
The second half of the chessboard
Raymond Kurzweil

ii

Dankwoord

Vooraleer je tot het schrijven van een doctoraat komt, heb je reeds een
hele levensweg afgelegd. Onderweg is het niet altijd even gemakkelijk
om niet verloren te lopen: soms kom je aan een splitsing, een obstakel of
een doodlopend eind. Maar steeds was er wel iemand om mij te helpen
mijn weg verder te zoeken. Ik ben dan ook veel dank verschuldigd aan
heel wat mensen.

In de eerste plaats aan prof. Koen De Bosschere en prof. Lieven
Eeckhout, mijn promotoren, voor de mogelijkheid om mijn doctoraats-
onderzoek te verrichten in hun onderzoeksgroep. Ik wens hen ook te
bedanken voor de begeleiding van mijn onderzoek, voor de vele stimu-
li en steun en voor de goede raad en inzichten die zij mij bijbrachten.

Verder wil ik ook de andere leden binnen de Paris-onderzoeksgroep
bedanken voor de goede onderzoekssfeer die er heerst. Met in het bij-
zonder de andere professoren, prof. Jan Van Campenhout, prof. Erik
D’Hollander en prof. Dirk Stroobandt, voor het geven van constructie-
ve opmerkingen en tips.

Mijn collega-onderzoekers Dries, Andy, Davy, Tom, Jonas, Michiel
en Marc, waarmee ik ooit een bureau deelde, zou ik willen bedanken
voor de aangename tijd samen, voor hun hulp en collegialiteit. Ook
al mijn andere collega’s zou ik graag bedanken omdat ik bij hen altijd
terecht kon met vragen allerhande.

Verder zou ik ook Dr. David Bacon willen bedanken, die voor mij
nieuwe onderzoekswegen opende door mij de kans de geven 2 maan-
den onderzoek te verrichten in het prestigieuze IBM T.J. Watson Re-
search Center te New York.

I would also like to thank Dr. David Bacon because he opened up new
research opportunities for me by giving me the opportunity to do a 2 month
internship at the prestigious IBM T.J. Watson Research Center in New York.

Natuurlijk wil ik de leden van mijn examencommissie niet verge-

iv

ten, die ik wil bedanken voor de interesse in mijn werk, het grondig
lezen van mijn thesis, het geven van opmerkingen en voor de beoorde-
ling van mijn werk.

Furthermore, I would like to thank the members of my PhD commission
for the interest in my work, for reading my thesis carefully, for delivering
comments and for evaluating my work.

Ook aan de Universiteit Gent ben ik dank verschuldigd, omdat deze
het voor mij financieel mogelijk maakte een doctoraatsmandaat van 4
jaar op te nemen via het Bijzonder OnderzoeksFonds (BOF).

Graag zou ik ook nog een heleboel andere mensen willen bedanken
die mij ook buiten mijn doctoraatsonderzoek gesteund hebben en/of
mij nauw aan het hart liggen, zoals mijn ouders, mijn zus, mijn vriendin
Ilse en alle andere vrienden. Met in het heel bijzonder mijn ouders,
die mij al heel mijn leven lang gesteund hebben en mij zoveel gegeven
hebben. Bedankt om dit alles mogelijk te maken.

Kris Venstermans
Gent, 29 mei 2007

Examencommissie

Prof. Ronny Verhoeven, voorzitter
Onderwijsdirecteur Faculteit Ingenieurswetenschappen
Universiteit Gent

Prof. Jan Van Campenhout, secretaris
Vakgroep ELIS, Faculteit Ingenieurswetenschappen
Universiteit Gent

Prof. Koen De Bosschere, promotor
Vakgroep ELIS, Faculteit Ingenieurswetenschappen
Universiteit Gent

Prof. Lieven Eeckhout, promotor
Vakgroep ELIS, Faculteit Ingenieurswetenschappen
Universiteit Gent

Prof. Bart Dhoedt
Vakgroep INTEC, Faculteit Ingenieurswetenschappen
Universiteit Gent

Prof. Theo D’Hondt
Vakgroep Computerwetenschappen, Faculteit Wetenschappen
Vrije Universiteit Brussel

Prof. Matthew Hertz
Department of Computer Science
Canisius College, Buffalo, NY, USA

Dr. Bilha Mendelson
Code Optimization Technologies Department
IBM Research Lab, Haifa, Israel

vi

Samenvatting

Computerprogramma’s worden complexer telkens als er nieuwe, krach-
tigere computerchips op de markt komen. Bij elke nieuwe genera-
tie computerchips tasten programma-ontwikkelaars altijd opnieuw de
grenzen van die generatie af. Tegelijk met het complexer worden van
computerprogramma’s, vereisen deze programma’s ook steeds meer
computergeheugen. Door die stijgende geheugenvraag werd het aantal
adresseringsbits in de loop der jaren aangepast. Hedendaagse desktop
systemen op de consumentenmarkt zijn allemaal uitgerust met een 64-
bit CPU (Central Processing Unit), terwijl enkele jaren geleden dergelij-
ke systemen nog bijna uitsluitend van 32-bit processoren waren voor-
zien. De 64-bit adresseerruimte is gigantisch groot in vergelijking met
de 32-bit adresseerruimte.

Groter betekent echter niet steeds beter: als we 32-bit en 64-bit com-
putersystemen vergelijken, merken we dat beide zowel voor- als na-
delen hebben. Het meest effectieve prestatievoordeel van 64-bit sys-
temen ligt in het aanwezig zijn van extra 64-bit instructies in de ISA
(Instruction Set Architecture). Het belangrijkste nadeel van 64-bit com-
putersystemen is dat zij meer geheugen gebruiken omdat verwijzingen
(pointers) tussen verschillende objecten nu met 64 bits voorgesteld wor-
den. De extra 64-bit instructies geven enkel een prestatievoordeel voor
programma’s die bewerkingen doen op grote gehele getallen, terwijl
het nadeel van het grotere geheugengebruik bijna steeds zal optreden
omdat objectverwijzingen heel frequent gebruikt worden in moderne
programmeertalen.

In deze thesis zullen we twee technieken introduceren die het ge-
heugengebruik van 64-bit programma’s zullen verbeteren in het kader
van een Java Virtuele Machine (JVM). We kiezen een omgeving die ob-
jectgeoriënteerd is, omdat objectgeoriënteerd programmeren heden ten
dage een heel populair programmeerparadigma is, en omdat er veel
objectverwijzingen voorkomen in een dergelijke omgeving. Vooraleer

viii SAMENVATTING

we de nieuwe technieken introduceren, zullen we eerst een karakterise-
ring maken van de impact van de transitie van 32-bit naar 64-bit syste-
men op het geheugengebruik en op de prestatie. Deze karakterisering
omvat o.a. het opmeten en vergelijken van de objectgrootte van zowel
array als niet-array objecten voor 32-bit en 64-bit systemen. We stellen
vast dat de gemiddelde objectgrootte met 45.3% toeneemt in een 64-bit
systeem ten opzichte van een 32-bit systeem. We zullen de belangrijkste
redenen voor deze toename identificeren en bestuderen voor verschil-
lende geheugenbeheersystemen. We bestuderen verder ook het groeien
en inkrimpen van de heap, en we bemeten het verschil in aantal geheu-
gensaneringen tussen 32-bit en 64-bit systemen voor een vaste grootte
van de heap. Uit deze karakterisering leiden we af dat objectverwijzin-
gen zowel in de objectdata als in de objecthoofding bestaan, en dat ze
beide verantwoordelijk zijn voor een groot deel van de totale geheu-
genomvang van objecten in 64-bit systemen.

