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Abbreviations 
APC allophycocyanin NK natural killer 
bHLH basic helix-loop-helix NOD nonobese diabetic 
BM bone marrow PBS phosphate buffered saline 
BMP bone morphogenetic protein PE phycoerythrin  
CD cluster of differentiation RAG recombination activating gene 
cDNA copy DNA RNA ribonucleic acid 
CLP common lymphoid progenitor RNAi RNA interference 
CMLP common myelo-lymphoid progenitor RT-PCR reverse transcription polymerase  

chain reaction 
CMP common myeloid progenitor SCF stem cell factor 
CSL CBF1, Suppressor of Hairless, Lag-1  SCID severe combined immunodeficiency 
DAPT 7 (N-[N-(3,5-difluorophenyl)-l-alanyl]- 

S-phenyl-glycine t-butyl ester) 
SD standard deviation 

DC dendritic cell siRNA small interfering RNA 
DL1 Delta-like-1 SP single positive 
DNA desoxyribonucleic acid SRC SCID repopulating cell 
DP double positive ST-HSC short-term repopulating  

hematopoietic stem cell 
EGFP enhanced green fluorescent protein T-ALL T cell acute lymphoblastic leukemia 
ELP early lymphoid progenitor TCR T-cell receptor 
EPO erythropoietin Th T helper cell 
ETP early thymic progenitor  TNF tumor necrosis factor 
FACS fluorescence activated cell sorter TPO thrombopoietin 
FCS fetal calf serum   
FITC fluorescein isothiocyanate   
FL Flt3/Flk-2 ligand    
FTOC fetal thymus organ culture   
GAPDH glyceraldehyde-3-phosphate dehydrogenase    
GM-CSF granulocyte/macrophage colony-stimulating 

factor 
  

GMP granulocyte/monocyte progenitor   
GO gene ontology   
HES hairy enhancer of split   
HLA human leukocyte antigen   
HPRT hypoxanthine phosphoribosyl transferase    
HSC(s) hematopoietic stem cell(s)   
ICN intracellular domain of Notch-1   
Ig Immunoglobulin   
IL interleukin   
IRES internal ribosomal entry site    
ISP immature single positive   
Lin lineage   
LSK Lin- Sca-1hi c-Kithi   
LT-HSC long-term repopulating hematopoietic stem 

cell 
  

MAML Mastermind-like   
MEP megakaryocyte/erythrocyte progenitor   
MHC major histocompatibility complex   
MPP multipotent progenitor   
mRNA messenger RNA   
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General introduction and state of the art 
 

1. Introduction 

The bloodstream provides every cell of the body with nutrients and oxygen and 

removes their waste products. Blood consists of plasma, the watery phase, and suspended 

blood cells. Red blood cells (or erythrocytes), which comprise 40-50 % of the blood volume, 

are responsible for the oxygen transport. Platelets (or thrombocytes) trigger blood clotting in 

damaged tissues. White blood cells (or leukocytes) are the immune cells that protect the body 

against tumor cells and invading micro-organisms. Many types of leukocytes exist, each with 

a specialized function in the immune system. B cells and T cells are lymphoid cell types that 

mediate acquired immune responses against pathogens. Granulocytes and monocytes are 

myeloid cells that mediate inflammation and carry out innate immune responses. NK cells are 

lymphoid cells involved in innate immunity. Dendritic cells are specialized for the 

presentation of antigen to T cells.  

Most blood cells have limited life-spans and need to be replaced continuously 

throughout life. The turnover of blood cells in an average man (weighing 70 kg) is estimated 

to be close to 1 trillion cells per day (1). All blood cells ultimately derive from a small pool of 

hematopoietic stem cells (HSCs) in the bone marrow by a highly orchestrated process termed 

hematopoiesis (derived from the Greek words “haima”, blood and “poiein”, to make). 

Hematopoietic stem cells have two defining properties. They are multipotential, meaning they 

have the capacity for differentiation and stepwise maturation into all known blood cell 

lineages, and they can generate additional HSCs through the process of self-renewal. Along 

the path of differentiation, progenitor cells gradually lose their self-renewal activity, and 

become more and more specialized until they irreversibly commit to a certain blood cell 

lineage. Maturing cells are continuously released into the circulation.  

Hematopoiesis already begins in the yolk sac of the embryo, and during embryonic 

development the site of blood formation changes sequentially from yolk sac to fetal liver to 

bone marrow. After birth, the bone marrow is the dominant site of hematopoiesis and the 

number of HSCs is maintained relatively constant under normal conditions (homeostasis). In 

the event of bleeding or infection, the production of blood cells can be readily increased.  

The development of T lymphocytes does not take place in the bone marrow, but in a 

specialized organ lying above the heart, the thymus, which is seeded with bone marrow 

precursors that migrate to the thymus via the bloodstream. The molecular mechanisms 
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regulating T-lymphopoiesis are not yet completely understood. One signal transduction 

pathway that has been shown to be critically important for thymopoiesis is signalling through 

the transmembrane receptor Notch. A better understanding of the processes that regulate T-

cell development and hematopoiesis in general is necessary to develop effective therapeutic 

strategies against diseases such as leukemia, hereditary or acquired immune deficiencies and 

autoimmune diseases, which are caused by defects in the hematopoietic differentiation 

program. Moreover, this knowledge could be used to enhance restoration of the T-cell 

compartment after myeloablative therapy and bone marrow transplantation.  

 

2. Characterization and isolation of hematopoietic stem cells  

It has been known for more than 50 years that bone marrow transplantation can restore 

hematopoiesis in lethally irradiated mice. It was also recognized soon that a small population 

of clonogenic, multipotent, self-renewing stem cells in the bone marrow is responsible for the 

immune reconstitution (2). Transplantation of putative HSCs into lethally irradiated or 

genetically immune-deficient mice is the accepted gold standard for analysing stem cell 

activity. Injection of even a single hematopoietic stem cell has been shown to be sufficient for 

long-term reconstitution of lethally irradiated mice (3). The assay is also successfully used for 

characterizing human hematopoietic stem and progenitor cells. NOD/SCID mice are most 

often used for studying human hematopoiesis in vivo, and engrafting human cells are termed 

SCID repopulating cells (SRCs) (4). As an alternative to murine xenotransplantation models, 

the group of Zanjani created chimeric sheep by injecting human HSCs intraperitoneally into 

pre-immune fetal sheep (5-7).  

The development of monoclonal antibodies (8) and the multiparameter fluorescence 

activated cell sorter (FACS) technology (9) enabled the phenotypic characterization of HSCs 

and their isolation from the bone marrow. In the mouse, all HSC activity in the bone marrow 

was found to reside in a small population (0.05% of total bone marrow) of cells expressing 

low or undetectable levels of hematopoietic lineage cell surface markers (Linlo/-), high levels 

of Sca-1 and c-Kit, and low levels of Thy1.1 (Linlo/- Sca-1hi c-Kithi Thy1.1lo) (10-12). This 

population was further separated into cells with short-term repopulating activity (ST-HSCs: 

Linlo) and cells with long-term repopulating activity (LT-HSCs: Lin-). While both populations 

confer radioprotection, only the latter can provide reconstitution beyond 10 weeks (13). Later 

the compartment containing “true” stem cells (LT-HSCs) was narrowed down further by the 

finding that expression of the cytokine receptor Flk-2/Flt3 (CD135) (14, 15) and/or CD27 

(16) within the Lin- Sca-1hi c-Kithi  (LSK) stem cell compartment is accompanied by loss of 
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self-renewal capacity. In contrast to human HSCs, LT-HSCs from normal adult mice lack 

expression of CD34 (3) but express the CD38 antigen (17). Yang et al. recently showed that 

LSK CD34+Flt3- bone marrow cells are ST-HSCs capable of rapidly reconstituting 

myelopoiesis and thus protecting mice from lethal myeloablation (18). Kiel et al. recently 

discovered that LT-HSCs and non-selfrenewing progenitors can be distinguished on the basis 

of differential expression of 3 SLAM family receptors (19). HSCs are CD150+CD244-CD48-, 

while multipotent progenitors are CD244+CD150-CD48- and most restricted progenitors are 

CD48+CD244+CD150-.  

The first surface marker identified on human hematopoietic stem and progenitor cells 

is the sialomucin CD34 (20). The CD34+ population is very heterogeneous and contains both 

stem cells and lineage-committed progenitors. The most primitive hematopoietic cells in the 

bone marrow were found in a small (only 1-10%) subset of CD34+ cells that do not express 

CD38 (21). In addition to the bone marrow, these HSCs are also present in umbilical cord 

blood, placenta and peripheral blood. Transplantation experiments in immune-deficient mice 

showed that the Lin-CD34+CD38- cell fraction is highly enriched with SCID repopulating 

cells with long-term repopulation capacity (LT-SRC), while Lin-CD34+CD38+ cells lack self-

renewal and can only contribute to short-term, transient engraftment (ST-SRC) (22, 23). The 

Lin-CD34+CD38- fraction is still very heterogeneous with regard to cell surface marker 

expression. Other surface markers expressed on hematopoietic stem cells include CD90 (Thy-

1) (24), KDR (VEGFR2) (25) and CD133 (26). In contrast to murine long-term reconstituting 

HSCs, human CD34+CD38- SRCs express Flt3/Flk-2 (27) and only low levels of c-Kit 

(CD117) (28, 29).  

In addition to methods exploiting surface marker expression, techniques based on the 

distinctive ability of stem cells to efflux fluorescent dyes such as the mitochondrion-binding 

dye Rhodamine 123 (Rh-123) (30-32) and the DNA-binding dye Hoechst 33342 (33) have 

been used to isolate murine and human long-term repopulating HSCs. Efflux of Rh-123 is 

mediated by the transmembrane carrier protein encoded by the multidrug-resistance gene 

MDR1, which is highly expressed on human Rh-123dull multipotent HSCs (34). Analogously, 

Hoechst-low cells, also referred to as ‘side population’ cells because of their typical location 

in the lower left quadrant of the Hoechst red vs. Hoechst blue flow cytometric dot plots, 

overexpress the transporter ABCG2 (also known as Bcrp1) (35, 36) which was shown to be 

responsible for the efflux of Hoechst (37). The physiological function of these two pumps 

present on HSCs remains to be determined. Pearce et al. recently showed that the majority of 

murine ‘side population’ cells possess the primitive Lin- Sca-1hi c-Kithi Thy-1lo Flt3- cell 
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surface phenotype and represent a small subset of BM cells with this phenotype (38). The 

remaining ‘side population’ cells were mostly Lin- Sca-1hi c-Kithi Thy-1- and may represent a 

previously undescribed, extremely rare, Thy-1-negative stem cell population (38). Another 

promising strategy to isolate hematopoietic stem cells is on the basis of their high cellular 

expression of the enzyme aldehyde dehydrogenase (ALDH) (39).  

Although the utility of CD34 as marker for human HSCs is well established and 

purified CD34+cells have been successfully used for many clinical transplantations, human 

CD34- cell populations with long-term multilineage engraftment potential have also been 

detected (40-42). These Lin-CD34-CD38- cells give rise to CD34+ cells in vivo (41) and in 

vitro (43, 44), suggesting they might be upstream of CD34+ cells in the hematopoietic 

hierarchy. Because SCID-repopulating activity in the Lin-CD34-CD38- population is restricted 

to those cells expressing CD133 (45) and CD133 is also expressed on CD34bright cells (26), 

CD133 might be a better choice for HSC enrichment.  

 

3. Models of hematopoiesis  

Knowledge about the hematopoietic differentiation pathway is achieved by rigorous 

purification of HSC and progenitor cell populations by surface phenotype and evaluation of 

their full differentiation capacity, ideally at the single cell level. This showed that the 

differentiation from multipotential hematopoietic stem cells to mature specialized blood cells 

is a stepwise process in which each successive stage loses self-renewal and developmental 

potential. Lineage commitment is considered to be an irreversible step, meaning that a cell 

that has made a certain lineage decision and loses the potential to develop into a specific 

lineage, never regains that potential.  

The symmetry between B cell and T cell development, and the observation that IL-

7R –/– mice are deficient in both T and B lymphocytes, led to the hypothesis that both 

lymphoid cells are closely related and might share a common ancestor. Kondo et al. were the 

first to isolate a murine BM cell population with the potential to generate all lymphoid lineage 

cells (B, T and NK cells), but no myeloid cells (46). Bipotent B/T potential was shown in 

clonal assays. These common lymphoid progenitors (CLPs) are Lin- Sca-1low c-Kitlow Thy-

1.1- and express high levels of the α chain of the IL-7 receptor (IL-7Rα+). CLP also have 

uniformly high expression of the Flt3 cytokine receptor (47) and have lost self-renewal 

capacity. Analogously, a common myeloid progenitor cell (CMP) (Lin- Sca-1- c-Kit+ IL-

7Rα- FcγRlo CD34+), generating all myeloid cell types but devoid of any lymphoid potential, 

was isolated from murine BM (48). Granulocyte/macrophage lineage-restricted progenitors 
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(GMPs) (Lin- Sca-1- c-Kit+ IL-7Rα- FcγRhi CD34+), and megakaryocyte/erythrocyte lineage-

restricted progenitors (MEPs) (Lin- Sca-1- c-Kit+ IL-7Rα- FcγRlo CD34-) were also isolated 

from the murine BM and were shown to derive from CMPs in in vitro cultures (48).  

The identification of CLP, CMP, GMP and MEP led Weissman and co-workers to 

propose a model for hematopoietic development, which is still prevailing (See Figure 1). This 

model suggests that the first lineage commitment step of HSCs leads to a strict separation of 

myeloid and lymphoid differentiation pathways. Later it was shown that dendritic cells can be 

derived from both CLP and Flt3+ CMP (49-51).  

 

 
 
Figure 1. Schematic overview of the classic model of hematopoiesis. Adapted from Akashi et al. (48) and 
Reya et al. (52). LT-HSC, long-term self-renewing HSC; ST-HSC, short-term self-renewing HSC (curved 
arrows indicate self-renewal); CLP, common lymphoid progenitor; CMP, common myeloid progenitor; GMP, 
granulocyte/macrophage progenitor; MEP, megakaryocyte/erythrocyte progenitor.  

 

 

In human, CLPs have been described in adult bone marrow and umbilical cord blood. 

Bone marrow Lin-CD34+CD38+CD10+ cells give rise to B, NK and dendritic cells on a clonal 

level and to T cells at high frequencies (53). Cord blood CD34+CD38-CD7+ cells give rise to 
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B, NK and dendritic cells (54). Both are devoid of myeloerythroid differentiation capacity. 

The human counterparts of CMP, GMP and MEP have also been isolated from bone marrow 

and cord blood (55).  

According to the classic model, B and T cells are both derived from the CLP in the 

bone marrow, implicating that the CLP migrates to the thymus to give rise to T cells. 

However, the identification of the earliest thymic progenitors (ETPs) by the group of 

Bhandoola (56) challenged this concept and demonstrated that bone marrow CLPs are in fact 

not physiological T-cell progenitors. ETPs will be discussed in greater detail in the section on 

T-cell seeding progenitors.  

The classic differentiation scheme is also being challenged by the isolation of 

progenitor populations that don’t fit in. Using their multilineage progenitor (MLP) assay, a 

clonal assay which permits T-, B- and myeloid-lineage development from single progenitors, 

Katsura et al. investigated the developmental potential of individual cells in various 

subpopulations of murine fetal liver cells. In this assay single progenitors are cultured 

together with a deoxyguanosine-treated fetal lobe in the presence of SCF, IL-3 and IL-7. 

Unipotent myeloid, B- and T-progenitors and multipotent myeloid/B/T progenitors were 

routinely found, as well as bipotent myeloid/B and myeloid/T progenitors. On the contrary, 

bipotent T/B bipotent progenitors, corresponding with the CLP, were never found (57). These 

findings suggested that in the murine fetal liver, the lineage restriction of multipotent 

progenitors to unipotent B and T progenitors occurs through the bipotent myeloid/B and 

myeloid/T progenitors, respectively. Accordingly, the relationship between the B and myeloid 

lineages or between the T and myeloid lineages is closer than that between the T and B 

lineages. By adding EPO to the cytokine mixture, also erythroid development could be 

studied (MLP-METB assay). This assay showed that most multipotent progenitors were 

M/T/B tripotent progenitors, but a small proportion also generated erythroid cells and were 

thus M/E/T/B progenitors, which correspond to HSCs. M/E progenitors, corresponding to the 

CMP, were also detected. M/T/B cells represent a common progenitor for M/T and M/B 

progenitors, and is called the common myelo-lymphoid progenitor (CMLP). These data also 

suggest that erythroid potential is lost at an early stage before branching towards T and B 

progenitors.  

As M/B and M/T progenitors have not yet been identified in the adult murine bone 

marrow, and conversely, CLP are not present in the fetal liver, the possibility exists that 

lineage commitment differs between adult and fetus. However, recently Hou et al. identified a 

B-cell progenitor (CD34+CD19+CXCR4-) with full myeloid differentiation capacity in human 
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bone marrow (58), suggesting that also in the adult, myeloid and lymphoid differentiation 

potential might not always segregate as early as previously assumed.  

On the contrary, new data suggest that megakaryocyte/erythroid potential might be 

lost much earlier than assumed. Adolfsson et al. identified murine bone marrow Lin-Sca-1+c-

KithiCD34+Flt3+ (LSKFlt3+) cells with combined B, T, granulocyte and monocyte potential, 

but without megakaryocyte/erythroid differentiation potential, which they should possess 

according to the conventional model of the hematopoietic hierarchy (59). These data suggest 

that megakaryocyte/erythroid differentiation potential is lost earlier than 

granulocyte/monocyte potential when HSCs differentiate to lymphocyte progenitors. This in 

fact correlates well with the findings of Katsura et al. in the fetal liver. A schematic overview 

of the models proposed by Katsura et al. and Adolfsson et al. is presented in Figure 2.  

 

 
 

Figure 2. Schematic overview of the alternative hematopoietic differentiation models proposed by Katsura 
et al. (57) and by Adolfsson et al.  (59). HSC, hematopoietic stem cell; MMEP, monocyte/megakaryocyte/ 
erythrocyte progenitor; MEP, megakaryocyte/erythrocyte progenitor; CMLP, common myelo-lymphoid 
progenitor; MB, monocyte/B-cell progenitor; MT, monocyte/T-cell progenitor; LT-HSC, long-term self-
renewing HSC; ST-HSC, short-term self-renewing HSC (curved arrows indicate self-renewal); LMPP, 
lymphoid-primed multipotent progenitor; GMP, granulocyte/monocyte progenitor; CLP, common lymphoid 
progenitor.   
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4. T-cell differentiation 

While other lymphoid lineages (B and NK cells) are generated in the bone marrow, T-

cell development occurs almost exclusively in the thymus, which provides the specialized 

microenvironment necessary for T-cell development. T-lymphopoiesis in the thymus is 

replenished continuously by hematopoietic precursors that migrate from the bone marrow to 

the thymus via the blood (60). This small population of precursors generates large numbers of 

T cells with diverse T-cell receptor (TCR) specificities. Two major subtypes of T 

lymphocytes can be distinguished on the basis of antigen receptor expression. Conventional 

TCR-αβ Τ cells recognize peptide antigens bound to MHC molecules, while TCR-γδ T cells 

are not MHC-restricted and can recognize soluble protein. γδ T cells constitute only a small 

proportion (1-5%) of the lymphocytes circulating in the blood and peripheral organs, but they 

comprise up to 50% of T cells within epithelial-rich tissues such as the skin, intestine and 

reproductive tract (61). Their biological role has not been elucidated so far. In addition to 

these two major T-cell lineages, also 2 types of ‘unconventional’ T cells develop in the 

thymus. NKT cells, which express many surface receptors normally expressed by NK cells, 

and CD4+CD25+ regulatory T cells, which are involved in preventing autoimmune diseases.  

 

4.1. Stages of T-cell differentiation  

T-cell precursors enter the thymus at the cortico-medullary junction and then migrate 

in a defined pattern within the thymus during differentiation (62). Thymocytes pass through 

distinct developmental stages that can be discriminated on the basis of the differential 

expression of cell surface markers. Both in human and mice, the earliest thymic progenitors 

are negative for the T-cell marker CD3 and the co-receptors CD4 and CD8. The murine CD4-

CD8- double-negative (DN) thymocyte subpopulation can be further subdivided into 4 

consecutive developmental subsets by the surface expression of CD44 and/or CD25 (IL-2 

receptor α chain) (63). These are sequentially the DN1 (CD44+CD25-), DN2 (CD44+CD25+), 

DN3 (CD44-CD25+) and DN4 (CD44-CD25-) stage. In human T-cell development, 3 distinct 

DN stages can be recognized based on the expression of CD34, CD38 and CD1a. The most 

immature human thymocytes are CD34+CD38-CD1a-, followed by the CD34+CD38+CD1a- 

and CD34+CD38+CD1a+ stages (64). An overview of the corresponding stages in murine and 

human T-cell development is presented in Figure 3.  
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Figure 3. Stages of T-cell differentiation. The surface phenotypes of corresponding stages in murine and 
human T-cell development are shown and critical decisions during murine T-cell development are indicated with 
arrows. See text for details. Figure adapted from (64). 

