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List of abbreviations 
 
 
 
AHI: apnoea- hypopnoea index 

APAP: automatic/auto-adjustable CPAP  

APAPfl: APAP guided by detection of flow limitation 

APAPfot: APAP guided by forced oscillation technique 

BiPAP: bilevel positive airway pressure  

BMI: body mass index  

CPAP: continuous positive airway pressure 

EDS: excessive daytime sleepiness  

ESS: Epworth Sleepiness Scale 

FPAP: fixed CPAP pressure 

MAD: mandibular advancement device 

OSA: obstructive sleep apnoea  

OSAS: obstructive sleep apnoea syndrome  

Pmax: maximum positive airway pressure 

Pmean: mean positive airway pressure 

Pmedian or P50: median positive airway pressure 

Ppred: predicted CPAP pressure 

P95: 95th percentile, pressure which is not exceeded during 95% of the time 

PSG: polysomnography 

RCT: randomized cross-over trial 

RERA: respiratory event related arousal 

UARS: upper airway resistance syndrome  



 



 

 

 

 

I. Introduction 

 

 

 

 



 



 

I.1. Obstructive Sleep Apnoea Syndrome 

 

I.1.1. Prevalence 

Obstructive Sleep Apnoea Syndrome (OSAS) is a highly prevalent disease affecting 

millions of people worldwide. Even though it is the most common organic sleep disorder 

causing excessive daytime sleepiness, it is still widely unrecognised an undiagnosed. 

Prevalence data vary remarkably depending on the population under study. The prevalence of 

OSAS is 1-4% according to various cross-sectional studies in the general population, but may 

be more than 4 to 8% between the age of 40 to 59 years (1-6). The different prevalence data in 

these studies can in part be explained by differences in study population. Sleep disordered 

breathing is related to age, gender and body mass index (BMI), and these parameters vary 

among different study populations. Moreover, statistical outcomes are also influenced by the 

way respiratory events are defined.   

 

I.1.2. Definition 

In the early days, the definition of OSAS seemed to be quite simple. An obstructive 

apnoea was defined as a complete upper airway collapse, detected by thermistors. A cessation 

of airflow during at least 10 s, followed by an arousal of at least 3 s, qualified as an apnoea. 

The OSA syndrome was defined as > 5 respiratory events per hour sleep and the presence of 

excessive daytime sleepiness (EDS) (7).  

Over the years, with the development of more sensitive detection methods, e.g. oesophageal 

manometry and nasal pressure cannulae, milder degrees of disturbed breathing were detected. 

Hypopnoea was defined, although rather arbitrarily, as a reduction in airflow of at least 50% 

or a clear reduction less than 50% with an oxygen desaturation of 2-4% and/or an arousal. (7-

9).  



 

Moreover, it was recognized that discrete increases in upper airway resistance could 

also result in sleep fragmentation with concomitant clinical symptoms. This led to the 

description of events like flow limitation followed by ‘respiratory event related arousals’ 

(RERA’s), which are implicated in the pathogenesis of the Upper Airway Resistance 

Syndrome (UARS).  

Many attempts have been made to quantify sleep-disordered breathing, hoping this 

would improve the ability to predict and correlate with daytime symptoms. One study by 

Hosselet et al. found that the number of apnoeas, hypopnoeas and flow limitation events best 

predicted sleepiness, but only with a sensitivity of 71% and a specificity of 60% (10). 

Currently, the gold standard to quantify OSAS has remained the apnoea-hypopnoea index 

(AHI), calculated as the sum of apnoeas and hypopnoeas divided by total sleep time (hours). 

 

I.1.3. Clinical presentation and physiological consequences 

Many symptoms of OSAS are non-specific and therefore poor predictors for clinically 

significant disease. Generally, symptoms develop over years and progress with weight gain, 

aging, transition to menopause, alcohol or sedatives use. Frequently, patients are unaware of 

having a medical problem and are referred by their bed partner who complains of snoring or is 

worried about witnessed apnoeas. Snoring is the most frequent symptom of OSAS, occurring 

in 70-95% of patients (11); but is also very prevalent in the general population; 35-45% of 

men and 15-28% of women report habitual snoring (12). Patients themselves complain most 

often about excessive daytime sleepiness, insomnia or unrefreshing sleep. EDS is a 

consequence of the sleep disruption and changes in oxygenation caused by disordered 

breathing. A standard method to quantify subjective sleepiness is the Epworth Sleepiness 

Scale (ESS), a questionnaire asking for the probability of falling asleep in eight well-defined 

circumstances. Neurocognitive dysfunction can show as impaired work performance, 



 

concentration or memory deficits or increased rate of traffic accidents (13;14). Personality 

changes such as irritability, anxiety, depression or aggressiveness may be observed. Some 

patients report matinal headaches, dry mouth, nocturia, oesophageal reflux, a sensation of 

choking or dyspnoea (15). 

In general, important differences between subjects may exist in susceptibility of the 

central nervous system to biological effects of sleep-disordered breathing on one hand, and 

perception of symptoms on the other hand. This may explain the imprecise correlation 

between the severity of symptoms and the AHI (16).  

In recent years, it has been proven that OSAS is a risk factor for cardio- and 

cerebrovascular diseases, independent from the association with obesity (17). An increased 

incidence of day- and nighttime hypertension has been reported. Arterial hypertension is 

probably caused by sympathetic overactivity triggered by intermittent hypoxemia, large 

negative fluctuations in intrathoracic pressure and arousal from sleep (18). OSAS has also 

been implicated in the pathogenesis of pulmonary hypertension, nocturnal arrhythmias and 

atherosclerosis (19-22), and has been proven to be an independent risk factor for stroke, 

myocardial infarction, heart failure and metabolic syndrome (23). 

 

I.1.4. Diagnosis 

Although the immense economic burden and the relative simple cure, this disease is 

still widely underdiagnosed. One of the reasons is a general lack of awareness in patients and 

doctors with inappropriate referral, due to lack of training in sleep medicine; another reason 

are the long waiting lists in the diagnostic and therapeutic pathway. 

First of all, the likelihood of OSAS has to be determined by obtaining the history, by 

identifying risk factors and comorbidity and by performing a thorough physical examination. 



 

Through the history taking one should also be able to assess the disease severity with the 

impact on quality of life, social and occupational function.  

Nevertheless, clinical assessment alone is not sufficient for the diagnosis of OSAS, 

since none of the current symptoms is specific enough (24). Clinical prediction models have 

been developed to calculate the probability of a patient having OSAS, using symptoms 

combined with anthropometric and demographic data. These prediction models seemed to 

have a high sensitivity (76-96%) but a low specificity (13-54%), and they were not validated 

in populations other than those seen in sleep clinics (15;25;26). 