De eerste techniek die we voorstellen om het geheugengebruik van
64-bit systemen te reduceren, spitst zich toe op de objectdata. We com-
primeren objectverwijzingen die voorkomen in de datavelden. Om de-
ze objectverwijzingen te kunnen comprimeren, zullen we een aantal za-
ken moeten onderzoeken: (i) decomprimeren moet steeds correct kun-
nen gebeuren en dus zal er een opvangnet moeten voorzien worden
voor in het geval een objectverwijzing niet comprimeerbaar is; (ii) spe-
ciale waarden voor objectverwijzingen, zoals de null verwijzing, moe-
ten gedefinieerd worden in gecomprimeerde vorm; (iii) als het geheu-
genbeheersysteem objecten verplaatst, dan moet het mechanisme dat
de objectverwijzingen tijdens het verplaatsen up-to-date brengt, aan-
gepast worden om met gecomprimeerde objectverwijzingen te kunnen
functioneren. Verder zullen we ook steeds rekening houden met de ef-
ficiëntie bij het implementeren van bovenstaande bemerkingen en stel-
len we optimalisaties voor om de overhead van onze techniek verder te
beperken.

De tweede techniek die we voorstellen ter reductie van het geheu-
gengebruik van 64-bit systemen, focust op de objecthoofding. We on-
derzoeken welke componenten er zich allemaal bevinden in de object-
hoofding en, op basis van hun functie of gebruik, zullen we voor el-
ke component een alternatieve voorstellingswijze introduceren die ons
toelaat om die specifieke component uit de objecthoofding te verwijde-
ren. Op deze manier verminderen we de grootte van de objecthoofding
initieel van 16 naar 4 bytes en vervolgens elimineren we ook de laatste
4 bytes. Om deze geheugenreducerende techniek toe te passen, hebben

ix

we in eerste instantie profielinformatie nodig. Deze profielinformatie
wordt verzameld tijdens een offline uitvoering van het programma.
Doordat offline technieken niet altijd handig zijn om te gebruiken in
een virtuele uitvoeringsomgeving, stellen we ook een volledige online
variant van de techniek voor.

Ter conclusie kunnen we stellen dat we in deze thesis het geheu-
gengedrag van 64-bit Java Virtuele Machines bestuderen en optimali-
seren. De belangrijkste bijdragen van dit werk kunnen als volgt sa-
mengevat worden: een gedetailleerde karakterisering van het geheu-
gengebruik en van de prestaties van 32-bit en 64-bit Java programma’s;
twee technieken die het geheugengebruik van 64-bit programma’s re-
duceren: één techniek die zich toespitst op de datavelden in objecten
en een andere techniek die zich toespitst op de objecthoofding.

x SAMENVATTING

Summary

Modern computer programs increase in complexity each time more
powerful computer chips are constructed. And with each generation
faster and more efficient computer chips, program developers design
applications that search the limits of that system. As computer pro-
grams get more and more complex, they also tend to demand more
memory. Due to the increasing memory demands, the number of ad-
dress bits were increased over the years. Currently most consumer
market desktop systems are equipped with 64-bit CPUs, while a few
years ago most such systems still had a 32-bit microprocessor. The 64-
bit address space is enormous compared to the 32-bit address space.

But bigger is not always better: if we compare 32-bit with 64-bit
computer systems, both have their advantages and disadvantages. The
most prominent advantage of 64-bit computer systems in terms of per-
formance is the availability of extra 64-bit integer instructions. The
most important disadvantage is that applications tend to use more mem-
ory because of the 64-bit representation of pointers. While the extra
integer instructions will only give benefit to applications that perform
computation on such large integers, the increased memory usage dis-
advantage will certainly affect most programs since pointers are very
heavily used in modern programming languages.

In this dissertation we will propose two techniques that improve
the memory usage of 64-bit applications in the context of a Java Vir-
tual Machine. We choose an Object Oriented environment because Ob-
ject Oriented Programming is a very popular program paradigm these
days and because many pointers exist in such an environment. Before
we start optimizing the memory behavior of 64-bit applications, we
first characterize the memory usage and overall performance impact
of the transition from 32-bit to 64-bit computing for Java applications.
Our characterization of the memory usage includes a measurement and
comparison of the average object sizes of array and non-array objects

xii SUMMARY

for 64-bit and 32-bit computing. We observe that the average object size
increases by 45.3% in 64-bit mode compared to 32-bit mode. We iden-
tify the main causes for this size increase and study them for different
memory managers. We also study the heap growth and measure the
difference in the number of garbage collections between 64-bit and 32-
bit computing systems for a fixed heap size. From our characterization,
we observe that pointers exist in the object data as well as in the object
header, and that both are responsible for a major part of the object’s size
in 64-bit systems.

The first memory reduction technique that we propose, focuses on
the object data. It compresses pointers inside object data fields. In order
to compress pointers, a number of issues needs to be investigated: (i)
decompression needs to be correct at all times, so some kind of saveg-
uard needs to be implemented in case a pointer can not be compressed.
(ii) a good compressed representation of special pointer values, like the
null pointer, has to be constructed and (iii) if the memory manager
moves objects, its pointer update mechanism needs to be adapted so
that it can handle compressed pointers. When solving these above is-
sues, we will also take efficiency into account and propose optimiza-
tions to reduce the overhead of the compression technique.

Our second memory reduction technique concentrates on the ob-
ject header. We investigate all the object header components and based
on their usage/functionality, we propose for each a different alterna-
tive representation that allows us to remove that component from the
object header. This way we first reduce the size of the object header
from 16 to 4 bytes and next we also remove the remaining 4 bytes. Ini-
tially this memory reduction technique requires an offline profiling run
to collect information about the allocation behavior of the application.
However, since offline techniques are sometimes less appealing for a
Virtual Execution Environment, we will also propose a variant that is
entirely online.

In conclusion, this research studied the memory management of 64-
bit Java virtual machines. The main contributions described in this dis-
sertation can be summarized as follows: a detailed memory usage and
overall performance characterization study of 32-bit and 64-bit Java
workloads; two techniques for reducing the memory usage of 64-bit
applications: one technique that focuses on the object data fields and
one technique that focuses on the object header.

Contents

Nederlandse samenvatting vii

English Summary xi

1 Introduction 1
1.1 Towards 64-bit computing 2
1.2 The pros and cons of 64-bit computing 3

1.2.1 The pros of 64-bit computing 3
1.2.2 The cons of 64-bit computing 4

1.3 Assessment: 64-bit computing or not? 7
1.3.1 32-bit computing systems versus 32-bit compati-

bility mode on 64-bit computing systems 8
1.3.2 32-bit compatibility mode versus 64-bit mode . . 9
1.3.3 64-bit mode: the all-around solution? 10
1.3.4 Conclusions . 12

1.4 Goal and contributions of this thesis 13
1.5 Publications . 15
1.6 Overview . 17

2 64-bit versus 32-bit computing: a characterization 19
2.1 Introduction . 19
2.2 Experimental setup . 21

2.2.1 Virtual machine . 21
2.2.2 PowerPC platform 22
2.2.3 Statistical analysis 23
2.2.4 Benchmarks . 24

2.3 32-bit versus 64-bit VM . 27
2.3.1 64-bit ISA . 27
2.3.2 Increased stack size 27
2.3.3 Argument passing 28

xiv CONTENTS

2.3.4 Increased object size 28
2.4 Memory behavior . 30

2.4.1 Average object size 30
2.4.2 Run time behavior of the heap 40

2.5 Overall Performance . 44
2.5.1 Execution time . 44
2.5.2 Number of instructions executed 45
2.5.3 Data cache misses 45
2.5.4 D-TLB performance 48

