

influencing the migration) could be integrated. In this way, it was opted for to apply this type 

of models to reach the objectives of this thesis. A detailed description of the specific 

characteristics and requirements of these models is further discussed in Chapter 8. 
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Chapter 4 : Study area and data collection 

4.1. Introduction 
 

In this chapter, the applied data collection techniques are discussed, both for biotic and abiotic 

monitoring of running waters in the study area. Two datasets were gathered in this study area: 

(1) the Zwalm river basin (Flanders, Belgium), referred to as the Zwalm river basin dataset, 

and (2) the brooks Verrebeek and Dorenbosbeek and the upstream part of the Zwalm river 

basin, referred to as the ‘short distance’ monitoring network dataset. These monitoring data 

were used to fulfil the following aims: 

 

• Development, optimization and validation of habitat suitability models based on 

ANNs. 

For the development of the ANN models, the measured data were used to define the 

optimal size of training and test set and to determine the optimal model architecture for 

both datasets. In addition the monitoring data were used to validate the habitat suitability 

performance (Chapter 6). 

 

• Ecological interpretation of ANNs applying input variable contribution methods. 

When using the data for information extraction, the main objective in this study was to 

determine the most important environmental variables that influence the 

macroinvertebrates and which are of interest for river management. To find out the 

importance, three input variable contribution methods were applied (Chapter 7). 

 

• Development of migration models for macroinvertebrates as an extension of the 

habitat suitability models. 

Because in general, habitat suitability models do not include spatial and temporal 

relationships, migration models were developed and validated based on sensitivity 

analysis to include migration dynamics of the predicted organism and migration barriers 

along the river. To this end, the ‘short distance’ monitoring network dataset was used 

(Chapter 8, Chapter 9). 

 

• Prediction and evaluation of river restoration scenarios. 

Finally, the collected data were used to predict and evaluate river restoration scenarios in 

the Zwalm river basin (Chapter 10). 
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4.2. General description of the Zwalm river basin 
 

The Zwalm river basin is part of the hydrographical basin of the Upper-Scheldt in Flanders, 

Belgium (Fig. 4.1). The basin drains an area of about 11,650 ha, the Zwalm River itself has a 

length of 22 km. The Zwalm river basin is divided into two administrative zones, referred to 

as VHA zones, and runs through different municipalities. Concerning river management in 

Flanders, responsibilities are divided over different administrations based on the given 

category of the watercourse. Responsible administrations include the Flemish government 

(represented by AMINAL), the provinces and the municipalities (Fig. 4.1). This means that 

river management of the river basin is partitioned at different levels, although consultation 

between the responsible administrations and parties concerned is done by the river basin 

(management) committees. 

 

According to the river typology of the Flemish watercourses defined by Jochems et al. (2003), 

streams within the Zwalm river basin are of the river type small and large streams (Fig. 4.2). 
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Fig. 4.1. The Zwalm river basin, located in the Upper-Sc

Flanders (Belgium). 
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al construction of the river typology according to system B as defined by 

 et al., 2003). 

ater quality in the Zwalm river basin has considerably improved due to 

erage and wastewater treatment plants during the preceding years (VMM, 

s, several parts of the river are still polluted by untreated urban wastewater 

llution originating from agricultural activities (Goethals and De Pauw, 

landers is in general a rather flat region, the Zwalm river basin is 

 number of differences in altitude, making it a quite unique ecosystem. 

e agricultural activities on several slopes, soil erosion is the most important 

 process resulting in an import transport of (contaminated) sediments in the 
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river. In addition to this, numerous structural and morphological disturbances still exist (e.g. 

weirs for water quantity control, artificial embankments, …). A description of the major 

ue to human activities in the Zwalm river basin is given in Table 4.1. In the 

al inventory and the development of a vision, Konings and 

Me  structural habitat quality of the watercourses 

in the Zwalm river basin. To this end, river stretches of about 100 m in length were monitored 

by ets and Schneiders (1998). This index is 

bas o sses the presence of hollow banks, pools and riffles and 

the ering in a river reach. The results for the Zwalm river are shown in Fig. 

4.4 (MIRA-T, 2004). 

 caused by human activities in the Zwalm river 

bas (

Hu n

sources of stress d

con  up an ecologictext of drawing

ire (2003) monitored the current status of the 

means of the structural index developed by Bervo

ed n a scoring system that asse

 de ree of meandg

 

Table 4.1. Description of the main disturbances

in Goethals and De Pauw, 2001) 

ma  impacts 
Physical-chemical disturbances 

 WWTPs (urban and industrial) 
 sewer overflows 

als, fishing 
Diffuse sources: 
• Agriculture 
• Traffic 
• Scattered housings 

 

Point sources: 
• Effluents
• Combined
• Sewer systems 
• Accidents (mainly leaking fuel storage tanks) 
• Feeding of anim

Structural and morphological disturbances 
• Water quantity management (weirs, artificial embankments) 
• Transport infrastructure 
• Physical pollution (wood debris, large wastes) 

 
Biological disturbances 

• Fishing 
• Rat traps 
• Sampling related to monitoring 
• Fish stocking (angling management, pond overflows) 
• Game hunting 
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Fig. 4.4. Structural evaluation of the Zwalm river based on Konings and Meire (2003) in 

MI -

 

he significant human impact on the Zwalm river basin can be demonstrated by the Belgian 

e 

apped by means of a colour code: 

 

• 0 = extremely bad quality (black); 

• 1 - 2 = very bad quality (red); 

• 3 – 4 = bad quality (orange); 

• 5 – 6 = moderate quality (yellow); 

• 7 – 8 = good quality (green); 

• 9 – 10 = very good quality (blue). 

 

From the BBI maps, one can read off a good to moderate quality in the upper stream parts, 

and a bad quality in the more downstream parts of the Zwalm river basin. Only a limited 

RA T (2004). 

T

Biotic Index (BBI) (Fig. 4.5). The BBI method uses macro-invertebrates as indicators for the 

level of pollution (De Pauw and Vannevel, 1991). The methodology is based on the theorem 

that increasing pollution will result in a loss of diversity and a progressive elimination of 

certain pollution-sensitive groups. The BBI index values are interpreted as follows and can b

m
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number of the measured sites reaches the quality standard set by VLAREM II (VLAREM, 

1999), which means at least a ‘good quality’ corresponding with a BBI value of 7 and more. 
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ig. 4.5. Illustration of the water quality in the Zwalm river basin based on the 

dex (BBI). 60 sites were sampled on a yearly basis (2000-2003). Additionally

ampled in 2002 and 2003 within the ‘short distance’ monitoring network. 
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4.3. Data collection 

water treatment plants are included. The general 

end of VMM is to monitor sites with an expected degradation in water quality (VMM, 

herefore, methods to improve the sampling strategy for the development of habitat 

suit il rtebrates were searched for. In this end, Hirzel and Guisan 

(2002) proposed the following recommendations: 

 

• to increase sample size; 

main environmental gradients are under-sampled. Stratifying along these gradients and 

 

4.3.1. Monitoring strategy in rivers for habitat suitability modelling 
 

Although a lot of data have been gathered in Flanders on river systems, there are still some 

gaps to fill before these data meet the requirements of our modelling objectives. First of all, 

the data are distributed over different institutes in Flanders using various format types, other 

co-ordinate systems, ... The existing monitoring network of the Flemish Environment Agency 

(VMM) for example could not be used because the monitoring approach currently adopted in 

Flanders is not adjusted to the requirements of the data needed within the aim of this thesis 

focussing on habitat suitability modelling. The VMM has selected specific sampling sites 

through Flanders to reveal effects of pollution and monitor long-term trends in water quality. 

In this way, sites are selected that are expected to be influenced by domestic, agricultural or 

industrial activities. Also, sites near waste

tr

2003). This biased monitoring network is as such not stratified over a certain environmental 

gradient, and sites are somehow clustered. 

 

T

ab ity models of macroinve

• to prefer systematic to random sampling; 

• to include environmental information in the design of the sampling strategy. 

 

Furthermore, to be efficient, a sampling strategy needs to be based on those gradients that are 

believed to exert major control over the distribution of species. These gradients should be 

considered primarily for the sampling, because otherwise vital information will limit model 

accuracy, in particular when data driven models, such as artificial neural networks, have to be 

developed. For habitat suitability modelling, systematic sampling along the most important 

environmental gradients is therefore preferred in contrast to random sampling. Random 

sampling could lead to truncated response curves for some species if the extremities of the 
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sampling the extremities can assure an efficient sampling of these outer limits (Hirzel and 

Guisan, 2002). This is why it is important not only to sample sites that are degraded. Also the 

ore pristine sites in the upper reaches should be sampled. These sites will reveal what is 

se of the limited industrial activities in the Zwalm 

ver basin, these compounds probably played a minor role for the river ecology and could 

us be excluded from the data collection. 

ithin the Zwalm river basin, 60 sampling sites were selected (Fig. 4.6, left) based on the 

foll i

 

ater and habitat quality; 

er types; 

m

feasible from an ecological point of view. 

 

An additional reason for setting up the Zwalm river basin monitoring network consisted of a 

need to give more attention to the physical environment of the macroinvertebrate taxa under 

study. This comprises the measurements and observations of physical characteristics and 

habitat characteristics, not taken into consideration by the water quality monitoring network 

of the VMM. Moreover, within the VMM network, a significant part of the physical-chemical 

sampling is obtained in a different period than the biotic sampling, causing a temporal 

distortion within the dataset. Variability in data, natural as well as human-induced, in 

particular with regard to physical-chemical sampling, reveals the need for continuous 

measurements to identify the outer limits. Although the importance of on-line water quality 

measurements has been stressed during an FWO project on the river Dender in Flanders 

(Vandenberghe et al., 2000), still it is a very labour-intensive and as such costly method. 

Automated measurement stations for the on-line quality monitoring have as such not been 

considered in the context of this thesis. In addition, no heavy metals and organic micro-

pollutants were part of the analysis. Becau

ri

th

 

 

4.3.2. Sampling sites 

 

W

ow ng criteria: 

• sites should include different levels of w

• sites should include different types of land uses; 

• sites should cover different riv

• sites should be distributed over the entire river basin; 

• sites should be easy to reach. 
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This stratified monitoring network was sampled during August and September 2000, 2001, 

2002 and 2003. In this way, 240 sets of observations were available. In 2001 however, the 

artificial substrates got lost in one site and in 2003, two sites were too dry to take 

acroinvertebrate samples which means that no biological data were available for these three 

ering, hollow river banks, pool/riffle variation, …). The 

elected part of the river basin was located in a region with different types of land use (urban, 

gricultural and industrial regions). 

t were 

easured included pH, conductivity, water temperature, suspended solids, dissolved oxygen, 

itrate, ammonium, total nitrogen, phosphate, total phosphorous and COD (Table 4.2). 

 

 

m

sites. The final database consisted thus only of 237 instances. 

 

In addition, a ‘short distance’ monitoring network has been set up (Dedecker et al., 2005a) 

including 52 additional sites which were sampled during August and September 2002 and 

2003 (Fig. 4.6, right). For this monitoring network, a part of the Zwalm river basin of about 

12 km was selected, which consisted of the brooks Verrebeek, Dorenbosbeek and the 

upstream part of the Zwalm river. This part contained river sites characterized by structural 

and morphological disturbances (weirs for water quantity control, artificial embankments, 

watering places for the cattle, culverted river sections, ...), while others nearly met reference 

conditions (forests with good meand

s

a

 

 

4.3.3. Monitoring of environmental variables 

 

The measurements of the structural characteristics were partially based on Schneiders et al. 

(1999) and comprised the visual observation of the bank structure, the development of hollow 

banks, the presence of pools and riffles, and the meanders in the watercourse. These variables 

are respectively divided into four and six categories to take the different possibilities of 

structural river habitat into account as optimal as possible. To illustrate the meaning of the 

different categories of these variables used in this thesis, a description in combination with 

some pictures clarifying their meaning is presented in Tables 4.3, 4.4, 4.5 and 4.6. Flow 

velocity, distance to source, stream order (Strahler, 1957), width and depth were measured as 

well as the granulometric characteristics of the sediment. Physical-chemical data tha

m

n
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Fig. 4.6. Sampling sites within the Zwalm river basin, 60 sites sampled on a yearly basis 

(2000-2003) during August and September (left) and 52 additional sites sampled in August 

and September 2002 and 2003 within the brooks Verrebeek, Dorenbosbeek and the upstream 

part of the Zwalm river (right). 
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Table 4.2. Environmental variables measured in the Zwalm river basin 

Variables Measuring units Measuring method and 
equipment 

Temperature °C Oximeter WTW Cellox 330 
pH - log [H+] pH meter Consort P114 
Conductivity µS/cm WTW TetraCon® 325 
Ammonium mg NH4

+-N/l Spectrophotometrical 
(Spectroquant®, Merck) 

Nitrate mg NO3
--N/l Spectrophotometrical 

(Spectroquant®, Merck) 
Total nitrogen mg N/l Spectrophotometrical (Dr 

Lange® LCK 238) 
Ortho phosphate mg PO4

3--P/l Spectrophotometrical 
(Spectroquant® phosphorus 
(PMB), Merck) 

Total phosphorus mg P/l Spectrophotometrical 
(Spectroquant® total phosphate 
1453, Merck) 

Chemical Oxygen 
Demand 

mg COD/l Spectrophotometrical 
(Spectroquant® COD, Merck) 

Suspended solids mg/l Membrane filtration (PALL 
Supor® 800) 

Dissolved oxygen mg/l Oximeter WTW Cellox 330 
Depth cm Measured at highest depth 
Width cm Measured at highest width 
Flow velocity m/s Hydrometric propeller 

(Laboratory of Hydraulics, Ghent 
University) 

Fraction pebbles % surface bottom (> 2 cm) Visual observation 
Fraction gravel % surface bottom (2 mm – 2 cm) Sampled by means of a Van 

Veen grab, dried and measured 
in the lab 

Fraction sand % surface bottom (50 µm – 2 mm) Sampled by means of a Van 
Veen grab, dried and measured 
in the lab 

Fraction loam/clay % surface bottom (< 50 µm) Sampled by means of a Van 
Veen grab, dried and measured 
in the lab 

Embankment 3 categories (0 (absent), 1 
(partial), 2 (total)) 

Visual observation according to 
Schneiders et al. (1999) 

Meandering 6 categories (1 (well developed) to 
6 (absent))  

Visual observation according to 
Schneiders et al. (1999) 

Hollow banks 6 categories (1 (well developed) to 
6 (absent)) 

Visual observation according to 
Schneiders et al. (1999) 

Pools-riffles 6 categories (1 (well developed) to 
6 (absent)) 

Visual observation according to 
Schneiders et al. (1999) 

Distance to mouth m ArcView GIS 3.2a 
Stream order (= 
Strahler order) 

4 categories (1 to 4) Topographic map (scale 
1/25000) 
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Table 4.3. Development of meandering pattern 
 

  
 

Meandering pattern is (nearly) pristine: 
 
sinuous meandering pattern, continuous 
presence of big curves 
 
Category 1 

 

 
 

Meandering pattern is well developed: 
 
presence of big curves, not continuous 
 
Category 2 

 

 
 

eandering pattern is moderately 

ndering pattern, continuous 
 
Category 3 

M
developed: 
 
slightly mea

 

  
 

ndering pattern, not continuous 
 
Category 4 

Meandering pattern is poorly developed: 
 
slightly mea

 

  
 

raight river channel (natural, without 
bankments) 

 
Category 5 

Meandering pattern is absent: 
 
st
artificial em

 

 
 

eandering pattern is absent due to 

 channel (artificial embankments)
 

M
structural changes: 
 
straight river

Category 6 
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Table 4.4. Development of pool-riffle pattern 
 

 
 

attern is (nearly) pristine: 
 
extensive sequences of pools and riffles 
 
Category 1 

Pool-riffle p

 

 
 

oped: 

in pools and riffles 

ategory 2 

Pool-riffle pattern is well devel
 
high variety 
 
C

 

 
 

Pool-riffle pattern is moderately developed:
 

ariety in pools and riffles but locally v
 

ategory 3 C

 

 
 

Pool-riffle pattern is poorly developed: 

w variety in pools and riffles 

Category 4 

 
lo
 

 

 

Pool-riffle pattern is absent: 
 
uniform pool-riffle pattern 
 
Category 5 

 
 

 
 

Pool-riffle pattern is absent due to 
tructural changes: s

 
niform pool-riffle pattern due to reinforced u

bank and be
 

d structures 

Category 6 
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Table 4.5. Development of hollow river banks 
 

 
 

stine: 

tside curves 

Hollow river banks are (nearly) pri
 
cavities under trees and in the ou
 
Category 1 

 

 
 

ollow river banks are well developed: 

cavities merely in the outside curves 
 

H
 

Category 2 

 

 
 

Hollow river banks are moderat
eveloped: 

ely 
d
 
avities under vegetation due to erosion c

 
Category 3 

 

 

Hollow river banks are poorly develop
 

ed: 

allow bank erosion 

ategory 4 

sh
 
C

 
 

 
 

Hollow river banks are absent: 
 
no cavities expected due to low dynamics 
 
Category 5 

 

 
 

er banks are absent due to 
ructural changes: 

es 

Hollow riv
st
 
absent due to reinforced bank structur
 
Category 6 
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Table 4.6. Bank structure 
 Natural/unmodified: 

 
no artificial bank re

  
 

inforcement structures 
present 
 
Category 0 (absent) 

 

  
 

Moderately and/or partial artificial/ 
modified: 
 
part of the banks are reinforced with wood, 
stones, bricks, concrete, gambions… 
 
Category 1 (partial) 

 

  
 

Completely artificial/modified: 
 
banks are reinforced with wood, stones, 
bricks, concrete, gambions… 
 
Category 2 (total) 

 

To allow for the developm

paign (‘short distance’ m

ent of the migration models (Chapter 8), a second monitoring 

onitoring network) was set up in August and September 2002 

 model development required a 

ore intensive monitoring approach. Therefore, the selected river parts (the 

 part of the Zwalm river) were split up 

upstream and downstream (X,Y) co-ordinate. In 

ental variables in Table 4.2, an inventory of the structural and 

 

cam

and continued in August and September 2003. This type of

different and m

brooks Verrebeek and Dorenbosbeek and the upstream

in stretches of 50 m, each marked with an 

addition to the environm

morphological characteristics along the selected part of the Zwalm river basin was made. In 

each river stretch of 50 m, the dominant type of land use (wooded area, housings, industrial 

sites, arable or grazing land, …) was monitored as well as the occurrence of domestic, 

industrial or agricultural discharges, and the presence of buffer strips along the river (type and 

distance to the river), natural or artificial river banks and meanders, hollow river banks and 

pool-riffle patterns. 
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4.3.4. Monitoring of macroinvertebrates 

 

In shallow river stretches, the handnet method was used. The macroinvertebrates were 

the site examined (De Pauw and Vanhooren, 

983). The sampling method is based on a multi-habitat design, where major habitats are 

netting 

otato bag), filled with pieces of brick (Fig. 4.7) and exposed in the field for about four 

eeks. Retrieval of the colonized substrates was done by carefully lifting bags from the 

bottom, and placing them in a bucket (Fig. 4.7). 

 

In the laboratory, the coarse debris was removed and the organisms retained on different 

sieves transferred to white plastic sorting trays (30 x 50 cm). The organisms were sorted out 

and transferred to small flasks and grouped roughly according to major taxonomic groups. 

The organisms were preserved in 70% denatured alcohol (De Pauw and Vanhooren, 1983). 

After separation, the marcroinvertebrates were identified under a stereoscopic dissection 

microscope (magnification 10 to 50 times). The identification for the systematic units was 

performed to the levels as determined by De Pauw and Vanhooren (1983) (Table 4.7). 

 

 

collected by means of kick-sampling (Fig. 4.7) with a standard handnet consisting of a metal 

frame holding a conical net (mesh-size 350 µm) (IBN, 1984). The handnet is held in a vertical 

position on the river bottom. The bottom material immediately upstream of the net is turned 

over by foot. In this way, the dislodged animals are carried into the net by the current. 

Additional hand sampling of the vegetation, stones and other substrates is required to collect 

the attached species. The objective of the sampling consists in collecting the most 

representative diversity of macroinvertebrates at 

1

sampled according to their proportional distribution within a sampling reach and consisted of 

five minutes active sampling in a 10 m reach of the watercourse. 

 

Before the weirs and at the mouth of the Zwalm river, artificial substrates were used (De 

Pauw and Vanhooren, 1983; De Pauw et al., 1994) because the river stretches were deeper 

and not wadable (seven sites of the yearly measured monitoring network, one site of the ‘short 

distance’ monitoring network). Artificial substrates were made of a polyethylene 

(p

w
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Fig. 4.7. Left and middle: handnet and kick-sam ith handnet, right: artificial susbstrates 

 

axonomic groups and the identificat

anhooren (1983) 

Identification level 

pling w

and retrieval of artificial substrates.  

Table 4.7. T ion levels as defined by De Pauw and 

V

Taxonomic group 
Plathelminthes genus 
Oligochaeta family 

i-plumosus 
Chironomidae group non-thummi-plumosus 

Hirudinea genus 
Mollusca genus 
Crustacea family 
Plecoptera genus 
Ephemeroptera genus 
Trichoptera family 
Odonata genus 
Megaloptera genus 
Hemiptera genus 
Coleoptera family 
Diptera family 

Chironomidae group thumm

Hydracarina presence 
 

 

4.3.5. Scaling asp

 

whic h r n is at one 

scale at which dients or biotic interactions control the 

ects of the study 

The scale at h macroinvertebrates in watercourses exhibit t

important physical-chemical gra

e g eatest variatio
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assemblag

responses at di

e com brate 

ff eth

influences interpr l., 1 y, 

ects w e a aling 

s m bitat 

haracteristics. The considered scales in this study are given in Ta  

able 4.8. A scal sed on Maddock, 1999) 

cale Measured variables 

position (Li et al., 2001). By recording and a

erent scales, it can be determined explicitly wh

etation of community structures (Townsend et a

ere considered a

nalyzing macroinverte

er the scale of sampling 

997a). Within this stud

l. (2003). These scscaling asp

consideration

s described by Adriaenssens 

ainly have an implication for the monitoring of p

t 

hysical variables and ha

c ble 4.8. 

 

T e-based classification for river monitoring (ba

Characteristics S
Drainage basin 
 drainage basin can be assigned and 

characterized. 
 
 

On the basis of hydrological features, a • distance to source 

Stream type 
 

Stream typologies based on near-natural 
reference conditions are an essential basis for 
developing assessment systems.  

• river width 
• stream order 
 

Reach or 
segment scale 

At the reach or segment scale, the environment 
is relatively stable and biota are determined by 

• 
m

the overall features of the region, its 
topography and altitude and its geomorphic or 
land use pattern. 

physical-chemical 
easurements in general 

(pH, nutrients, dissolved 
oxygen, conductivity, 
organic matter, …) 

esohabitat different river sections are deemed influential. 
• meandering 
• pool-riffle pattern 
• hollow banks 

Macro- or At this scale of approach, habitat features of 
m
 

• flow velocity 
Microhabitat 
 

Habitat that includes the distribution of 
hydraulic and structural features comprising 
the actual living space of the organism. 

• sediment characteristics

 

Temporal variability and seasonal fluctuations in macroinvertebrate composition caused 

by diurnal and life-cycle changes in organism behaviour or development, and seasonal 

or annual changes in the environment, are not considered in this thesis. This was 

avoided taking all samples during the same period of the year (August-September). In 

is way, this type of variation in the dataset could be eliminated. 

o assess the quality of our rivers, 

hich are under conflicting pressures due to human demands for water and the requirements 

of the freshwater biota. In this way, there is a need to monitor river water quality through a 

th

 

 

4.4. Variability in the collection of macroinvertebrate data 

 

There is a growing requirement, in Europe and worldwide, t

w
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comprehensive programme, not only through chemical but also through biological monitoring 

(Clarke et al., 2003). The European Water Framework Directive (WFD) (EU, 2000) 

(2000⁄60⁄EC) recognizes this need for biological monitoring. Implementation of this WFD 

requires that the river monitoring programmes in each member state have to be operational 

before the end of 2006. 

 

The WFD requires that a variety of taxonomic groups, including macroinvertebrates, be 

studied in assessing the ecological status of rivers. There are several good reasons why 

macroinvertebrates are useful as indicators of the ecological quality of rivers as discussed in 

Section 1.3.2. Therefore, macroinvertebrates are the most widely used group of organisms for 

determining the biological water quality (Wils et al., 1994). 

 

Because single samples may be sufficient to indicate environmental problems over the 

previous few months, macroinvertebrate sampling is an ideal procedure for monitoring large 

numbers of sites. In particular, the community composition and the taxonomic richness 

observed in macroinvertebrate samples collected using standard protocols are considered to be 

sensitive indicators of alterations in aquatic ecosystems (Cairns and Pratt, 1993). The fact that 

the various invertebrate species comprising a sample have differing abilities to cope with 

environmental stresses (e.g. organic pollution, heavy metal pollution, modified flow regime, 

loss of habitat richness) provides a method for identifying the type of stress operating at a 

ults provided by the monitoring programmes shall be given in the plan’. 

ncertainty is definitely one of the key topics in environmental monitoring, assessment and 

given site (Walley and Fontama, 2000; Brabec et al., 2004; Buffagni et al., 2004). Although 

these surveys are often very extensive in their geographical coverage, most methods for the 

assessment of the ecological quality of rivers are based on single standard samples of 

macroinvertebrates. It is therefore important to take into account the expected levels of 

sampling variation for different types and qualities of sites and derive a variability measure 

that can be used in procedures to provide confidence limits for estimates of ecological quality 

and for assessments of temporal or spatial change in quality (Clarke et al., 2002). Also Annex 

V, Section 1.3 of the WFD (EU, 2000) requires that ‘Estimates of the level of confidence and 

precision of the res

U

management. This is a considerable challenge but also an opportunity for scientists involved 

in freshwater biomonitoring to increase the practical application of their research. 

The aim of this study was to describe the sampling variation obtained during the monitoring 

of macroinvertebrates in the Zwalm river basin. Therefore, five sampling sites were selected 
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covering different water quality classes and having a similar habitat over a distance of about 

hundred meter. In this way, one could assume that the macroinvertebrate communities within 

these hundred meter were very similar. These sampling sites were located in the river Zwalm 

downstream of the weir ‘Ter Biestmolen’ (X = 102416, Y = 175185), the river Zwalm in 

Michelbeke (X = 107734, Y = 169215), in the river Boekelbeek (X = 103105, Y = 171951) 

and in the brooks Verrebeek (X = 107013, Y = 163287) and Dorenbosbeek (X = 106640, Y = 

164612) (Fig. 4.8). 

uring spring 2004, within each of the five river sections, six standard macroinvertebrate 

amples were taken as described in Section 4.3.4. The six hand net samples were taken by two 

een-operator variation could be 

exam inating seasonal 

this end, it was avoided to m ple processing, all 

organism ily level) as specified in De 

sing and identification was carried out by one 

person to minim ze this type of error. At the end, the number of taxa, the number of taxa 

found mo and Vanhooren, 1983) were calculated for each 

sample. 

 

 

 

D

s

different operators (A and B). In this way, the within and betw

ined. The six replicas on one site were taken at the same day, elim

variation between the samples. Furthermore, attention was paid to the weather conditions. To 

onitor after periods of heavy rainfall. After sam

s were identified to the taxonomic level (genus or fam

Pauw and Vannevel (1991). The sample proces

i

re than once and the BBI (De Pauw 

 

#

#

#

#

#

 

5 km 

N 
EW 

S 
Zwalm (Ter Biestmolen)

Boekelbeek 

Zwalm (Michelbeke) 

Dorenbosbeek

Verrebeek
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Fig. 4.8. Location of the selected sampling sites for studying the variability analysis of 

macroinvertebrates. 

 

Fig. 4.9, 4.10 and 4.11 show respectively the average number of taxa found, the average 

number of taxa found more than once and the BBI obtained by operator A, operator B and the 

six samples together for the five sampling sites. Also the 95% confidence interval of the 

verage is indicated. In general, the number of taxa found and the number of taxa found more 

ekelbeek for example, Lumbricidae 

nnelida, Oligochaeta), Glossiphonia (Annelida, Hirudinea), Sialis (Insecta, Megaloptera) 

and Limoniidae (Insecta, Diptera) were not found in each sample. The sampling results 

ae and 

ericostomatidae (Insecta, Trichoptera)). The variation in sampling results has obviously an 

impact on the BBI. For one site, different scores were obtained, except for the river 

Boekelbeek for which they were the same. 

 

Although variations in the number of taxa, the number of taxa found more than once and the 

BBI between operator A and B and between the six replicas were found, these differences 

were not significant (p ≥ 0.05) (Dedecker et al., 2005e). 

 

a

than once in each sample varied. Generally, there was also a variation for these measures 

between operator A and B. In addition, not all the macroinvertebrates found in one sites were 

observed in each of the six samples. For the river Bo

(A

revealed that if water quality improved (e.g. the brooks Verrebeek and Dorenbosbeek), the 

number of taxa which were not found in each of the six samples also increased. In addition, 

the most sensitive taxa seemed most difficult to catch since these are not that abundant (e.g. 

Cordulegaster (Insecta, Odonata), Nemoura (Insecta, Plecoptera), Limnephilid

S
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Fig. 4.9. Comparison of the average ‘number of taxa found’ obtained by operator A, operator 

B and the six samples together for the sites located in the river Zwalm downstream of the weir 

‘Ter Biestmolen’, the river Zwalm in Michelbeke, the river Boekelbeek and the brooks 

Verrebeek and Dorenbosbeek. The 95% confidence interval of the average is shown. 
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Fig. 4.10. Comparison of the average ‘number of taxa found more than once’ obtained by 

operator A, operator B and the six samples together for the sampling sites located in the river 

Zwalm downstream of the weir ‘Ter Biestmolen’, the river Zwalm in Michelbeke, the river 

Boekelbeek and the brooks Verrebeek and Dorenbosbeek. The 95% confidence interval of the 

average is shown. 
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Fig. 4.11. Comparison of the average ‘Belgian Biotic Index’ (BBI) obtained by operator A, 

operator B and the six samples together for the sampling sites located in the river Zwalm 

downstream of the weir ‘Ter Biestmolen’, the river Zwalm in Michelbeke, the river 

Boekelbeek and the brooks 
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sampling variation. Usually however, it is too costly to take and identify replicate samples at 
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4.5. Information collection on the habitat preferences of 

Tubificidae, Gammaridae, Asellidae, Baetis and Limnephilidae 

ncluded 

ot to be suitable as output variables in habitat suitability models. For this reason, an 

pproach based on taxon level prediction was required. The possibility of using specific 

axa as indicators has been reviewed, based on their optional bio-indicator 

alue as well as their presence in the Zwalm river basin. 

aetis (Insecta, Ephemeroptera) and Limnephilidae 

nsecta, Trichoptera) were selected as taxa (Table 4.9). Table 4.10 gives the taxonomic 

lassification of the five taxa. 

able 4.9. Overview of the tolerance to pollution based on De Pauw and Vannevel (1991) and 

 

4.5.1. Introduction 

 

Based on ordination analysis (Hill, 1979; ter Braak and Smilauer, 1998), Sørensen Similarity 

Ratio Clustering (Sørensen, 1948; van Tongeren, 1986) and Self-Organizing Maps (Kohonen, 

1982), it was concluded by Adriaenssens (2004) that no clear community structure could be 

detected for the Zwalm dataset. Since the analysis of the Zwalm dataset did not result in the 

description of a clear community structure, macroinvertebrate communities were co

n

a

macroinvertebrate t

v

 

Because of their highly variable presence in both ecological databases of the Zwalm and their 

use as bio-indicator in river quality assessment (e.g. De Pauw and Vannevel, 1991; MacNeil 

et al., 2002), Tubificidae (Annelida, Oligochaeta), Asellidae (Crustacea, Isopoda), 

Gammaridae (Crustacea, Amphipoda), B

(I

c

 

T

the percentage of occurrence of Tubificidae, Asellidae, Gammaridae, Baetis and 

Limnephilidae in the Zwalm river basin dataset (237 sites) and the ‘short distance’ monitoring 

network dataset (120 sites) 

 Tolerance to pollution Zwalm river basin  ‘Short distance’ 
monitoring network  

Limnephilidae very low 12.2 % 17.5 % 
Baetis low 24.5 % 43.3 % 
Asellidae intermediate 50.6 % 54.2 % 
Gammaridae low - intermediate 73.0 % 85.8 % 
Tubificidae high 89.5 % 92.5 % 
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Table 4.10. Taxonomic classifications (source: http://www.itis.usda.gov) and pictures of 

Tubificidae, Asellidae, Gammaridae, Baetis and Limnephilidae  

Tubificidae Asellidae Gammaridae Baetis Limnephilidae 
Kingdom Animalia Animalia Animalia Animalia Animalia 
P
S
C
S
S
O oda Amphipoda Ephemeroptera Trichoptera 
S lota Gammaridea Pisciforma  
Superfamily  Aselloidea   Limnephiloidea
Family Tubificidae Asellidae Gammaridae Baetidae Limnephilidae 
Genus e.g. Tubifex e.g. Asellus e.g. Gammarus Baetis e.g. 

Limnephilus 
Species  e.g. Asellus e.g. Gammarus   

P

hylum Annelida Arthropoda Arthropoda Arthropoda Arthropoda 
ubphylum  Crustacea Crustacea Hexapoda Hexapoda 
lass Clitellata Malacostraca Malacostraca Insecta Insecta 
ubclass Oligochaeta Eumalacostraca Eumalacostraca Pterygota Pterygota 
uperorder  Peracarida Peracarida   
rder Haplotaxida Isop
uborder Tubificina Asel

aquaticus pulex 
icture 

     
 

In the next paragraphs, a general description of the main environmental factors determining 

the distribution of Tubificidae, Asellidae, Gammaridae, Baetis and Limnephilidae is given. 

This information will be used for the practical ecological validation of the data driven ANN 

models. Major difficulties were encountered to find consistent expert knowledge. Many 

descriptions did not explicitly mention numerical ranges or regression curves, identification 

was often done at different levels, studies were performed on datasets of all kinds, ... 

Nevertheless, some concordant characteristics were found and are mentioned below. 

 

 

4.5.2. Tubificidae 
 

Tubificidae are most commonly found in soft sediments rich in organic matter, and several 

species characteristically live in sites that receive organic pollution (Peckarsky et al., 1989). 

Like all aquatic oligochaetes, Tubificidae respire cutaneously, but a unique feature of this 

family is that some species (e.g. Tubifex tubifex) can tolerate anoxic conditions (Peckarsky et 

al., 1989; De Pauw and Vannevel, 1991). 
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4.5.3. Asellidae 

 

Two Asellus species (Asellus aquaticus and Asellus meridianus) were present in the samples 

of the Zwalm river basin. These species have almost no apparent differences in ecological 

preferences, although Asellus aquaticus is thought to be more resistant to pollution than 

Asellus meridianus (Gledhill et al., 1976; Chambers, 1977; Cuppen, 1980; Gongrijp, 1981; 

Verdonschot, 1990). Asellus aquaticus is very resistant to low oxygen conditions (Hawkes, 

1979; Verdonschot, 1990) and can even stand percentages lower than 40 % (De Pauw and 

annevel, 1991). According to Holland (1976), Asellus aquaticus tolerates dissolved oxygen 

vels as low as 1.5 mg/l and is highly abundant at 5.8 mg/l. Asellus aquaticus is tolerant 

gainst organic conditions and often replaces Gammarus species in highly enriched organic 

onditions (Hawkes, 1979; Verdonschot, 1990). Asellus aquaticus prefers waters with a 

aried detritus layer. Asellidae are mentioned to behave as indifferent to water velocity 

ayerisches Landesamt für Wasserwirtschaft, 1996; Verdonschot, 1990), while others 

ention the preference for downstream sections characterized by low flow velocities 

teenbergen, 1993; Tachet et al., 2002). Also Peeters (2001) mentions that Asellus aquaticus 

ttempts to escape from sites with higher flow stress or that repeated passive drift took place. 

sellidae also have a preference for watercourses with higher width (Steenbergen, 1993). 

eeters (2001) mentions a moderate sensitivity towards metal contamination, in comparison 

 other macroinvertebrate taxa. 

alm river basin, as is Gammarus pulex. Gammarus pulex appears in all kinds of water: 

waters, river tributar 56; , 1977; 

awkes, 1979; Verdonschot, 1 01). Because of their very good swimming 

ijering, nning waters with 

flow velocity (Verd ot, 1990; Bayerisches Lan asserwirtschaft, 

s pulex is almo on-tolerant for low oxygen conditions (Wesenberg-Lund, 

erate low gen concentrations when water temperatures are low. It 

na calities and temperatures well below 20°C (Gledhill et 

rding to Macan 61), Gammarus pulex tolerates dissolved oxygen down to 

V

le

a

c

v

(B

m

(S

a

A

P

to

 

 

4.5.4. Gammaridae 
 

Of the family of the Gammaridae, only one representative was present in the watercourses of 

the Zw

lakes, head ies, canals, … (Holthuis, 19

990; Peeters 20

 Karaman and Pinkster

H

abilities (Brehm and Me  1990) however, this species prefers small ru

rather high onsch desamt für W

1996). Gammaru st n

1982) and can only tol  oxy

generally prefers well-oxyge ted lo

al., 1993). Acco  (19
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2.7 mg/l and is highly abundan .4 mg/l or above. Gammaru s suppressed by high 

kes, 1 and is in-tolerant at org hitehurst and 

st 199 hitehurst, 1991b), though it can stand moderate organic 

ollution (Gledhill et al., 1976; Gledhill et al., 1993). Organic pollution is normally a result of 

ischarges from sewers, industrial effluents and agricultural run-off. Especially agricultural 

responsible for organic pollution in the Zwalm river basin. In that context, the 

he for several environmental variables (Table 4.11). The latter author 

und out that Gammarus pulex occurs in ranges between pH 4.7 to 11.6. 

t at 7 s pulex i

organic conditions (Haw 979) anic sewage (W

Lindsey, 1990; Whitehur 1a, W

p

d

activities are 

Gammarus/Asellus ratio is used in running waters in the U.K. (Hawkes and Davies, 1971; 

Whitehurst, 1988). This ratio is able to detect subtle changes in organic pollution level, 

because the change in organic load alters the relative abundance of Asellidae and 

Gammaridae rather than the total species composition (Holland, 1976; MacNeil et al., 2002). 

Gammarus pulex prefers substrate-heterogeneity (Tolkamp, 1980), especially detritus 

substrates or detritus mixed with sand or gravel or leaf material (Tolkamp, 1982). 

Gammaridae are more sensitive to high conductivity values, caused by agricultural activities 

and treated or untreated wastewater effluents, than Asellidae, but at conductivity values above 

1000 µS/cm, both macroinvertebrate taxa experience adverse influences (Steenbergen, 1993). 

Gammarus pulex is less tolerant than Asellus aquaticus to inorganic pollutants (Martin and 

Holdich, 1986). Gammarus pulex is normally absent from acid waters where the pH is below 

5.7 (Gledhill et al., 1993). This was confirmed by Peeters (2001), who described via logistic 

regression the habitat nic

fo
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Table 4.11. Values for the environmental variables at which the maximum probability of 

presence of Gammarus pulex was reac

than one percent). These values were based on 

hed and the total range of occurrence (probability larger 

a logistic regression model. The < or > signs 

ean respectively that these model values are lower or higher than the observations (Peeters, m

2001) 

Variable 
 

Maximum probability of 
presence value 

Range of occurrence 

Current velocity (cm/s) 
Width (m) 
Depth (m) 
BOD (mg/l) 
Chloride (mg/l) 
Conductivity (µS/cm) 

71 
0.1 
0.10 
0.1 
6 
398

0 - 198 
0.1 - >40.0 
0.01 - >5.00 
0.1 - 37.0 
<6 - >498 

A
K

mmonium nitrogen (mg/l) 
jeldahl nitrogen (mg/l) 
xygen (mg/l) 

) 

H 

 
0.01 
0.20 
14 
90 
0.13 
8.1 

<88- >7942 
0.01-57.00 
0.10 - >68.00 
<0 - >27 
1 – 220 
0.01 - >18.00 
4.7 - >11.6 

O
Oxygen saturation (%
Total phosphorus (mg/l) 
p
Water temperature (°C) 9.8 <0 - >30 
 

 

4.5.5. Baetis 
 

Baetis are generally restricted to running waters (Elliott et al., 1988). Based on Verdonschot 

(2000a, 2000b) and De Loose et al. (1995), Baetis can be found in both small and large 

brooks. They prefer moderate to fast running waters (Bayerisches Landesamt für 

Wasserwirtschaft, 1996; Verdonschot, 2000a, 2000b; RIZA, 2000; Tachet et al., 2002). Baetis 

are also sensitive to various forms of pollution (Elliott et al., 1988). Ephemeroptera larvae are 

mong the most sensitive of aquatic insects for acidification (Elliott et al., 1988). As pH 

decreases, they 

weden, the optimal pH range was 6.0 – 7.5 (Elliott et al., 1988). However Baetis rhodani, 

a

progressively disappear (Tachet et al., 2002). In a survey of 600 streams in 

S

which was also found in the Zwalm river basin, was recorded in Swedish streams at pH 4.50 

while Baetis rhodani and other Baetis spp. occurred at mean pH 4.70 and 4.45 in two streams 

in the English Peak District (Elliott et al., 1988). It is possible that the adverse effects of high 

acidity were reduced by relatively higher concentrations of calcium, alkalinity, sodium, 

potassium and chloride. 
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4.5.6. Limnephilidae 
 

In general, Limnephilidae prefers low contents of nutrients (ortho-phosphate, total 

phosphorus, nitrate and ammonium) and minerals (potassium, calcium, magnesium and 

chloride) and high oxygen concentrations (De Pauw and Vannevel, 1991; Steenbergen, 1993). 

Based on Steenbergen (1993), Limnephilidae has a preference for wide and deeper streams. 

However, some Limnephilidae species prefer small brooks while others have a preference for 

large brooks (De Loose et al., 1995). Some Limnephilidae species are mentioned to behave as 

indifferent to water velocity, while others prefer slow to moderate running waters 

(Bayerisches Landesamt für Wasserwirtschaft, 1996; Verdonschot, 2000a, 2000b; Tachet et 

al., 2002). 

 

 

4.6. Factors affecting the migration behaviour of Gammaridae, 

Baetis and Limnephilidae 
 

In the next paragraphs, an overview of the factors affecting the migration movements of 

Gammaridae, Baetis and Limnephilidae is given. For Tubificidae, no migration model was 

constructed, because they were already observed in ± 90 % of the sites. Also for Asellidae, no 

migration model was constructed since no information was found about active or passive (= 

drift) migration behaviour. It can be assumed that the movements of Asellidae occur at a very 

local scale (microhabitat scale). In this way, the development of a migration model for 

Asellidae was thus also irrelevant. 

 

 

4.6.1. Gammaridae 

 

Gammaridae show a very active migration pattern (Rawer-Jost et al., 1999) and especially 

Gammarus pulex, the only Gammaridae species found in the Zwalm river basin, is a frequent 

component of the invertebrate drift (Elliott, 2002a). Based on this author, flow velocity could 

be considered as the major environmental factor affecting the quantity of drift of Gammarus 

pulex. Although, literature quantifying the factors affecting the upstream/downstream 

movement of Gammarus pulex, was hard to find, Elliott (2002c) was able to describe the 
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significant relationship between drift and flow velocity on the basis of field experiments with 

10 different water velocities: the mean distance ( x , m) travelled by Gammarus pulex in the 

drift was significantly related to the mean flow velocity (V, m/s) by the power function 

 
963.082.7 Vx ×=           (5.1) 

 

Also several other authors described the importance of flow velocity on the upstream and 

downstream migration of Gammarus pulex. According to Hultin (1971), a moderate increase 

in flow velocity increased the activity of upstream movement of Gammarus pulex, while a 

strong increase suppressed the activity of upstream movement (Goedmaker and Pinkster, 

1981). Experimentally, Hughes (1970) found that by changing the water velocity most of the 

pstream movements occurred at the lower velocities. Estimates for distances of upstream 

ovements in Gammarus pulex (which has no aerial dispersal stage) can be up to 14 m per 

971a). Temperature, oxygen concentration, season and length of the day or night 

eemed to be of additional importance. Seasonal fluctuations of Gammarus pulex in 

tream movement 

gainst the current frequently occurred at night (Hughes, 1970; Goedmaker and Pinkster, 

1981; Söderström illiams and Williams, 

(2002a) found a slight positive relationship with mean temperature and a slight negative 

ooster and Sih (1995) found that predatory fish had variable effects on 

drift rates that sometimes increased, sometimes decreased, or were unaffected, whereas 

predatory invertebrates often increased drift rates more frequently than expected by chance. In 

u

m

day (Elliott, 1

s

downstream drift have been recorded in several studies (Waters, 1962; Hughes, 1970; 

Goedmaker and Pinkster, 1981; Allan and Malmquist, 1989; Williams and Williams, 1993). 

However, Elliott (2002a) found no consistent seasonal pattern in drift rates, implying that 

temperature had no significant effect. In general, there was a nocturnal daily pattern of 

downstream drift with peaks soon after dusk and just before dawn (Waters, 1962; Elliott, 

2002a). Because Gammaridae are generally more active at night, also the ups

a

,1987; W 1993; Rawer-Jost et al., 1999). Elliott 

relationship with the length of the night. However, neither relationship was significant. 

Meijering (1972) on the other hand found that Gammarus pulex had a stronger tendency to 

drift at low temperatures close to 0°C. According to Müller (1966), a rise in temperature 

caused an increase in the drifting of Gammarus pulex, while Meijering (1972) found that 

decreasing temperatures stimulated upstream movement. 

 

Also the presence of predatory fish or invertebrates is a factor that may affect drift. In their 

review of 22 studies, W
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the study of Elliott (2002a), the nocturnal increase in drift could not be interpreted as an 

antipredator behaviour. Although predatory fishes and invertebrates are probably catching 

Gammarus pulex in the Zwalm river basin, it is difficult to see how this could affect drift. 

Therefore, one cannot conclude that the drift of Gammarus pulex is the consequence of an 

antipredator behaviour in this stream. 

 

Because Gammarus pulex has no aerial life stage, it is more likely that the migration 

behaviour is significantly more important than for flying insects and impacted by the design 

f weirs or culverted river sections. During upstream movement, these barriers could limit 

ted whether benthic invertebrates 

uccessfully use two types of fish by-passes, a boulder ramp and a concrete bypass, for 

eps are probably too high to allow the counter current migration of 

, weirs could be considered as a serious migration barrier in the Zwalm 

ver. Also culverted river sections can be a serious obstacle for migrating Gammarus pulex. 

 mean distance (

o

available habitat (Rawer-Jost et al., 1999; Vaughan, 2002). Minckley (1964) reported that 

small dams prevented the upstream migration of Gammarus pulex in England. Also the 

Zwalm river basin is impacted by six weirs for water quantity control and several culverted 

river sections (Goethals and De Pauw, 2001). To improve the upstream migration in these 

situations, fish by-passes could be installed. Their effects on benthic invertebrates have been 

studied by Rawer-Jost et al. (1999), who investiga

s

upstream movements. Their results indicated that the boulder ramp allowed for the upstream 

migrations, whereas the concrete bypass was more difficult to ascend. Currently, only one 

weir in the Zwalm river basin is provided with a concrete fish by-pass, but the stream velocity 

and height of the st

gammarids. In this way

ri

Especially culverts having an outflow above the downstream water level, limit upstream 

passage. 