The gold standard for diagnosis remains in-laboratory polysomnography (PSG) 

attended by a sleep technologist (7;27-29). However, this technique is expensive, labour-

intensive, and the use of different equipment and diagnostic criteria makes it difficult to 

compare PSG data between different labs. The main index obtained from PSG regarding 

OSAS is the AHI, which is however poorly correlated with clinical outcomes such as EDS 

(16). While most research on treatment outcomes was performed in OSAS patients with a 

moderate (AHI > 15/h) to severe (AHI > 30/h) degree, the actual definition also includes mild 

cases (AHI > 5/h) and the presence of excessive daytime somnolence (7). In Belgium, criteria 

for reimbursement of CPAP treatment are an AHI > 20/h and an arousal index > 30/h. 

 

I.1.5. Treatment 

The mainstay for treatment of OSAS is administration of nasal Continuous Positive 

Airway Pressure (CPAP) during sleep, which reverses airway collapse by increasing 

intraluminal pressure, thus providing a mechanical splint that stabilizes the upper airway (30).  

A lot of work has been done to determine which patients would benefit from therapy with 

CPAP. OSAS therapy was primarily aimed at improving quality of life by controlling 

excessive daytime sleepiness. This approach was based on several studies showing that OSAS 



 

patients with EDS benefit the most from CPAP therapy with a significant reduction in 

sleepiness assessed with subjective and objective measures. Even in mild OSAS and/or when 

using subtherapeutic levels of CPAP this effect could be demonstrated (31-34). Studies 

performed in asymptomatic patients with severe OSAS could not prove significant clinical 

improvement with CPAP therapy (35). Moreover, CPAP has been shown to have a favourable 

impact on neurocognitive functions, including task performance such as driving simulations, 

memory function or current daily tasks. Even 3-4 hours of CPAP use per night improved 

cognition and daytime vigilance (13;14;36).  

Considering this evidence, the question remained whether asymptomatic patients would need 

treatment. Several studies found that CPAP treatment reduced diurnal and nocturnal blood 

pressure in hypertensive OSAS patients (37-40). Furthermore, favourable effects were seen in 

patients with congestive heart failure. Appropriate treatment resulted in a substantial 

reduction in cardiovascular risk, thus influencing patient mortality (40-44). 

When initiating CPAP, current guidelines advise to perform a full, attended PSG during 

which positive pressure is adjusted in order to determine  the optimal pressure needed for 

maintaining airway patency in all sleep stages and body positions (45). 

Alternative modes of pressure therapy are seldom indicated. Sometimes bilevel 

positive airway pressure (BiPAP) is needed, mostly in patients with reduced chest wall 

compliance or in obesity hypoventilation where high pressures are required in order to 

maintain normal ventilation (45). This technology allows the deliverance of higher pressures 

during inspiration, while expiration is facilitated by lowering the pressure. 

Similarly, there is no convincing evidence that automatic positive airway pressure 

(APAP) is superior for long-term treatment in CPAP-intolerant patients (46-48). In the next 

chapter this item will be further addressed. 



 

For those patients who are intolerant to CPAP, mandibular advancement devices 

(MAD) can be considered, especially when apnoeas are caused by pharyngeal narrowing at 

the tongue base. MAD’s can be considered as an alternative treatment only in mild OSAS. 

Therapeutic response is not always predictable and should therefore be confirmed by PSG 

(49;50). 

Over the years, several surgical procedures have been proposed, but there is ongoing 

debate about effectiveness and indications, which seem to be limited to habitual snoring or 

mild OSAS (28;29;51). 

Last but not least, the importance of weight loss should be emphasized in every obese 

patient, either by adjusting lifestyle and diet or by bariatric surgery. In a study performed in 

mildly overweight individuals (BMI < 30), it was stated that a 1% weight change resulted in 

an approximately 3% change in AHI, although the most favourable results were reported in 

morbid obesity (52-54). 



 

I.2. The role of APAP in the treatment of OSAS 

 

I.2.1. The gold standard: manual titration 

Ever since Sullivan described CPAP (30), this therapy is still considered the gold 

standard treatment for patients with moderate to severe OSAS. It is widely accepted that 

adequate CPAP pressure has to prevent any degree of upper airway obstruction in all sleep 

stages and body positions, in order to restore normal sleep (55). In general, higher pressures 

are required during REM sleep and in the supine sleep position (56;57). However, the method 

to determine the optimal CPAP pressure is an unsettled subject for debate. For years, the 

standard operating procedure was to perform a full PSG in the sleep lab attended by a sleep 

technician. This allows the technician to manually adjust the pressure as needed and to 

intervene for problems such as mask fitting or leaks. Subsequently, the optimal pressure for 

home treatment is derived from the PSG data obtained throughout the night. It is advised to 

set the final pressure to a level that is sufficient to control sleep-disordered breathing in all 

body postures and sleep stages (55). Considering the higher pressure requirements in REM or 

supine periods, the eventual fixed pressure could be considerably higher than necessary for 

the rest of the night. This higher pressure could increase mask and mouth leaks, pressure 

intolerance and possibly reduce CPAP compliance. An undeniable drawback of this gold 

standard procedure is the lack of an unequivocal and standardized algorithm, resulting in 

considerable intra-technician variability. The procedure is expensive and labour-intensive, 

while most sleep labs have to deal with long waiting lists for diagnostic and therapeutic PSG. 

 

I.2.2. Alternative titration methods 

Because of the mentioned problems accompanying conventional titration, alternative 

CPAP initiation methods were investigated. In order to meet economic considerations, some 



 

groups started to perform split-night PSG combining diagnostic and titration PSG in one night 

(58;59), others suggested the use of daytime titration procedures (60).  

Another approach was already suggested in the early nineties of last century by the 

group of Hoffstein. They stated that the optimal CPAP level could be predicted reliably by an 

equation based on three simple and easily available parameters: body mass index (BMI), neck 

circumference, and apnoea/hypopnoea index (AHI) (61). Prospective studies validated this 

equation and found that the predicted pressure (Ppred) ranged within ± 2 cm H2O from 

conventionally determined CPAP. It was suggested that Ppred was a good starting pressure for 

CPAP titration, in order to optimize or shorten manual titration PSG, not to replace it (62-64). 