 

 

During the first stages (DN1 through DN3), rearrangement of the T-cell receptor 

(TCR) δ and γ genes takes place. Thymocytes that successfully rearranged both γ and δ genes 

differentiate to mature TCR-γδ cells. In TCR-αβ lineage precursors, rearrangement of the 

TCR-β chain gene starts in the DN2 stage and continues in the DN3 stage. A successfully 

rearranged (in-frame) β-chain is expressed at the cell surface together with a surrogate α 

chain (pTα) and CD3 components in the pre-TCR complex. Only cells expressing a 

functional pre-TCR complex escape programmed cell death and differentiate further to the 

DN4 stage. This first checkpoint is known as β-selection. During human T-cell development, 

a few cells undergo β-selection already in the CD34+CD38+CD1a+ stage, before CD4 is 

expressed (64). A larger proportion is β-selected in the CD4+ISP stage (65), and a third group 

upregulate CD4 and CD8α before initiating and completing TCR rearrangements (66). In the 

next stage, thymocytes express one co-receptor at the cell surface, namely CD8 in the mouse 

and CD4 in humans. These immature single positive (ISP) thymocytes proliferate rapidly in 

response to signals received through the pre-TCR and start rearranging the TCR-α gene 

segments. The resulting double positive (DP) thymocytes, expressing both CD4 and CD8, 

comprise circa 90% of the total thymocyte population. The earliest DP cells are CD3-, while 

late DP cells express CD3 at the cell surface. After rearranging the TCR α gene, a unique 

functional TCR is expressed and DP thymocytes undergo positive and negative selection 
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based on the affinity of their αβ TCR with peptide-MHC complexes on thymic epithelial 

cells. Positive selection encompasses the elimination of thymocytes with a TCR that does not 

recognize self-MHC molecules, while negative selection eliminates thymocytes with a TCR 

that recognizes self-antigens. Surviving thymocytes develop into mature CD3+CD4+ helper or 

CD3+CD8+ cytotoxic single positive (SP) T cells that are released into circulation. Mature T 

cells express high levels of the TCR and CD3.  

 

4.2. TCR gene rearrangements 

The T-cell receptor is a heterodimer consisting of disulfide-linked α and β polypeptide chains 

(in TCR-αβ lineage cells) or γ and δ chains (in TCR-γδ lineage cells), with each chain 

containing a constant domain and a variable domain, the latter being responsible for binding a 

peptide-MHC complex. The variable domains of the β and δ chains are encoded by several 

variable (V), diversity (D) and joining (J) gene segments, while the α and γ chain genes are 

composed of V and J gene segments. During T-cell development the TCR gene segments are 

joined together during a process called V(D)J recombination. This process is initiated by a 

specialized heterodimeric endonuclease formed from the products of the recombination-

activating genes RAG-1 and RAG-2, which recognizes the heptamer and nonamer 

recombination signal sequences (RSS) that flank the TCR gene segments and produces a 

double-strand break between the RSSs and flanking coding segments. Coding segments are 

then joined by components of the nonhomologous endjoining pathway. Since gene segments 

can be joined in multiple combinations, a diverse T-cell receptor repertoire is created. 

Additional diversity is generated by the addition of nucleotides at the junctions between V, D, 

and J segments by the enzyme TdT (terminal deoxynucleotidyl transferase) and by the 

deletion of nucleotides by exonucleases. As the number of nucleotides added or deleted at the 

junctions is random, the reading frame of the coding sequences beyond the joint is often 

disrupted, leading to the expression of a non-functional protein. Such rearrangements are 

therefore called non-productive. TCRβ rearrangement proceeds in an ordered fashion, witch 

Dβ to Jβ rearrangement preceding Vβ to DJβ rearrangements.  

 

4.3. Nature of the thymus-seeding progenitor 

The DN1 thymic subset which contains the most immature T-lineage progenitors, is 

heterogeneous and also contains precursors for B, NK and dendritic cells (67). DN2 stage 

thymocytes have lost B-cell potential but retain NK and dendritic cell potential, while DN3 
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thymocytes are fully committed to the T-cell lineage (68). Based on c-Kit and IL-7Rα 

expression, the DN1 subset can be subdivided into c-Kitneg/lowIL-7Rα+ and c-KithiIL-

7Rαneg/low cells. Only the latter possess measurable T-lineage potential and are thus bona fide 

early T-lineage progenitors (ETPs) (56). ETPs were shown to have also B-cell and even some 

myeloid differentiation potential. Most recently, Porritt et al. detected 5 DN1 subpopulations 

based on the expression of CD24 and CD117 (69). All of them could give rise to T cells, but 

only CD117+CD24- and CD117+CD24+ cells displayed the kinetics of differentiation, 

proliferative capacity and other traits of canonical T-cell progenitors. These 2 subpopulations 

only possess T- and NK-cell potential, while B-cell potential of the DN1 subset is derived 

from the other DN1 subpopulations.  

These data indicate that T-lineage commitment likely occurs after entry of the BM-

derived progenitors in the thymus. The nature of the progenitors that seed the thymus is still a 

matter of debate. Many bone marrow populations have been identified that are able to 

generate T cells when introduced intravenously into irradiated recipient mice: HSCs, 

multipotent progenitors that have lost the capacity to self-renew (MPP) (14, 15), including 

CD62L+ cells (70) and early lymphoid progenitors (ELPs) (71), and lymphoid-committed 

progenitors such as the CLPs described by Kondo et al. (46) and by Martin et al. (72).  

The CD62L (L-selectin)-expressing Lin- Sca-1+ c-Kit+ Thy-1.1- bone marrow fraction 

was shown to contain robust T-lineage progenitor activity, with minor B-lineage and myeloid 

potential, similar to the thymic ETP (70). ELPs (early lymphoid progenitors) are immature 

lymphoid progenitors in the Lin- Sca-1high c-Kithigh IL-7Rα- bone marrow fraction that were 

isolated from Rag1/GFP knock-in mice on the basis of Rag1 locus activation (GFP+) (71). 

ELPs differ from stem cells by their expression of Flk2/Flt3 and CD27 and are proposed to be 

upstream of the CLP in the hematopoietic hierarchy.  

In addition to the CLP identified by Kondo et al. (46), a second type of common 

lymphoid progenitor, referred to as CLP-2, was isolated by Martin et al. from the bone 

marrow of mice expressing human CD25 as a reporter gene under the control of pre-TCR 

α regulatory sequences (72). These cells, which are Lin-hCD25+c-Kit-CD19-B220+, were 

shown to contain bipotent B/T progenitors in clonal assays. After injection of Lin- BM cells 

into recipient mice, the only subset that had colonized the thymus efficiently at early time 

points (2 days) after injection showed the surface markers of the bone marrow-derived CLP-2 

population (B220+CD4-c-Kit-), and not of the CLP-1 population (B220-CD4-c-Kitlo), 

suggesting that CLP-2 cells represent thymic immigrants. As CLP-2 cells could be derived 
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from CLP-1 in short-term culture, they were thought to represent the missing link between 

bone marrow CLP-1 and intrathymic T-cell precursors.  

However, there is consensus that the thymus is not seeded by bone marrow CLPs. For 

instance, while Ikaros-deficient mice lack BM CLPs, they have normal numbers of early 

thymic precursors (ETPs) in their thymi, which suggests that ETPs are not derived from BM 

CLPs (56). Moreover, ETPs phenotypically resemble BM HSCs more closely than BM CLPs 

and they differ from CLPs in the efficiency and kinetics with which they generate B cells and 

maintain thymopoiesis. In contrast to CLPs, ETPs possess some myeloid potential, which 

suggests that the thymus is seeded by a multipotent progenitor closely related to HSCs instead 

of a lymphoid committed progenitor (56). The finding that BM CLPs are not physiological 

direct precursors of T cells is confirmed by the observation that CLPs are not present in the 

peripheral blood of adult mice (73). The only progenitors in the blood with potent T-lineage 

potential are multipotent progenitors with the LSK phenotype (Lin- Sca-1hi c-Kithi), and like 

the analogous population in bone marrow, they contain both HSCs and non-renewing MPPs, 

including ELPs and CD62L+ cells.  

By creating CCR9/EGFP knock-in mice, Benz and Bleul recently showed that a Lin-

CD25-c-KithiEGFP+IL-7Rα-/lo population with strong T-cell differentiation potential is present 

in the adult bone marrow, peripheral blood and thymus (74). The thymic counterpart of this 

population corresponds to the ETP population, and thymic ETPs with the highest EGFP+ 

expression were shown to be the most immature T-cell precursors and to generate T cells with 

similar kinetics as the EGFP+ cells in the blood, which suggests that this population represents 

the thymus repopulating cell that travels to the thymus via the blood. B-cell differentiation 

capacity in the ETP population was contained entirely in the most immature EGFPhi 

subpopulation. Both EGFPhi and EGFPlo ETPs could give rise to myeloid cells in vitro, 

indicating that upon entry in the thymus, B-cell potential is lost before myeloid potential. The 

thymic Lin-CD25-c-KithiEGFPhi population, named ‘thymic multipotent precursor’ (TMP), 

was shown to contain progenitors with tripotent B/T/DC differentiation potential, indicating 

that thymic precursors exist that enter the thymus as multipotent progenitors and commit to 

the T-cell lineage only within the thymic microenvironment.  
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5. Regulation of hematopoiesis 

 
5.1. General mechanisms  

Multipotential hematopoietic stem and progenitor cells display low-level 

‘promiscuous’ expression of several lineage-specific genes before commitment and 

differentiation to a particular lineage, a phenomenon known as ‘lineage priming’ (75, 76). 

Lineage specification involves the upregulation or activation of lineage-appropriate sets of 

genes and the repression of the inappropriate genes of alternate lineages, which is regulated 

by lineage-determining transcription factors.   

A vast number of transcription factors involved in hematopoiesis have been identified. 

Many of those were first discovered as genes involved in chromosomal translocations 

associated with leukemias (77). The role of specific transcription factors in HSC fate 

decisions has been determined by retroviral overexpression experiments and by gene targeting 

of the ortholog genes in mice. Some transcription factors were shown to be indispensable for 

the development of multiple hematopoietic lineages, such as SCL/Tal-1, a master regulator of 

hematopoiesis without which no blood cells are formed (78, 79) and PU.1, which is essential 

for the development of B and T lymphocytes, monocytes, and granulocytes (80).  

How transcription factors regulate lineage specification and commitment is best 

exemplified by the regulatory network involved in B-cell lineage development. Gene 

targeting studies identified several transcription factors that are essential for early B-cell 

development, including Pax5 (BSAP), EBF (early B cell factor) and the bHLH proteins 

encoded by the E2A gene (81-84). These transcription factors act sequentially to direct 

lymphoid progenitors to the B-cell fate. EBF is activated by E2A (85), and together these 2 

transcription factors induce the transcription of several B-lineage specific genes and of 

another key transcription factor, Pax5 (86). EBF and E2A also control D-J recombination of 

the immunoglobulin heavy chain gene (87). As a result, B-cell development is arrested before 

rearrangement of the immunoglobulin heavy chain gene in the absence of EBF and E2A 

proteins (82-84). In contrast, Pax5-deficient progenitors express the early B-lineage specific 

genes, have undergone DJ rearrangements at the IgH locus but are arrested at the pro-B stage 

(81, 88). Pax5 is involved in regulating V-DJ rearrangement (88) and activates transcription 

of additional B-lineage genes such as CD19 and BLNK. Remarkably, while wild type pro-B 

cells are committed to the B-lymphoid lineage, Pax5-deficient pro-B cells are multipotent and 

have the ability to develop into all myeloid and lymphoid lineages (except B cells), both in 

vitro (89) and in vivo (89, 90). Thus Pax5 critically determines B-lineage commitment. In 
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agreement with the ‘lineage priming’ model, multipotent Pax5-/- pro-B cells express multiple 

genes specific to non-B lineages, which are repressed upon retroviral transduction of Pax5 

(89). Therefore, an important function of Pax5 in B-lineage commitment is to repress the 

transcription of lineage-inappropriate genes, resulting in the suppression of alternative lineage 

choices.  

Multiple studies show that apparently committed progenitors can be redirected to other 

lineages by ectopic expression of a single instructive lineage-specific transcription factor. For 

instance, enforced expression of GATA-1, a major erythroid lineage-affiliated transcription 

factor (91), can induce differentiation of committed granulocyte/monocyte progenitors and 

common lymphoid progenitors into megakaryocyte/erythroid lineage cells (92, 93). Also, 

enforced expression of C/EBPα and C/EBPβ in committed B cells leads to their rapid and 

efficient reprogramming into macrophages (94). Not only the mere expression of a 

transcription factor, but also the level at which it is expressed may influence lineage choice 

and differentiation. For instance, expression of low levels of PU.1 in HSCs induce B-cell 

generation, while high levels of the same transcription factor lead to macrophage development 

(95).  

The primary events or mechanisms leading to the activation or deactivation of lineage-

specific transcription programs are obscure. Both intrinsic and extrinsic mechanisms have 

been proposed and are evidenced by experimental data (96-98). According to the stochastic 

model, expression of transcription factors is stochastic and cell-autonomous. In this model, 

cytokines and growth factors secreted by stromal cells in the bone marrow merely permit the 

survival and induce proliferation of progenitors that are already ‘programmed’ to differentiate 

down a certain pathway. According to the instructive model, external signals, such as binding 

of cytokines to their cognate receptors on hematopoietic stem and progenitor cells, directs 

lineage commitment decisions. These external signals are ‘translated’ in the differentiating 

cell by intracellular signalling pathways ultimately leading to activation or deactivation of 

lineage-determining transcription factors. The existence of instructive cytokine signalling was 

first shown by Kondo et al. (99). Bone marrow CLPs that were transduced with the receptors 

for IL-2 (interleukin-2) or GM-CSF (granulocyte/macrophage colony-stimulating factor) 

generated macrophages and granulocytes when cultured with IL-2 and GM-CSF respectively. 

These authors also showed that receptors for GM-CSF and M-CSF are expressed at low levels 

on primitive HSCs, are absent on CLPs and are upregulated after myeloid linage induction by 

IL-2, suggesting that downregulation of cytokine receptors that drive myeloid cell 

development is a critical step in lymphoid commitment. During recent years, evidence has 
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accumulated for an instructive role for IL7 receptor signalling in specification of the B-cell 

lineage (reviewed in (100)).  

Other extrinsic signalling mechanisms involved in the control of cell fate decisions 

include receptor-ligand interactions between HSCs and stromal cells (e.g. Notch signalling) 

and interactions of HSCs with the BM extracellular matrix.  

 

5.2. Regulation of T-lymphoid development  

The thymic microenvironment provides the signals necessary for the commitment of 

BM-derived hematopoietic progenitor cells to the T-cell lineage. As will be discussed in detail 

later, signals delivered by Delta-ligands of the Notch transmembrane receptor are essential for 

the induction of T-cell commitment.  

Several cytokines and growth factors secreted by thymic stromal cells are also 

essential for T-cell differentiation. An indispensable role for IL-7 in early thymocyte 

development is shown by the dramatic loss of thymocytes and mature T cells in mice lacking 

either IL-7 (101) or IL-7 receptor α (102). Inhibition of IL-7 receptor signalling during FTOC 

with human CD34+ fetal liver stem cells by the addition of IL-7 neutralizing antibodies or 

antibodies that block the human IL-7Rα chain also resulted in a profound reduction in human 

thymic cellularity (103). Contrary to the instructive role of IL-7 signalling in B-cell 

development, IL-7 signalling during T-cell development serves to promote the survival of 

early thymocytes, as ectopic expression of the anti-apoptotic protein Bcl-2 can rescue 

thymopoiesis in IL-7Rα-deficient mice (104, 105). Stem cell factor (SCF), the ligand for the 

receptor tyrosine kinase c-Kit, is also essential for the expansion of early thymocytes (106, 

107). A recent study by Massa et al. provides evidence for a link between c-Kit signalling and 

Notch-signalling. First, upon culturing Pax5-/- pro-B cells on OP9 stromal cells expressing the 

Notch ligand Delta-like-1, cell-surface expression of c-Kit is rapidly upregulated on these 

progenitors, suggesting that expression of the c-Kit gene is under direct control of Notch 

signalling (108, 109). The same was observed with bone marrow EPML (early progenitors 

with myeloid and lymphoid potential, a multipotent but ‘B-cell biased’ population (110)). 

Moreover, inhibition of c-Kit signalling using either an anti-c-Kit antibody or a chemical 

inhibitor of c-Kit signalling confirmed that c-Kit signalling is essential for Notch-induced T-

cell development (109). A role for TNF-α in T-cell development is suggested by the 

observation that preincubation of human CD34+ adult bone marrow cells in the presence of 

TNF-α promotes T-cell differentiation in FTOC (111). TNF-α was shown to induce the 
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upregulation of IL-7Rα expression. Additionally, administration of TNF-α to NOD/SCID 

mice before transplantation of human cells could augment T-lymphopoieisis in vivo (112).  

A number of studies have demonstrated a role for morphogens during T-cell 

development (113). Morphogens are secreted factors that control cell fate specification in 

many developing tissues by creating a concentration gradient. Different concentrations of the 

morphogen cause nearby cells to choose a different cell fate. Morphogens secreted by thymic 

stromal cells and involved in T-cell development include bone morphogenetic proteins 

(BMPs), Wnt proteins and Hedgehog proteins. BMPs negatively regulate T-cell development, 

as exogenous BMPs added to FTOCs block T-cell development at the DN1 stage (114). 

Binding of Wnt proteins on Frizzled family transmembrane receptors on developing 

thymocytes results in the stabilization of β-catenin, which forms a complex with transcription 

factors of the T-cell factor (TCF) family. The complex between β-catenin and TCF proteins is 

required for the transcriptional activation of target genes. TCF-1 is required for early T-cell 

development (115, 116) and Wnt-mediated TCF-1 activation is also required for thymocyte 

proliferation and differentiation beyond the immature single positive (ISP) stage (117). Two 

mammalian Hedgehog proteins are secreted in the thymus: Sonic Hedgehog (Shh) and Indian 

Hedgehog (Ihh) (118). Hedgehog proteins bind to the Patched (Ptch) receptor, which, in the 

absence of Hh, inhibits the downstream signal transducer smoothened (Smo) (119). Signal 

transduction via Smo leads ultimately to the nuclear localization and activation of the Gli 

family of transcription factors. Target genes of Hg signalling include Ptch, Bcl-2, Wnt and 

BMPs (120). Shh-deficient embryos display a diminished proliferation at the DN1 and DN2 

stages of T-cell development and a partial block at the DN-to-DP transition. High levels of 

exogenous Shh also result in a developmental block at this stage, indicating that the 

concentration of Shh is important (118, 121). Using conditional knock-outs of Smo and 

chemical antagonists of Smo, Hedgehog signalling was recently shown to be an essential 

positive regulator of adult T-cell progenitor survival, proliferation and differentiation (122).  

Chemokines (chemotactic cytokines) produced by the thymic stromal cells are 

important for T-cell development in several ways. First, several chemokines are thought to be 

involved in the homing of BM progenitors from the blood into the thymus (123). In concert 

with adhesion molecules such as selectins and integrins, chemokines are also responsible for 

regulating the ordered migration of maturing thymocytes through the thymus. Thymocyte 

progenitors enter the thymus at the cortico-medullary junction, migrate to the subcapsular 

zone of the outer cortex during the DN stages of T-cell development and move to the inner 
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cortex as they become DP cells. Following positive selection, SP thymocytes enter the 

medulla where they undergo negative selection and further maturation (62). Thymocytes 

differentially express chemokine receptors at discrete maturational stages, while their 

chemokine ligands are produced by particular stromal cells. Chemokine signalling is thus 

important for positioning developing thymocytes in the microenvironment necessary for each 

stage of T-cell development (113, 124). In addition to this important function, chemokine 

receptor signalling may deliver signals for lymphocyte proliferation or survival. 

 

6. Notch-1 signalling  

 
6.1. The Notch signalling pathway  

Signalling through the Notch transmembrane receptor is evolutionarily conserved and 

regulates cell-fate decisions in many cell types throughout vertebrate and invertebrate 

development (125, 126). In mammals 4 isoforms of Notch have been identified (Notch-1-4) 

(127-131), and these can be activated by 5 ligands: Delta-like-1, -3 and -4 (132-134), which 

are homologues of the Drosophila Delta prototype, and Jagged-1 and -2 (135-137), 

homologues of Drosophila Serrate.  

Notch is a heterodimeric transmembrane receptor consisting of noncovalently 

associated extracellular and transmembrane subunits. Binding with a ligand on a neighbouring 

cell initiates 2 proteolytic cleavages, resulting in the release of the intracellular domain of the 

Notch receptor (ICN) (138) (See Figure 4). The first cleavage, extracellularly close to the 

transmembrane domain, is mediated by TACE, a member of the ADAM (a disintegrin and 

metalloprotease domain) family of metalloproteases (139). The second cleavage occurs in the 

transmembrane domain and is mediated by a multiprotein complex with γ-secretase activity 

containing Presenilin, Nicastrin, APH-1, and PEN-2 proteins (140, 141). After cleavage, ICN 

translocates to the nucleus where it binds the transcription factor CSL (for CBF1/RBP-Jk in 

mammals, Suppressor of Hairless in Drosophila, Lag-1 in C. elegans) and displaces the co-

repressors which are associated with CSL (142). In addition, ICN recruits Mastermind-like 

(MAML) proteins (143), which in turn recruit transcriptional co-activators such as p300, 

leading to transcriptional activation of specific target genes (144) that are repressed in the 

absence of ICN.  
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Figure 4. Schematic overview of the Notch signalling pathway. See text for details. CoR, co-repressors; CoA, 
co-activators. 

 
 

Notch signalling can be disrupted at every step of the pathway: by γ-secretase 

inhibitors, by knock-out of CSL and by dominant-negative MAML, truncated mutants that 

bind ICN but are unable to recruit co-activators (145, 146).   

 

6.2. Notch-1 signalling in hematopoiesis 

Mammalian Notch-1 was first identified as a gene involved in a chromosomal 

translocation with the TCR-β gene in a small subset of human T cell acute lymphoblastic 

lymphomas (T-ALL), causing dysregulated expression of constitutively active truncated 

forms of Notch-1 (127). An important role for Notch-1 in hematopoiesis was further 

suggested by the observation that Notch-1 is expressed in human CD34+ BM precursors (147) 

and in precursors and peripheral blood cells of both myeloid and lymphoid lineages (148). 