 

 

4.6.2. Baetis 

 

Literature quantifying the factors affecting the upstream/downstream movement and 

migration through the air of Baetis was hard to find. Elliott (2002b) however re-analyzed data 

from an earlier study (Elliott, 1971b) to determine the time and distance spent in the drift by 

17 different taxa, including Baetis. A significant relationship between drift and flow velocity 

was observed by Elliott (2002b). The x , m) travelled by Baetis in the drift 

as significantly related to the mean flow velocity (V, m/s) by the function: w
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11.097.8 +×= Vx       (5.2) 

 

Besides flow velocity, also water depth and substrate type appeared to be paramount factors 

ealed that macrophytes reduce the time spent in the drift. 

Information about the active migration of Baetis is provided by Elliott (2003). During a 24 h 

period, 33.1 (± 1.2) % of the initial Baetis population moved actively, either in the upstream 

or the downstream direction. Elliott (2003) concluded that the maximum distances Baetis was 

actively moving upstream and downstream were respectively 5.5 and 1.5 m. Contrary to the 

distance covered by Baetis in the drift, flow velocity has no effect on the distances during 

active movements (Elliott, 2002b). Also temperature does not seem to have a significant 

effect on the active dispersal (Elliott, 2003). On the other hand, the presence of pebbles does 

have a positive effect. 

 

Several studies discussed the mechanisms of Baetis to avoid fish and invertebrate (e.g. by 

Plecoptera larvae (Peckarsky et al., 1994)) predation. Nocturnal drift is one of the methods 

often referred to (e.g. Kohler and McPeek 1989; Tikkanen et al., 1994). Although predatory 

fishes and invertebrates are probably catching Baetis in the Zwalm river basin, it is difficult to 

see how this could affect drift. Therefore, one cannot conclude that the drift of Baetis is the 

consequence of an antipredator behaviour in this stream. 

 

Gyselman (1979) stressed that the drift of Baetis is density-dependent. However, most of the 

studies reveal that dispersal of Baetis is density-independent (e.g. Reisen and Prins, 1972; 

Corkum et al., 1977; Bohle, 1978; Ciborowski, 1983; Statzner and Mogel, 1985; Humphries, 

2002; Elliott, 2003). 

4.6.3. Limnephilidae 

 

determining the time spent in the drift. If macrophytes were present, a reduction of 50 % of 

the time spent in the drift was observed for Baetis. The average time spent in the drift was 9.4 

(± 0.3) s in a site with a mainly stony substrate, while an average time of 4.9 (± 0.02) s was 

observed if macrophytes were present (Elliott, 2002b). An earlier study of Corkum and 

Clifford (1979) on larvae of Leptophlebia cupida (Insecta, Ephemeroptera) in an artificial 

stream, already rev
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One of the few studies providing information on the migration behaviour of Limnephilidae is 

lliott (2003). During a 24 h period, 20.1 (± 0.9) % of the initial Limnephilidae (in that study: 

otamophylax cingulatus) population moved actively, either in the upstream or the 

ownstream direction. Elliott (2003) observed that Limnephilidae moved maximum 3.5 m in 

oth the upstream and downstream direction. These results were confirmed for another 

imnephilidae larvae (Chyrandra centralis) in a study by Erman (1986). In addition, the 

ctive migration is affected by the presence of macrophytes and the type of the river banks 

ince Limnephilidae are able to crawl along the banks for small distances (Wissinger et al., 

003). Elliott (2002b) showed on the other hand that Limnephilidae were seldomly found in 

e drift. In this way, it can be assumed that the passive downstream migration is of less 

portance than the active migration. 

everal studies were performed on the aerial dispersion possibilities of Limnephilidae. Kovats 

et al. (1996), Petersen et al. (1999) an t al. (2002) showed that 90 % of the 

s were ey observed that less 

an 10 % of the organisms flew further inland. 

redation by salamanders seems to be important in some regions (Wissinger et al., 1999). 

owever, this seems of no importance in the Zwalm river basin. In addition, aggressive 

ehaviour towards other Limnephilidae and cannibalism have been observed by Wissinger et 

l. (1996, 1999). Although this behaviour could be important in the Zwalm river basin, it is 

ifficult to see how this could affect the migration. Therefore, it was not taken into account in 

e present study. 
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Chapter 5: Data analysis and data preparation 

5.1. Introduction 
 

This chapter is dedicated to the exploratory analysis and preparation of the environmental 

put and biological output data. Since Artificial Neural Network (ANN) models are merely 

odels are unable to make reliable 

redictions beyond this data range. Therefore, a first and essential step before model 

ormation for river management afterwards. In addition, 

rrors related to database constructions (e.g. typing errors) could be detected and corrected in 

dvance. 

 result, ANNs are unable to extrapolate beyond the range of the data used for 

aining. Consequently, poor predictions can be expected when the testing data contain values 

in

built on the data presented during the training, these m

p

development and application, is getting insight into the range of inputs and outputs, what 

determines also the maximum and practical application range of the models. This can be of 

major importance in relation to river restoration management. In addition, the mutual 

correlation between input variables and between input and output variables is calculated to 

help identify ‘noise’ variables. A visual relation analysis between input and output variables is 

conducted to get insight into outliers, the data clusters, missing or scarce variable 

combinations in certain ranges, … Also the geographical distribution of the variables over the 

study area is presented on the basis of a Geographical Information System to identify the hot 

spots for river restoration. These data analyses give advice regarding new or additional data 

that need to be collected and how this should be done to be able to develop more appropriate 

models and to gather meaningful inf

e

a

 

 

5.2. Material and methods 
 

5.2.1. Bandwidth and distribution of input and output variables 

 

Lek and Guégan (1999) stated that data driven models, including ANN models, are built 

solely on the examples presented during the training phase, which are together assumed to 

implicitly contain the information necessary to establish the relation between input and 

output. As a

tr

outside the range of those used for training (Maier and Dandy, 2000). Insight into the range of 

inputs and outputs, which determine also the maximum application range of data driven 
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models, is therefore a first and basic step before model development and applications can 

start. 

 

 

5.2.2. Correlation between input and output variables 

 

A first filter to help identify ‘noise’ variables is to calculate the correlation of pairs of 

variables. If two variables are strongly correlated, then one of these two variables may be 

removed without adversely affecting the ANN performance. The cut-off value for variable 

elimination is a heuristic value and must be determined separately for every ANN application, 

but any absolute correlation value of 0.20 or higher indicates a probable noise source to the 

ANN (Walczak and Cerpa, 1999). From an ecological point of view however, relationships 

based on correlations between environmental variables should be considered with caution, 

ecause these correlations do not necessarily involve relevant causal ecological processes. 

he removal of input variables can also be overruled for practical reasons (river managers 

d in particular simulations for which certain variables are essential) or by 

se of ecological expert knowledge. 

ance 

e data set. 

WEKA software (Waikata Environment for Knowledge Analysis) (Witten and Frank, 2000), 

b

T

could be intereste

u

 

 

5.2.3. Visual relation analysis between input and output variables 

 

A visual relation analysis between the input and output variables can be beneficial to get 

insight into outliers, the data clusters, missing or scarce variable combinations in certain 

ranges, … (Goethals, 2005). As such, these methods can be very interesting in delivering 

insight into the difficulty to develop well performing models, why models perform weakly, 

whether some data can be classified as outliers (even check whether it involves errors of all 

sort, e.g. measurement uncertainty, data digitalization errors, …). For this, data visualization 

methods can be very useful to get a better understanding of the model performance in the end 

and also to reveal what type of measurements should be undertaken in the future to enh

th

 

These analyses have gained a lot of popularity during last years and became standard tools in 

most data mining and analysis software packages. Part of these analyses were based on the 
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which is a collection of machine learning algorithms for data mining tasks. This type of plots 

was based on the use of classes to look at the distributions. However, also the distribution of 

the output classes (presence/absence) was directly plotted. Based on these graphs, one can get 

directly some idea of the influence of the individual variables on the output variable. 

Therefore, these graphs are very interesting to compare with the model outcomes as well and 

will be part of the discussions in the next chapters when the results are evaluated. On the other 

hand, input data of both datasets (237 and 120 sites) were graphically visualized to get better 

insight into the distribution and the outliers of the environmental variables and to see the 

istribution over the different years. Also the quality standards for the appropriate variables 

ts f s  ro  

tems Research titute (ESRI), was applied for visualization. 

ibut f input and output variables 

alysis  of alysis e min axima rages, 

 standard deviation  the env

meters for the output variables was rather irrelevant because the outputs 

y 0 and 1 re enting r ively t ence a resence e five 

Tubificid Asellida mmarid aetis imnephilidae. An 

 th  taxa is g n in Table .9. Prefer ly, these a lyses can 

n phs as presented in Fig. 5.1 to 5.4. By doing so, one can 

dar eviations e a result of a wide span of most data or more 

(or ‘stran tribut he us  med  com  with 

e average, minimum and maximum) can as well give a good indication in this context. 

ased on these summary statistics, several outliers (very high values and standard deviation 

nd a big difference between average and median) could already be detected in both 

databases. In the Zwalm river basin dataset (Table 5.1), outliers could be observed for the 

d

(VLAREM, 1999) were plotted to verify which part of the data complied with these quality 

standards. To get a better overview of the spatial variation of the data over both study areas 

and to identify the hot spo or river re toration, ArcView GIS 3.2a, a p duct of the

Environmental Sys  Ins

 

 

5.3. Results 
 

5.3.1. Bandwidth and distr ion o

 

A first step in the data an consisted  the an  of th ima, m , ave

medians and s of ironmental input variables (Table 5.1 and 5.2). 

Analysis of these para

are only expressed b pres espect he abs nd p  of th

macroinvertebrate taxa ae, e, Ga ae, B and L

overview of the prevalence of ese ive  4 ab na

be combined with visualizatio gra

directly see whether high stan d d  ar

related to some outliers ge’ dis ions). T e of the ian (and pared

th

 

B

a
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variables suspended solids, chemical oxygen demand, depth, width and most of the nutrients. 

In the dataset of the ‘short distance’ monitoring network (Table 5.2), a few outliers could be 

distinguished for the variables suspended solids, chemical oxygen demand, depth, width and 

me T a i d  

e median val or the v es dep  width trongl  

resence of the weirs along alm r  major consequence is that these sites are 

e ba  data driven models NNs gh the irs are 

nsider co ing the r Framework Directives. 

, averages, medians and standard deviations of the input variables 

 river basin database containing 237 meas

t) um um ge an ard 
iation 

to a smaller extent for so nutrients. he high st ndard dev ations an maxima in

ated tocomparison with th ues f ariabl th and  are s y rel

the p the Zw iver. A

very difficult to predict on th sis of  like A althou se we

essential elements to co ncern  Wate

 

Table 5.1. Minima, maxima

that were used in the Zwalm uring sites (2000-2003) 

Variable (Measuring uni Minim Maxim Avera Medi Stand
dev

Temperature (°C) 6.4 20.9 14.7 14.8 2.2 
pH 6.72 9.06 7.67 7.69 0.31 
Conductivity (µS/cm) 

4
+-N/l) 0.0 

/l) 

)   5 3 7 
 .4 7 4 5 
 8.0 .8 .0 .3 
 9.0 .2 .0 .5 

) 
0    

idth (cm) 22 1100 227 127 235 
low velocity (m/s) 0.00 1.92 0.31 0.22 0.31 
raction pebbles (%) 0.0 100.0 37.5 25.0 38.9 

12.4 6.0 17.5 
raction sand (%) 0.0 87.8 20.2 14.9 21.3 
raction loam/clay (%) 0.0 82.2 24.7 12.4 24.9 

 to mouth (m) 1541 19865 9986 10063 5078 
rder 1 4 2 2 1 

10 2190 778 781 231 
Ammonium (mg NH 6.0 0.9 0.5 1.1 
Nitrate (mg NO3

--N 0.2 15.8 5.4 4.8 3.4 
Total nitrogen (mg N/l) 2.5 77 12.0 9.7 9.7 
Ortho phosphate (mg PO4

3--P/l 0.0 5.0 0. 0. 0.
Total phosphorus (mg P/l) 0.1 12 0. 0. 1.
COD (mg COD/l) 7.0 91 25 20 59
Suspended solids (mg/l) 0.0 94 44 20 82
Dissolved oxygen (mg/l 0.06 11.60 6.83 7.10 2.20 
Depth (cm) 3 19 32 18 37
W
F
F
Fraction gravel (%) 0.0 67.7 
F
F
Embankment (class variable) 0 2 - - - 
Meandering (class variable) 1 6 - - - 
Hollow banks (class variable) 1 6 - - - 
Pools-riffles (class variable) 1 6 - - - 
Distance
Stream o
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Table 5.2. Minima, maxima, averages, medians and standard deviations of the input variables 

that were used in the ‘short distance’ monitoring network database containing 120 measuring 

sites (2002-2003) 

Variable (Measuring unit) Minimum Maximum Average Median Standard 
deviation 

Temperature (°C) 8.0 22.3 16.9 17.2 2.0 
pH 6.78 8.27 7.78 7.79 0.28 
Conductivity (µS/cm) 207 1079 588 557 141 
Ammonium (mg NH4

+-N/l) 0.0 2.7 0.5 0.3 0.6 
Nitrate (mg NO3

--N/l) 0.2 12.2 3.3 2.9 2.1 
T
O

otal nitrogen (mg N/l) 2.6 20.5 7.2 6.3 3.1 
rtho phosphate (mg PO 3--P/l) 0.0 1.7 0.3 0.2 0.2 

.0 100.0 27.3 10.0 33.5 
63.4 14.1 4.4 18.3 

0.0 87.8 31.3 24.2 26.7 
/clay (%) 0.0 85.4 25.8 12.5 26.4 

bankment (class variable) 0 2 - - - 
1 6 - - - 

Hollow banks (class variable) 1 6 - - - 
Pools-riffles (class variable) 1 6 - - - 
Distance to mouth (m) 10063 20549 16229 17242 3176 
Stream order 1 4 3 3 1 

4
Total phosphorus (mg P/l) 0.0 1.7 0.3 0.2 0.3 
COD (mg COD/l) 3.0 918.0 26.8 18.0 83.5 
Suspended solids (mg/l) 0.0 945.0 40.8 15.0 122.4 
Dissolved oxygen (mg/l) 2.50 12.80 6.12 5.71 1.86 
Depth (cm) 2 190 24 16 25 
Width (cm) 28 750 187 140 131 
Flow velocity (m/s) 0.01 0.87 0.20 0.16 0.14 
Fraction pebbles (%) 0
Fraction gravel (%) 0.0 
Fraction sand (%) 
Fraction loam
Em
Meandering (class variable) 

 

 

5.3.2. Correlation between input and output variables 

 

A second step in data analysis is to verify how related some variables might be on the basis of 

their correlation coefficient (r) (Table 5.3 and 5.4). Correlation coefficients with an absolute 

value of at least 0.20 and lower than 0.50 are marked in yellow, higher values are marked in 

orange. 

 

In the Zwalm river basin dataset (Table 5.3), quite a high r could be observed between the 

structural habitat characteristics (embankment, meandering, pools-riffles, hollow banks). 

Meandering is however clearly related to hollow river banks (r = 64). These correlations are 

rather logic, because many artificial structures are combined (e.g. channel straightening with 
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ent). ist. Models 

out this set of v

d relatio existed ction might 

considered. How  especially 

nstream of  w d with the 

le width for exam  for several 

ients ( monium

 keep them in. 

elated. However, the 

s’ were not included in 

g d habitat q istance to mouth and stream 

as m re ex  order near the 

bank reinforcem

with

goo

be 

dow

variab

nutr

nutrients can originate f

 

In the ‘short distance’ datase

correlation values were generally

this dataset (e.g. sites upstream

rather 

order w

mouth are not included anym

 

 

 

However, this is not always the case, and many exceptions ex

ariables might lead to practical limitations of these. Also an expected 

n  between width, depth and stream order. Here a variable redu

ever, also wider shallow streams exist in the Zwalm,

  the eirs. For the same reason, flow velocity was less correlate

ple as expected. Increased correlation values are identified

am , nitrate, total nitrogen, phosphate and total phosphorus). Because these 

rom different pollution sources, it may be interested to

t (Table 5.4), similar variables were corr

 higher because a lot of ‘exception

 and downstream of the weirs, heavily polluted sites with a 

oo uality, …). Also the correlation between d

o pressed in this dataset since streams having a low stream

ore. 
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0.21 0.30 0.22 0.78 0.05 0.02 0.05 0.03 -0.12 -0.04 -0.13 -0.14 -0.22 -0.11 -0.10 -0.02 -0.06 -0.09 -0.03 0.27 -0.47 0.78 0.17 0.54 -0.30 -0.11 -0.22
Embankment  1.00 0.41 0.29 0.30 -0.12 -0.02 0.02 -0.07 0.00 0.07 -0.09 0.12 -0.10 0.07 0.19 0.09 -0.07 -0.040.16 -0.23 -0.16 -0.12 -0.12 -0.05 0.04 -0.06 0.04 -0.10
Meandering   1.00 0.40 0.64 0.10 0.06 -0.03 0.00 -0.10 0.12 -0.09 0.15 -0.08 0.05 0.10 0.12 0.02 0.07 -0.19 -0.28 -0.06 - 0 -0.09 0.25 8 -0.060.32 .19 -0.1 -0.21
Pools-riffles    1.00 0.49 0.32 0.00 -0.05 - -0.03 -0.20 - -0.110.01 0.09 -0.24 -0.15 0.00 0.05 0.06 -0.17 -0.02 0.03 -0.11 -0.06 0.32 0.00 0.22 -0.18 -0.01 -0.11
Hollow banks   1.00 0.10 0.16 0.09 0 -0.09 - 0.08 0.00 0.01 0.09 0.09 0.02 -0.16 -0.14 -0.46 0.34  .04 0.14 0.07 0.06 -0.09 -0.05 0.36 -0.18 -0.10 -0.32
Depth      1 -0.06 -0.14 -0 -0.06 - -0.05 -0.16 -0.18 -0 -0.08 0.02.00 .01 -0.15 0.03  .11 -0 -0.09 0.17 0.35.22 -0.35 0.60 0.15 0.39 -0.32 -0.16 -0.18
Flow velocity       1.00 0.14 -0.36 0.40 -0.18 0.18 -0.14 -0.03 -0.20 -0.17 -0.19 -0.06 0.39 -0.12 -0.27 -0.27 -0.10 0.24 0.12 0.04 0.11 0.03 -0.09
pH        1.00 -0.08 0.39 0.17 0.07 -0.16 0.26 0.04 -0.05 -0.03 0.10 0.11 -0.03 -0.08 -0.12 -0.20 0.07 -0.06 0.05 -0.04 -0.02 0.02
Temperature         1.00 -0.39 0.09 -0.31 0.04 0.10 0.10 0.01 0.01 0.09 0.09 -0.02 -0.06 -0.02 -0.03 0.09 -0.05 0.14 0.09 0.20 0.07
Dissolved oxygen          1.00 -0.34 0.10 -0.40 0.23 -0.35 -0.47 -0.44 0.03 0.10 0.10 -0.10 -0.18 0.09 0.06 -0.03 -0.07 0.17 0.07 0.17
Conductivity    0       1.00 -0. 5 0.29 0.17 0.52 0.47 0.40 0.01 0.02 -0.18 -0.10 0.16 -0.34 -0.19 -0.07 -0.03 -0.23 -0.05 -0.17
Suspended solids     

     0 0
       1.00 0.01 -0.09 0.05 0.13 0.16 0.01 -0.05 -0.04 0.02 0.16 0.01 -0.11 -0.04 -0.11 -0.11 -0.18 0.02

Ammonium        1. 0 -0. 9 0.35 0.41 0.38 0.03 -0.11 -0.21 -0.02 0.22 -0.05 -0.22 0.00 -0.14 -0.24 -0.19 -0.20
Nitrate              1.00 0.23 -0.23 -0.24 -0.12 -0.01 -0.03 -0.06 0.02 -0.15 -0.23 -0.15 -0.23 0.16 0.17 0.10
Total nitrogen               1.00 0.68 0.54 0.05 0.00 -0.12 -0.08 0.12 -0.07 -0.31 -0.14 -0.23 -0.09 -0.02 -0.08
Phosphate                1.00 0.81 0.09 -0.04 -0.11 -0.05 0.10 -0.07 -0.16 -0.07 -0.07 -0.19 -0.14 -0.13
Total phosphorus     1.00 0.07 -0.10 -0.09 -0.02 0.11 -0.07 -0.15 -0.16 -0.03 -0.21 -0.12 -0.12
COD            

           
       1.00 0.01 -0.05 0.07 -0.03 0.09 0.03 0.04 0.06 -0.16 0.07 -0.04

Pebbles        1.00 -0.31 -0.59 -0.64 0.00 0.22 0.00 0.12 0.17 0.15 0.05
Gravel             0       1.00 -0. 3 -0.05 0.26 -0.10 0.08 0.00 0.14 0.04 0.18
Sand              0       1. 0 0.28 0.13 -0.07 0.11 -0.12 -0.08 -0.08 0.04
Loam/clay               1 1       1.00 -0. 9 -0. 0 0.00 -0.06 -0.27 -0.20 -0.15
Distance to mouth        0               1. 0 -0.39 -0.07 -0.37 0.32 0.09 0.36
Stream order                 0       1. 0 0.20 0.60 -0.22 -0.04 -0.26

 



 

                       08
                       

Tubificidae 1.00 0.18 -0.02 0.10 -0.
Asellidae 1.00 -0.16 -0.12 -0.20
Gammaridae                        1.00 0.19 0.20
Baetis 

philida
                       

e                        

Table 5.4. Correlation matrix of the 24 environmental variables and presence/absence of Tubificidae, Asellidae, Gammaridae, Baetis
Limnephilidae based on the ‘short distance’ monitoring network (2002-2003) (0.20 ≤ r < 0.50 = yellow, 0.50 ≤ r = orange) 
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Width 1.00 0.02 

1.00 0.06
Limne
 

1.00

 and 

0.27 0.25 0.21 0.80 -0.08 -0.20 0.19 -0.54 0.60 -0.14 0.61 0.41 0.36 0.39 0.38 0.02 0.11 -0.20 -0.19 0.25 -0.85 0.78 0.23 0.59 -0.51 -0.27 -0.35
Embankment  1.00 0.59 0.61 0.61 0.10 0.16 0.08 0.09 0.08 0.02 -0.10 -0.03 -0.09 -0.12 -0.03 -0.02 0.08 0.33 0.14 -0.27 -0.38 -0.10 0.11 0.07 0.22 0.01 0.22 -0.16
Meandering   1.00 0.68 0.75 0.20 0.11 -0.05 0.10 -0.10 0.21 -0.07 0.12 0.12 -0.01 0.06 0.10 0.05 0.35 -0.16 -0.24 -0.19 -0.33 0.36 0.04 0.39 -0.21 0.06 -0.19
Pools-riffles    1.00 0.61 0.24 0.08 -0.11 0.12 -0.11 0.28 -0.17 0.11 -0.16 -0.08 0.01 0.03 0.06 0.30 -0.40 -0.13 -0.07 -0.36 0.39 0.25 0.38 -0.16 0.01 -0.32
Hollow banks     1.00 0.16 0.25 -0.08 0.09 -0.15 0.24 0.07 0.19 0.25 0.11 0.19 0.22 0.06 0.35 -0.13 -0.26 -0.18 -0.34 0.39 -0.03 0.45 -0.10 0.00 -0.22
Depth      1.00 -0.23 -0.32 0.09 -0.51 0.35 -0.13 0.47 0.10 0.16 0.20 0.34 0.08 -0.09 -0.13 -0.12 0.35 -0.62 0.53 0.19 0.42 -0.57 -0.25 -0.25
Flow velocity       1.00 -0.22 -0.03 -0.19 -0.06 0.17 0.06 0.08 -0.03 0.22 0.15 -0.07 0.34 0.04 -0.25 -0.33 -0.10 0.19 0.06 0.15 0.26 0.21 -0.10
pH        1.00 0.15 0.66 -0.10 -0.22 -0.19 -0.02 -0.02 -0.20 -0.28 0.07 0.05 0.20 0.04 -0.25 0.18 -0.17 -0.04 -0.13 0.12 0.09 0.09
Temperature         1.00 -0.25 0.13 -0.23 0.12 -0.03 0.09 0.14 0.18 0.07 0.13 -0.08 -0.09 -0.01 -0.23 0.16 0.06 0.17 -0.09 -0.15 -0.21
Dissolved oxygen          1.00 -0.26 0.09 -0.40 -0.24 -0.20 -0.30 -0.31 0.11 -0.05 0.25 0.09 -0.24 0.55 -0.53 -0.13 -0.40 0.16 0.28 0.36
Conductivity           1.00 -0.18 0.56 0.41 0.46 0.33 0.28 0.03 0.20 -0.40 -0.22 0.31 -0.76 0.63 0.22 0.54 -0.46 -0.34 -0.24
Suspended solids            1.00 0.14 -0.05 0.13 0.57 0.54 0.10 -0.07 0.17 -0.01 -0.02 0.27 -0.27 -0.01 -0.21 0.02 -0.13 0.00
Ammonium             1.00 0.35 0.50 0.71 0.71 0.03 0.22 -0.15 -0.25 0.12 -0.64 0.53 0.09 0.47 -0.52 -0.29 -0.29
Nitrate              1.00 0.53 0.25 0.28 -0.04 0.15 -0.06 -0.11 0.00 -0.41 0.41 -0.19 0.37 -0.11 -0.21 -0.11
Total nitrogen               1.00 0.43 0.43 0.08 0.16 -0.16 -0.14 0.11 -0.40 0.30 0.02 0.28 -0.16 -0.28 -0.28
Phosphate                1.00 0.82 0.13 0.18 -0.04 -0.21 0.05 -0.43 0.39 0.18 0.31 -0.30 -0.26 -0.33
Total phosphorus     1.00 0.12 0.12 -0.01 -0.17 0.06 -0.32 0.23 0.01 0.24 -0.36 -0.35 -0.25
COD                   1.00 0.09 -0.05 0.01 -0.07 -0.02 0.04 0.04 0.10 -0.24 0.07 -0.07
Pebbles                   1.00 0.04 -0.64 -0.59 -0.26 0.29 0.04 0.39 0.00 0.18 -0.10
Gravel                    1.00 -0.30 -0.39 0.36 -0.34 -0.18 -0.20 0.09 0.16 0.17
Sand                     1.00 0.08 0.30 -0.25 0.12 -0.40 0.12 -0.09 0.08
Loam/clay                      1.00 -0.27 0.17 0.06 0.12 -0.21 -0.33 -0.12
Distance to mouth                       1.00 -0.92 -0.29 -0.78 0.45 0.22 0.42

 



 

1.00 0.34 0.80 -0.3Stream order                        1 -0.08 -0.45
Tubificidae           0.12 -0.13 -0.4             1.00 0.18 - 5
Asellidae           1.00 -0.3             3 -0.01 -0.41
Gammaridae            0 0.2 6            1.0 6 0.0
Baetis            1.00 0.2            2
Limnephilidae            0            1.0
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5.3.3. Visual relation analysis between input and output variables 

 

In c ination with the summary statistics in Section 5.3.1., a third type of data analysis based 

on visualization graphs was applied. Based on these graphs, an additional insight is gained into 

the distribution, the outliers and the spatial and temporal variation of the data.  

 

The first part of these analyses was performed with the WEKA software. The outcomes are 

presented in Appendix 1. The example for Limnephilidae in the Zwalm river basin is given in 

Fig. 5.1. For most variables a logical relation could be observed, e.g. Limnephilidae was mainly 

found when the values of width, stream order, distance to mouth and nutrient concentrations 

were low, while Asellidae mainly occurred when the values of width, stream order and distance 

to m were high. In addition, one could easily derive the distributions of the different 

vari For some variables, small differences within these distributions were detected 

between both datasets, e.g. for the variable meandering. One could also observe that several 

com ns of input variable ranges were less represented. Therefore in addition to removing 

vari ue to correlations, and instances because of outliers, one can consider to remove 

instances to make the distributions over all classes and values of the input variables more even. 

A transformation of the input variables can be considered as well. However, the dataset was 

kep ural as possible, mainly to see whether the models can also cope with this bottleneck 

or n
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Based on the second type of plots (the example for the variable dissolved oxygen is given in 

Fig. 5.2. All the plots for the dataset of the entire Zwalm river basin and the ‘short distance’ 

monitoring network are presented in Appendix 2). Similar conclusions could be drawn as in 

Section 5.3.1. In the Zwalm river basin dataset, outliers could be detected for the variables 

suspended solids, chemical oxygen demand, depth, width and part of the nutrients. In the 

dataset of the ‘short distance’ monitoring network, a few outliers could be observed for the 

variables suspended solids, chemical oxygen demand, depth, width and to a smaller extent for 

some nutrients. 

 

To get better insight into the temporal variatio  over the different years, variables are plotted 

as illustrated in Fig. 5.3 for the variable dissolved oxygen (plots of the appropriate variables 

, values of the input and output variables were plotted on the maps 

f the study area. In Fig. 5.4, the maps for the input variable dissolved oxygen and the 

acroinvertebrate Asellidae (year 2002) are given for both study area (all plots are presented 

in Appendix 4). 

 

Based on Appendix 3, major temporal trends were found for the variables temperature 

(generally: 2000 < 2001 < 2002, 2003), pH (generally: 2002 < 2003), dissolved oxygen 

(generally: 2002 < 2003), depth (generally: 2003 < 2002) and flow velocity (generally: 2003 

< 2002) whereas for the other environmental variables no unambiguous tendencies could be 

observed. Paramount spots of pollution in the Zwalm river basin were detected in the northern 

part, near the city of Zottegem, and along the Zwalm river itself (Appendix 4). However, most 

of the upper reaches are still unpolluted. This is reflected in the habitat suitability of the 

Limnephilidae, an indicator of good water quality, which was exclusively found in these 

e river 

asin. 

 

 

n

are presented in Appendix 3 for the dataset of the entire Zwalm river basin and the ‘short 

distance’ monitoring network). To observe spatial variation in both datasets and to detect hot 

spots for river restoration

o

m

headwaters. Asellidae was mainly observed in the wider, deeper watercourses of the Zwalm 

whereas Gammaridae preferred apparently the smaller, fast flowing streams. For Baetis, no 

major trend could be detected while the tolerant taxon Tubificidae was found all over th

b
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Fig. 5.2. Distribution of the variable dissolved oxygen (mg/l), with indication of the quality 

standard in red, over the 237 (a, Zwalm river basin) and 120 (b, ‘short distance’ monitoring 

network) sampling sites. 

 

 

a 
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Fig. 5.3. Spatial variation of the variable dissolved oxygen (mg/l) over the respectively 4 

years (a, Zwalm river basin, 237 sampling sites) and 2 years (b, ‘short distance’ monitoring 

network, 120 sampling sites) (red = 2000; yellow = 2001; green = 2002; blue = 2003). 
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Fig. 5.4. Spatial distribution of the input variable dissolved oxygen (mg/l) (a = the Zwalm 

river basin, b = the ‘short distance’ monitoring network; green dot complies with the quality 

standard, red dot does not comply with the quality standard) and the macroinvertebrate 

Asellidae (c = the Zwalm river basin, d = the ‘short distance’ monitoring network; green dot = 

present, red dot = absent) for the year 2002. 

a b 

d c 
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5.4. Discussion 
 

No standard procedures for preliminary data analyses were described in most articles 

reviewed in Chapter 2. Nevertheless, this analysis and related filtering of data is probably 

very important for the performance of the models, from a theoretical (performance indicators) 

nd practical point of view (such as ecological relevance of the models and their use for 

selected variables (and even the selection of the river 

asin). Nevertheless, also financial and time constraints played a major role why certain 

he presence of outliers led directly to a tough decision, whether to leave these measurements 

t, Dedecker et al. (2005d) tested the sensitivity and robustness 

a

different types of simulations). 

 

An a prior and very important selection not earlier mentioned in this part of the data analysis 

and variables/instances selection is the data collection itself. Missing crucial values resulted in 

the elimination of some instances. In the Zwalm river basin dataset, at one site the artificial 

substrates disappeared in 2001 and two sites were totally overgrown in 2003. As a 

consequence, no biological measurement were available for these sites. Therefore, 237 instead 

of 240 instances could only be used. But also the reason behind the data collection played a 

key role. The Zwalm river basin database and sampling strategy was developed with the 

purpose of building habitat suitability models, and also a priori knowledge from field 

campaigns played a major role in the 

b

variables (metals, organic micropollutants, variables important for bio-availability 

calculations, certain hydraulic measurements) were not included in the database (Goethals, 

2005). In addition, this also influenced the amount of instances (60 field observations per year 

was the absolute maximum with this set of variables). On the other hand, the ‘short distance’ 

monitoring network was developed with the aim of constructing migration models. For this 

purpose, a more intensive and dense sampling campaign was set up. Field knowledge can be 

very helpful to remove variables afterwards, as was seen during this exercise, when one had to 

decide what to do with the ‘outliers’. Field knowledge also helps to identify what kind of 

variables play a major role on the ecosystems and can be important for river managers. 

 

T

(instances) in the database or not, because they can surely lead to less reliable models, as the 

broad range of some variables results in a relative compression of the majority of the 

measurements. In other words, the choice between sensitivity and bandwidth of the models 

had to be made. In this contex
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of the ANN models on Asellidae when data, containing variables beyond the range of the data 

. To this end, the authors created a virtual dataset based on ecological 

xpert knowledge to introduce these ‘extreme’ values in the model. According to this study, 

oth datasets of the Zwalm river basin consisted of variables with a high standard deviation 

d conditions 

ill be rather difficult for the derived data driven models. 

According to Walczak and Cerpa (1999), any r with an absolute value of 0.20 or higher 

indicates a probable noise source in particular to ANN models. They advice to consider the 

removal of one of these variables without adversely affecting the ANN performance. 

However, there might be practical reasons to leave these correlated variables in, such as 

ecologically not relevant correlations (not causal, merely on the bases of coincidence), but 

also for practical applications where both variables might be altered in a different manner to 

simulate restoration options (e.g. specific channel modifications). This exercise is in this 

respect very rewarding, because it means that the models are not trained to deal with these 

for training, were added

e

the presence/absence of Asellidae in the ‘extreme’ test set was predicted significantly better 

when the number of ‘extreme’ examples in the training set increased, while the overall 

predictive power of the ANN models only decreased significantly when a relatively large 

virtual dataset in the training set was applied. Seen the limited set of ‘extreme’ values 

according to the summary statistics and the data visualization plots in Section 5.3.1. and 

5.3.3., this study by Dedecker et al. (2005d) could be an argument for keeping the outliers in. 

But also to make the models applicable in the widest extent of theoretical (e.g. model 

optimization) and practical (e.g. effect prediction of river restoration scenarios) cases and to 

make a tryout on data that are as natural as possible, these ‘outliers’ were kept in the dataset. 

As such it was possible to check whether these data driven model development methods can 

deal themselves with outliers or not as is sometimes referred to by ANN experts. The latter 

has to do with testing the objectivity of the method and user-convenience as well. When the 

dataset need too much preparation, the methods will probably become less attractive. 

 

B

and high maxima in comparison with the median values. However, by rechecking in the field 

one became convinced that in most cases it concerned indeed very good or very bad sites. 

Especially the very good ones are necessary for the prediction of the restoration options. In 

this manner these data analyses can also be helpful to check what kind of additional data are 

needed. In case of the Zwalm it are in particular very good sites that are missing and that 

could make the dataset better balanced. As a result, the prediction of very goo

w
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independent alterations of the highly correlated variables and might be characterized by an ill 

erformance as they are ‘not trained for this job’. Therefore the validation with practical 

imulations is also necessary (Goethals, 2005). 

lthough there are several variables characterized by a high r, all variables were kept in both 

atabases. In most cases there is a practical reason to keep them in, such as to prevent the 

mitation of simulations that can be done. Also the effect on the data driven model 

evelopment and the variable contribution methods is worth studying: will the data driven 

odel development methods succeed or not to ‘remove’ these highly redundant variables and 

ow will they be ranked by the methods. If so, it would again be advantageous from a user 

iendliness perspective. On the other hand, several variables that were expected to be 

orrelated were not. This is also an indication that one has to be careful during the selection 

hase of variables before the data collection. Better to monitor some extra variables. In 

addition, one has to be aware of the ted to the manner how variables are 

calcul

he number of variables used in both databases (24) is relatively high compared to most 

rticles referred to in the review presented in Chapter 2, where the number of input variables 

nged from 3 to 39, usually between 5 and 15. Several theoretical reasons to remove 

ariables and instances can be given, but also quite some practical reasons to keep them in (as 

art of the research on the data driven techniques, but also for the practical simulations). In 

is thesis, they were all retained, mainly for reasons of research to see how the data driven 

ethods cope with these obstacles and are able to overcome related problems. According to 

everal authors (e.g. Maier and Dandy, 2000), data driven approaches, such as ANN models, 

ave the ability to determine which model inputs are critical. However, the question remains 

hether they can cope with outliers and redundant variables in the meantime. 

ecause the environmental input variables span different ranges as illustrated in this chapter, 

ey have to be standardized before the modelling can be started. In this way, all variables 

ning process. The methods used for standardization will 

e discussed in Section 6.2.1. 
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5.5. Conclusions 

everal factors played a key role in the final set of variables (and the amount of instances) that 

re presented to the ANN models. The first set of (practical) factors was the purpose of the 

ata collection, the knowledge on how to measure different aspects of the ecosystem, 

nancial (and time) constraints and also measurement problems. The dataset of the Zwalm 

ver basin was built with the aim of model development whereas the ‘short distance’ 

onitoring network was developed with the purpose of constructing migration models. 

owever, time and financial budget constraints were encountered. Also knowledge on 

articular measurement methods for this dataset (e.g. new methods for hydraulic 

easurements were included) increased over the years. A fifth (theoretical) factor was related 

to the numerical characteristics of the variables and these were tested with some analysis 

techniques. Several theoretical arguments appeared to remove variables and instances, but 

also some practical reasons to keep them in (as part of the research on the data driven 

techniques, but also for the practical simulations) as well. In this thesis, they were finally all 

kept in. 

 

The results obtained by these data analyses can be used to interpret the ANN modelling 

results in the next chapters. In addition, they could be very useful to detect hot spots for river 

restoration and as a result to collect new or additional data and how this should be done to 

develop more appropriate models and to gather meaningful information for river management 

afterwards. To ensure all variables received equal attention during the ANN training process, 

the variables were standardized. The latter will be discussed in the next chapter. 
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Chapter 6 
Development of Artificial Neural Network models for the 

prediction of macroinvertebrates 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Parts of this chapter are based on: 
 
Dedecker, A.P., Goethals, P.L.M., Gabriels, W. and De Pauw, N. (2004). Optimization of 
Artificial Neural Network (ANN) model design for prediction of macroinvertebrate 
communities in the Zwalm river basin (Flanders, Belgium). Ecological Modelling, 174(1-2), 
161-173. 
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6.1. Introduction 
 

The general objective of this study was the development, analysis and optimization of habitat 

uitability models based on Artificial Neural Networks (ANNs) for the prediction of macro-

vertebrates. It was shown that machine learning techniques such as Artificial Neural 

cally mimic aspects of biological information processing for data 

odelling and could be useful in ecology (Recknagel, 2001). The prediction of aquatic 

ark et al., 2001; Reyjol et 

l., 2001; Scardi, 2001; Wei et al., 2001; Wilson and Recknagel, 2001; Jorgensen et al., 2002; 

Olden and Ja

traditional view of an ANN is of a programme that emulates biological neural networks and 

earns’ to recognize patterns by being trained on a set of sample data from the domain. 

 the modelling process, making it crucial steps, 

hich should be considered carefully. However, it is stressed that the ANN architecture is 

enerally highly problem dependent (Maier and Dandy, 2000). For this reason, it is necessary 

e ANNs to obtain the best model configuration that gives lower 

rror with minimal computing time. Design of optimal neural networks is challenging in that 

macroinvertebrate taxa specified in Section 4.5: Tubificidae, Asellidae, Gammaridae, Baetis, 

s

in

Networks (ANNs) basi

m

communities, such as macroinvertebrates (as discussed in Chapter 2), fishes, macrophytes, 

algae, … by means of ANN models has recently been discussed by several authors (e.g. 

Wagner et al., 2000; Hoang et al., 2001; Maier and Dandy, 2001; P

a

ckson, 2002; Ibarra et al., 2003; Lee et al., 2003; Park et al., 2003a). The 

‘l

Learning through training and subsequently the ability to generalize is the unique perceived 

source of intelligence in an ANN. According to Haykin (1999), generalization capability of a 

neural network is influenced by three factors: the size of the training set and how 

representative it is of the environment of interest, the architecture of the neural network, and 

the complexity of the problem studied. The size of the training set and the architecture are the 

only two factors that can be influenced in

w

g

to develop and optimize th

e

there exists a large number of alternative ANN physical architectures and learning methods. 

Walczak and Cerpa (1999) distinguish four design criteria for artificial neural networks which 

should be decided upon in subsequent steps: knowledge-based selection of input variables, 

selection of a learning method, design of the number of hidden layers and selection of the 

number of hidden neurons for each layer. 

 

The specific aim of this study was to discuss the development and optimization of different 

neural network models to obtain the best model configuration for the prediction of the 
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Limnephilidae. Based on the criteria mentioned by Haykin (1999) and Walczak and Cerpa 

(1999), the following actions were considered: 

 

1) selection of relevant environmental variables as input for macroinvertebrate prediction 

(see Chapter 5); 

2) choosing the backpropagation algorithm as appropriate learning method. Because of 

its generality (robustness) and ease of implementation, this algorithm is the best 

choice for the majority of ANN systems. In addition, the ANNs used for prediction in 

ecology are generally trained with the backpropagation method (Cherkassky and Lari-

Najafi 1992; Maier and Dandy 2000) (Table 2.6); 

3) searching for the optimal size of training and test set since the size of the training and 

test set influences respectively the generalization capability of the model and accuracy 

erefore, nine cross-validation methods (2-, 3-, 4-, 5-, 6-, 

7-, 8-, 9- and 10-fold cross-validation) were tested (Section 6.3.1); 

Additionally, the optimal ANN architecture was analysed, examining the effect of 

hile data of the 

stance’ monitoring network (120 sampling sites) were trained with data from 

 

B is an interactive 

of the model performance. Th

4) searching for the optimal ANN architecture for the five selected macroinvertebrates in 

both databases to use the optimal training and test size concerning two questions 

(Section 6.3.2): 

 

• How many hidden layers should exist in the ANN architecture? 

• How many neurons should be present in the hidden layer(s)? 

 

annual testing. ANN models for the entire Zwalm river basin (237 sampling sites) 

were trained with measured input and output data from 3 years, w

remaining independent year was used for testing. Similarly, the ANN models for the 

‘short di

one year and tested with data of the other year. 

 

6.2. Material and methods 
 

The neural network models were implemented in the software package MATLAB 6.1. for MS 

WindowsTM (Matworks®) (according to Gevrey et al., 2003). MATLA
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computer programme that serves as a convenient ‘laboratory’ for computations involving 

atrices’. A general description of ANN model development is given in Chapter 2. In the 

.2.1. Data processing 

 

In both datasets, the different environmental variables span different ranges (see Chapter 5). 

 order to ensure that all variables receive equal attention during the training process, the 

‘m

present chapter, attention is paid to the specific model settings used in this study. 

 

 

6

In

input variables were standardized based on the following equation: 

 

OV

OO
n

VV
σ

=            (7.1) −
V

 

in which V0 and Vn are respectively the old and new value of the variable for a sampling 

point, OV  and 
OVσ  are respectively the average and the standard deviation of that variable in 

e original dataset. The output values (0 and 1, respectively the absence and presence of the 

macroinvertebrates)

sigmoid transfer function (

th

 were not rescaled since they are already adapted to the logarithmic 

( ) )(exp1
1

xxf −+
= ) used in the output layer. The continuous 

6.2.2. Model

gation neural network 

pically comprises three types of neuron layers: an input layer, one or more hidden layers 

utput layer each including one or more neurons. As shown in Fig. 2.1, neurons from 

ne layer are connected to all neurons in the following layer, but no lateral connections within 

ea , 

network output is mapped to 0 and 1 using a threshold of 0.5. 

 

 

 architecture 

 

The modelling method used was a multi-layer feed-forward neural network based on the 

principles of the backpropagation algorithm (Rumelhart et al., 1986) which applies examples 

of data with known outputs. As mentioned in Chapter 2, a backpropa

ty

and an o

o

any layer, nor feed-back connections are possible. The network consisted of 24 input neurons, 

ch representing an environmental variable. The output layer comprises one neuron
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indicating the presence or absence of the macroinvertebrate taxon. The number of hidden 

• to define the optimal size of training and test set, one hidden layer comprising 10 

neurons was use

• to define the optimal model architecture for the five selected macroinvertebrates in 

 databases, several number of layers and neurons were analysed: six three-layered and 

four four-layered networks with respectively [2], [5], [10], [15], [20], [25] and [5 5], [5 

e number of 

hidden neurons was analysed to investigate the effect of annual testing. 

 

he main principle of the backpropagation algorithm is that the (connection) weights and 

bi ure outputs are 

ore likely to be correct. This procedure is repeated until the errors become small enough or a 

ing independent data. The 

 can be divided in three major steps which are discussed below in 

detail (Fig. 6.1): 

d through the 

network from the input to the output layer to obtain the predicted output; 

• Step 2: the predicted and the observed output are comp

calculated; 

•  of the weights and biases by modifica nection values 

 the ‘backpropagation of the error’. 

ithm discussed in detail e is the algorithm in case of a netw rk wi

yer. The indices e, i and s are used to indicate respectively the input layer, the hidden layer 

neurons in the hidden layer(s) depended on the problem to be solved: 

 

d extracted from the rules of thumb summarized in Chapter 2; 

both

10], [10 10], [10 20] neurons in the hidden layer(s) were tested. The sam

 

6.2.3. Backpropagation algorithm 

 

T

ases in the network are updated in order to decrease the error term, so fut

m

predefined maximum number of iterations is reached. This iterative process is termed 

‘training’. After the training, the ANN can be tested us

backpropagation algorithm

 

• Step 1: the input vectors are presented to the network and are transferre

ared and the error term is 

 Step 3: correction tion of the con

backwards through the network, this is

 

The algor  her o th one hidden 

la

and the output layer. w is used for the connection weights. Before training, the values of the 

weights and biases are initially set to small random numbers ([-0.3 0.3]). 
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Step 1: 

 

The information xe is transferred from the input to the hidden layer across the connection 

+= ∑            (7.2) 

 

The net input of the hidden neurons is fed into a logarithmic transfer function: 

 

            (7.3) 

 

The information xi, as output of the hidden neurons, is transferred from the hidden to the 

output layer across the connection weights wis included between both layers. bi is the bias 

which is added to the neurons from the hidden layer. The net input for the neuron of the 

output layer is: 

 

           (7.4) 

 

The net input of the output neuron is fed into a logarithmic transfer function which results in 

the predicted output 

 

            (7.5) 

 

e

tep 2

weights wei included between both layers. be is the bias which is added to the neurons from 

the input layer. The net input for the neurons of the hidden layer is: 

 

net ee
i

eiei bxw

( )eii netfx =

ii
s

isis bxwnet += ∑

sx̂ : 

( )iss netfx =ˆ

Be and Bi have an input arbitrarily fixed at 1 and the weights associated with these biases have 

to be trained like normal weights. Biases can be considered as a constant value added to the 

network and permit to increas  the quality of the obtained predictions. 