Hukins found that an “arbitrary pressure” based on BMI alone resulted in similar clinical 

outcomes as manual titration. This was a good starting point for CPAP initiation, allowing to 

select only the compliant patients for a conventional titration PSG (65). Another randomized 

crossover trial compared conventionally determined pressure to Ppred, which the patient could 

adjust at home when needed, and found similar results in efficacy, clinical improvement and 

treatment adherence. They concluded that home self-titration was as efficient as in-laboratory 

manual titration (66). The group of Stradling also promoted an outpatient-based approach to 

initiate CPAP therapy using an algorithm based on neck circumference and OSAS severity 

(number of oxygen desaturation dips > 4 %/h) (67;68). In the end, none of these methods 

were able to undermine the manual titration as the gold standard. 

It was the development of auto-adjustable CPAP devices (APAP), however, that 

brought on a revolution in thought. These "intelligent" devices monitor a combination of 

apnoeas, hypopnoeas, flow limitation or snoring and try to find the ideal pressure by adapting 

the pressure level.  

  



 

I.2.3. APAP technology 

Currently, a wide variety of APAP devices has been commercialised. They use 

different methods to detect upper airway obstruction and different algorithms to adapt the 

pressure accordingly. In general, the devices monitor airway vibration (snoring), airflow 

reduction (apnoea or hypopnoea), flow vs. time profile (flow limitation) or impedance with 

the forced oscillation technique. Most devices start at a low baseline pressure (4 cm H2O) and 

gradually increase or decrease the pressure in the presence or absence of respiratory events. 

As a consequence, during wakefulness the pressure can be minimal, while during sleep it will 

slowly adapt according to the degree of upper airway obstruction in all sleep stages and body 

positions. This should allow APAP to constantly deliver the minimum effective pressure, not 

only during one night, but also from night to night.  

APAP devices are used mainly to titrate the fixed CPAP level or to treat the patient at 

home, more seldom they are used as a screening device for identification of OSAS. A titration 

procedure with APAP can occur in attended conditions, allowing the technologist to intervene 

when needed and to titrate several patients at the same time. Performing unattended APAP 

titration at home, however, could reduce waiting lists in the sleep lab and realize cost savings, 

provided that APAP devices are reliable in determining the pressure in unattended conditions 

in a majority of CPAP patients. When using APAP for chronic treatment at home, it is 

suggested that the lower pressure levels could improve patient comfort and eventually 

adherence and compliance (69;70).  

 

I.2.4. APAP performance in research 

At first, studies using APAP in a titration setting compared APAP to conventional 

titration as a method to determine the fixed pressure level for home treatment. They 

concluded that APAP titration was as effective as manual titration since it was equally 



 

efficient in lowering the AHI to acceptable levels (AHI <10/hr) in most of the patients studied 

(71-79). Unsuccessful titration was reported in a few patients, mostly due to artefacts such as 

severe mask or mouth leak. In these patients the pressure increased to inappropriately high 

levels due to inappropriate event detection (79).  

After APAP titration, a fixed pressure can be derived for home treatment or APAP 

can be used as a substitute for CPAP in home treatment. Several cross-over trials confirmed 

that both treatment modalities were comparable to conventionally determined fixed pressure 

(FPAP) in terms of respiratory control (as defined above) and impact on sleep quality 

(reduction in arousal index <20/hr and increased slow wave and REM sleep). The same 

results were reported for clinical outcomes showing reduced subjective and objective 

measures of sleepiness (80-96).  

As hypothesized, several studies confirmed that there was a tendency to lower mean or 

median pressure levels with APAP than with conventionally determined FPAP (71;73;75-

78;80-82;92;97). FPAP was mostly 1-2 cm H2O higher but could exceed the mean APAP by 

as much as 6 cm H2O.  

The acceptance of CPAP therapy by patients was similar or even slightly better after 

APAP titration leading to a lower drop out rate in one study (98) and a subjective preference 

for APAP in others (77;81). It was also stated that APAP improved patient adherence and 

compliance since lower pressure profiles offered more patient comfort. Compliance data 

derived from APAP time-loggers over variable periods (2 weeks to 6 months) confirmed a 

tendency to higher APAP usage (77;82;85;87;88;94). Although a larger benefit in compliance 

was expected, previous research had already shown that pressure (in)tolerance was less 

important in this matter. Patient preference and compliance are influenced mostly by 

education and motivation by health care professionals and by treating side effects, more than 

by the characteristics of the machine itself (99-102). 



 

Most investigators admitted having difficulties to identify (a subgroup of) OSAS 

patients who would benefit more from APAP than from CPAP. Some found good results in 

those patients with highly variable pressure needs, for example patients with sleep stage and 

body position dependent OSAS (103) or in patients needing high pressure levels (> 10 cm 

H2O) (87).  

As a conclusion to all these optimistic results, several studies stated that APAP was 

safe and efficient as a titration tool and as home treatment, even in unattended conditions 

(81;82;88;94;95;104;105). It was suggested that APAP technology could alleviate the need 

for a titration PSG (106). 

Optimism seemed to be less appropriate when several devices were compared to each 

other in clinical trials. Devices reacted differently or even inadequately to respiratory events 

and a considerable lack of agreement in pressure levels was found (89;107-110). Also, data on 

compliance, patient adherence and preference, were contradictory in several trials and 

predicting factors for better tolerance with APAP remained unclear (86).  

Considering the often contradictory and confusing results obtained by clinical studies, 

another approach to test the performance of APAP devices was mandatory. Bench models 

were developed capable of reproducing realistic and well-defined sleep-disturbed breathing 

patterns. The advantage of bench testing over clinical studies is that inter- and intra-patient 

variability is eliminated. It allows determining whether an APAP device performs adequately 

in detecting respiratory events and in adapting the pressure according to its specific algorithm. 

Bench testing, however, only confirmed the considerable differences in pressure profiles, as 

seen in clinical trials (111-114).  

Recent studies compared the main CPAP initiation methods. Patients were randomized 

to manual titration, unattended APAP titration at home or Ppred with domiciliary adjustment 

when needed (residual snoring or apnoeas) (115). After CPAP treatment for three months, the 



 

PSG variables and Epworth Sleepiness Scale showed statistically significant improvement in 

the three groups. The residual AHI under treatment with Ppred was slightly higher, but this was 

not translated to differences in clinical outcomes. Although the APAP group reported more 

side effects, compliance data and dropout rates were similar (115). West et al. compared 

clinical outcomes after home treatment for six months in three groups: 1) APAP, 2) FPAP 

determined after one week of APAP (P95), 3) FPAP determined by a prediction formula. 

Pressure levels were significantly different in the three groups; in particular the P95 group 

received remarkably higher pressures than the two other groups. Nevertheless, subjective and 

objective measures of sleepiness, quality of life scores, but also 24 hour blood pressure were 

similar in all three groups. They concluded that the method of determining CPAP pressure 

makes no significant difference to clinical outcome measures and that the use of APAP has no 

advantage over simpler methods of pressure determination (116). 