Notch ligands are expressed on BM and fetal liver stromal cells, on thymic epithelial cells and 

on hematopoietic cells ((148) and references therein). These data suggested that Notch-1 

signalling functions in multiple lineages and at various stages of maturation in the 

hematopoietic cascade. Notch-1 knock-out mice have many developmental defects causing 

them to die in utero (149). Also the generation of HSCs was shown to be impaired in these 

Notch-1-/- embryos (150). Constitutive activation of Notch-1 signalling in murine HSCs, 

either by retroviral overexpression of the active form of Notch-1 (ICN) (151, 152) or by 

ligand-binding (153), induces self-renewal and favors lymphoid over myeloid differentiation 

(152, 153). However, an essential physiological role for Notch-1 signalling in stem cell self-
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renewal was recently ruled out by Mancini et al. (2005), who showed that inducible knock-out 

of Notch-1 or its ligand Jagged-1 does not impair HSC self-renewal or differentiation (154).  

  

6.3. Notch-1 signalling in T-cell development 

The best-documented function of Notch-1 signalling in lymphopoiesis is its essential 

role in T- versus B-lineage decision. The development of mouse BM progenitors with an 

induced inactivation of Notch-1 is arrested at or before the most immature thymocyte 

precursor stage (DN1), and instead these cells develop into B cells in the thymus of 

reconstituted mice (155, 156). The same phenotype is obtained when Notch-1 signalling is 

inactivated by knock-out of the CSL transcription factor (157) or by overexpression of 

dominant-negative Mastermind-like (146). Conversely, the expression of a constitutive active 

form of Notch-1 in mouse BM precursors leads to a block in B-cell development and ectopic 

T-cell development in the bone marrow (158). Similarly, activation of Notch-1 signalling in 

hematopoietic precursors by co-culturing them on stromal cells expressing the Delta-like-1 

ligand directs them to the T-cell fate (159). Even embryonic stem cells are forced to T-cell 

development in this culture system (160). These studies collectively showed unequivocally 

that signalling through the Notch-1 receptor is essential for T-cell commitment. 

Overexpression of Lunatic Fringe (161), Deltex-1 (162) and Nrarp (163) have also been 

shown to inhibit T-cell development and hence were identified as negative regulators of 

Noch-1 signalling.  

Several studies using ICN-transgenic mice suggested additional functions for Notch-1 

signalling at later stages during T-cell development. Notch-1 signalling would influence the 

αβ versus γδ lineage decision (164), the CD4 versus CD8 lineage decision (165, 166), the 

maturation and/or survival of DP thymocytes (167-169) and would inhibit positive selection 

of DP cells by interfering with TCR signal strength (170). However, these alleged functions 

of Notch-1 could not be confirmed in loss-of-function studies. Mice in which the Notch-1 

gene is inactivated in all thymocytes beyond the DN3 (CD25+CD44-) stage, have normal 

numbers of all thymocyte subsets, indicating that Notch-1 signalling does not influence the 

CD4 versus CD8 lineage commitment, maturation or survival (171). Inactivation of the CSL 

transcription factor at the same developmental stage does not perturb CD4 SP and CD8 SP T 

cell development either, indicating that CSL-dependent signalling by all 4 Notch members is 

dispensable for TCR-αβ T cell development beyond the β-selection checkpoint (172). 
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When Notch-1 is inactivated in early DN3 (CD25+CD44-TCR-β-) cells, before pre-

TCR selection, αβ T-cell development is severely impaired by inhibition of 

VDJβ rearrangements at the TCR-β chain locus (173). γδ T-cell development is unaffected in 

these mice, arguing against a role for Notch-1 signalling in the αβ versus γδ T-lineage 

decision. On the contrary, mice in which the CSL transcription factor is inactivated in the 

DN3 stage not only show impaired αβ T-cell development, but also show increased 

generation of thymic γδ T cells, suggesting that Notch members other than Notch-1 may be 

involved in the αβ versus γδ lineage decision (172).  
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Research objectives  
A technique to direct hematopoietic stem cells towards the T-cell lineage could be of 

great therapeutic value to develop strategies for enhancing T-cell development from 

transplanted donor stem cells after myeloablative therapy. Studies with Notch-1 transgenic 

and conditional knock-out mice have shown that signalling through the Notch-1 

transmembrane receptor is essential for T-cell commitment (156, 158). We showed that 

overexpression of the active form of Notch-1 (ICN) in human CD34+ hematopoietic stem 

cells also imposes the T-cell fate (174). However, since constitutive expression of ICN 

eventually leads to the development of T-cell tumors (175), manipulation of hematopoietic 

stem cells with ICN for therapeutic applications is not an option.  

Recently, activation of physiological Notch signalling by coculturing HSCs on an OP9 

stromal cell line engineered to express the Notch ligand Delta-like-1 was also shown to drive 

T-cell differentiation from murine fetal liver or adult bone marrow HSCs (159). A first 

research objective of this thesis was to investigate whether this culture system also supports 

T-cell development from human cord blood and bone marrow hematopoietic stem cells 

(Chapter 1).   

From our overexpression studies with ICN we know that Notch-1 signalling is 

sufficient to drive human progenitors to the T-cell lineage, but whether it is also essential for 

human T-cell development is not known. Therefore, in a second part of this thesis we 

addressed this question by inhibiting Notch signalling during hybrid human-mouse fetal 

thymus organ culture (FTOC) of human cord blood and thymic CD34+ progenitors using 

different doses of the γ-secretase inhibitor DAPT, which inhibits Notch signalling by 

preventing cleavage of the intracellular domain of Notch (Chapter 2).  

The downstream events mediating Notch-1 induced T-cell commitment are not 

known. Therefore, a third research objective was to investigate whether the Notch-1 target 

gene HES-1 is responsible for the phenotype obtained with ICN overexpression. To this end, 

HES-1 was transduced in CD34+ human progenitor cells and their differentiation potential 

was studied in several in vitro and in vivo assays (Chapter 3).  

The identification of genes that are induced or suppressed upon commitment of 

multipotent stem cells to the lymphoid lineage might lead to the development of strategies to 

enhance lymphoid development of stem cells. Recently a rare cell population with lymphoid-

restricted differentiation potential was identified in umbilical cord blood (54). A single 

CD34+CD38-CD7+ cell has the capacity to differentiate into all lymphoid lineages, but cannot 
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differentiate into myeloid cell types such as monocytes, granulocytes or erthrocytes. The final 

research objective of this thesis was to identify possible candidate genes that regulate the 

lymphoid commitment step during human hematopoietic differentiation. For that purpose we 

compared the gene expression between multipotent CD34+CD38-CD7- stem cells and 

CD34+CD38-CD7+ common lymphoid progenitors from cord blood using Affymetrix 

oligonucleotide microarray technology (Chapter 4). 
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ERRATUM 
Page 2881 of the article, line 6 “HERP1 (Hey1) and HERP2 (Hey2)” should be “HERP1 (Hey2) and HERP2 
(Hey1)”.   
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Abstract 

Hematopoietic stem cells in the BM give rise to all types of blood cells. According to 

the classic model of hematopoiesis, the differentiation paths leading to the myeloid and 

lymphoid lineages segregate early. This model is supported by the isolation of cell 

populations with lymphoid- or myeloid-restricted differentiation potential from murine and 

human BM. A ‘common lymphoid progenitor’ has also been isolated from the CD34+CD38- 

fraction of human umbilical cord blood based on its expression of the CD7 cell surface 

marker. In the present study, we confirm its lymphoid-restricted differentiation potential and 

show in addition that this population has strong T-cell differentiation potential. In an attempt 

to unravel the molecular mechanisms underlying lymphoid commitment, we performed 

Affymetrix oligonucleotide array analyses on sorted CD34+CD38-CD7+ and CD34+CD38-

CD7- cells. Our analysis revealed the differential expression of many transcription factors, 

RNA binding molecules, signal transduction molecules, cell cycle genes and enzymes. Of the 

genes with reported expression in hematopoietic tissues, we found that lymphoid-affiliated 

genes were mainly upregulated in the CD7+ population while myeloid-specific genes were 

found to be downregulated in the CD7+ cells, supporting the hypothesis that lineage 

commitment is accompanied by the shutdown of inappropriate gene expression and the 

upregulation of lineage-specific genes. In addition, our analysis identified several highly 

expressed genes that have not been described in hematopoiesis before and thus are interesting 

candidates for future research.  
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Introduction 

All blood cells ultimately derive from a rare population of hematopoietic stem cells in 

the BM that are multipotent and have the ability to self-renew. According to the classic model 

of hematopoiesis, all lymphoid cells (T, B and NK cells) develop through a common 

precursor stage, the so-called ‘common lymphoid progenitor’ (CLP), and accordingly, cells 

from the myeloid lineages share a ‘common myeloid progenitor’ (CMP). This model was 

supported by the prospective isolation of cell populations with CLP and CMP function from 

the murine BM (1, 2). Recent evidence however indicated that BM CLPs are not 

physiological T-cell progenitors, as early thymic progenitors (ETPs) do not have the CLP 

phenotype (3) and CLPs are not present in the peripheral blood (4). Instead, the thymus is 

most likely seeded by a multipotent progenitor. During fetal hematopoiesis, B and T cells do 

not share a direct common progenitor either, as CLPs were not found in the fetal liver (5). 

Instead, fetal B and T cells would develop through B/myeloid and T/myeloid intermediates.  

The first report of a human CLP came from Galy et al. who showed that a 

subpopulation of adult and fetal BM Lin-CD34+ cells expressing the early B- and T-cell 

marker CD10 is not capable of generating monocytic, granulocytic, erythroid or 

megakaryocytic cells, but can differentiate into dendritic cells, B, T and NK cells (6). These 

Lin-CD34+CD10+ cells homogenously expressed CD38. According to Ishii et al. expression of 

the chemokine receptor CXCR4 on BM CD34+ cells would be sufficient to restrict their 

differentiation potential to the lymphoid lineage (7). A human CMP was recently also 

identified in the Lin-CD34+CD38+ fraction of BM and cord blood. These CMPs are CD45RA- 

and express low levels of IL-3Rα (8).  

In cord blood, expression of CD10 on CD34+ cells does not discriminate progenitor 

cells with lymphoid-restricted potential from multipotent cells (9). However, Hao et al. 

detected in the most primitive CD34+CD38- cord blood fraction a subpopulation expressing 

CD7, an antigen that was previously identified on early human T-lymphoid progenitors, and 

they showed that single CD34+CD38-CD7+ cord blood cells can generate B cells, NK cells 

and dendritic cells, but are devoid of myeloid or erythroid differentiation potential. T-cell 

potential was not addressed by these investigators (9).  

In a recent study, Haddad et al. compared the differentiation potential of cord blood 

CD34+CD45RAhiLin-CD10+ cells, which correspond to the BM CLP, with that of cord blood 

CD34+CD45RAhiCD7+ cells, which comprise the CD34+CD38-CD7+ CLP, as these uniformly 

express CD45RA. The authors showed that the differentiation potential of 

CD34+CD45RAhiCD7+ cells is skewed toward the T/NK lineages, while 
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CD34+CD45RAhiLin-CD10+ cells predominantly possess B-cell differentiation potential. 

Additionally, both populations retain some degree of myeloid differentiation capacity. Gene 

expression data from microarray analyses supported their conclusions. 

In the present study, we confirm that the CD34+CD38-CD7+ cord blood population is 

lymphoid-committed and we show that it also has strong T-lymphoid differentiation potential 

in Fetal Thymus Organ Culture (FTOC). Next, we investigated the differential gene 

expression between CD34+CD38-CD7- multipotent cells and CD34+CD38-CD7+ common 

lymphoid progenitor cells using Affymetrix GeneChip technology.  

 

Materials and methods  

Cell sorting 

Within 12 hours after collection of human umbilical cord blood samples, mononuclear 

cells were isolated over a Lymphoprep density-gradient (Axis-Shield PoC AS, Oslo, Norway) 

and CD34+ cells were isolated by positive selection with MACS magnetic beads (Miltenyi 

Biotec, Bergisch Gladbach, Germany). Cells were labelled with anti-CD34-allophycocyanin 

(APC), anti-CD38-phycoerythrin (PE) and anti-CD7-fluorescein isothiocyanate (FITC) 

monoclonal antibodies (BD Biosciences, San Jose, CA) and CD34+CD38-CD7+ and 

CD34+CD38-CD7- cells were sorted with a FACSVantage Cell sorter (Becton and Dickinson 

Immunocytometry Systems (BDIS), San Jose, CA). The purity of the sorted cells was checked 

on a FACSCalibur (BDIS) and was always > 95%. Sorted cells were either directly used in 

MS-5 co-cultures or FTOC, or either stored in 200 µl TRIZOL (Invitrogen, Carlsbad, CA) at 

–70°C for later RNA isolation and use in microarray experiments or Real-Time PCR.  

 

Co-culture on MS-5 stromal cells  

The differentiation of stem cells to most lymphoid (except T cells) and myeloid cell 

types can be accomplished in vitro by culturing them in the presence of the appropriate human 

recombinant cytokines on a feeder layer of the murine stromal cell line MS-5 (10). Four days 

before their use in co-culture experiments, MS-5 cells (kindly provided by L. Coulombel, 

Institut Gustave Roussy, Villejuif, France) were seeded in 96-well plates at a density of 5 x 

103 cells per well. Co-cultures were initiated by incubating human sorted cells in 200 µl 

IMDM medium (Invitrogen) supplemented with 5% human AB serum (Valley Biomedical, 

Winchester, VA), 5% FCS, 100 U/ml penicillin, 100 µg/ml streptomycin, 2 mM L-glutamin 

(all from Invitrogen) and the following cytokines: SCF (50 ng/ml), FL (50 ng/ml), TPO (10 

ng/ml), IL-2 (5 ng/ml), IL-7 (20 ng/ml) and IL-15 (10 ng/ml) (Mix 6) (all cytokines from 
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R&D Systems, Abingdon, UK). After 20 days of culture at 37°C and 7% CO2, the progeny of 

the cells was counted with a Bürker hemocytometer excluding dead cells with trypan blue, 

and their phenotype was determined by flow cytometry.   

 

Fetal Thymus Organ Culture (FTOC) 

Thymic lobes were isolated from fetal day 15 NOD-SCID mice obtained from our 

own pathogen-free breeding facility. Each lobe was placed in a well of a Terasaki-plate and 

25 µl complete IMDM medium containing 1000 human cells was added. The plates were 

inverted and incubated at 37°C with 7% CO2 for 72 h. After this ‘hanging drop’ culture, 

during which the precursor cells migrate into the thymic lobes, the lobes were transferred to a 

Nuclepore polycarbonate membrane (Whatman, Brentford, UK) on a Gelfoam sponge 

(Pharmacia & Upjohn, Kalamazoo, MI) soaked in complete IMDM medium supplemented 

with 10% human AB serum and cultured for 32 days at 37°C with 7% CO2. After the first 14 

days, half of the medium was replaced with fresh medium. Thymocytes were harvested by 

mechanical disruption of the thymic structure and viable cells were counted by trypan blue 

exclusion. Then cells were stained with appropriate antibodies and analysed by flow 

cytometry.  

 

Flow cytometry  

Before labelling with antibodies, cells were pre-incubated 15 min with anti-mouse 

FcRγII/III (clone 2.4.G2, a kind gift of Dr. J. Unkeless, Mount Sinai School of Medicine, New 

York, NY) and human IgG (Miltenyi Biotec) to block murine and human Fc receptors 

respectively. Cells were incubated with appropriate amounts of combinations of the following 

mouse anti-human monoclonal antibodies: CD19-PE, CD34-APC, CD4-APC, CD33-FITC, 

CD14-FITC (all from BD Biosciences), CD56-APC and CD8β-PE (both from Immunotech, 

Beckman Coulter, Fullerton, CA). Cell populations containing mouse leukocytes (from 

FTOC) were simultaneously stained with anti-mouse CD45-CyChrome (BD Pharmingen, San 

Diego, CA). After 45 min, cells were washed with ice-cold PBS + 1% BSA + 0.1% NaN3, 

propidium iodide (4 µg/ml) was added and cells were analysed on a FACSCalibur. Propidium 

iodide positive and mouse CD45 positive cells, representing dead cells and mouse leukocytes 

respectively, were excluded from analysis, which was performed with CellQuest software 

(BDIS).  
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RNA isolation and amplification 

The TRIZOL lysates of different sorts, corresponding to a total of 100,000 sorted cells, 

were pooled and total RNA was extracted and purified on an RNeasy column (Qiagen, Venlo, 

The Netherlands) according to the instructions of the manufacturers. The RNA was 

concentrated to 10 µl with Microcon YM-50 columns (Millipore, Billerica, MA) and 

subjected to Degenerative Oligonucleotide Primer (DOP) mediated amplification. The 

detailed protocol, which was developed in our lab, can be found in the online Supplementary 

Methods section. Briefly, mRNA was first reverse transcribed using a T7-promoter oligo(dT) 

primer. After RNase H treatment, second strand synthesis was initiated using the 22-nt DOP-

primer. In vitro transcription of the cDNA with T7 RNA-polymerase was done to generate 

cRNA, which was used in a second round of amplification using random hexamers for 

synthesis of the first strand, and the T7-promoter oligo(dT) primer for synthesis of the second 

strand. cDNA was transcribed and biotin-labelled using the ENZO BioArray HighYield RNA 

Transcript Labeling Kit (ENZO, Farmingdale, NY) according to the manufacturer’s 

instructions. Biotinylated cRNA was purified on an RNeasy column and its quality was 

determined on the Agilent 2100 BioAnalyzer (Agilent, Palo Alto, CA). RNA isolation and 

amplification was done twice for both CD34+CD38-CD7+ and CD34+CD38-CD7- cells 

(biological duplicates).  

 

Microarray analysis 

Biotinylated cRNA was fragmented and hybridized to Affymetrix GeneChip arrays 

according to the guidelines of the manufacturer. In a first experiment, cRNA was hybridized 

to Affymetrix HG-U133A arrays, while in a second experiment it was hybridized to 

Affymetrix HG-U133 Plus 2.0 arrays. Statistical analysis of the microarray data was 

performed as described before (11). Briefly, after background removal and quantile 

normalization by Robust Multi-chip Average (RMA) analysis (12), the raw perfect match 

(PM) probe intensity levels were used in a per probe set two-way analysis of variance 

(ANOVA) (with factors ‘probe’ and ‘cell population’) to generate an average expression level 

for the 2 biological repeats and a p-value for the significance of the difference between the 

CD34+CD38-CD7+ and CD34+CD38-CD7- cell populations. The p-values were adjusted for 

multiple testing using Sidak step-down adjustment and differences with adjusted p-values < 

0.05 were considered significant. 
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Bioinformatics 

The differentially expressed genes were categorized according to Gene Ontology  

(GO) terms using the Affymetrix NetAffx center (http://www.affymetrix.com/analysis/ 

index.affx) and the freely available programs Onto-Express (13) and Ease 

(http://david.niaid.nih.gov/david/ease.htm). Further information on the genes was gained by 

manually searching OMIM (http://www.ncbi.nlm.nih.gov/entrez/ 

query.fcgi?db=OMIM) and GeneCard databases (http://www.genecards.org/), which both 

have links to PubMed literature references. Expression pattern information was derived from 

GeneNote, a database of human genes and their expression profiles in healthy tissues based on 

microarray experiments performed on the Affymetrix HG-U95 set 

(http://genecards.weizmann.ac.il/genenote/), and SymAtlas (http://symatlas.gnf.org/ 

SymAtlas/). Mapping of the genes on pathways and networks was done using the commercial 

package Ingenuity Pathways Analysis (Ingenuity, Redwood City, CA). MatchMiner 

(http://discover.nci.nih.gov/matchminer/index.jsp) was used to find common genes in the lists 

of differentially expressed genes of our study and those of Dik et al. (11) and Van Zelm et al. 

(14).  

 

Real-Time PCR analysis 

Total RNA was extracted from sorted cells using TRIZOL and was DNAse treated on 

an RNeasy column according to the manufacturer’s guidelines. The RNA was concentrated 

with Microcon YM-50 columns and oligo(dT)-primed reverse transcription was performed 

with SuperScriptTM II (Invitrogen). Real-Time PCR analysis with Sybr Green I (Eurogentec, 

Seraing, Belgium) was performed with an ABI PRISM 7000 (Applied Biosystems, Foster 

City, CA) using the standard temperature protocol (40 cycles of 10 min 95°C, 15 sec 95°C, 60 

sec 60°C). Reaction mixtures contained 300 nM of forward and reverse primers and 0.04% 

BSA (Sigma, St. Louis, MO). Primers were designed using Primer Express 2.0 software 

(Applied Biosystems) and sequences can be found in Supplementary Table 1. Expression 

levels were normalized to the expression of the reference gene HPRT using the ΔΔCT method 

(15). 
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Results  

 
CD34+CD38-CD7+ cord blood cells generate B and NK cells but no myeloid cells in co-

cultures on MS-5 stromal cells 

To confirm that CD34+CD38-CD7+ cord blood cells are committed to the lymphoid 

lineage, we stringently sorted both CD34+CD38-CD7+ (hereafter called CD7+) and 

CD34+CD38-CD7- (hereafter called CD7-) populations (see Figure 1) and determined their 

differentiation potential in MS-5 co-cultures with a mix of 6 cytokines (SCF, FL3, TPO, IL-2, 

IL-7 and IL-15) permitting both lymphoid and myeloid differentiation.  

 
Figure 1. Isolation of CD34+CD38-CD7+ and CD34+CD38-CD7- cells from human umbilical cord blood.  
(A) Indication of sorting strategy. Cells in the upper left and upper right quadrants of the dot  plot showing CD7 
expression on electronically gated CD34+CD38- cells were sorted. (B) Reanalysis of sorted cells with 
FACSCalibur showed purity of > 95%.  