 

S : 

 the observed ) output are compared and the error term is 

alculated: 

 

The predicted ( sx̂ ) and ( sx

c
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ss xxerr ˆ−=             (7.6) 

 

Several error measures can be applied. In this study however, the ‘Sum Squared Error’ (SSE) 

is used: 

 

( )2
ˆ∑ −= ss xxSSE            (7.7) 

 

Step 3: 

 

The connection weighs wis between the hidden and the output layer are updated: 

 

( ) ( )twwtw isisis α+∆=+1           (7.8) 

 

in which α  is the ‘m entum’ (the mome  term takes into acco he previous weight 

pdate), t is the value of the iteration and  

+ti

om ntum unt t

u

 

( )1+=∆ xtw isis ( )1ηδ           (7.9) 

in which

 

 η  is the ‘learning rate’ (the learning rate is directly proportional to the size of the 

eps taken in weight update) and st

 

( )errnetf isis
'=δ                     (7.10) 

 

The connection weights wei between the input and the hidden layer are updated: 

 

( ) ( )twwtw eieiei α+∆=+1                    (7.11) 

 

in which ) ( ) ( 11 ++=∆ txtw eeiei ηδ                   (7.12) 

 

in which ( )( )∑= isiseiei wnetf δδ '                   (7.13) 
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The settings of the ANN parameters were all default and determined on the basis of 

experience: learning rate = 0.001, incremental learning rate = 1.05, decreasing learning rate = 

0.75, momentum = 0.95 and the transfer function in the hidden and output layer = logarithmic 

sigmoid transfer function. 

 

A complete calculation cycle of the network is called ‘iteration (t)’ or ‘epoch’. These three 

steps, which form one iteration, are repeated several times. A certain number of iterations is 

needed to obtain an acceptable error level. 

 

Fig. 6.1. A calculation cycle of the backpropagation algorithm. The information xe is 

transferred from the input to the output layer across the connection weights. The obtained 

error between the predicted ( ) and the observed ( ) output is used to update the values of 

the connection weights backwards through the network. 
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6.2.4. Model validation 

 

The models were evaluated on the basis of two performance measures: the percentage of 

Correctly Classified Instances (CCI) and Cohen’s kappa (CK). For this one requires the 

derivation of matrices of confusion that identified true positive (TP) (= known distributional 

habitats correctly predicted as present), true negative (TN) (= sites where the species has not 

been found and that are classified by the model as absent), false positive (FP) (= a measure of 

sites of absence (or ‘pseudo-absence) incorrectly predicted present, commission error) and 

false negative (FN) (= sites of known distributions predicted absent by the model, omission 

error) cases predicted by each model (Fielding and Bell, 1997; Manel et al., 2001). In that 

way, observed presence/absence patterns were tabulated against those predicted (Table 6.1). 

 

Table 6.1. The confusion matrix as a basis for the performance measures with true positive 

values (TP), false positives (FP), false negatives (FN) and true negative values (TN) 

  Observed 
  + - 

+ TP FP Predicted 
- FN TN 

 

The first performance measure that was calculated was the percentage of Correctly Classified 

Instances (CCI): 

 

100
)(

)(
×

+++
+

=
TNFNFPTP

TNTPCCI                   (7.14) 

  

There is however clear evidence that this CCI is affected by the frequency of occurrence of 

the test organism being modelled (Fielding and Bell, 1997; Manel et al., 2001). Among the 

different measures, which are based on the confusion matrix, Fielding and Bell (1997) and 

Manel et al. (2001) recommended Cohen’s kappa (Cohen, 1960) as a reliable performance 

measure, since the effect of prevalence on Cohen’s kappa appeared to be negligible (e.g. 

Dedecker et al., 2004). It is a simply derived statistic that measures the proportion of all 

possible cases of presence or absence that are predicted correctly by a model after accounting 

for chance predictions: 
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[ ]
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+++++−

+++++−+
=              (7.15) 

 

where N is the total number of Instances. A CCI of at least 70.0 % and CK higher than 0.40 

(Landis and Koch, 1977; Fielding and Bell, 1999) were considered as good classifications. 

 

The model validation was based on stratified k-fold cross-validation. For k-fold cross-

validation the data are split into k folds or partitions. Each fold in turn is used for testing while 

the rest is used for training. That is, use k-1 folds for training and 1 folds for testing, and 

repeat the procedure k times so that in the end, every instance has been used exactly once for 

testing. Since the size of the training and test set influences respectively the generalization 

capability of the model and accuracy of the model performance, the optimal size of training 

and test set was searched for. Therefore, 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9- and 10-fold cross-

validation was tested. To avoid biased training, the amount of instances in which Tubificidae, 

Asellidae, Gammaridae, Baetis and Limnephilidae were present was similar in all training and 

test sets. Additionally, before training of the neural network, the data were randomly shuffled 

in the training datasets. 

 

In order to check the stability of each model, the training of the network was repeated k times, 

according to the k-fold cross-validation. Based on this repetition, the average performances 

(CCI and CK) were calculated. The k-fold cross-validation allowed also for calculating the 

standard deviation. This standard deviation gave an indication of the stability of each model. 

 

The objective of the training part is to find a balance between memorization and 

generalization. Memorization means that the network is able to produce a correct output based 

on the input data used for training. On the other hand, generalization means that the network 

is able to produce an acceptable output based on similar but not identical input data used for 

training. The more the network is trained, the better the training data is memorized, i.e. a 

smaller SSE based on the training set. Therefore, an independent test dataset is used to stop 

training. During the training procedure, the error shows at first a decrease on the test set as 

well as on the training set, as the network generalizes from the training data to the underlying 

input/output function. After some training steps, the network starts overfitting. Consequently 

the error on the test set increases, while the error on the training set keeps decreasing (Fig. 

6.2). The training procedure can therefore be stopped at the iteration ‘u’ with the smallest 
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error on the validation set, because at this point the network is expected to yield the best 

generalization performance (known also as ‘early stopping’) (Berthold and Hand, 1999). 
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6.3. Results 
 

6.3.1. Determination of the optimal training and test size 

 

6.3.1.1. Determination of the optimal training and test size based on the dataset of the 

Zwalm river basin 

 

The predictive performances based on the CCI and the CK of the 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9- 

and 10-fold cross-validation for Tubificidae, Asellidae, Gammaridae, Baetis and 

Limnephilidae are shown in Table 6.2. For Tubificidae, the performances based on the CCI 

were very similar for all cross-validation methods and gave an indication of very good model 

prediction capacity (CCI between 88.2 ± 3.3 % and 90.3 ± 2.8 %). Based on the CK however, 

weak models were generated (CK below 0.20). The highest performance was obtained based 

on the 8-fold cross-validation. However, the model stability based on the standard deviation 

of the CK was very low. In this way, it could be decided that the 4-fold cross-validation was 

more appropriate. For Asellidae, reliable models were obtained for all the cross-validation 

methods based on both performance measures. The best CCI (79.8 ± 6.3 %) and CK (0.60 ± 

SSE 

# of iterations 

Trainingset 

Testset 

u 

Fig. 6.2. Er pl ning set and on the test set as a function of the num

iterations. T rai e can  at t ‘u’. 
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0.13) were however achieved using 4-fold cross-validation. For Gammaridae, the best 

performances were generated using 10-fold cross-validation (CCI = 80.6 ± 6.9 %; CK = 0.44 

± 0.25). However, the standard deviation for this cross-validation method was much higher 

than for the 4-fold cross-validation while the performances were only slightly lower (CCI = 

80.0 ± 1.5 %; CK = 0.43 ± 0.07). Although for Baetis rather good model predictions were 

achieved based on the CCI (higher than 70.0 %), the CK indicated that the major part of the 

good predictions were based on chance. All CK values were lower than 0.20. While the 

performances of the different cross-validation methods were very similar based on the CCI, 

the optimal training and test size for Baetis based on the CK was obtained by the 4-fold cross-

validation which generated a CK of 0.18 ± 0.14. Similar results were achieved for the rare 

taxon Limnephilidae. Very good performances were obtained based on the CCI (CCI between 

85.6 ± 2.5 % and 89.0 ± 2.1 %) while the CK (CK between 0.09 ± 0.16 and 0.28 ± 0.05) gave 

the indication of a rather poor to moderate model prediction capacity and stability. Moderate 

model performance and an acceptable model stability however was obtained by the 4-fold 

cross-validation (CK = 0.28 ± 0.05). 
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Table 6.2. Analysis of the 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9- and 10-fold cross-validation for 

Tubificidae, Asellidae, Gammaridae, Baetis and Limnephilidae for the entire Zwalm river 

basin (237 sites). Model evaluation is based on the percentage of Correctly Classified 

Instances (CCI) and Cohen’s kappa (CK), model stability on the standard deviation (Stdev) 
 k Average CCI Stdev CCI Average CK Stdev CK 
Tubificidae 2 89.5 0.5 0.00 0.00 
Tubificidae 3 89.9 0.0 0.10 0.17 
Tubificidae 4 88.2 3.3 0.10 0.12 
Tubificidae 5 89.5 0.1 0.00 0.00 
Tubificidae 6 89.0 1.2 0.07 0.12 
Tubificidae 7 89.5 1.5 0.04 0.10 
Tubificidae 8 90.3 1.1 0.12 0.24 
Tubificidae 9 89.9 1.8 0.05 0.16 
Tubificidae 10 90.3 2.8 0.08 0.25 
Asellidae 2 76.0 4.0 0.52 0.08 
Asellidae 3 75.1 6.0 0.50 0.12 
Asellidae 4 79.8 6.3 0.60 0.13 
Asellidae 5 77.7 7.4 0.55 0.15 
Asellidae 6 77.7 7.7 0.55 0.15 
Asellidae 7 76.8 7.3 0.54 0.14 
Asellidae 8 78.2 9.3 0.56 0.19 
Asellidae 9 78.2 9.2 0.56 0.18 
Asellidae 10 78.2 11.3 0.56 0.23 
Gammaridae 2 77.2 3.7 0.39 0.14 
Gammaridae 3 76.4 0.7 0.37 0.07 
Gammaridae 4 80.0 1.5 0.43 0.07 
Gammaridae 5 80.2 4.6 0.42 0.18 
Gammaridae 6 78.9 4.4 0.39 0.15 
Gammaridae 7 80.6 6.3 0.42 0.24 
Gammaridae 8 78.5 4.7 0.37 0.15 
Gammaridae 9 78.9 4.2 0.38 0.17 
Gammaridae 10 80.6 6.9 0.44 0.25 
Baetis 2 75.5 0.1 0.00 0.00 
Baetis 3 75.5 1.5 0.06 0.09 
Baetis 4 75.6 6.2 0.18 0.14 
Baetis 5 76.4 1.7 0.10 0.14 
Baetis 6 75.6 5.7 0.17 0.18 
Baetis 7 75.1 4.6 0.17 0.17 
Baetis 8 76.4 3.3 0.15 0.20 
Baetis 9 76.8 2.9 0.16 0.20 
Baetis 10 74.7 2.9 0.13 0.18 
Limnephilidae 2 87.3 1.3 0.16 0.07 
Limnephilidae 3 87.3 1.3 0.09 0.16 
Limnephilidae 4 87.3 1.7 0.28 0.05 
Limnephilidae 5 87.3 3.3 0.24 0.17 
Limnephilidae 6 86.9 1.9 0.11 0.13 
Limnephilidae 7 87.3 2.8 0.13 0.21 
Limnephilidae 8 85.6 2.5 0.11 0.22 
Limnephilidae 9 85.7 6.5 0.21 0.32 
Limnephilidae 10 89.0 2.1 0.19 0.25 
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6.3.1.2. Determination of the optimal training and test size based on the dataset of the 

‘short distance’ monitoring network 

 

The predictive performances based on the CCI and the CK of the 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9- 

and 10-fold cross-validation for Tubificidae, Asellidae, Gammaridae, Baetis and 

Limnephilidae for the ‘short distance’ monitoring network are presented in Table 6.3. Based 

on the CCI, very good predictions were obtained for Tubificidae. A CCI between 92.5 ± 1.2 

% and 95.1 ± 3.9 % for respectively 2- and 7-fold cross-validation was reached. The CK 

however ranged between 0.00 ± 0.00 and 0.29 ± 0.49 for the same cross-validation method. 

Contrary to the CCI, the low CK indicated a bad prediction capacity of the ANN models. 

Although the 7-fold cross-validation had a slightly higher CCI and CK and the 9-fold cross-

validation a slightly higher CK (0.28 ± 0.46), the optimal k-fold cross-validation could be 

decided at 4 (CCI = 93.3 ± 0.0 %; CK = 0.27 ± 0.32) since a much lower standard deviation 

was obtained. The best performance for Asellidae was obtained using the 4-fold cross-

validation. The average CCI (94.2 ± 1.7 %) as well as the average CK (0.88 ± 0.03) were the 

highest while the standard deviation of both performance measures was lower than for the 

other cross-validation methods. Excellent average performances and low standard deviations 

pointed out that very good models were obtained. For Gammaridae, the performance based on 

the CCI was high for all the cross-validation methods (between 90.0 ± 2.4 % and 93.3 ± 7.1 

%). Also based on the CK, the predictions could be considered as good (higher than 0.40). 

Although the CK of the 8-fold cross-validation was slightly better (0.63 ± 0.42) than for the 4-

fold cross-validation (0.62 ± 0.13), it could be decided that the optimal training and test size 

for Gammaridae was obtained applying the 4-fold cross-validation based on the standard 

deviation which was much lower. For Baetis, the best performances were obtained using the 

10-fold cross-validation (CCI = 78.3 ± 10.5 %; CK = 0.55 ± 0.21). Although the performance 

was slightly better for the 10-fold cross-validation, the optimal cross-validation method was 

the 4-fold cross-validation since the model was much more stable based on the lower standard 

deviation. For Limnephilidae, similar results were obtained. The 10-fold cross-validation 

method had a better CCI (88.3 ± 8.1 %) in comparison with the 4-fold cross-validation (86.7 ± 

5.4 %), but the obtained CK for the 4-fold cross-validation was higher (0.49 ± 0.20 in 

comparison with 0.43 ± 0.43 for the 10-fold cross-validation). In addition, more stable models 

were generated applying the 4-fold cross-validation. 
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Table 6.3. Analysis of the 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9- and 10-fold cross-validation for 

Tubificidae, Asellidae, Gammaridae, Baetis and Limnephilidae for the ‘short distance’ 

monitoring network (120 sites). Model evaluation is based on the percentage of Correctly 

Classified Instances (CCI) and Cohen’s kappa (CK), model stability on the standard deviation 

(Stdev) 
 k Average CCI Stdev CCI Average CK Stdev CK 
Tubificidae 2 92.5 1.2 0.00 0.00 
Tubificidae 3 92.5 0.0 0.12 0.21 
Tubificidae 4 93.3 0.0 0.27 0.32 
Tubificidae 5 92.5 1.9 0.22 0.30 
Tubificidae 6 94.2 2.0 0.24 0.37 
Tubificidae 7 95.1 3.9 0.29 0.49 
Tubificidae 8 94.2 4.3 0.24 0.47 
Tubificidae 9 93.3 4.4 0.28 0.46 
Tubificidae 10 93.3 5.3 0.27 0.44 
Asellidae 2 90.8 5.9 0.82 0.12 
Asellidae 3 90.0 5.0 0.80 0.10 
Asellidae 4 94.2 1.7 0.88 0.03 
Asellidae 5 92.5 1.9 0.85 0.04 
Asellidae 6 92.5 2.7 0.85 0.05 
Asellidae 7 93.4 2.0 0.87 0.04 
Asellidae 8 93.3 5.0 0.87 0.10 
Asellidae 9 93.3 2.5 0.87 0.05 
Asellidae 10 93.3 7.7 0.86 0.16 
Gammaridae 2 90.0 2.4 0.57 0.07 
Gammaridae 3 90.0 2.5 0.49 0.19 
Gammaridae 4 91.7 3.3 0.62 0.13 
Gammaridae 5 91.7 4.2 0.57 0.33 
Gammaridae 6 91.7 4.1 0.54 0.30 
Gammaridae 7 92.5 6.6 0.58 0.42 
Gammaridae 8 93.3 7.1 0.63 0.42 
Gammaridae 9 91.6 5.9 0.51 0.41 
Gammaridae 10 92.5 6.1 0.59 0.37 
Baetis 2 67.5 3.5 0.34 0.09 
Baetis 3 68.3 13.8 0.35 0.30 
Baetis 4 77.5 1.7 0.54 0.04 
Baetis 5 72.5 14.3 0.44 0.29 
Baetis 6 70.0 7.7 0.39 0.17 
Baetis 7 77.5 8.6 0.54 0.18 
Baetis 8 67.5 11.5 0.33 0.24 
Baetis 9 75.8 12.3 0.52 0.23 
Baetis 10 78.3 10.5 0.55 0.21 
Limnephilidae 2 82.5 1.2 0.00 0.00 
Limnephilidae 3 84.2 8.0 0.37 0.31 
Limnephilidae 4 86.7 5.4 0.49 0.20 
Limnephilidae 5 84.2 3.5 0.29 0.20 
Limnephilidae 6 85.8 6.6 0.41 0.27 
Limnephilidae 7 82.5 4.6 0.18 0.20 
Limnephilidae 8 85.8 5.6 0.36 0.32 
Limnephilidae 9 84.3 6.4 0.30 0.26 
Limnephilidae 10 88.3 8.1 0.43 0.43 
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6.3.2. Determination of the optimal model architecture 

 

This study aimed at determining the effect of ANN model architecture when analysing the 

relationship between river characteristics and the presence/absence of the five 

macroinvertebrate taxa Tubificidae, Asellidae, Gammaridae, Baetis and Limnephilidae. 

Derived from the results of Section 6.3.1 ‘Determination of the optimal training and test size’ 

(= optimal number of folds), model validation was based on 4-fold cross-validation for both 

datasets (the entire Zwalm river basin and the ‘short distance’ monitoring network). The 

model architectures tested for Tubificidae, Asellidae, Gammaridae, Baetis and Limnephilidae 

were six three-layered and four four-layered networks with respectively [2], [5], [10], [15], 

[20], [25] and [5 5], [5 10], [10 10], [10 20] neurons in the hidden layer(s). 

 

 

6.3.2.1. Determination of the optimal model architecture based on the dataset of the 

Zwalm river basin 

 

The percentage of Correctly Classified Instances and the Cohen’s kappa are shown in Table 

6.4. For all macroinvertebrates, model performance based on the CCI was very similar and 

independent of the model architecture tested. The percentage of CCI ranged respectively 

between 88.2 % and 90.3 %, 76.4 % and 79.8 %, 77.2 % and 80.2 %, 71.3 % and 77.2 % and 

84.4 % and 89.0 % for Tubificidae, Asellidae, Gammaridae, Baetis and Limnephilidae. Based 

on the CCI, the predictive results were good for Asellidae, Gammaridae and Baetis and even 

excellent for Tubificidae and Limnephilidae. However the CKs for the latter two organisms 

(respectively between 0.00 and 0.24 and between 0.10 and 0.34) indicated that these high CCI 

values were for a major part related to their relatively high and low prevalence (Tubificidae 

was present in 89.5 % and Limnephilidae in 12.2 % of the instances) in the Zwalm river basin 

dataset, and the related ease to make good qualifications, even without the extraction of 

information from the environmental variables. This directly illustrates the convenience of 

using two performance measures. Although satisfying results were obtained for Baetis based 

on the CCI, similar conclusions as for Tubificidae and Limnephilidae could be drawn based 

on the CK (between 0.01 and 0.18). This means again that a good CCI can be achieved 

without using any information from the environmental variables. The CK value for Asellidae 

(CK between 0.53 and 0.60) and Gammaridae (CK between 0.33 and 0.47) on the other hand, 
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revealed that reliable models were obtained for both organisms (CCI > 70 % and CK > 0.40) 

for the major part of the model architectures. 

 

Comparing the different model architectures for each organism, performance measures were 

very similar using the dataset of the entire Zwalm river basin. In this way, no clear 

conclusions could be drawn according to the optimal number of hidden neurons. Although the 

predictive performance for Tubificidae was in general very low based on CK, the optimal 

number of hidden neurons was 5. However, the large standard deviation of the CK over the 

four folds pointed out that this model was very unstable. Similar results were obtained for 

Baetis and Limnephilidae. The best, however very unstable models were generated using 

respectively 10 and 5 hidden neurons. For Asellidae and Gammaridae, optimal model 

architectures were respectively those containing 10 and 15 hidden neurons.  
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Table 6.4. Determination of the optimal model architecture for Tubificidae, Asellidae, 

Gammaridae, Baetis and Limnephilidae based on the dataset of the Zwalm river basin (237 

sites). Model validation is based on 4-fold cross-validation. Model evaluation is based on the 

percentage of Correctly Classified Instances (CCI) and Cohen’s kappa (CK), model stability 

on the standard deviation (Stdev) 
 # of neurons Average CCI Stdev CCI Average CK Stdev CK 
Tubificidae 2 89.5 0.7 0.00 0.00 
Tubificidae 5 90.3 2.1 0.12 0.24 
Tubificidae 10 88.2 3.3 0.10 0.12 
Tubificidae 15 89.5 0.7 0.00 0.00 
Tubificidae 20 89.5 0.7 0.05 0.10 
Tubificidae 25 88.6 1.6 0.03 0.06 
Tubificidae 5 - 5 89.5 0.7 0.00 0.00 
Tubificidae 5 - 10 89.9 1.3 0.07 0.13 
Tubificidae 10 - 10 89.5 0.7 0.00 0.00 
Tubificidae 10 - 20 89.5 0.7 0.00 0.00 
Asellidae 2 78.5 7.6 0.57 0.24 
Asellidae 5 78.1 8.2 0.56 0.26 
Asellidae 10 79.8 6.3 0.60 0.20 
Asellidae 15 77.7 9.0 0.55 0.29 
Asellidae 20 78.9 8.2 0.58 0.26 
Asellidae 25 77.2 6.9 0.55 0.22 
Asellidae 5 - 5 76.4 4.5 0.53 0.14 
Asellidae 5 - 10 76.8 5.6 0.54 0.18 
Asellidae 10 - 10 78.1 9.1 0.56 0.29 
Asellidae 10 - 20 76.8 7.0 0.54 0.22 
Gammaridae 2 77.7 5.1 0.43 0.14 
Gammaridae 5 78.9 2.3 0.41 0.09 
Gammaridae 10 80.0 1.5 0.43 0.07 
Gammaridae 15 80.2 5.6 0.47 0.15 
Gammaridae 20 78.0 2.5 0.40 0.08 
Gammaridae 25 79.3 2.2 0.39 0.08 
Gammaridae 5 - 5 78.9 3.3 0.42 0.12 
Gammaridae 5 - 10 77.2 1.1 0.41 0.02 
Gammaridae 10 - 10 77.7 5.1 0.33 0.26 
Gammaridae 10 - 20 78.1 4.9 0.34 0.25 
Baetis 2 74.7 2.4 0.01 0.03 
Baetis 5 75.5 4.9 0.12 0.18 
Baetis 10 75.5 6.2 0.18 0.14 
Baetis 15 74.7 2.9 0.10 0.12 
Baetis 20 73.8 5.2 0.15 0.12 
Baetis 25 77.2 2.9 0.16 0.19 
Baetis 5 - 5 72.1 4.1 0.05 0.08 
Baetis 5 - 10 74.3 3.0 0.03 0.06 
Baetis 10 - 10 73.8 2.1 0.08 0.10 
Baetis 10 - 20 71.3 7.8 0.16 0.14 
Limnephilidae 2 87.3 0.9 0.21 0.25 
Limnephilidae 5 89.0 1.0 0.34 0.37 
Limnephilidae 10 87.3 1.7 0.28 0.09 
Limnephilidae 15 86.1 2.9 0.28 0.25 
Limnephilidae 20 87.3 0.9 0.11 0.23 
Limnephilidae 25 84.4 5.1 0.27 0.31 
Limnephilidae 5 - 5 88.2 0.1 0.10 0.32 
Limnephilidae 5 - 10 86.5 4.6 0.17 0.34 
Limnephilidae 10 - 10 85.6 1.7 0.25 0.27 
Limnephilidae 10 - 20 86.5 3.7 0.29 0.35 
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6.3.2.2. Determination of the optimal model architecture based on the dataset of the 

‘short distance’ monitoring network 

 

In Table 6.5 the CCI and CK are presented. The predictive performance based on the CCI was 

acceptable for Baetis (in the neighbourhood of about 70.0 %) and even very good for the 

remaining taxa (CCI value between 92.5 % and 94.2 %, 90.8 % and 94.2 %, 88.3 % and 92.5 

%, 77.5 % and 86.7 % for respectively Tubificidae, Asellidae, Gammaridae and 

Limnephilidae). The CCI was strikingly constant over the four folds for all taxa, with a few 

exceptions for Baetis. Although the predictive success was slightly better based on the dataset 

of the ‘short distance’ monitoring network in comparison with the dataset of the entire Zwalm 

river basin, similar conclusions could be drawn here based on the CK. Poor to moderate 

results were obtained for Tubificidae, Limnephilidae and Baetis while for Asellidae, the 

results based on the CK were excellent (higher than 0.80 for all model architectures). Also for 

Gammaridae the predictions were good based on the CK, with one exception for the four-

layered network with 5 neurons in both hidden layers where the CK drops to 0.29. 

 

The optimal number of hidden neurons could be decided at 15 or 20 for Tubificidae, 10 or 10 

– 10 for Asellidae, 10 – 10 for Gammaridae, 10 for Baetis and 10 for Limnephilidae. 
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Table 6.5. Determination of the optimal model architecture for Tubificidae, Asellidae, 

Gammaridae, Baetis and Limnephilidae based on the dataset of the ‘short distance’ 

monitoring network (120 sites). Model validation is based on 4-fold cross-validation. Model 

evaluation is based on the percentage of Correctly Classified Instances (CCI) and Cohen’s 

kappa (CK), model stability on the standard deviation (Stdev) 
 # of neurons Average CCI Stdev CCI Average CK Stdev CK 
Tubificidae 2 93.3 0.0 0.16 0.31 
Tubificidae 5 93.3 0.0 0.27 0.32 
Tubificidae 10 93.3 0.0 0.27 0.32 
Tubificidae 15 94.2 1.7 0.32 0.37 
Tubificidae 20 94.2 1.7 0.32 0.37 
Tubificidae 25 93.3 0.0 0.16 0.31 
Tubificidae 5 - 5 93.3 0.0 0.27 0.32 
Tubificidae 5 - 10 92.5 1.7 0.00 0.00 
Tubificidae 10 - 10 93.3 0.0 0.16 0.31 
Tubificidae 10 - 20 92.5 1.7 0.25 0.28 
Asellidae 2 92.5 1.7 0.85 0.03 
Asellidae 5 93.3 2.7 0.87 0.06 
Asellidae 10 94.2 1.7 0.88 0.03 
Asellidae 15 93.3 2.7 0.87 0.06 
Asellidae 20 91.7 4.3 0.83 0.09 
Asellidae 25 92.5 3.2 0.85 0.06 
Asellidae 5 - 5 92.5 1.7 0.85 0.03 
Asellidae 5 - 10 92.5 3.2 0.85 0.06 
Asellidae 10 - 10 94.2 1.7 0.88 0.03 
Asellidae 10 - 20 90.8 3.2 0.82 0.06 
Gammaridae 2 91.7 6.4 0.55 0.40 
Gammaridae 5 92.5 4.2 0.62 0.23 
Gammaridae 10 91.7 3.3 0.62 0.13 
Gammaridae 15 92.5 4.2 0.65 0.17 
Gammaridae 20 91.7 3.3 0.60 0.12 
Gammaridae 25 91.7 3.3 0.62 0.13 
Gammaridae 5 - 5 88.3 3.3 0.29 0.35 
Gammaridae 5 - 10 92.5 3.2 0.65 0.16 
Gammaridae 10 - 10 92.5 6.3 0.66 0.23 
Gammaridae 10 - 20 90.8 4.2 0.54 0.21 
Baetis 2 66.7 9.8 0.33 0.18 
Baetis 5 70.0 11.2 0.39 0.21 
Baetis 10 77.5 1.7 0.54 0.04 
Baetis 15 74.2 5.7 0.47 0.12 
Baetis 20 70.8 7.4 0.41 0.14 
Baetis 25 70.8 7.9 0.41 0.15 
Baetis 5 - 5 62.5 6.9 0.20 0.17 
Baetis 5 - 10 70.8 12.0 0.42 0.22 
Baetis 10 - 10 69.2 12.9 0.39 0.23 
Baetis 10 - 20 69.2 8.8 0.39 0.16 
Limnephilidae 2 80.0 2.7 0.17 0.22 
Limnephilidae 5 84.2 4.2 0.13 0.26 
Limnephilidae 10 86.7 5.4 0.49 0.20 
Limnephilidae 15 84.2 3.2 0.28 0.32 
Limnephilidae 20 84.2 5.7 0.35 0.30 
Limnephilidae 25 81.7 7.9 0.26 0.22 
Limnephilidae 5 - 5 82.5 1.7 0.00 0.00 
Limnephilidae 5 - 10 80.8 5.0 0.01 0.02 
Limnephilidae 10 - 10 81.7 3.3 0.06 0.11 
Limnephilidae 10 - 20 77.5 4.2 0.14 0.09 
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6.3.2.3. Determination of the optimal model architecture based on annual testing 

 

Several studies (e.g. Recknagel et al., 1997; Maier et al., 1998; Bowden et al., 2002) have 

revealed that good predictions and generalization ability of ANN models are obtained if the 

available dataset is divided into a training and test set based on annual data, i.e. using data 

from one year for testing and the remaining data for training. Based on this, the ANN models 

for the entire Zwalm river basin were trained with measured input and output data from 3 

years, while data of the remaining independent year was used for testing. Similarly, the ANN 

models for the ‘short distance’ monitoring network were trained with data from one year and 

tested with data of the other year. 

 

In Table 6.6 and 6.7, the CCI and CK are presented respectively for the dataset of the entire 

Zwalm river basin (237 sites, 4 years) and the dataset of the ‘short distance’ monitoring 

network (120 sites, 2 years). For the first dataset, similar results based on the CCI were 

obtained as for the 4-fold cross-validation. In general however, the models were less stable 

derived from the standard deviation of the CCI. Based on the CK, slightly better predictions 

were achieved applying the 4-fold cross-validation while the standard deviation for both 

model types was rather similar. Comparing the predictive results of the 2-fold cross-validation 

including 10 neurons in the hidden layer with those of the annual testing based on the dataset 

of the ‘short distance’ monitoring network, CCI and CK were very similar, with one major 

exception for Tubificidae, where no reliable model could be found based on annual testing 

(CK = 0.00) while the CK for the 2-fold cross-validation was 0.28. However, the latter model 

was very unstable based on the standard deviation (0.39). The major part of the remaining 

models were more stable when validated on the basis of the 2-fold cross-validation. 

 

 

 

 

 

 

 

 

 

 152



Chapter 6: Development of Artificial Neural Network models for the prediction of macroinvertebrates 

Table 6.6. Determination of the optimal model architecture based on annual testing for 

Tubificidae, Asellidae, Gammaridae, Baetis and Limnephilidae based on the dataset of the 

Zwalm river basin (237 sites, 4 years). Model evaluation is based on the percentage of 

Correctly Classified Instances (CCI) and Cohen’s kappa (CK), model stability on the standard 

deviation (Stdev) 
 # of neurons Average CCI Stdev CCI Average CK Stdev CK 
Tubificidae 2 89.4 3.9 0.00 0.00 
Tubificidae 5 89.4 3.9 0.00 0.00 
Tubificidae 10 89.4 3.9 0.00 0.00 
Tubificidae 15 89.4 3.9 0.04 0.09 
Tubificidae 20 89.4 3.9 0.06 0.12 
Tubificidae 25 89.8 3.8 0.06 0.11 
Tubificidae 5 - 5 88.2 5.0 0.12 0.19 
Tubificidae 5 - 10 89.4 3.9 0.04 0.09 
Tubificidae 10 - 10 88.2 2.6 0.14 0.17 
Tubificidae 10 - 20 89.4 3.9 0.00 0.00 
Asellidae 2 77.6 3.7 0.56 0.07 
Asellidae 5 75.9 3.7 0.52 0.08 
Asellidae 10 79.7 5.3 0.59 0.10 
Asellidae 15 78.5 4.7 0.57 0.10 
Asellidae 20 80.2 3.9 0.61 0.08 
Asellidae 25 78.9 4.1 0.58 0.08 
Asellidae 5 - 5 78.5 2.0 0.57 0.04 
Asellidae 5 - 10 78.5 3.7 0.57 0.08 
Asellidae 10 - 10 70.0 13.3 0.40 0.29 
Asellidae 10 - 20 80.2 6.8 0.61 0.13 
Gammaridae 2 76,8 2.6 0.39 0.05 
Gammaridae 5 76.4 6.3 0.34 0.14 
Gammaridae 10 77.6 6.1 0.37 0.14 
Gammaridae 15 76.3 7.3 0.30 0.15 
Gammaridae 20 78.4 7.8 0.34 0.23 
Gammaridae 25 78.0 9.2 0.38 0.19 
Gammaridae 5 - 5 79.3 6.1 0.39 0.09 
Gammaridae 5 - 10 77.2 5.7 0.36 0.14 
Gammaridae 10 - 10 75.9 2.1 0.29 0.20 
Gammaridae 10 - 20 76.8 8.4 0.32 0.25 
Baetis 2 75.1 16.4 0.10 0.19 
Baetis 5 65.0 5.1 0.06 0.02 
Baetis 10 70.1 5.8 0.03 0.07 
Baetis 15 75.1 16.4 0.09 0.10 
Baetis 20 75.9 15.2 0.05 0.07 
Baetis 25 74.6 12.7 0.02 0.04 
Baetis 5 - 5 73.8 16.9 0.00 0.01 
Baetis 5 - 10 75.5 15.4 0.00 0.00 
Baetis 10 - 10 73.8 17.6 0.05 0.06 
Baetis 10 - 20 76.3 14.9 0.04 0.05 
Limnephilidae 2 87.7 2.7 0.00 0.00 
Limnephilidae 5 88.6 1.6 0.12 0.23 
Limnephilidae 10 87.8 3.1 0.20 0.17 
Limnephilidae 15 88.6 2.6 0.20 0.25 
Limnephilidae 20 87.8 2.5 0.19 0.25 
Limnephilidae 25 88.2 3.5 0.29 0.25 
Limnephilidae 5 - 5 87.7 2.7 0.00 0.00 
Limnephilidae 5 - 10 87.7 2.7 0.00 0.00 
Limnephilidae 10 - 10 87.7 2.7 0.00 0.00 
Limnephilidae 10 - 20 87.7 2.7 0.00 0.00 
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Table 6.7. Determination of the optimal model architecture based on annual testing for 

Tubificidae, Asellidae, Gammaridae, Baetis and Limnephilidae based on the dataset of the 

‘short distance’ monitoring network (120 sites, 2 years). Model evaluation is based on the 

percentage of Correctly Classified Instances (CCI) and Cohen’s kappa (CK), model stability 

on the standard deviation (Stdev) 
 # of neurons Average CCI Stdev CCI Average CK Stdev CK 
Tubificidae 2 90.8 3.5 0.15 0.21 
Tubificidae 5 92.5 1.2 0.00 0.00 
Tubificidae 10 94.2 1.2 0.28 0.39 
Tubificidae 15 92.5 1.2 0.00 0.00 
Tubificidae 20 92.5 1.2 0.00 0.00 
Tubificidae 25 95.0 0.0 0.47 0.12 
Tubificidae 5 - 5 92.5 1.2 0.00 0.00 
Tubificidae 5 - 10 86.7 7.1 0.16 0.13 
Tubificidae 10 - 10 90.8 3.5 0.15 0.21 
Tubificidae 10 - 20 92.5 1.2 0.00 0.00 
Asellidae 2 90.0 0.0 0.80 0.00 
Asellidae 5 91.7 0.0 0.83 0.00 
Asellidae 10 90.8 1.2 0.82 0.03 
Asellidae 15 89.2 1.2 0.78 0.03 
Asellidae 20 90.8 1.2 0.82 0.02 
Asellidae 25 89.2 1.2 0.78 0.03 
Asellidae 5 - 5 90.0 0.0 0.80 0.00 
Asellidae 5 - 10 90.8 1.2 0.82 0.03 
Asellidae 10 - 10 90.0 0.0 0.80 0.00 
Asellidae 10 - 20 92.5 1.2 0.85 0.02 
Gammaridae 2 89.2 1.2 0.32 0.45 
Gammaridae 5 93.3 2.4 0.68 0.03 
Gammaridae 10 91.7 2.4 0.62 0.02 
Gammaridae 15 91.7 0.0 0.64 0.03 
Gammaridae 20 92.5 3.5 0.66 0.12 
Gammaridae 25 92.5 1.2 0.64 0.10 
Gammaridae 5 - 5 90.0 0.0 0.43 0.29 
Gammaridae 5 - 10 85.0 4.7 0.44 0.04 
Gammaridae 10 - 10 85.0 4.7 0.46 0.19 
Gammaridae 10 - 20 88.3 0.0 0.28 0.40 
Baetis 2 66.7 2.4 0.36 0.00 
Baetis 5 65.0 4.7 0.31 0.11 
Baetis 10 68.3 0.0 0.37 0.01 
Baetis 15 66.7 4.7 0.37 0.04 
Baetis 20 59.2 3.5 0.19 0.08 
Baetis 25 57.5 5.9 0.18 0.16 
Baetis 5 - 5 62.5 5.9 0.26 0.13 
Baetis 5 - 10 62.5 3.5 0.26 0.09 
Baetis 10 - 10 57.5 5.9 0.19 0.17 
Baetis 10 - 20 73.3 2.4 0.47 0.05 
Limnephilidae 2 82.5 5.9 0.00 0.00 
Limnephilidae 5 82.5 5.9 0.00 0.00 
Limnephilidae 10 80.8 3.5 0.04 0.06 
Limnephilidae 15 82.5 5.9 0.00 0.00 
Limnephilidae 20 80.0 2.4 0.03 0.04 
Limnephilidae 25 80.8 3.5 0.10 0.14 
Limnephilidae 5 - 5 82.5 5.9 0.00 0.00 
Limnephilidae 5 - 10 73.3 9.4 0.17 0.07 
Limnephilidae 10 - 10 79.2 1.2 0.17 0.24 
Limnephilidae 10 - 20 79.2 1.2 0.14 0.20 
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6.4. Discussion 
 

Nowadays, models are an important tool in modern water management. However, when 

models are used in a more flexible way, the risk of injudicious use may increase as a result of 

errors in the programme, incomplete manuals or mistakes made by the model designer 

himself. Careless use of input data, insufficient calibration and validation, departing from 

wrong model assumptions, … are mistakes which can lead to unreliable models 

(STOWA/RIZA, 1999). Therefore, enough time has to be spend on model design, before 

models can be used for practical applications in order to avoid these pitfalls. 

 

To compare different model set-ups, models have to be evaluated based on reliable 

performance measures. Based on international literature however, a serious gap concerning 

model evaluation has been observed. The performance measures used to evaluate ANN 

models was mainly based on the overall prediction success (= percentage of Correctly 

Classified Instances, CCI). Only a few researchers used alternative evaluation methods 

(Fielding and Bell, 1997; Manel et al., 2001; Anderson et al., 2003). Based on 87 

international ecological publications evaluating the performance of presence/absence models 

on birds, mammals, macroinvertebrates, fish, … during the period 1989-1999, Manel et al. 

(2001) indicated that in 52 % of the cases no evaluation method was used, in 43 % model 

evaluation was merely based on prediction success, while only in 3 % of the publications 

Cohen’s kappa was used. Based on the review on Artificial Neural Networks predicting 

macroinvertebrates in rivers and lakes (Chapter 2), only five presence/absence models used 

the CCI as performance measure whereas three models applied a combination of CCI and CK. 

 

From an ecological point of view, the CCI is the most logical performance measure because 

of its easy interpretation towards water managers and policy makers. This evaluation method 

indicates the number of sites in the test set that is predicted correctly. In this way, it is a 

simple measure for the accuracy of the prediction. There is clear evidence though, that the 

CCI is influenced by the frequency of occurrence of the organism being modelled (e.g. 

Fielding and Bell, 1997; Manel et al., 2001; Dedecker et al., 2004; D’heygere et al., 2005b). 

The problem with rare taxa is that there is little information to allow the neural network model 

to learn when these taxa are present. In this way the models tend to ‘learn’ that very rare taxa 

are always absent. The same difficulty occurs with very common taxa. Here the models 
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‘learn’ that very common taxa are always present. This means that a good CCI can be 

achieved without using any information from the environmental variables. Among the 

different measures, which are based on the confusion matrix, Fielding and Bell (1997) and 

Manel et al. (2001) recommended the CK (Cohen, 1960) as a reliable performance measure, 

since the effect of prevalence on the CK appeared to be negligible. It is a simply derived 

statistic that measures the proportion of all possible cases of presence or absence that are 

predicted correctly by a model after accounting for chance predictions 

 

This bottleneck in presence/absence predictions is illustrated in the present study predicting 

the habitat suitability of Tubificidae and Limnephilidae. These taxa were respectively found 

in 89.5 and 92.5 % and 12.2 and 17.5 %, based on respectively the dataset of the entire Zwalm 

river basin and the ‘short distance’ monitoring network. For all models tested in this chapter 

(determination of the optimal training and test size (optimal number of folds) and 

determination of the optimal model architecture based on regular folds and annual testing), 

the predictive performance was very good based on the CCI. Derived from the CK however, 

poor to moderate models were generated. For both taxa, high CCI percentages can be 

associated for a major part to their relatively low and high prevalence, and the related ease to 

make good qualifications, even without the extraction of information from the environmental 

variables presented as inputs to the networks. 

 

In this way, predictions can be misleading if only the overall prediction success is used as 

performance measure. Therefore, a combination of both the CCI (easy to interpret from an 

ecological point of view) and the CK (from an mathematical point of view) can be advised to 

evaluate model performance. 

 

To evaluate the developed models, part of the dataset has to be used for model testing which 

has not been used to train the model. In this way, the training dataset is reduced which can 

influence the generalization capacity of the model (Haykin, 1999). Conversely, a smaller test 

dataset reduces the accuracy of the model performance. In this context, a consideration has to 

be made between generalization capacity on the one hand and model accuracy on the other 

hand. Witten and Frank (2000) describe 10-fold cross-validation as standard method. This 

means that 10 % of the data is used for testing and 90 % for training. This is repeated ten 

times. In this way, each part of the dataset is used once for testing. Seen the relatively small 

datasets, and the related unreliably small test sets it involves, this method seems less suitable.  
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Fig. 6.3. Impact of the size of the training and test dataset (= number of folds) on the 

generalization capacity and accuracy of the model predictions. 

 

In addition, if for example a very common taxon has to be modelled and if at random a fold is 

split off containing very few present instances, this has important consequences on model 

training and testing. To avoid this problem in the present thesis, the relative prevalence of the 

taxon was similar in all training and test sets. Taking these thoughts into consideration, the 

optimal size of training and test set (= the optimal number of folds) was searched for. 

Therefore, nine cross-validation methods (2-, 3-, 4-, 5-, 6-, 7-, 8-, 9- and 10-fold cross-

validation) were tested. Based on the average and standard deviation of the CCI and CK, the 

best possible number of folds was four for all five taxa for the entire Zwalm river basin as 

well as for the ‘short distance’ monitoring network. To this end, one may conclude that 4-fold 

cross-validation is a good consideration between model generalization capacity and accuracy. 

Therefore, model validation during further research was based on 4-fold cross-validation. In 

this manner, also the work load (data preparation, model training and testing) could be limited 

in comparison with 10-fold cross-validation for instance. 

 

Traditionally, optimal network architectures (or geometries) have been determined by trial 

and error (Maier and Dandy, 2000). However, a number of systematic approaches for 
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determining optimal network geometry have been proposed, including pruning and 

constructive algorithms. The basic thought of pruning algorithms is to start with a network 

that is large enough to capture the desired input-output relationship and to subsequently 

remove or disable unnecessary weights and/or neurons. A review of pruning algorithms is 

given by Reed (1993). Constructive algorithms approach the problem of optimizing the 

number of hidden layer neurons from the opposite direction to pruning algorithms. The 

smallest possible network is used at the start. Hidden layer neurons and connections are then 

added one at a time in an attempt to improve model performance. A review of constructive 

algorithms is given by Kwok and Yeung (1997a). However, several disadvantages of these 

approaches are mentioned in literature (Maier and Dandy, 2000). For example, the networks 

generally have to be trained several times, i.e. each time a hidden neuron is added or deleted 

(Kwok and Yeung, 1997b). It has also been suggested that the pruning and constructive 

algorithms are susceptible to becoming trapped in structural local optima (Angeline et al., 

1994). Algorithms based on evolutionary programming and genetic algorithms have been 

proposed to overcome these problems and have been used successfully to determine optimal 

network architecture (e.g. Fang and Xi, 1997; Kim and Han, 2000; Zhao et al., 2000; Wicker 

et al., 2002). Evolutionary approaches are significantly different from the previous techniques 

described. They produce more robust solutions because they use a population of networks in 

the search process. A complete review of the use of evolutionary algorithms in neural 

networks is given by Yao (1993). However, this is beyond the scope of this thesis and is no 

further discussed. In this way, it was decided to use trial and error to optimize the neural 

network architecture for the five selected macroinvertebrates in both databases. In total, ten 

network architectures were tested to obtain a reliable estimation of the best architecture: six 

three-layered and four four-layered networks with respectively [2], [5], [10], [15], [20], [25] 

and [5 5], [5 10], [10 10], [10 20] neurons in the hidden layer(s). 

 

Network architecture is generally known to be highly problem dependent (Maier and Dandy, 

2000). However, comparing the different model architectures for each organism, predictive 

performances were very similar. Also the guidelines, mentioned in Chapter 2, do not ensure 

optimal network geometry. In addition, there is quite a high variability in the number of 

neurons suggested by the various rules, making them less reliable. In this way, no 

straightforward conclusions towards the five taxa could be drawn according to the optimal 

number of hidden layers and neurons. On the other hand, comparing the optimal number of 

hidden neurons for both datasets, a small difference could be detected. More neurons (roughly 
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twice as much for all taxa) were needed based on the ‘short distance’ monitoring network. 

The reason could be that the number of training samples was respectively fixed at 178 and 90, 

for the datasets of the entire Zwalm river basin and the ‘short distance’ monitoring network, 

using 4-fold cross-validation. The importance of striking a balance between having sufficient 

free parameters (weights) to enable representation of the function to be approximated and 

having too many free parameters, which can result in overfitting, is well known and has been 

discussed widely in the literature (e.g. Maren et al., 1990; Rojas, 1996). Since overfitting was 

always avoided using the principle of ‘early stopping’ and the number of training samples was 

twice as less when using the dataset of the ‘short distance’ monitoring network, more free 

parameters were possibly needed to learn the relations between input and output adequately.  

 

Although less data were available, better prediction results were generally obtained for the 

dataset of the ‘short distance’ monitoring network. An important reason can be that five weirs 

(ten sampling sites a year) were not included in the latter dataset. Upstream and downstream 

of the weirs, the Zwalm river is characterized by a modification of the flow channel. 

Upstream the weir, the river is drastically deepened, creating exceptional conditions, 

unnatural for this type of water bodies. Just in front, the depth can be nearly around two 

meters depending on the control level of the weir and the amount of sediments accumulated at 

the site. Also the flow velocity is reduced drastically, creating an almost stagnant water body 

immediately upstream of the weir (Belconsulting, 2003). On the other hand, the depth is very 

low and the flow velocity is very high downstream of the weir. This situation is also unusual 

for these wider rivers in the Zwalm river basin. In this way, the situation upstream and 

downstream of these weirs is very difficult to predict. 