 

I.2.5. Limitations of APAP (research) 

A major problem of APAP technology is that manufacturers commercialize devices 

without standardized clinical testing. The designers implement their own proprietary 

algorithms, the detail of which is usually kept undisclosed for commercial reasons. 

Accordingly, the available APAP devices appear as “black boxes” able to modify pressure 

according to rules which are not revealed to the sleep specialist (117).  

Most APAP devices feature an electronic memory that stores pressure data from 

previous use. This information is available to the sleep specialist, who may extrapolate these 

pressure profiles to derive an ‘optimal’ pressure level for subsequent FPAP use. Some 

clinicians select FPAP after visualization of the raw data and eliminate periods of significant 

air leaks (98), others use the P95, being the pressure that is not exceeded during 95% of the 

time. It was shown that the P95 correlated well to a manually determined pressure and was 



 

therefore suitable as a fixed pressure for home treatment (74;79;108;118). One of these 

studies, however, demonstrated that the P95 could differ considerably between APAP devices 

(108). In this study there was a bias of 3 cm H2O and a complete lack of agreement between 

the two devices tested (limits of agreement – 3.2 to 9.3 cm H2O), leading to the conclusion 

that unattended automated titration is not reliable enough to replace manual titration.  

The limited information this “black box” provides does not allow checking if false 

events or artefacts are properly identified. Examples of artefacts are coughing, mouth or mask 

leaks, speaking, sighing, swallowing or movements during arousals. These artefacts may 

confuse the operational algorithm and cause inappropriate pressure increases (119). 

Little research was done on safety and side effects of APAP, especially in patients with 

central apnoea or cardiopulmonary disease, since these patients were excluded systematically 

in most trials. Two publications mentioned the occurrence of central apnoeas under APAP, 

increasing when high pressures were applied (120;121). It was reported that the occurrence of 

central apnoeas could activate APAP to perform a pressure increase without resolving the 

events, but, on the contrary, eventually causing more central apnoeas (122). Another fact is 

that patients with lung disease or obesity hypoventilation in association with OSAS may have 

residual oxygen desaturation that could be missed during unattended APAP titration or 

therapy. Thus, the need for treatment with higher pressures, supplemental oxygen or switch to 

BiPAP may be overlooked. 

Most clinical trials used a reduction in AHI < 10/h as a criterion for acceptable 

treatment, although reduction to < 5/h and elimination of airflow limitation could be 

necessary to reverse symptoms like sleepiness in individual patients (123;124). Not all APAP 

devices, however, are able to detect flow limitation. 

Based on these controversial data, a review paper by the American Academy of Sleep 

Medicine recommended the use of APAP titration only in attended conditions since it was 



 

found not reliable enough to be used as a substitute for attended CPAP titration. They stated 

that the evidence for and against the premise that APAP treatment would increase acceptance 

and adherence was conflicting (27;47).  

 



 

I.3. Aim of the research 

 

When we started to perform clinical trials with APAP, there were no published data 

comparing the effectiveness of different APAP technologies. Whilst most APAP technologies 

seemed to be efficient with respect to lowering the AHI, pressure outcomes differed 

significantly. Moreover, this different performance was not translated into an important 

difference in clinical outcomes. The aim of the present research was to carry out a face-to-

face comparison of different APAP devices in a CPAP titration setting, the hypothesis being 

that different pressure adjustment algorithms can result in different outcomes regarding sleep 

and respiratory variables. 

Our first two randomized cross-over trials (RCTs) compared two APAP devices from 

different manufacturers using different detection methods and algorithms. In the third RCT 

APAP devices were compared operating by the same detection method, but responding with a 

different algorithm. Finally, in order to put on trial the superiority of APAP titration, we 

compared this method to Ppred based on the Hoffstein prediction formula. 



 



 

I.4. Materials and methods 

 

I.4.1. Subjects 

The target population were patients diagnosed with OSAS according to Belgian 

criteria for reimbursement of nasal CPAP (i.e. AHI > 20/h and arousal-index > 30/h). After 

the diagnosis of OSA was established, patients were habituated on CPAP treatment at home 

on a pressure level derived from a prediction formula based on BMI, neck circumference 

(NC) and AHI [(0.13*BMI)+(0.16*NC)+(0.04*AHI)-5.12] (61). During follow-up 

consultation after one month it was evaluated whether adjustment was needed based on 

residual symptoms of sleepiness or snoring. After the habituation period a standard overnight 

polysomnography was carried out in the laboratory. The exclusion criteria and reasons for 

drop out are described in the research articles. Patients were asked to participate in the trials 

as they were readmitted to hospital for their titration PSG.  

 

I.4.2. Study design 

In a double blind randomized order, two titration methods were used for each patient 

during the same night using a split-night protocol. Both methods were compared regarding 

their effect on relevant sleep and respiratory variables, and pressure levels were collected 

from the PSG data. The morning after the titration study a subjective evaluation of sleep 

quality was carried out, using a questionnaire and visual analogue scales. In addition, the 

patients were asked to indicate their preference for one of the devices as if they would have to 

choose between them for continued use at home. This subjective preference was compared 

with objective preference, which was defined in terms of better AHI control.  

 



 

I.4.3. Sleep studies 

Polysomnography was carried out using a 19-channel digital polygraph (Morpheus™, 

Medatec, Brussels, Belgium). To record airflow, thermocouples plus nasal pressure cannulae 

were used during baseline studies (125). In order to correct for the nonlinearity of the pressure 

signal derived from nasal prongs, the square root was performed on this signal (126). During 

the A-CPAP trial, airflow was evaluated by measuring the respiratory pressure fluctuations in 

the nasal mask, which was connected via 4 mm diameter flexible tubing to the built-in 

manometer (Honeywell 164PC01D37, Freeport, Illinois, USA). This recording closely 

resembles the signal derived from nasal cannulae, and allows reliable detection of apneas, 

hypopnoeas and flow-limitation(127). Respiratory movements were recorded using thoracic 

and abdominal piezo-sensors (Sleepmate™, Midlothian, VA, USA). Respiratory events were 

manually scored according to contemporary guidelines (128). An apnea was defined as a total 

cessation of airflow during at least 10 seconds. For a hypopnoea a decrease of airflow of at 

least 50% was needed, or a clear decrease less than 50% with an oxygen desaturation > 3% 

and/or an arousal. The AHI was calculated as the sum of apneas and hypopnoeas divided by 

total sleep time (hours). Inspiratory snores were manually counted. The snoring-index was 

computed as the sum of inspiratory snores divided by total sleep time (hours). Sleep stages 

were identified according to standard criteria (129). The scoring of arousals was based on 

published guidelines (130). The arousal-index was the sum of arousals divided by total sleep 

time (hours). Sleep stages, respiratory and snoring events, arousals and CPAP levels were 

assessed in epochs of 30 sec. CPAP was determined as the average pressure level over the 30 

sec epoch. 