2.6 Related work . 49
2.7 Conclusion . 50

3 Object-Relative Addressing 53
3.1 Introduction . 53
3.2 Object-Relative Addressing 54

3.2.1 Basic idea . 55
3.2.2 Decompressing pointers 56
3.2.3 Compressing pointers 59
3.2.4 Null pointer representation 60
3.2.5 Managing the LAT 61
3.2.6 Implications to copying garbage collectors 62
3.2.7 Discussion . 62
3.2.8 Implications for memory management 64

3.3 Experimental setup . 65
3.4 Memory usage and impact on GC 65
3.5 Overall performance evaluation 70

3.5.1 Execution time . 70
3.5.2 Overhead evaluation 74
3.5.3 Number of instructions executed 75
3.5.4 Cache hierarchy performance 75
3.5.5 D-TLB performance 78

3.6 Related work . 78
3.7 Conclusion . 81

4 Selective Typed Virtual Addressing 83
4.1 Introduction . 83
4.2 The 64-bit Java object model 85
4.3 Eliminating the header in the 64-bit Java object model . . 87
4.4 TIB pointer compression 88
4.5 Selective Typed Virtual Addressing 88

CONTENTS xv

4.5.1 The non-array TVA object model 89
4.5.2 The array TVA object model 91
4.5.3 Implications of the TVA object model 91

4.6 STVA type selection . 97
4.6.1 Offline STVA type selection 97
4.6.2 Online STVA type selection 98

4.7 Experimental setup . 100
4.8 Evaluation . 100

4.8.1 Feasibility study of STVA 100
4.8.2 Memory usage and impact on GC 102
4.8.3 Performance . 109
4.8.4 Cache and TLB performance 114
4.8.5 STVA versus TVA 115

4.9 Related work . 116
4.10 Conclusion . 119

5 Conclusion 121
5.1 Summary . 121
5.2 Future work, a perspective 124

5.2.1 Embedded systems 124
5.2.2 Creating ORA regions 125
5.2.3 Combining ORA and STVA 126

xvi CONTENTS

List of Tables

1.1 Resources required to first load two 64-bit integers, mul-
tiply them, and finally store the lowest 64-bit integer result. 4

1.2 Dynamic memory increase between 32-bit and 64-bit C
programs. 5

1.3 Overview advantages/disadvantages of 32-bit/64-bit com-
puting. 8

1.4 Dynamic memory increase between 32-bit and 64-bit Java
programs. 11

2.1 Cache hierarchy of the IBM POWER4. 22
2.2 Benchmarks used from the SPECjvm98 suite. 24
2.3 The PseudoJBB benchmark. 25
2.4 Benchmarks used from the Java Grande Forum suite. . . 25
2.5 Benchmarks used from the DaCapo benchmark suite. . . 26
2.6 Java types and their sizes measured in the number of bits

when used on the heap (‘field size’ column) and when
used on the stack (‘size on stack’ column). 28

2.7 Average object size (in bytes) in 32-bit and 64-bit VM
mode for all objects, array objects and non-array objects. 31

2.8 Average object size (in bytes) in the collector-specific spaces
in 32-bit and 64-bit VM mode for all objects, array objects
and non-array objects. 33

2.9 Average Application object size (in bytes) in 32-bit and
64-bit VM mode for all objects, array objects and non-
array objects. 35

2.10 Average Jikes RVM object size (in bytes) in 32-bit and 64-
bit VM mode for all objects, array objects and non-array
objects. 36

xviii LIST OF TABLES

2.11 Raw object size, object size after inter-object alignment
and total object heap size in 32-bit and 64-bit mode for
the MarkSweep collector. 38

2.12 Number of minor and major GCs under the GenMS and
GenCopy collection scheme for the 32-bit and 64-bit sce-
nario. 41

3.1 Number of minor and major GCs under the GenMS and
GenCopy collection scheme for the base 64-bit scenario
and ORA. 69

4.1 Number of TVA-enabled object types for offline STVA
type selection, online STVA type selection and the num-
ber of object types in common between offline and online
type selection. 104

4.2 Number of minor and major GCs under the GenMS col-
lection scheme for the base 64-bit VM and for the small
header and the no-header STVA-aware VMs. 110

4.3 Number of minor and major GCs under the GenCopy
collection scheme for the base 64-bit VM and for the small
header and the no-header STVA-aware VMs. 110

List of Figures

2.1 Causes for object size increase when going from the 32-
bit VM to the 64-bit VM. 29

2.2 Heap growth for GenMS collector as a function of time
for 32-bit processing and 64-bit processing. 40

2.3 Garbage collection performance: 64-bit mode versus 32-
bit mode. 42

2.4 Maximum reachable bytes as a function of time for 32-bit
and 64-bit processing. 43

2.5 Overall speedup for 64-bit mode compared to 32-bit mode. 44
2.6 Ratio of the number of executed instructions of 64-bit to

32-bit mode. 45
2.7 The number of L1 D-cache misses for 64-bit and 32-bit

mode, per 1000 executed instructions in 32-bit mode. . . 46
2.8 The number of L2 D-cache misses for 64-bit and 32-bit

mode, per 1000 executed instructions in 32-bit mode. . . 46
2.9 The number of L3 D-cache misses for 64-bit and 32-bit

mode, per 1000 executed instructions in 32-bit mode. . . 47
2.10 Number of D-TLB misses for 64-bit and 32-bit mode, per

1000 executed instructions in 32-bit mode 48

3.1 Illustrating the basic idea of object-relative addressing
compared to the traditional 64-bit addressing. 55

3.2 High-level pseudocode for decompressing 32-bit object
references. 56

3.3 Low-level pseudocode for decompressing 32-bit object
references: the if-then decompression approach. 57

3.4 Low-level pseudocode for decompressing 32-bit object
references: the patched decompression approach before
code patching is applied. 58

xx LIST OF FIGURES

3.5 Low-level pseudocode for decompressing 32-bit object
references: the patched decompression approach after
code patching is applied. 59

3.6 High-level pseudocode for compressing 64-bit object ref-
erences. 60

3.7 Reduction in the number of allocated bytes through ORA. 66
3.8 ORA’s reduction of the memory usage overhead of 64-bit

mode compared to 32-bit mode. 66
3.9 Number of pages in use as a function of time with the

GenMS collector: the base case versus ORA. 67
3.10 Maximum reachable bytes as a function of time for 32-bit

and 64-bit processing and for ORA. 68
3.11 Speedup of the garbage collector through ORA. 69
3.12 Evaluating object-relative addressing in terms of perfor-

mance. 71
3.13 Evaluating the overhead of different decompression schemes

for object-relative addressing in terms of performance. . 73
3.14 Ratio of the number of executed instructions of ORA in

relation to the 64-bit base case for the GenMS collector. . 75
3.15 The number of L1 D-cache misses per 1000 instructions

of the base run for the GenMS collector. 76
3.16 The number of L2 D-cache misses per 1000 instructions

of the base run for the GenMS collector. 76
3.17 The number of L3 D-cache misses per 1000 instructions

of the base run for the GenMS collector. 77
3.18 The number of D-TLB misses for the GenMS collector,

per 1000 instructions of the base run. 78

4.1 The Java (non-array) object models studied in this chapter. 85
4.2 The 64-bit virtual address for a TVA-disabled object (a)

and for a TVA-enabled object (b). 92
4.3 Computing an object’s TIB pointer in an STVA-enabled