 

Several studies (e.g. Recknagel et al., 1997; Maier et al., 1998; Bowden et al., 2002) have 

revealed that good predictions and generalization ability of ANN models are obtained if the 

available dataset is divided into a training and test set based on annual data, i.e. using data 

from one year for testing and the remaining data for training. Based on this, the ANN models 

for the entire Zwalm river basin were trained with measured input and output data from 3 

years, while the data of the remaining independent year were used for testing. Similarly, the 

ANN models for the ‘short distance’ monitoring network were trained with data from one 

year and tested with data of the other year. When annual testing was compared with the usual 

cross-validation, the average CCIs and CKs were in general very similar for all taxa. In 

contrast, the standard deviation was mostly higher when annual testing was applied. The 
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higher instability can be explained by the unequal prevalence of the taxa each year. Since this 

is one of the major parameters affecting the model’s performance, the model stability can be 

highly influenced. 

 

 

6.5. Conclusions 
 

The dependence of a species or a community on its habitat is a crucial hypothesis in ecology 

(Wagner et al., 2000). Thus, the prediction of the habitat suitability of a species based on the 

habitat characteristics is an interesting task in basic and applied ecology (Baran et al., 1996; 

Whitehead et al., 1997) and can be of high interest to managers and engineers dealing with 

rivers and channels (Lek et al., 1996a; Mastrorillo et al., 1997a, b; Guégan et al., 1998). 

 

ANN models can in this context play an interesting role to find general trends on habitat 

suitability of macroinvertebrate taxa. This study aimed at developing, analyzing and 

optimizing the ANN models for the prediction of the habitat suitability (presence/absence) of 

five macro-invertebrate taxa Tubificidae, Asellidae, Gammaridae, Baetis and Limnephilidae 

in the Zwalm river basin. 

 

The results illustrated the convenience of using two performance measures. The overall 

prediction success (= percentage of Correctly Classified Instances, CCI) is from an ecological 

point of view the most logical performance measure because of its easy interpretation towards 

water managers and policy makers. There is clear evidence however, that the CCI is 

influenced by the frequency of occurrence of the organism being modelled. Therefore, a 

second performance measure (Cohen’s kappa, CK) was used, since the effect of prevalence on 

the CK appeared to be negligible. 

 

Because the size of the training and test set influences respectively the generalization 

capability of the model and accuracy of the model performance, the optimal size of training 

and test set was searched for. Based on the average and standard deviation of the CCI and CK, 

the best possible number of folds was four (= 4-fold cross-validation) for both datasets used. 
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Network architecture is generally known to be highly problem dependent. However, 

comparing the different model architectures for each taxon, predictive performances were 

very similar. In this way, no straightforward conclusions towards the five taxa could be drawn 

according to the optimal number of hidden layers and neurons. 
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of habitat suitability variables 

7.1. Introduction 
 

It has been widely demonstrated that environmental conditions can strongly influence the 

occurrence of macroinvertebrates (e.g. Marshall et al., 2002). Habitat selection of river 

invertebrates depends upon the interaction of numerous physical, chemical, structural as well 

as biological factors. Abiotic factors, in particular those related to disturbance and pollution, 

clearly determine the composition of invertebrate communities (De Pauw and Hawkes, 1993; 

D’heygere et al., 2003; Reice et al., 1990; Resh et al., 1988; Townsend et al., 1997). Biota are 

directly and indirectly affected by these abiotic factors and in most cases optimum conditions 

are different for each species. The distribution of macroinvertebrates in rivers as well as the 

inter-relationships of all the different factors which influence this distribution have been 

widely studied (e.g. Bournaud and Cogernino, 1986). Nevertheless, investigation of this area 

of river ecology is complicated by the difficulty of separating the effects of competing 

variables (Rabeni and Minshall, 1977). As a result, the actual knowledge is still insufficient to 

completely understand the habitat preferences of the river macroinvertebrates. This leads to 

problems when using macroinvertebrate communities for surveillance purposes (Fontoura and 

De Pauw, 1994) and river management (Goethals and De Pauw, 2001). 

 

To gain more insight into the habitat preferences of the different taxa and the relationships 

between these local environmental conditions and the occurrence of macroinvertebrates 

(presence/absence or abundance), empirical models could be developed. These models would 

allow for extracting the major relations between the environment and these aquatic 

invertebrates and could be used to predict their occurrence under altered conditions 

(Reynoldson et al., 1997; Wright, 1995). Artificial Neural Network (ANN) models have 

recently been applied in the context of this problem. These ANN models however do not 

allow for gaining direct insight into the habitat preferences of the species or taxa. For this 

reason, ANN models have been labelled as being a ‘black box’ (Lek and Guégan, 1999; 

Olden and Jackson, 2002). Nonetheless, several authors have explored and proposed different 

techniques to illustrate the role of the environmental variables in ANN models as discussed in 

Chapter 2 (e.g. Beauchard et al., 2003; Dedecker et al., 2005b, c; Gevrey et al., 2003; 

Marshall et al., 2002; Olden and Jackson, 2002). In most papers, these techniques have been 

used to select the relevant input variables to predict the aquatic communities. Traditionally, 

optimal combinations between environmental input and output variables have been 
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determined on the basis of expert knowledge (Dedecker et al., 2004), ‘trial and error’ 

(Gabriels et al., 2002), sensitivity analyses (Lek et al., 1996b) or optimization algorithms, 

such as genetic algorithms (D’heygere et al., 2005a). The purpose of these techniques is not 

only to improve the network performance by selecting the relevant input variables, but also to 

know the contribution of each input variable to the output. These techniques allow for 

specifying the major river characteristics that describe the preferred habitat of a particular 

taxon. This can deliver important additional information to assess and interpret ecological 

phenomena and to enhance indirectly the understanding of relationships between human 

impacts and river fauna. The ANN models can also indicate which variables are of major 

importance to monitor and assess. The quality and appropriate choice of monitoring variables 

is indeed one of the most crucial factors in the assessment process of river systems (Goethals 

and De Pauw, 2001). 

 

In previous studies (Dedecker, 2005b, c; Goethals, 2005), the following six contribution 

methods as described by Gevrey et al. (2003) have been applied to determine the influence of 

each input variable and its contribution to the occurrence of Asellidae and Gammaridae: 

 

• the ‘Partial Derivatives’ (‘PaD’) method consists of a calculation of the partial 

derivatives of the output in relation to the input variables (Dimopoulos et al., 1995, 1999); 

• the ‘Weights’ method is a computation using the connection weights of the 

backpropagation Artificial Neural Networks (Garson, 1991; Goh, 1995; Olden and 

Jackson, 2002); 

• the Perturb method analyses the effect of a perturbation of the input variables on the 

output variable (Yao et al., 1998; Scardi and Harding, 1999); 

• the ‘Profile’ method is a successive variation of one input variable while the others are 

kept constant at a fixed set of values (Lek et al., 1995, 1996a, b; Marshall et al., 2002); 

• the Classical Stepwise method is an observation of the change in the error value when 

an elimination (backward) step of the input variables is applied; 

• the Improved Stepwise method involves the network being trained and fixed step by 

step, with one input variable on its mean value to note the consequences on the error. 

 

These six contribution methods, which were applied on a database of the Zwalm river basin 

containing 179 sampling sites taken between 2000 and 2002, seemed to give similar results. 
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Nevertheless, their diverse computation led to differences in sensitivity and stability of the 

methods. The ‘PaD’, ‘Weights’ and ‘Profile’ method were the most sensitive techniques. 

Especially the ‘PaD’ and the ‘Profile’ method were able to distinguish minor and major 

contributing environmental variables for both species, this in contrast with the Perturb, 

Stepwise and the Improved Stepwise method. Similar results were found by (Gevrey et al., 

2003), who tried to predict the relation between ten environmental variables and trout density. 

 

Based on these preliminary results, it was decided to apply in the present study only the 

‘PaD’, ‘Weights’ and ‘Profile’ method to support the selection of the major river 

characteristics in order to describe the preferred habitats of Tubificidae, Asellidae, 

Gammaridae, Baetis and Limnephilidae and explain their distribution in both datasets (Zwalm 

river basin and the ‘short distance’ monitoring network). The three input variable contribution 

methods are described in more detail in Section 7.2. 

 

 

7.2. Material and methods 
 

Although many methods (and terms) exist for variable selection and sensitivity analysis (e.g. 

Witten and Frank, 2000), only a limited set, consisting of three methods that had already 

proven to be convenient in ecological modelling studies, was applied on the dataset of the 

Zwalm river basin and the ‘short distance’ monitoring network. The three methods were 

selected and integrated in a MATLAB toolbox by Gevrey et al. (2003) at the Université Paul-

Sabatier (Toulouse, France) as part of the European PAEQANN-project (EVK1-CT1999-

00026): ‘Predicting Aquatic Ecosystem Quality using Artificial Neural Networks: Impact of 

Environmental Characteristics on the Structure of Aquatic Communities (Algae, Benthic and 

Fish Fauna)’. 

 

A detailed overview of the specific ANN model settings used to obtain the contribution 

curves is given in Section 6.2. The variable contribution methods applied in this study are 

described below. These methods were performed in addition to each constructed ANN model 

in Chapter 6 in order to examine the effects of the size of training and test set, model 

architecture, … on the relative importance of the environmental input variables on the habitat 
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suitability of the macroinvertebrates. The contribution methods discussed here are those 

applied in cases of networks with one hidden layer. 

 

 

7.2.1. The ‘PaD’ method 

 

This method makes a classification of the relative contributions of each variable to the 

network output, as a result of small changes of these input variables. For this classification, 

the partial derivatives of the ANN output with respect to the input are calculated (Dimopoulos 

et al., 1995, 1999). For a network with ne inputs, one hidden layer with ni neurons and one 

output (i.e. ns = 1), the partial derivatives of the output function  with respect to input xej, 

(with j = 1, …, N and N the total number of observations) are (parameter terms are based on 

Fig. 6.1): 

 

          (8.1) 

 

This is valid on the assumption that a logarithmic sigmoid function is used for the activation. 

When Sj is the derivative of the output neuron with respect to its input, Iij is the response of 

the ith hidden neuron, wis and wei are the weights between the output neuron and ith hidden 

neuron, and between the eth input neuron and the ith hidden neuron. 

 

As such, the relative contribution of the ANN output to the data set with respect to an input is 

obtained. It is calculated by a sum of the square derivatives for each input variable: 

 

           (8.2) 

 

One SSD (Sum of Square Derivatives) value is obtained per input variable, what allows the 

classification of the variables according to their increasing contribution to the output variable 

in the model. The input variable that has the highest SSD value is the variable, which 

influences the output most. 
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7.2.2. The ‘Weights’ method 

 

The procedure for partitioning the connection weights to determine the relative importance of 

the various inputs was proposed first by Garson (1991) and repeated by Goh (1995). The 

method essentially involves partitioning the hidden-output connection weights of each hidden 

neuron into components associated with each input neuron. This algorithm is simplified but 

gives results identical to the algorithm initially proposed: 

 

1. For each hidden neuron i, the absolute values of the connection weights between the 

hidden and the output layer (wis) are multiplied by the absolute values of the 

connection weights between the hidden and the input layer (wei). This is repeated for 

each input neuron. In this way, the product Pei was obtained: 

 

eiisei wwP ×=           (8.3) 

 

2. Pei is divided by the sum of all the input variables, i.e. 

 

For i = 1 to ni, 

For e = 1 to ne,  

  

∑
=

=
en

e
ei

ei
ei

P

P
Q

1

          (8.4) 

end, 

end. 

 

3. For each input neuron, divide the sum of the Qei for each hidden neuron by the sum for 

each hidden neuron of the sum for each input neuron of Qih, multiply by 100. The 

relative importance of all output weights attributable to the given input va

obtained. 

 

For e = 1 to ne

riable is then 
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end. 

 

 

7.2.3. The ‘Profile’ method 

 

The general idea of this method is to study each input variable successively when the others 

are blocked at fixed values (Lek et al., 1995, 1996a, b). The principle of this algorithm is to 

construct a fictitious matrix pertaining to the range of all input variables. For this, each 

variable is divided into a certain number of equal intervals between its minimum and 

maximum values. The chosen number of intervals is called the scale. In this work, a scale of 

12 was used between the minimum and maximum of the input variables.  

 

All variables except one are set initially (as many times as required for each scale) at their 

minimum values, then successively at their first quartile, median, third quartile and maximum. 

For each variable studied, five values for each of the scale’s points are obtained. These five 

values are reduced to the median value. Then the profile of the output variable can be plotted 

for the scale’s values of the variable considered. The same calculations can then be repeated 

for each of the other variables. For each variable a curve is then obtained. This gives a set of 

profiles of the variation of the dependent variable according to the increase of the input 

variables. In this way, for each input variable it can be derived if an increase in its value has a 

positive (curve with an increasing slope), a negative (curve with a decreasing slope) or not 

any (curve with a horizontal slope) effect on the probability of presence of the 

macroinvertebrate taxon. 

7.2.4. Evaluation of the contribution method stability 

In order to check the stability of each model, the training of the network was repeated k times, 

k-fold cross-validation, and the relative contributions of the input variables 

on the output obtained for each method and each trained network were noted. Based on this 

 

 

 

according to the 
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repetition, the average contribution of every variable for each method was calculated. The k-

fold cross-validation allowed also for calculating the standard deviation. This standard 

deviation gave an indication of the stability of each contribution method. 

 

 

7.3. Results 
 

7.3.1. Overall ranking of the environmental variables 

 

In Table 7.1 to 7.5, the overall ranking of the environmental input variables for the 

Tubificidae, Asellidae, Gammaridae, Baetis and Limnephilidae presence/absence ANN 

models (24-10-1) based on the 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9- and 10-fold cross-validation 

methods is presented for both the Zwalm river basin and the ‘short distance’ monitoring 

network. To make an overall ranking of the variables, the sum was made of the rankings per 

contribution method (‘PaD’, Weighs and ‘Profile’), and based on this sum, the overall ranking 

was determined. Based on Table 7.1 to 7.5, one can generally deduce that it is difficult to find 

major trends over the five taxa, both datasets and the nine cross-validation methods. The first 

can be explained by different ecological preferences of the taxa (cf. ecological expert 

knowledge in Chapter 4 and the data analysis in Chapter 5). The dissimilarity between both 

databases can be related to the different scales of measurements. In the Zwalm river basin, 

samples were spread over the entire river basin (large scale), while in the ‘short distance’ 

monitoring network samples were taken closer together (small scale) and the gradient from 

pure headwaters to more polluted main streams was much more obvious. Differences between 

the nine cross-validation methods can be associated with the different predictive performances 

obtained as discussed in Chapter 6, because different methods can probably use slightly other 

variables to predict the output. However, for most of the taxa the key environmental variables 

for the presence/absence could be detected.  

 

In the Section 7.3.2, the effect of the three contribution methods is examined in more detail. 

In addition, key variables for the presence/absence of the five taxa are analyzed and discussed 

from an ecological point of view. The graphs obtained by the best performing ANN models, 

as derived from Chapter 6 (4-fold cross-validation for all taxa combined with the optimal 

network architecture), are presented. 



 

Table 7.1. Comparison of the overall rankings of the input variables derived from the three contribution methods ‘Weights’, ‘PaD’ and ‘Profile’ 

for the Tubificidae presence/absence ANN models (24-10-1) on the basis of the 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9- and 10-fold cross-validation methods 

 Zwalm river basin ‘Short distance’ monitoring network 
k 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 
Width 17 15 8 8 5 6 14 2 4 2 18 22 15 8 13 12 11 13 
Embankment 20 13 20 19 23 18 22 22 24 14 15 17 14 24 18 16 22 24 
Meandering 15 7 9 9 8 11 9 7 9 6 6 13 16 23 17 11 20 20 
Pools-riffles 19 9 19 18 24 23 24 18 23 13 12 6 8 5 7 9 9 8 
Hollow banks 16 11 4 24 19 15 18 15 14 7 4 8 9 3 5 8 2 7 
Depth 3 23 7 15 22 2 13 10 18 19 8 12 4 9 6 5 7 11 
Flow velocity 2 5 2 3 11 3 3 3 1 24 14 7 17 12 15 13 12 10 
pH 22 20 6 12 16 4 16 16 12 8 17 24 21 18 21 21 14 21 
Temperature 8 16 18 10 13 19 20 20 16 11 2 14 12 10 19 18 17 22 
Dissolved oxygen 14 22 17 20 12 22 23 19 10 5 9 16 19 20 22 23 15 16 
Conductivity 5 4 14 14 15 12 17 17 21 3 13 10 5 13 8 7 8 5 
Suspended solids 7 19 22 11 3 10 12 8 15 12 19 15 13 22 16 14 23 14 
Ammonium 9 14 3 1 14 13 1 12 7 16 10 9 10 7 9 17 6 9 
Nitrate 1 18 16 2 1 1 5 1 3 10 11 5 2 2 3 3 3 1 
Total nitrogen 4 8 13 16 9 7 10 14 11 21 16 18 18 14 14 10 16 18 
Phosphate 12 24 24 22 17 21 6 23 19 18 7 4 6 15 10 6 13 12 
Total phosphorus 10 2 10 5 7 5 11 4 6 22 24 11 11 11 11 15 10 6 
COD  11 12 21 17 18 20 15 13 17 17 20 23 24 21 20 19 24 17 
Pebbles 21 21 23 23 20 24 19 21 22 23 21 19 23 17 24 24 18 19 
Gravel 6 10 5 6 6 14 4 6 2 20 23 21 22 16 12 22 21 15 
Sand 18 6 12 13 10 16 7 11 13 9 3 3 3 4 1 2 4 4 
Loam/clay 13 17 15 21 21 17 21 24 20 15 22 20 20 19 23 20 19 23 
Distance to mouth 24 3 1 7 2 8 2 9 8 1 5 2 7 6 4 4 1 3 
Stream order 23 1 11 4 4 9 8 5 5 4 1 1 1 1 2 1 5 2 
 
 
 

 



 

Table 7.2. Comparison of the overall rankings of the input variables derived from the three contribution methods ‘Weights’, ‘PaD’ and ‘Profile’ 

for the Asellidae presence/absence ANN models (24-10-1) on the basis of the 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9- and 10-fold cross-validation methods 

 Zwalm river basin ‘Short distance’ monitoring network 
k 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 
Width 1 2 1 1 1 1 1 1 1 2 8 8 6 2 2 11 3 4 
Embankment 9 14 18 17 17 22 22 18 18 21 14 23 17 23 21 14 20 15 
Meandering 14 8 8 9 9 9 8 10 13 15 19 14 12 17 18 18 15 16 
Pools-riffles 12 12 9 15 16 20 24 14 23 16 11 12 7 10 12 7 12 10 
Hollow banks 3 4 3 3 3 3 5 3 3 11 5 17 18 14 16 16 14 19 
Depth 7 5 11 4 5 4 3 4 5 7 20 7 9 11 6 5 4 7 
Flow velocity 17 16 22 19 22 23 18 21 20 17 22 22 22 21 24 24 21 22 
pH 13 21 16 18 24 17 20 16 11 22 15 24 20 24 23 19 23 21 
Temperature 24 6 6 6 13 7 11 8 8 23 21 19 21 22 20 20 24 20 
Dissolved oxygen 8 13 15 11 11 11 14 13 12 20 16 6 13 15 19 17 16 17 
Conductivity 23 20 20 24 21 12 17 22 19 6 3 11 14 4 10 12 8 14 
Suspended solids 15 11 21 23 18 14 23 20 24 5 6 9 3 8 8 6 7 5 
Ammonium 10 15 12 10 8 10 10 12 9 19 12 4 10 9 9 8 10 8 
Nitrate 5 7 7 8 6 6 6 7 7 10 17 15 15 12 4 13 9 11 
Total nitrogen 6 9 4 7 7 8 7 6 6 9 9 10 8 6 11 15 11 12 
Phosphate 19 18 19 20 20 24 19 23 22 12 24 21 23 20 17 21 19 23 
Total phosphorus 16 19 13 21 12 21 15 17 15 18 10 13 11 13 13 9 13 13 
COD  20 10 10 16 15 18 13 15 16 13 18 16 19 18 14 23 17 18 
Pebbles 18 22 23 14 19 15 12 11 14 4 4 5 4 7 5 3 5 6 
Gravel 21 24 14 12 14 13 9 9 10 24 23 18 24 19 22 22 22 24 
Sand 11 17 17 13 10 19 21 19 17 8 7 3 5 5 7 4 6 3 
Loam/clay 22 23 24 22 23 16 16 24 21 14 13 20 16 16 15 10 18 9 
Distance to mouth 4 3 5 5 4 5 2 5 4 3 2 1 2 3 3 2 2 2 
Stream order 2 1 2 2 2 2 4 2 2 1 1 2 1 1 1 1 1 1 
 
 
 

 



 

 

Table 7.3. Comparison of the overall rankings of the input variables derived from the three contribution methods ‘Weights’, ‘PaD’ and ‘Profile’ 

for the Gammaridae presence/absence ANN models (24-10-1) on the basis of the 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9- and 10-fold cross-validation methods 

 Zwalm river basin ‘Short distance’ monitoring network 
k 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 
Width 1 8 9 7 7 16 11 9 12 7 8 10 8 15 10 10 15 12 
Embankment 24 23 23 22 24 24 24 21 21 19 15 15 18 20 18 15 10 14 
Meandering 22 20 18 17 20 22 19 18 18 9 7 7 7 7 8 6 6 4 
Pools-riffles 21 16 19 19 16 17 18 15 20 15 14 11 9 12 6 7 7 9 
Hollow banks 13 15 17 18 12 14 16 11 19 21 20 24 24 24 21 24 23 23 
Depth 8 4 7 5 3 3 3 2 6 1 1 1 1 1 1 1 1 1 
Flow velocity 12 12 13 12 14 7 13 10 10 3 4 3 2 3 5 5 9 5 
pH 17 13 12 15 18 18 15 13 14 18 18 23 15 18 19 20 20 20 
Temperature 5 5 6 6 4 6 4 4 5 16 16 14 16 16 14 17 13 13 
Dissolved oxygen 14 22 14 20 15 11 17 14 15 11 5 8 12 9 9 12 4 8 
Conductivity 2 1 4 1 1 4 1 7 4 4 3 4 5 8 7 8 11 6 
Suspended solids 6 9 8 13 9 13 8 23 11 23 22 13 17 17 17 14 16 17 
Ammonium 4 2 2 3 6 5 6 5 3 2 2 5 3 2 2 2 3 2 
Nitrate 9 11 15 10 11 8 12 12 8 10 12 9 11 13 11 13 12 10 
Total nitrogen 20 19 22 24 23 23 23 24 22 13 21 16 23 14 15 18 18 15 
Phosphate 23 17 24 16 17 19 20 16 17 8 9 12 13 6 12 9 8 11 
Total phosphorus 11 6 11 11 19 15 10 17 13 5 10 6 6 5 3 4 2 3 
COD  15 10 1 2 5 2 5 3 2 6 6 2 4 4 4 3 5 7 
Pebbles 19 24 20 23 22 20 21 22 23 17 19 19 19 21 24 21 22 24 
Gravel 16 21 16 14 13 10 14 19 16 24 24 20 21 23 23 23 24 22 
Sand 18 18 21 21 21 21 22 20 24 14 13 21 20 19 20 22 19 19 
Loam/clay 7 7 5 9 8 9 7 6 7 12 11 22 10 10 16 16 14 16 
Distance to mouth 3 3 3 4 2 1 2 1 1 22 23 18 14 11 13 11 17 21 
Stream order 10 14 10 8 10 12 9 8 9 20 17 17 22 22 22 19 21 18 
 
 
 



 

 

Table 7.4. Comparison of the overall rankings of the input variables derived from the three contribution methods ‘Weights’, ‘PaD’ and ‘Profile’ 

for the Baetis presence/absence ANN models (24-10-1) on the basis of the 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9- and 10-fold cross-validation methods 

 Zwalm river basin ‘Short distance’ monitoring network 
k 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 
Width 11 6 17 8 21 19 20 12 19 15 23 24 9 21 16 18 16 18 
Embankment 18 16 14 17 13 7 6 10 13 6 15 13 21 14 14 16 14 10 
Meandering 16 18 18 19 18 17 14 20 20 18 24 22 24 24 24 24 24 23 
Pools-riffles 23 14 12 24 19 13 10 15 14 16 8 3 8 7 9 8 5 7 
Hollow banks 10 10 8 6 12 4 4 8 7 22 22 17 23 23 23 22 22 20 
Depth 3 7 7 13 4 6 5 5 6 7 11 5 3 5 7 6 1 2 
Flow velocity 17 19 15 16 10 5 12 7 8 1 2 8 7 8 6 7 10 8 
pH 15 15 6 14 8 10 21 17 9 10 21 10 14 13 10 12 8 9 
Temperature 1 1 2 1 2 2 2 2 2 17 12 9 5 9 8 9 12 11 
Dissolved oxygen 24 11 20 10 17 23 19 19 23 2 3 6 4 6 3 4 4 3 
Conductivity 2 20 19 11 16 21 22 21 18 5 4 1 2 1 1 3 2 1 
Suspended solids 13 4 1 2 1 1 1 1 1 11 6 11 15 16 11 10 13 12 
Ammonium 5 3 3 3 5 8 7 3 3 20 9 19 22 17 15 17 18 21 
Nitrate 12 2 4 4 3 3 3 4 4 8 1 4 10 3 5 2 6 4 
Total nitrogen 19 17 16 15 22 15 17 16 21 14 10 21 12 15 21 14 19 19 
Phosphate 4 8 9 12 7 11 8 11 10 13 16 15 19 22 19 13 23 15 
Total phosphorus 21 13 11 20 14 18 16 14 15 4 7 7 1 2 2 1 7 6 
COD  7 12 10 9 9 12 9 9 11 3 19 12 17 11 12 20 15 16 
Pebbles 8 9 13 7 11 14 13 13 12 19 13 20 20 12 20 15 20 22 
Gravel 22 22 23 23 23 20 18 23 16 21 20 14 18 20 18 23 21 24 
Sand 9 24 22 21 15 22 23 18 22 24 17 16 13 18 17 21 17 17 
Loam/clay 6 5 5 5 6 6 11 6 5 9 14 23 11 10 22 11 11 13 
Distance to mouth 14 21 21 18 20 16 15 24 17 12 18 18 16 19 13 19 9 14 
Stream order 20 23 24 22 24 24 24 22 24 23 5 2 6 4 4 5 3 5 
 
 
 



 

 

Table 7.5. Comparison of the overall rankings of the input variables derived from the three contribution methods ‘Weights’, ‘PaD’ and ‘Profile’ 

for the Limnephilidae presence/absence ANN models (24-10-1) on the basis of the 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9- and 10-fold cross-validation 

methods 

 Zwalm river basin ‘Short distance’ monitoring network 
k 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 
Width 16 11 11 12 10 8 10 6 11 6 7 4 7 6 5 5 6 5 
Embankment 23 19 15 24 23 17 21 23 21 12 16 18 12 17 21 19 14 14 
Meandering 9 8 20 17 14 14 15 22 16 20 22 21 22 20 19 17 16 16 
Pools-riffles 17 23 24 23 17 24 24 24 22 8 5 9 5 5 7 6 7 6 
Hollow banks 2 2 1 2 2 2 2 2 2 21 23 14 16 22 15 15 17 19 
Depth 10 5 3 10 6 5 6 9 14 18 6 7 8 12 9 10 15 8 
Flow velocity 20 9 16 5 8 12 11 10 17 7 12 11 19 11 16 13 18 15 
pH 19 20 13 21 24 18 13 14 15 14 19 8 11 10 17 11 12 9 
Temperature 7 12 5 6 4 3 5 3 6 2 9 15 9 19 10 14 9 20 
Dissolved oxygen 11 6 19 7 12 6 9 11 12 11 4 1 1 2 3 2 4 1 
Conductivity 13 3 12 11 15 10 18 17 10 24 15 23 18 21 18 23 13 23 
Suspended solids 12 16 7 14 13 16 12 15 18 19 17 19 23 23 22 16 19 22 
Ammonium 5 4 4 3 3 4 4 1 4 22 11 16 13 15 12 18 11 16 
Nitrate 15 22 17 13 11 19 19 13 9 17 21 22 20 14 23 22 24 21 
Total nitrogen 14 14 21 19 16 23 17 16 19 9 1 2 2 3 1 1 3 2 
Phosphate 6 15 10 20 18 11 14 12 8 4 2 3 3 1 2 4 1 3 
Total phosphorus 24 13 18 15 22 15 16 20 13 10 10 12 14 9 6 12 8 11 
COD  18 18 23 18 21 22 23 19 24 16 20 20 17 24 14 24 22 17 
Pebbles 21 21 22 16 20 20 20 18 20 23 13 17 21 16 24 20 20 13 
Gravel 8 17 8 8 7 13 7 8 5 5 18 13 15 13 13 9 21 12 
Sand 22 24 14 22 19 21 22 21 23 13 24 24 24 18 20 21 23 24 
Loam/clay 4 10 9 9 9 9 8 7 7 15 14 10 10 8 11 7 10 10 
Distance to mouth 1 1 2 1 1 1 1 4 1 3 8 6 4 7 8 8 5 7 
Stream order 3 7 6 4 5 7 3 5 3 1 3 5 6 4 4 3 2 4 
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7.3.2. Effect of the environmental characteristics on the habitat suitability based on the 

three selected contribution methods 

 

7.3.2.1. The Zwalm river basin 

 

In Fig. 7.1 to 7.10, the outcomes of three input variable contribution methods (‘PaD’, 

‘Weights’ and ‘Profile’) for the presence/absence models of Tubificidae, Asellidae, 

Gammaridae, Baetis and Limnephilidae are presented. 

 

Based on the Zwalm river basin dataset, the variables ammonium (followed by stream order 

and distance to mouth) and nitrate (followed by distance to mouth and total phosphorus) had 

the highest contribution for Tubificidae based on respectively the ‘Weights’ and the ‘PaD’ 

method. Their contributions were respectively 5.32 % (ammonium), 5.21 % (stream order) 

and 5.04 % (distance to mouth) and 12.09 % (nitrate), 8.86 % (distance to mouth) and 6.89 % 

(total phosphorus). The standard deviation represented by the error bars, was relatively high 

for most of the variables based on the ‘PaD’ method. This indicated that the ‘PaD’ method 

was not very stable over the four folds, when the contributions were expressed as values. 

However, the ranking of the relative contribution of the variables was stable over the different 

folds. The standard deviation obtained with the ‘Weights’ method was in general rather small. 

Based on the ‘Profile’ method, no clear distinction between the different variables could be 

observed for Tubificidae. However, the curves of total phosphorus and nitrate could be 

distinguished if zoomed in. An increase of the total phosphorus and nitrate concentration 

induced a decrease of the probability of presence of Tubificidae. The range between the 

minimum and maximum of the other input variables was very small, i.e. they were of minor 

importance. 

 

For Asellidae, stream order, width and distance to mouth were the major input variables based 

on both the ‘PaD’ and the ‘Weights’ method. Their contributions were 7.77 % and 22.23 %, 

6.20 % and 16.78 %, and 5.78 % and 12.42 % for respectively the ‘Weighs’ and ‘PaD’ 

method. Although the standard deviations were smaller in comparison with Tubificidae, the 

same conclusions could be drawn for the stability of both methods. Based on the ‘Profile’ 

method, the variables width, hollow banks and stream order were best expressed. Because it 

covered the largest range, width can be seen as the environmental variable with the greatest 

effect on the presence/absence of Asellidae based on the ‘Profile’ method. An increase of the 
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river width meant an increase of the probability of the presence of Asellidae. Similarly, an 

increase of the value of hollow banks and stream order led to an increase of the probability of 

presence of Asellidae. 

 

Based on the ‘Weights’ and ‘PaD’ method, distance to mouth (respectively 5.30 % and 10.82 

%) and temperature (respectively 5.27 % and 10.09 %) were the major contributing variables 

for Gammaridae. The standard deviation of the ‘PaD’ method was high for the most important 

variables, while rather small on the basis of the ‘Weights’ method. Based on the ‘Profile’ 

method, water quality related variables were of major importance. The variables conductivity, 

COD and ammonium were best expressed. The probability of presence of Gammaridae 

decreased if the concentration of these variables increased. 

 

For Baetis, suspended solids, ammonium, temperature and nitrate had the highest influence on 

the prediction of the output. Their contributions were 6.75 % and 20.56 %, 5.68 % and 10.78 

%, 5.85 % and 10.34 %, and 5.26 % and 8.97 % based on respectively the ‘Weights’ and the 

‘PaD’ method. Both methods were rather stable as derived from the error bars. Based on the 

‘Profile’ method, minor distinction between the different variables could be observed for 

Baetis. However, an increase of suspended solids induced a decrease in the probability of 

presence. 

 

For both the ‘Weights’ and the ‘PaD’ method, stream order (respectively 7.74 % and 15.73 

%) and hollow banks (respectively 6.68 % and 11.11 %) were the key variables predicting 

Limnephilidae. Based on the ‘Profile’ method, suspended solids was the only variable which 

could be distinguished. An increase in concentration led to a decrease of the probability of 

presence of Limnephilidae. 
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Fig. 7.1. Contribution of the environmental variables used in the 24-5-1 ANN model for 

Tubificidae based on the ‘PaD’ (= grey bar) and the ‘Weights’ (= black bar) method (Zwalm 

river basin dataset). 
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Fig. 7.2. Contribution of the environmental variables used in the 24-5-1 ANN model for 

Tubificidae based on the ‘Profile’ method (Zwalm river basin dataset). 
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Fig. 7.3. Contribution of the environmental variables used in the 24-10-1 ANN model for 

Asellidae based on the ‘PaD’ (= grey bar) and the ‘Weights’ (= black bar) method (Zwalm 

river basin dataset). 
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Fig. 7.4. Contribution of the environmental variables used in the 24-10-1 ANN model for 

Asellidae based on the ‘Profile’ method (Zwalm river basin dataset). 
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Fig. 7.5. Contribution of the environmental variables used in the 24-15-1 ANN model for 

Gammaridae based on the ‘PaD’ (= grey bar) and the ‘Weights’ (= black bar) method (Zwalm 

river basin dataset). 
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Fig. 7.6. Contribution of the environmental variables used in the 24-15-1 ANN model for 

Gammaridae based on the ‘Profile’ method (Zwalm river basin dataset). 
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Fig. 7.7. Contribution of the environmental variables used in the 24-10-1 ANN model for 

Baetis based on the ‘PaD’ (= grey bar) and the ‘Weights’ (= black bar) method (Zwalm river 

basin dataset). 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 2 3 4 5 6 7 8 9 10 11 12

B
ae

tis
 (P

ro
ba

bi
lit

y 
of

 p
re

se
nc

e)

Width Embankment Meandering
Pools-riffles Hollow banks Depth
Flow velocity pH Temperature
Dissolved oxygen Conductivity Suspended solids
Ammonium Nitrate Total nitrogen
Phosphate Total phosphorus COD
Pebbles Gravel Sand
Loam/clay Distance to mouth Stream order

 
Fig. 7.8. Contribution of the environmental variables used in the 24-10-1 ANN model for 

Baetis based on the ‘Profile’ method (Zwalm river basin dataset). 
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Fig. 7.9. Contribution of the environmental variables used in the 24-5-1 ANN model for 

Limnephilidae based on the ‘PaD’ (= grey bar) and the ‘Weights’ (= black bar) method 

(Zwalm river basin dataset). 
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Fig. 7.10. Contribution of the environmental variables used in the 24-5-1 ANN model for 

Limnephilidae based on the ‘Profile’ method (Zwalm river basin dataset). 

 183



Chapter 7: Application of input variable contribution methods to Artificial Neural Network models for selection 
of habitat suitability variables 

 
7.3.2.2. ‘short distance’ monitoring network 

 

In Fig. 7.11 to 7.20, the results of the ‘PaD’, ‘Weights’ and ‘Profile’ methods for the 

presence/absence models of Tubificidae, Asellidae, Gammaridae, Baetis and Limnephilidae 

are presented. 

 

Based on the ‘short distance’ monitoring network database, stream order and sand were key 

variables to predict the presence/absence of Tubificidae on the basis of both the ‘Weights’ and 

the ‘PaD’ method. Stream order and sand have contributions of respectively 5.96 % and 13.80 

%, and 5.82 % and 10.87 % for the ‘Weights’ and the ‘PaD’ method. The standard deviation 

represented by the error bars, was relatively high for most of the variables based on the ‘PaD’ 

method. This indicated that the ‘PaD’ method was not very stable over the four folds, when 

the contributions were expressed as values. However, the ranking of the relative contribution 

of the variables was stable over the different folds. The standard deviation obtained with the 

‘Weights’ method was in general rather small. Based on the ‘Profile’ method, the only 

variable which was expressed well was nitrate. An increase in nitrate concentration led to a 

decrease of the probability of presence. 

 

For Asellidae, the most important variables based on the three methods were distance to 

mouth and stream order. They had a contribution of respectively 8.64 % and 22.21 %, and 

7.62 % and 18.57 % based on the ‘Weights’ and ‘PaD’ method. The other variables were of 

minor importance for the prediction of the presence/absence. Based on the ‘Profile’ method, 

an increase of distance to mouth and stream order induced respectively decrease and an 

increase in the probability of presence of Asellidae. 

 

For Gammaridae, the major variables were depth (respectively 7.16 % and 18.44 %) and 

ammonium (respectively 6.12 % and 12.86 %) for both the ‘Weights’ and ‘PaD’ method. In 

addition, COD, flow velocity and total phosphorus had a paramount effect on the prediction 

of the output. Based on the ‘Profile’ method, depth, COD and flow velocity were best 

expressed. Gammaridae preferred more shallow streams with a relatively high flow velocity 

and low COD concentrations. 

 

For Baetis, key variables were stream order (6.59 %) and nitrate (6.40 %) based on the 

‘Weights’ method while the variables stream order (15.90 %), pools-riffles (10.79 %), 
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conductivity (10.50 %) and dissolved oxygen (9.83 %) had the highest contribution based on 

the ‘PaD’ method. On the basis of the ‘Profile’ method, conductivity, depth, nitrate and total 

phosphorus had the highest effect on the probability of presence of Baetis. 

 

Based on the ‘Weights’ method, dissolved oxygen (6.53 %), distance to mouth (5.53 %) and 

total nitrogen (5.47 %) were the most important variables for Limnephilidae. On the other 

hand, dissolved oxygen (16.10 %), stream order (10.29 %) and total nitrogen (9.92 %) were of 

major importance based on the ‘PaD’ method. Similar to the previous taxa, high standard 

deviations for the most important variables were observed based on the ‘PaD’ method 

whereas rather small standard deviations were detected for the ‘Weights’ method. Derived 

from the ‘Profile’ method, phosphate, total nitrogen and dissolved oxygen had the highest 

impact on the probability of presence. An increase in dissolved oxygen concentration led to an 

increase of the probability of presence. On the contrary, an increase in phosphate and total 

nitrogen concentration induced a decrease in Limnephilidae. 
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Fig. 7.11. Contribution of the environmental variables used in the 24-15-1 ANN model for 

Tubificidae based on the ‘PaD’ (= grey bar) and the ‘Weights’ (= black bar) method (‘short 

distance’ monitoring network dataset). 
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Fig. 7.12. Contribution of the environmental variables used in the 24-15-1 ANN model for 

Tubificidae based on the ‘Profile’ method (‘short distance’ monitoring network dataset). 
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Fig. 7.13. Contribution of the environmental variables used in the 24-10-1 ANN model for 

Asellidae based on the ‘PaD’ (= grey bar) and the ‘Weights’ (= black bar) method (‘short 

distance’ monitoring network dataset). 
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Fig. 7.14. Contribution of the environmental variables used in the 24-10-1 ANN model for 

Asellidae based on the ‘Profile’ method (‘short distance’ monitoring network dataset). 
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Fig. 7.15. Contribution of the environmental variables used in the 24-10-10-1 ANN model for 

Gammaridae based on the ‘PaD’ (= grey bar) and the ‘Weights’ (= black bar) method (‘short 

distance’ monitoring network dataset). 
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Fig. 7.16. Contribution of the environmental variables used in the 24-10-10-1 ANN model for 

Gammaridae based on the ‘Profile’ method (‘short distance’ monitoring network dataset). 
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Fig. 7.17. Contribution of the environmental variables used in the 24-10-1 ANN model for 

Baetis based on the ‘PaD’ (= grey bar) and the ‘Weights’ (= black bar) method (‘short 

distance’ monitoring network dataset). 
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Fig. 7.18. Contribution of the environmental variables used in the 24-10-1 ANN model for 

Baetis based on the ‘Profile’ method (‘short distance’ monitoring network dataset). 
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Fig. 7.19. Contribution of the environmental variables used in the 24-10-1 ANN model for 

Limnephilidae based on the ‘PaD’ (= grey bar) and the ‘Weights’ (= black bar) method (‘short 

distance’ monitoring network dataset). 
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Fig. 7.20. Contribution of the environmental variables used in the 24-10-1 ANN model for 

Limnephilidae based on the ‘Profile’ method (‘short distance’ monitoring network dataset). 
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7.3.2.3. Stability of the contribution methods 

 

As mentioned in the material and methods’ section, the stability of the contribution methods 

was checked based on the k repetitions, according to the k-fold cross-validation. Based on this 

repetition, the average contribution of every variable for each method was calculated. In 

addition, the standard deviation was determined. This standard deviation gave an indication of 

the stability of each contribution method. In the previous paragraphs, the standard deviation is 

represented by the error bars for both the ‘Weights’ and ‘PaD’ method. 

 

In general, the standard deviation was relatively high for most of the variables based on the 

‘PaD’ method, especially for the most important variables. This indicated that the ‘PaD’ 

method was not very stable over the four folds, when the contributions were expressed as 

values. However, the ranking of the relative contribution of the variables was stable over the 

different folds. The standard deviation obtained with the ‘Weights’ method was in general 

rather small, demonstrating this method was more stable. 

 

The stability of the ‘Profile’ method was determined in the same way as for the ‘Weights’ and 

‘PaD’ method: the average of the four curves was taken and the standard deviation was 

derived. The standard deviation of the ‘Profile’ curves however was difficult to visualize in 

the figures above since all variables were presented in one chart for practical reasons. In Fig. 

7.21, an example of the stability of the ‘Profile’ method is illustrated for Asellidae for the four 

major variables (width, hollow banks, stream order and total nitrogen) of the Zwalm river 

basin dataset. This is repeated for the other taxa, variables and dataset. 

 

Although, the four profiles (based on the four cross-validation steps) presented a similar trend, 

they varied slightly in shape, slope and covered range, resulting in small standard deviation 

flags. However, this variation was rather small as could be deduced from the examples in Fig. 

7.21. Similar results were obtained for the other ‘Profile’ methods performed on the other 

taxa, variables and dataset. 
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Fig. 7.21. Contribution and stability of the four major environmental variables (a = width, b = 

hollow banks, c = stream order, d = total nitrogen) used in the 24-10-1 ANN model for 

Asellidae based on the ‘Profile’ method (Zwalm river basin dataset). 

 

 

7.4. Discussion 
 

The dependence of a species or a community on its habitat is a crucial hypothesis in ecology 

(Wagner et al., 2000). Thus, the prediction of species or populations based on habitat 

characteristics is an challenging task in basic and applied ecology (Baran et al., 1996; 

Whitehead et al., 1997) and can be of high interest for managers and engineers dealing with 

rivers and channels (Lek et al., 1996a; Mastrorillo et al., 1997b; Guégan et al., 1998). To this 

end, ANN models have been shown to reveal a high predictive power (e.g. Lek and Guégan, 

1999). These models are in particular very powerful in dealing with non-linear relationships 

between for example environmental variables. ANN models are also recognized to make 

reliable predictions of river invertebrates as discussed in Chapter 2.  

 

The use of macroinvertebrates can also be justified since many studies have revealed that 

these organisms are important biological indicators of water quality (Klemm et al., 2002). 

Moreover, the European Union Water Framework Directive states that invertebrate fauna 

a 

c 

b 
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should be part of the ecological assessment system for rivers (EU, 2000). Macroinvertebrates 

reflect the biological integrity of the aquatic ecosystem (Davis and Simon, 1995; Klemm et 

al., 1990; Rosenberg and Resh, 1993). Numerous macroinvertebrate species having relatively 

long life cycles of one year or more, are especially important biological indicators of site 

conditions over time, and respond rapidly and predictably to changes in water quality and 

habitat changes. Additionally, some groups are tolerant and are found in polluted 

environments, while other groups are intolerant and respond to either specific stressors or a 

wide array of stressor and anthropogenic disturbances (Davis and Simon, 1995; Karr and Chu, 

1999; Klemm et al., 1990; Meyer, 1997; Rosenberg and Resh, 1993). In this way, 

Tubificidae, Asellidae, Gammaridae, Baetis and Limnephilidae were selected as 

representative taxa because of their variable presence in the Zwalm river basin, and their use 

as bio-indicators in river quality assessment (e.g. De Pauw and Vannevel, 1991; MacNeil et 

al., 2002; Tachet et al., 2002). 

 

The lack of illustrative power of these ANN models however is a major concern to ecologists 

since the interpretation of statistical models is desirable for gaining knowledge of the 

relationships driving ecological phenomena (Olden and Jackson, 2002). In this way, ANN 

models have been labelled as ‘black box’. To make them more transparent and enlarge their 

explanatory capacity, different methods like contribution or sensitivity analysis are being 

developed (e.g. Dimopoulos et al., 1995, 1999; Garson, 1991; Goh, 1995; Lek et al., 1996a, 

b; Olden and Jackson, 2002; Scardi and Harding, 1999). In this study, three contribution 

methods were selected and applied to the ANN models: the ‘Weights’, the ‘PaD’ and the 

‘Profile’ method. These methods seemed to outperform the other methods according to former 

studies based on macroinvertebrates in the same study area (Dedecker et al., 2005b, c; 

Goethals, 2005). The selected contribution methods helped to identify environmental factors 

influencing the habitat suitability of Tubificidae, Asellidae, Gammaridae, Baetis and 

Limnephilidae. 

 

The ‘Profile’ method provided two elements of information on the contribution of the 

variables. On the one hand, this method presented the order of contribution of the different 

environmental variables, on the other hand, gave direct interpretation of the effect of river 

characteristics on the probability of presence. The investigation of the sensitivity curves could 

enhance the understanding of the effects of impacts of various types on individual 

macroinvertebrate taxa (Marshall et al., 2002). In this way, the ‘Profile’ method can help to 
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identify impact-specific indicator taxa and enhance the capacity to monitor, assess and 

mitigate the effects of human activities on river ecosystems. The other methods (‘PaD’ and 

‘Weights’) were merely able to classify the variables by order of their importance, in other 

words, to reveal their contribution to the output. 

 

The ‘Weights’ and ‘PaD’ method seemed to give similar results concerning the order of 

importance of the paramount input variables. The ‘PaD’ method however seemed to 

distinguish more clearly minor and major contributing environmental variables in comparison 

to the ‘Weights’ methods. Similar results were found by Gevrey et al. (2003), Dedecker et al. 

(2005b, c) and Goethals (2005). In those studies, the relation between environmental variables 

and respectively trout spawning site density, Gammarus and Asellus was predicted. These 

results are rather logical, because each method expresses a different aspect of sensitivity or 

importance of the environmental variables to the presence/absence of the taxa. In case of the 

‘Weights’ method, the overall importance of the input variables is taken into account, while 

the ‘PaD’ method makes a classification of the relative contributions of each variable to the 

network output. The input variable that has the highest SSD value is the variable, which 

influences the output most. This method is therefore very good to detect the variables of 

major concern. 

 

The results of the ‘Profile’ method were in general quite different in comparison to the 

‘Weights’ and ‘PaD’ method. The impact of minimum and maximum values of the input 

variables is very important for this curves and was used to determine the rank of the variables. 