 

In initial experiments, we noticed that the CD7- cells proliferated much faster than the 

CD7+ cells. Therefore, even the slightest contamination of the CD7+ population with CD7- 

cells would obscure the real differentiation potential of the CD7+ cells. For this reason the 

sorted cells were plated at 10 cells per well, which ensures that most wells only contain CD7+ 

cells. Figure 2 gives an overview of a typical experiment consisting of 50 wells with CD7+ 

cells and 30 wells with CD7- cells. After 20 days of culture, cells were counted and stained 

with antibodies for CD19, CD56 and CD33 to identify B cells, NK cells and myeloid cells 

respectively. On cells from the 20 wells with the highest cell number, a second staining was 
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performed with antibodies against the hematopoietic stem cell marker CD34 and the 

monocyte marker CD14. Five wells initiated with CD7+ cells did not contain enough cells for 

reliable FACS analysis and were excluded from analysis. Cytokine mix 6 is optimized to 

support both expansion of CD34+ stem cells and differentiation towards monocytes (16). 

Indeed, CD7- cells proliferated well and most cells differentiated into the myeloid lineage 

(CD33+), while also a low number of cells remained CD34+. On the contrary, the wells 

initiated with CD7+ cells contained only B and NK cells, and almost no CD34+ cells or 

myeloid cells. Absolute cell numbers were 13-fold reduced compared to wells initiated with 

CD7- cells. Remarkably, the proportion of B and NK cells in the different wells initiated with 

CD7+ cells was highly variable, with most wells being enriched in either of the two cell types, 

and only five wells containing similar numbers of B and NK cells. This explains the large 

standard deviation on the average frequencies of B and NK cells.  

 
 
Figure 2. CD34+CD38-CD7+ cord blood cells have lymphoid-restricted differentiation potential. (A) Flow 
cytometric analysis of MS-5 co-cultures with cytokine mix 6 (SCF, FL3, TPO, IL-2, IL-7 and IL-15) after 20 
days. Dot plots for 3 wells of 50 wells initiated with 10 CD7+ cells and 3 wells of 30 wells initiated with 10 CD7- 
cells are shown. (B) Mean frequencies of B cells (CD19+), NK cells (CD56+), myeloid cells (CD33+) and HSCs 
(CD34+) obtained with CD7+ cells and with CD7- cells. Error bars represent the standard deviation. (C) Average 
absolute cell number obtained from 10 cells after 20 days of MS-5 culture with cytokine mix 6. 
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CD34+CD38-CD7+ cord blood cells efficiently generate T cells in FTOC 

The co-culture system on MS-5 stromal cells does not support T-cell differentiation. 

The capacity of the CD7+ and CD7- cells to generate T cells was compared in Fetal Thymus 

Organ Cultures (FTOC). Three independent experiments were initiated with 1000 cells per 

thymic lobe. Thymocytes were harvested after 32 days of organ culture and analysed for the 

expression of CD4 and CD8β (see Figure 3). At that time, cultures initiated with CD7+ cells 

clearly had generated a higher percentage of double positive (DP) thymocytes than those 

initiated with CD7- cells. Also from the absolute cell number it is clear that CD7+ cells 

performed much better in FTOC than CD7- cells. CD7+ cells generated about 10 times more 

cells than the CD7- cells (150,197 ± 5,668 versus 14,549 ± 17,886). These data indicate that, 

as expected from a common lymphoid progenitor, CD7+ cells generate T cells with a much 

faster kinetics than the more immature CD7- cells.  

 
Figure 3. CD34+CD38-CD7+ cord blood cells have strong T-cell generation capacity. Flow cytometric 
analysis of FTOC after 32 days of culture. Percentages of CD4+CD8+ double positive thymocytes obtained in 3 
independent experiments are indicated in the upper right quadrant.  
 
 

RNA amplification and microarray analysis  

Because of the rare nature of the CD34+CD38-CD7+ cord blood population, it was 

necessary to perform RNA amplification to obtain a sufficient amount of RNA to hybridize 

on the GeneChips. For each of two separate experiments, total RNA was isolated from a total 

of 100,000 sorted CD34+CD38-CD7+ and CD34+CD38-CD7- cells pooled from 3 to 8 separate 

sorts, in each of which 1 to 3 cord blood units were pooled, which guaranteed a normalization 

of interindividual sources of variation.  

In the first microarray experiment, cRNA was hybridized to Affymetrix HG-U133A 

arrays, which are comprised of more than 22,000 probesets representing 18,400 transcripts, 

including 14,500 well-characterized human genes. In the second experiment cRNA was 
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hybridized to Affymetrix HG-U133 Plus 2.0 arrays, which are comprised of more than 54,000 

probesets representing 47,000 transcripts, including 38,500 well-characterized human genes.  

The expression values of the 22,215 common probesets in both experiments were used to 

calculate a correlation coefficient between the two biological repeats. As shown in Figure 4, 

the correlation between the biological repeats was very high (correlation coefficients of 0.92 

and 0.96 for the CD7- and the CD7+ arrays, respectively), which allowed us to use the average 

expression values of the two repeats for further analysis. Of the 22,215 probesets that were 

present on both GeneChips, 201 were significantly differentially expressed (adjusted p < 

0.05). Of these, 110 probesets representing 101 genes were upregulated in the CD7+ 

population, while 91 probesets representing 89 genes were downregulated in the CD7+ 

population.  

 
Figure 4. Correlation between the microarray experiments. Expression levels for each of the 22,215 common 
probesets after hybridization on the HG-U133A chip (first experiment) and the HG-U133 Plus 2.0 chip (second 
experiment) are shown. The correlation coefficient R is indicated.  
 

 
Validation of microarray data  

The mRNA expression of the markers used for cell sorting, namely CD34, CD38 and 

CD7, as measured by the microarrays, correlated well with their cell surface expression on the 

sorted populations. To further validate the microarray data, the expression of 11 transcripts 

was confirmed by Real-Time PCR on unamplified RNA from freshly sorted cells. Except for 

RGS2, fold changes obtained by Real-Time PCR analysis correlated well with those obtained 

by the microarray analysis (see Figure 5).  
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A. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Validation of microarray data by Real-Time PCR. (A) The fold change (expression in CD7+ cells 
relative to expression in CD7- cells) of a selection of differentially expressed genes as determined by microarray 
analysis and Real-Time PCR analysis. Bars represent the SD on the mean of duplicate PCR reactions, except for 
RGS2 and PRKCB1, where they represent the SD on the mean of biological repeats. mRNA levels were 
normalized to HPRT mRNA expression. (B) Correlation between the fold changes determined by microarray 
analysis (on X-axis) and Real-Time PCR analysis (on Y-axis).   
 
 
Results from the microarray analysis 

Using annotation software such as Onto-Express, Ease and the NetAffx Analysis 

Center from Affymetrix, the significantly differentially expressed genes were grouped into 

functional categories (see Tables 1 and 2). Figure 6 shows the Gene Ontology (GO) terms of 

the categories Molecular Function, Biological Process and Cellular Component that have at 

least three genes annotated to them. Gene categories that are significantly overrepresented in 

the list of upregulated genes include transcription factors, RNA binding molecules, 

components of the ubiquitin-protein ligase complex, splice factors, transporters and signal 
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transduction molecules. The list of downregulated genes is significantly enriched for 

structural components of the ribosome, components of the cytoskeleton, signal transduction 

molecules and molecules involved in protein biosynthesis and cell proliferation.  
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Figure 6. Functional profile of significantly upregulated and downregulated genes constructed by Onto-
Express.  Gene Ontology (GO) terms in the categories Molecular Function, Biological Process and Cellular 
Component which have at least 3 genes annotated to them are shown. The number of probesets and percentage 
of probesets annotated to each GO term are indicated. Note that a probeset can be annotated to more than one 
GO term.GO terms that are significantly overrepresented in the lists of up- and downregulated genes 
(Bonferroni-corrected P-value < 0.05) are shown in red.  
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Table 1.  Genes significantly upregulated in CD7+ cells, categorized according to function and ranked 
according to fold change (FC). Listed gene names are approved by the HUGO Gene Nomenclature Committee. 
Alternative gene names are given between brackets. Genes reported to be expressed in hematopoietic tissue are 
underlined. References are available as online supplementary material.  

 

Gene Name Description Ref. Probeset FC 
Transcription   
IRF8 interferon consensus sequence binding protein 1 (interferon regulatory 

factor 8). Expressed exclusively in cells of the immune system. Drives 
myeloid progenitor cells toward macrophages, while inhibiting granulocytic 
differentiation. Essential for differentiation of CD8α+ dendritic cells.    

(1-3) 204057_at 4.47 

SETBP1 (SEB) SET binding protein 1 
 

 205933_at 2.93 

MEF2A MADS box transcription enhancer factor 2, polypeptide A (myocyte 
enhancer factor 2A). Required for the transcriptional activation of IL-2 in T 
cells.  
 

(4) 212535_at 2.87 

LRRFIP1 (GCF2) leucine rich repeat (in FLII) interacting protein 1. Highly expressed in 
peripheral blood leukocytes. Transcriptional repressor of TNF-α.   

(5, 6) 201862_s_at 2.72 

RERE arginine-glutamic acid dipeptide (RE) repeats. Transcriptional repressor. 
Overexpression leads to cell death.   

(7) 200940_s_at 2.43 

TARBP1 TAR (HIV) RNA-binding protein 1   202813_at 2.33 

SMARCA4 (BRG1) SWI/SNF related, matrix associated, actin dependent regulator of 
chromatin, subfamily a, member 4. Essential for T-cell development. 
Silenced in several tumor cell lines. Tumor suppressor activity by 
cooperating and complexing with the retinoblastoma tumor suppressor 
protein (pRB), which inhibits cell cylce progression by repressing 
transcription of specific growth-related genes. 

(8-12) 214728_x_at 2.33 

HLX1 (HB24) H2.0-like homeo box 1 (Drosophila). Expressed throughout the 
myeloid/macrophage lineage and at early stages of B-cell development.  

(13) 214438_at 2.29 

SATB1 special AT-rich sequence binding protein 1 (binds to nuclear 
matrix/scaffold-associating DNA's). Regulates the expression of numerous 
genes during thymocyte differentiation by recruiting chromatin remodelling 
factors.  

(14-17) 203408_s_at 2.24 

TRIM33 (TIF1G) tripartite motif-containing 33. Mutation of the zebrafish ortholog disrupts 
both embryonic and adult hematopoiesis. Also has ubiquitin protein ligase 
activity.  

(18) 210266_s_at 2.21 

NCOR2 (SMRT) nuclear receptor co-repressor 2   207760_s_at 2.10 

TCF4 (E2-2) transcription factor 4. Required for both B- and T-cell development.  (19) 212387_at 2.04 

BCL6 B-cell CLL/lymphoma 6 (zinc finger protein 51). Transcriptional repressor 
essential for the differentiation of germinal center B cells.   

(20) 203140_at 2.02 

RUNX3 runt-related transcription factor 3. Best known for silencing the expression 
of CD4 during the development of CD8 SP thymocytes. Also required for 
normal development of primitive and definitive hematopoietic cells.    

(21, 22) 204198_s_at 1.78 

CHD3 (Mi-2a) chromodomain helicase DNA binding protein 3. Highly expressed in thymus 
(GeneNote).  

 208806_at 1.69 

     

RNA binding   
SFPQ (PSF) splicing factor proline/glutamine rich (polypyrimidine tract-binding protein-

associated) 
 221768_at 3.18 

METTL3 methyltransferase like 3. Associated with pre-mRNA splicing components 
and involved in posttranscriptional modification by methylating adenosine 
residues of some mRNAs.  

 213653_at 2.76 

EIF4A1(DDX2A) Eukaryotic translation initiation factor 4A, isoform 1  214805_at 2.55 

SF3B1 splicing factor 3b, subunit 1, 155kD   201071_x_at 2.44 

RNPC2 (HCC1) RNA-binding region (RNP1, RRM) containing 2. Splicing factor.   208720_s_at 2.20 

HNRPA1 heterogeneous nuclear ribonucleoprotein A1. Involved in splice site 
selection and responsible for the transport of mRNA from the nucleus to the 
cytoplasm.  

 214280_x_at 1.90 

DDX21 DEAD (Asp-Glu-Ala-Asp) box polypeptide 21. RNA helicase involved in 
ribosomal RNA synthesis.   

 208152_s_at 1.86 
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Cell cycle     

MN1 meningioma (disrupted in balanced translocation) 1. Functions as a 
transcriptional co-activator. Found in chromosomal translocation with 
TEL/ETV6 in AML. Ectopic expression of MN1-TEL fusion protein perturbs 
both myeloid and lymphoid cell growth. MN1 is expressed in HSCs, CMPs 
and GMPs. Enforced expression in osteoblastic cells results in profound 
decrease in cell proliferation by slowing S-phase entry. 

(23-26) 205330_at 3.06 

ATR ataxia telangiectasia and Rad3 related. Exerts cell cycle delay following UV 
light-induced DNA damage by phosphorylating cell cycle checkpoint control 
proteins such as Chk1, Chk2 and p53.   

(27) 209902_at 2.50 

CCNL1 cyclin L1. Involved in regulation of RNA polymerase II transcription by 
phosphorylation of the C-terminal domain of RNA polymerase II. Also 
member of the pre-mRNA processing machinery.   

(28) 220046_s_at 2.50 

MACF1 microtubule-actin crosslinking factor 1. Involved in cell cycle arrest.  208634_s_at 2.40 

NF1  Neurofibromin 1 (neurofibromatosis, von Recklinghausen disease, Watson 
disease). Tumor suppressor capable of inhibition of cell growth in culture. 
Negative regulator of Ras-signalling by promoting conversion of active Ras-
GTP to inactive Ras-GDP. NF1-deficiency causes juvenile myelomonocytic 
leukemia. NF1-/- murine FL cells are hypersensitive to GM-CSF and 
generate a JMML-like phenotype. NF1-/- HSCs demonstrate growth 
advantage of differentiated myeloid and lymphoid cells.  

(29-32) 216115_at 2.17 

MCM3AP (GANP) MCM3 minichromosome maintenance deficient 3 (S. cerevisiae) associated 
protein. Upregulated in germinal center B cells. Inhibits initiation of DNA 
replication by acetylating MCM.  

(33-35) 212269_s_at 2.04 

KNTC1 (ROD) kinetochore associated 1. Essential component of the mitotic checkpoint 
that prevents cells from prematurely exiting mitosis.  

(36) 206316_s_at 1.97 

RBBP6 (RBQ-1) retinoblastoma binding protein 6. Preferentially bound by 
underphosphorylated pRB, which is present in resting cells.    

(37-39) 205178_s_at 1.94 

POLS (TRF4) polymerase (DNA directed) sigma. Involved in DNA repair.  (40) 202466_at 1.74 

     

Apoptosis     
NALP1 NACHT, leucine rich repeat and PYD (pyrin domain) containing 1. Activator 

of caspases. Highly expressed in peripheral blood leukocytes. Also central 
role in the processing of pro-IL-1-β.  

(41) 210113_s_at 2.03 

     

Receptor activity    
CCR9 CC chemokine receptor 9A (CCR9) mRNA, alternatively spliced, complete 

cds. Receptor for the thymus-expressed chemokine TECK/CCL25. 
Regulates the coordinated migration of thymocytes through the thymus. 
Expression of CCR9 is tightly regulated during T-cell development, and 
forced premature expression of CCR9 in DN thymocytes partially blocks 
further development.  

(42-50) 207445_s_at 3.78 

EMR2 egf-like module containing, mucin-like, hormone receptor-like 2. Highly 
expressed on blood monocytes, macrophages and myeloid DC, but not on 
resting or activated lymphocytes.   

(51) 207610_s_at 3.02 

ITGA4 (CD49D) integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor). 
Highly expressed by CD34+ HSCs. Mediates adhesive interactions with the 
extracellular matrix of the BM stroma that are essential for hematopoiesis 
and homing of HSCs to the BM. 

(52) 213416_at 2.60 

P2RY14 (GPR105) purinergic receptor P2Y, G-protein coupled, 14. Receptor for UDP-
conjugated sugars. Expressed by the most primitive, quiescent stem cell 
population of human bone marrow.  

(53) 206637_at 2.47 

PLXND1 plexin D1. Receptor for semaphorins.   38671_at 1.89 

     

Signal transduction    
THRAP2 Thyroid hormone receptor associated protein 2  216109_at 3.94 

RAB31 RAB31, member RAS oncogene family. Small GTP-ase of RAB family.   217763_s_at 3.51 

RPS6KA2 (RSK3) ribosomal protein S6 kinase, 90kDa, polypeptide 2  212912_at 3.33 

PRKCB1 protein kinase C, beta 1. Pre-B cell receptor signalling molecule. Essential 
for B-cell development.    

(54) 207957_s_at 2.83 

RAB14 RAB14, member RAS oncogene family. Small GTP-ase of RAB family.   200927_s_at 2.67 
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BTK Bruton agammaglobulinemia tyrosine kinase. Pre-B cell receptor signalling 
molecule. Essential for B-cell development.   

(55, 56) 205504_at 2.66 

TRAF5 TNF receptor-associated factor 5. Highly expressed in spleen and thymus 
(GeneNote). Activates NF-κB and functions downstream of the 
lymphotoxin-β receptor. Implicated in apoptosis.  

(57) 204352_at 2.35 

TRAF4 TNF receptor-associated factor 4. Expressed in primary T cells and Jurkat. 
Implicated in apoptosis.  

(58, 59) 202871_at 2.28 

EVL Enah/Vasp-like. Involved in signal transduction leading to dynamic changes 
in the cytoskeleton. Highly expressed in thymus and spleen.  

(60) 217838_s_at 2.24 

NUDT3 Nudix (nucleoside diphosphate linked moiety X)-type motif 3   212605_s_at 2.15 

TRAF3IP3 (T3JAM) TRAF3 interacting protein 3. Highly expressed in lymphoid tissues 
(GeneNote).  

 213888_s_at 2.02 

TNS3 (TENS1) Tensin 3. Role in EGF-signalling pathway.   217853_at 1.86 

DOCK1 
(DOCK180) 

dedicator of cytokinesis 1. Interacts with RAC1. Also involved in 
cytoskeletal rearrangements required for phagocytosis of apoptotic cells 
and cell motility.   

 203187_at 1.83 

HA-1 minor histocompatibility antigen HA-1  212873_at 1.73 

TNFAIP3 (A20) tumor necrosis factor, alpha-induced protein 3. Inhibits TNF-induced NFκB 
activation. Has de-ubiquitinating activity and ubiquitin ligase activity. Highly 
expressed in lymphoid organs.  

(61) 202643_s_at 1.60 

     

     

Transport     
SCN3A sodium channel, voltage-gated, type III, alpha polypeptide   210432_s_at 6.18 

ABCA1 ATP-binding cassette, sub-family A (ABC1), member 1 (ABCA1), mRNA. 
Cholesterol transporter.   

 203504_s_at 3.88 

OSBPL3 (ORP3) oxysterol binding protein-like 3 (ORP3). Highly expressed in most primitive 
CD34+CD38- cells and downregulated upon proliferation and differentiation.  

(62) 209626_s_at 3.74 

SLC2A5 (GLUT5) solute carrier family 2 (facilitated glucose transporter), member 5 (SLC2A5), 
mRNA.   

 204430_s_at 3.68 

SLC38A1 (ATA1) solute carrier family 38, member 1. Aminoacid transporter.   218237_s_at 3.09 

SLC24A3 solute carrier family 24 (sodium/potassium/calcium exchanger), member 3  219090_at 2.34 

SLC33A1 solute carrier family 33 (acetyl-CoA transporter), member 1  203164_at 2.34 

TMEM41B transmembrane protein 41B. Sugar porter activity.   212622_at 2.30 

SLC35E2 solute carrier family 35, member E2  217122_s_at 2.13 

TPR translocated promoter region (to activated MET oncogene). Implicated in 
the import of proteins into the nucleus.   

 201730_s_at 2.00 

ITSN2 intersectin 2. Involved in clathrin-mediated endocytosis.    209907_s_at 1.97 

KNS2 kinesin 2. Transport of organelles and chromosomes along microtubuli 
during cell division.  

 216187_x_at 1.66 

     

Enzymatic activity   
TRIB2 tribbles homolog 2 (Drosophila). Inhibitor of cell division in Drosophila. 

Highest expression in peripheral blood leukocytes. Controls MAPK activity. 
(63, 64) 202478_at 5.18 

UBR2 ubiquitin protein ligase E3 component n-recognin 2  212760_at 2.60 

ADAM28 (MDCL) a disintegrin and metalloproteinase domain 28. Expressed on the surface of 
human lymphocytes. 

(65) 205997_at 2.51 

STK32B serine/threonine kinase 32B  219686_at 2.37 

LOC23117 
DKFZp547E087 
LOC348162 
LOC440354 
LOC613037 

KIAA0220-like protein 
hypothetical gene LOC283846 
hypothetical protein 348162 
PI-3-kinase-related kinase SMG-1 pseudogene 
similar to the PI-3-kinase-related kinase SMG-1 family pseudogene 2 

 211996_s_at 2.28 

DPEP2 dipeptidase 2  219452_at 2.02 

ADA adenosine deaminase. Mutations in this gene lead to human SCID disease, 
characterized by a deficiency of both B and T cells. Treatment of T-ALL 
patients with ADA-inhibitors leads to a complete conversion from T-
lymphoblastic to promyelocytic leukemia.    

(66, 67) 204639_at 1.89 

USP34 ubiquitin specific protease 34  212066_s_at 1.70 
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Enzyme regulator activity 
PSCD4 (cytohesin 4) pleckstrin homology, Sec7 and coiled-coil domains 4. Guanine nucleotide-

exchange factor for ADP-ribosylation factors. Expressed abundantly in 
leukocytes, but not in other tissues.   

(68) 219183_s_at 3.16 

ARHGAP25 Rho GTPase activating protein 25. Highly expressed in lymphoid tissues 
(GeneNote). 

 38149_at 3.10 

ITIH4 (IHRP) inter-alpha (globulin) inhibitor H4 (plasma Kallikrein-sensitive glycoprotein). 
Acute phase protein.  