VM implementation. 94
4.4 Mapping the nursery and mature spaces in the virtual

address space in a TVA-aware VM. 96
4.5 Feasibility study: The number of selected object types,

the coverage by the selected objects and the number of
allocated bytes in the headers of the selected object types. 101

LIST OF FIGURES xxi

4.6 Reduction in the number of allocated bytes for the offline
header reduction techniques with MRT and LLMRT set
to 0.1%. 103

4.7 Reduction in the number of allocated bytes for the online
header reduction techniques. 103

4.8 STVA’s reduction of the memory usage overhead of 64-
bit mode compared to 32-bit mode. 105

4.9 The reduction in allocated bytes partitioned by TIB pointer
compression and online no-header STVA for the GenMS
collector. 105

4.10 Accounting the overall memory reduction to application
and VM objects; this graph assumes the GenMS garbage
collector and the online no-header STVA object model. . 106

4.11 Heap growth for GenMS collector as a function of time. 107
4.12 Maximum reachable bytes as a function of time for 32-bit

and 64-bit processing and for STVA. 108
4.13 Speedup of the garbage collector for offline and online

header reduction. 111
4.14 Speedups along with the 95% confidence intervals for of-

fline header reduction. The MRT and LLMRT thresholds
are set to 0.1%. 112

4.15 Speedups along with the 95% confidence intervals for
online header reduction. 112

4.16 The number of D-TLB misses per 1000 instructions in the
reference run for the GenMS garbage collector. 112

4.17 The number of L1 D-cache misses per 1000 instructions
in the reference run for the GenMS garbage collector. . . 113

4.18 The number L2 D-cache misses per 1000 instructions in
the reference run for the GenMS garbage collector. 113

4.19 The number L3 D-cache misses per 1000 instructions in
the reference run for the GenMS garbage collector. 114

4.20 Comparing STVA to TVA in terms of speedup for the
GenCopy garbage collector. 116

5.1 ORA’s and STVA’s combined reduction of the memory
usage overhead of 64-bit mode compared to 32-bit mode. 128

xxii LIST OF FIGURES

List of Abbreviations

BiBOP Big Bag Of Pages
D-TLB Data Translation Lookaside Buffer
DCX Data Compression eXtensions
EB Exa-Byte
EM64T Extended Memory 64 Technology
FCP Favorable Collection Point
GB Giga-Byte
GC Garbage Collection
ISA Instruction Set Architecture
JDK Java Development Kit
JGF Java Grande Forum
JIT Just-In-Time
JVM Java Virtual Machine
KB Kilo-Byte
LAT Long Address Table
LLMRT Long-Lived Memory Threshold
LOS Large Object Space
LSB Least Significant Bit
MB Mega-Byte
MRT Memory Reduction Threshold
OO Object Oriented
ORA Object-Relative Addressing
OS Operating System
RVM Research Virtual Machine
STVA Selective Typed Virtual Addressing
TIB Type Information Block
TLB Translation Lookaside Buffer
TVA Typed Virtual Addressing
VEE Virtual Execution Environment
VM Virtual Machine

xxiv LIST OF ABBREVIATIONS

Chapter 1

Introduction

The second half of the chessboard
Raymond Kurzweil

The phrase ”The second half of the chessboard”is derived from the fable
of an ancient Chinese mathematician, who did a great deed for the emperor of
China. As a reward for the great deed, the emperor promised the mathemati-
cian anything in his empire he could wish for. The mathematician replied he’d
wish every day an amount of rice being placed on a square of his chessboard.
The first square should contain one grain, and each successive square would
have to contain the double amount of the prior, and so until all 64 squares
were filled. The Emperor quickly granted this seemingly humble request.

After the first half of the chessboard was filled, the total number of grains
of rice became (1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 512 + 1024
+ ... + 2.147.483.648), or 232 − 1. This amount corresponds to about
one field of rice and is considered economically insignificant to the emperor
of China. It was as they progressed through the second half of the chess-
board that the situation quickly deteriorated. The second half should contain
(4.294.967.296 + ... + 9.223.372.036.854.775.808) = (264 − 232). That is
more rice than could ever be grown on the planet in the lifetime of the emperor.
One version of the story claims the emperor going bankrupt, another version
says the mathematician lost his head.

2 Introduction

1.1 Towards 64-bit computing

When people use the term 64-bit computing, it’s not always clear what
they mean. Most often, the width of the instructions, registers and/or
addresses is meant. For the purposes of this text, it means executing
applications on a processor with 64-bit registers and 64-bit virtual ad-
dresses.

Although we are currently in the transition from 32-bit to 64-bit
computing in general-purpose systems, 64-bit technology is not new. A
variety of high-end servers and applications like supercomputing and
database management systems, have been using 64-bit hardware for
over fifteen years. Companies that need to process huge amounts of
data use 64-bit servers, because these servers can support both a large
amount of data as well as large files.

Today, the market for consumer applications is making the tran-
sition towards 64-bit computing. The reason why it was running be-
hind, is that this market was dominated by IA-32 instruction set archi-
tecture (ISA) based hardware. Motorola produced a 64-bit micropro-
cessor in 1998: the PowerPC 620 processor. However, it was not until
AMD extended the IA-32 ISA to the x86-64 ISA in its Athlon64 [32] and
Opteron [47] microprocessors, that the market for consumer applica-
tions has been quickly catching up. Intel also followed with 64-bit x86
processors; they call their extension of the IA-32 ISA the Intel Extended
Memory 64 Technology (EM64T) [35].

This currently widespread use of 64-bit technology is such a hype at
the moment that computer system vendors have no trouble convincing
consumers that the advantages of 64-bit computer systems are worth
switching from 32-bit to 64-bit technology. There are still many 32-bit
applications, but thanks to the backward compatibility of most 64-bit
systems, these 32-bit applications can run unmodified on these new 64-
bit systems.

Unfortunately, there are a few drawbacks to 64-bit systems sup-
porting backward compatibility. First, there is the inconvenience for
users that applications compiled in 32-bit mode and applications com-
piled in 64-bit mode can not be linked together. Second, since mixed-
mode applications can not be linked together, each library needs to be
kept twice. And third, special precautions need to be taken to support
both 32-bit and 64-bit modes together: either a hardware compatibility
mode—the processors support an older 32-bit ISA as well as the new

1.2 The pros and cons of 64-bit computing 3

64-bit ISA—(e.g., AMD64 [1], EM64T [31], PowerPC64 [58]) or software
emulation (e.g., IA-32 Execution Layer [10]), or an actual implementa-
tion of a 32-bit processor core within the 64-bit processor die (e.g., Intel
Itanium [2]). The actual implementation of a 32-bit core occupies pre-
cious space on the processor die, while software emulation may face the
disadvantage of being slower, due to the extra software layer. While it
is not a prerequisite for the latter two cases, the support for a compat-
ibility mode does require the 64-bit ISA to be a superset of the 32-bit
ISA.

1.2 The pros and cons of 64-bit computing

We now discuss the advantages and disadvantages of 64-bit comput-
ing. We identify two advantages and two disadvantages that have a
potentially serious impact on performance.

1.2.1 The pros of 64-bit computing

Obviously, the major advantage of 64-bit computing is its very large
address space. A 32-bit machine is limited by a 4 GB address space,
this is because the machine’s word size is 32 bit and addresses are typi-
cally stored as one machine word. By switching to 64-bit machines, the
machine word doubles in size, while the associated address space gets
squared, i.e., a 64-bit machine can theoretically address 16 EB (exabyte).
This is astronomically large compared to the current usage of memory.
If we presume that current systems are equipped with 16 GB, and that
we would double the amount of memory usage every two years, even
then it would take about 60 years before we hit the new limit.