 



 

I.4.4. Functional algorithms and characteristics of the APAP devices  

All APAP’s used in our trials are pro-active devices responding to early indications of 

airway obstruction in an attempt to avoid the occurrence of frank apnoeas or hypopnoeas.  

 

I.4.4.a. Forced oscillation technique (FOT): Weinmann SOMNOsmartTM 

The “forced oscillation technique” is a noninvasive method to measure the upper 

airway impedance in order to quantify and assess the degree of airway obstruction. It consists 

of superimposing a small pressure oscillation on spontaneous breathing through a nasal mask. 

Airflow is measured using a pneumotachograph; resistance is calculated as the ∆P/V ratio. 

Respiratory impedance is derived from pressure and flow signals recorded at the nasal mask, 

and is the resistance to oscillatory flow. During obstructive hypopnoeas the inspiratory 

impedance is intermittently increased, whereas during obstructive apnoeas a permanent 

elevation of the impedance is present. In central apnoeas the impedance is either low (open 

airway) or high (closed airway).  

In the SOMNOsmartTM pressure oscillation is applied with a frequency of 20 Hz and a 

pulse wave of 200µbar. The impedance is calibrated between 0% (nasal mask open to the air) 

and 100% (nasal mask manually occluded). When obstructive apnoeas occur the impedance 

rises to 100%, whereas in central apnoeas the impedance remains at a low level. 

First a five minutes adaptation period is carried out, during which the patient breathes 

quietly through the nasal mask. The device calculates the average impedance, which is 

characteristic to the individual patient. If snoring is detected, the pressure will rise with 0.5 

mbar each 20 seconds, starting after one minute. After this initialization phase slow changes 

in baseline impedance (e.g. nasal congestion) are detected and the individual impedance value 

is continuously adjusted. 

 



 

I.4.3.b. Flow limitation 

The respiratory flow-contour is rounded (sinusoidal) in normal unobstructed 

breathing. Upper airway obstruction is heralded by a flattening of the flow-contour in the 

mid-inspiratory portion. The arch of the flow-contour may be quantified by the curvature 

index (c.i.), which is the mid- inspiratory flow calculated as a fraction of the mean inspiratory 

flow. A low curvature-index indicates a high degree of flattening.  

The RESMED AutoSetTM responds differently to various degrees of flattening. 

Severe flattening (c.i. 0.05) will induce pressure increases of 0.2 mbar/tidal volume (± 2 

mbar/min), whereas the pressure will remain unchanged with mild flattening (c.i. 0.15). 

Unobstructed breathing is characterized by absence of flattening (c.i. 0.25), resulting in an 

exponential decline in CPAP using a time constant of 20 minutes. Since snoring is associated 

with a more severe degree of upper airway obstruction, the pressure will be raised with a rate 

of 1 mbar/tidal volume. The mask pressure and the bias flow of the device are also monitored 

by an electronic circuit. When the patient takes of the nasal mask, the flow is automatically 

stopped. Air leak, due to loosening of the mask or opening of the mouth, is represented as 

average flow measured with a low-pass filter (t1/2 20 sec). Autotitration is reliable up to a leak 

of 0.4L/sec. 

The REMstar AutoTM algorithm actively tests for flow limitation instead of 

waiting for it to occur. Two types of tests are performed in order to determine the critical (Pcrit 

test) and optimal (Popt test) pressures. The Pcrit test involves reducing the pressure and 

examining the flow signal for flattening. Pressure is ramped down towards the minimum 

pressure until an increase in flow limitation is detected and the pressure subsequently begins 

to increase. It may ramp down through several pressures to find the critical pressure.  The Popt 

test increases the pressure at a rate of 1 cm H2O every two minutes while the flow signal is 

examined for a reduction in flow limitation. In the absence of improvement the pressure 



 

returns to the previous value, in the presence of improvement pressure increases will 

continue. These two tests allow the pressure to be maintained at a level where obstruction is 

not likely to occur, without raising it to unnecessarily high levels.  

During operation the system may be in a testing or non-testing mode. In the testing 

mode, Pcrit and Popt tests will be performed to determine the proper therapeutic pressure. In 

either mode, the system monitors breathing and looks for snoring, apnoeas and hypopnoeas. 

The system will stay in the testing mode for five minutes, or longer if variable breathing is 

detected.  

The ResMed SpiritTM also calculates and delivers the optimal treatment pressure 

by analyzing respiratory airflow data. The pressure is automatically and continuously adjusted 

to the optimal level sufficient to prevent airway obstruction. The system does not differentiate 

between open and closed apnoeas. Response to apnoeas is limited to an increase of the 

pressure to a maximum of 10 cm H2O. However, the device will continue to raise the pressure 

in response to flow limitation and snoring, 



 



 

 

 

 

II. Research 



 



 

II.1. Efficacy of flow- versus impedance guided auto-adjustable 

CPAP: a randomized cross-over trial 

 
Chest 2004; 126(1):25-30  

Pevernagie D, Proot P, Hertegonne K, Neyens M, Hoornaert K, Pauwels R.  

 

 
This paper compared the titration capacity of two APAP devices whose operation is 

based on different modes of sensing incipient upper airway obstruction. Thirty patients were 

included in a double-blind randomized cross-over trial. Using a split-night protocol every 

patient could use both devices during the same night in a randomized order. The AutoSetTM 

uses a pneumotachograph to detect flow limitation of inspired air (APAPfl); whereas the 

SOMNOsmartTM uses the forced oscillation technique (APAP) to measure changes in 

impedance, aiming to keep the resistance below a given percentage of wakefulness values. 

On both APAP devices favourable outcomes had already been reported when studied in an 

attended titration setting and for unattended home treatment. Since it has been shown that 

devices can respond differently to changing pressure demands, we hypothesized that this 

would occur in these two devices running on different detection methods and algorithms.  

This study was designed to compare the titration efficacy of these two APAP technologies in 

terms of effects on sleep quality, respiratory disturbance and snoring indexes. It was also 

evaluated whether the pressure output was appropriate in terms of magnitude and variability. 

APAPfl provided a significantly better control of snoring than APAPfot, and resulted in 

a lower AHI (although not significant). The pressure levels rose significantly with the 

transition from wakefulness to sleep for APAPfl, but fell paradoxically for APAPfot. In 

addition, APAPfot was subject to significantly higher pressure variability. 