 37201_at 1.83 

     

Cytoskeleton    
PALLD (KIAA0992) palladin. Component of actin-containing microfilaments.   (69) 200897_s_at 3.73 

PNN pinin, desmosome associated protein. Also involved in mRNA processing. 
Potential tumor suppressor.  

(70) 212036_s_at 3.14 

BASP1 brain abundant, membrane attached signal protein 1. Highly expressed in 
lymphoid tissues.    

(71) 202391_at 2.10 

TBCD tubulin-specific chaperone d. Involved in the folding of actin and tubulin.   211052_s_at 2.03 

     

Miscellaneous    
SPON1 (f-spondin) spondin 1, (f-spondin) extracellular matrix protein   209436_at 3.19 

TNFAIP2 (B94) tumor necrosis factor, alpha-induced protein 2. Expressed in lymphoid 
tissues and peripheral blood monocytes.   

(72) 202510_s_at 3.08 

IGHM immunoglobulin heavy constant mu. Essential for B-cell development.  (73) 209374_s_at 2.94 

LPIN1 lipin 1. Antiproliferative effect on pro-B cells when ectopically expressed.  (74) 212276_at 2.60 

NACA nascent-polypeptide-associated complex alpha polypeptide. Required for 
the intracellular translocation of newly synthesized polypeptides. May also 
act as a transcriptional co-activator. Expressed in cord blood CD34+ 
progenitor cells, maintained during in vitro erythroid differentiation but 
suppressed during megakaryocyte and granulocyte differentiation. 
 

(75) 222018_at 1.96 

     

Not annotated    
KIAA0125 KIAA0125 gene product (KIAA0125), mRNA. Localizes to Ig heavy chain 

locus. Highest expression in BM, spleen and thymus (GeneNote).  
 206478_at 4.40 

LSR68 (C14orf43) lipopolysaccharide specific response-68 protein (LSR68), mRNA   220494_s_at 4.09 

SH3TC1 SH3 domain and tetratricopeptide repeats 1. Highly expressed in thymus 
(SymAtlas).  

 219256_s_at 4.07 

KIAA0087 KIAA0087 gene product   207161_at 3.41 

JMJD1A jumonji domain containing 1A  212689_s_at 3.31 

- MRNA full length insert cDNA clone EUROIMAGE 362430  215679_at 2.70 

FLJ13197  hypothetical protein FLJ13197. Expressed in some subtypes of ALL.   (76) 219871_at 2.64 

BAALC brain and acute leukemia, cytoplasmic. Mostly expressed in 
neuroectoderm-derived tissues, but also in some cases of AML and ALL. 
Highly expressed by CD34+ cells from BM and blood, downregulated upon 
in vitro differentiation.  

(77, 78) 218899_s_at 2.46 

FLJ10707 hypothetical protein FLJ10707  221806_s_at 2.40 

SUV420H1 suppressor of variegation 4-20 homolog 1 (Drosophila)  218242_s_at 2.30 

LOC388388 Hypothetical LOC388388  210230_at 2.13 

COBL cordon-bleu homolog (mouse). Involved in neural tube formation.   213050_at 2.10 

FLJ22635 hypothetical protein FLJ22635. Highly expressed in lymphoid tissues 
(GeneNote).   

 219359_at 2.10 

LOC339287 hypothetical protein LOC339287  212708_at 2.09 

C11orf21 (SMS3) chromosome 11 open reading frame 21. Highly expressed in lymphoid 
tissues (GeneNote).   

 220560_at 2.06 

IQSEC1 IQ motif and Sec7 domain 1  203906_at 1.91 

- CDNA FLJ39679 fis, clone SMINT2010068  214996_at 1.90 
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Table 2. Genes significantly downregulated in CD7+ cells, categorized according to function and ranked 
according to fold change (FC). Listed gene names are approved by the HUGO Gene Nomenclature Committee. 
Alternative gene names are given between brackets. Genes reported to be expressed in hematopoietic tissue are 
underlined. References are available as online supplementary material.  
 

Gene Name Description Ref. Probeset FC 
Transcription     
NFIB Nuclear factor I/B  213032_at 5.39 

MLLT3 (AF9) myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, 
Drosophila); translocated to, 3. Downregulation of MLLT3 leads to a 
reduced expression of the myeloid-specific transcription factor HOXA10.   

(79, 80) 204918_s_at 4.86 

KLF2 (LKLF) Kruppel-like factor 2 (lung). Essential for primitive erythropoiesis. Also 
highly expressed in naïve CD4+ and CD8+ T cells and responsible for their 
quiescent phenotype by downregulating expression of the c-myc proto-
oncogene.  

(81, 82) 219371_s_at 3.77 

EVI1 ecotropic viral integration site 1. Transcriptional repressor whose 
expression is restricted to a transient stage of myeloid differentiation. 
Involved in megakaryocyte differentiation. Overexpressed in some myeloid 
leukemia.  

(83-85) 221884_at 3.64 

CEBPB (NF-IL6) CCAAT/enhancer binding protein (C/EBP), beta. Highly expressed in 
myeloid cells. Activates transcription of IL-6 and several myeloid genes. 
Ectopic expression in multipotent hematopoietic progenitors leads to 
differentiation along the myeloid lineage, while dominant-negative versions 
inhibit myeloid differentiation.    

(86-89) 212501_at 3.45 

MAFF v-maf musculoaponeurotic fibrosarcoma oncogene homolog F (avian). 
Interacts with the upstream promoter region of the oxytocin receptor gene. 

(90) 36711_at 3.10 

ELF1 E74-like factor 1 (ets domain transcription factor). Involved in the regulation 
of many T- and B-cellspecific genes. Also expressed in several myeloid cell 
types and involved in the regulation of SCL and LMO2 expression.  

(91-96) 212420_at 3.01 

TAL1 (alias SCL) T-cell acute lymphocytic leukemia 1 (TAL1). Pivotal for the generation of all 
hematopoietic lineages. Expression is maintained during differentiation 
along erythroid, mast and megakaryocytic lineages, but is repressed after 
commitment along other hematopoietic lineages.  

(97, 98) 206283_s_at 2.95 

ETV5 (ERM) ets variant gene 5 (ets-related molecule). Lymphoid-specific transcription 
factor that is upregulated in activated Th1 cells and overexpressed in B-cell 
lymphomas.   

(99, 100) 203349_s_at 2.61 

IFI16 interferon, gamma-inducible protein 16. Transcriptional repressor 
constitutively expressed in BM CD34+ cells. Expression is maintained upon 
differentiation along the monocytic lineage, but is strongly downregulated 
upon differentiation to the granulocytic and erythroid lineages. Also 
constitutively expressed in lymphoid cells. Implicated in cell cycle 
regulation.  

(101-104) 208965_s_at 1.91 

HMGB3 high-mobility group box 3. Highly expressed in murine BM erythroid cells, 
HSCs, and most CLP and CMP cells. Long-term repopulating activity is 
entirely contained in the subpopulation of HSCs that express HMGB3. 
Enforced expression of HMGB3 inhibits both myeloid and B-cell 
differentiation.  

(105) 203744_at 1.68 

     

RNA binding     
LSM5 LSM5 homolog, U6 small nuclear RNA associated (S. cerevisiae). Involved 

in pre-mRNA splicing.  
 211747_s_at 2.56 

KHDRBS3  
(T-STAR) (SLM2) 

KH domain containing, RNA binding, signal transduction associated 3. 
Involved in pre-mRNA splicing. Primarily expressed in the testes, skeletal 
muscle, heart and brain. Generally acts as a growth suppressor.  

(106-108) 209781_s_at 1.96 

     

Cell cycle     
NDN necdin homolog (mouse). Neuron-specific growth suppressor. Functions 

also as a transcription factor.  
(109) 209550_at 3.00 

GADD45A (DDIT) growth arrest and DNA-damage-inducible, alpha. Induced by ionising 
radiation and alkylating agents. Inhibits entry of cells into S phase and 
stimulates DNA repair.  

(110) 203725_at 2.67 

CKS2 (CKSHS2) CDC28 protein kinase 2. Interacts with cyclin-dependent kinases (CDKs) 
that regulate mitosis. Highly expressed in BM and thymus (GeneNote).   

(111, 
112) 

204170_s_at 2.10 
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Receptor activity    
CXCR4 chemokine (C-X-C motif), receptor 4. Broadly expressed on hematopoietic 

cells. Mediates migration to its ligand SDF-1. CXCR4/SDF-1 interaction is 
essential for homing of HSCs to the BM and is important for both fetal and 
adult hematopoiesis. 

(113-118) 217028_at 2.14 

NPR3 (ANPRC) natriuretic peptide receptor C/guanylate cyclase C (atrionatriuretic peptide 
receptor C). Important in the maintenance of blood pressure and 
extracellular fluid volume.   

 219789_at 2.08 

LEPR (OBR) leptin receptor. Receptor for the adipocyte-derived hormone leptin and 
involved in regulation of body weight by the hypothalamus. Also expressed 
on HSC populations and mature leukocytes, predominantly on 
monocytes/macrophages. Leptin signalling increases SCF-induced 
proliferation of primitive HPCs and has a role in immune response and 
inflammation.   

(119-126) 202377_at 2.03 

KIAA1049 KIAA1049 protein  213311_s_at 1.96 

     

Receptor binding    
TNFSF10 (TRAIL) 
(Apo-2L) 

tumor necrosis factor (ligand) superfamily, member 10. Membrane-bound 
cytokine that induces rapid apoptosis of tumor cell lines. Positive regulator 
of myeloid differentiation.   

(127, 
128) 

202687_s_at 2.65 

ICAM4 intercellular adhesion molecule 4, Landsteiner-Wiener blood group. 
Erythroid-specific surface marker, suggested role in erythroid differentiation. 

(129) 207194_s_at 2.57 

OXT oxytocin, prepro- (neurophysin I). Neuropeptide produced by thymic 
epithelial cells. Its receptor is expressed by all thymocyte subsets. Oxytocin 
signalling would be involved in the control of T-cell proliferation and 
survival.  

(130, 
131) 

207576_x_at 2.29 

ICAM2 intercellular adhesion molecule 2. Expressed at high levels on vascular 
endothelial cells and at low levels on most leukocytes and platelets. 
Mediates leukocyte adhesion by binding the integrin receptor LFA-1. This 
interaction protects ICAM2-expressing cells from apoptosis.  

(132-134) 213620_s_at 2.21 

IL1B interleukin 1, beta. Secreted primarily by activated 
monocytes/macrophages. Expression is regulated by PU.1 and CEBPB.    

(135) 39402_at 2.06 

     

Signal transduction    
TAX1BP3 (TIP-1) Tax1 (human T-cell leukemia virus type I) binding protein 3. Might be 

involved in Wnt/β-catenin signalling.  
 209154_at 2.78 

GRK5 G protein-coupled receptor kinase 5   204396_s_at 2.60 

TNS1 Tensin. Actin binding protein. May be involved in linking signal transduction 
pathways to the cytoskeleton.  

 221748_s_at 2.56 

NUDT4 (DIPP2) nudix (nucleoside diphosphate linked moiety X)-type motif 4   206302_s_at 2.55 

PIP5K1B (STM7) phosphatidylinositol-4-phosphate 5-kinase, type I, beta. Required for actin 
organization.   

 205632_s_at 2.48 

RAB38 RAB38, member RAS oncogene family   219412_at 2.43 

PTPN11 (SHP-2) protein tyrosine phosphatase, non-receptor type 11 (Noonan syndrome 1). 
Acts upstream of the Ras oncogene. Indispensable for both myeloid and 
lymphoid hematopoietic cell development. Dominant active mutations 
cause Noonan syndrome and are common in juvenile myelomonocytic 
leukemia (JMML) and other childhood hematopoietic malignancies. Also 
highly expressed in most adult leukemia cells.   

(136-143) 209896_s_at 2.34 

PSEN2 (PS2) presenilin 2 (Alzheimer disease 4). Critical component of γ-secretase 
complex responsible for the proteolytic cleavage of Notch after ligand 
binding. Loss of PSEN2 results in an increased production of granulocytes 
without affecting other hematopoietic lineages.  

(144, 
145) 

211373_s_at 2.33 

ARHGEF12 (LARG) Rho guanine exchange factor (GEF) 12. Fusion partner of the MLL gene in 
a case of myeloid leukemia. Highly expressed in HSC fractions and 
immature erythroid cells. Involved in the regulation of the actin 
cytoskeleton.    

(146, 
147) 

201334_s_at 2.30 

RGS2 (GOS8) regulator of G-protein signalling 2, 24kD. Upregulated during granulocytic 
differentiation of several myeloid cell lines.   

(148) 202388_at 2.12 

S100A6 (calcyclin) S100 calcium-binding protein A6 (calcyclin). Specifically expressed during 
G1 phase of cell cycle. Expressed in granulocytes, but not in lymphocytes. 
Overexpressed in cases of AML.   

(149-152) 217728_at 2.11 

RALBP1 (RLIP76) ralA binding protein 1. Interacts with the GTP-bound form of ralA, ralB, 
cdc42 and rac1.  

 202844_s_at 2.07 

BST2 bone marrow stromal cell antigen 2. First identified on BM stromal cells, but 
also expressed on myeloid and lymphoid hematopoietic cells. Its promoter 
is activated by the erythroid-specific transcription factor GATA1.   

(153, 
154) 

201641_at 1.83 
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Transport     
ATP1B1 ATPase, Na+K+ transporting, beta 1 polypeptide  201242_s_at 5.79 

MAL mal, T-cell differentiation protein. In endoplasmatic reticulum membrane of 
T cells. Expressed only in intermediate and late stages of T-cell 
differentiation.   

(155) 204777_s_at 2.72 

TFR2 transferrin receptor 2. Highly expressed in the liver and by platelets and the 
erythromegakaryocytic cell line K562.  Major role in cellular iron uptake by 
internalising the carrier protein transferrin.  

(156, 
157) 

210215_at 2.62 

TIMM13 translocase of inner mitochondrial membrane 13 homolog (yeast). Mediates 
import and insertion of hydrophobic membrane proteins into the 
mitochondrial inner membrane.  

 218188_s_at 2.40 

SLC39A8 solute carrier family 39 (zinc transporter), member 8  209267_s_at 2.37 

     

Protein biosynthesis    
RPL36A ribosomal protein L36a  201406_at 3.50 

HSPB1 (HSP27) heat shock 27kD protein 1. Associates with α and β tubulin. May functionas 
a molecular chaperone and in signal transduction pathways.   

 201841_s_at 2.75 

BZW2 basic leucine zipper and W2 domains 2. Translation initiation factor activity.   217809_at 2.41 

RPS27L ribosomal protein S27-like  218007_s_at 2.30 

RPL35 ribosomal protein L35   200002_at 2.11 

RPS27 (MPS-1) ribosomal protein S27 (metallopanstimulin 1)   200741_s_at 2.06 

RPS6 ribosomal protein S6  200081_s_at 1.90 

     

Enzymatic activity    
PRDX2 (NKEFB) peroxiredoxin 2 (Natural killer cell-enhancing factor B). Major cytosolic 

factor of red blood cells that enhances NK-cell activity in vitro. May play an 
important role in the differentiation of erythroid cells. Role in eliminating 
peroxides generated during metabolism.  

(158) 39729_at 3.56 

SUCLG2 succinate-CoA ligase, GDP-forming, beta subunit  212459_x_at 3.44 

ALDH6A1 (MMSDH) Aldehyde dehydrogenase 6 family, member A1 (methylmalonate 
semialdehyde dehydrogenase). Oxidoreductase activity. Mitochondrial 
enzyme.  

 221589_s_at 2.19 

SHMT2 serine hydroxymethyltransferase 2 (mitochondrial). Interconversion of 
serine and glycine.  

 214096_s_at 2.16 

AKR7A2 (AFAR) aldo-keto reductase family 7, member A2 (aflatoxin aldehyde reductase). 
Detoxification of aldehydes and ketones.  

 214259_s_at 2.16 

FLJ22222 hypothetical protein FLJ22222. Oxidoreductase activity.   53071_s_at 2.10 

PHYH phytanoyl-CoA hydroxylase (Refsum disease). Role in lipid metabolism.    203335_at 1.99 

UROD uroporphyrinogen decarboxylase. Involved in haem biosynthetic pathway;  
highly expressed in erythroid cells.  

(159) 208970_s_at 1.92 

CTDSPL (SCP3) CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small 
phosphatase-like. Negatively regulates RNA polymerase II activity.  

(160) 201906_s_at 1.72 

COX7A2L cytochrome c oxidase subunit VIIa polypeptide 2 like.    201256_at 1.67 

CAT Catalase. Serves to protect cells from the toxic effects of hydrogen peroxide 
by promoting its conversion to water and molecular oxygen.  

 201432_at 1.64 

     

Enzyme regulator activity    
SERPINE2 (nexin) serine (or cysteine) proteinase inhibitor, clade E (nexin, plasminogen 

activator inhibitor type 1), member 2 
 212190_at 3.27 

     

Cytoskeleton     
KIAA1102 KIAA1102 protein. Actin binding protein.   212328_at 4.52 

PLS3 (T-plastin) plastin 3 (T isoform). Actin binding protein.  Highly expressed in actively 
dividing cells.  

 201215_at 3.21 

MARCKS myristoylated alanine-rich protein kinase C substrate. Actin crosslinking 
protein. Involved in leukocyte motility.    

 201670_s_at 2.39 

ACTR2 (ARP2) ARP2 actin-related protein 2 homolog (yeast). Implicated in the control of 
actin polymerisation.  

 200727_s_at 2.23 

ACTN1 actinin, alpha 1. Actin binding protein.    208636_at 2.13 
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Miscellaneous    
DLK1 (Pref-1) delta-like 1 homolog (Drosophila). Transmembrane protein homologous to 

the Notch ligands. Inhibits Notch activation. Expressed on thymic epithelial 
cells and fetal  stromal cells that maintain repopulation activity of HSCs in 
vitro. Expression increases during megakaryocytic differentiation of CD34+ 
HSCs and after ectopic expression of the myeloid cell nuclear differentiation 
antigen.  

(161-165) 209560_s_at 5.21 

CFH complement factor H. Serum glycoprotein that controls the function of the 
alternative complement pathway.   

 213800_at 3.52 

TMEM45A transmembrane protein 45A  219410_at 3.25 

TJP2 tight junction protein 2 (zona occludens 2). Involved in the organization of 
epithelial and endothelial intercellular junctions.  

 202085_at 2.70 

KLHL7 (KLHL6) kelch-like 7 (Drosophila)  220239_at 2.63 

CRYGD crystallin, gamma D. Dominant structural component of vertebrate eye lens.  207532_at 2.59 

TRA1 (GP96) tumor rejection antigen (gp96) 1. Molecular chaperone that functions in the 
processing and transport of secreted proteins.   

 200598_s_at 2.41 

CFHL1; CFH complement factor H-related protein 1; complement factor H. Secreted 
plasma protein synthesized primarily by hepatocytes.   

(166) 215388_s_at 2.36 

HSPA1A (HSP70-1) heat shock 70kD protein 1A. Likely involved in regulation of cell growth. 
Mediates the folding of newly translated polypeptides.    

(167) 200799_at 2.35 

FHL2 (DRAL) four and a half LIM domains 2. Transcriptional co-activator which 
translocates to the nucleus upon activation of the Rho GTPase signalling 
pathway. Enhances the transcriptional activation of Wnt-responsive genes 
by β-catenin. Associates with PS2 in vitro.  

(168-170) 202949_s_at 2.27 

TMEM14A transmembrane protein 14A  218477_at 2.14 

C1QBP complement component 1, q subcomponent binding protein. First 
component of pathway of complement activation.  

 214214_s_at 2.04 

LAPTM4B lysosomal associated protein transmembrane 4 beta. Overexpressed in 
several cancers, thus most likely involved in cell proliferation.  

(171-173) 214039_s_at 1.72 

     

Not annotated    
BEX1 brain expressed, X-linked 1. Nuclear protein. Expressed in acute myeloid 

leukemias.  
(174) 218332_at 6.12 

PRG1 (Serglycin) proteoglycan 1, secretory granule. Peptide core of the proteoglycan in the 
secretory granules of promyelocytic leukemic HL-60 cells.  

(175) 201859_at 3.76 

FLJ22746 hypothetical protein FLJ22746   220637_at 3.39 

C11orf10 chromosome 11 open reading frame 10   218213_s_at 2.20 

DREV1 DORA reverse strand protein 1. Highly expressed in CD33+ and CD14+ 
cells (SymAtlas). Coded by the opposite strand of the DORA gene such 
that DORA is in an intron of the DREV1 gene. DORA is expressed uniquely 
in cells of the immune system, particularly in macrophages.  

(176) 217868_s_at 2.00 

C20orf67 (PCIF1) chromosome 20 open reading frame 67. Phosphorylated CTD-interacting 
factor 1. Interacts with the phosphorilated C-terminal domain of the RNA 
polymerase II largest subunit.  May play a role in mRNA synthesis.  

(177) 222044_at 1.91 

PMAIP1 (APR) phorbol-12-myristate-13-acetate-induced protein 1.  Essential mediator of 
p53-dependent apoptosis.  Highly expressed in adult T-cell leukemia cell 
line.  

 204285_s_at 1.84 

GABARAPL1 GABA(A) receptor-associated protein like 1. Estrogen-regulated protein.  
Promotes tubulin assembly and microtubule bundling.  

 211458_s_at 1.81 

TXNIP (VDUP1) thioredoxin interacting protein. Regulator of the cellular redox status, 
possesses tumor suppressive activity and would act as a transcriptional 
repressor. Would be critical for the development and function of NK cells.  

(178-180) 201008_s_at 1.79 
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The differentially expressed genes were also imported into Ingenuity Pathways 

Analysis software to identify functional relationships between genes based on known 

interactions in the literature (see Table 3 and Figure 7A). Interestingly, the biological function 

‘Hematological system development and function’ is associated with three of the four highest 

ranked biological networks. Canonical signalling pathways associated with the differentially 

expressed genes are shown in Figure 7B.  