The second advantage is the availability of 64-bit wide registers and
the extension of the Instruction Set Architecture (ISA) with extra 64-
bit integer instructions. Applications that use 64-bit integer numbers
can benefit a lot. A large 64-bit integer value now fits in one general
purpose register, relinquishing the need for extra instructions to pro-
cess intermediate results. With fewer instructions executed, execution
time is expected to improve. Table 1.1 illustrates this for the multiplica-
tion of two 64-bit integer values. The last two columns show the num-
ber of instructions needed on a 32-bit processor and a 64-bit processor,
respectively. This table shows that a 32-bit machine requires 6 times

4 Introduction

Table 1.1: Resources required to first load two 64-bit integers, multiply them,
and finally store the lowest 64-bit integer result.

operation on 32-bit processor on 64-bit processor
Load two 64-bit 4 32-bit registers 2 64-bit registers
integers 4 load instructions 2 load instructions
Multiply two 64-bit 4 multiply instructions 1 multiply instruction
integers 2 addition instructions
Store one 64-bit 2 32-bit registers 1 64-bit register
result integer 2 store instructions 1 store instruction

more instructions than a 64-bit machine to perform a multiplication of
two 64-bit integers.

We would like to note that the transition to 64-bit computing trig-
gered some ISAs to be extended even further. Since 64-bit support re-
quires new compilers and new operating systems, it was a great op-
portunity to make changes that would otherwise also require new tool
chains. For example in the x86-64 ISA, 8 extra general purpose regis-
ters were added in 64-bit mode (the number of registers is doubled).
This of course has a serious impact on performance, since registers are
the fastest form of memory available in current processors. As reported
in [44], applications execute about 25% faster on average when running
in 64-bit mode on the AMD Athlon 64 3800+. However, since these ex-
tra registers are not part of the 32-bit to 64-bit address space transition,
we believe that such comparison is not entirely fair if one is only in-
terested in the impact of the transition of a 32-bit to a 64-bit address
space. We prefer not to take these additional 64-bit ISA extensions into
account. This thesis will focus on the impact of 64-bit addresses on
performance, rather than the additional ISA extensions.

1.2.2 The cons of 64-bit computing

On the negative side, the most important disadvantage of 64-bit com-
puting is the increased memory footprint. By doubling the machine
word, every address requires twice the number of bits in memory. Ta-
ble 1.2 shows the number of dynamically allocated data structures and
their size increase when using 64-bit mode instead of 32-bit mode for
15 C benchmarks. The benchmarks are compiled using the gcc 3.3.2
compiler on an IBM Power 4 machine. All data types, except point-

1.2 The pros and cons of 64-bit computing 5

Table 1.2: Dynamic memory increase between 32-bit and 64-bit C programs.

suite benchmark #structs increase (%)
Grande1 heapsort 1 0.00

lufact 2,004 0.03
moldyn 3 0.00

sor 2,001 0.07
sparse 5 0.00

PtrDist2 ptrdist 32,880 4.74
anagram 315 2.95

ft 6,628 99.89
ks 661 98.68

Richards3 bench100 14 48.15
BioPerf4 ce 19,011 1.51

glimmer 135 59.74
clustalw 4 60.00

phylip 5 60.00
predator 64,177 47.48

AVG 8,523 32.22

ers, have the same size in 32-bit mode as in 64-bit mode. We observe
a wide variety in the number of allocated data structures across the
benchmarks. A low number means fewer dynamic structures are cre-
ated, and this often corresponds to a small increase in memory usage,
indicating that the program is doing merely arithmetic computations
on a few data structures. For example, the Grande applications perform
arithmetic operations on large matrices. Large memory increase num-
bers indicate that there are a lot of pointers between dynamic struc-
tures, e.g., the benchmarks ft and ks show a close to 100% memory
increase because these benchmarks almost exclusively perform oper-
ations on linked data structures.

Increased memory usage both incurs a cost component and a per-
formance degradation component. We first discuss the cost component.
One way of dealing with excessive memory usage is to provide more
physical memory in the machine, however, this is costly as physical
memory is a significant cost factor in today’s computer systems. While
in high-end servers extra memory can be installed at a greater cost,

1http://www.epcc.ed.ac.uk/javagrande/langcomp.html
2http://www.cs.wisc.edu/ austin/ptr-dist.html
3http://www.cl.cam.ac.uk/ mr10/
4http://www.bioperf.org/

6 Introduction

there are systems that have strict space constraints, e.g., embedded sys-
tems. Designers of embedded systems are always looking for ways to
shrink the hardware dimensions and to scale down the cost of their
product. For these systems, increasing the amount of physical memory
in the system may not be an option.

The increased memory usage may also lead to performance degra-
dation. Although main memory access latency is typically mitigated
by a hierarchy of caches, these caches are relatively small in compari-
son to main memory. The working set of 64-bit applications increases in
size with regard to the working set of their 32-bit counterparts, without
the injection of extra information (i.e., the same amount of informa-
tion occupies more memory), and hence caches are more sparsely filled
with useful data. This leads to more cache and translation lookaside
buffer (TLB) misses, extra pressure on main memory (i.e. bandwith)
and hence to overall performance degradation. This is especially of
concern on heavily-loaded machines with many simultaneously run-
ning programs that are memory-intensive; overall system performance
quickly deteriorates once physical memory is exhausted.

Main memory accesses tend to dominate more and more an appli-
cation’s execution time. This can be explained by Moore’s law, which
states that advances in semiconductor technology double the transistor
density of integrated circuits every 18 months. Although processor per-
formance has roughly followed this law and doubled every 18 months
for the past decades, memory access time on the other hand did not
follow the same speedup rate (only 7% improvement every year [37]),
leading to a continuously widening of the gap between processor speed
and memory speed. Since the gap is widening, the number of mem-
ory accesses — each main memory access typically takes hundreds of
processor cycles — have more and more impact on the performance of
the system. Next to performance degradation, the increased memory
usage may potentially also increase power consumption because fewer
memory banks can be shut off, there is more bus traffic, etc.

The second disadvantage of 64-bit computing is related to address
translation. If address translation is done through the means of page
tables, more levels of indirection need to be traversed in order to trans-
late the virtual address into a physical address. In the x86 ISA family for
example, a 2-level page table is used, while on the x86-64 architecture
there exists a 4-level page table [1]. Because each entry in a page table
is now 64 bit wide, only half of the entries can be stored in an equally

1.3 Assessment: 64-bit computing or not? 7

sized page. With the 4-level page scheme, only 48 bits of the virtual
address space can be supported. In order to support the entire 64-bit
address space, extra levels are needed. All these extra indirections of
course slow down the retrieval of a page from memory and thus slows
down TLB miss handling. In fact, the x86-64 Linux port already tries to
limit the overhead by currently only using three of the four levels, pro-
viding only a 39-bit address space for user processes [46]. The PowerPC
microprocessor family does not use a hierarchical page table, but in-
stead uses a reversed page table system [56], needing a hashing scheme
to find the corresponding physical address of a virtual address. The In-
tel Itanium processor provides both a linear and a hashed mechanism
for hardware page walking [18].

1.3 Assessment: 64-bit computing or not?

We outlined the transition of 32-bit technology to 64-bit technology and
the existence of different modes on the latter and we listed a number of
advantages and disadvantages related to 64-bit technology. Now we
will reason about these technologies and modes and make an assess-
ment about 64-bit technology.