However, differences between minimum and maximum value were often very small, 

providing sometimes a biased rank based on this technique. More important is the trend of the 

different variables itself. A major outcome of these techniques is that only a few variables 

(about four) really seem to play a role in the models, while the effect of the other variables 

seems almost nil for the predictions (very horizontal curves). The charts obtained for 

Tubificidae were an exception since no clear trend could be observed for any variable. The 

performance (especially Cohen’s kappa) of these models was also very poor. In general, they 

were not able to find major trends in the data and predicted Tubificidae in most cases as 

present what could be explained by the obtained ‘Profile’ curves. This type of graphs is 

therefore crucial to find out how ecologically sound the models are and what their meaning 

can be for practical simulations. Only when the variables of interest to managers take crucial 

part in the predictions, the models will be useful for decision support in river management. 

 194



Chapter 7: Application of input variable contribution methods to Artificial Neural Network models for selection 
of habitat suitability variables 

 
Thus, the combination of the ‘PaD’ method and the ‘Profile’ method gives a clear idea of the 

ecological meaning of the models and their practical relevance for decision support of river 

management. 

 

The outcomes of the three contribution methods are not always very constant over the 

different subsets, as can be deduced from the standard deviation flags in the graphs. The 

highest standard deviation was found for the ‘PaD’ method, especially for the key input 

variables. The standard deviations obtained with the ‘Weights’ and the ‘Profile’ method 

however were in general rather small, demonstrating that these methods were more stable. 

These often large standard deviation can be a results of outliers. Perhaps these could also be 

reduced by making stratified subsets based on these major variables (in addition to the output 

variables). 

 

From an ecological point of view, pollution related variables, such as ammonium, 

conductivity, COD and total phosphorus, as well as variables defining the river type (e.g. 

distance to mouth) and the physical habitat (e.g. temperature, depth and flow velocity) were 

essential to describe the habitat of Gammaridae in the Zwalm river basin according to the 

different contribution methods. In particular, the input variables ammonium and COD and to 

a smaller extent conductivity and total phosphorus, were of major importance in predicting 

the habitat suitability of Gammaridae in the Zwalm river basin and the ‘short distance’ 

monitoring network. Based on the ‘Profile’ method, an increase in the concentration of 

ammonium, COD and conductivity were correlated with a decrease in the probability of 

presence of Gammaridae. This is confirmed by Hawkes (1979) who stated that Gammaridae 

is suppressed by high organic loads and by Whitehurst and Lindsey (1990) who stated that 

Gammaridae is intolerant to organic sewage. Organic pollution is normally a result of 

discharges from sewers, industrial effluents and agricultural run-off. Especially agricultural 

activities are responsible for organic pollution in the Zwalm river basin. Also dissolved 

oxygen expresses an important notion of organic pollution present in the rivers. Although 

dissolved oxygen had less influence on the prediction of the output, the ‘Profile’ method 

indicated that the habitat suitability of Gammaridae improved when dissolved oxygen 

concentration increased. That is affirmed by Wesenberg-Lund (1982) who stated that 

Gammaridae are almost non-tolerant to low oxygen conditions. However, these conditions 

were hardly present anymore in the Zwalm and pollution problems are more related to 

increased nutrient levels. Also a minor relationship between conductivity and the probability 
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of presence of Gammaridae was found in the Zwalm river basin during the period 2000-2003. 

Steenbergen (1993) mentioned that Gammaridae are sensitive to high conductivity values. In 

relation to freshwaters, this variable may describe pollution caused by agricultural activities 

and treated or untreated wastewater effluents. At conductivity values above 1000 µS/cm, 

Gammaridae should experience negative influences. However, conductivity values higher 

than 1000 µS/cm were very rare in this study area (Chapter 5). This could explain why 

conductivity was not identified as an important variable in the present study. Modelling 

studies were made in Flanders, Belgium, on the basis of datasets from several catchments 

during other periods. For example Adriaenssens et al. (2005), who used international expert 

knowledge from literature, concluded that the environmental variable conductivity explained 

a major part of the abundance based on fuzzy knowledge-based models. The same results 

were obtained when decision trees were used in combination with input variable selection by 

means of genetic algorithms (D’heygere et al., 2003) applied on the river sediments in 

Flanders. Although pollution related variables seemed to be of high importance to predict the 

presence/absence of Gammaridae, habitat characteristics such as distance to mouth and depth 

also had a high influence on the output. Contrary to what was expected, flow velocity was 

only considered a relatively relevant variable in the ‘short distance’ monitoring network. 

Based on the Moog (1995) and Bayerisches Landesamt für Wasserwirtschaft (1996) however, 

Gammaridae prefer rather fast running streams, due to its very good swimming abilities 

(Brehm and Meijering, 1990). Also in the headwaters of the Zwalm river basin Gammaridae 

were more abundant then in the lower parts. As a consequence, Gammaridae have potential as 

a good indicator organism in those headwaters, since this habitat is more suited by nature for 

this taxon. In this way, the methods for testing the contributions of the different input 

variables facilitate the selection of the suitable habitats in which certain species can or cannot 

act as an indicator organism for the assessment and management of rivers. This study 

demonstrated that Gammaridae can be considered as an indicator of nutrient related pollution, 

which is of major importance in Flanders. The selection of the Gammaridae as an indicator 

taxon in the Belgian Biotic Index method can therefore be motivated on the basis of these 

results. 

 

When analysing the ecological relevance of the models for Asellidae, it seems that the river 

continuum concept (Vannote et al., 1980) is very well confirmed by the data (distance to 

mouth and stream order variables). For Asellidae, the environmental variables describing the 

stream type (width, stream order and distance to mouth) were, beside hollow banks, the most 
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significant variables in the Zwalm river basin. In the ‘short distance’ monitoring network, 

only distance to mouth and stream order were detected as significant variables. Based on the 

‘Profile’ method, an increase of the river width resulted in an increase of the probability of 

presence of Asellidae for both datasets. This is confirmed by field experience (see Chapter 5) 

and by Steenbergen (1993). In a study by Goethals et al. (2001), classification trees were used 

to predict the presence/absence of Asellidae. The only rule generated by the classification 

trees was: ‘if width is more than 3.5 meters, then Asellidae are present, while absent in the 

more narrow streams’. Logically, the highly correlated variables stream order and distance to 

mouth (see Chapter 5) were also very important. Similar ecological interpretations could be 

drawn from these variables: an increase of depth and stream order led to an improvement of 

the habitat suitability of Asellidae. On the other hand, an increase of distance to mouth 

resulted in a decrease of the probability of presence. Contrary to what was expected, the flow 

velocity was not strongly correlated with the variables width, depth, stream order and distance 

to mouth as could be derived from Table 5.3 and 5.4. Low flow velocities could be expected 

if width, depth and stream order increased and distance to mouth decreased. Due to several 

weirs along the Zwalm river however, this relationship was not that obvious because fast 

flowing parts downstream of each weir occurred which could contain Asellidae accidentally 

drifting from the weir. In this way, flow velocity was not considered an important variable to 

predict the presence/absence of Asellidae in the Zwalm catchment. This finding is confirmed 

by the Bayerisches Landesamt für Wasserwirtschaft (1996), which states that Asellidae 

behave indifferently along a gradient of flow velocity. Based on the different contribution 

methods applied on both datasets, habitat characteristics seemed to be more important than 

the impact of physical and chemical variables for Asellidae. In this way, Asellidae only have 

potential as a good indicator organism in broader streams, because the habitat of the 

headwaters is less suited by nature for this taxon. In the end, these methods for testing the 

contributions of the different input variables facilitate the selection of the suitable habitats in 

which certain taxon can or cannot act as an indicator organism for the assessment and 

management of rivers. 

 

Concerning their value as indicator taxa, the Gammaridae/Asellidae ratio is used in running 

waters in the U.K. (Hawkes and Davies, 1971; Whitehurst, 1988). This ratio is able to detect 

subtle changes in organic pollution level, because the change in organic load alters the relative 

abundance of Asellidae and Gammaridae rather than the total species composition (MacNeil 

et al., 2002). In this way, one might conclude that beside the habitat characteristics indicated 
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by the different contribution methods, also the pollution related physical-chemical variables 

can be important to explain the habitat suitability of Asellidae. This underlines the need of 

relevant datasets for habitat preference studies. It also underlines that predictive ecological 

models developed with data driven techniques should be used with enough care for practical 

decision support in river restoration management as illustrated in Goethals et al. (2002). 

 

For Tubificidae, ANN models were less reliable based on both datasets as could be derived 

from the predictive results in Chapter 6. Biased predictions were mainly caused by the high 

prevalence of Tubificidae in both datasets as was earlier mentioned. In this way, it was also 

very difficult to extract the major environmental variables based on the contribution methods 

and to make conclusions about environmental preferences of Tubificidae. Based on the 

‘Weights’ method, contributions were equally distributed over the different input variables. 

On the basis of the ‘PaD’ method, some key variables could be recognized for the Zwalm 

river basin (nitrate, distance to mouth and total phosphorus) and the ‘short distance’ 

monitoring network (nitrate, sand and stream order). However, the standard deviation 

represented by the error bars, was relatively high for most of these variables. This indicated 

that the ‘PaD’ method was not very stable over the four folds, when the contributions were 

expressed as values. The ranking of the relative contribution of the variables on the other hand 

was stable over the different folds. Based on the ‘Profile’ method, no clear distinction 

between the different variables could be observed for Tubificidae. The effect of the major part 

of the environmental variables seemed almost nihil for the predictions (cf. the nearly 

horizontal curves). 

 

Baetis is sensitive to various forms of pollution (Elliott et al., 1988) and is in this way an 

indicator for moderate to good water quality (De Pauw and Vannevel, 1991). This was partly 

confirmed by field experience in the Zwalm river basin where Baetis was mainly found in the 

upstream parts of the streams. Therefore, it was little surprising that pollution related variables 

(e.g. ammonium and nitrate for the Zwalm river basin and conductivity, nitrate and dissolved 

oxygen for the ‘short distance’ monitoring network) were of major importance based on the 

contribution methods. However, also variables describing the physical habitat were important: 

for example suspended solids and temperature had a relatively high contribution based on the 

Zwalm river basin dataset while pools-riffles and depth, beside stream order, gave relatively 

high contributions to the prediction of the presence/absence of Baetis for the ‘short distance’ 

monitoring network. In this way, one might conclude that beside the pollution related 
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variables, also the habitat characteristics can be important to explain the presence/absence of 

Baetis. However, the results based on the Zwalm river basin dataset has to be qualified since 

rather poor predictive results were obtained (Chapter 6). 

 

Similar to Tubificidae, rather poor predictive performances were obtained for Limnephilidae, 

especially for the Zwalm river basin dataset (Chapter 6). Biased predictions for Limnephilidae 

were mainly caused by their low prevalence in both datasets. As could be derived from the 

data analyses in Chapter 5, Limnephilidae were only found in the upstream brooks with a 

good habitat and water quality. This was also reflected by the contribution methods. Based on 

the ‘Profile’ method, the probability of presence increased for both datasets if stream order 

decreased, indicating that the chance to predict Limnephilidae as present in streams with 

stream order 1 is higher. Based on Steenbergen (1993) however, Limnephilidae have a 

preference for wider and deeper streams. This could be explained by the fact that these 

streams do not have good water and habitat quality in the Zwalm. Based on the dataset of the 

‘short distance’ monitoring network, pollution related input variables such as dissolved 

oxygen, total nitrogen and phosphate were distinguished by their higher contribution. Based 

on the ‘Profile’ method, an increase of dissolved oxygen induced an increase of the 

probability of presence while an increase of phosphate and total nitrogen led to a decrease. 

This is confirmed De Pauw and Vannevel (1991) and by Steenbergen (1993) who stated that 

Limnephilidae prefer low contents of nutrients and high oxygen concentrations. 

 

Based on the results in this chapter it seems in particular interesting to make at least these 

input contribution analyses to identify the major variables affecting the output (such as the 

‘PaD’ method), and combine it with the ‘Profile’ method to see how they affect these outputs 

and whether this is ecologically logical or not. As such these contribution methods are 

valuable instruments to analyze the convenience of the models for decision support in river 

management and also contribute to the generation of expert knowledge and help to bring 

clarity in these often called ‘black box’ ANN models. 
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7.5. Conclusions 
 

The three input variable contribution methods (the ‘Weights’, ‘PaD’ and ‘Profile’ method) 

applied to Artificial Neural Network models can be useful to select essential variables for 

macroinvertebrate taxa. In this way, the choice of ecologically significant variables to 

describe the species’ habitat(s) and to include these in monitoring campaigns for river 

assessment can be well-founded. On the other hand, the prediction of abundance of species or 

populations based on habitat characteristics can be of high interest to ecologists, managers or 

engineers, who are dealing with river assessment and restoration management. In particular 

the insight into the sensitivity curves can be useful to select meaningful indicator taxa. These 

curves can support the decisions related to river restoration and protection, by showing how 

the environmental variables affect the biological communities. 

 

However, it was often difficult to find major trends for the five taxa, the three contribution 

methods and the different folds. The first two can be explained by different ecological 

preferences of the taxa and by the different aspects the three contribution methods deal with. 

The instability over the different folds is perhaps related to the relative small size of the 

datasets (respectively 237 and 120 instances) in combination with a high variability of the 

sites, the high number of input variables or outliers in the measurements. This will therefore 

need further research based on larger datasets and use of sub-samplings. 

 

In spite of the above remarks, it could be concluded that the combination of the ‘PaD’ method 

with the ‘Profile’ method gives a very good idea of the ecological meaning of the models and 

their practical relevance for decision support of river management. 
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Chapter 8: Development of migration models for macroinvertebrates as extension of the habitat suitability 
models 

8.1. Introduction 
 

As discussed in the previous chapters, Artificial Neural Networks (ANNs) have increasingly 

been used in aquatic sciences to analyze ecological patterns (e.g. Lek and Guégan, 1999; 

Maier and Dandy, 2000; Gevrey et al., 2003; Dedecker et al., 2004). These models are suited 

for dealing with ecological data that are known to be very complex and may vary and co-vary 

in non-linear fashions (Lek et al., 1996b). On the other hand, the use of ANN models to 

predict habitat suitability is still considered as empirical (Guisan and Zimmermann, 2000). In 

general, empirical models make the assumption being ‘perfectly mixed’, where all habitats are 

freely and equally accessible. However, when accessibility is restricted, it is necessary to 

control for the effects of it before conclusions about preference and habitat suitability can be 

drawn because variations in spatial distribution of a species can no longer be attributed 

entirely to its preference (Matthiopoulos, 2003). For restoration actions for instance, ANN 

models can predict a positive effect on habitat suitability for certain species. However, it is 

possible that the restored river section cannot be recolonized through the fact that the distance 

from the nearest source population is unbridgeable or that migration barriers limit 

accessibility. These species can thus not reach the restored river although its habitat is 

improved and even suitable. Dedecker et al. (2005d) illustrated this problem. After water 

quality improvement, the caddisfly Limnephilidae was predicted present at the restored river 

sections based on the habitat suitability model. However, existing source populations were 

located more than five kilometres away from these potential new habitats. In this way, 

recolonization of the restored sites was very unlikely. Nevertheless, this could not be retrieved 

from the ANN model. For this reason, ANN models need to be optimized to result in more 

reliable simulations of river restoration scenarios. Specifically, spatial and temporal expert-

rules could be included. Therefore, knowing the migration kinetics of downstream drift and 

upstream migration of a species and the presence of migration barriers along the river (weirs, 

culverted river sections, …) might deliver important additional information on the 

effectiveness of the restoration plans, and also on the timing of the expected effects. The 

development of migration models would enable to investigate the connectivity between 

population patches or the possibility to migrate from a source population to recolonize a 

restored river section. 
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Recently, in some studies ‘least-cost’ modelling was used as an approach to incorporate 

detailed geographical information as well as behavioural aspects to measure connectivity and 

migration (e.g. Michels et al., 2001; Schadt et al., 2002; Adriaensen et al., 2000, 2003; 

Chardon et al., 2003). This modelling tool is receiving growing attention in applied species-

management projects as well as in research. Tool boxes based on the ‘least-cost’ algorithm are 

available in the most current GIS packages (e.g. ArcGIS, this study; Idrisi (Michels et al., 

2001)) and in some specialized programmes (e.g. CONNEC (Gulinck et al., 1993)). The 

algorithm underlying this approach is similar to the method proposed by Knaapen et al. 

(1992). In their model, every unit (grid or raster cell) on a map was assigned a resistance 

value according to its facilitating/hindering effects on the considered migration process. This 

value was used to calculate the connectivity between a source cell and a target cell, by adding 

the values of all cells crossed. 

 

The aim of this study was to develop migration models for the crustacean Gammaridae, the 

mayfly Baetis, and the caddisfly Limnephilidae in the Zwalm river basin. In Section 4.6, an 

overview of the factors affecting the migration behaviour of these taxa is given. For 

Tubificidae, no migration model was constructed. This was less appropriate since Tubificidae 

were already observed in 90 % of the sites. Also for Asellidae, no migration model was 

constructed since no information about active or passive (= drift) migration behaviour could 

be found. It can be assumed that the movements of Asellidae take place on a very local scale 

(microhabitat scale). The migration models for  Gammaridae, Baetis and Limnephilidae were 

based on the Cost Weighted Distance function. In the next paragraphs, data processing and 

migration model development (e.g. functions and algorithms used) are discussed. In addition, 

the determination of the resistance values used to quantify the upstream and downstream 

migration possibilities through the river and the air (if an aerial live stage is available) is 

described for the three taxa. In the result and discussion section, the obtained migration 

models are presented and discussed. 

 

 

 

 

 

 

 204



Chapter 8: Development of migration models for macroinvertebrates as extension of the habitat suitability 
models 

8.2. Material and methods 
 

8.2.1. Data processing and migration model development 

 

To allow for the development of the migration models a ‘short distance’ monitoring network 

was set up as introduced in Chapter 4. This type of model development required a more 

intensive monitoring approach. Therefore, the selected river parts (the brooks Verrebeek and 

Dorenbosbeek and the upstream part of the Zwalm river) were split up in stretches of 50 m, 

each marked with a code and an up and downstream (X,Y) co-ordinate. An inventory of the 

structural and morphological characteristics along the selected part of the Zwalm river basin 

was made. In each river stretch of 50 m, the dominant type of land use (wooded area, 

housings, industrial sites, arable or grazing land, …) was monitored as well as the occurrence 

of domestic, industrial or agricultural discharges, and the presence of buffer strips along the 

river (type and distance to the river), natural or artificial river banks and meanders, hollow 

river banks and pool-riffle patterns. Based on these characteristics, 60 sites were selected in 

the brooks Verrebeek, Dorenbosbeek and the upstream part of the Zwalm river. Each site 

represented a river section of about 250 m. At each site, macroinvertebrates and 24 

environmental characteristics were collected as described in Chapter 4. 

 

Geographically referred data for implementation of the watercourses in a GIS were obtained 

from the Flemish Land Agency (VLM) who digitalized the watercourses as linear elements in 

the Flemish Hydrological Atlas (MVG et al., 2000). Landscape information on the Zwalm 

river basin was also available in GIS vector format (polygons for the land use) from the VLM 

(Fig. 8.2). However, two problems occurred. Firstly, the brooks Verrebeek and Dorenbosbeek 

have not been digitalized near the sources. Also a number of tributaries of these watercourses 

were not digitally available in the Flemish Hydrological Atlas. Based on the (X,Y) co-

ordinates of the 50 m river stretches measured on-site, these files were completed (Fig. 8.2). 

Secondly, the digitalization of the watercourses in the Flemish Hydrological Atlas has been 

based on ‘segments’. The starting and end points of these segments have been defined as the 

source or the mouth of a watercourse, the confluence of watercourses or where they split off, 

places where the quality objectives of the surface water change, … Because these segments 

were not small enough, it was impossible to link the data obtained from the inventory of the 

50 m stretches, to the digital files. To solve this problem, the segments in the Flemish 
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Hydrological Atlas were divided in stretches of 50 m (Fig. 8.2). Based on the inventory of the 

visual characteristics during the first phase of the monitoring, the biological communities and 

the physical-chemical variables could be extrapolated between the sampling sites, because 

these were supposed to be representative of the stretches up and downstream. In this way, the 

values could be set at the same level. 

 

The migration models were developed applying ArcGIS 8.3, a product of the Environmental 

Systems Research Institute (ESRI) (ESRI, 2001). One of the available extensions is ArGIS 

Spatial Analyst. The Cost Weighted Distance tool of this extension was used to develop the 

migration models. This function finds the least accumulative cost for migrating from each cell 

of the resistance layer to the nearest, cheapest source. The Cost Weighted Distance tool is 

based on the least cost algorithm. To move from cell Ni to cell Ni+1, the cumulative resistance 

is calculated as the resistance to reach cell Ni plus the average resistance to move through cell 

Ni and Ni+1. The function is based on an eight-neighbour-cell algorithm. As a result, also 

diagonal movements are allowed for. In case of diagonal directions, the cost is multiplied by 

2  to compensate for the longer distance (Fig. 8.1). 

 

 

 

 

 

 

 

Fig. 8.1. The algorithm underlying the Cost Weighted Distance function. i = source cell; i+1 = 

target cell; Ni = accumulated resistance to reach cell i; Ri = the resistance to migrate through 

cell i. 

 

Before the Cost Weighted Distance function could be used, the vector files had to be 

converted into raster files (Fig. 8.2). The resolution of one raster or grid cell was set al 2 x 2 

m. To use the Cost Weighted Distance function, two GIS layers were needed: a source and a 

resistance layer. The source layer indicates the source populations of the modelled organisms. 

The resistance layer indicates both the resistance value and the geographical position and 

orientation of all relevant landscape components. The resistance value of each cell was based 

( ) 2/11 ++ ++= iiii RRNN  

( ) 2/2 11 ++ ++= iiii RRNN
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on the determining variables affecting the migration of the organism (e.g. land use of the 

surrounding environment, flow velocity, migration barriers such as weirs, culverted river 

sections, …). If several criteria in different measurement systems were concerned, they had to 

be reclassified to a common scale since they could not be compared relatively to one another. 

In addition, the resistances were divided in a number of discrete classes. In this way, each cell 

of the resistance layer got a value representing the resistance for the organism to migrate 

through that cell. 

 

The produced Cost Weighted Distance raster presents the least accumulated cost of getting 

from each cell to the nearest source population, but it does not provide the way how to get 

there. The direction raster however gives a map, identifying the route to take from any cell, 

along the least-cost path, back to the nearest source population. The algorithm for computing 

the direction raster assigns a code to each cell that identifies which one of its neighbouring 

cells is on the least-cost path back to the nearest source. Based on the information provided by 

the direction raster, a second tool, the shortest path, can be applied to compute and visualize 

the least-cost route from a chosen destination to the source population. In this study, both 

tools were combined to visualize the possibilities of the organisms to disperse from the source 

populations. 
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Fig. 8.2. Steps in the development of a migration model for macroinvertebrates in the Zwalm 

river basin. (1) = reclassify the land use; (2) = divide ‘segments’ in 50 m stretches and 

complete digitalized watercourse file; (3) = convert vector to raster file; (4) = perform the 

Cost Weighted Distance function applying the extension ArGIS Spatial Analyst of ArcGIS 
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8.2.2. Determination of resistance values 

 

Three resistance layers were used: one for migration through the air / over land and two for 

migration through the river (up and downstream). Since no published data were available on 

the resistance values of the different determining environmental features for 

macroinvertebrates, resistance values (= resistance/friction that a species experiences to travel 

through, along a certain landscape (element), river section, …, the resistance value is an 

integer) for migration through the air / over land (Rair/land) were assigned based on expert 

knowledge of the species. For Baetis, resistance values for different land use classes were 

chosen in such a way that resistance for movement through wooded area, meadow area, arable 

land or nature reserve (Rair/land = 2) was higher than for watercourses and buffer strips (if 

present) (Rair/land = 1), but clearly lower than for hindering landscape covers such as urban or 

industrial areas (Rair/land = 20). Rair/land for culverted river sections and weirs was set 

respectively at 10-20 and 2. The resistance values for Limnephilidae were based on the same 

values. However, studies have shown that 90 % of the adult organisms of Limnephilidae were 

caught within a distance of 20 m from the river (Petersen et al., 1999; Winchester et al., 

2002). Based on this information, a strip of 20 m around the river was taken into account. 

Outside this strip, the resistance value was set 10 times higher. On the other hand, migration 

through the air/over land is not relevant for Gammaridae because they only have an aquatic 

life phase. An overview of Rair/land for Baetis and Limnephilidae is given in Table 8.1. 

 

Table 8.1. Determined resistance values for migration through the air / over land (Rair/land) for 

Baetis and Limnephilidae based on the surrounding environment 

Surrounding environment Rair/land  
 Baetis Limnephilidae 
• Water surface 1 1 
• Buffer strip (if present) 1 1-10 
• Land use   

- Urban region 20 20-200 
- Industrial area 20 20-200 
- Wooded area 2 2-20 
- Meadows 2 2-20 
- Arable land 2 2-20 
- Nature reserve 2 2-20 

• Culverted river section 10-20 10-20 
• Weir 2 2 
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The setting of the resistance values for migration upstream (Rup) and downstream (Rdown) 

through the river was also based on expert and literature knowledge. Elliott (2003) has shown 

that the active migration of Gammaridae and Baetis in one day is maximum 5.5 - 6.0 m in the 

upstream and only 1.5 m in the downstream direction. The further an organism can migrate, 

the lower the resistance has to be. Therefore, the inverse values of these distances were taken 

as measure for the resistance to migrate actively through the river (Rup(active), Rdown(active)).  In 

this way, the physical meaning of the resistance value can be seen as the number of days to 

migrate over one meter. Based on this and taking into account the factors affecting the active 

migration (e.g. presence of boulders), a resistance value was attributed to each 50 m stretch 

(in the vector file which has to be converted into a raster file in a next step) for the active 

upstream and downstream migration of Gammaridae and Baetis. 

 

The calculation of the passive downstream migration (= drift) resistance (Rdown(passive)) for 

Gammaridae was based on the flow velocity (Elliott, 2002c): 

 
963.082.7 Vx ×=           (9.1) 

 

where x  = average drift distance downstream (m) and V = flow velocity (average flow 

velocity of 2003 was considered) (m s-1). The passive downstream migration resistance for 

Baetis was also based on flow velocity (the average flow velocity of 2003 was considered) 

and the fact that the drift distance is divided by two if macrophytes are present (Elliott, 

2002b): 

 

11.097.8 +×= Vx       (9.2) 

 

Resistance values between 1 and 40 for Gammaridae and between 1 and 50 for Baetis were 

obtained after rescaling and classification of the average drift distance x  (Table 8.2).  

 

According to Elliott (2002b), Limnephilidae were seldomly found in the drifting water. In this 

way, it can be assumed that the passive downstream migration is of less importance than the 

active migration. Therefore, the resistance layer for downstream migration was only based on 

active movements. Erman (1986) and Elliott (2003) found that the active migration of 

Limnephilidae species is maximally 3.5 m during 24 hours in the upstream as well as the 
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downstream direction. The inverse value of this distance was taken as measure for the 

resistance to migrate actively through the river (Rup(active), Rdown(active)). Based on this and 

taking into account the factors affecting the active migration (presence or absence of natural 

river banks and macrophytes), a resistance value was attributed to each 50 m stretch. After 

rescaling and classification, a resistance value between 3 and 11 was obtained for the active 

up and downstream migration (Table 8.2). 

 

For Gammaridae, Baetis and Limnephilidae the resistance values Rup(active) and Rdown(active) for 

the weir were set respectively at 200 and 100, while for the culverted river sections at 50. The 

passive downstream migration resistance for Gammaridae and Baetis for the weir and the 

culverted river section were respectively set at 100 and 30 (Table 8.2). 
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Table 8.2. Determined resistance values for upstream (Rup) and downstream (Rdown) migration through the river for Gammaridae, Baetis and 

Limnephilidae (n.a. = not applicable, n.s. = not significant) 

 Gammaridae Baetis Limnephilidae 
 Rup(active) Rdown(active) Rdown(passive) Rup(active) Rdown(active) Rdown(passive) Rup(active) Rdown(active) Rdown(passive)

• Boulders          
- present n.a. n.a. n.a. 2 7 n.a. n.a. n.a. n.s. 
- absent n.a. n.a. n.a. 4 13 n.a. n.a. n.a. n.s. 

• Flow velocity 2 7 1-40 n.a. n.a. 1-50 n.a. n.a. n.s. 
• Macrophytes          

- present n.a. n.a. n.a. n.a. n.a. 1-50 3-6 3-6 n.s. 
- absent n.a. n.a. n.a. n.a. n.a. 1-50 6-11 6-11 n.s. 

• Natural banks          
- present n.a. n.a. n.a. n.a. n.a. n.a. 3-6 3-6 n.s. 
- absent n.a. n.a. n.a. n.a. n.a. n.a. 6-11 6-11 n.s. 

• Culverted river 
section 

50 50 30 50 50 30 50 50 n.s. 

• Weir 200 100 100 200 100 100 200 100 n.s. 
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8.3. Results 

 

8.3.1. Source populations 

 

Sites were considered as source populations if at least two specimens of the modelled taxon 

were found in the samples and if the river habitat quality (water and physical habitat quality) 

could be judged as suitable. Gammaridae were found at all monitored sites in the brooks 

Verrebeek and Dorenbosbeek (except one in the brook Verrebeek). In the Zwalm river 

however, Gammaridae were not found one kilometer upstream of the weir. Baetis was 

observed in the brooks Verrebeek and Dorenbosbeek and in the upstream part of the Zwalm 

river (Table 8.3). On the other hand, Limnephilidae were only found in the brooks Verrebeek 

and Dorenbosbeek (Table 8.3). In the brook Verrebeek, the latter organisms were dispersed 

along the whole river, while in the brook Dorenbosbeek source populations were located not 

further then 1.5 km downstream of that river source. 

 

Table 8.3. Number of sampling sites and source populations of Gammaridae, Baetis and 

Limnephilidae for the brooks Verrebeek and Dorenbosbeek and the Zwalm river 

River # of sampling 
sites 

# of source populations 

  Gammaridae Baetis Limnephilidae

Zwalm river 29 20 14 0 
Brook Verrebeek 15 14 9 9 
Brook Dorenbosbeek 16 16 7 4 
 

Based on the source layers, including respectively the source populations of Gammaridae, 

Baetis and Limnephilidae, and the three resistance layers, the Cost Weighted Distance 

function could be used as a basis to set up migration models for the three studied taxa. 

 

 

8.3.2. Migration model for Gammaridae 

 

Migration costs for Gammaridae were rather low since they are widespread over the three 

watercourses as shown in Fig. 8.3. The maximum accumulative cost for downstream 

migration was 5045 units and was located at the culverted river section near Brakel city (Fig. 

8.4a). To reach the river stretches upstream of the weir, a cost of 4300 units had to be realized 

 213



Chapter 8: Development of migration models for macroinvertebrates as extension of the habitat suitability 

 214

by the Gammaridae. For upstream migration through the river, a maximum accumulative cost 

of 13000 units was obtained to reach the culverted river section near Brakel city (Fig. 8.4b). 

 

 

N
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S

2000 m

Brakel 

Fig. 8.3. Illustration of the source populations (indicated in green) of Gammaridae in the 

‘short distance’ monitoring network. 
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Fig. 8.4. Map of the accumulative cost for migration downstream (a) and upstream (b) 

through the river from the source populations of Gammaridae. The highest accumulative 

cost(s) are indicated (see figures and legends). 

 

 

8.3.3. Migration model for Baetis 

 

The maximum accumulative cost for migration through the air was more than 20000 units. 

However, this point was of minor importance in the present study. When only migration from 

a source population to a point in the river was taken into account, the accumulative cost was 

limited. The highest accumulative cost for migration to a point in the river (2390 units) was 

reached in the most downstream point of the study area (Fig. 8.5). In the centre of this figure, 

the influence of Brakel city on the accumulative cost value could be observed. 
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Fig. 8.5. Map of the accumulative cost for migration through the air from the source 

populations of Baetis. The highest accumulative cost along the river is indicated (see figure 

and legend). 

 

The highest accumulative cost for downstream migration (9920 units) was located at the most 

downstream point (Fig. 8.6a). The culverted river section near Brakel city obtained also a high 

cost. The maximum accumulative cost for upstream migration (13300 units) was reached at 

this culverted river section (Fig. 8.6b). 
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Fig. 8.6. Map of the accumulative cost for migration downstream (a) and upstream (b) 

through the river from the source populations of Baetis. The highest accumulative cost(s) are 

indicated (see figures and legends). 

 

 

8.3.4. Migration model for Limnephilidae 

 

For Limnephilidae, higher accumulative cost values for migration through the air were 

obtained in comparison with Baetis because a higher resistance value was attributed to points 

outside a strip of 20 m along the river. The maximum accumulative cost for migration through 

the air was about a factor ten higher than the maximum accumulative cost for Baetis. When 

only points in the vicinity of the river were taken into account, the highest accumulative cost 

of 115420 units was detected for the most downstream point of the Zwalm river (Fig. 8.7). 
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Fig. 8.7. Map of the accumulative cost for migration through the air from the source 

populations of Limnephilidae. The highest accumulative cost to reach a point along the river 

is indicated (see figure and legend). 

 

Because the resistance values for up and downstream migration were equal (except for the 

weir) (cf. Table 8.2), the same map could be used for both accumulative costs. The maximum 

accumulative cost (101530 units) was obtained for the most downstream point of the Zwalm 

river (Fig. 8.8). Also the strong increase of the accumulative cost to migrate through the 

culverted river section could be observed. However, both accumulative costs could only be 

applied for the downstream migration because downstream of these points no source 

populations of Limnephilidae were found. In this way, upstream migration is out of the 

question at these points. For upstream migration, the highest accumulative cost (3685 units) 

was reached in a tributary of the brook Dorenbosbeek (Fig. 8.8).  
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Fig. 8.8. Map of the accumulative cost for migration downstream and upstream through the 

river from the source populations of Limnephilidae. The highest accumulative costs are 

indicated (see figures and legend). 

 

 

8.4. Discussion 
 

To model the migration and recolonization possibilities of Gammaridae, Baetis and 

Limnephilidae in the Zwalm river basin the Cost Weighted Distance function was applied. 

This cost-distance function is an interesting and widespread tool to model movement 

behaviour in ecology and is proven to perform better than the Euclidean distance function 

(e.g. Ferreras, 2001; Chardon et al., 2003; Verbeylen et al., 2003). The latter function is 

commonly used in spatial population studies to model migration and connectivity between 

habitats but it is only a simple measure for the shortest distance between a suitable habitat, 

called a ‘patch’ in spatial ecology, and its nearest neighbour (Moilanen and Hanski, 2001). 
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The role of the environment on the connectivity of suitable habitat and the species specific 

migration behaviour through the environment is thereby ignored (Tischendorf and Fahrig, 

2000). However, the importance of the environment for migration is increasingly being 

acknowledged. The importance of this topic has been illustrated in detail for terrestrial 

ecosystems (mammals: e.g. Bowne et al., 1999; Ferreras, 2001; birds: e.g. Brooker et al., 

1999; butterflies; e.g. Hadded, 1999; Conradt et al., 2001). Recently, its usefulness and 

suitability is also demonstrated for aquatic ecosystems (Michels et al., 2001). 

 

Some aspects of the method have to be emphasized before using the Cost Weighted Distance 

function. In the first place, the quality of the maps is highly important (Adriaensen et al., 

2003). All GIS packages use grid maps as input for the least cost model. This implies that a 

lot of GIS information available in vector format (e.g. digitalized watercourses, land use, …) 

has to be converted to grids before the model can be applied. Since the grid map is the only 

input, its quality is decisive for the quality and reliability of the resulting cost map. This has 

important consequences for a few aspects of the map. Relatively low resolution (large grid 

cells) may be used for general land cover since parcels mostly have larger dimensions. 

However, resolution is crucial for smaller or narrower elements in the landscape (e.g. 

watercourses). In this study, the optimum resolution of one grid cell was decided at 2 x 2 m. 

In this way, the grid size was small enough to capture the required detail, but large enough so 

that computer storage and analysis could be performed efficiently. 

 

Secondly, the setting of resistance values in the resistance layer is biologically probably the 

most important step in the process of calculating the cost for migration (Adriaensen et al., 

2003). It is the link between the (non-ecological) GIS information and the ecological-

behavioural aspects of the mobility of the species. Especially, when the purpose is to 

construct a predictive model for conservation or restoration management, it is critical that the 

model (and thus resistance and connectivity measures) is rigorously parameterized using 

empirical data and validated in independent landscapes (Moilanen and Hanski, 2001; Schadt 

et al., 2002). For most organisms however, setting the resistance values will be a difficult 

process in which expert judgement and data available in literature will play an important role 

(see e.g. Schadt et al., 2002). Also in this study, resistance values for Gammaridae, Baetis and 

Limnephilidae were mainly based on expert and literature knowledge. Only for the estimation 

of the resistance for passive downstream migration (= drift) of Gammaridae and Baetis, actual 

field data of flow velocity could be used respectively based on Elliott (2002c) and Elliott 
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(2002b). To have a better idea about the effect of the chosen resistance values for the different 

determining parameters on the accumulative costs, a sensitivity analysis was performed in the 

next chapter. Therefore, resistance values ascribed to the different environmental and river 

characteristics determining the migration were modified. Although in this way, a theoretical 

validation of the resistance values was possible, a more in depth validation of the migration 

models is recommended in the future. To this end, the use of artificial rivers could be helpful. 

On the other hand, analysing the genetic diversity or marking and tracing the 

macroinvertebrates could help to identify their real migration potentials and colonization 

routes. However, these experiments are often expensive and not always that realistic and 

reliable. Validation of the predictive results in the field is therefore indispensable. This field 

validation could be based on nets placed along the river or visual observations of migrating 

adults. Migration through the water could be observed based on nets placed in the water to 

catch drifting or actively migrating macroinvertebrates. 

 

Although the resistance values for migration through the air/over land were very similar for 

Baetis and Limnephilidae (Table 8.1), the resulting maps of the accumulative costs were quite 

different. The main reason is the location of the source populations. Source populations of 

Baetis are spread over the whole study area while Limnephilidae were only found in the 

brooks Verrebeek and Dorenbosbeek (Table 8.3). In this way, the highest cost for migration 

through the air was a few orders lower for Baetis than for Limnephilidae. Similar conclusions 

could be drawn for migration through the river. Based on these high accumulative cost values, 

it is very unlikely that Limnephilidae will colonized the most downstream river sections very 

fast. Therefore, to simplify recolonization of the most downstream sections or migration in 

general, it is crucial that also the intervening watercourses are of good quality. 

 

Although Gammaridae had no aerial adult phase, the migration cost remained rather low since 

they are very widespread over the study area. However, it is more likely that the migration 

behaviour is significantly more impacted by the design of weirs or culverted river sections. 

During upstream movement, these barriers could limit available habitat (Rawer-Jost et al., 

1999; Vaughan, 2002). Especially the small movements along the substrate needed to prevent 

extinction of the upstream reaches as discussed in the ‘drift paradox’ (Section 3.1.5) can be 

limited by these migration barriers since no compensation flight is possible for Gammaridae. 

Minckley (1964) reported that small dams prevented the upstream migration of Gammaridae 

in England. Also the Zwalm river basin is impacted by six weirs for water quantity control 
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and several culverted river sections (Goethals and De Pauw, 2001). To improve the upstream 

migration in these situations, by-passes could be installed. Their effects on benthic 

invertebrates have been studied by Rawer-Jost et al. (1999), who investigated whether benthic 

invertebrates successfully used two types of by-passes, a boulder ramp and a concrete by-

pass, for upstream movements. Their results indicated that the boulder ramp allowed for the 

upstream migrations, whereas the concrete by-pass was more difficult to ascend. Currently, 

only one weir in the Zwalm river basin is provided with a concrete by-pass, but the flow 

velocity and height of the steps are probably too high to allow the counter current migration 

of gammarids. In this way, weirs could be considered as a serious migration barrier in the 

Zwalm river. Also culverted river sections can be a serious obstacle for migrating 

Gammaridae. Especially culverts which have an outflow above the downstream water level, 

limit upstream passage. 

 
 
 
8.5. Conclusions 
 

The developed migration models using the cost-distance function have a whole range of 

applications. Not only the migration possibilities of observed macroinvertebrates within the 

study area could be modelled. Also the extension of the migration models to other species 

including nearly extinct as well as invasive exotic species could be of major importance in 

river restoration management. As such, the effects of certain interventions (e.g. weir removal 

or remeandering projects) in view of river management planning can be evaluated in a more 

reliable and integrated way compared to the local habitat suitability models. Similar strategies 

need to be developed for fish as well, seen the importance of migrating species in the 

assessment based on the Index of Biotic Integrity (IBI) for upstream brooks in Flanders. In 

addition, the scale of the developed models will have to be extended to the whole Zwalm river 

basin. Extension of the intensive monitoring campaign as done for the selected part of the 

Zwalm river basin, would however be very costly and time consuming. Therefore, using 

aerial photographs and remote sensing techniques in combination with digital maps to extract 

the necessary information would be recommendable. Finally, the combined use of migration 

and habitat suitability models would allow river managers to make a more rational selection 

among different restoration scenarios. In this way, they would be able to find out in advance 

whether and when a restoration option would have a desired effect or not. 
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Besides these opportunities, validation of the migration models is recommended. To this end, 

a first theoretical validation, based on sensitivity analysis, is performed in Chapter 9. 

Therefore, resistance values ascribed to the different environmental and river characteristics 

determining the migration are modified. However, further practical validation (e.g. based on 

field measurements) is advised in the future. 
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Chapter 9: Sensitivity analysis of the migration models 

9.1. Introduction 
 

The occurrence of a species in a habitat may depend on different factors, like habitat 

suitability (e.g. appropriate flow velocity, sufficient dissolved oxygen concentration) and 

habitat accessibility and isolation (e.g. Tischendorf and Fahrig, 2000; Verbeylen et al., 2003) 

as mentioned in the previous chapter. Habitat accessibility and isolation is determined by the 

connectivity between suitable habitats, i.e. the degree to which the environment facilitates or 

impedes movement of organisms among these habitats (Verbeylen et al., 2003). This depends 

not only on the specific mobility of the organism (functional connectivity, Tischendorf and 

Fahrig, 2000), but also on characteristics of the surrounding environment (structural 

connectivity), such as available habitat, distance to other suitable habitats, migration corridors 

or barriers, … 

 

Previous studies have rarely considered the environment in determining accessibility of 

suitable aquatic habitats for a certain species. Most often, accessibility or isolation measures 

are solely based on distance (e.g. distance to the nearest source population). In these measures 

the implicit assumption is made that the environment is homogeneous with respect to animal 

movement and migration (Verbeylen et al., 2003). Rarely migration barriers like weir and 

culverted river sections or elements that facilitate migration like presence of buffer strips 

along the river are taken into account. However, environments are seldom homogeneous. 

Migration barriers may hinder and change the migration path and unsuitable habitats can 

influence the migration and recolonization of a certain species. Due to habitat preferences, 

species seldom move randomly. Thanks to the new possibilities offered by GIS-systems, 

complexity of the environment can be included in the accessibility measure when modelling 

migration (e.g. Ferreras, 2001; Chardon et al., 2003; Verbeylen et al., 2003). Verbeylen et al. 

(2003) for example, investigated the effect of varying the resistance values on the migration 

cost of Red squirrel in an urban landscape to optimize their migration model performance. 

 

The aim of the present study was to test the impact of the resistance values on the calculated 

migration cost of Gammaridae, Baetis and Limnephilidae based on the Cost Weighted 

Distance function (see Chapter 8). Resistance values ascribed to the different determining 

variables were modified. In this way, a sensitivity analysis of the migration models based on 
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varying resistance values could be made. This sensitivity analysis can be seen as a 

(theoretical) validation step of the developed migration models in Chapter 8. 

 

 

9.2. Material and methods 
 

The migration models used to perform the sensitivity analyses were based on data from the 

‘short distance’ monitoring network containing the brooks Verrebeek and Dorenbosbeek and 

the upstream part of the Zwalm river. As described in Chapter 8, the migration models were 

developed applying the Cost Weighted Distance tool, a function which is included in the 

Spatial Analyst extension of ArcGIS 8.3. This function finds the least accumulative cost for 

migration from each cell of the resistance layer to the nearest, cheapest source. Details about 

the Cost Weighted Distance function are provided in Chapter 8. To perform the sensitivity 

analyses, the resolution of one raster cell was decided at 2 x 2 m. In this way, the grid size 

was small enough to capture the required details, but large enough so that computer storage 

and analysis could be performed efficiently. 

 

Sensitivity analyses were done for migration through the air / over land as well as for 

migration through the river. The performed simulations in this study are summarized below: 

 

• 21 simulations (21 resistance sets) for the migration of Baetis and Limnephilidae 

through the air / over land. Therefore, the resistance values for the determining 

characteristics watercourse, buffer strip, land use class (urban region, industrial area, 

wooded area, meadows, arable land and nature reserve), weir and culverted river section 

were altered; 

• 21 simulations (21 resistance sets) for the downstream migration of Gammaridae and 

Baetis through the river. Therefore, seven flow velocity values were taken into account 

(the minimum value, the 25 percentile value, the median value, the 75 percentile value, the 

maximum value, the average value of 2002 and the average value of 2003). In addition the 

resistance values for the weir and the culverted river section were modified. For 

Limnephilidae, 3 simulations (3 resistance sets) for the downstream migration through the 

river were performed, only changing the relevant characteristics weir and culverted river 

section; 
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• 3 simulations (3 resistance sets) for the upstream migration of Gammaridae, Baetis 

and Limnephilidae through the river. Therefore, the resistance values of the determining 

characteristics weir and culverted river section were altered. 

 

Since no specific published data are available on the resistance values of the different 

determining surrounding environmental features and river habitat characteristics for the 

macroinvertebrates modelled (Gammaridae, Baetis and Limnephilidae), values were assigned 

based on expert knowledge of the species. Varying the resistance values, a sensitivity analysis 

of the developed migration models was performed within the Zwalm river basin. For Baetis, 

the following resistance sets were used for migration through the air / over land, taking into 

account that the land use classes wooded area, meadows, arable land and nature reserve and 

the weir element never have a higher resistance value than the land use classes urban region 

and industrial area and culverted river sections (Table 9.1): 

 

• R1: all river and surrounding environmental elements have a resistance of 1, so only 

distance is taken into account and the effects of land use and river characteristics are 

eliminated; 

• R2 – R3: resistance sets with 2 classes, distinguishing watercourses and buffer strips (R = 

1), from the land use classes wooded area, meadows, arable land and nature reserve and the 

weir (with different contrasts in resistance values: R = 1, 2) and from the land use classes 

urban region and industrial area and culverted river sections (R = 2); 

• R4 – R6: resistance set with 2 or 3 classes, distinguishing watercourses and buffer strips 

(R = 1), from the land use classes wooded area, meadows, arable land and nature reserve 

and the weir (with different contrasts in resistance values: R = 1, 2, 5) and from the classes 

urban region and industrial area and culverted river sections (R = 5); 

• R7 – R10: resistance sets with 2 or 3 classes, distinguishing watercourses and buffer strips 

(R = 1), from the land use classes wooded area, meadows, arable land and nature reserve 

and the weir (with different contrasts in resistance values: R = 1, 2, 5, 10) and from the 

land use classes urban region and industrial area and culverted river sections (R = 10); 

• R11 – R15: resistance sets with 2 or 3 classes, distinguishing watercourses and buffer 

strips (R = 1), from the land use classes wooded area, meadows, arable land and nature 

reserve and the weir (with different contrasts in resistance values: R = 1, 2, 5, 10, 20) and 
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from the land use classes urban region and industrial area and culverted river sections (R = 

20); 

• R16 – R21: resistance sets with 2 or 3 classes, distinguishing watercourses and buffer 

strips (R = 1), from the land use classes wooded area, meadows, arable land and nature 

reserve and the weir (with different contrasts in resistance values: R = 1, 2, 5, 10, 20, 25) 

and from the land use classes urban region and industrial area and culverted river sections 

(R = 25); 

 

The resistance values for Limnephilidae were based on the same values. However, outside a 

strip of 20 m around the river, the resistance values were set 10 times higher as discussed in 

Section 8.2.2 (Petersen et al., 1999; Winchester et al., 2002). 