 
Table 3. Biological networks generated by Ingenuity Pathway Analysis. Genes in bold  are differentially 
expressed in the microarray analysis. Only networks with a significance score of 3 or higher (P ≤ 0.001) are 
shown. The first network is shown in Figure 7.  
 
Network Genes in network Score Top Functions 

1 

ADA, BTK, C1QBP, CAT, CEBPB, CXCR4, EVI1, FHL2, GADD45A, H2-D1, 
HSPA1A, HSPB1, IFI16, IFITM3, IL1B, IRF8, LR8, MAL, MIA, PHLPB, 
PMAIP1, PRKCB1, PTPN11, RGS2, RPS6, RPS6KA2, S100A6, SERPINE2, 
SMARCA4, TCF4, TNFAIP2, TNFAIP3, TNFSF10, TRA1, TRAF4 

52 

Cellular Growth and 
Proliferation, Cell Death, 
Hematological System 
Development and Function

2 

CASP10, CDK2, CDKN2B, CKS2, CYCS, DDX21, FTH1, GADD45G, 
GSK3A, GTF2I, HSPB1, KLF2, LGALS3, LRRFIP1, MARCKS, MYC, 
NALP1, PDCD8, PNN, PPIA, PPP1R8, PRDX1, PRDX2, PSEN2, PTEN, 
RPL35, RPL36A, RPS27, SF3B1, SF3B3, SHMT2, TF, TFR2, TFRC, 
TNFRSF8 

20 

Cellular Function and 
Maintenance, Small 
Molecule Biochemistry, 
Cell Death 

3 

ABCA1, APP, ARG1, ARHGEF12, BZW2, CD59, DOCK1, EVL, F13A1, 
FLOT1, FPRL1, G0S2, G6PD, IL13, ITGAE, KIF5A, KIF5B, KIF5C, KNS2, 
MN1, MUC5AC, NHLH1, PLS3, PTK2, RELA, RUNX3, SATB1, SLC2A5, 
SPON1, TAL1, TAX1BP3, TGFB1, TNFAIP2, TNS, USF2 

20 

Hematological System 
Development and Function, 
Tissue Morphology, 
Organismal Survival 

4 

ADCYAP1, AKAP12, ANK2, BASP1, BCL6, BST2, CABP1, CCL6, CTDSPL, 
CYBB, FPRL1, HMGN2, HOXA9, ICAM4, ITGA4, ITGB7, ITPR1, KLF6, 
MADCAM1, MCM3AP, NCOR2, ORM1, RAB31, RALBP1, RB1, RBBP6, 
RPSA, SCN3A, SERPINB9, SKIIP, SLC1A3, SLC8A1, TNF, TPR, UBR2 

17 

Cellular Movement, 
Hematological System 
Development and Function, 
Immune Response 

5 

ARF1, ARF5, ATP1B1, ATR, BCL3, BLM, CHD3, CHEK1, CHEK2, EEF1E1, 
IFI16, IGHM, ING1, IQSEC1, KIAA0992, KNTC1, MSN, NBS1, NDN, PHYH, 
PIP5K1B, PLK1, PSCD4, RAB14, RAD17, RDX, RPA1, RPA2, RXRB, 
SMARCB1, THRAP2, THRB, TP53, VIL2, WRN 

17 

Cell Cycle, DNA 
Replication, 
Recombination, and 
Repair, Cancer 

6 

CKS2, DLK1, E2F4, EGFR, ELF1, EXOSC5, GADD45B, HMGB3, KITLG, 
KLF6, LEP, LSM5, MACF1, MAPK8, NFIB, PLSCR1, PRG1, RIPK4, 
SERPINE2, SFPQ, SFTPC, SKI, SMAD4, SMURF2, SNRP70, TGFB1, 
TNFRSF17, TOP1, TPM1, TRA1, TRAF5, TRIM33, TXNIP, USF2, WAP 

17 
Cancer, Cellular Growth 
and Proliferation, 
Gastrointestinal Disease 

7 

ACTN1, ACTR2, ACTR3, ADAM28, ANP32A, ARHGAP5, CDC42, CDH5, 
CDK5R2, COX7A2L, CRYGD, DAF, EGF, EIF4A1, ETV5, F2, G6PD, 
HGFAC, HNRPL, ITSN2, KHDRBS1, KHDRBS3, MEF2A, MKNK1, NACA, 
NF1, NR4A3, PDCD4, RASGRP3, SET, SETBP1, SIM1, THBD, VEGF, WAS

15 

Cell-To-Cell Signaling and 
Interaction, Cellular 
Assembly and 
Organization, Cell 
Morphology 

8 

AGT, AMBP, C3, CCR9, CD209, CFH, CLDN1, EDNRA, ERG, GRK5, HLX1, 
HNRPA1, HSD11B1, ICAM2, IFIT1, IGL@, IL4, IL15, ITIH1, ITIH2, ITIH3, 
ITIH4, ITIH5, JUN, LSP1, MAFF, MST1, MYH7, NFE2, NPR3, OXT, RNPC2, 
TBX21, TJP2, TNS 

15 

Molecular Transport, 
Cellular Movement, Cell-
To-Cell Signaling and 
Interaction 
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Figure 7. Data analysis using Ingenuity Pathways Analysis. (A) Biological network containing 30 
differentially expressed genes (Network 1 from table 3). (B) Canonical signaling pathways associated with the 
differentially expressed genes. The probability that the association between genes and a pathway is explained by 
chance alone is indicated on the Y-axis.  
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Next, we did an extensive literature survey for the differentially expressed genes. The 

gathered gene information is added to tables 1 and 2. We found that about one third of both 

upregulated and downregulated genes has been reported to be expressed in hematopoietic 

tissue. These genes are underlined in tables 1 and 2. Remarkably, more than 75% of the 

differentially expressed transcription factors have been involved in hematopoiesis. In 

addition, many differentially expressed genes are involved in cell proliferation, gene 

expression regulation, cytoskeleton regulation and protein degradation. In the following 

paragraphs, we discuss these genes in more detail.  

 

Genes involved in hematopoiesis   

Several genes that were significantly upregulated in the CD7+ population play an 

essential role in lymphoid development. IGHM, BTK and PRKCB1 are essential for B-cell 

development, SMARCA4 and SATB1 are essential for T-cell development and TCF4 (alias 

E2-2) is required for both B- and T-cell development. Mutations in ADA lead to human SCID 

disease, characterized by a deficiency of both B and T cells. BCL6 is essential for the 

differentiation of germinal center B cells. Interestingly, BCL6 was recently shown to be a 

direct target of transcriptional activation by IRF8 (alias ICSBP1) (17), which is also highly 

upregulated in the CD7+ population. MCM3AP, a protein that is associated with MCM3 of 

the DNA replication complex, is also specifically upregulated in germinal center B cells (18, 

19). The fact that LYN-deficient mice have impaired development of germinal centers in 

spleen and have decreased expression of MCM3AP (20), creates a link between MCM3AP 

and LYN, which is non-significantly upregulated in the CD7+ population.  

Other genes with a known function in lymphoid cells include the chemokine receptor 

CCR9 and the trancription factors MEF2A and RUNX3. Interestingly, RUNX3 was recently 

shown to transactivate the promoter of ITGA4 (alias CD49D) (21), which is also significantly 

upregulated in the CD7+ population. ITGA4 mediates adhesive interactions of HSCs with the 

extracellular matrix of the BM stroma, which are essential for normal hematopoiesis and 

homing of HSCs to the BM (22).  

The list of lymphoid-affiliated genes is greatly expanded when also the genes that are 

non-significantly upregulated in CD7+ cells are considered. These include amongst others the 

transcription factors ZNF1A1 (Ikaros), KLF6 and NFATC3, the membrane proteins CD10 

(CALLA), LY86 (Lymphocyte Antigen 86) and LRMP (Lymphoid Restricted Membrane 

Protein), the signalling molecules Lyn, SYK and ZAP70, the lymphoid-specific helicase 

HELLS and the early B-cell marker IGJ (immunoglobulin J chain). Also EZH2, FUS, 
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DCLRE1C, IGF2R and SMCY are involved in lymphoid development according to Ingenuity 

software. The expression of these genes might be truly differential, because also GATA3 and 

CD7, although both differentially expressed as determined by Real-Time PCR, did not pass 

the stringent significance test of the microarray analysis. The multiple comparison correction 

of the p-value to reduce the chance of generating false positives also increases the chance of 

not detecting truly differentially expressed genes.   

In addition, many significantly upregulated genes are specifically expressed in 

lymphoid tissues, suggesting a possible role in lymphoid development. These include TRAF4, 

TNFAIP3, EVL, FLJ13197, BASP1 and ADAM28. Interestingly, ADAM28 is a ligand for 

the leukocyte integrin ITGA4 (alias CD49D) (23), which is also significantly upregulated in 

the CD7+ population (see higher). EVL binds the SH3 domain of LYN (24), which is also 

upregulated, although not significantly. TRAF3IP3, CHD3, ARHGAP25, FLJ22635 and 

c11orf21 are also highly expressed in lymphoid tissues according to GeneNote and 

GeneAtlas.  

Several other significantly upregulated genes are expressed in the hematopoietic 

system, namely TRIB2, TNFAIP2, PSCD4, P2RY14, HLX1, EMR2, LRRFIP1, TRIM33, 

TRAF5 and NALP1. SETBP1 binds SET (25), which is disrupted by a translocation in acute 

undifferentiated leukemia (AUL), and which is also upregulated in CD7+, albeit not 

significantly. BAALC is highly expressed by CD34+ BM progenitor cell subsets and is 

downregulated upon in vitro differentiation (26). The oxysterol binding protein OSBPL3 

(alias ORP3) is highly expressed in the most primitive CD34+CD38- fraction and is 

downregulated upon proliferation and differentiation (27). The physiological function of 

OSBPL3 remains to be elucidated, but since oxysterols are potent inhibitors of cell growth 

and induce apoptosis in CD34+ cells (28), oxysterols and their binding proteins might have a 

regulatory role in HSC proliferation and differentiation. Oxysterols are hydroxylated 

derivatives of cholesterol, and interestingly, a cholesterol transporter, ABCA1, is significantly 

upregulated in the CD7+ population, supporting the hypothesis that cholesterol and its 

derivatives play a role in hematopoiesis. 

Amongst the significantly downregulated genes a considerable number of genes are 

affiliated to myeloid differentiation. For instance, the transcription factors TAL1 (alias SCL), 

CEBPB (alias NF-IL6), EVI1 and IFI16 are well known for regulating myeloid 

development. Since IFI16 is also constitutively expressed by lymphoid cells (29, 30), it might 

also play a role in lymphoid development. It seems plausible that IFI16 expression must be 

downregulated in the CLP for lymphoid development to take place, but is upregulated again 
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later in development. TNFSF10 (alias TRAIL) and RGS2 are also believed to be involved in 

myeloid differentiation. Expression of the pro-inflammatory cytokine IL1B is regulated by 

the Ets domain transcription factor PU.1/Spi-1, which is constitutively expressed in 

monocytic cells (31). The IL1B promoter also contains a binding site for CEBPB that would 

be important for maximal transcriptional activity (31). The lower expression of IL1B in the 

CD7+ population therefore could be the direct result of the 3.4-fold decrease in CEBPB 

expression.  

Other myeloid cell-specific genes include PRG1, UROD, PRDX2 and ICAM4. Also 

DLK1 (alias Pref-1) might be involved in myeloid development, as DLK1 is specifically 

upregulated after ectopic expression of the myeloid cell nuclear differentiation antigen 

(MNDA) in K562 cells (32). In addition, levels of DLK1 mRNA would increase markedly 

during megakaryocytic differentiation of CD34+ HSCs (33). DLK1 is a transmembrane 

protein homologous to the Delta/Serrate ligands of Notch. Although it lacks the characteristic 

DSL motif necessary for Notch binding, DLK1 interacts with Notch and inhibits Notch 

activation, as shown by the decrease in HES-1 expression (34). Therefore, it is also possible 

that the downregulation of DLK1 in the CD7+ population correlates with increased Notch-

signalling. However, HES-1 or other downstream target genes of Notch are not differentially 

expressed between CD7+ and CD7- cells. DLK1 is also expressed on the surface of fetal 

stromal cell lines that maintain repopulation activity of hematopoietic precursors in vitro (35). 

DLK1, either added in soluble form or expressed on stromal cells, promotes the formation of 

‘cobblestone areas’ of proliferation, which contain both primitive high-proliferative 

progenitors and stem cells with repopulation capacity (35). DLK1 is also expressed on the 

surface of thymic epithelial cells (36). DREV1 is coded by the opposite strand of the DORA 

gene in such way that DORA is embedded in an intron of the DREV1 gene (37). Interestingly, 

DORA is expressed uniquely in cells of the immune system, particularly in macrophages.  

In addition, several downregulated genes are expressed in myeloid leukemias, 

suggesting a possible role in myeloid development. These include MLLT3, BEX1, 

ARHGEF12, PTPN11 (alias SHP2), MN1 and S100A6 (alias Calcyclin).  

Several other significantly downregulated genes are expressed in the hematopoietic 

system, some of them also in the lymphoid lineage. As mentioned before for IFI16, it is 

possible that the expression of these genes needs to be downregulated in the progenitor stage 

for lymphoid differentiation to take place, and their expression might be upregulated in later 

stages of lymphoid development. For instance, HMGB3 is highly expressed in murine BM 

erythroid cells, in HSCs, and in most CLP and CMP cells. Enforced expression of HMGB3 in 
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BM cells inhibits both myeloid and B-cell differentiation, suggesting that endogenous 

HMGB3 expression levels must drop to allow myeloid and B-cell differentiation (38). This 

category of genes also includes the transcription factors KLF2, ETV5 and ELF-1 and the T-

cell differentiation protein MAL. Also the T-cell specific transcription factor GATA3 belongs 

to this category. GATA3 is essential for T-cell differentiation (39) and is expressed in HSC, 

CLP and pro-T and pre-T cells, but not in B-cell progenitors or myeloid progenitors (2). 

GATA3 is clearly downregulated in the CD7+ population according to our Real-Time PCR 

data (see Figure 5), although the downregulation detected by the microarray was not 

statistically significant. The neuropeptide OXT (oxytocin) is normally produced by thymic 

epithelial cells (40), while its corresponding receptor is expressed on thymocytes (41). 

Oxytocin signalling would be involved in the control of T-cell proliferation and survival (41). 

Interestingly, the transcription factor MAFF, which is also strongly downregulated in the 

CD7+ population, was shown to bind the promoter of the oxytocin receptor gene (42).  

Several of the downregulated genes might be associated with HSC function, and their 

downregulation might therefore be correlated with the onset of differentiation. For instance, 

long-term repopulating activity of HSCs was shown to be contained to the HSC fraction 

expressing HMGB3 (38), and consequently, LT-HSCs were recently shown to express higher 

levels of HMGB3 (43). Also NDN and MLLT3 showed higher expression in LT-HSCs (43). 

Elimination of reactive oxygen species by catalase (CAT) was recently shown to be required 

for HSC self-renewal (44) and accordingly, CAT was upregulated in LT-HSC (43). The 

downregulation of other transcripts implicated in oxidoreductase activity (PRDX2, 

ALDH6A1, AKR7A2 and FLJ22222) in the CD7+ population might also correlate with loss 

of self-renewal.  

Also expressed in the hematopoietic system are ICAM2, BST2, TXNIP, CXCR4 and 

LEPR. Interestingly, leptin binding leads to recruitment and phosphorylation of the SH2 

domain-containing tyrosine phosphatase PTPN11 (alias SHP-2) (45), which is also 

downregulated in the CD7+ population (see above). LEPR and PTPN11 therefore might be 

components of a single signalling pathway in HSCs that is attenuated upon lymphoid 

commitment. PSEN2, a critical component of the γ-secretase complex that is responsible for 

the proteolytic cleavage of the Notch receptor after ligand binding (46), is also downregulated 

in the CD7+ population. Interestingly, PSEN2 was shown to interact with the transcriptional 

co-activator FHL2 (47), which is also downregulated.  
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Genes involved in proliferation and apoptosis 

The list of upregulated genes contains many genes known to act as negative regulators 

of cell proliferation, for instance LPIN1 (Lipin1), MCM3AP, ATR, POLS, SMARCA4, 

MACF1, KNTC1, RBBP6, TRIB2 and NF1. Murine Nf1-/- fetal liver cells are hypersensitive 

to GM-CSF (48) and generate a JMML-like phenotype in recipient mice (49). Therefore, 

upregulation of NF1 in CLP could function to make these cells less sensitive to GM-CSF.  

Many downregulated genes are positive regulators of cell proliferation. These include 

LEPR, IFI16, S100A6 (alias Calcyclin), CKS2, LAPTM4B, HSPA1A and several ribosomal 

proteins such as RPL35, RPS27, RPS27L, RPS6 and RPL36A, the latter whose 

overexpression was shown to increase cell proliferation (50). A decrease in the expression of 

mRNAs that encode ribosomal proteins accompanies shut-off of cell division (51). However, 

some downregulated genes are negative regulators of cell proliferation, for instance NDN, 

KHDRBS3 (aliasT-STAR), TXNIP and GADD45A.  

In addition, several genes involved in apoptosis were differentially expressed: NALP1, 

RERE, TRAF4 and TRAF5 were upregulated, while PMAIP1 was downregulated. Overall, 

this expression pattern of positive and negative regulators of proliferation tends to point to an 

intrinsic lower proliferative capacity of the CD7+ population compared to the CD7- 

population.  

 

Genes involved in transcription/translation regulation 

In addition to transcription factors, also many other proteins involved in gene 

expression were differentially expressed. The list of significantly upregulated genes contains 

for instance many genes involved in splicing, such as CCNL1, SFPQ, SF3B1, RNPC2, PNN 

and METTL3, which is also involved in posttranscriptional modification by methylating 

adenosine residues of some mRNAs. HNRPA1 is involved in splice site selection and is 

responsible for the transport of mRNA from the nucleus to the cytoplasm. EIF4A1 is a 

translation initiation factor, and NACA is required for the intracellular translocation of newly 

synthesized polypeptides. TPR is implicated in the import of proteins into the nucleus. 

SLC38A1 is an amino acid transporter. The RNA helicase DDX21 is involved in ribosomal 

RNA synthesis. Several other splicing factors and proteins involved in protein biosynthesis 

are present in the list of non-significantly upregulated genes.  

These types of genes are also found amongst the significantly downregulated genes. 

C20orf67 may play a role in mRNA synthesis (52), while LSM5 and KHDRBS3 (alias T-

STAR) are involved in pre-mRNA splicing. BZW2 has translation initiation factor activity 
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and HSPA1A mediates the folding of newly translated polypeptides. CTDSPL (alias SCP3), 

belongs to a family of 3 closely related small CTD phosphatases that dephosphorylate Ser 

residue 5 in the C-terminal domain (CTD) of the largest subunit of RNA polymerase II and 

thus negatively regulate RNA polymerase II activity (53). SCP1 is expressed in all tissues but 

the brain and functions to silence the expression of neuronal genes in non-neuronal tissues. 

Upon neuronal differentiation of murine ES cells, the expression of SCP1 is downregulated 

(54). It would be interesting to find out whether SCP3 fulfills an analogous function in 

suppressing lymphoid-specific genes in non-lymphoid cells.  

The differential expression of factors of the transcription/translation machinery might 

be an important mechanism for regulating lymphoid-specific gene/protein expression in the 

CD7+ CLP cells. There is evidence that alternative splicing of mRNA, which permits the 

generation of several proteins from one gene by alternative exon usage, can be modulated in a 

cell type- or developmental stage-specific way (55). Tissue-specific splicing can be the result 

of concentration differences of ubiquitously expressed splicing factors, but tissue type- or 

developmental stage-specific splicing factors have also been described (56).  

 

Genes involved in regulation of the cytoskeleton 

Many differentially expressed genes are involved in the regulation of the cytoskeleton. 

The list of upregulated genes contains for instance MACF1, Palladin, TBCD and DOCK1. 

More cytoskeleton-related genes are significantly downregulated: PLS3, KIAA1102, TNS1, 

ACTN1, PIP5K1B, ARHGEF12, MARCKS, ACTR2, HSPB1 and GABARAPL1. Although 

little is known about the cytoskeleton of hematopoietic stem and progenitor cells (57), it 

might be involved in the regulation of differentiation in several ways. The cytoskeleton is a 

scaffold for various signal transduction pathways (58). In addition, alterations in its structure 

can lead to the relocation and clustering of certain cytoskeleton-linked surface molecules. 

Moreover, the cytoskeletal organization can regulate gene expression by controlling the 

nuclear import of certain transcription factors (59).  

 

Genes involved in protein degradation 

A number of genes coding for proteins involved in the ubiquitin-proteasome system of 

proteolysis, were significantly upregulated: TNFAIP3 (alias A20), UBR2, TRIM33 and 

USP34. Other proteolytic enzymes that were upregulated are ADAM28 and DPEP2. The list 

of non-significantly upregulated genes contains much more genes involved in ubiquitination. 

Proteins degraded by the ubiquitin-proteasome pathway include cyclins and other regulators 
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of the cell cycle, and transcription factors (60). Protein degradation is thus a mechanism to 

regulate the concentration of many regulatory proteins.  

 

Genes not expressed in hematopoietic tissue 

The list of downregulated genes also contains genes that are normally expressed in 

non-hematopoietic tissue, for instance CRYGD, CFHL1 and KHDRBS3 (alias T-STAR). 

These genes were weakly expressed in the CD7- population, and shut down in the CD7+ 

population. The expression of these genes in the CD7- population is in line with the reported 

‘promiscuous’ gene expression in stem cells (61).   