If an application requires a 64-bit virtual address space, it is obvious
there is only one path to walk. Otherwise, if there is no such require-
ment, a choice can be made to run it either on a 32-bit system, or on
a 64-bit computer system in 64-bit mode, or on a 64-bit computer sys-
tem in 32-bit mode (if available). For the rest of this discussion we will
presume the existence of a 32-bit compatibility mode on a 64-bit com-
puter system which does not introduce an extra performance penalty
compared to running on a 32-bit computer system5.

We will now discuss the choice between the three options just pre-
sented, using Table 1.3. This table gives an overview of the advantages
and disadvantages of 64-bit computing, applied to each choice. First,
the choice between a 32-bit computer system versus a 64-bit computer
system in 32-bit compatibility mode will be elucidated, followed by a
discussion of 32-bit mode versus 64-bit mode on a 64-bit computer sys-
tem. We will argue why 64-bit computing is not always better, explain

5We will not take into account performance penalties caused by running 32-bit
mode on 64-bit systems. Some 64-bit architectures such as the AMD64 [25] do not incur
additional overhead when running 32-bit programs in 32-bit compatibility compared
to an equivalent 32-bit architecture.

8 Introduction

Table 1.3: Overview advantages/disadvantages of 32-bit/64-bit computing.

32-bit hardware 64-bit hardware
32-bit mode compatibility mode 64-bit mode

Address Space - + +
Extended ISA - - +
Memory footprint + + -
Address translation + - -

the main cause of why this is the case, and throw light on the circum-
stances in which this cause is most likely problematic.

1.3.1 32-bit computing systems versus 32-bit compatibility
mode on 64-bit computing systems

At first it might look as if there is no difference at all between a 32-
bit computing system and a(n) (equivalent) 64-bit computing system
in compatibility mode, because we stated earlier that no extra perfor-
mance overhead is incurred to run 32-bit compatibility mode on 64-bit
computer systems. But some subtle differences do exist. We will now
discuss each of the advantages/disadvantages of Table 1.3:

• The first advantage on the 64-bit system (Table 1.3) is related to
the virtual address space. The address space on a 32-bit machine
is limited to less than 4 GB in practice, since a large part of the
4 GB address space is already reserved by the operating system
(OS) for kernel code and shared libraries, leaving only 2 to 3 GB
for user purposes. Although in compatibility mode, the virtual
address space of a 64-bit machine is limited to 4 GB, the appli-
cation can now use the entire 4 GB because compatibility mode
on a 64-bit machine is running a 64-bit OS. The OS sees the entire
64-bit address space, and can map the 4 GB virtual address space
of the 32-bit application to a different 4 GB segment from the first
4 GB segment which is typically partially used by the OS.

• The second item of Table 1.3, the extended ISA on 64-bit systems,
does not apply in compatibility mode nor on 32-bit systems, since
these extensions are simply not available.

• A 32-bit application run in compatibility mode will not suffer

1.3 Assessment: 64-bit computing or not? 9

from the third item either, an increased memory footprint, be-
cause it was compiled as a 32-bit application, and, by conse-
quence, it will use the same amount of memory as running it on
a 32-bit system.

• The fourth item related to address translation might apply since
the 64-bit system is running a 64-bit OS that has access to the en-
tire virtual address space. However, since there are systems that
use hashing schemes (e.g., PowerPC, Itanium), which are similar
for both systems, this disadvantage can be bypassed.

In conclusion, there are only subtle differences between a 32-bit
computer system and a 64-bit computer system running in 32-bit com-
patibility mode. However, there is some slight advantage to the 64-bit
machine running in compatibility mode.

1.3.2 32-bit compatibility mode versus 64-bit mode

Now we compare the 32-bit compatibility mode with the 64-bit mode
on a 64-bit computer system. We will do this once again by discussing
each of the four advantages/disadvantages listed in Table 1.3:

• Because we are discussing applications that have no need for a
64-bit address space, the first item of Table 1.3 does not apply.
Both modes provide at least 4 GB virtual address space to the
application.

• The second item about the extended ISA, on the contrary, is only
available in 64-bit mode, so applications can only benefit when
compiled for 64-bit mode.

• The third item of Table 1.3, concerning the memory footprint, ap-
plies also. There is a clear disadvantage for 64-bit mode, having
an increased memory usage.

• The last item about address translation does also not apply in this
discussion, since both modes run on the same machine with the
same 64-bit OS.

To conclude, we can say that for applications requiring less than
4 GB virtual address space, running in 32-bit mode will benefit from

10 Introduction

a smaller memory footprint, while running in 64-bit mode might im-
prove performance due to the extended ISA. As there are always point-
ers in real-life applications, the overhead of the increased memory us-
age will always occur, while the extended ISA advantage will only be
exploitable for applications using large integers.

1.3.3 64-bit mode: the all-around solution?

Although 64-bit computing is the future trend, the previous discussion
suggested that many applications that do not require more than 4 GB of
memory, will still perform best in 32-bit mode. This is a little inconve-
nient as two modes might need to be supported for a long time to come.
We already summarized some drawbacks of supporting two modes in
section 1.1, namely that object files compiled in different modes can
not be linked together, and that therefore two copies of each program-
ming library are needed. It would be better to have to support only
one mode. One mode would simplify the computer hardware and the
operating system. Having only the 64-bit mode would however lead
to a substantial increase in memory usage, as discussed above. This in-
creased memory usage is the obstacle that keeps us from switching en
masse to 64-bit computing.

Implications on Object-Oriented Languages. The inflated pointer
size is the major cause of increased memory usage when transferring
from 32-bit computing to 64-bit computing. The pointer concept did
not exist in the early fortran77 language, but is widely used in C pro-
grams to access and manipulate data structures. Object-Oriented (OO)
programming languages go one step further and add extra function-
ality to the data structures, which are now called objects. Each object
may receive messages, may process data, and may send messages to
other objects. Objects often contain pointers to other objects, and, as
such, when messages are passed between objects, chains of pointers
are chased in the process.

If we go yet one step further in the chain of software development,
we see that in modern software development technology next to the
language, an environment gets created in which an application resides.
A Virtual Execution Environment (VEE) shields off the application
from the underlying platform, by presenting a virtual machine (VM)
that provides platform independence to the application. VEEs are very

1.3 Assessment: 64-bit computing or not? 11

Table 1.4: Dynamic memory increase between 32-bit and 64-bit Java pro-
grams.

suite benchmark #structs increase (%)
Grande6 heapsort 82 0.00

lufact 2,086 0.03
moldyn 9,063 15.15

sor 2,084 0.03
sparse 90 0.00
search 34,517,857 27.18

SPECjvm987 jess 32,178,443 71.74
db 13,267,280 91.19

javac 23,501,089 60.01
jack 35,490,673 55.26

DaCapo8 antlr 12,966,988 29.17
fop 1,180,024 47.20

hsqldb 11,813,470 87.26
pmd 154,355,087 78.88

SPECjbb20009 pseudojbb 74,902,214 49.20
AVG 26,279,102 40.82

popular nowadays, see for example the Java Virtual Machine and the
.NET environment. Virtual execution environments provide benefits
in terms of portability, improved security and better resource manage-
ment. For example, the Java Virtual Machine (JVM) manages its own
object allocation and deallocation: reclamation of dead objects from
the heap is done by a garbage collector. In order to support garbage
collection and some other object functionality like virtual method dis-
patching, locking and hashing, the JVM needs to be able to keep track
of object-specific information. This information is typically stored in a
header attached to each object.