 

Based on the land use map, the digitalized watercourses and these 21 resistance sets, 21 

resistance maps were produced. By the Cost Weighted Distance function, the combinations of 

source population and resistance maps were converted to maps indicating the migration costs 

(CostR1 – CostR21). 
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Table 9.1. The 21 resistance sets with the assigned resistance values for migration through the air / over land for Baetis and Limnephilidae 

(outside a strip of 20 m around the river, the resistance values were set 10 times higher for Limnephilidae) 

Resistance 
set 

Water 
surface 

Buffer 
strip 

Land use      Culverted river section Weir 

   Urban region Industrial 
area 

Wooded 
area 

Meadows Arable 
land 

Nature 
reserve 

  

R1 1 1 1 1 1 1 1 1 1 1 
R2 1 1 2 2 1 1 1 1 2 1 
R3 1 1 2 2 2 2 2 2 2 2 
R4 1 1 5 5 1 1 1 1 5 1 
R5 1 1 5 5 2 2 2 2 5 2 
R6 1 1 5 5 5 5 5 5 5 5 
R7 1 1 10 10 1 1 1 1 10 1 
R8 1 1 10 10 2 2 2 2 10 2 
R9 1 1 10 10 5 5 5 5 10 5 
R10 1 1 10 10 10 10 10 10 10 10 
R11 1 1 20 20 1 1 1 1 20 1 
R12 1 1 20 20 2 2 2 2 20 2 
R13 1 1 20 20 5 5 5 5 20 5 
R14 1 1 20 20 10 10 10 10 20 10 
R15 1 1 20 20 20 20 20 20 20 20 
R16 1 1 25 25 1 1 1 1 25 1 
R17 1 1 25 25 2 2 2 2 25 2 
R18 1 1 25 25 5 5 5 5 25 5 
R19 1 1 25 25 10 10 10 10 25 10 
R20 1 1 25 25 20 20 20 20 25 20 
R21 1 1 25 25 25 25 25 25 25 25 
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As discussed in Chapter 8, the resistance values for migration of Gammaridae, Baetis and 

Limnephilidae through the river were based on flow velocity, several determining river 

characteristics and the presence of migration barriers such as culverted river sections and 

weirs. During the sensitivity analysis, the flow velocity was varied between its minimum and 

maximum value over the two sampling periods 2002 and 2003. Seven flow velocity values 

were considered for each river section: the minimum value, the 25 percentile value, the 

median value, the 75 percentile value, the maximum value, the average value of 2002 and the 

average value of 2003. Also the resistance values of the weir and the culverted river sections 

were altered. On the other hand, the impact of the additional determining river characteristics 

(e.g. the presence of boulders and macrophytes for Baetis and the presence of macrophytes 

and natural banks for Limnephilidae) were supposed to be fixed since they were described as 

such in literature. For these characteristics, the same effects were taken into account as 

described in Section 8.2.2. Also for the active upstream and downstream migration through 

the river, the same values were assumed as described in Section 8.2.2. As a result, the 

resistance sets for migration through the river were defined as specified in Table 9.2 

(Gammaridae and Baetis) and 9.3 (Limnephilidae). 

 

Based on the digitalized watercourses and these resistance sets, resistance maps were 

produced. By the Cost Weighted Distance function, the combinations of source population 

and resistance maps were converted to maps indicating the costs for migration through the 

river (CostDownR and CostUpR). 
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Table 9.2. The resistance sets with the assigned resistance values for downstream (RDown) 

and upstream (RUp) migration through the river for Gammaridae and Baetis 

Resistance set Flow velocity Culverted river section Weir 
RDown1 minimum value 30(1) or 50(2) 100(3) or 200(4)

RDown2 25 percentile value 30(1) or 50(2) 100(3) or 200(4)

RDown3 median value 30(1) or 50(2) 100(3) or 200(4)

RDown4 75 percentile value 30(1) or 50(2) 100(3) or 200(4)

RDown5 maximum value 30(1) or 50(2) 100(3) or 200(4)

RDown6 average value of 2002 30(1) or 50(2) 100(3) or 200(4)

RDown7 average value of 2003 30(1) or 50(2) 100(3) or 200(4)

RDown8 minimum value 45(1) or 75(2) 150(3) or 300(4)

RDown9 25 percentile value 45(1) or 75(2) 150(3) or 300(4)

RDown10 median value 45(1) or 75(2) 150(3) or 300(4)

RDown11 75 percentile value 45(1) or 75(2) 150(3) or 300(4)

RDown12 maximum value 45(1) or 75(2) 150(3) or 300(4)

RDown13 average value of 2002 45(1) or 75(2) 150(3) or 300(4)

RDown14 average value of 2003 45(1) or 75(2) 150(3) or 300(4)

RDown15 minimum value 60(1) or 100(2) 200(3) or 400(4)

RDown16 25 percentile value 60(1) or 100(2) 200(3) or 400(4)

RDown17 median value 60(1) or 100(2) 200(3) or 400(4)

RDown18 75 percentile value 60(1) or 100(2) 200(3) or 400(4)

RDown19 maximum value 60(1) or 100(2) 200(3) or 400(4)

RDown20 average value of 2002 60(1) or 100(2) 200(3) or 400(4)

RDown21 average value of 2003 60(1) or 100(2) 200(3) or 400(4)

RUp1 / 50 200 
RUp2 / 75 300 
RUp3 / 100 400 
(1) for Rdown(passive); (2) for Rdown(active) and Rup(active); (3) for Rdown(active) and Rdown(passive); (4) for 

Rup(active). 

 

Table 9.3. The resistance sets with the assigned resistance values for downstream and 

upstream migration (RDown&Up) through the river for Limnephilidae 

Resistance set Culverted river section Weir 
RDown&Up1 50 200 
RDown&Up2 75 300 
RDown&Up3 100 400 
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9.3. Results 
 

9.3.1. Sensitivity analysis for migration through the air / over land 

 

Characteristics of the surrounding environment are more obvious if resistance values of land 

use classes and migration barriers are more diverse. If a more clear distinction is made 

between the different land use classes, more details can be extracted from de migration 

models. This is illustrated in Fig. 9.1, on which the maps of the accumulative costs for 

migration of Baetis through the air / over land are presented for the resistance sets R11 – R14 

(CostR11 – CostR14). On Fig. 9.1a and 9.1b (CostR11 and CostR12 where the land use class 

urban region has a resistance value of 20 and the land use classes wooded area, meadows, 

arable land and nature reserve respectively 1 and 2) for example, the location of Brakel city 

can clearly be observed while on Fig. 9.1d (CostR14 where the land use class urban region 

has a resistance value of 20 and the land use classes wooded area, meadows, arable land and 

nature reserve a resistance value of 10), the city can only hardly be retrieved.  
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Fig. 9.1. Maps of the accumulative costs (CostR11 – CostR14) for migration through the air / 

over land from the source populations of Baetis based on the resistance sets R11 (a), R12 (b), 

R13 (c) and R14 (d) of Baetis. 
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Based on the sensitivity analysis, similar results were obtained for Limnephilidae. The 

location of Brakel city, where houses are concentrated, can easily be observed, as shown in 

Fig. 9.2 (CostR11 – CostR14). Downstream of the city centre however, accumulative costs 

increased rapidly. The latter is more obvious than for Baetis since no more source populations 

of Limnephilidae were found downstream of this town. Also for Limnephilidae, more details 

could be retrieved from the cost maps if the resistance values of the land use classes were 

more diverse (e.g. CostR12). The landscape became more homogeneous if similar resistance 

values were used for the different land use classes. 

 

Table 9.3 provides more detail about the accumulative cost values for some specific sampling 

points. The location of these sampling points are shown on Fig. 9.1a (SP 25 is located at the 

most downstream point while SP 64 is situated between SP 25 and the most downstream 

source population) and 9.2a (SP 25 is located at the most downstream point while SP 70 and 

SP 80 are situated between SP 25 and the most downstream source population in the brook 

Verrebeek) for respectively Baetis and Limnephilidae. 

 

For Baetis, the difference in accumulated cost based on the resistance sets R1, R2, R4, R7, 

R11 and R16 (Table 9.1) were rather limited. In these sets, migration resistance for water 

surface, buffer strip, wooded area, meadows, arable land, nature reserve and the weir were 

fixed at value 1 while the migration resistance for urban region, industrial area and culverted 

river section increased from 1 to 25. The maximum difference was only 270 units for both 

sampling points SP 25 and 64. Based on the tested resistance sets, the difference between the 

minimum (R1) and the maximum cost (R21) was a factor three for SP 64 and a factor two for 

SP 25. However, these differences remained rather restricted. For Limnephilidae, 

accumulative costs increased much faster in the downstream direction since no more source 

populations were found in the Zwalm river. This was even more obvious if the resistance 

value of the land use class urban region was increased (e.g. R1 versus R2, R4, R7, R11 and 

R16). Since Brakel city is located immediately downstream of the most downstream source 

population of Limnephilidae in the brook Verrebeek, this town boosted the accumulative cost 

value. In this way, if resistance values increased accumulative cost values were very high for 

Limnephilidae, especially in the most downstream points (e.g. SP 25). 
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Table 9.3. Details about the accumulative cost values for migration through the air / over land 

(CostR1 – CostR21) for the sampling points SP 25 and SP 64 (the locations of these sampling 

points are shown on Fig. 9.1a) and the sampling points SP 25, SP 70 and SP 80 (the locations 

of these sampling points are shown on Fig. 9.2a) for respectively Baetis and Limnephilidae 

Cost Map Baetis Limnephilidae 
 SP 64 SP 25 SP 80 SP 70 SP 25 
CostR1 1020 1980 4436 9631 12980 
CostR2 1028 2002 7583 15187 18587 
CostR3 1180 2215 8561 15854 19647 
CostR4 1064 2037 15719 31685 35114 
CostR5 1231 2256 17847 32353 36198 
CostR6 1430 2480 19412 33765 38272 
CostR7 1128 2095 34496 57432 60924 
CostR8 1292 2290 35250 59800 63703 
CostR9 1513 2527 35333 61163 65742 
CostR10 1825 2860 39012 63466 69129 
CostR11 1234 2201 60717 90316 93669 
CostR12 1402 2389 64456 111442 115421 
CostR13 1617 2622 66834 116095 120753 
CostR14 2031 2985 69392 118248 124089 
CostR15 2576 3591 73735 122597 130770 
CostR16 1289 2248 70673 99064 102388 
CostR17 1464 2471 74664 135487 139566 
CostR18 1662 2673 78005 143481 148244 
CostR19 1998 3047 83098 145699 151579 
CostR20 2730 3745 88182 150155 158280 
CostR21 2953 4034 88682 152263 161543 
 

 

9.3.2. Sensitivity analysis for migration through the river 

 

Sensitivity analysis of the migration models simulating the migration through the river 

indicated that variation in flow velocity values did not result in a big difference of the 

accumulative costs. This is illustrated in Table 9.4 for Gammaridae and Baetis for which flow 

velocity was an important factor determining the downstream drift. The difference in 

accumulative cost for downstream migration through the river between minimum (highest 

migration resistance) (RDown1, RDown8 and RDown15) and maximum (lowest migration 

resistance) (RDown5, RDown12 and RDown19) flow velocity was only 887 units for 

Gammaridae and 1476 units for Baetis. These values were based on SP 64 where no influence 

of the weir as migration barrier was noticeable since this weir is located more downstream. 

Due to the migration barrier effect of the weir (SP 25 in comparison with SP 64) the 
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accumulative cost for downstream migration increased with approximately 5450 units in 

average for both taxa Gammaridae and Baetis. If the resistance value of the weir increased 

(RDown1 – RDown7 versus RDown8 – RDown14 and RDown15 – RDown21, Table 9.2), 

only a minor increase of ± 60 units in accumulative cost for downstream migration through 

the river was observed for both Gammaridae and Baetis. In addition, the difference in 

accumulative cost between river sections with minimum and maximum (CostDownR1 minus 

CostDownR5, CostDownR8 minus CostDownR12, CostDownR15 minus CostDownR19) 

flow velocity remained unchanged: 2117 units for Gammaridae and 2575 units for Baetis. For 

the downstream migration of Limnephilidae, only the variation in the resistance values of the 

weir and the culverted river sections were assumed to be of major importance. The values of 

the other determining characteristics were held constant as described in Section 9.2. Results of 

the sensitivity analysis for the downstream migration of Limnephilidae are shown in Table 

9.5. Each increase of the resistance values of the culverted river sections with 25 (Table 9.3) 

resulted in an raise of the accumulative cost of 16065 and 23025 units for respectively SP 80 

and SP 70 (Table 9.5). If also the weir is taken into account (SP 25), an increase of 23266 

units was found for downstream migration. 

 

Similarly, for the sensitivity analysis of the upstream migration models, only the resistance 

values of the weir and the culverted river sections were altered while the values of the other 

determining characteristics were held constant. The cost for Gammaridae to migrate upstream 

from the downstream source population to SP 64 was 2065, 2306 or 2547 units depending on 

the resistance value of the weir (Table 9.4). If the resistance of the weir increased with 100 

units (Table 9.2) the accumulative cost to migrate between both sites increased with 241 units. 

For Baetis and Limnephilidae, the accumulative cost to migrate from the nearest source 

population to respectively SP 97 and SP 96 (upstream sites of two different tributaries of the 

brook Dorenbosbeek) was 1724 and 3685 units. For both taxa, there was no difference 

between the three resistance sets since there were no weirs or culverted river sections between 

the nearest source populations and these sampling points. 
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Table 9.4. Details about the accumulative cost values for migration through the river in the 

downstream (CostDownR1 – CostDownR21 for the sampling points SP 25 and SP 64 for both 

Gammaridae and Baetis) and the upstream direction (CostUp1 – CostUp3 for the sampling 

points SP 64 and SP 97 for respectively Gammaridae and Baetis) for Gammaridae and Baetis  

Cost Map Gammaridae Baetis 
 SP 64 SP 25 SP 64 SP 25 
CostDownR1 3309 9270 4777 10570 
CostDownR2 3154 8840 4336 9933 
CostDownR3 2900 8730 4081 9870 
CostDownR4 2765 7704 3641 8543 
CostDownR5 2422 7154 3301 7994 
CostDownR6 3008 8347 3896 9189 
CostDownR7 3050 8523 4522 9920 
CostDownR8 3309 9326 4777 10630 
CostDownR9 3154 8899 4336 9994 
CostDownR10 2900 8794 4081 9930 
CostDownR11 2765 7761 3641 8603 
CostDownR12 2422 7209 3301 8055 
CostDownR13 3008 8407 3896 9249 
CostDownR14 3050 8592 4522 9980 
CostDownR15 3309 9386 4777 10690 
CostDownR16 3154 8959 4336 10054 
CostDownR17 2900 8854 4081 9990 
CostDownR18 2765 7821 3641 8664 
CostDownR19 2422 7269 3301 8115 
CostDownR20 3008 8468 3896 9309 
CostDownR21 3050 8652 4522 10041 
 SP 64  SP 97  
CostUp1 2065  1724  
CostUp2 2306  1724  
CostUp3 2547  1724  
 

Table 9.5. Details about the accumulative cost values for migration through the river in the 

downstream (CostDownR1 – CostDownR3 for the sampling points SP 80, SP 70 and SP 25) 

and the upstream direction (CostUp1 – CostUp3 for the sampling point SP 96) for 

Limnephilidae 

Cost Map SP 80 SP 70 SP 25 
CostDownR1 40984 74586 101531 
CostDownR2 57050 97611 124797 
CostDownR3 73115 120636 148063 
 SP 96   
CostUp1 3685   
CostUp2 3685   
CostUp3 3685   
 

 240



Chapter 9: Sensitivity analysis of the migration models 
 

9.4. Discussion 
 

In the major part of the published studies using Cost Weighted Distance modelling (e.g. Bunn 

et al., 2000; Ferreras, 2001; Chardon et al., 2003), very little effort was made to test for 

sensitivity of the resistance values. Mostly, resistance values were chosen arbitrarily, making 

very little considerations on their biological meaning (especially values for hindering 

elements and barriers, e.g. Ricketts, 2001). Therefore, there is a need for more research 

(theoretical as well as practical) on the resistance values, their ecological background (e.g. 

Ricketts, 2001), and the sensitivity of migration models for variation in their values. 

 

As a consequence, the sensitivity analyses performed in this chapter can be seen as a first 

(theoretical) step in the validation of the migration models developed in Chapter 8. Therefore, 

the resistance values ascribed to the different determining variables were altered. In this way, 

the sensitivity of the developed migration models to variation in these resistance values could 

be investigated. 

 

The different determining environmental and river characteristics (e.g. the presence of a 

buffer strip, the type of land use, the presence of culverted river sections and weirs) were 

ordered in terms of increasing resistance for migrating macroinvertebrates, based on best 

expert judgement: (rare) literature on dispersal distance and migration behaviour and long-

term experience with the taxa. The most appropriate number of resistance classes and 

resistance values to be included in the migration model were investigated based on sensitivity 

analysis by varying these factors. Although, there is no empirical evidence on the correctness 

of the resistance values nor the number of resistance classes (see also Ferreras, 2001; 

Verbeylen et al., 2003), the results of this study do show sensitivity to variation in these 

resistance values. However, to deduct a ‘most likely’ resistance set based on this sensitivity 

analysis, further practical validation is recommended in the future. Field experiments can 

certainly support the choice and practical validation of this resistance set. 

 

If more resistance classes were used in the Cost Weighted Distance function, better results 

were obtained for the models describing the migration through the air / over land. If the 

determining characteristics for migration were divided in three classes instead of one or two 

(watercourses and buffer strips; wooded area, meadows, arable land, nature reserve and weirs; 
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urban region, industrial area and culverted river sections), more details could be extracted 

from the migration models. The landscape became more homogeneous if only similar 

resistance values were used for the different land use classes and river characteristics. In 

addition, it is more realistic that crossing a meadow take less effort, is less dangerous and in 

this way more likely (lower resistance value) than crossing a town. In this way, more reliable 

results might be expected when simulating the migration behaviour of macroinvertebrates 

through the air / over land. So when maps are composed, sufficient and relevant details should 

be included. The available maps may not always allow the distinction between certain 

relevant elements that might be important for a certain taxon and extra digitalisation may be 

required. In the present study, the available land use map did not take the presence or absence 

of buffer strips along the river into account. However, these elements can be of paramount 

importance since they can serve as a corridor for migrating adults. Therefore, an extra 

inventory of the buffer strips along the watercourses was drawing up and digitalized 

afterwards. Similar results were obtained by Verbeylen et al. (2003). The more resistance 

classes they used to simulate the migration cost of Red squirrel in an urban landscape, the 

better the results were. In contrast to the present study, they were able to deduct the best 

resistance values based on collected field data (visual observations). 

 

Additionally, to distinguish more details on the accumulative cost maps for migration through 

the air / over land, differences between the resistance classes has to be large enough. This was 

illustrated in Fig. 9.1 and 9.2. Based on this, the choice of the resistance values for migration 

through the air / over land of Baetis and Limnephilidae in Chapter 8 could be justified. 

However, validation based on field data is still recommended to verify the exact resistance 

values. 

 

Sensitivity analysis of the migration models simulating the downstream migration of 

Gammaridae and Baetis through the river revealed that variation in flow velocity values only 

resulted in small differences in accumulative migration costs. In this way, it can be concluded 

that variation in flow velocity during the year, with exception of big flushes or droughts of 

course, will only have a minor impact on the behaviour of the migration models. The use of 

the average flow velocity of the year 2003 as basis for the passive downstream migration 

resistance can thus be warranted. An increase of the resistance value of the weir also resulted 

in a minor increase of downstream migration cost (based on the results of SP 25). If the 

resistance was doubled, the accumulative downstream migration cost only increased 120 
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units, what is rather negligible. However, the impact of variation in weir resistance is more 

pronounced if source populations and weir are further apart. For Limnephilidae for example, 

the downstream migration cost increased with approximately 45000 units if weir resistance 

was doubled. 

 

For the sensitivity analysis of the upstream migration models, only the resistance values of the 

weir and the culverted river sections were altered while the values of the other determining 

environmental and river characteristics were held constant as described in Section 9.2. 

Conclusions could only be drawn for Gammaridae. Only for Gammaridae it was possible to 

simulate the upstream migration over a weir from a downstream source population towards an 

upstream river section (SP 64). If weir resistance was doubled, an increase in accumulative 

cost for upstream migration of approximately 500 units was obtained. Although this appeared 

to be a rather low increase in cost, 500 units represents an increase of one fourth (2547 units 

in stead of 2065 units), what cannot be neglected. 

 

Additionally, all possible combinations over the different layers could be calculated. 

However, seen the large differences that remain based on expert knowledge, the migration 

routes do not alter themselves in this case. Merely a shift in velocity over this route can be 

expected.  

 

 

9.5. Conclusions 
 

The sensitivity analyses performed in this chapter can be seen as a theoretical validation of the 

migration models developed in Chapter 8. If more resistance classes were used to calculate 

the accumulative migration costs, better results were obtained. If the determining 

characteristics for migration were divided in three classes instead of one or two, more details 

could be extracted from the migration models. In addition, to distinguish more details on the 

accumulative cost maps for migration through the air / over land, differences between the 

resistance classes has to be large enough. The landscape became more homogeneous if only 

similar resistance values were used for the different land use classes and river characteristics. 

From the sensitivity analysis, it was also derived that variation in flow velocity values only 

resulted in small differences in accumulative migration costs. Variation in flow velocity 
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during the year will thus only have a minor impact on the behaviour of the migration models. 

Based on these results, the choice of the resistance values in Chapter 8 for migration through 

the air / over land and through the river could be justified. 

 

Although, there was no empirical evidence on the correctness of the applied resistance values 

nor the number of resistance classes, the results of this study showed sensitivity to variation in 

these resistance values. However, to deduct a ‘most likely’ resistance set based on this 

sensitivity analysis, further practical validation is recommended in the future, as reference 

values are very scarcely available in literature. To this end, field or lab experiments could be 

very useful to support the choice and practical validation of the correct resistance values. 
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10.1. Introduction 
 

In order to make the proper decisions for river restoration, one first has to understand the 

complex interaction between physical, chemical and biological components. The success of 

river restoration depends on steering the appropriate key factor(s), which differ from river to 

river and site to site. However, theories on river ecology are complex and not easy to use in 

the practice of stream management (Verdonschot and Nijboer, 2002b). For an effective 

restoration action at a site, river managers need a simple decision support system to handle the 

ecological complexity. 

 

The main objective of this study was to illustrate and validate the practical application of the 

ANN habitat suitability and the migration models to support decision making in river 

management. In this context, it has been tried to predict the effect of four restoration projects 

in the Zwalm river basin on the five taxa Tubificidae, Asellidae, Gammaridae, Baetis and 

Limnephilidae: 

 

• project 1: remeandering of the Zwalm river at Roborst; 

• project 2: construction of a collector at Elene; 

• project 3: restoration of the Molenbeek at Brakel; 

• project 4: removal of a weir for water quantity control in the Zwalm river. 

 

For each restoration project, the following questions had to be answered: 

 

• What are the restoration objectives? 

• Which restoration actions are essential? 

• Which sites have to be monitored to completely describe the study area of interest? 

• What are the consequences of the restoration actions for the river and habitat 

characteristics? 

• What is the effect of the river restoration on the habitat suitability of the 

macroinvertebrates (predicted applying ANN habitat suitability models)? 

• What are the recolonization possibilities of the restored watercourse (simulation by 

means of migration models, only for project 3 and 4)? 
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10.2. Material and methods 
 

The locations of the four river restoration project are indicated in Fig. 10.1.  

 

Fig. 10.1. Locations of the four restoration projects: project 1: remeandering of the Zwalm 

river in Roborst; project 2: construction of a collector in Elene; project 3: restoration of the 

Molenbeek in Brakel; project 4: removal of a weir for water quantity control in the Zwalm 

river. 

 

The ANN predictions for project 1 and 2 were based on the dataset of the entire Zwalm river 

basin. For the predictions of project 3 and 4, the dataset of the ‘short distance’ monitoring 

network was used. For each prediction the best ANN models extracted from Chapter 6 were 

applied. The model characteristics and performances are summarized in Table 10.1. The 

migration models, as developed in Chapter 8, were only applied in project 3 and 4 because 

both other projects were not located in the study area of the ‘short distance’ monitoring 

network. 
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Table 10.1. ANN model architecture and performance of the models used for the predictions 

of the impact of river restoration actions on the macroinvertebrates Tubificidae, Asellidae, 

Gammaridae, Baetis and Limnephilidae. CCI = percentage of Correctly Classified Instances; 

CK = Cohen’s kappa 

 Dataset of the entire Zwalm river 
basin (project 1 and 2) 

Dataset of the ‘short distance’ 
monitoring network (project 3 and 4) 

 Model 
architecture 

CCI (%) CK Model 
architecture

CCI (%) CK 

Tubificidae 24-5-1 90.3 0.12 24-15-1 94.2 0.32 
Asellidae 24-10-1 79.8 0.60 24-10-1 94.2 0.88 
Gammaridae 24-15-1 80.2 0.47 24-10-10-1 92.5 0.66 

BAETIS 24-10-1 75.5 0.18 24-10-1 77.5 0.54 

Limnephilidae 24-5-1 89.0 0.34 24-10-1 86.7 0.49 
 

 

10.3. Results 
 

10.3.1. Remeandering project of the Zwalm river in Roborst 

 

10.3.1.1. Project definition 

 

This project was based on a report by Belconsulting (2003). Several restoration options within 

an integrated water management perspective in the Zwalm river basin were described in that 

report. This restoration action at the Zwalm river at Roborst makes part of it as one of the 

proposed actions to improve the river ecology and flood control by reintroducing a 

meandering pattern in the river in combination with a natural flooding area.  

 

Near the mouth of the brook Traveinsbeek, the Zwalm river was straightened years ago. 

Recently there were several projects to investigate sustainable flood control measures in the 

Zwalm river basin. The construction of several natural flooding areas are among these, and 

are often combined with nature development. Also this restoration action is a combination of 

both (Fig. 10.2). The original project described in Belconsulting (2003) departed from 

reintroducing meandering without decreasing the effect of the Bostmolen weir (ca. 250 m 

further downstream). However, considering the construction of the flooding area, this 

decrease in effect of the weir could be appropriate in the future. To this end, two restoration 

scenarios were modelled: 
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• reintroducing a meandering pattern in the Zwalm river (scenario 1); 

• reintroducing a meandering pattern in the Zwalm river taking into account a decrease 

of the effect of the Bostmolen weir (scenario 2). 

 

The planned remeandering has an impact on several river characteristics as shown in Table 

10.2. In this table, only the altered variables are presented. The expected values of the river 

characteristics in the studied monitoring site (sampling point 121) after remeandering (and 

decreasing the effect of the weir in the second scenario), were based on an upstream 

(sampling point 33) as well as a downstream sampling site (sampling point 25), characterized 

by a well-developed meandering pattern and a minimal weir effect (Fig. 10.2). Therefore, 

these sites could be seen as the expected situation after the remeandering works. 

 

Table 10.2. Actual and expected altered values of the stream characteristics for sampling point 

121 after reintroducing meandering (and decreasing the effect of the weir in the second 

scenario). These values were obtained on the basis of monitored conditions upstream and 

downstream of the sampling point of interest and in combination with expert knowledge 

Variable Actual conditions Expected conditions 
(scenario 1) 

Expected conditions 
(scenario 2) 

Width (cm) 600 550 400 
Meandering 5 2 2 
Pools-riffles 5 3 3 
Hollow banks 4 3 3 
Depth (cm) 72 72 30 
Flow velocity (m/s) 0.03 0.05 0.09 
Fraction pebbles (%) 0.0 10.0 15.0 
Fraction gravel (%) 0.0 10.0 40.0 
Fraction sand (%) 29.5 40.0 5.0 
Fraction loam/clay (%) 70.5 40.0 40.0 
 

 

 

 

 

 

 

 

 

 

 250



Chapter 10: Application of Artificial Neural Networks and migration models to predict the effect of river 
restoration scenarios on macroinvertebrates 

 251

 
ndering action in the Zwalm river. Ca. 250 m 

upstream of the Bostmolen weir, the Zwalm ed. Belconsulting (2003) 

proposed to remeander the river area (green zone) to minimize 
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10.3.1.2. Predicted effect of the restoration actions on the habitat suitability 
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one major exception however, that Baetis was predicted absent based on the four folds. The 
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For the five taxa, the following conclusions could be made: remeandering without minimizing 

the weir effect had no consequences on the habitat suitability of Tubificidae, Asellidae, 

Gammaridae and Limnephilidae, while Baetis was predicted absent after reintroducing 

meandering. When also the minimization of the weir effect was taken into account, the habitat 

suitability of Asellidae decreased in 50 % of the models while Gammaridae were predicted 

present based on the 4 models. 

 

Table 10.3. Actual and expected taxon presence/absence values for sampling point 121 (in 

brackets the amount of folds out of a total of four that supports the outcome). ‘Under actual 

conditions’, ‘scenario 1’ and ‘scenario 2’ respectively means before restoration action and 

after remeandering without and with minimization of the weir effect 

 Observed Predicted (under 
actual conditions) 

Predicted 
(scenario 1) 

Predicted 
(scenario 2) 

Tubificidae present present (4/4) present (4/4) present (4/4) 
Asellidae present present (4/4) present (4/4) absent (2/4) 

present (2/4) 
Gammaridae absent absent (4/4) absent (4/4) present (4/4) 
Baetis present absent (4/4) absent (4/4) absent (4/4) 
Limnephilidae absent absent (4/4) absent (4/4) absent (4/4) 
 

 

10.3.2. Construction of a collector in Elene 

 

10.3.2.1. Project definition 

 

This project included several sampling points situated on the brook Molenbeek and one of its 

tributaries at Elene. Both streams were impacted by discharges of domestic wastewater. 

However, the residential area producing this wastewater, will be connected to a collector in 

the near future (Belconsulting, 2003). To this end, the objective of this project was to 

investigate the impact of physical-chemical water quality improvement in these contaminated 

streams. 

 

The major part of the study area was situated upstream of Elene. Two sampling points (SP 16 

and 17) were located in the brook Molenbeek and one of its tributaries upstream of Elene. 

Downstream of SP 17, the brook Molenbeek is dammed up over a distance of 50 m resulting 

in a pond for fish cultivation. More downstream, a tributary, discharging the domestic 
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wastewater, flows out into the brook Molenbeek. Within the framework of this project, three 

additional sampling points were selected: one in the discharging tributary (SP 128), one 

upstream (SP 129) and one downstream (SP 128) of this tributary in the brook Molenbeek. At 

Elene the brook Molenbeek was also dammed up, resulting in another pond. A last sampling 

point was situated downstream of Elene (SP 36). The sampling points are shown in Fig. 10.3. 
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• construction of a local collector to improve the physical-chemical water quality and 

minimize the dammed effect of the fishponds (scenario 2). 

 

The planned restoration actions would have an impact on several river characteristics as 

shown in Table 10.4. In this table, only the altered variables are presented. 

 

Table 10.4. Actual and expected altered values of the stream characteristics for sampling 

points 127 and 128 (SP 127 and 128) after construction of a local collector to improve the 

physical-chemical water quality (scenario 1) and decreasing the dam effect (scenario 2). 

These values were obtained on the basis of monitored conditions upstream (SP 16) and 

downstream (SP 36) the sampling points of interest and in combination with expert 

knowledge 

Variable Actual condition Expected conditions 
(scenario 1) 

Expected conditions 
(scenario 2) 

 SP 127 SP 128 SP 127 SP 128 SP 127 SP 128 
Width (cm) 283 125 283 125 116 116 
Depth (cm) 100 12 100 12 60 60 
Flow velocity (m/s) 0.00 0.00 0.00 0.00 0.16 0.16 
pH 7.7 7.4 7.6 7.6 7.6 7.6 
Dissolved oxygen (mg/l) 7.4 4.0 8.4 8.4 8.4 8.4 
Conductivity (µS/cm) 666 826 671 671 671 671 
Ammonium (mg NH4

+-
N/l) 

0.9 2.7 0.3 0.3 0.3 0.3 

Nitrate (mg NO3
--N/l) 3.3 2.5 1.1 1.1 1.1 1.1 

Total nitrogen (mg N/l) 8.5 8.4 6.8 6.8 6.8 6.8 
Ortho phosphate (mg PO4

3-

-P/l) 
0.4 1.9 0.5 0.5 0.5 0.5 

Total phosphorus (mg P/l) 0.6 2.0 0.9 0.9 0.9 0.9 
COD (mg COD/l) 32 53 35 35 35 35 
Fraction pebbles (%) 0.0 0.0 0.0 0.0 0.0 0.0 
Fraction gravel (%) 0.0 0.0 0.0 0.0 6.9 6.9 
Fraction sand (%) 24.7 37.3 24.7 37.3 45.3 45.3 
Fraction loam/clay (%) 75.3 62.7 75.3 62.7 47.9 47.9 
 

 

10.3.2.2. Predicted effect of the restoration actions on the habitat suitability 

 

Based on the changes of the habitat characteristics after water quality improvement, with or 

without minimization of the dammed effect, the prediction of the habitat suitability of 

Tubificidae, Asellidae, Gammaridae, Baetis and Limnephilidae was tested (Table 10.5). The 

actual conditions were well predicted. However, Asellidae was predicted present at sampling 
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site 127 and absent in 128 based on the four folds, while Asellidae was respectively absent 

and present at these sites. 

 

Derived from the predictions of both restoration scenarios, the following conclusions could be 

drawn: physical-chemical water quality improvement without minimizing the dammed effect 

had no consequences for the habitat suitability of Tubificidae, Asellidae, Baetis and 

Limnephilidae for both sampling sites 127 and 128. Gammaridae however were predicted 

present at sampling point 128 on the basis of three models. When also the minimization of the 

dammed effect was considered, the habitat suitability of Asellidae improved in 25 % of the 

models at sampling point 128 while Gammaridae were predicted present based on 

respectively 2 and 3 models at sampling sites 127 and 128. 

 

Table 10.5. Actual and expected taxon presence/absence values for sampling points 127 and 

128 (in brackets the amount of folds out of a total of four that supports the outcome). ‘Under 

actual conditions’, ‘scenario 1’ and ‘scenario 2’ respectively means before restoration action 

and after water quality improvement without and with minimization of the dammed effect 

 Observed Predicted (under 
actual conditions)

Predicted 
(scenario 1) 

Predicted 
(scenario 2) 

 SP 127 SP 128 SP 127 SP 128 SP 127 SP 128 SP 127 SP 128 
Tubificidae present present present 

(4/4) 
present 
(4/4) 

present 
(4/4) 

present 
(4/4) 

present 
(4/4) 

present 
(4/4) 

Asellidae absent present present 
(4/4) 

absent 
(4/4) 

present 
(4/4) 

absent 
(4/4) 

present 
(4/4) 

absent 
(3/4) 

Gammaridae absent absent absent 
(4/4) 

absent 
(4/4) 

absent 
(4/4) 

present 
(3/4) 

present 
(2/4) 

present 
(3/4) 

BAETIS absent absent absent 
(4/4) 

absent 
(4/4) 

absent 
(4/4) 

absent 
(4/4) 

absent 
(4/4) 

absent 
(4/4) 

Limnephilidae absent absent absent 
(4/4) 

absent 
(4/4) 

absent 
(4/4) 

absent 
(4/4) 

absent 
(4/4) 

absent 
(4/4) 

 

 

10.3.3. Restoration of the Molenbeek in Brakel 

 

10.3.3.1. Project definition 

 

Before the brook Molenbeek discharges in the Zwalm river, it first flows through the city of 

Brakel. The habitat characteristics of this part of the watercourse are strongly modified. To 

this end, the objective of this project was to investigate the improvement of the habitat 
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characteristics in this modified stream. In addition, this part of the brook Molenbeek is 

impacted by several discharges of domestic wastewater. Therefore, an additional 

improvement of the physical-chemical water quality is assumed in a second scenario. To this 

end, two restoration scenarios were modelled for the sampling sites 112, 116, 117, 118 and 

119: 

 

• restoration of the river habitat (scenario 1); 

• restoration of the river habitat and improvement of the physical-chemical water quality 

(scenario 2). 

 

Within the framework of this project, four additional samples were taken (SP 116, 117, 118 

and 119). The sampling points are presented in Fig. 10.4. The actual situation of SP 112 and 

SP 116 is shown in Fig. 10.5. SP 119 was situated upstream of Brakel city and was still 

characterized by a good habitat quality. Therefore, SP 119 was selected as a reference 

situation for this study. 
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Fig. 10.5. Actual situation of the brook Molenbeek in Brakel at sampling points 112 (left) and 

116 (right). 

 

The planned restoration actions would have an impact on several river characteristics as 

shown in Table 10.6. Only the altered variables are presented in this table. 
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Table 10.6. Actual and expected altered values of the stream characteristics for sampling points 112, 116, 117, 118 and 119 after habitat 

restoration (scenario 1) and improvement of the physical-chemical water quality (scenario 2). These values were obtained on the basis of 

monitored conditions upstream (SP 119) of the sampling points of interest and in combination with expert knowledge 

Variable Actual condition Expected conditions (scenario 1) Expected conditions (scenario 2) 
 SP 112 SP 116 SP 117 SP 118 SP 112 SP 116 SP 117 SP 118 SP 112 SP 116 SP 117 SP 118 
Width (cm) 168 270 260 205 150 150 150 150 150 150 150 150 
Embankment 2 2 1 0 0 0 0 0 0 0 0 0 
Meandering 4 6 3 4 3 3 3 3 3 3 3 3 
Pools-riffles 5 6 5 5 5 5 5 5 5 5 5 5 
Hollow banks 6 6 1 1 1 1 1 1 1 1 1 1 
Depth (cm) 18 12 23 27 20 20 20 20 20 20 20 20 
Flow velocity (m/s) 0.33 0.26 0.14 0.12 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 
pH 8.1 8.0 7.6 7.5 8.1 8.0 7.6 7.5 7.4 7.4 7.4 7.4 
Dissolved oxygen (mg/l) 7.1 7.3 8.0 8.5 7.1 7.3 8.0 8.5 8.0 8.0 8.0 8.0 
Conductivity (µS/cm) 619 502 510 701 619 502 510 701 500 500 500 500 
Ammonium (mg NH4

+-N/l) 1.4 0.9 0.7 1.2 1.4 0.9 0.7 1.2 0.7 0.7 0.7 0.7 
Nitrate (mg NO3

--N/l) 3.3 4.0 3.9 4.3 3.3 4.0 3.9 4.3 3.4 3.4 3.4 3.4 
Total nitrogen (mg N/l) 8.6 7.6 5.7 5.8 8.6 7.6 5.7 5.8 5.7 5.7 5.7 5.7 
Ortho phosphate (mg PO4

3--P/l) 0.3 0.3 0.2 0.2 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 
Total phosphorus (mg P/l) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 
COD (mg COD/l) 21 21 9 19 21 21 9 19 9 9 9 9 
Fraction pebbles (%) 99.0 83.0 55.0 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Fraction gravel (%) 1.0 0.0 17.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Fraction sand (%) 0.0 0.0 16.0 62.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 
Fraction loam/clay (%) 0.0 0.0 12.0 28.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 
 
 



Chapter 10: Application of Artificial Neural Networks and migration models to predict the effect of river 
restoration scenarios on macroinvertebrates 

10.3.3.2. Predicted effect of the restoration actions on the habitat suitability 

 

To improve the habitat quality of the strongly modified river section in the Molenbeek brook, 

it was proposed to remove the artificial embankment structures along the watercourse. It 

would be beneficial if the infiltration of rainwater into the ground was stimulated. In addition, 

the discharge of domestic wastewater has to be minimized. After river restoration, hollow 

banks could develop. Additionally, remeandering is still possible along the major part of the 

impacted river section. Based on these restoration actions, the habitat characteristics are 

supposed to resemble these of the reference situation (SP 119). 

 

Based on the changes of the habitat characteristics after river habitat restoration, with or 

without improvement of the physical-chemical water quality, the prediction of the habitat 

suitability of Tubificidae, Asellidae, Gammaridae, Baetis and Limnephilidae was tested 

(Table 10.7). Table 10.7 reveals that the ANN models perform well to predict the five taxa 

under the actual conditions, with one exception, for which a few models predicted Baetis 

absent.  

 

For the five taxa, the following conclusions could be drawn: river habitat restoration at the 

Molenbeek brook had no consequences for the habitat suitability of Tubificidae, Asellidae, 

Gammaridae and Limnephilidae, while Baetis was predicted absent by 100 %, 50 %, 25 % 

and 50 % of the models for respectively the sites SP 112, SP 116, SP 117 and SP 118. When 

also the improvement of the physical-chemical water quality was considered, no changes were 

observed for Tubificidae, Gammaridae and Limnephilidae. On the other hand, the habitat 

suitability of Asellidae in SP 118 decreased on the basis of one model while the habitat 

suitability of Baetis improved in comparison with scenario 1. 
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Table 10.7. Actual and expected taxon presence/absence values for sampling points 112, 116, 117 and 118 (in brackets the amount of folds out of 

a total of four that supports the outcome). ‘Under actual conditions’, ‘scenario 1’ and ‘scenario 2’ respectively means before restoration actions 

and after restoration of the river habitat without and with improvement of the physical-chemical water quality 

 Observed Predicted (under actual conditions) 
 SP 112 SP 116 SP 117 SP 118 SP 112 SP 116 SP 117 SP 118 
Tubificidae present present present present present (4/4) present (4/4) present (4/4) present (4/4) 
Asellidae present present present present present (4/4) present (4/4) present (4/4) present (4/4) 
Gammaridae present present present present present (4/4) present (4/4) present (4/4) present (3/4) 
Baetis present present present present present (3/4) present (4/4) present (3/4) present (2/4) 
Limnephilidae absent absent absent absent absent (4/4) absent (4/4) absent (4/4) absent (4/4) 
 Predicted (scenario 1) Predicted (scenario 2) 
 SP 112 SP 116 SP 117 SP 118 SP 112 SP 116 SP 117 SP 118 
Tubificidae present (4/4) present (4/4) present (4/4) present (4/4) present (4/4) present (4/4) present (4/4) present (4/4) 
Asellidae present (4/4) present (4/4) present (4/4) present (4/4) present (4/4) present (4/4) present (4/4) present (3/4) 
Gammaridae present (4/4) present (4/4) present (4/4) present (4/4) present (4/4) present (4/4) present (4/4) present (4/4) 
Baetis present (0/4) present (2/4) present (3/4) present (2/4) present (3/4) present (3/4) present (3/4) present (3/4) 
Limnephilidae absent (4/4) absent (4/4) absent (4/4) absent (4/4) absent (4/4) absent (4/4) absent (4/4) absent (4/4) 
 



Chapter 10: Application of Artificial Neural Networks and migration models to predict the effect of river 
restoration scenarios on macroinvertebrates 

10.3.3.3. Simulation of the recolonization 

 

For this restoration project, it was less useful to apply the migration models developed for 

Gammaridae, Baetis and Limnephilidae (Chapter 8) to check the recolonization possibilities 

of the restored sites since Gammaridae and Baetis were already present before the restoration 

actions took place. On the other hand, the habitat suitability of Limnephilidae did not improve 

sufficiently to get this sensitive taxon back. 

 

 

10.3.4. Removal of a weir for water quantity control in the Zwalm river 

 

10.3.4.1. Project definition 

 

The sites on the Zwalm river near the Boembekemolen are characterized by a modification of 

the flow channel due to a flood control weir between sampling sites 61 and 55 (Fig. 10.6). 

This weir obstructs the migration of fish and other aquatic organisms, including 

macroinvertebrates. Upstream of the weir, the river is drastically deepened. Just in front, the 

depth can be nearly around two meters depending on the control level of the weir and the 

amount of sediments accumulated at the site. This is much deeper than under natural 

conditions. Also the flow velocity is reduced drastically, creating an almost stagnant water 

body immediately upstream of the weir (Belconsulting, 2003). This situation results in direct 

and indirect impacts on the river biology. A direct impact is that the shear stress is quite low, 

being an advantage for Asellidae for instance, but for some insect larvae like Baetis which can 

profit from a continuous water flow over their gills on the back of their body, these artificially 

induced conditions are less optimal. The indirect effects of the decreased flows can play a 

crucial role for the river biology as well. As a result of the reduced flows, there is a serious 

accumulation of sediments (due to the erosion problems in the area), containing organic 

materials and probably also toxic materials, such as pesticides from runoff of agricultural 

soils. The organic compounds are degraded by the local micro biota, reducing the amount of 

dissolved oxygen in the water in particular near the bottom of the deepened systems. 