 

Discussion  

The CD7+ subpopulation of CD34+CD38- human cord blood cells was identified by 

Hao et al. as a primitive common lymphoid progenitor population with the ability to generate 

B, NK and dendritic cells, but with no potential for myeloid or erythroid differentiation (9). In 

this paper, we confirmed the lymphoid-restricted differentiation potential of this cell 

population in a co-culture assay using MS-5 stromal cells. In addition, we showed that this 

cell population has strong T-cell differentiation potential in hybrid human-mouse FTOC. 

Therefore, CD34+CD38-CD7+ cord blood cells have full lymphoid differentiation potential 

and are true CLPs. 

Gene expression profiling of CD34+CD38-CD7+ cells and their CD7- counterparts 

using Affymetrix oligonucleotide microarrays revealed the differential expression of many 

transcription factors, cell cycle genes, signal transduction molecules and proteins involved in 

gene expression and cytoskeleton regulation. Many genes involved in negative regulation of 

the cell cycle were significantly upregulated in the CD7+ population, while positive regulators 

were mostly downregulated. Whether CD7+ cells intrinsically have a lower proliferative 

capacity remains to be determined, as the cytokines used in the MS-5 cocultures support 

myeloid differentiation, and thus it is not surprising that a lymphoid-restricted progenitor does 

not perform well in those culture conditions.  

Many upregulated genes are lymphoid-affiliated, whereas many downregulated genes 

are related to the myeloid lineage. This expression pattern is in agreement with gene 

expression studies on murine hematopoietic stem and progenitor cells, which showed that 

CLPs express markers of B, T and NK cells but no myeloid markers, and conversely, CMPs 

express granulocytic/monocytic and megakaryocytic/erythroid markers but no lymphoid 

markers (61, 62). The low-level ‘promiscuous’ expression of lineage-specific genes before 
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commitment to a particular lineage, is referred to as ‘lineage priming’ (63). Upon 

commitment to a particular lineage, cells upregulate the appropriate lineage-specific genes, 

and suppress the inappropriate genes of the alternative lineages. Surprisingly, murine HSCs 

express many myeloid-affiliated genes but almost no lymphoid-affiliated genes, while their 

immediate progeny, multipotent progenitors (MPP), exhibit both myeloid and lymphoid 

promiscuity (61, 62). Moreover, murine HSCs express a lot of genes affiliated to non-

hematopoietic tissues (62), which may explain their reported capacity to differentiate into 

non-hematopoietic cell types (64). Consistent with these data, our list of significantly 

downregulated genes also contained a number of non-hematopoietic genes.  

Our study is the first to describe a global gene expression profile of a human common 

lymphoid progenitor. In their recent study, Haddad et al. determined the gene expression in 

the related cord blood population CD34+CD45RAhiCD7+, which probably comprises 

CD34+CD38-CD7+ cells, because the latter also express CD45RA (9). The Haddad 

CD34+CD45RAhiCD7+ population displayed strong NK and T cell potential, but also  

substantial myelo/erythroid potential (65). This is not surprising because most 

CD34+CD45RAhiCD7+ cells are CD38+ and, as mentioned in the paper by Hao et al. and as 

we noticed ourselves (data not shown), even low expression of CD38 on CD34+CD7+ cells is 

sufficient to confer these cells myeloid differentiation potential. CD38 is a marker expressed  

on more mature progenitors of all lineages. So therefore, the CD34+CD45RAhiCD7+ 

population is presumably heterogeneous and contains both lymphoid- and myeloid-committed 

progenitors, which can also express low levels of the CD7 antigen. Accordingly, the Haddad 

CD7+ population expressed increased levels of the T-cell receptor γ chain (cDNAs TRG, 

TRGC2 and TRGV9), terminal deoxynucleotidyl transferase (DNTT), and strikingly many 

genes that are specifically expressed in myeloid cells: calgranulin A (S100A8), the 

macrophage colony stimulating factor receptor CD115 (CSF1R), the myeloid-specific 

transcription factor CEBP/D (CEBPD), and the neutrophil granule proteins lysozyme (LYZ), 

myeloperoxidase (MPO), elastase 2 (ELA2), azurocidin (AZU1), cathepsin G (CTSG) and 

proteinase 3 (PRTN3). None of these genes was expressed by our CD34+CD38-CD7+ or CD7- 

populations, indicating they are immature and not contaminated with T-cell committed or 

myeloid cells.  

Haddad et al. recently identified an identical CD34hiCD45RAhiCD7+ population in 

human fetal BM and showed that the most immature CD34hiCD1a- fetal thymocytes share 

their surface phenotype, as well as their mRNA expression of MPO and germline TRGV9, 

which suggests that the CD34hiCD45RAhiCD7+ fetal BM cells colonize the fetal thymus (66). 
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Using CFSE labelling, the authors showed that these cells indeed efficiently enter murine 

thymic lobes in a hanging-drop culture, in contrast to their CD34hiCD45RAintCD7- 

counterparts. However, the possibility exists that it is actually the CD34+CD38-CD7+ 

subpopulation that are the true thymic immigrants. A direct comparison in FTOC using equal 

numbers of both cell populations would clarify this issue. In addition to their T-cell 

differentiation potential, CD34hiCD1a- fetal thymocytes would possess strong NK-cell 

potential, as well as B- and dendritic cell potential, but would lack granulocyte/macrophage 

potential (66). Analogously, Weerkamp et al. recently showed that the most immature 

thymocyte subset (CD34+CD1a-) from the adult human thymus has differentiation potential 

for B, NK and dendritic cells as well as myeloid and erythroid lineage potential (67), leading 

to the hypothesis that the human thymus is seeded by a multipotent stem cell-like progenitor 

instead of a common lymphoid progenitor. Still, the multilineage differentiation capacity of 

both fetal and adult early thymocytes remains to be shown at the single cell level, thus the 

possibility exists that, analogously to the corresponding murine DN1 thymocyte stage 

(CD44+CD25-) (68), the CD34+CD1a- thymic subset is heterogeneous and contains multiple 

progenitors with different differentiation potential. It also remains elusive whether the DN1 

subsets derive from the same thymus-seeding cell or have different ancestors. Therefore, it 

might be possible that T-committed progenitors in the human thymus derive from 

CD34+CD38-CD7+ thymic immigrants, while the other thymic cell types might derive from 

other progenitors in the CD34hiCD45RAhiCD7+ cord blood population.  

Interestingly though, multiple differentially expressed genes in the Haddad study were 

also differentially expressed in our study. For instance, IRF8 (ICSBP1), CCR9, RAB31, 

TRAF4, SCN3A, SLC2A5, TRIB2, KIAA0992 (Palladin) and SPON1 are upregulated in the 

CD7+ population of both studies, and in our study they are amongst the most highly 

upregulated genes with a fold change of more than 3-fold. GRK5, NPR3, TJP2, BEX1, 

PSEN2, DLK1, TNFSF10 (TRAIL), CFH, CFHL1, HSPB1, EVI1, MLLT3, TAL1, LAPTM4B 

and FLJ22746 are downregulated in the CD7+ population of both studies. BEX1 showed the 

strongest downregulation in our study (6-fold), and NPR3 and LAPTM4B showed high 

average expression levels. The expression of these genes in hematopoietic tissue has not been 

documented before, so therefore it would be worthwhile to study these genes in more detail, 

as they might represent novel stem cell related or myeloid cell related genes. 

Supporting a role in hematopoietic differentiation of the differentially expressed genes 

from our study is the observation that 146 of the 190 significantly differentially expressed 

genes are also differentially expressed between one or more consecutive differentiation stages 
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of early human T- and B-cell development (11, 14) (See supplementary table 2). Of those, 80 

are differentially expressed during T- and B-cell development, 38 only during T-cell 

development and 28 only during B-cell development. For many of those genes the differential 

expression (up- or downregulation) between CD7+ and CD7- is the same as between cord 

blood CD34+Lin- and the most immature T- or B-cell stage (CD34+CD38-CD1- and pro-B 

respectively).  

In conclusion, our molecular characterization of the human cord blood CD34+CD38-

CD7+ common lymphoid progenitor generated plenty of interesting genes for further study. 

Overexpression and RNA interference of selected genes will learn whether their upregulation 

or downregulation is critical for the developmental transition of multipotent stem cells to the 

common lymphoid progenitor stage.  
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Supplementary Methods 

 

First cycle of amplification 

RT-synthesis I (RT-I) 

Total RNA derived from 100,000 cells was reverse-transcribed in a total volume of 20 µl, 

which included 10x first strand buffer, 2 µl of 25 mM MgCl2,  2 µl of 0.1 M DTT (both from 

Invitrogen), 500 ng PAGE-purified oligo-d(T)24-T7 primer [5’-GGC CAG TGA ATT GTA 

ATA CGA CTC ACT ATA GGG AGGCGG 24dT-V-3’] (Microsynth, Balgach, 

Switzerland), 1 µl dNTPs (10 mM) (Fermentas, St.Leon-Rot, Germany), 1 µl RNase inhibitor 

(RnaseOUT, 40 U/ml, Invitrogen) and 400 U SuperScript II Reverse Transcriptase 

(Invitrogen). The mixture of RNA and primer, in a volume of 10 µl, was heated to 70°C for 

10 min and chilled on ice before adding buffer, deoxynucleotides, DTT, RNase inhibitor and 

reverse transcriptase. The reactions were incubated at 42°C for 60 min and chilled on ice. 

Finally, 1 U RNase H (Invitrogen) was added, followed by an incubation at 37°C for 20 min, 

a deactivation step at 65°C for 20 min and purification by Microcon YM-50 columns 

(Millipore). 1 µl of complementary DNA (cDNA) thus generated was used to check the 

integrity of the starting RNA and the generated cDNA by real-time PCR for the housekeeping 

gene hypoxanthine phosphoribosyltransferase (HPRT). 

 

Second strand synthesis I (SSS-I)  

For each reaction the cDNA generated from RT-I (20 µl) was used and 2 µl (10 µM) HPLC-

purified degenerative oligonucleotide primer (DOP) [5’ CCG ACT CGA GNN NNN NAT 

GTG G-3’; N = A,C,G,T] (Hoffmann-La Roche Ltd. Basel. Switzerland) was added. Second 

strand synthesis was performed in a total volume of 100 µl, which included 10x AmpliTaq 

Gold Buffer, 6 µl of 25 mM MgCl2 (both from Applied Biosystems, San Jose, CA), 2 µl of 10 

mM dNTPs (Fermentas), 2.5 U AmpliTaqGold Polymerase (Applied Biosystems) and HPLC-

purified water (Ambion, Cambridgeshire, UK). All cDNA samples were subjected to second 

strand synthesis under the following conditions using a Master Gradient Thermocycler 

(Eppendorf, Hamburg, Germany): 95°C for 10 min, 30°C for 10 min, 30 min 30°C to 70°C 

(3.5°C/2 min 30 s), 15 min 70°C, 4°C for a maximum of 20 min. Finally, a purification step 

using Microcon YM-50 columns (Millipore) was performed. 
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Linear T7-RNA in vitro transcription (IVT-I) 

The column purified dsDNA in a volume of 8 µl was supplemented with 4 µl of 5x 

transcription buffer, 1.5 µl of 100 mM GTP, ATP, CTP and UTP, and  2 µl (5000 U) of T7-

Polymerase (all from the Ribomax Large Scale RNA production Systems – SP6 and T7 kit, 

Promega, Leiden, The Netherlands) and linearly transcribed in vitro during 4 h at 37°C. RNA 

recovery and removal of template DNA was achieved by DNase treatment (RQ1 RNase free 

Dnase, Promega) and RNeasy purification (Qiagen). 

 

Second cycle of amplification 

RT synthesis II (RT-II) 

The amplified RNA samples were reverse transcribed into cDNA using 500 ng of random 

hexamers with 10x first strand buffer, 2 µl of 25 mM MgCl2, 2 µl 0.1 M DTT (all from 

Invitrogen), 1 µl RNase inhibitor (Invitrogen) and 1 µl of 10 mM dNTPs. The mixture of 

RNA and primer was heated to 70°C for 10 min and chilled on ice before adding buffer, 

deoxynucleotides, DTT, RNase inhibitor and 400 U (2 µl) SuperScript II Reverse 

Transcriptase (Invitrogen). Thereafter, synthesis was continued using an Eppendorf Master 

Gradient cycler at 25°C for 10 min, 37°C for 60 min, 70°C for 10 min, 4°C for 20 min. 1 µl of 

cDNA of RT-II was removed to check the integrity by real-time PCR for HPRT. Finally, 1 µl 

of RNase H (Invitrogen) was added and the cDNA sample was incubated at 37°C for 30 min. 

 

Second strand synthesis II (SSS-II) 

The reaction mixture of RT-II (20 µl) was supplemented with 500 ng (1 µl) PAGE-purified 

oligo-d(T)24-T7 primer [5’-GGC CAG TGA ATT GTA ATA CGA CTC ACT ATA GGG 

AGGCGG 24dT-V-3’] (Microsynth), 10 µl 10x AmpliTaq Gold Buffer, 6 µl of 25 mM 

MgCl2 (both from Applied Biosystems), 2 µl of 10 mM dNTPs (Fermentas), 2.5 U 

AmpliTaqGold Polymerase (Applied Biosystems) and HPLC purified water (Ambion) to 

obtain a total volume of 100 µl. The reaction was subjected to 95°C for 10 min, 37°C for 10 

min, 42°C for 10 min, 21 min from 42°C to 70°C (4°C/3 min), 70°C for 10 min and 4°C for a 

maximum of 20 min. Finally, a purification step using Microcon YM-50 columns (Millipore) 

was performed. 

 

Linear T7-RNA in vitro transcription II (IVT-II) and labelling  

The column-purified dsDNA was transcribed and biotin-labelled using the ENZO BioArray 

HighYield RNA Transcript Labelling Kit (ENZO, Farmingdale, NY) according to the 
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manufacturer’s instructions. cRNA recovery and removal of template DNA was achieved by 

DNase treatment (Promega) and RNeasy purification (Qiagen). Purified amplified RNA was 

quantified either by absorbance at 260 nm or by using a capillary electrophoresis system 

(Agilent, Palo Alto, CA). 
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Supplementary Table 1.  Primer sequences 

KIAA0125-FW  GTTTGAATTTCTGCACGCTGTT 
KIAA0125-RV  CACTCATACACAAAATACCCAGCAT 
PRKCB1-FW  TCCAAACTTCCAGAAACTCATCAA 
PRKCB1-RV  TGAAGCATTTTGGTATCAGACACA 
BAALC-FW  AGAAGGAAATGCAGGGCACAT 
BAALC-RV  TGGTTTAACTTCTGGTTGCTGTCT 
BASP1-FW  AGCTTTCAGACAGAGCCCACTTA 
BASP1-RV  TCTGGAGAGGAAGAATGGAGGAT 
RUNX3-FW  CCCTAGGTGGTCTCATAATTCCA 
RUNX3-RV  ATCCCTCACCTCAATGCCTTCT 
DLK1-FW  GGCACTGTGGGTATCGTCTTC 
DLK-RV  AGGTCCTCCCCGCTGTTG 
TAL1-FW  ACCCAAACATATGCACATTCACTT 
TAL1-RV  ACGCACCCTTGATGACCAAA 
HSPA1A-FW  GCCGAGAAGGACGAGTTTGA 
HSPA1A-RV  ACCCTGGTACAGTCCGCTGAT 
RGS2-FW  ATGGTCCGTGTTTGCATTGTTA 
RGS2-RV  CTGCAGTTTTCAACACCATAGCA 
LAPTM4B-FW  CTTGTATGCGCTTTTTACCTTGAC 
LAPTM4B-RV  CAGGAGAGTTGCTGACTTTGTAACA 
GATA3-FW  TGGGCTCTACTACAAGCTTCACAATAT
GATA3-RV  TTGCTAGACATTTTTCGGTTTCTG 
HPRT-FW  AGATGGTCAAGGTCGCAAGC 
HPRT-RV  GTCAAGGGCATATCCTACAACAAAC 
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Supplementary Table 2.  Significantly differentially expressed genes in human 
CD34+CD38-CD7+ CLP that are also significantly differentially expressed between 1 or 
more consecutive differentiation stages of early human T- and B-cell development (Dik 
et al., 2005 and Van Zelm et al., 2005). 
 
B and T cell development only T cell development only B cell development 
C11orf21 TRAF5 SLC35E2 PIP5K1B 
ATP1B1 RAB14 RERE CFH 
CEBPB TENS1 TRAF3IP3 KNTC1 
PRKCB1 RAB31 ICAM4 CHD3 
LRRFIP1 GRK5 MCM3AP SCN3A 
TAX1BP3 SH3TC1 HSPA1A C1QBP 
EIF4A1 ITSN2 TNFSF10 SLC2A5 
SPON1 BAALC DPEP2 JMJD1A 
SLC39A8 SMARCA4 TPR HNRPA1 
ITGA4 RUNX3 CCR9 TMEM14A 
SLC38A1 KLHL7 ETV5 THRAP2 
ACTN1 MAFF C20orf67 GADD45A 
LEPR BCL6 NUDT4 AKR7A2 
SETBP1 BASP1 PSCD4 BZW2 
PRDX2 DLK1 MAL METTL3 
TNFAIP3 HLX1 ALDH6A1 POLS 
ACTR2 MACF1 FHL2 USP34 
P2RY14 SUCLG2 ICAM2 PMAIP1 
TRIB2 BTK TFR2 LPIN1 
TAL1 NPR3 SLC33A1 SUV420H1 
SF3B1 EMR2 RALBP1 UBR2 
HSPB1 CKS2 EVL MARCKS 
GABARAPL1 MLLT3 PLXND1 TJP2 
CAT ADA RPS6KA2 SHMT2 
IQSEC1 OSBPL3 TMEM41B FLJ22746 
SATB1 NALP1 OXT FLJ13197 
IFI16 TNS KNS2 KIAA0220 
ADAM28 NUDT3 DDX21 LOC339287 
STK32B BST2 SERPINE2  
ELF1 IL1B TRAF4  
TXNIP RGS2 HMGB3  
EVI1 ATR ARHGAP25  
KIAA0125 FLJ22635 TRA1  
IGHM FLJ22222 PSEN2  
TCF4 LOC284262 KIAA0087  
BEX1 KIAA1049 HA-1  
NACA  LOC388388  
CXCR4  EUROIMAGE 362430  
KLF2    
PRG1    
LAPTM4B    
IRF8    
TARBP1    
TBCD    
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General discussion 
Bone marrow transplantation or transplantation of hematopoietic stem cells is used to 

correct hereditary blood diseases and auto-immune diseases and to restore the hematopoietic 

system when it is destroyed after chemotherapy or radiation treatment for cancer. The bone 

marrow may be taken from the patient prior to chemotherapy or radiation treatment 

(autograft), or it may be taken from a donor (allograft). While the myeloid compartment is 

restored 2 to 4 weeks after transplantation, lymphoid differentiation usually takes much 

longer. Especially restoration of the T-cell compartment lags behind, creating a period with 

low T-cell numbers during which the patient is extremely vulnerable to infections. This lag 

phase could be considerably shortened by adding lymphoid or T-cell committed progenitors 

to the transplant. Therefore, identification of the molecular regulatory mechanisms involved 

in the lymphoid and T-lineage decisions might lead to the development of strategies to direct 

multipotent stem cells to differentiation along the T-cell lineage. Such in vitro manipulated 

stem cells then would differentiate much faster to mature T cells after transplantation.  

Numerous murine studies have identified signalling through the Notch-1 

transmembrane receptor as a master regulatory mechanism of T-cell commitment. 

Constitutive Notch-1 signalling, either by retroviral expression of the active intracellular 

domain of Notch-1 (ICN) or by co-culturing progenitor cells on OP9 stromal cells expressing 

the Notch ligand Delta-like-1 (OP9-DL1), directs stem cells towards the T-cell fate. In 

human, Notch-1 signalling has not been studied that extensively yet. Our lab showed earlier 

that, analogous to the mouse, retroviral transduction of human CD34+ hematopoietic 

precursor cells with ICN blocks B cell development and instead drives them towards the T 

cell lineage (174). In chapter 1 of this thesis, we show that human CD34+ cord blood and 

adult bone marrow progenitors can efficiently differentiate into mature T cells on the OP9-

DL1 cell line, indicating that the 3-dimensional thymic structure is not required for human T-

cell development as long as Notch signalling by Delta-like-1 is provided. However, other 

signals delivered by the OP9 stromal cells are also important, as S17 stromal cells engineered 

to express Delta-like-1 do not support full T-cell differentiation (159, 176). Our observation 

that human progenitors transduced with ICN and cultured on MS-5 stromal cells do not 

differentiate further than immature T/NK progenitors expressing CD7 and intracellular CD3, 

suggests that MS-5 cells do not support full T-cell differentiation either (174).  
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The OP9-DL1 culture system offers a number of advantages over the mixed 

human/mouse fetal thymic organ culture (FTOC) for studying T-cell development in vitro. 

First, no animals need to be sacrificed. Second, low numbers of cells can be efficiently grown 

in these cultures, making it possible to study the T-cell potential of rare cell populations or 

even single cells. Moreover, the OP9 coculture system will allow to study the contribution of 

individual components of the Notch signalling pathway separately. Also, Notch-signalling can 

be easily turned on and off by transferring developing progenitors from OP9 cells expressing 

Notch ligands to unmanipulated OP9 cells and back. This will allow to study the role of 

different Notch ligands during specific stages of thymocyte development.  