With regard to memory management, OO-languages tend to use
more dynamic memory than non-object-oriented languages like C.
Calder et al. [17] compare C to C++ applications and observed that
C++ applications allocate 4x more dynamic memory than C applica-
tions, on average. A first reason is obviously the extra object headers

6http://www.javagrande.org
7http://www.spec.org/jvm98
8http://www.spec.org/jbb2000
9http://dacapobench.org/

12 Introduction

which require memory chunks to be larger, and second, since every-
thing is an object in an OO-language like Java, more chunks of memory
are likely to be allocated [33]. Table 1.4 shows the number of objects
allocated for 15 Java benchmarks and the increase in dynamic memory
utilization when making the transition from 32-bit to 64-bit pointer
representation. Comparing Table 1.4 to Table 1.2 clearly shows that
Java applications typically allocate more dynamic data structures. The
added object headers typically contain pointers, and hence make the
total memory increase in an OO-language like Java even more dras-
tic (e.g., Table 1.4 shows a 40.82% increase on average, compared to a
32.22% increase in Table 1.2). The low increase in dynamic memory
utilization for most of the Grande applications can be explained by the
nature of these applications—they operate on large arrays and do not
manipulate pointers frequently.

1.3.4 Conclusions

As a general conclusion of whether it is worth adapting to 64-bit com-
puting or not, we can make a few statements.

First, 64-bit technology cannot be stopped. All major manufac-
turers on the general-purpose consumer market have integrated 64-bit
technology in all of their products. As 64-bit computer systems with a
32-bit compatibility mode seem to have a slight advantage over pure
32-bit computer systems, the current hype on the consumer market
might make sense. Consumers who buy 64-bit technology do not have
to give up performance for applications that can run in 32-bit mode. In
addition, having a 64-bit computer makes them ready for future appli-
cations which might need the extended virtual address space. More-
over, manufacturers can produce only one architecture (that supports
both 32-bit and 64-bit applications) instead of two. Due to the econ-
omy of scale, production costs decrease, which is again favorable for
the consumers.

Second, 64-bit computing is not always better than 32-bit comput-
ing. The statement that consumers would not have to give up perfor-
mance on 64-bit computer systems is only valid assuming compatibility
mode. In 64-bit mode, the real benefit depends on the application. If
the application cannot benefit from the address space increase or the
64-bit operations, it will probably suffer from the increased memory
footprint.

1.4 Goal and contributions of this thesis 13

Third, OO-languages and VEEs suffer more from the disadvan-
tages of 64-bit computing. If 64-bit mode is used, the increased mem-
ory size is the largest cost. The memory increase effect is the largest for
applications with many strongly connected objects, but since this ef-
fect is even intensified by OO-languages and execution environments
with memory management, 64-bit computing is expected to be worse
in such an environment.

In general, without space saving techniques specifically targeted at
64-bit platforms, good judgement is in order whether to compile an ap-
plication in 32-bit mode or in 64-bit mode. If each bit of the 64 bit of an
address corresponds to a square of the mathematician’s chessboard in
the Chinese fable, one should be careful not to make the same mistake
as the emperor, entering the second half of the chessboard unadvised.

1.4 Goal and contributions of this thesis

Ideally, applications should only take advantage of 64-bit computing
without its associated cost. In reality though, these two factors are con-
nected, and a trade-off has to be made between extra addressability and
extra memory usage. In this dissertation we make such a trade-off and
search for a way in between: use the advantages of 64-bit computing
while avoiding paying the penalties, or in other words, provide a 64-bit
address space for applications that need it, while minimizing excessive
memory usage because of 64-bit pointers for applications that do not
require a 64-bit address space. This thesis makes three major contribu-
tions:

• A detailed 64-bit memory usage characterization study. Our
first contribution [69] is to characterize the impact of the transi-
tion from 32-bit to 64-bit computing on memory usage and over-
all performance for Java workloads. We found that objects grow
on average with about 45.3% when going from a 32-bit to a 64-bit
Java Virtual Machine. We identified the inflated pointer size of 64-
bit pointers as the major cause of this increased object size. From
this characterization, we observe that pointers exist in the object
data as well as in the object header and that both are responsible
for a major part of this increased object size. We also study the
memory usage of applications through time, and compare heap
growth behaviors of a 32-bit VM and a 64-bit VM. We perform a

14 Introduction

detailed performance analysis including cache and TLB miss rate
characterization.

• Object-Relative Addressing. The cost of 64-bit computing, i.e.,
the increased memory usage, can be reduced by space saving
techniques specifically targeted at 64-bit platforms. In order
to achieve a smaller memory footprint, we reduce the size of
each/most of the dynamically allocated memory chunks. In
Java, each object is dynamically allocated. An object consists of
a header and a body and both can contain references. This thesis
addresses the excessive memory usage in both the header and the
body.
Our first technique concentrates on the object body. References
inside the body of an object are used to create links between ob-
jects. As linked objects tend to form clusters [60], it is possible
to lay out objects on the heap so that many linked objects are in
close proximity [39]. If objects are known to be in close proxim-
ity, the reference can be encoded in less than 64 bit. Recall that a
reference is an abstraction of a pointer, and hence its physical rep-
resentation can be chosen freely. We propose a technique, called
Object-Relative Addressing (ORA), which stores an inter-object
reference as a 32-bit offset relative to the referencing object’s vir-
tual address. ORA results in more than 10% reduction in allo-
cated bytes for many benchmarks while enabling applications to
allocate more than 4 GB, unlike prior work in this area [3]. ORA
is published in [72].

• Selective Virtual Typed Addressing. Our third contribution is a
technique that reduces the excessive memory usage in the object
header. Each object typically has a header attached for the VM to
perform internal functionality such as virtual method dispatch-
ing, garbage collection, hashing, locking, etc. The object header
typically contains a reference that (indirectly) reveals an object’s
type. In contrast to the references in the body, the purpose of
this reference is not to link objects, but to identify the object’s
run time type. A first observation is that in real-life applications
there are only several thousands of types, so using 64 bit in or-
der to distinguish object types is likely to be excessive. Second,
the 64-bit virtual address space is so huge, that it is extremely un-
likely that this entire space is going to be used in the next few
decade(s). Hence we could give each object type its own parti-

1.5 Publications 15

tion of the virtual address space, i.e., we allocate all objects of a
given type in a particular memory segment. Object type identi-
fication can then be done by looking at the address of the object
itself, rather than loading a reference from its header. We call this
technique Typed Virtual Addressing (TVA). By doing so, the type
information in the header gets redundant and hence can be re-
moved. In order not to create excessive fragmentation due to all
object types being allocated in different regions in memory, we
apply TVA to a selection of objects only, hence the name Selective
Typed Virtual Addressing (STVA). Next to applying STVA, we
also propose techniques to remove the remaining header fields.
In [70] we describe how the selection criterion of STVA can be
performed offline and how we reduce the object header from 16
bytes to 4 bytes. Next, [71] extends the former paper by removing
the entire object header and by proposing an online TVA selection
technique. This reduces memory demands by 15% on average.

1.5 Publications

This thesis has three contributions: a characterization study of the
memory usage and overall performance of 32-bit and 64-bit applica-
tions, a pointer compression technique and a header removal tech-
nique. These contributions are published in the following papers.

• The characterization study is published in the paper:

[69] Kris Venstermans, Lieven Eeckhout, and Koen De Bosschere.
64-bit versus 32-bit Virtual Machines for Java. In Software-
Practice and Experience (SPE), 36(1): pages 1-26, Jan 2006.