 



 



 



 



 



 



 



 

II.2. Comfort and pressure profiles of two auto-adjustable positive 

airway pressure devices: a technical report 

 

Respir Med 2003; 97(8):903-908 

 Hertegonne KB, Proot PM, Pauwels RA, Pevernagie DA 

 

 

 In this trial the AutoSetTM and the SOMNOsmartTM were also compared to each 

other, but in terms of subjective tolerance and pressure parameters. For all 50 patients 

included, the overall comfort of both devices was satisfactory. Subjective preference for 

one of both devices was equally divided. The pressure profiles, however, were 

remarkably different. The SOMNOsmartTM produced significantly lower values for P50 

and P95, whereas Pmax values were not significantly different. Interestingly, the AutoSetTM 

pressure profiles correlated significantly better with Ppred than those of the 

SOMNOsmartTM.  

 



 



 



 



 



 



 



 



 

II.3. Titration efficacy of two auto-CPAP devices using different 

flow limitation based algorithms 

 

Respiration, in press, e-pub available 

Hertegonne KB, Rombaut B, Houtmeyers Ph, Van Maele G, Pevernagie DA  

 

 
In our previous studies two APAP devices generated similar clinical results but 

remarkably different pressure outcomes and variability, which could be explained by the 

difference in operational characteristics. To substantiate this hypothesis, we compared two 

APAP devices that use a similar detection method, in particular the detection of inspiratory 

flow limitation which proved to perform better in our research. The REMstar AutoTM and 

the ResMed SpiritTM were used in a face-to-face comparison; both operate on flow limitation 

detection, but adapt the pressure according to a characteristic algorithm. This trial was also 

designed as a split-night protocol, in order to allow all 50 patients to use both devices in the 

same night, in a double-blind randomized order.  

Sufficient respiratory control was obtained with both devices, but the AHI was 

significantly lower for the REMstar AutoTM. Remarkably, this result was achieved with 

lower pressure levels. This study also confirms that different APAP performance was not 

translated to differences in subjective evaluation or preference by the patient.  



 



 



 



 



 



 



 



 



 



 

II.4. Titration procedures for nasal CPAP: Automatic CPAP or 

prediction formula? 

 

Sleep Medicine, in press, e-pub available 

Hertegonne KB, Volna J, Portier S, De Pauw R, Van Maele G, Pevernagie DA  

 

 

In this trial, two identical REMstar Auto™ devices were used in 45 patients during the 

same night, one operating in the automatic titration mode and one in the fixed mode on 

predicted pressure. The goal of this study was to evaluate whether APAP is superior to a 

prediction formula in assessing the optimal FPAP for home treatment. The primary outcome 

was the AHI; secondary outcomes were pressure profiles and subjective evaluation of sleep 

quality. 

The residual AHI was not significantly different in both treatment conditions, only the 

central apnoea index was higher in APAP than in FPAP mode. The predicted pressure was 

lower than APAP pressure levels and, in terms of bias, corresponded best with Pmean and P50 

of APAP, not with P95. However, there was a lack of precision in all APAP pressure 

categories or a poor agreement between individual pressure levels. There was no difference in 

subjective appreciation and no correspondence between subjective and objective ratings. 

 

 

 



 



 



 



 



 



 



 



 



 



 

 
 
 

III. Discussion 



 



 

DISCUSSION 
 

 

The aim of this research was to carry out a face-to-face comparison of different APAP 

devices in a CPAP titration setting, the hypothesis being that different pressure adjustment 

algorithms could result in different outcomes regarding sleep and respiratory variables. 

In our first two trials, we compared two APAP devices operating on different 

detection methods. We found that the APAPfl (AutoSetTM) achieved lower AHI and snoring 

indices than the APAPfot (SOMNOsmartTM), but only reaching statistical significance for the 

snoring indices. This last device generated a lower average pressure and showed marked 

pressure variability. Both devices differ in algorithm, which determines the speed and amount 

of pressure adjustment. The SOMNOsmartTM shows a steeper slope of adaptation for both 

lowering and increasing the pressure in response to respiratory events, which can explain the 

higher pressure variability. Unfortunately, these fast pressure adjustments are also seen as a 

response to unphysiological signals, e.g. awakenings, leading to high pressure levels at 

inappropriate times. This could explain the inappropriate pressure increase on transition from 

sleep to wakefulness when using the SOMNOsmartTM. The AutoSetTM algorithm, on the other 

hand, allows slower pressure adaptation and is able to compensate for pressure drops due to 

excessive air leakage.  

In order to substantiate our hypothesis that operational characteristics can account for 

different APAP performance, in our third trial we compared two devices that detect flow 

limitation, but are driven by different operational algorithms. The residual AHI was 

significantly lower at lower pressure levels with the use of the REMstar AutoTM compared to 

the ResMed SpiritTM. Again this paradox could be explained by algorithms. The ResMed 

SpiritTM has a steeper slope for increasing than for decreasing the pressure. A delayed 

pressure decrease could lead to overprescription when the pressure is inadequately increased 



 

as a response to artefacts. Moreover, pressure-resistance hysteresis may enable faster 

downward than upward titration, and a slow time constant will delay appropriate pressure 

decreases. The algorithm of the REMstar AutoTM, on the other hand, constantly performs tests 

to assess the ‘optimal’ and ‘critical’ pressure, resulting in faster but smaller adjustments. 

When pressure increases are not followed by elimination of the detected events, the device 

will lower the pressure again to its previous level. Eventually, this could result in lower 

effective CPAP levels as found in this trial. 

In our own clinical setting, we initiate OSAS patients on CPAP therapy on a pressure 

determined by the prediction formula of Miljeteig et al. Using this method we obtained a 

favourable clinical response in the vast majority of our patients. Occasionally, the pressure set 

to this predicted level requires slight adaptation on follow-up visits. In the fourth trial, the 

APAP device that performed better in our previous trials, a device detecting flow limitation 

was compared to the fixed, predicted pressure for that patient. Again both methods succeeded 

in obtaining adequate respiratory control, but the APAP pressure levels were significantly 

higher than Ppred. In terms of bias, the Ppred corresponded best with Pmean and P50 of APAP, 

suggesting that the use of P95 as the fixed pressure for chronic treatment could result in 

overprescription. Our findings are in contrast to the APAP literature, in which P95 was 

generally considered suitable as a fixed pressure for home treatment, since it correlated well to 

a manually determined pressure. The observed imprecision of the P95 in our trial could reflect 

random variation in CPAP requirements on one hand, but also intrinsic variability of the 

APAP technology on the other hand. This confirms the need to clarify the validity of P95 

assessment for subsequent FPAP treatment. 