 

Removing the weir has an impact on several structural components of the river as well as 

presented in Table 10.8. In this table, only the altered variables are presented. In the upstream 

section of the removed weir, flow velocity will increase while width and depth will decrease. 
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Also the quality of the channel morphology will evolve positively because of an increased 

meandering of the river, the development of pools and riffles, and the creation of natural 

hollow banks. These changes are taken into account when predicting the effect of weir 

removal on the habitat suitability for Tubificidae, Asellidae, Gammaridae, Baetis and 

Limnephilidae. In combination with expert knowledge, the expected values of the altered 

stream characteristics were obtained on the basis of monitored conditions about one kilometre 

upstream of the weir (sampling point 65), where the weir effect is about nihil. Therefore, it is 

a good site as a basis for comparison and validation also under the unaltered water quality 

conditions presented in this simulation exercise. 
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Fig. 10.6. Location of the sampling sites is in this study. At the right site, pictures of the 

sampling points 61, 55 and 65 are shown.  
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Table 10.8. Actual and expected altered values of the stream characteristics for sampling sites 

SP 25, 55, 61, 62, 63 and 64 after weir removal. These values were obtained on the basis of 

monitored conditions upstream (SP 65) of the sampling points of interest and in combination 

with expert knowledge 

Variable Actual condition 
 SP 25 SP 61 SP 55 SP 62 SP 63 SP 64 

Expected 
conditions 

Width (cm) 260 500 750 550 583 410 337 
Embankment 0 1 1 0 0 0 0 
Meandering 2 6 5 5 1 4 3 
Pools-riffles 4 4 5 5 4 4 4 
Hollow banks 4 6 5 5 1 3 4 
Depth (cm) 12 27 190 130 71 62 23 
Flow velocity (m/s) 0.43 0.04 0.03 0.03 0.05 0.04 0.20 
Fraction pebbles (%) 98.0 74.0 0.0 0.0 0.0 11.0 38.0 
Fraction gravel (%) 1.3 1.4 31.5 0.0 0.1 0.0 23.8 
Fraction sand (%) 0.4 19.5 6.5 37.8 50.2 23.8 27.1 
Fraction loam/clay (%) 0.3 5.1 62.0 62.2 49.7 65.2 11.1 
 

 

10.3.4.2. Predicted effect of the restoration actions on the habitat suitability 

 

In Table 10.9 the outcomes of the ANN models are presented over the four folds. In brackets 

the number of folds supporting this presence/absence label is indicated. For the five taxa the 

models were able to classify well the actual conditions (= the conditions before weir 

removal), based on the environmental variables. No shifts in the habitat suitability were 

predicted for Tubificidae, Asellidae, Baetis and Limnephilidae after river restoration. For 

Gammaridae however, sampling sites 55 and 62 were predicted suitable again based on all the 

models. At sampling sites 63 and 64, Gammaridae were predicted present on the basis of only 

one model. On the other hand, two models predicted sampling site 25 as unsuitable after weir 

removal. 
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Table 10.9. Actual and expected taxon presence/absence values for sampling points 25, 55, 

61, 62, 63 and 64 (in brackets the amount of folds out of a total of four that supports the 

outcome). ‘Under actual conditions’ and ‘under altered conditions’ respectively means before 

and after weir removal 

 Observed 
 SP 25 SP 61 SP 55 SP 62 SP 63 SP 64 
Tubificidae present present present present present present 
Asellidae present present present present present present 
Gammaridae present present absent absent absent absent 
Baetis absent absent absent absent absent absent 
Limnephilidae absent absent absent absent absent absent 
 Predicted (under actual conditions) 
 SP 25 SP 61 SP 55 SP 62 SP 63 SP 64 
Tubificidae present 

(4/4) 
present 
(4/4) 

present 
(4/4) 

present 
(4/4) 

present 
(4/4) 

present 
(4/4) 

Asellidae present 
(4/4) 

present 
(4/4) 

present 
(4/4) 

present 
(4/4) 

present 
(4/4) 

present 
(4/4) 

Gammaridae present 
(4/4) 

present 
(4/4) 

absent 
(4/4) 

absent 
(4/4) 

absent 
(4/4) 

absent 
(4/4) 

Baetis absent 
(4/4) 

absent 
(4/4) 

absent 
(4/4) 

absent 
(4/4) 

absent 
(4/4) 

absent 
(4/4) 

Limnephilidae absent 
(4/4) 

absent 
(4/4) 

absent 
(4/4) 

absent 
(4/4) 

absent 
(4/4) 

absent 
(4/4) 

 Predicted (under altered conditions) 
 SP 25 SP 61 SP 55 SP 62 SP 63 SP 64 
Tubificidae present 

(4/4) 
present 
(4/4) 

present 
(4/4) 

present 
(4/4) 

present 
(4/4) 

present 
(4/4) 

Asellidae present 
(4/4) 

present 
(4/4) 

present 
(4/4) 

present 
(4/4) 

present 
(4/4) 

present 
(4/4) 

Gammaridae present 
(2/4) 

present 
(4/4) 

present 
(4/4) 

present 
(4/4) 

present 
(1/4) 

present 
(1/4) 

Baetis absent 
(4/4) 

absent 
(4/4) 

absent 
(4/4) 

absent 
(4/4) 

absent 
(4/4) 

absent 
(4/4) 

Limnephilidae absent 
(4/4) 

absent 
(4/4) 

absent 
(4/4) 

absent 
(4/4) 

absent 
(4/4) 

absent 
(4/4) 

 

 

10.3.4.3. Simulation of the recolonization 

 

As predicted by the ANN models, habitat suitability for Gammaridae improved after weir 

removal. To check the possibility to recolonize the restored river sections, the migration 

models, developed in Chapter 8, could be applied. Because flow velocity was assumed to 

change after weir removal and an important migration barrier would disappear, corrections 

were made for the up and downstream migration resistances. Taking these changes into 
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account for Gammaridae, the accumulative cost for migration downstream through the river 

would drop only slightly as presented in Fig. 10.7a (4270 units) compared to Fig. 8.4a (4300 

units). The accumulative cost for upstream migration would remain unchanged (1760 units) 

(Fig. 10.7b) since no relevant parameters are altered. 

 

To get insight into the duration of the recolonization, those distances were used that were 

calculated to obtain the resistances. Therefore, active and passive migration have been taken 

into account. For each river segment, the time to migrate through that segment has been 

calculated. This was based on the maximum distance which could be covered through that 

segment in one day. Finally, the sum from the source populations to the restored river section 

was considered to estimate the total recolonization time. This would result in a total migration 

time for Gammaridae of approximately 10 days for SP 55 and 60 days for SP 62. 
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Fig. 10.7. Map of the accumulative cost for migration downstream (a) and upstream (b) 

through the river from the source populations of Gammaridae after weir removal. The highest 

accumulative costs to reach the restored habitat are indicated (see figures and legends). 

 

Although the restored river section was evaluated as unsuitable for Baetis and Limnephilidae, 

the developed migration models still could be applied to calculate the migration possibilities 



Chapter 10: Application of Artificial Neural Networks and migration models to predict the effect of river 
restoration scenarios on macroinvertebrates 

from the source populations to the restored parts. This could help the river managers to make 

a decision on whether or not additional restoration works are necessary. For instance, if also 

the water quality would be improved (e.g. by the installation of local small scale wastewater 

treatment plants), it would be likely that Baetis would recolonize the restored upstream river 

section since, several source populations were already observed over there. For this reason, 

the migration model developed in Section 8.3.3 was applied to simulate the recolonization 

possibility of Baetis in the restored site. Some of the altered stream characteristics after weir 

removal would also have an effect on the migration model of Baetis (e.g. fraction of boulders 

and flow velocity). In addition, the migration barrier would disappear. Taking these changes 

into account for Baetis, the accumulative cost for migration downstream through the river to 

SP 55 would drop significantly as presented in Fig. 10.8a (5900 units) compared to Fig. 8.6a 

(± 9900 units). After weir removal and restoration of the river habitat, this would result in a 

total migration time for Baetis of approximately two years. On the other hand, weir removal 

would only have a minor effect on the accumulative cost for migration through the air as 

shown in Fig. 10.8b (2140 units instead of ± 2400 units). The time to recolonize the restored 

river section through the air would be about 275 days. In this way, one could conclude that 

the shortest path with the least accumulative cost from the ‘cheapest’ source population to SP 

55 would be through the air (Fig. 10.8b). 
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Fig. 10.8. Map of the accumulative cost for migration downstream through the river (a) and 

through the air (b) from the source populations of Baetis after weir removal. The 

accumulative costs to reach SP 55 are indicated (see figures and legend). The shortest path 

from the ‘cheapest’ source population to SP 55 is also shown (see black line). 

 

Assuming that the restored habitat was suitability for Limnephilidae as well, it is less likely 

that Limnephilidae would recolonize these river sections since source populations were only 

observed in the headwaters (the brooks Verrebeek and Dorenbosbeek) of the Zwalm river 

basin, which are more than seven kilometre upstream of the restored river. The migration 

models indicate that it would take almost six years to migrate downstream through the river 

(assuming that also the habitat suitability of the watercourses between source population and 

restored river section would improve), while migration time through the air would take 

approximately three years. 
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10.4. Discussion 
 

In the first project, the effect of remeandering without minimization of the weir effect on the 

five macroinvertebrates appeared to be negligible. This seems logical since remeandering 

does not alter the characteristics of the watercourse very drastically. Several projects 

considering remeandering (e.g. of the rivers Gelsa and Brede in Denmark), demonstrated 

however an increase of the macroinvertebrate diversity of 30 % within two years after the 

restoration. This is mainly caused by the increased heterogeneity of the substrate throughout 

the channel (Hansen, 1996). If weir minimization was not taken into account, flow velocity 

was still too slow to increase this heterogeneity. On the other hand, minimizing the weir effect 

resulted in a negative, respectively positive effect on the habitat suitability of Asellidae and 

Gammaridae. Based on Chapter 7, the most influencing variable for Asellidae was width. 

Minimizing the weir effect induced a decrease in river width which has a negative effect on 

the probability of presence of Asellidae (two out of four models predicted Asellidae as absent 

based on scenario 2). Although water quality related input variables, which were of major 

importance for the habitat suitability of Gammaridae (Chapter 7), were not altered in project 

1, the habitat suitability of Gammaridae increased based on scenario 2 (four out of four 

models). However, also depth was rather important which can declare the shift in habitat 

suitability of Gammaridae. The habitat suitability of Baetis decreased. However, this was 

probably due to the less predictive performance of the models which tend to predict Baetis 

always as absent (Chapter 6). In addition, Baetis was most influenced by pollution related 

variables which were not altered in both scenarios (Chapter 7). Although one may assume that 

the self-purifying capacity of the river will increase after remeandering, this was not 

considered in this study. In an additional study, a negative effect was predicted on the 

presence of the two leeches Erpobdella and Helobdella, both occurring in more impacted 

streams (De Pauw and Vannevel, 1991). 

 

For the first project, it can be concluded that only the remeandering project taking into 

account the minimization of the weir effect could be valuable for improving the ecological 

quality. Apart from the possible ecological consequences of remeandering, also the social 

consequences are of major importance. Although the effect of the construction of the natural 

flooding area was not considered in this study, it can be concluded that this, in combination 

with the reintroduction of meanders, enlarges the water bearing capacity of the concerning 
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system. In this manner, this project is advantageous for the ecological value and the safety of 

the housings and fields against flooding (even if the weir would stow less water as supposed 

in the second restoration scenario), while not much agricultural area has to be sacrificed for 

this type of works.  

 

Although a significant physical-chemical water quality improvement may be assumed in 

project 2, the impact of the installation of a domestic wastewater collector without minimizing 

the dam effect seemed to be very small on the five taxa. Only for Gammaridae, an 

improvement of the habitat suitability could be observed. However, Gammaridae was the only 

taxon for which pollution related variables played a key role in the prediction of the habitat 

suitability (Chapter 7) and for which reliable predictive performances were obtained (Chapter 

6). On the other hand, minimizing the dam effect of the fishponds resulted also in a slightly 

positive effect on the habitat suitability of Asellidae and a further improvement for the 

Gammaridae. From a social point of view, it is however little realistic to assume that the 

dammed effect will be eliminated in the future. Nevertheless, this would be a useful 

restoration option. If it is not possible to remove the dams, a by-pass to avoid the fishponds 

could be a valuable solution. 

 

It was less useful to investigate the river habitat restoration in project 3 since four taxa 

(Tubificidae, Asellidae, Gammaridae and Baetis) were already present before the restoration 

actions took place. Also after river restoration took place, the four taxa were predicted as 

present. Limnephilidae were however not predicted as present after restoration actions were 

performed, although habitat as well as water quality was improved. Although the 

presence/absence of Limnephilidae is mainly influenced by pollution related variables 

(Chapter 7), this had apparently no impact on the prediction behaviour of the models in 

scenario 2. Most likely, this can be explained by the sensitivity curves presented in Fig. 7.20. 

Not one single variable had a probability of presence higher than 0.5, the threshold to classify 

taxa as present. Derived from the test set however, good predictive results were obtained for 

Limnephilidae, i.e. the models were able to predict Limnephilidae as present based on the 

combination of input variables. In an additional study, a positive effect was generally 

predicted on the presence of the leech Glossiphonia and the insects Sialis and Tabanidae after 

river habitat restoration and improvement of the physical-chemical water quality. On the other 

hand, the restoration actions had in general a negative effect on the habitat suitability of the 

insect Simuliidae. It is demonstrated that a decrease in habitat quality results in a loss of 
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biodiversity. Several restoration projects in Great-Britain and Denmark show that habitat 

restoration has a positive effect on the macroinvertebrate communities (e.g. Hansen, 1996; 

Catling, 2001). In addition to the possible ecological consequences, also the aesthetic and 

recreational consequences can be considered. From this point of view, the restoration actions 

are even more valuable.  

 

The improved structural quality of the river in project 4 was apparently insufficient to restore 

the habitat for Baetis and Limnephilidae, two indicators of good water quality. Based on the 

outcomes of the contribution methods in Chapter 7 however, both taxa were most strongly 

affected by variables describing the stream type (stream order and distance to mouth) and 

pollution such as dissolved oxygen, conductivity, total phosphorus, nitrate, … which were not 

changed in this project. For Gammaridae, an improvement of the habitat suitability was 

predicted after river restoration. Two models however predicted sampling site 25 as 

unsuitable after weir removal. This is not so unlikely as based on the results in Chapter 7 and 

the expert knowledge in Chapter 4. The contribution methods revealed that depth and flow 

velocity had a paramount effect on the prediction of the output. After weir removal these 

variables were changed in an unfavourable manner (depth increased while flow velocity 

decreased) for Gammaridae as could be extracted from Table 10.8. This is confirmed by the 

Bayerisches Landesamt für Wasserwirtschaft (1996) and Verdonschot (1990) who stated that 

this taxon prefers small running waters with rather high flow velocity. 

 

To get insight into the reference conditions as is necessary for the implementation of the 

European Water Framework Directive (EU, 2000), the removal of the weir for flood control 

near the mill Boembekemolen can be seen as an interesting virtual restoration action to be 

undertaken. By knowing what would be the ecological shifts, one is able to get insight into the 

reference communities, but also whether it is really worth to consider such a restoration 

striving to a near natural condition and increasing the risks for flooding downstream during 

intensive rain events as a potential consequence. Most probably, this situation with a weir for 

flood control cannot be altered drastically, and the attribution of this site as a strongly 

modified water body will probably be necessary and be defended from a social-economical 

perspective rather than a nature conservation point of view. 
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10.5. Conclusions 
 

To convince the water managers and stakeholders of the validity and practical usefulness of 

the developed models, some simulations of river restoration scenarios were performed. These 

scenario analyses can help to decide which restoration options to choose. In this way, these 

exercises can be interesting as validation instrument and can give insights into shifts of 

indicator organisms. Based on ANN models however, calculating the effect of future river 

restoration actions on aquatic ecosystems and supporting the selection of the most sustainable 

options seems to be part of the options. The four simulation exercises learned us that 

depending on the type of the problem, the added value of the models can differ significantly. 

If the values of the key environmental variables for a particular taxon are not altered during 

restoration (Chapter 7), the ANN models will not predict any change in habitat suitability. In 

this way, the restoration actions would seem to have no biological effect although water or 

habitat quality improved. In addition, Tubificidae, Limnephilidae and in a smaller extent 

Baetis were always predicted as respectively present and absent. One can wonder if it is worth 

to develop data driven models for these taxa. One could decide to use only the models of 

Asellidae and Gammaridae, which gave good results, or one can use knowledge based models 

such as Bayesian Belief Networks or fuzzy logic. The latter models are mainly based on 

expert knowledge. In this way, the lack of illustrative cases of presence or absence for 

respectively Limnephilidae and Tubificidae can be avoided. However, it is important to 

include as many taxa as possible to be able to describe the changes in community composition 

and diversity. The simulations revealed that validating the models for such exercises itself is 

also difficult, and the only way to really validate the models is to follow up these restorations 

in case they are practically realized. Perhaps the use of artificial rivers could provide an 

answer as well. 

 

To be able to make a full assessment of the overall ecological effects, these types of studies 

need much more models concerning other biological communities (other macroinvertebrate 

taxa, fish, macrophytes, …). Also the coupling with water quantity and quality models is 

necessary. The environmental variables of the rivers are sometimes very difficult to fix based 

on other sites or expert knowledge. The coupling of models will be necessary to get insight 

into the interactions that take place as a result of changing habitat characteristics or changing 

pollution levels.  
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The results also illustrate that migration models can provide a real surplus value to the habitat 

suitability models since they can give an idea about the possibilities and expected time to 

recolonize restored river sections. This can guide water managers through the different 

restoration options and the decisions to be made. Nevertheless, also these models can be 

optimized as discussed in the previous Chapter 8. 
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General discussion and further research 

This thesis was initiated with the objective of developing and practically exploring data driven 

models based on Artificial Neural Networks to predict the habitat suitability of 

macroinvertebrates and migration models to simulate the possibility of migration and 

recolonization of the taxa modelled. Both model types were developed and evaluated on the 

basis of data monitored in the Zwalm river basin (Flanders, Belgium). This study had a 

threefold purpose: 

 

• the development of data driven habitat suitability models based on Artificial Neural 

Networks for macroinvertebrates in the Zwalm river basin. In addition, insight was gained 

into the ‘black box’ models applying three input variable contribution methods, often 

referred to as sensitivity analysis; 

• the development of migration models for the taxa modelled in this thesis with the aim 

of investigating the migration and recolonization possibilities within the study area. 

Therefore, the Cost Weighted Distance tool of the ArcGIS Spatial Analyst extension was 

used; 

• the practical evaluation of the developed models. To this end, the impact of four 

restoration projects was predicted on the macroinvertebrate habitat suitability. 

 

Detailed results of the different approaches to the modelling problems have been covered in 

previous chapters. In the following paragraphs, in a more general perspective each of the 

above aims will be discussed in the light of the results obtained during this study. Finally, at 

the end of this chapter a number of thoughts and considerations are given for future research 

in this field. 

 

 

General Discussion 
 

Design of a monitoring strategy suitable for data driven habitat suitability modelling 

 

Before data driven models can be applied, a reliable dataset, including relevant input and 

output variables, has to be available. Although a lot of data have been gathered in Flanders on 

the river systems, still some gaps are to be filled before these data meet the requirements of 

the modelling objectives. First of all, the data are spread over different institutes in Flanders 
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using various format types, different co-ordinates, ... The existing monitoring networks of the 

Flemish Environment Agency (VMM) and AMINAL, both responsible for ecological river 

management in Flanders, are not appropriate because the monitoring approach is not adjusted 

to the requirements of the data needed within the aim of this thesis focussing on habitat 

suitability modelling. 

 

To this end, a new dataset was set up containing 60 sampling sites equally spread over the 

Zwalm river basin. A broad range of all variables was measured over a four-year period. 

However, based on this dataset, model performances were sometimes highly variable 

depending on the macroinvertebrate taxa modelled, as was shown in this thesis. To get a 

better insight into what type of data would be needed in the future, and where these extra data 

could be collected in order to improve the model performance and its practical applicability, 

maps should be constructed indicating the ANN model residuals (observed minus predicted 

output value of presence/absence or abundances) (e.g. Dedecker et al., 2005a; Goethals, 

2005). Both studies revealed for example that the largest quantity of errors (especially 

underestimations of the observed occurrence) for Gammaridae were mainly encountered in 

the river Zwalm, while the presence/absence predictions for Asellidae contained most errors 

in the upstream parts scattered all over the river basin. Based on these residuals, new sampling 

points for particular organisms or model objectives were identified. In this manner, an even 

more practically directed sampling strategy could be set up. Also sites from other river basins 

could be added to the future data collection in order to develop more general models. 

 

 

Collection of environmental variables as input for the habitat suitability models: 

selection of relevant input variables and data analysis  

 

As in any prediction/forecasting model, the selection of appropriate model inputs is extremely 

important (Kaastra and Boyd, 1995; Faraway and Chatfield, 1998). The old saying ‘‘garbage 

in garbage out’’ can be applied to ANNs and a significant amount of time must be spent to 

perform the task of knowledge acquisition (Walczak and Cerpa, 1999). Specification of the 

appropriate environmental input variables is in this way an important but complex issue 

(Soulie, 1994). Pakath and Zaveri (1995) claim that ANNs as well as other artificial 

intelligence techniques are highly dependent on the specification of input variables. However, 

two problems may occur when selecting the input variables of the model: too many or too 
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little environmental variables can be included to specify the relation between input 

(environmental river conditions) and output (habitat suitability of macroinvertebrates). Hertz 

et al. (1991) stated that the ANN performance improves as additional knowledge is provided 

through the input variables. This is certainly true to the extent that if a sufficient amount of 

information representing critical decision criteria is not given to an ANN, then the ANN (or 

any other modelling technique) cannot develop a correct model. The common belief is that 

since ANNs are learning, they will be able to determine those input variables that are 

important (cf. Chapter 7) and develop a corresponding model through the modification of the 

weights associated with the connections between the input layer and the hidden layers (Lek 

and Guégan, 1999). In addition, numerous variables are involved in the functioning of aquatic 

ecosystems and in community organisation, so that variables cannot a priori be omitted 

without a probable loss in information. However, Tahai et al. (1998) and others (e.g. 

D’heygere et al., 2005b) claim that noise input variables produce poor generalization 

performance and that the presence of too many input variables can cause a decrease of the 

ANN model performance. In addition, the ANN models clearly showed to be able to make 

ecologically valuable inferences of only about three to five variables, according to the results 

in this work (this can be related to the size of the datasets which are rather small, but to prove 

this, more research is needed). In other words, presenting a large number of inputs to the 

ANN models, and relying on the network to determine the critical model inputs, will usually 

increase the network size and after all only a limited set of variables are really used to predict 

the output (cf. Chapter 7). Rigorous considerations are thus needed for detecting which 

variables are really relevant and which ones can be neglected (Auger et al., 2000). 

 

Based on expert knowledge, literature reviews and consultation of domain experts, in this 

thesis 24 input variables were selected to predict the habitat suitability of macroinvertebrates 

as mentioned in Chapter 4. These variables include physical-chemical as well as structural 

river characteristics. According to Konings and Meire (2003), a conceptual relationship exists 

between these structural variables and the biotic quality of the river. In addition, they seemed 

to be crucial in the case studies of the Zwalm river basin since the water quality considerably 

improved due to investments in sewerage and wastewater treatment plants during the past 

fifteen years (VMM, 2003). Therefore, restoration projects are currently more directed 

towards restoration of the structural features of the river (e.g. reintroducing meanders and 

natural banks, …). 
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As discussed in Section 5.4, several theoretical reasons can be given to remove variables or 

instances (e.g. presence of outliers, high correlation between variables, …), but also quite 

some practical reasons to keep them in. To make the models however applicable in the 

broadest number of theoretical (e.g. model optimization) and practical (e.g. effect prediction 

of river restoration scenarios) cases, and to make a tryout on data that were as natural as 

possible, these data were kept in the dataset. As such it was possible to check whether these 

data driven models could deal with these kind of data as is sometimes referred to by ANN 

experts (e.g. Maier and Dandy, 2000). 

 

On the other hand, more variables should be necessary to cope with all kinds of relevant 

ecological processes to cover different aspects in river management (e.g. what is the effect of 

pesticides or metals in the Zwalm river basin on the stream ecology). Besides a basic set of 

variables (water temperature, dissolved oxygen concentration, pH, COD, ammonium, nitrite, 

nitrate, ortho-phosphate, total phosphorus, chlorides and conductivity), the Flemish 

Environment Agency also monitors particular variables (BOD, Kjeldahl nitrogen, sulphates, 

total hardness, suspended solids and the heavy metals As, Ba, Cd, Cr, Cu, Fe, Hg, Mn, Pb, Se, 

Ni and Zn) in a selected number of sites (VMM, 2003). In addition, 67 pesticides (31 belong 

to the organochlor pesticides, 17 to the organophosphorus pesticides and 19 to the 

organonitrogen pesticides) and several other micro-organic pollutants (e.g. mono- and 

polycyclic aromatic compounds) are measured (VMM, 2003). Most of the last-mentioned 

variables were not considered in this study, except for suspended solids, which can be of 

importance for the habitat suitability of macroinvertebrates. Goethals (2005) included eight 

metal concentrations to predict the habitat suitability of Asellidae and Gammaridae in the 

river sediments of Flanders. None of these elements however played a major role in the 

prediction of the presence/absence of both taxa based on ANNs. One possible reason for this 

could be the fact that bio-availability of the metals was not taken into account. On the other 

hand, it is very important that these data cover a range broad enough of all variables and that 

enough instances are collected. As such it does not make sense to include new variables when 

not enough data can be presented to the model developed. Concerning the range of the data, in 

particular in Flanders there is a major lack of good river ecosystems, what makes it difficult to 

develop well performing models for simulating restoration options and predicting reference 

conditions. Therefore, probably more data from other river basins (e.g. international data) will 

be needed to improve the models described in this study. 
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Collection of macroinvertebrates as output for the habitat suitability models: sampling 

methods, sampling variability and identification levels 

 

The collection of macroinvertebrates was based on two methods: the hand net method in the 

shallow river stretches (De Pauw and Vanhooren, 1983; IBN, 1984) and artificial substrates in 

the deeper and un-wadable river stretches (De Pauw and Vanhooren, 1983; De Pauw et al., 

1994). Both techniques are widely used and accepted, not only in Flanders, but also abroad. In 

some cases, however, also other tools like the Van Veen grab and the surber net are being 

applied. The first one is mainly used to take sediment samples in order to assess the river 

sediment quality (e.g. the Belgian Sediment Index, De Pauw and Heylen, 2001). The surber 

net is proposed for sampling according to the AQEM procedure (AQEM consortium, 2002). 

Both type of samplers provide better quantitative monitoring results than the hand net method. 

In this way, quantitative predictions of abundances should be more reliable. However, they 

were less appropriate in the present study. The Van Veen grab sampler considers indeed only 

the true ‘benthic’ macroinvertebrates while the surber sampler is merely developed for 

shallow waters with a strong current (Gabriels et al., 2003). Additionally, Van de Walle 

(2004) revealed in a comparative study (within the framework of an inter calibration exercise 

for the European Water Framework Directive) that in 70 % of the sampling sites more taxa 

were found with the hand net method. This was confirmed by Gabriels et al. (2003). 

 

Whatever method is chosen however, vital is to have some idea of the sources and effects of 

macroinvertebrate sampling variation. A method for the assessment of the ecological quality 

or an ecological model based on these data is of little value without some knowledge of the 

levels of ‘uncertainty’ of the sampled data. The variation of the observed fauna and the biotic 

index values could arise from sampling variation, sample processing, identification errors, 

seasonal changes or differences in weather conditions. Biologists working with benthic 

macroinvertebrates are since long aware of the problems of variability in what they measure 

and the importance of replication (Norris and Georges, 1993). Several studies have assessed 

sampling variation in biotic indices through replicated studies in single rivers (e.g. Armitage 

et al., 1995; Wright, 2000; Li et al., 2001). Nevertheless, the consequences of between-

operator variability have rarely been addressed (Clarke et al., 2002). Furse et al. (1981) and 

Mackey et al. (1984) indicated significant differences with respect to operators. In an exercise 

with students conducted by Alba-Tercedor and Sánchez-Ortega (1988) along a stream in the 

Sierra Nevada Mountains of southern Spain, different results in the sampling of 
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macroinvertebrates were obtained in accordance to their difference in experience. All students 

detected the same trend of a decrease in water quality downstream, but with very different 

scores, so that clear disfunctions appeared when scores were translated to water quality class 

significances. Also the study described in Section 4.4 revealed small dissimilarities between 

the six samples taken in one site by operator A and B. Qualitative as well as quantitative 

differences in the macroinvertebrate fauna were detected. Not only did the abundances vary 

between replicas, but also the macroinvertebrate taxa composition. Nonetheless, qualitative 

differences in the fauna may be more important than the number of specimens of each taxon 

collected (Mackey et al., 1984). These small dissimilarities underline the importance of 

adequate training of all operators involved in the monitoring programmes. The latter is 

confirmed by Clarke et al. (2002) who found between trained-operator influences on sample 

values that were negligible. Also Fore et al. (2001) detected no significant differences 

between field samples collected by trained volunteers and professionals. 

 

When sorting the material and identifying the macroinvertebrates, some taxa may be missed 

or misidentified. Bartsch et al. (1998) for example subjected all samples to quality control 

procedures to estimate the accuracy of sorting and taxonomic identification. Sorting error 

varied by taxon, with small Nematoda and Oligochaeta most commonly missed. Larger, less 

abundant taxa such as Amphipoda, Ephemeroptera, Odonata, Pelecypoda, and Trichoptera 

were seldomly missed. Furse et al. (1981) detected significant between-operator differences in 

the number of taxa removed from samples during the sample processing stage. In the study 

performed under Section 4.4, sample processing and identification was carried out by one 

person to minimize this type of variation and focus on the sampling variation itself. 

Misidentification could be minimized if identification is performed by specialists or well 

trained people. However, more identification errors may be expected if identification to genus 

or species level is expected or if identification is done by less experienced persons. The use of 

species, genus or family level identification will depend on the objectives of the studies 

(Adriaenssens et al., 2004b). If the purpose of a study is simply to detect an impact of a 

perturbation on macroinvertebrate communities, identification to family level may be used, 

but ecological interpretation remains hazardous. If the goal of the study is to know the 

magnitude of community changes, lower taxonomic identifications are imperatively needed. 

On the other hand, there is an increasing need for rapid and low-cost methods to assess and 

predict water quality. In this way, identification at a low taxonomic level is difficult and can 

be performed only by specialists who are becoming less and less numerous. In addition, if 
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there is sufficient knowledge of the taxonomy of some major faunistic groups such as 

Ephemeroptera, Trichoptera and Plecoptera, other groups like Diptera and Oligochaeta for 

which few identification keys to species level (or genus) are available, are often neglected 

(Guerold, 2000). Identification to the family level may also be more appropriate when 

samples contain many early instar larvae, which are difficult to identify to lower taxonomic 

levels. Mainly based on cost-related constraints and the lack of sufficient knowledge of all 

taxonomic groups, it was decided to identify the macroinvertebrates to family or genus level 

as specified in De Pauw and Vannevel (1991). 

 

Another factor that may lead to variation in the observed fauna could be the temporal 

variability and seasonal fluctuations in macroinvertebrate composition. This temporal 

variability refer to aquatic community changes that occur over time because of diurnal and 

life-cycle changes in organism behaviour or development, and seasonal or annual changes in 

the environment. Variation in distribution and abundance of macroinvertebrates may be 

caused by differences in flow-rate (Newbury, 1984), stream size and distance to the source 

(Minshall et al., 1985), substrate (Minshall and Minshall, 1977), vegetation (Vincent, 1983), 

and temperature and stream discharge (Bournard et al., 1987; Boulton and Lake, 1992). 

Seasonal variability of such factors at a site (e.g. Wade et al., 1989) is one of the prominent 

causes of temporal variation in the macroinvertebrate community (Linke et al., 1999). The 

phenology of species within a community (Linke et al., 1999) and the move of invertebrates 

through their life cycle (Reece et al., 2001) may also affect their presence and abundance in 

the aquatic community throughout the seasons. It is clear that the time scale of sampling, 

particularly when it is carried out over more than one season, can significantly affect results 

of bioassessment or an ecological model. Season should be explicitly taken into account in 

monitoring, assessment and modelling studies, although seasonal variation is currently most 

often addressed by constraining the time frame of sampling. To get the most valuable 

assessment for a given site, Linke et al. (1999) would recommend visiting and assessing the 

site in at least two seasons. However, annual sampling may be all that a budget will permit 

(Resh and McElravy, 1993). In this thesis, data were collected in the same period each year 

(August-September) in order to minimize temporal variation on the dataset. 

 

Worldwide, government agencies developed quality assurance/quality control programmes 

(QA/QC) and audit schemes in order to ensure that operators have been trained well and have 

the necessary expertise to follow appropriate procedures, that methods for data collection are 
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standardized, that these methods are of consistent and high quality, and that the quality is 

maintained throughout the duration of the assessment project. Quality assurance and control 

should pervade all aspects of an ecological study: study design, field operations, laboratory 

activities, data analysis and reporting. There are numerous examples of quality control 

programmes to refer to in the USA (Cuffney et al., 1993; Barbour et al., 1996; Barbour et al., 

1999; Moulton et al., 2000), and Europe as well (e.g. EU- STAR project (Standardisation of 

River Classification) (EVK1-CT-2001-00089) (http://www.eu-star.at/)). The UK government 

agencies for example, in conjunction with CEH, have developed quality control and external 

audit schemes whereby very experienced biologists reanalyse a proportion of all RIVPACS 

samples to assess and quantify sample processing and identification errors made by agency 

biologists (Furse et al., 1995; Clarke, 2000; Dines and Murray-Bligh, 2000). Also in Flanders, 

the Flemish Environment Agency developed a quality system, based on the international 

standard ISO 17025, to standardize sampling, sample and data processing and the 

determination of the Belgian Biotic Index (VMM, 2003). In addition, the VMM executes 

internal audits on a yearly basis in order to control the quality of data acquisition, processing 

and identification of the macroinvertebrates (Heylen et al., 1999). 

 

In addition, the reliability of the macroinvertebrate monitoring results is of high importance 

for the development and validation of habitat suitability models based on data driven 

techniques (e.g. Artificial Neural Networks). In this context, the predictions of reference 

conditions and as a consequence the prediction of indicators of a good water quality are of 

major importance in river management (cf. the European Water Framework Directive). 

However, these sensitive species (e.g. Limnephilidae) are in general less abundant. As a 

consequence it is more difficult to catch them, as demonstrated in Dedecker et al. (2005e). In 

this way, the monitoring efficiency can strongly influence the reliability of the data driven 

models. This is further demonstrated in the next paragraphs. 

 

 

ANN model development 

 

An important difficulty that ecological processes can create for presence/absence models is 

that some of the negative locations (sites where a taxon was not observed in the field) may be 

similar, and possibly identical, to positive locations (sites were a taxon was observed in the 

field). It is almost inevitable that species will be restricted to a few locations, so that only a 
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small proportion of the potentially suitable sites will be occupied (Fielding and Bell, 1997). 

These factors will degrade the performance of the model and result in too many false positives 

(= commission error) (see confusion matrix Chapter 6). Apparent commission errors are 

derived from potentially suitable habitats correctly predicted as presence, but that are not 

demonstrated as such because no confirmation of the species exist there, often called ‘pseudo-

absence’ (Anderson et al., 2003). The lack of verification of the species may have various 

causes (Karl et al., 2002). For example, isolated areas of potentially suitable habitats where no 

species were found often correspond to historical restrictions or the historical effect of 

speciation, for example failure of the species to disperse to a region of suitable habitat 

(Peterson et al., 1999; Peterson and Vieglais, 2001; Anderson et al., 2002a). Therefore, 

migration models were developed in this study to simulate the migration possibilities from a 

known source population to a potential habitat (unknown habitats that already exists or new 

possible habitats created by river restoration actions). Similarly, competition between related 

species likely restricts many species’ realized distributions (Peterson, 2001; Anderson et al., 

2002b). Other biological interactions, such as predation, may also limit some species’ 

distributions. In addition to historical and biotic causes, apparent commission error can also 

be derived from inadequate sampling: sites of real presence where the species was not found 

because they have not adequately been sampled by biologists (Karl et al., 2002). This latter 

form of apparent commission error has recently been recognized in presence/absence datasets 

(Boone and Krohn, 1999; Karl et al., 2000; Schaefer and Krohn, 2002; Stauffer et al., 2002) 

and was also studied by Dedecker et al. (2005e). These authors looked at the variability of the 

macroinvertebrate collection in the Zwalm river basin as discussed in Section 4.4. They 

revealed that if taking only one sample it was likely to miss indicator organisms for a good 

water quality, which are in general less abundant. As a consequence, it could be concluded 

that the reliability of the presence/absence data driven models can be influenced by the 

monitoring efficiency and that commission errors are likely to occur. However, practical 

constraints (like lack of time and money) will be hard to overcome if multiple samples on one 

location have to be taken, especially when one likes to cover a large area (e.g. Flanders). 

Therefore, from a practical point of view, it was opted to take only one sample. 

 

The ANN models in this thesis were evaluated on the basis of both the overall prediction 

success (= CCI) and the Cohen’s kappa. From an ecological point of view, the CCI is the 

most logic performance measure because of its easy interpretation towards water managers 

and policy makers. As discussed in Chapter 6 however, predictions of very common and rare 
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taxa can be misleading if only the overall prediction success is used as performance measure. 

Therefore, from a mathematical point of view also the CK was recommended in the literature 

(e.g. Fielding and Bell, 1997; Manel et al., 2001) to evaluate the performance of 

presence/absence models. Peterson (2001), Ponder et al. (2001) and Stockwell and Peterson 

(2002) however, stated that both CCI and Cohen’s kappa are biased with datasets that lack 

true absence data because the pseudo-absence sites overestimate the commission error. The 

fact of the matter is that both performance measures include elements of omission and 

commission (Fielding, 2002). Nevertheless, a combination of both performance measures is 

very often proven to be efficient in evaluating presence/absence models (e.g. Fielding and 

Bell, 1997; Dedecker et al., 2004; D’heygere et al., 2005b; Goethals, 2005) and is as such 

applied to evaluate the ANN models in this study. 

 

In general, less reliable models were constructed for very common or very rare taxa based on 

ANN models (respectively Tubificidae and Limnephilidae in this study). This is a well-known 

problem in presence/absence predictions based on data driven models. For both groups of 

taxa, habitat suitability models based on expert knowledge, such as fuzzy logic (Zadeh, 1965; 

Barros et al., 2000; Adriaenssens et al., 2004a) and Bayesian Belief Networks (Pearl, 1988; 

Adriaenssens et al., 2004c) can be seen as useful alternatives. The development of these 

model techniques is mainly based on ecological knowledge (Jensen et al., 2000). However, 

expert knowledge from literature is often contradictory or not available for less studied 

organisms. Consequently, it can be highly complicated to extract a consistent set of rules. In 

addition, Bayesian Belief Networks also need a large dataset to determine the conditional 

probabilities. In this way, Bayesian Belief Networks are difficult to apply to large, general, 

problems (which is often the case in ecology) because the number of conditional probabilities 

that must be specified can quickly become extremely large. As a consequence, many 

probabilities will not be well characterized (Adriaenssens, 2004). Similarly, when the input 

variables needed to be included in the fuzzy rule-based models become large, the number of 

rules required in fuzzy logic increases to an unmanageable level (Jensen et al., 2000).  

 

In comparison with predictive modelling techniques previously applied on data from the 

Zwalm river basin, such as fuzzy logic and Bayesian Belief Networks (Adriaenssens, 2004) 

and classification trees and ANNs (Goethals, 2005), the ANN models developed in this thesis 

show a relatively good predictive performance. In the preceding modelling studies however, 

only 179 instances (monitored over a three year period, 2000-2002) instead of 237 instances 
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in the present study (over a four year period, 2000-2003) were used. In addition, both fore-

mentioned authors developed merely models for the crustaceans Asellidae and Gammaridae. 

The highest predictive performances of these studies are summarized in Table 1. It can be 

concluded that the predictive performances for Asellidae were very similar for the 

classification trees and both ANN models, while they were much lower based on the fuzzy 

logic technique. On the other hand, better predictions were obtained based on the one-layered 

Bayesian Belief Networks. For Gammaridae, the CCIs and CKs were higher based on the 

ANN models developed in the present study. However, they were still lower than for the 

predictions based on the Bayesian Belief Networks. It has to be mentioned however that a 

large inherent uncertainty is present in these predictions (Adriaenssens, 2004). To this end, 

using a redundancy in model techniques for certain problems rather than relying on a single 

technique is likely to be beneficial in practice. 

 

Table 1. The highest CCI (correctly classified instances) and Cohen’s kappa (CK) values for 

the macroinvertebrate taxa Asellidae and Gammaridae based on the different modelling 

techniques applied in the present study and Adriaenssens (2004) and Goethals (2005) 

Study CCI (%) CK 
ANNs Asellidae 79.8 0.60 Present study 
ANNs Gammaridae 80.2 0.47 
Classification trees Asellidae 78.6 0.57 
Classification trees Gammaridae 75.1 0.22 
ANNs Asellidae 81.1 0.62 

Goethals 
(2005) 

ANNs Gammaridae 75.1 0.15 
Fuzzy logic Asellidae 25.0*  
Fuzzy logic Gammaridae 37.0*  
One-layered BBN Asellidae 86.0 0.71 

Adriaenssens 
(2004) 

One-layered BBN Gammaridae 85.0 0.51 
* ‘percentage correctness’ instead of ‘correctly classified instances’ was used as performance 

measure for the fuzzy logic models. Both performance measures are highly correlated based 

on Adriaenssens (2004). 

 

Although a lot of experience is already gained in ecological modelling, still many problems 

have to be overcome (Jorgensen, 1999). To this end several modelling techniques have been 

developed. A few examples are summarized here: use of fuzzy models to overcome the 

problem of a poor data base (Jorgensen, 1994a), use of chaos and fractal theory in modelling 

to improve the parameter estimation (e.g. Jorgensen, 1995), use of catastrophe theory in 

modelling as an attempt to model structural changes (Jorgensen, 1997), use of artificial 
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intelligence in parameter estimation (Todorovski et al., 1998), use of recently developed 

parameter estimation methods (Jorgensen, 1998), development of structural dynamic models 

by use of goal functions to account for the ecosystem properties (Jorgensen, 1986, 1988, 

1999; Jorgensen and de Bernardi, 1997), development of Adaptive Agents which are capable 

to produce emergent behaviour and which can explore a wide range of ecosystem phenomena 

involving succession, adaptation and evolution (Holland and Miller, 1991; Recknagel, 2002, 

2003), development of support vector machines as pattern recognition tool (Morris et al., 

2001). 

 

Actually, a lot of uncertainty exists on the development of data driven models. In this study, 

several architectures and training methods were compared, but the outcome was not easy to 

summarize in a set of simple rules of thumb. Therefore, presently it remains rather unclear 

how to develop well performing data driven models based on a general set of rules. The 

existing rules of thumb as presented in Chapter 2 are often not working well and trial and 

error is in most cases the only solution to find the most optimal model training for data driven 

techniques such as ANNs. Also in this study, standard data mining software, consulting of 

data mining experts and a lot of practical experience (based on trial and error) were the major 

factors to develop well performing models. An important step forward could be made if a 

good model development guideline would exist. There is a high demand for this, but the 

offers stay out for ANN models … A reference book for good modelling practice is published 

by STOWA/RIZA (1999), but this work was only concentrated on deterministic models and 

did not take into account data driven models. Such documents could make these ANN models 

much more popular and increase the practical application and validation of the methods in 

ecology. For this purpose, a multi-disciplinary approach will be crucial: bringing river 

managers, mathematicians, applied informatics specialists, ecosystem scientists and data 

collectors together (Goethals, 2005). To this end, the HarmoniQuA project (Harmonising 

Quality Assurance in model based catchment and river basin management) (EVK2-CT2001-

00097) (www.HarmoniQuA.org), a European Union-related research project contributing to 

the implementation of the WFD, has been launched and is aiming at providing a user friendly 

guidance and quality assurance framework for use in model based river basin management. 

This project will contribute towards enhancing the credibility of catchment and river basin 

modelling. 
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Automated development (via stochastic searches and other optimization algorithms), 

eventually followed by rule extraction was beyond the scope of this thesis but might look like 

a valuable option for the future. Algorithms based on evolutionary programming and genetic 

algorithms have been used successfully to determine optimal network architecture (e.g. Fang 

and Xi 1997; Kim and Han 2000; Zhao et al., 2000; Wicker et al., 2002). This is already 

partially worked out by D’heygere et al. (2003, 2005b) for classification trees and ANN 

models. However, so far only input variable selection was performed on the Zwalm river 

basin dataset. Also larger databases will certainly be necessary to be able to use these 

optimization techniques in a valid manner. 

 

Three input variable contribution methods were applied to unravel the ‘black box’ neural 

networks and to retrieve in this manner the ecological meaning of the ANN model 

predictions. The outcomes were sometimes highly variable for the different contribution 

methods and taxa in the applied databases. Also the extracted ecological knowledge did often 

not present new insights, but in most cases however a confirmation of basic ecological expert 

knowledge was obtained (e.g. relations with physical habitat such as width, distance to mouth, 

…). On the one hand, it is confirmed that these techniques can extract thorough ecological 

knowledge, but on the other hand the added value seems rather limited if a lot of studies are 

performed yet and expert knowledge is available. However, for taxa for which no or limited 

knowledge is available, this can already mean an important step forward. In addition, these 

contribution methods are very useful to reveal the predictive behaviour of the ANN models. It 

could indeed be concluded that the combination of the PaD method with the Profile method 

gives a fairly correct idea of the ecological meaning of the models and their practical 

relevance for decision support in river management. 

 

Nevertheless, Olden et al. (2004) stated that a comparison of the different contribution 

methodologies is not valid if empirical datasets (e.g. relating the presence/absence of 

macroinvertebrates to a set of local habitat variables) are used. Using empirical datasets 

precludes the ability to establish generalizations regarding the ‘true accuracy and precision’ of 

the different approaches because the ‘true importance of the variables’ is unknown. The fact 

that the dataset of the Zwalm river basin has been analysed in a number of other studies (e.g. 

Adriaenssens, 2004; Goethals, 2005) does not change the fact that the true correlative 

characteristics of the entire population (i.e. all macroinvertebrates and their associated habitat 

conditions in the entire river basin) remain unknown. As such, these data are only 
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representative of a sample of the entire population. To this end, Olden et al. (2004) compared 

these methodologies using a Monte Carlo simulation experiment with data exhibiting defined 

(and consequently known) numerical relationships between a response variable and a set of 

independent predictor variables. By using simulated data with known properties, they could 

accurately investigate and compare the different approaches under deterministic conditions 

and provide a robust comparison of their performance. The results of Olden et al. (2004) show 

that a Connection Weight approach that uses raw input-hidden and hidden-output connection 

weights in the neural network provides the best methodology for accurately quantifying 

variable importance and should be favoured over other approaches commonly used in the 

ecological literature. 

 

 

Migration model development 

 

Since water quality in Flanders gradually improves (VMM, 2003), recolonization of new 

suitable habitats gets more and more of importance. However, accessibility of these restored 

habitats can be restricted due to several migration barriers along the river (Monden et al., 

2005). In this way, source populations of certain species can be isolated. As a result, 

migration to (new) potential habitats can be limited or even impossible. Because ANN models 

only predict the effect of (altered) environmental river characteristics on the biology (i.e. the 

habitat suitability), the development of migration models could be useful. These models are 

able to check the migration possibilities from known source populations to potential habitats. 

In this way, they can be of important additional value for river restoration management. In 

addition, they can direct the attention on the conservation of valuable source populations 

which are of major importance as starting point for the ecological recovery of the 

watercourses. 

 

To model the migration and recolonization possibilities of Gammaridae, Baetis and 

Limnephilidae in the Zwalm river basin, the Cost Weighted Distance function was applied. 

The setting of resistance values in the resistance layer is biologically probably the most 

important step in the process of calculating the cost of migration (Adriaensen et al., 2003). As 

mentioned before, setting the resistance values was a difficult process in which expert 

judgement and data available in literature played an important role. Although a theoretical 

validation of the resistance values was done based on a sensitivity analysis (the resistance 

 290



General discussion and further research 

values ascribed to the different determining variables were altered to investigate the changes 

in the resulting accumulative costs and the sensitivity of the developed migration model on 

variation of the applied resistance values), a more in depth validation of the migration models 

is recommended in the future. To this end, the use of artificial rivers could be helpful. On the 

other hand, analysing the genetic diversity or marking and tracing the macroinvertebrates 

could help to identify their real migration potentials and colonization routes. However, these 

experiments are often expensive and not always that realistic and reliable. Validation of the 

predictive results in the field is therefore indispensable. This field validation could be based 

on nets placed along the river or visual observations of migrating adults. Migration through 

the water could be observed based on nets placed in the water. Unfortunately, it appeared 

quasi-impossible to include these validation steps in the framework and time frame of the 

present thesis. Nevertheless, these steps have to be considered during future research. 

 

The migration model using the cost-distance function has a whole range of applications. Not 

only the migration possibilities of observed macroinvertebrates within the study area can be 

modelled but also the extension to other species including nearly extinct as well as invasive 

exotic species (e.g. Dikerogammarus villosus (Crustacea, Amphipoda), Corbicula fluminea 

(Mollusca, Bivalvia)) will prove to be of major importance in river restoration management. 

Also effects of certain interventions in the river (like weir removal or remeandering projects) 

in view of river management planning can be judged in a more reliable and integrated manner 

compared to the local habitat suitability models. Similar strategies will also have to be 

developed for fish, seen the importance of migrating species (Monden et al., 2005). In 

addition, the scale of the developed models will have to be extended to the whole Zwalm river 

basin and maybe beyond. Extension of the intensive monitoring campaign as done for the 

selected parts of the Zwalm river basin, would however be very costly and time consuming. 

Therefore, using aerial photographs and remote sensing techniques in combination with 

digital maps to extract the necessary information would be recommendable. 