In addition, the OP9-DL1 culture system might have important therapeutic 

applications. For instance, in vitro cultured T cells could be used to transplant T cell 

immunodeficient patients. The culture system might also be adapted to culture T cells directed 

against certain pathogens or against epitopes specifically present on tumor cells. Our 

demonstration that adult bone marrow progenitors efficiently develop into T cells on the OP9-

DL1 cell line is important in this regard, as it enables the use of a patient‘s own stem cells to 

differentiate in vitro to T cells, avoiding problems with incomplete HLA matching in the case 

of an allogeneic transplant. However, some important issues need to be addressed before this 

could be put into practice. First, as it was shown that bone marrow CD34+ cells generate 

fewer T cells in FTOC with increasing age (177), it remains to be determined whether bone 

marrow progenitors from older patients differentiate as efficiently to T-cells on OP9-DL1 as 

the bone marrow progenitors from young children we used in our experiments. Second, 

although functionally mature murine T cells develop in vitro on OP9-DL1, the functionality 

of in vitro developed human T cells still needs to be shown. In addition, positive and negative 

selection need to be carefully addressed. In theory, positive selection could be achieved in 

vitro by transducing the OP9-DL1 cells with the patient-matched MHC-I and MHC-II 

molecules. Preventing the development of autoreactive T cells is much more difficult to 

achieve, as negative selection in the thymus is mediated by the AIRE-induced presentation of 

a battery of peripheral-tissue antigens by thymic epithelial cells to the developing T cells 

(178). Therefore the best strategy to restore a deficient T cell compartment and prevent auto-

immunity would be to culture stem cells in vitro until they are T-committed and then 

transplant T-committed progenitors that continue their differentiation in the patient’s thymus 

where they undergo positive and negative selection.  

Studies with conditional Notch-1 knock-out mice have shown that Notch-1 signalling 

is essential for T-cell development in the mouse. Creating a similar knock-out phenotype in 
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humans is of course impossible, therefore, as described in chapter 2, we used an alternative 

strategy to address whether Notch signalling is essential for human T-cell development. 

Inhibition of physiological Notch signalling during hybrid human-mouse fetal thymus organ 

culture (FTOC) by adding the γ-secretase inhibitor DAPT to the culture medium was shown 

to disrupt T-cell differentiation of human progenitors and to direct them along the B, NK or 

monocytic-dendritic cell lineages, depending on the degree of Notch inhibition and the 

differentiation stage of the human progenitors. These experiments indicate that Notch 

signalling is essential for proper T-cell development of human hematopoietic progenitors. 

Although the phenotype induced by DAPT recapitulates the phenotype displayed by Notch-1 

knock-out mice, it remains uncertain whether Notch-1 is the critical factor for human T cell 

development, since γ-secretase is involved in the proteolytic cleavage of all 4 Notch receptors 

and DAPT therefore inhibits signalling through all Notch receptors. Moreover, it is arguable 

that the effect of the γ-secretase inhibitor is not restricted to inhibition of Notch signalling in 

the Notch-expressing human hematopoietic cells. Indeed, DAPT could also inhibit proteolytic 

processing of other important signalling molecules on the surface of hematopoietic cells or 

thymic epithelial cells. In addition, γ-secretase inhibitors might interfere with the endocytosis 

of the ligand-bound extracellullar  Notch-domain by the signalling cell, which was shown to 

be important for Noch-signalling in the receiving cell (179). These uncertainties can be ruled 

out by the use of dominant-negative Mastermind-like (MAML), which does not interfere with 

Notch receptor activation but inhibits Notch signalling by sequestering ICN and preventing it 

from activating the CSL transcription factor (146). Still, dominant-negative MAML also 

inhibits Notch signalling by all 4 Notch receptors. Therefore, to get a definite answer to the 

question whether signalling through Notch-1 is specifically responsible for directing the T-

cell fate of human progenitors, silencing of Notch-1 expression, e.g. by RNA interference, 

will have to be performed.  

Our studies with DAPT indicate that the strength of Notch signalling determines the 

outcome of differentiation. At intermediate DAPT doses, leaving some residual Notch-

signalling, CD34+ cord blood progenitors preferentially developed into NK cells, while at 

high DAPT doses, inhibiting all Notch-signalling, they mostly developed into B cells. Low 

doses of inhibitor were sufficient to disturb normal T cell development. These results 

correlate well with those of Schmitt et al. who studied the differentiation of murine fetal liver-

derived hematopoietic progenitor cells on OP9-DL1 stroma in the presence of different 

concentrations of γ-secretase inhibitor (68). The data of both studies indicate that inhibition of 
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B lymphopoiesis is already achieved by low levels of Notch signalling, while the induction of 

T cell differentiation requires high levels of Notch signalling. Quantitative differences in the 

amount of Notch signalling affecting hematopoietic precursor cell fate outcome was also 

observed by the group of Bernstein when culturing human precursors with different densities 

of immobilized extracellular Delta-like-1 protein (180). While lower densities maximally 

enhanced the generation of CD34+ cells in vitro and enhanced their in vivo repopulation 

activity, higher densities of the ligand increased apoptosis of CD34+ precursors and 

repopulating cells and stimulated lymphoid maturation. These data are important to take into 

account when developing methods for expanding hematopoietic stem cells in vitro, which is 

an important research goal for improving engraftment of adult patients with umbilical cord 

blood hematopoietic stem cells. Differences in the strength of Notch signalling could also be 

the explanation for the observed differential effects on cell fate outcome by activation of 

Notch signalling by Delta or Jagged ligands (176, 181). Alternatively, Delta and Jagged might 

transmit qualitatively distinct Notch signals, leading to the activation of distinct downstream 

target genes. The observations that Notch receptors and ligands are differentially expressed 

during distinct stages of T cell maturation and in distinct thymic cell compartments (182), and 

that thymocytes migrate to distinct regions within the thymic microenvironment as they 

mature (62), suggest that distinct ligand-receptor interactions are important during intrathymic 

T cell development. Moreover, the strength and duration of Notch signalling can be 

modulated by a number of molecules that affect ligand binding or modulate intracellular 

signals. The culture system on OP9-DL1 stromal cells will be a very useful tool to study the 

role of individual components of the Notch signalling pathway in T cell development.  

Because long-term constitutive expression of Notch-1 eventually leads to the 

development of T-cell tumors (175), manipulation of stem cells with ICN for driving them to 

the T cell lineage is not an option. Therefore the identification of the downstream effector of 

Notch-1-induced T-cell commitment could be very useful. The basic helix-loop-helix 

transcriptional repressor HES-1 was the first target gene of Notch signalling to be identified 

and studies with HES-1 knock-out mice have shown that its expression is essential during 

early T-cell development. HES-1 therefore seemed to be a good candidate for mediating the 

effects of ICN overexpression. However, as described in chapter 3, retroviral expression of 

HES-1 in CD34+ hematopoietic precursor cells did not recapitulate the phenotype we obtained 

with ICN overexpression. Although it partly reduced B cell development, HES-1 did not 

block myeloid differentiation and could not drive progenitors to the T cell lineage. Despite the 

fact that overexpression of HES-1 shows that it is not sufficient to induce T-cell commitment, 
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studies with HES-1 knock-out mice have shown that at least in murine fetal T-cell 

development HES-1 is necessary for the expansion of early T lymphocytes (183, 184). It 

remains to be investigated whether HES-1 fulfils the same function in adult thymopoiesis. 

Conditional knock-out mice and/or RNA-interference constructs should be useful tools to 

solve this question. 

We investigated whether the lower B cell numbers obtained by HES-1 overexpression 

were the result of a block at an immature B-cell stage, and found that this was not the case 

(unpublished data). Early B-cell progenitors (CD34+CD19+/CD22+) were not overrepresented 

in the MS-5 cultures initiated with HES-1-transduced stem cells, and we found that HES-1-

overexpressing cells that are committed to the B-cell lineage go through every stage of normal 

B-cell development. Interestingly, Zweidler-McKay et al showed recently that Notch 

signalling induces growth inhibition and apoptosis in a wide variety of malignant murine and 

human B-cell lines (185). Also, overexpression of HES-1 is sufficient to induce B-cell growth 

arrest and apoptosis according to these authors. Therefore, the possibility exists that the 

reduced B-cell development that we observed with ICN/HES-1 overexpression in multipotent 

hematopoietic progenitors is the result of HES-1-induced growth arrest and/or apoptosis of 

developing pre-B cells. We did not investigate this hypothesis in our study. The mechanism 

by which HES-1 induces cell growth arrest and apoptosis in B-cell lines was not revealed in 

the study of Zweidler-McKay et al. However, in a study conducted by Huang et al., HES-1 

was identified as a regulator of p53 activity. According to these authors, HES-1 

overexpression can induce apoptosis by activating p53 (186). Furthermore, it has been shown 

that HES-1 mRNA and protein both oscillate in C2C12 myoblasts in a 2-hour cycle after 

activation of Notch signalling by exposure to X63 myeloma cells expressing the mouse Delta-

1 ligand (187). This oscillatory expression is regulated by a negative feedback loop, i.e. HES-

1 negatively regulates its own expression by directly binding to its own promoter (188). The 

role of this ‘ultradian clock’ is unknown, but one cannot rule out that it also has a function in 

hematopoiesis and that disturbing the oscillation by constitutive HES-1 expression inhibits 

differentiation. Data supporting the theory that the HES-1 expression level has to be critically 

balanced for differentiation to occur, comes from Ross et al., who showed recently that 

overexpression of HES-1 and siRNA-mediated reduction of HES-1 expression both inhibit 

adipocyte development (189).  

In addition to reducing B cell differentiation, we found that HES-1 overexpression 

maintained CD34+ cells. These results are in accordance with reports that showed that 

retroviral transduction of HES-1 in murine and human hematopoietic stem cells preserves 
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their stem cell phenotype and enhances their in vivo reconstitution capacity (190, 191). HES-1 

overexpression was also shown to delay the differentiation of 32D mouse myeloid progenitor 

cells (192) and to inhibit erythroid/megakaryocytic differentiation from murine Lin-Sca-1+ 

hematopoietic progenitors (193). Therefore, it should be investigated whether HES-1 is 

responsible for the reported increased self-renewal obtained by ICN overexpression (151-153) 

or by stimulation of stem cells with exogenous Delta-like-1 ligand (153). This question could 

be addressed by inhibiting HES-1 expression in ICN-overexpressing CD34+ cells using RNA 

interference or by using a dominant negative approach. In fact, this approach would reveal 

which effects of ICN overexpression or Notch ligand binding depend on HES-1 expression.  

Inhibition of differentiation is the phenotype that was also observed with HES-1 

overexpression in non-hematopoietic cell types. For example, retroviral expression of HES-1 

in neural precursors prevents neuronal differentiation (194, 195) by repression of the 

proneural bHLH transcription factor Mash1 (196). Analogously, HES-1 is believed to inhibit 

myogenesis by repressing the bHLH transcription factor MyoD (197). HES-1 can repress 

transcription actively by binding to the N-box and by recruitment of co-repressors such as 

Groucho/TLE, and passively by forming non-functional heterodimers with positive bHLH 

factors, preventing them from binding to the E-box (reviewed in (198)).  

The identification of genes that are induced or suppressed upon commitment of 

multipotent stem cells to the lymphoid lineage might also lead to the development of 

strategies to enhance lymphoid development of stem cells. Our molecular characterization of 

the CD34+CD38-CD7+ common lymphoid progenitor of human cord blood (see chapter 4) 

yielded several transcription factors that are differentially expressed compared to multipotent 

stem cells. Whether one of these represents a real ‘master’ regulator of lymphopoiesis remains 

to be determined. Gain-of-function and loss-of-function studies of candidate genes will have 

to be performed to answer this question. However, some researchers suggest that lymphoid 

commitment would not occur abruptly, but would be a more gradual and initially reversible 

process (199). Also in the case of Notch signalling, it has recently been shown that cells that 

have initiated T-cell specific gene expression in response to Notch signalling are still able to 

develop into B cells when the Notch activation signal is removed (200). Nonetheless, a 

considerable number of new or hardly studied genes showed significant differential 

expression in our microarray analysis and therefore should be worth studying in detail.  

A number of differentially expressed genes are related to the Notch signalling 

pathway. For instance, DLK1, which is significantly downregulated in the CD7+ population, is 

a transmembrane protein that binds and inhibits Notch activation. The high expression of 
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DLK1 in CD7- cells might be a mechanism by which these cells prevent premature activation 

of their Notch receptor. The downregulation of DLK1 in CD7+ cells might be needed to 

permit CD7+ cells to receive Notch signals and to differentiate into T-cells. On the other hand, 

PSEN2, a component of the γ-secretase complex responsible for the proteolytic cleavage of 

the intracellular domain of Notch after ligand binding, is also downregulated in the CD7+ 

population, which would correlate with decreased Notch-signalling. The downregulation of 

GATA3 in the CD7+ population could correlate with lower Notch signalling, as it was shown 

that GATA3 is upregulated in response to Notch signalling induced by binding of the Delta-

like-1 ligand (200, 201). Also in agreement with decreased Notch signalling in the CD7+ 

population is the upregulation of NCOR2 (SMRT), a co-repressor that is recruited by CBF1 to 

repress transcription of Notch target genes. Its upregulation in the CD7+ population might aid 

to keep expression of Notch target genes low. Since DLK1 is also expressed on the surface of 

stromal cell lines that maintain repopulation activity of hematopoietic precursors (202), it 

could be possible that DLK1 on the surface of CD7- stem cells has a role in stem cell self-

renewal. The downregulation of DLK1 in CD7+ cells then correlates with the loss of self-

renewal of this cell population. The downregulation of PSEN2 (and thus Notch signalling) can 

be reconciled with this hypothesis, for Notch signalling has also been involved in stem cell 

self-renewal.  

Although we confirmed the lymphoid-restricted potential of the human cord blood 

CD34+CD38-CD7+ common lymphoid progenitor population and additionally showed that 

they efficiently generate T cells in FTOC, it remains to be determined whether cells with the 

CD34+CD38-CD7+ phenotype are physiological T-cell precursors. As shown by Porritt et al., 

artificial in vitro culture conditions such as coculture on OP9-DL1 stromal cells can permit T-

lymphoid differentiation of cell types that are not conventional T-cell precursors in vivo (69). 

So far, we do not know whether the CD34+CD38-CD7+ subpopulation represents an 

obligatory intermediate step in the T-lymphoid differentiation cascade. Therefore, before 

attempts are made to differentiate stem cells in vitro into CD34+CD38-CD7+ cells, it is 

necessary to investigate the thymic homing potential of this cell population in NOD/SCID 

mouse models. 

The power of microarrays is that the expression of tens of thousands of genes is 

measured simultaneously during a single experiment. However, in order to extract meaningful 

biological information from this wealth of data, some important issues need to be dealt with. 

For instance, the reproducibility of microarray experiments is often a problem. First, there is 

always some normal physiological variation in gene expression in different samples. In 
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addition, as different samples are hybridized to separate GeneChips, extra variation is 

introduced, leading to high levels of signal variability. Therefore, proper normalization of 

gene expression levels across multiple arrays is essential. In order to detect true differentially 

expressed genes, a microarray experiment is best replicated several times. However, the high 

cost of Affymetrix oligonucleotide arrays limits the number of replicates that is feasible. In 

our case, we were also restrained by the rarity of the CD34+CD38-CD7+ cord blood 

population, which required multiple cell sorts for obtaining a sufficient amount of material to 

hybridize to the chip. Still, the expression values from our two biological repeat experiments 

showed a high correlation, indicating that the gene expression data we obtained are reliable 

and reproducible. Validation of the differential gene expression by other methods such as 

Real-Time PCR is considered ‘the gold standard’. However, because of the high number of 

differentially expressed genes this is impossible to perform for all the differentially expressed 

genes. We validated the expression of 11 genes by Real-Time PCR on freshly sorted cells, 

and found that for 10 of these genes, the fold changes obtained by PCR correlated well with 

those obtained in the microarray analysis. However, in some cases the fold changes detected 

by microarray analysis are much smaller than those detected by Real-Time PCR and thus not 

reliable. For instance, while we detected a fold change of 20 for the expression of CD7 

between CD7+ and CD7- cells by Real-Time PCR, the fold change obtained by the microarray 

analysis was only 2-fold and statistically non-significant. This is one major pitfall of the 

microarray analysis: in order to reduce the likelihood of obtaining false positives, a very 

stringent statistical test was used, which has the downside to increase the chance of not 

detecting genes that are truly differentially expressed. This means that biologically 

importantly differentially expressed genes might go undetected. Another shortcoming of 

Affymetrix GeneChip analysis is that probesets on GeneChips are not specific for different 

splice isoforms of a gene. On the contrary, different isoforms of a gene can be efficiently 

amplified by PCR using specific primers.  

Finally, it is difficult to compare results of microarray analyses conducted by different 

laboratories, as different algorithms are being used to calculate probeset expression values and 

different statistical tests are used to determine significant differences.  
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Summary  
Hematopoiesis is the highly orchestrated process of blood cell formation from a small 

pool of multipotent hematopoietic stem cells in the bone marrow. The defining properties of 

hematopoietic stem cells, their self-renewal capacity and multilineage differentiation 

potential, form the basis for the successful restoration of the hematopoietic system by bone 

marrow transplantation or hematopoietic stem cell transplantation after chemotherapy or 

radiation therapy used to treat cancer. However, due to the slow kinetics of the restoration of 

the T-cell compartment, patients are temporally vulnerable to infection. Therefore, strategies 

to enhance T-cell development from HSCs could be of great therapeutic value. 

Signalling through the Notch-1 transmembrane receptor has been identified as a 

critical determinant for the lineage choice between B- and T-cell development. 

Overexpression of the active form of Notch-1 (ICN) in human CD34+ hematopoietic stem 

cells blocks B-cell development and drives them into T-lymphoid differentiation. In this work 

we show that physiological stimulation of the Notch pathway by coculturing human CD34+ 

progenitor cells on a stromal cell layer ectopically expressing the Notch ligand Delta-like-1 

also induces T-cell differentiation of human cells. Inversely, by inhibiting physiological 

Notch signalling during in vitro T-cell differentiation in fetal thymus organ culture using γ-

secretase inhibitors we show that Notch signalling is essential for human T-cell development. 

Because constitutive Notch-1 expression ultimately leads to the development of T-cell 

leukemias, manipulation of stem cells with ICN cannot be applied clinically. Therefore we 

investigated whether the Notch-1 target gene HES-1 is able to substitute for Notch-1 

signalling in inducing T-cell differentiation of human CD34+ hematopoietic stem cells. Our 

results demonstrate that overexpression of HES-1 alone is not sufficient to impose T-cell 

differentiation on human hematopoietic stem cells. 

The identification of a small lymphoid-committed cell fraction in human umbilical 

cord blood may also lead to therapeutic applications. We show that CD34+CD38-CD7+ cells 

have strong T-cell differentiation potential. To identify genes that regulate the lymphoid 

commitment step we compared the gene expression between CD34+CD38-CD7+ lymphoid-

committed progenitors and CD34+CD38-CD7- multipotent stem cells using Affymetrix 

oligonucleotide microarrays. Overexpression and silencing studies of selected differentially 

expressed genes will have to be performed to determine their role in lymphoid development 

and whether they can be used to instruct lymphoid development.  
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Samenvatting  
Hematopoiese is het sterk georganiseerde proces van bloedcelvorming uitgaande van 

een kleine verzameling multipotente hematopoietische stamcellen in het beenmerg. De 

definiërende eigenschappen van hematopoietische stamcellen, namelijk hun vermogen om 

zichzelf te vernieuwen en te differentiëren tot alle bloedceltypes, vormen de basis voor het 

herstel van het hematopoietisch systeem met behulp van beenmergtransplantatie of 

stamceltransplantatie na de behandeling van kanker met chemotherapie of radiotherapie. 

Echter, door de trage kinetiek waarmee het T-cel compartiment hersteld wordt, zijn patiënten 

tijdelijk vatbaar voor infecties. Daarom zouden strategieën om de T-cel ontwikkeling van 

hematopoietische stamcellen te versnellen van grote therapeutische waarde kunnen zijn. 

De Notch-1 signaaltransductieweg werd geïdentificeerd als een kritische determinant 

voor de keuze tussen B- en T-cel ontwikkeling. Overexpressie van de actieve vorm van 

Notch-1 (ICN) in menselijke CD34+ hematopoietische stamcellen blokkeert B-cel 

ontwikkeling en stuurt hen in de richting van T-cel ontwikkeling. In dit werk tonen we aan dat 

fysiologische stimulatie van de Notch signaaltransductieweg in menselijke CD34+ 

voorlopercellen door ze te kweken op een stromale cellijn die het Notch ligand Delta-like-1 

tot expressie brengt, ook T-cel ontwikkeling induceert. Omgekeerd, door fysiologische Notch 

signalisatie tijdens in vitro T-cel ontwikkeling in fetale thymus orgaan cultuur te verhinderen 

met behulp van γ-secretase inhibitoren, kunnen we aantonen dat Notch signalisatie essentieel 

is voor menselijke T-cel ontwikkeling. Omdat constitutieve expressie van Notch-1 

uiteindelijk leidt tot de ontwikkeling van T-cel tumoren, is manipulatie van stamcellen met 

ICN niet klinisch toepasbaar. Daarom onderzochten we of het Notch-1 doelgen HES-1 in staat 

is om Notch-1 signalisatie te vervangen bij het induceren van T-cel differentiatie van 

menselijke CD34+ hematopoietische stamcellen. Onze resultaten tonen aan dat overexpressie 

van HES-1 alleen onvoldoende is om T-cel differentiatie op te leggen aan menselijke 

hematopoietische stamcellen.  

De ontdekking van een kleine celfractie in menselijk navelstrengbloed met 

differentiatiepotentieel beperkt tot lymphoide celtypes, kan ook leiden tot therapeutische 

toepassingen. We tonen in dit werk aan dat deze CD34+CD38-CD7+ cellen sterk T-cel 

differentiatiepotentieel bezitten. Om genen te identificeren die lymphoide differentiatie 

reguleren, vergeleken we de genexpressie tussen CD34+CD38-CD7+ lymphoide voorlopers en 

CD34+CD38-CD7- multipotente stamcellen met behulp van Affymetrix oligonucleotide 

arrays. Overexpressie en uitschakeling van interessante differentieel geëxpresseerde genen zal 
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uitgevoerd worden om hun rol in lymphoide ontwikkeling te bepalen en om te testen of ze 

gebruikt kunnen worden om lymphoide ontwikkeling te sturen.  
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