Another finding in this study was that although Pmean and P50 strongly corresponded with Ppred 

(low bias), the correspondence between the individual values was not precise (large variance). 

Considering this poor agreement, Pmean or P50 values cannot be recommended for 



 

determining the fixed pressure level for home treatment. The same applies to the P90, P95 and 

Pmax values which, in addition to poor agreement, have a considerable bias to the Ppred. 

In previous research it was stated repeatedly that differences in delivered pressures 

were not paralleled by differences in correcting patients’ sleep-disordered breathing. 

Moreover, proof was never offered that these differences were relevant in terms of (long-

term) clinical outcomes. Our research consistently found a paradox between different APAP 

performance and indifferent subjective evaluation and preference. As stated above, this 

apparent paradox may in part be explained by methodological and design issues. Moreover, 

we hypothesize that there is a margin of pressure tolerance around an optimal CPAP level in a 

given patient at a given time. On one hand, when the pressure is reduced below the critical 

closing pressure of the upper airway, obstructive events will reappear. On the other hand, 

when the pressure is raised above an upper threshold, air leakage or even central events could 

be induced. This conceptual margin of pressure tolerance may amount to several centimetres 

of water. As long as APAP devices, regardless of pressure adjusting methods, operate in the 

presumed zone of pressure tolerance, a substantial control of sleep-disordered breathing will 

be obtained. Especially when the lower threshold (i.e. the critical closing pressure of the 

upper airway) is small, all devices will be efficient. This may explain why only small 

differences between APAP devices can be demonstrated in clinical studies.  

Finally, the results of the present work indicate that, in the majority of patients, it is 

safe to initiate CPAP therapy on a predicted pressure. There seems to be no additional 

advantage in performing an additional APAP titration procedure if patients are stable under 

this pressure, although this hypothesis needs further testing, especially regarding long term 

therapy outcomes regarding cardiovascular and overall mortality. If this could be confirmed 

in long term outcome trials, it could be justified to perform a titration procedure, only in a 

subgroup of patients with residual symptoms. This proposition could have favourable 



 

consequences for the huge economic burden of OSAS, but would also increase the diagnostic 

capacities of sleep labs, and in the end promote the quality of patient care. 



 

 

 
 

IV.   Summary 
    Samenvatting 



 



 

SUMMARY 
 
 
 

Since Continuous Positive Airway Pressure (CPAP) was first introduced in the early 

eighties for the treatment of Obstructive Sleep Apnoea syndrome (OSAS), controversy has 

never been cleared on the optimal method to initiate this therapy. A revolution in thought was 

brought about with the development of automatic CPAP (APAP) devices that were, however, 

manufactured and marketed without firm evidence of their added value. Each manufacturer 

designed devices differing in detection method and in pressure adjustment algorithm. The first 

clinical studies emphasized on the equivalent performance of APAP and CPAP in improving 

the apnoea- hypopnoea index (AHI) and sleep quality. It was proclaimed that the added 

advantage of APAP was the possibility to achieve this goal with lower pressures, which was 

hypothesized to promote patient acceptance and compliance.  

The connecting thread in this thesis is face-to-face comparison of different APAP 

devices in a CPAP titration setting, the hypothesis being that different pressure adjustment 

algorithms should result in different outcomes regarding sleep and respiratory variables.  

Our first trials compared devices differing in detection method and algorithm. Both 

devices achieved adequate respiratory control, with only a statistically significant difference 

for snoring. Pressure outcomes differed significantly, which could be explained by the 

operational characteristics of each device. The next step was the comparison of devices 

operating on a similar detection method but with different algorithms. The main outcomes 

were a lower AHI and lower pressure levels for one device, for which again the algorithm 

could account for. Finally, we compared APAP titration to a fixed pressure determined by a 

prediction formula (Ppred). Both methods were equally efficient in lowering the AHI, but the 

fixed pressure was lower than the APAP pressure levels. Moreover, the fixed pressure 

correlated better to the mean (Pmean ) and median (P50 ) APAP pressures (low bias) than to the 



 

95th percentile APAP pressure (P95 ), which had been recommended as the preferred pressure 

for home treatment. Another finding in this study was that the correspondence between the 

individual mean and median APAP values was not precise (large variance), so these values 

cannot be recommended for determining the fixed pressure level for home treatment. The 

same applies to the P90, P95 and Pmax values which, in addition to poor agreement, have a 

considerable bias to the Ppred. A consistent finding in all trials was the paradox between 

different APAP performance and similar subjective evaluation and preference. 

Our research subscribes other publications that state that the titration method used is 

not of overriding importance in initiating CPAP therapy. The use of expensive APAP devices 

is not superior to the use of a simple and efficient prediction formula in terms of short term 

clinical outcomes. As long as the selected pressure is situated within a therapeutical margin of 

pressure tolerance around the critical closing pressure of the upper airway, respiratory control 

will be adequate in the majority of patients. From this point of view, we can conclude that 

CPAP therapy can be safely initiated on predicted pressure. If this could be confirmed in long 

term outcome trials, it could be justified to perform a titration procedure, only in a subgroup 

of patients with residual symptoms.  

In our trials the APAP devices used were efficient in obtaining adequate respiratory 

control, but pressure outcomes differed considerably. These differences could be accredited to 

the detection method and the pressure adjustment algorithm a specific device operates on. The 

problem is, however, that the manufacturers do not provide detailed information on the 

algorithms. Our data support the theorem that APAP devices should be submitted to 

standardized clinical and bench testing before commercialization. Moreover, APAP devices 

should no longer be commercialized as ‘black boxes’, the clinician should be provided with 

detailed information on the mode of action of a specific device. 

 



 

SAMENVATTING 

 
Sinds de jaren ’80 is ‘continuous positive airway pressure’ (CPAP) via nasale weg de 

hoeksteen in de behandeling van matig tot ernstig obstructief slaapapnoe syndroom (OSAS). 

De optimale CPAP druk zou iedere vorm van slaapgebonden respiratoire belemmering ter 

hoogte van de bovenste luchtwegen moeten voorkomen, niet enkel apnoe’s, hypopnoe’s en 

snurken, doch eveneens ‘flow limitation’. Tot op heden bestaat controverse rond de manier 

waarop men die optimale therapeutische druk bepaalt. Internationaal geldende richtlijnen 

adviseren manuele titratie tijdens polysomnografie, doch een eenduidig protocol voor deze 

procedure werd nooit gevalideerd. 