 

 

Model applications for decision support in water management 

 

The first steps towards a reliable model application for decision support in water management 

have been mentioned and discussed before. These include among others a clear description of 

the objectives, appropriate data collection, analysis of the available data, examination of the 
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model structure and parameters, model validation, … These can be summarized as the 

‘credibility’ of the models (van der Molen, 1999). The term credibility is defined and used in 

several ways as: 

 

• ‘a property which depends upon the success in all phases of the model-building 

procedure’ (Young, 1983); 

• ‘a sufficient degree of belief in the validity of the model to justify its use for research 

and decision making’ (Rykiel, 1996). The latter author relates credibility to the amount of 

knowledge available, the purpose of the model and the consequences of any decision 

based on it; 

• ‘a model becomes credible if the model went through the procedure of systems 

analysis and if the uncertainties involved in the predictions have been considered’ (van der 

Molen, 1999). 

 

Beside this certification of ‘good modelling practice’ however, the analysis of the 

requirements from the managers’ and stakeholders’ point of view is also of crucial 

importance. This is probably why the development of models needed for water management 

already has a fairly long history (e.g. Young and Beck, 1974). There is however no standard 

tendency to use models for river management, in particular in Flanders (Goethals, 2005). Too 

many modelling studies are not validated in practice and as such do not prove to work 

properly or be able to give the information of interest to managers. To this end, van der Molen 

(1999) made a distinction between ‘credibility’ and ‘acceptability’. After the credibility of the 

model has been specified, the model may be either accepted or rejected. So, credibility is the 

more technical appropriateness of the model while acceptability is the perception of the 

managers of its practical value. Mostly modellers perform model analyses, but managers also 

use model results. They have to judge if model results are acceptable to be used in decision-

making. However, involving users (river managers) in the model development process is not 

easy as was demonstrated in the COST 626 project ‘European Aquatic Modelling Network’. 

The aim of this project was to stimulate the integrated use of models for decision support in 

water management. To determine and assess model credibility and to specify the acceptability 

of the model van der Molen (1999) set up some criteria. These criteria are listed in Table 2. 

By extension, they have been applied on the developed ANN and migration models in order 

to test the credibility and acceptability of the models in this thesis (Table 2). 
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Table 2. Criteria to determine model credibility and to specify the acceptability (this part is normally completed by the manager, stakeholder, …) 

of a model (after van der Molen (1999)). The criteria are applied on the developed ANN and migration models 

Criteria for credibility ANN model Migration model 
Objectives of the model are specified and the 
choice of state variables is in agreement with 
these objectives 

Prediction of the habitat suitability of 
macroinvertebrates in rivers based on 
environmental river characteristics. The single 
state variable is the macroinvertebrate 
presence/absence 
 

Simulation of the migration and recolonization 
possibilities of macroinvertebrates. The single 
state variable is the cost to migrate from one 
point to another 

Dimensions of the modelled system and 
aggregations in time and space meet the 
objectives and the availability of data 
 

Models were applied to the entire Zwalm river 
basin and the ‘short distance’ monitoring 
network 

Models were applied to the ‘short distance’ 
monitoring network 

The available data are utilized sufficiently and 
the system identification is not hampered by 
lack of input data and observations; 
uncertainties in the data are considered 

Input variables are summarized in Chapter 4 
and include physical-chemical as well as 
structural river characteristics. Data analysis is 
performed as described in Chapter 5 

Input variables are summarized in Chapter 8 
and include environmental and river 
characteristics influencing migration of the 
considered taxa. Uncertainty could partly be 
retrieved from the sensitivity analysis in 
Chapter 9 
 

During sensitivity analysis, parameter 
estimation and validation, the appropriateness 
of the model structure is examined 
 

Model architecture is examined based on 
comprehensive parameter estimation (Chapter 
6) en sensitivity analysis (Chapter 7) 

The model structure of the migration model 
was fixed and was not examined in this way 

Model parameters are fixed at well 
documented values or are properly estimated 

The optimal model parameters (e.g. learning 
rate, number of hidden neurons, …) were fixed 
or estimated in Chapter 6 
 

Model parameters (e.g. grid size, …) were 
fixed as specified in Chapter 8 

Model validation is based on an independent 
set of observations and the results are 
quantified and related to the objectives 

Model validation was based on k-fold cross-
validation as specified in Chapter 6 

Theoretical model validation was based on 
sensitivity analysis (Chapter 9) 



 

 

Continuation of Table 2. Criteria to determine model credibility and to specify the acceptability (this part is normally completed by the manager, 

stakeholder, …) of a model (after van der Molen (1999)). The criteria are applied on the developed ANN and migration models 

Criteria for credibility ANN model Migration model 
The uncertainties in model structure, model 
parameters and model predictions are 
addressed and quantified to a certain extend 

Uncertainties are encountered using standard 
deviation measures on model predictions and 
sensitivity analysis 

The uncertainty in model output is acceptable 
for speculations and gross conclusions on the 
migration possibilities of the considered taxa 
and was addressed based on the sensitivity 
analysis in Chapter 9 
 

Criteria for acceptability (specified by the 
river managers) 

ANN model Migration model 

The motivation for the initiation of a modelling 
project is known 

The motivation to develop the habitat 
suitability models is to fill this gap in river 
management in Flanders so far. In this manner, 
the ecological effects of river restoration 
projects can be supported in a more scientific 
way 

Since ANN models do not take accessibility of 
the restored river sections into account, 
migration models can fill this gap. They are 
able to investigate the connectivity between 
populations or the possibility to migrate from a 
source population to a restored river section 
 

Constraints in time and money for model 
development and applications are specified 

No constraints in time and money were 
specified for the development of the models 

No constraints in time and money were 
specified for the development of the models 
 

Arguments and consequences for approval or 
rejection of the model (results) are discussed 

Arguments for acceptance/rejection of the 
model were not specified in advance, but 
acceptability of the results may be positively 
affected by the credibility of the modelling 
approach. In addition, the models are 
practically evaluated based on the simulation 
of four river restoration scenarios (Chapter 10) 

Arguments for acceptance/rejection of the 
model were not specified in advance. However, 
the practical usefulness of the models was 
demonstrated based on the simulation of river 
restoration scenarios (Chapter 10) 

 



General discussion and further research 

To convince the river managers and stakeholders of the validity and practical usefulness of 

the developed models in this thesis, some simulations of river restoration scenarios were 

performed in the last chapter. These scenario analyses can help to decide which restoration 

options to choose. In this way, these exercises can be useful as practical validation 

instruments and give insights into shifts of indicator organisms. However, there are several 

needs for improvement to make the models practically more reliable, as was clearly shown in 

Chapter 10. For example, one can wonder if it is useful to include Tubificidae and 

Limnephilidae in the predictions since the ANN models were not able to predict shifts in 

habitat suitability of both taxa. On the other hand, there is a need to make simulations of all 

taxa to detect the shift of the whole community. Also other models can be included to predict 

the input variables of these habitat suitability models, such as land use, water quantity and 

quality models, … These practical case studies also deliver insights into how to improve the 

data collection (e.g. where to take additional samples) to develop and validate models that are 

of practical use for decision support in river management. Currently, in the Zwalm river basin 

river restoration project which are in progress are followed up. However, results are not 

available yet. 

 

As mentioned before, to enhance the acceptability of the developed models in decision 

support, it would be beneficial to include and combine the outcomes of other models. 

Recently, several practical concepts and software systems were developed related to decision 

support in environmental and water management (e.g. Booty et al., 2001; Caminiti, 2004; 

Cuddy and Gandolfi, 2004; Mysiak et al., 2005; Holmes et al., 2005; Bazzani, 2005; 

Pallottino et al., 2005).  

 

From a technical point of view, one can opt to build a new model for each application or to 

utilize existing models where possible. The first approach has the benefit of control in the 

models design and linkage, but requires longer development time. The second approach saves 

on the development time, but requires additional work to link up existing models (Lam et al., 

2004). In addition, it is of major importance to carefully consider the general and specific 

application areas of the applied models to avoid a wrong extrapolation or coupling of existing 

knowledge or models (Ceccaroni et al., 2004). However, when a lot of models are already 

available, it is probably the best option. 
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Particularly in Flanders, it would be beneficial to couple the existing hydraulic and river 

quality models applied by the different governmental administrations and institutions to the 

ecological habitat suitability models (and migration models) developed in this study. These 

hydraulic and water quality models could provide useful insights into the effect of river 

restoration scenarios on the environmental river characteristics used as input variables for the 

habitat suitability models. The model ISIS (applied by AWZ, AMINAL Water, VLM and 

several provinces in Flanders) for example could be of major additional value to simulate the 

hydraulic effects of weir removal or remeandering on the river width, depth, … In addition, 

this model is able to make a more realistic estimation of the (intension and distance of the) 

effects in upstream and downstream direction (e.g. the risks for flooding downstream). On the 

other hand, the water quality models SIMCAT, SENTWA and SEPTWA (applied by VMM) 

could be used to simulate the effect of reduction of domestic, agricultural and industrial 

discharges on the river water quality. SIMCAT is a mathematical model used to describe the 

river water quality throughout a catchment, while SENTWA and SEPTWA are models to 

evaluate the transport of nutrients and pesticides to the river. In this way, a more reliable and 

scientific based estimation of the impacts of river restoration actions on the environmental 

input variables of the habitat suitability models could be made. 

 

In addition, Goethals (2005) described the potential link between ecological models and 

socio-economical models and stakeholder information needs, since economic valuation can 

play an important role to analyse the costs and benefits of river restoration options within the 

policy area of water management. 

 

 

Main conclusions based on the present thesis 

 

As stated at the beginning of this chapter, the three major objectives of this PhD research were 

1) the development of habitat suitability models for macroinvertebrates in the Zwalm river 

basin based on ANNs, 2) the development of migration models for macroinvertebrates as 

extension of the habitat suitability models and 3) the prediction of river restoration scenarios 

as practical evaluation of the developed models. The main conclusion based on the present 

thesis are summarized below: 
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1) ANN model development 

• the combination of two performance measures (the percentage of Correctly Classified 

Instances, CCI and the Cohen’s kappa) was proven to be efficient evaluating 

presence/absence ANN models. From an ecological point of view, the CCI is the most 

logic performance measure because of its easy interpretation towards water managers and 

policy makers while the Cohen’s kappa can be recommended from a mathematical point 

of view; 

• for the macroinvertebrate taxa Asellidae and Gammaridae, good predictive results were 

obtained based on the ANN models in comparison with other habitat suitability models 

(classification trees, fuzzy logic and Bayesian Belief Networks). The predictions for the 

very common taxon Tubificidae and the very rare taxon Limnephilidae were less 

satisfactory since the ANN models tend to ‘learn’ that very rare taxa are always absent 

and very common taxa are always present. On the one hand, supplementary data 

comprising sites where Tubificidae are absent and Limnephilidae are present, can be 

included. On the other hand, habitat suitability models based on expert knowledge can be 

applied to overcome this problem in the future; 

• because the size of the training and test set influences respectively the generalization 

capability of the model and accuracy of the model performance, the optimal size of 

training and test set was searched for based on the cross-validation procedure. It could be 

decided that the optimal number of folds was four (three fourth of the data is used for 

training and one fourth is used for testing) for all five taxa. To this end, one may conclude 

that 4-fold cross-validation is a good consideration between model generalization capacity 

and accuracy; 

• network architecture is generally known to be highly problem dependent. However, 

comparing the different model architectures for each taxon in the present study, predictive 

performances were very similar. In this way, no straightforward conclusions towards the 

five taxa could be drawn according to the optimal number of hidden layers and neurons; 

• the input variable contribution methods applied to the ANN models were useful to select 

ecologically essential variables to describe the species’ habitat(s) and to include these in 

monitoring campaigns for river assessment. In particular the insight into the sensitivity 

curves was useful, by showing how the environmental variables affect the biological 

communities. The input variables ammonium, COD, conductivity and total phosphorus 

were of major importance in predicting the habitat suitability of Gammaridae, while for 
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Asellidae, the environmental characteristics describing the stream type (such as width, 

stream order and distance to mouth) were the most contributing variables. For Tubificidae, 

it was very difficult to extract the major environmental variables and to make conclusions 

about environmental preferences. To a smaller extend, the variables nitrate, distance to 

mouth, total phosphorus, sand and stream order were indicated as key variables. For 

Baetis, beside pollution related variables (ammonium, nitrate, conductivity and dissolved 

oxygen), also habitat characteristics (suspended solids, temperature, pools-riffles, depth 

and stream order) seemed to be important to explain the presence/absence. Stream order, 

dissolved oxygen, total nitrogen and phosphate were the highest contributing variables for 

Limnephilidae. However, it was often difficult to find major trends for the five taxa in the 

Zwalm river basin, the three contribution methods and the different folds. The first two 

can be explained by different ecological preferences of the taxa and by the different 

aspects the three contribution methods deal with. The instability over the different folds is 

perhaps related to the relative small size of the datasets in combination with a high 

variability of the sites, the high number of input variables or outliers in the measurements. 

This will therefore need further research based on larger datasets and use of sub-

samplings. In spite of this, it could be concluded from this study that the combination of 

the ‘PaD’ method with the ‘Profile’ method gives a very good idea of the ecological 

meaning of the models and their practical relevance for decision support of river 

management. 

 

2) Migration model development 

• because ANN models only predict the effect of (altered) environmental river 

characteristics on the biology (i.e. the habitat suitability), the development of the migration 

models was very useful. These models were able to check the migration possibilities from 

known source populations to potential habitats (created after river restoration or naturally 

existing). In addition, they gave an indication of the timing of the expected effects 

(expressed in days); 

• setting the resistance values was a difficult process in which expert judgement and data 

available in literature played an important role. However, data was very scarce and often 

incomplete. Therefore, it was difficult to validate the model results in a proper way. 

However, a first step in the theoretical validation process was made performing a 

sensitivity analysis varying the resistance values ascribed to the different determining 

variables. If more resistance classes were used to calculate the accumulative migration 
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costs for migration through the air / over land and differences between the resistance 

classes were large enough, more details could be extracted from the migration models. It 

was also derived that variation in flow velocity values only resulted in small differences in 

accumulative migration costs for migration through the river. Variation in flow velocity 

during the year would thus only have a minor impact on the behaviour of the migration 

models. However, practical field validation studies would still be appropriate but it was 

quasi-impossible to include these validation studies in the time frame of the present thesis. 

Nevertheless, these steps have to be considered during future research. 

 

3) Prediction of river restoration scenarios 

• the simulations of river restoration scenarios have shown to be useful to convince river 

managers and stakeholders of the validity and practical usefulness of the developed 

models; 

• however, no shifts in habitat suitability could be predicted for Tubificidae and 

Limnephilidae. One can wonder if these taxa have to be included for the evaluation of the 

river restoration actions. One could decide to use only the models of Asellidae and 

Gammaridae, which gave good results, or one can use knowledge based models such as 

Bayesian Belief Networks or fuzzy logic. In this way, the lack of illustrative cases of 

presence or absence for respectively Limnephilidae and Tubificidae can be avoided. 

However, it is important to include as many taxa as possible to be able to describe the 

changes in community composition and diversity; 

• the four simulation exercises learned us that depending on the type of the problem, the 

added value of the models can differ significantly. If the values of the key environmental 

variables for a particular taxon were not altered during restoration, the ANN models did 

not predict any change in habitat suitability. In this way, the restoration actions would 

seem to have no biological effect although water or habitat quality improved; 

• based on the migration models, an approximation of the migration route and the migration 

time (expressed in days) to the restored river sections could be given for Gammaridae, 

Baetis and Limnephilidae. 
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Further research 
 

This PhD research illustrated that habitat suitability models based on Artificial Neural 

Network models can be an interesting tool to get insight into the relation between 

environmental river characteristics and macroinvertebrates. On the other hand, the 

development of migration models for macroinvertebrates has shown to be useful as extension 

of the habitat suitability models. The combined use of both models can be helpful to make 

simulations of the potential ecological effects of river restoration options (as well as the 

effects of river deterioration) and can as such support the decision making process that river 

managers are facing daily . 

 

Several difficulties and research questions remain however unsolved. Therefore, a number of 

recommendations and considerations for further research are being put forward here. 

 

The need for good datasets was one of the major problems that was encountered during this 

study. Although a lot of data have been gathered on the river systems in Flanders, there are 

still some gaps to fill before these data will meet the requirements of our modelling 

objectives. Therefore, a new monitoring network (in the Zwalm river basin) has been 

constructed in order to develop reliable and useful predictive habitat suitability models for 

macroinvertebrates. Nevertheless, the collected dataset was far from optimal. On the one 

hand, inclusion of new, essential variables, for example pesticides, heavy metals and micro 

pollutants could be beneficial to explain the habitat suitability of the macroinvertebrates. On 

the other hand, it is extremely important that these data cover a broad enough range of all 

variables and that enough instances are collected. As such it does not make sense to include 

new variables when not enough data can be presented to the model developed. Concerning the 

range of the data, in particular in Flanders, there is a major lack of river ecosystems of good 

ecological status. This makes it difficult to develop well performing models for testing 

restoration options and predicting reference conditions. Therefore, more data from other river 

basins maybe abroad (e.g. international data) will be needed to improve the models described 

in this study. However, also financial and time constraints can play a major role in deciding 

whether certain data are to be included in the database or not. Rigorous methods are therefore 

needed to decide which explanatory variables or combinations of variables should be entered 

in the model. To this end, genetic algorithms have proven to be very efficient to automatically 
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select the relevant input variables for Artificial Neural Networks (e.g. D’heygere et al., 

2005b). 

 

Besides the optimization of the dataset, a further optimization and extension of the ANN 

models and migration models (especially further validation) is required. More 

macroinvertebrate taxa have to be considered. From a practical point of view, it might be 

justified to work directly at community level and predict whole communities at once, 

characteristics of communities (e.g. expected biodiversity) or even ecological indices. For 

example, Goethals et al. (2002) predicted the BBI for several restoration options in the 

Zwalm. Because river managers have extensive experience with these indices, they also will 

have better understanding of the use of models predicting directly an ecological index. Also 

the development of habitat suitability models for fish, macrophytes, … will be beneficial for 

the implementation of the European Water Framework Directive. On the other hand, 

extension of both migration and habitat suitability models to other river basins in Flanders 

needs to be taken into account in the future. However, sufficient attention should be paid to 

the place (chosen sampling sites should include different levels of water and habitat quality, 

different types of land use, all river types, all river basins and should be easy to reach) and 

number (on the one hand, enough sites should be included to develop reliable models, on the 

other hand, the number of sampling sites has to be as low as possible to reduce costs) of 

sampling sites. Probably, measurements of the Flemish Environment Agency can be 

integrated in the future. 

 

Nevertheless, the amount of knowledge and data to develop, train and validate these models 

will probably remain a major bottleneck for their successful application, at least in the near 

future. To this end, also the coupling of the habitat suitability models based on ANN models 

to hydraulic (e.g. ISIS) and river water quality models (e.g. SIMCAT, SENTWA and 

SEPTWA) will be necessary to improve the reliability and the practical applicability of the 

habitat suitability models. Coupling of terrestrial modelling modules to aquatic habitat 

suitability models is another future prospect, because many of the considered 

macroinvertebrate taxa, in particular the insect larvae that have a terrestrial adult stage. In this 

context, the development of migration models is an important step forwards. Because of the 

very limited instances in which rare species were present (e.g. Limnephilidae in this study), it 

is most likely that other habitat suitability models such as fuzzy logic and Bayesian Belief 

Networks will be more appropriate because the development of these model techniques is 
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mainly based on ecological knowledge. Add to this fact that the availability of proper and 

reliable expert knowledge is of crucial importance, as well as a good validation set. Also 

embedding these models in a GIS environment will make it possible to deduce inputs from 

GIS maps as well as producing outputs on GIS maps. Moreover, the habitat factors can be 

considered at different scales and an interactive system can be provided for. In this way, 

decision makers will have the possibility to quickly modify parameters and visualize the 

results of simulations, which can be part of a more participatory oriented river basin 

management (Welp, 2001). 

 

Taking the above recommendations and considerations into account, an important step 

towards the collaboration between modellers and river managers and stakeholders can be 

made in the near future. 
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Summary 

In river management in Flanders, nowadays, besides the use of ecological indicators for the 

assessment of water quality, no use is made of other decision support techniques that enable 

the linkage between abiotic and biotic river characteristics. However, the major aim of the 

European Water Framework Directive (WFD) is to reach a good ecological status for all 

water bodies in the member states of the European Union by 2015. A major part of these 

water bodies can be classified as running waters or rivers. To assess the rivers by comparing 

the actual status to a reference status, reference communities must be described that represent 

a good ecological status. Additionally, for the development of a representative set of metrics 

for ecological river assessment, one needs to gain insight into the relation between the aquatic 

communities and the human activities affecting these water systems. Insights into these 

relations will also be valuable for detection of causes of particular river conditions as well as 

for decision-making in river restoration and protection management to meet and sustain the 

requirements set by the WFD. 

 

In spite of the ecological objectives of the WFD, ecological models have been rarely used so 

far to support river management and water policy. Models have however several interesting 

applications in this context. In particular, ‘habitat suitability models’ that can predict the 

habitat requirements of organisms based on environmental river characteristics might be very 

useful. This type of models has only very recently been recognized as a significant component 

of conservation planning. 

 

The overall aim of the present thesis was to determine the appropriate variables and 

ecosystem processes by using a data driven modelling technique, based on Artificial Neural 

Networks (ANNs), to predict the habitat suitability of biological communities present in 

rivers. The ANN models were developed and applied in a MATLAB environment. The 

research mainly focused on macroinvertebrates in brooks and small rivers in the Zwalm river 

basin, a sub-basin of the Upper-Scheldt river basin (Flanders, Belgium). The selected 

sampling sites were characterized by a gradient ranging from nearly natural situations to 

severely impacted (water pollution, physical habitat degradation) ones. 

 

The ANN model results illustrated the convenience of using two performance measures to 

evaluate the model predictions. From an ecological point of view, the overall prediction 

success (= percentage of Correctly Classified Instances, CCI) is the most logic performance 

measure because of its easy interpretation towards water managers and policy makers. There 
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is clear evidence however, that the CCI is influenced by the frequency of occurrence of the 

organism being modelled. Therefore, a second performance measure (the Cohen’s kappa, CK) 

was used, since the effect of prevalence on the CK appeared to be negligible. Because the size 

of the training and test set influences respectively the generalization capability of the model 

and accuracy of the model performance, the optimal size of training and test set was searched 

for. Based on both the CCI and CK, the best option was using three fourth for training and 

one fourth for testing (cf. 4-fold cross-validation). Network architecture is generally known to 

be highly problem dependent. However, comparing the different model architectures for each 

organism, predictive performances were very similar. In this way, no straightforward 

conclusions towards the taxa could be drawn according to the optimal number of hidden 

layers and neurons. 

 

In addition and combined with the ANN models, three methods (the Weights, PaD and Profile 

method) were used to analyse the contribution of environmental variables to predict the 

presence/absence of the macroinvertebrates in a reliable manner and to detect the major river 

characteristics to describe the habitat suitability of the different taxa. It was often difficult to 

find major trends over the five taxa, the three contribution methods and the different folds. 

The first two can be explained by the different ecological preferences of the taxa and by the 

different aspects the three contribution methods deal with. The instability over the different 

folds is perhaps related to the relative small size of the datasets in combination with the high 

variability of the sites, the high number of input variables or outliers in the measurements. 

This will therefore need further research based on larger datasets and sub-sampling methods. 

Nevertheless, it could be concluded that the combined use of the PaD method and the Profile 

method gives a very good idea of the ecological meaning of the models and their practical 

relevance for decision support in river management. 

 

Ecosystem models, such as ANNs, can act as interesting tools to support decision-making in 

river restoration management. In general however, these habitat suitability models do not 

include spatial and temporal relationships. Migration dynamics of the predicted organisms 

and migration barriers along the river may therefore deliver important additional information 

on the effectiveness of the restoration plans. In this context, migration models were developed 

for the Zwalm river basin as extension of the habitat suitability models. These models are able 

to examine the connectivity between population patches or the possibility to migrate from a 

source population to recolonize a restored river section. The migration models were based on 
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the Cost Weighted Distance function, a powerful tool within the ArcGIS Spatial Analyst 

extension of ArcGIS 8.3. A (theoretical) validation of the resistance values was done based on 

a sensitivity analysis. Therefore, the resistance values ascribed to the different determining 

variables were altered to investigate the changes in the resulting accumulative costs and the 

sensitivity of the developed migration model on variation of the applied resistance values. 

 

To convince water managers and stakeholders of the validity and practical usefulness of the 

developed models, four simulations of river restoration scenarios were performed (a 

remeandering project, the construction of collector, a river restoration project, and the 

removal of a weir for water quantity control). The scenario analyses can help to select the 

most valuable restoration options. In this way, these exercises can be interesting as validation 

instrument of the developed models and can give insights into shifts of indicator organisms. 

 

It could be concluded that the combined use of both models (habitat suitability and migration 

model) can be very beneficial to make simulations of the potential ecological effects of river 

restoration actions (as well as the effects of river deterioration) and can as such support the 

decision making process that river managers are daily facing. 

 

However, a number of recommendations and considerations for further research can be put 

forward in order to enhance their value for decision support in river management. In the first 

place, optimization of the monitoring networks (e.g. tuning the selection of sampling sites to 

the prediction of river restoration actions) and the dataset used (e.g. inclusion of new, 

essential variables on the one hand and remove less relevant input variables on the other hand) 

can be beneficial. In addition, further optimization and extension of the ANN models and 

migration models (especially the practical validation) is requested. The development of 

habitat suitability models for other macroinvertebrates, as well as for fish, macrophytes, … 

can also be beneficial based on the needs of the European Water Framework Directive. On the 

other hand, extension of both models to other river basins in Flanders (in order to enlarge the 

predictive range of the models) needs to be incorporated in the future. Also the coupling of 

the habitat suitability models to hydraulic and river water quality models will be required and 

improve the reliability and the practical applicability of the habitat suitability models. 
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In het rivierbeheer in Vlaanderen wordt momenteel naast het toepassen van ecologische 

indicatoren voor de beoordeling van de waterkwaliteit, geen gebruik gemaakt van andere 

beslissingsondersteunende middelen die het verband kunnen leggen tussen de abiotiek en de 

biotiek van een waterloop. De Europese Kaderrichtlijn Water (KRW) stelt echter voor alle 

lidstaten van de Europese Unie een goede ecologische toestand van alle waterlichamen 

voorop tegen 2015. Een groot deel van deze waterlichamen kan als stromende wateren of 

rivieren worden beschouwd. Volgens de KRW moet de waterkwaliteit van de rivieren 

beoordeeld worden door de actuele condities te vergelijken met de referentiecondities. 

Daarom moeten eerst referentiecondities, die een goede ecologische status voorstellen, 

beschreven worden. Bijkomend moet de relatie tussen aquatische gemeenschappen en de 

menselijke activiteiten die deze watersystemen aantasten beter begrepen worden om zo een 

representatieve set van indices voor ecologische rivierbeoordeling te kunnen ontwikkelen. 

Kennis over deze relaties kan eveneens nuttig zijn bij zowel het opsporen van oorzaken van 

bepaalde riviercondities als bij beslissingsondersteuning inzake rivierherstel en beheer om zo 

aan de eisen van de KRW te voldoen. 

 

Ondanks de ecologische doelstellingen van de KRW worden ecologische modellen tot nog toe 

zelden gebruikt om het rivierbeheer te ondersteunen. Modellen kennen nochtans verschillende 

interessante toepassingen in deze context. Vooral habitatgeschiktheidsmodellen die de 

habitatvereisten van organismen kunnen voorspellen op basis van rivierkarakteristieken 

blijken zeer nuttig te zijn. Dit type modellen is echter nog maar zeer recent aanvaard binnen 

het milieubeheer. 

 

Een eerste doelstelling van deze thesis is het bepalen van geschikte variabelen en 

ecosysteemprocessen door het toepassen van artificiële neurale netwerken (ANN), een 

gegevensgebaseerde techniek, bij het voorspellen van de habitatgeschiktheid van biologische 

gemeenschappen in rivieren. Deze ANN modellen werden ontwikkeld en toegepast in een 

MATLAB omgeving. Het onderzoek richt zich vooral op macro-invertebraten in beken en 

smalle rivieren in het Zwalmbekken, een deelbekken van het Boven-Scheldebekken, in 

Vlaanderen (België). De geselecteerde staalnamepunten worden gekenmerkt door een 

gradiënt gaande van een bijna natuurlijke tot een sterk verstoorde toestand 

(waterverontreiniging, fysische habitatverstoring). 
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De resultaten van de modellen illustreerden vooreerst het nut om twee evaluatiecriteria te 

gebruiken bij het beoordelen van ANN voorspellingen. Door de gemakkelijke interpretatie 

naar watermanagers en beleidsmensen toe is vanuit een ecologisch standpunt het aantal juiste 

voorspellingen (de CCI) het meest geschikt. Er is echter duidelijk aangetoond dat de CCI 

wordt beïnvloed door de frequentie van voorkomen van het gemodelleerde organisme. 

Daarom werd een tweede evaluatiecriterium (de Cohens kappa, CK) gebruikt. De invloed van 

de frequentie van voorkomen op de CK bleek immers verwaarloosbaar te zijn. Omdat de 

grootte van de training- en testdataset enerzijds de mogelijkheid tot veralgemenen van de 

modellen en anderzijds de accuraatheid van de evaluatiecriteria kan beïnvloeden werd gezocht 

naar de optimale grote van training- en testdataset. Op basis van de CCI en de CK bleek het 

gebruik van drie vierden van de dataset voor training en één vierde voor het testen optimaal te 

zijn (cf. 4-fold cross-validatie). De opbouw van het neuraal netwerk is in het algemeen zeer 

probleem afhankelijk. Bij het vergelijken van de verschillende modelconstructies voor elk 

organisme bleken de verschillen in performantie echter zeer klein te zijn. Zo kon naar 

modelopbouw (aantal verborgen lagen en neuronen) geen eenduidige conclusie per organisme 

getrokken worden. 

 

Er werden eveneens drie methoden (de Weights, de PaD en de Profile methode) toegepast om 

het aandeel van de verschillende milieuvariabelen op de voorspelling van de aan- en 

afwezigheid van de macro-invertebraten aan te geven. Op deze manier konden de 

belangrijkste riviereigenschappen per organisme bepaald worden. Het was niet altijd evident 

om trends over de vijf organismen, de drie methodes en de verschillende ‘folds’ te 

achterhalen. De eerste twee kunnen toegeschreven worden aan de verschillende ecologische 

voorkeur van elk organisme en de verschillende aspecten die de drie methoden behandelen. 

De instabiliteit over de verschillende ‘folds’ kan waarschijnlijk verklaard worden door de 

relatief kleine datasets waarmee wordt gewerkt. Daarbij komt nog de grote variabiliteit binnen 

de staalnameplaatsen, het groot aantal invoervariabelen en de uitbijters in de metingen. 

Verder onderzoek op basis van grotere datasets is daarom aangewezen. Desondanks kan 

besloten worden dat een combinatie van de PaD en de Profile methode een zeer goed inzicht 

verschaft in de ecologische betekenis van de modellen en hun praktische relevantie voor 

beslissingsondersteuning in het rivierbeheer. 

 

Ecosysteemmodellen, zoals ANN, houden meestal geen rekening met ruimtelijke en 

temporele relaties. De migratiemogelijkheden van de voorspelde organismen en 
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migratieknelpunten langs de rivier kunnen daarom interessante bijkomende informatie leveren 

bij het beoordelen van herstelmaatregelen. Daarom werden als uitbreiding van de 

habitatgeschiktheidsmodellen migratiemodellen ontwikkeld voor een deel van het 

Zwalmbekken. Deze modellen beschikken over de mogelijkheid om de verbondenheid van 

populaties of de mogelijkheid tot migratie vanuit een bronpopulatie naar een hersteld 

riviersegment te onderzoeken. Deze migratiemodellen zijn gebaseerd op de ‘Cost Weighted 

Distance’ functie, een krachtig instrument binnen de ArcGis Spatial Analyst extensie van 

ArcGIS 8.3. Om de migratiemodellen (theoretisch) te valideren werd een sensitiviteitsanalyse 

uitgevoerd. Daarbij werden de waarden, toegekend aan de weerstanden, gevarieerd om zo de 

gevoeligheid van de ontwikkelde migratiemodellen en de wijzigingen in voorspelde uitvoer te 

onderzoeken.  

 

Om de watermanagers en beheerders te overtuigen van de mogelijkheden en het praktisch nut 

van de ontwikkelde modellen, werden vier herstelscenario’s voor waterlopen in het 

Zwalmbekken gesimuleerd, waaronder een hermeanderingsproject, de aanleg van een 

collector, de aanleg van een natuurvriendelijke oever en het verwijderen van een stuw voor 

waterbeheersing. Deze oefeningen bewijzen het nut van de ontwikkelde modellen en geven 

tevens inzicht in de verschuiving van indicatororganismen bij het doorvoeren van 

herstelmaatregelen. 

 

Er kan besloten worden dat de combinatie van habitatgeschiktheids- en migratiemodellen zeer 

nuttig is bij het voorspellen van de mogelijke ecologische effecten van rivierherstel, evenals 

de effecten van rivierverstoring. Op deze manier kunnen ze als beslissingsondersteunend 

instrument dienen voor rivierbeheerders. 

 

Desondanks kunnen een aantal bedenkingen en aanbevelingen voor verder onderzoek 

aangehaald worden. In de eerste plaats zou een optimalisatie van de monitoringsnetwerken 

(bijvoorbeeld de selectie van staalnamepunten afstemmen op de voorspelling van 

herstelmaatregelen) en de gebruikte datasets (bijvoorbeeld het inpassen van nieuwe, essentiële 

variabelen enerzijds en het verwijderen van minder relevante invoervariabelen anderzijds) een 

verdere verbetering van de voorspellingen kunnen opleveren. Daarenboven zou een verdere 

optimalisatie en uitbreiding van de ANN en migratiemodellen (vooral de praktische validatie) 

zeer nuttig kunnen zijn. Anderzijds zou, met de eisen van de KRW in het achterhoofd, de 

ontwikkeling van habitatgeschiktheidsmodellen voor andere macro-invertebraten, vissen,  
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waterplanten, … de waarde van de modellen kunnen verhogen. Tenslotte is de uitbreiding van 

beide modellen naar andere stroombekkens in Vlaanderen (om de voorspellingsrange van de 

modellen te vergroten) alsook de koppeling van de habitatgeschiktheidsmodellen met 

hydraulische en waterkwaliteitsmodellen in de toekomst noodzakelijk om de betrouwbaarheid 

en praktische toepasbaarheid van deze modellen te verbeteren. 
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Appendix 1 

 

Appendix 1: Data relation visualization graphs for the presence/absence of Tubificidae, 
Asellidae, Gammaridae, Baetis and Limnephilidae in the Zwalm river basin (in total 237 
instances) and the ‘short distance’ monitoring network (in total 120 instances) in relation to 
the 24 environmental variables (absent = blue; present = red). 
 



 

 
Data relation visualization graphs for Tubificidae presence/absence in the Zwalm river basin (in total 237 instances) in relation to the 24 
environmental variables (Tubificidae absent in 25 instances (blue), Tubificidae present in 212 instances (red)). 

 



 

 
Data relation visualization graphs for Asellidae presence/absence in the Zwalm river basin (in total 237 instances) in relation to the 24 
environmental variables (Asellidae absent in 117 instances (blue), Asellidae present in 120 instances (red)). 

 

9 3 3 9 3 3 2 

96.5 190 0.96 1.92 

Conductîvity Suspendedsolids 

3o~o 0 1 L 311 0001000000001 

10 1100 2190 0 474.5 949 

T otaln~rogen Orthophosphate 

2 2 

163 

L_ 
0 2 0 0 3 

2.53 39.77 77 0 2.5 5 

COD Boulders Gravel 

L 3 3 2 1 000000 1 2 I 
462.5 918 67.7 



 

 
Data relation visualization graphs for Gammaridae presence/absence in the Zwalm river basin (in total 237 instances) in relation to the 24 
environmental variables (Gammaridae absent in 64 instances (blue), Gammaridae present in 173 instances (red)). 
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Data relation visualization graphs for Baetis presence/absence in the Zwalm river basin (in total 237 instances) in relation to the 24 
environmental variables (Baetis absent in 179 instances (blue), Baetis present in 58 instances (red)). 
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Data relation visualization graphs for Limnephilidae presence/absence in the Zwalm river basin (in total 237 instances) in relation to the 24 

environmental variables (Limnephilidae absent in 208 instances (blue), Limnephilidae present in 29 instances (red)). 
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Data relation visualization graphs for Tubificidae presence/absence in the ‘short distance’ monitoring network (in total 120 instances) in relation 
to the 24 environmental variables (Tubificidae absent in 9 instances (blue), Tubificidae present in 111 instances (red)). 
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Data relation visualization graphs for Asellidae presence/absence in the ‘short distance’ monitoring network (in total 120 instances) in relation to 
the 24 environmental variables (Asellidae absent in 55 instances (blue), Asellidae present in 65 instances (red)). 

~0 _1 __ 1 _ 0 0 _1 _ 

2 96 190 

Conductîvity Suspendedsolids 

113 

1 2 0 0 0 0 

1079 0 472.5 946 

Orthophosphate 

1 0 0 0 0 0 0 0 0 0 0 0 

460.5 918 



 

 

 
Data relation visualization graphs for Gammaridae presence/absence in the ‘short distance’ monitoring network (in total 120 instances) in 
relation to the 24 environmental variables (Gammaridae absent in 17 instances (blue), Gammaridae present in 103 instances (red)). 
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Data relation visualization graphs for Baetis presence/absence in the ‘short distance’ monitoring network (in total 120 instances) in relation to the 
24 environmental variables (Baetis absent in 68 instances (blue), Baetis present in 52 instances (red)). 
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Data relation visualization graphs for Limnephilidae presence/absence in the ‘short distance’ monitoring network (in total 120 instances) in 
relation to the 24 environmental variables (Limnephilidae absent in 99 instances (blue), Limnephilidae present in 21 instances (red))
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Appendix 2 

 

Appendix 2: Distribution of the environmental input variable, with indication of the quality 
standard where appropriate in red, over the 237 (a, Zwalm river basin) and 120 (b, ‘short 
monitoring’ monitoring network) sampling sites. 
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Conductivity: 
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Ammonium: 
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Nitrate: 
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Total nitrogen: 
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Ortho phosphate: 
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Total phosphorus: 
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Chemical oxygen demand: 
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Suspended solids: 
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Dissolved oxygen: 
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Depth: 
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Flow velocity: 
 

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00

0 40 80 120 160 200 240

Sampling sites

Fl
ow

 v
el

oc
ity

 (m
/s

)

 
 
 

0.00

0.10

0.20
0.30

0.40

0.50

0.60
0.70

0.80

0.90

0 20 40 60 80 100 12

Sampling sites

Fl
ow

 v
el

oc
ity

 (m
/s

)

0

 

b 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

a 



Appendix 2 

 

Fraction pebbles: 
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Fraction gravel: 
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Fraction sand: 
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Fraction loam/clay: 
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Embankment: 
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Meandering: 
 

0

1

2

3

4

5

6

0 40 80 120 160 200 240

Sampling sites

M
ea

nd
er

in
g

 
 
 

0

1

2

3

4

5

6

0 20 40 60 80 100 12

Sampling sites

M
ea

nd
er

in
g

0

 

b 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

a 



Appendix 2 

 

Hollow banks: 
 

0

1

2

3

4

5

6

0 40 80 120 160 200 240

Sampling sites

H
ol

lo
w

 b
an

ks

 
 
 

0

1

2

3

4

5

6

0 20 40 60 80 100 12

Sampling sites

H
ol

lo
w

 b
an

ks

0

 

b 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

a 



Appendix 2 

 

Pools-riffles: 
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Distance to mouth: 
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Stream order: 
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Appendix 3 

 

Appendix 3: Spatial variation of the appropriate environmental input variables over the 
respectively 4 years (a, Zwalm river basin, 237 sampling sites) and 2 years (b, ‘short distance’ 
monitoring network, 120 sampling sites) (red = 2000; yellow = 2001; green = 2002; blue = 
2003). 
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pH: 
 

6.00

6.50

7.00

7.50

8.00

8.50

9.00

9.50

0 10 20 30 40 50 60

Sampling sites

pH

 
 
 

6.5

7.0

7.5

8.0

8.5

0 10 20 30 40 50 6

Sampling sites

pH

0

 

b 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

a 



Appendix 3 

 

Conductivity: 
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Ammonium: 
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Nitrate: 
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Total nitrogen: 
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Ortho phosphate: 
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Total phosphorus: 
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Chemical oxygen demand: 
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Suspended solids: 
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Dissolved oxygen: 
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Depth: 
 

0
20
40
60
80

100
120
140
160
1 08
200

0 10 20 30 40 50 60

Sampling sites

D
ep

th
 (c

m
)

 
 
 

0
20
40
60
80

100
120
140
160
180
200

0 10 20 30 40 50 6

Sampling sites

D
ep

th
 (c

m
)

0

 

b 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

a 

 



Appendix 3 

Flow velocity: 
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Appendix 4 

Appendix 4: Spatial distribution of the input variable (green dot complies with the quality 
standard, red dot does not comply with the quality standard) and the macroinvertebrates 
Tubificidae, Asellidae, Gammaridae, Baetis and Limnephilidae (green dot = present, red dot = 
absent) for the databases of the Zwalm river basin and the ‘short distance’ monitoring 
network. 
 
Temperature (the Zwalm river basin): 
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pH (the Zwalm river basin): 
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Conductivity (the Zwalm river basin): 
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Ammonium (the Zwalm river basin): 
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Nitrate (the Zwalm river basin): 
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Total nitrogen (the Zwalm river basin): 
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Ortho phosphate (the Zwalm river basin): 
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Total phosphorus (the Zwalm river basin): 
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Appendix 4 

Chemical oxygen demand (the Zwalm river basin): 
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Suspended solids (the Zwalm river basin): 
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Appendix 4 

Dissolved oxygen (the Zwalm river basin): 
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Depth (the Zwalm river basin): 
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Flow velocity (the Zwalm river basin): 
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Appendix 4 

Width (the Zwalm river basin):       Fraction pebbles (the Zwalm river basin): 
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Fraction gravel (the Zwalm river basin):      Fraction sand (the Zwalm river basin): 
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Fraction loam/clay (the Zwalm river basin): Embankment (the Zwalm river basin): 
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Meandering (the Zwalm river basin):      Hollow banks (the Zwalm river basin): 
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Pools-riffles (the Zwalm river basin): 
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pH (‘short distance’ monitoring network): 
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Conductivity (‘short distance’ monitoring network): 
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Ammonium (‘short distance’ monitoring network): 
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Nitrate (‘short distance’ monitoring network): 
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Total nitrogen (‘short distance’ monitoring network): 
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Ortho phosphate (‘short distance’ monitoring network): 

#

#

#

#

#

#

#

##

#

#

#
#

#
#

#

#

#
#

#
#

#

#

#
#
#

#
#
#

#

#

##
#

#

#

#
#

#
#
#
#

#

#

#

#

#

#

#
##

#

#

#
#
#

#

#
#

#

0.08

0.18

0.16

0.19

0.34

0.54

0.52 0.48
0.37
0.35
0.53

0.60
0.52

0.31
0.32

0.34
0.35

0.37

0.21

0.17

0.160.18

0.170.19
0.15

0.20

0.17
0.15

0.180.17

0.160.18
0.18

0.20
0.13

0.17
0.18

0.42

0.15
0.13

0.10
0.100.12

0.07
0.06
0.06

0.050.09

0.08

0.07

0.09

0.05

0.30

0.51

0.32
0.34

0.47
1.10

0.10

1.70

#

#

#

#

#

#

#

##

#

#

#
#

#
#

#

#

#
#

#
#

#

#

#
#
#

#
#
#

#

#

##
#

#

#

#
#

#
#
#
#

#

#

#

#

#

#

#
##

#

#

#
#
#

#

#
#

#

0.12

0.09

0.23

0.34

0.34

0.77

0.63 0.15
0.14
0.74
0.75

0.84
0.30

0.31
0.33

0.40
0.31

0.30

0.35

0.32

0.330.26

0.340.26
0.27

0.26

0.23
0.24

0.210.21

0.210.16
0.25

0.16
0.15

0.08
0.21

0.08

0.23
0.23

0.19
0.140.14

0.14
0.08
0.08

0.170.02

0.01

0.06

0.04

0.04

0.30

0.27

0.29
0.24

0.08
0.03

0.14

0.03

 

2002 2003 

 

2002 2003 

 



Appendix 4 

Total phosphorus (‘short distance’ monitoring network): 
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Chemical oxygen demand (‘short distance’ monitoring network): 
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Appendix 4 

Suspended solids (‘short distance’ monitoring network): 
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Dissolved oxygen (‘short distance’ monitoring network): 
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Appendix 4 

Depth (‘short distance’ monitoring network): 
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Flow velocity (‘short distance’ monitoring network): 
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Appendix 4 

Width (‘short distance’ monitoring network): 
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Fraction pebbles (‘short distance’ monitoring network): 
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Appendix 4 

Fraction gravel (‘short distance’ monitoring network): 

#

#

#

#

#

#

#

##

#

#

#
#

#
#

#

#

#
#

#
#

#

#

#
##

#
#
#

#

#

##
#

#

#

#
#

#
#
#
#

#

#

#

#

#

#

#
##

#

#

#
#
#

#

#
#

#

0.1

6.9

0.7

0.0

0.0

1.3 0.0
0.1
0.0

0.1

0.5
0.0

1.3
5.1

0.3

0.3

9.8

0.13.7
0.5

0.1
6.1

1.1
8.62.0

5.1
1.3

2.62.7

0.0

2.2

0.3

0.5

1.0

16.0

31.5

23.8

10.0
12.0

34.015.0

56.5
17.4

24.1
15.7

32.2

31.9
38.1

63.4

58.0
40.5

35.9
38.1

62.7

1.4

0.0

20.4
25.254.6

20.7

 
 
 
Fraction sand (‘short distance’ monitoring network): 
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Fraction loam/clay (‘short distance’ monitoring network): 
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Embankment (‘short distance’ monitoring network): 
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Meandering (‘short distance’ monitoring network): 
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Hollow banks (‘short distance’ monitoring network): 
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Appendix 4 

Pools-riffles (‘short distance’ monitoring network): 
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Tubificidae (the Zwalm river basin): 

#

#

#
#

#

#

#

#

#

# #

#

#

#

#

#

#

#

#

#
#

#

#

#

#

#

#

#

#
#

#

#

#

#

#

#

#

#

#

#

#

#

#

####
#

#

#

#

#

#

#

#

#

#

#
#

#

#

#

#
#

#

#

#

#

#

# #

#

#

#

#

#

#

#

#

#
#

#

#

#

#

#

#

#

#
#

#

#

#

#

#

#

#

#

#

#

#

#

#

####
#

#

#

#

#

#

#

#

#

#

#
#

#

#

#
#

#

#

#

#

#

# #

#

#

#

#

#

#

#

#

#
#

#

#

#

#

#

#

#

#
#

#

#

#

#

#

#

#

#

#

#

#

#

#

####
#

#

#

#

#

#

#

#

#

#

#
#

#

#

#

#
#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#
#

#

#

#

#

#

#

#

#
#

#

#

#

#

#

#

#

#

#

#

#

#

#

####
#

#

#

#

#

#

#

#

#

#
#

#

 
 
 
 
 
 
 

2000 2001 

2002 2003 



Appendix 4 

 

Asellidae (the Zwalm river basin): 
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Gammaridae (the Zwalm river basin): 
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Baetis (the Zwalm river basin): 
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Limnephilidae (the Zwalm river basin): 
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Tubificidae (‘short distance’ monitoring network): 
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Asellidae (‘short distance’ monitoring network): 
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Gammaridae (‘short distance’ monitoring network): 
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Limnephilidae (‘short distance’ monitoring network): 
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