Als alternatief voor deze arbeidsintensieve titratiemethode werden automatische CPAP 

(APAP) toestellen voorgesteld die in staat zijn op ieder ogenblik de druk aan te passen aan de 

nood van de patiënt. Een breed gamma van dergelijke toestellen werd gecommercialiseerd, 

doch zonder stevig bewijs van hun toegevoegde waarde. Deze toestellen verschillen sterk in 

de manier waarop ze adembelemmering detecteren (de detectiemethode) en in de manier 

waarop ze hierop reageren (het operationeel algoritme). De eerste klinische studies 

benadrukten dat APAP even efficiënt is als CPAP in het verbeteren van de slaapkwaliteit en 

de respiratoire controle. Er werd bovendien gesuggereerd dat de toegevoegde waarde van 

APAP zou liggen in de mogelijkheid om deze objectieven te behalen met lagere drukken, wat 

de aanvaarding en therapietrouw door de patiënt zou bevorderen. 

De rode draad in deze thesis is de rechtstreekse vergelijking van verschillende APAP 

toestellen in een titratieprocedure ter bepaling van de optimale CPAP druk. De hypothese is 

dat verschillende operationele karakteristieken voor adaptatie van de drukprofielen resulteren 

in manifeste verschillen in slaapparameters en respiratoire controle. 

In onze eerste twee studies werden twee toestellen vergeleken met een verschil zowel 

in detectiemethode als in algoritme. Beide methodes slaagden erin de apnoe-hypopnoe-index 



 

(AHI) adequaat te doen dalen, doch de meting van ‘flow limitation’ (APAPfl) resulteerde in 

een iets betere respiratoire controle dan de impedantiemeting (APAPfot). De verschillen in 

drukprofielen konden eveneens verklaard worden door de operationele karakteristieken van 

het respectievelijke toestel. De volgende stap was dan ook het vergelijken van twee toestellen 

met dezelfde detectiemethode (APAPfl) doch met verschillende algoritmes. Het ene toestel 

genereerde een lagere AHI en daarenboven lagere drukken, opnieuw te verklaren door het 

specifieke algoritme. Tot slot vergeleken we APAP titratie met een vaste druk gebaseerd op 

een predictieformule (Ppred). Beide methodes resulteerden opnieuw in een efficiënte daling 

van de AHI, doch de vaste voorspelde druk was lager dan de APAP drukken. Daarenboven 

correleerde die vaste druk beter met de gemiddelde en mediane APAP druk (lage bias) dan 

met de 95ste percentiel van APAP, die nochtans in de literatuur aanbevolen werd als de 

optimale druk voor lange termijn behandeling. De individuele waarden van APAP en vaste 

druk daarentegen vertoonden een slechte overeenkomst (grote variantie), zodat de mediane of 

gemiddelde druk evenmin aanbevolen kunnen worden voor het instellen van de behandeling 

thuis. Hetzelfde werd aangetoond voor de andere APAP waarden (90ste en 95ste percentiel en 

maximale druk) die naast deze grote variantie nog een aanzienlijke bias vertonen tegenover de 

Ppred. Ten slotte, een consistente bevinding in al onze studies, was de paradox tussen de 

verschillende performantie van de APAP toestellen en de gelijkwaardige subjectieve evaluatie 

en voorkeur aangegeven door de patiënt. 

Ons onderzoek onderschrijft andere publicaties die stellen dat bij het opstarten van een 

CPAP behandeling de keuze van de titratiemethode niet van doorslaggevend belang is. Met 

betrekking tot klinische resultaten op korte termijn is het gebruik van dure APAP toestellen 

niet superieur ten opzichte van het gebruik van een meer eenvoudige en eveneens efficiënte 

predictieformule. Een adequate respiratoire controle kan bereikt worden in een meerderheid 

van de patiënten op voorwaarde dat de geselecteerde druk zich bevindt binnen een 



 

therapeutische marge van druktolerantie rond de kritische sluitingsdruk van de bovenste 

luchtweg. Vanuit dit standpunt kunnen we concluderen dat het veilig is om CPAP therapie te 

starten aan de hand van een predictieformule. Indien dit bevestigd zou worden in 

mortaliteitsstudies, zou men kunnen verdedigen dat enkel in een subgroep van patiënten met 

residuele symptomen het uitvoeren van een titratieprocedure aangewezen is. Dit voorstel zou 

de enorme economische last van OSAS gevoelig kunnen verminderen, maar zou ook de 

diagnostische capaciteit van slaapcentra kunnen verruimen, en uiteindelijk de kwaliteit van de 

patiëntenzorg in het algemeen bevorderen. 

 In onze studies toonden we aan dat alle gebruikte APAP toestellen een adequate 

respiratoire controle bereikten, doch met manifeste verschillen in drukprofielen. Deze konden 

toegeschreven worden aan de detectiemethode en de algoritmes van de specifieke toestellen. 

Het probleem is dat producenten van APAP toestellen om commerciële redenen geen 

gedetailleerde informatie verschaffen over die algoritmes. Onze data ondersteunen de stelling 

dat APAP toestellen dienen onderworpen te worden aan gestandaardiseerd klinisch en 

proefbankonderzoek alvorens wereldwijde commercialisatie. Daarenboven dient het ‘zwarte 

doos’ concept verlaten te worden, gedetailleerde informatie over het algoritme van specifieke 

APAP toestellen moet ter beschikking gesteld worden aan de clinicus.  

 



 



 

 
V. Future 

perspectives 



 



 

Interesting topics for future research emerge from the results of our own studies and research 

from other groups.  

We studied several APAP devices with fundamental differences regarding detection method 

and operational algorithms. All proved to have a beneficial effect on sleep disordered 

breathing, but performed quite differently when compared to each other. As stated above, 

criteria need to be set for standardized clinical and bench testing to which all new APAP 

devices should be submitted in order to prove their efficiency before commercialization.  

It would be interesting to design an APAP device that operates on a combination of different 

indicators for event detection, therefore combining the best of every method.  

In the discussion section, the hypothesis was formulated that a safe margin of pressures 

tolerance exists around the critical closing pressure of the upper airway. This hypothesis could 

be tested by performing a titration polysomnography starting with low pressures and 

repeatedly increasing the pressure after a fixed time.  For every pressure level the residual 

AHI could be calculated, as well as mask or mouth leaks and the pressure under which central 

apnoeas might occur. Thus a pressure-response curve could be determined analogue to 

pharmacodynamic studies.  

Most important, I would like to emphasize that in the last decades many research has been 

performed on the technical performance of APAP devices, but most studies focussed on short-

term outcomes. Large-scale randomised clinical trials should be performed to investigate the 

role of APAP titration and therapy, especially regarding long-term outcomes such as 

cardiovascular morbidity and mortality related to this highly prevalent disease. 
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