• The ORA pointer compression technique is further detailed in:

[72] Kris Venstermans, Lieven Eeckhout, and Koen De Bosschere.
Object-Relative Addressing: Towards Compressed Pointers in
64-bit Java Virtual Machines. In Proceedings of the 21st Euro-
pean Conference on Object-Oriented Programming (ECOOP’07),
to be published. July 2007.

• The next publications describe the Typed Virtual Addressing

16 Introduction

(TVA) and Selective Typed Virtual Addressing (STVA) tech-
niques:

[71] Kris Venstermans, Lieven Eeckhout, and Koen De Bosschere.
Java Object Header Elimination for Reduced Memory Con-
sumption in 64-bit Virtual Machines. In ACM Transactions on
Architecture and Code Optimization, to be published, 2007.

[70] Kris Venstermans, Lieven Eeckhout, and Koen De Bosschere.
Space-Efficient 64-bit Java Objects through Selective Typed Vir-
tual Addressing. In proceedings of the 4th Annual International
Symposium on Code Generation and Optimization (CGO), pages
76-86, Mar. 2006.

Besides the contributions described in this dissertation, we also per-
formed research on garbage collection.

• Garbage Collection Hints. Current garbage collection (GC) tech-
niques typically trigger when either the heap, or a part thereof,
is full. In between two runs no objects get deallocated, i.e., dead
objects need to wait for the next GC to be discovered and freed.
The right time to collect is a balance between freeing up unused
memory as soon as possible and freeing up as much memory as
possible at once. GC algorithms can be made smarter when pro-
vided with liveness information from the application [41]. We
present a technique, that during the execution of a program feeds
back the amount of live data of a training run of that program.
From this live data information, execution points can be identi-
fied, where the amount of live data reaches a local minimum. We
call these execution points favorable collection points (FCPs). In
particular, less dead objects occupy the heap if collections are trig-
gered at points in time where the amount of live data is low. The
proposed Garbage Collection Hints mechanism helps the VM to
decide when and how to collect at these FCPs. This fourth contri-
bution is not included in this thesis, but is published in:

[15] Dries Buytaert, Kris Venstermans, Lieven Eeckhout, and
Koen De Bosschere. GCH: Hints for Triggering Garbage Collec-
tions. In Transactions on High-Performance Embedded Architec-
tures and Compilers, 1(1):pages 52-72, Jun. 2006.

[14] Dries Buytaert, Kris Venstermans, Lieven Eeckhout, and

1.6 Overview 17

Koen De Bosschere. Garbage Collection Hints. In Proceedings
of High-Performance Embedded Architectures and Compilers
2005 (HiPEAC’05), LNCS 3793, pages 233-348, Nov. 2005.

1.6 Overview

This dissertation is organized as follows. First, chapter 2 quantifies the
increased memory usage of 64-bit computing versus 32-bit computing
for Java workloads. In addition, it identifies the major causes of this
increase and evaluates the impact on performance.

Since inflated references can cause a significant memory usage in-
crease in 64-bit virtual machines, we investigate memory saving tech-
niques in chapters 3 and 4. Chapter 3 describes the Object-Relative Ad-
dressing technique to reduce pointer sizes, while Chapter 4 describes
(Selective) Typed Virtual Addressing.

Finally, Chapter 5 summarizes the main conclusions and results
from this dissertation and finishes with some perspectives at future
work.

18 Introduction

Chapter 2

64-bit versus 32-bit
computing: a

characterization

A lie told often enough becomes the truth.
Nikolai Vladimir Ilyich Lenin

In this chapter we are interested in 32-bit versus 64-bit Java processing
and its impact on performance. Many speculations have been made about the
impact on performance of 64-bit versus 32-bit computing, however, few quan-
titative results are available. The speculations being made typically concern
the impact on memory usage and the impact on execution speed. To the best of
our knowledge, this thesis is the first to investigate the impact of 32-bit versus
64-bit computing in the context of Java workloads. In this chapter, we study
and quantify both the increased memory requirements due to 64-bit computing
and its impact on overall performance in Java.

2.1 Introduction

The introduction chapter discussed advantages and disadvantages of
64-bit computing. We concluded that 64-bit computing will become
common practice, notwithstanding the fact that for some applications
64-bit computing may result in a performance penalty compared to 32-
bit computing. The dominating concern when running in 64-bit mode
is caused by the increased memory usage of applications. This in-

20 64-bit versus 32-bit computing: a characterization

creased memory usage is even intensified if the applications are written
in Object-Oriented programming languages.

The observation that 64-bit computing involves increased memory
usage is not surprising. However, there is no prior work with quan-
titative measurements on the increased memory requirements of 64-
bit versus 32-bit computing for Java applications. As such, before we
tackle the increased memory usage of 64-bit Java applications in the
following chapters, we feel that a detailed characterization study of the
overhead of 64-bit computing over 32-bit computing is needed first.
The measurements done in this chapter, describing this overhead, will
form the basis that the subsequent chapters will build upon.

In this chapter, we show that the space an object occupies on the
heap increases by 45.3% on average when using a 64-bit VM versus a
32-bit VM. We identify four causes for this: (i) the increased pointer
size (64 bits versus 32 bits), (ii) the increased header, (iii) the increased
number of bytes that need to be inserted within the objects for align-
ment purposes and (iv) the increased number of bytes between objects
on the heap due to alignment and memory manager overhead.

We also quantify the increased number of garbage collections (GCs)
performed and the increased amount of time spent during GC when
run in 64-bit mode. From our experimental setup, we conclude that on
average GC performs 33.4% worse while 60.1% more minor collections
and 64.8% more major collections are performed in a 64-bit VM for the
same heap size.

Next, we also quantify the impact on overall performance and study
the behavioral characteristics of a 32-bit VM compared to a 64-bit VM
using hardware performance monitors. We conclude that 64-bit com-
puting typically results in a larger number of data cache misses at all
levels in the cache hierarchy. For example, we report 21.3%, 48.8% and
66.5% increase in the number of data cache misses when comparing 64-
bit computing to 32-bit computing for the L1, L2 and L3 data caches,
respectively. Finally, when considering overall performance, we con-
clude that Java applications can run much faster in 64-bit mode if they
can benefit from the extra 64-bit instructions. Most applications, how-
ever, show a slowdown of a few percentage when running in 64-bit
mode compared to running in 32-bit mode.

2.2 Experimental setup 21

2.2 Experimental setup

This section describes the experimental setup for this chapter and the
remainder of this thesis. We discuss the virtual machine, the hardware
platform and the benchmarks used.

2.2.1 Virtual machine

We use the Jikes Research Virtual Machine (Jikes RVM) version 2.3.5,
extended to be able to use the entire 64-bit virtual address space. The
Jikes RVM [5] is an open-source virtual machine, developed by IBM
Research1. It runs on Linux/IA32, AIX/PowerPC, Linux/PowerPC
and OS X/PowerPC. All these ports are for 32-bit machines, except for
the AIX/PowerPC which was also ported to 64 bit. Jikes RVM uses a
compilation-only scheme for translating Java bytecodes to native ma-
chine instructions. Upon the first invocation of a Java method, the Jikes
RVM compiles the Java bytecode to native code using its baseline com-
piler. Whenever code is considered to be hot code, the optimizing com-
piler will further optimize this code using advanced compiler optimiza-
tions. One particularity of Jikes RVM is that Jikes RVM itself is written
in Java, which allows for more aggressive optimizations between appli-
cation code and RVM code. It also has an effect on the objects allocated.
Internal objects such as those created during class loading or those cre-
ated by the run time compilers are all allocated on the same Java heap.
Thus unlike with conventional Java virtual machines (not written in
Java) the heap contains both application data as well as VM data.

We will use four garbage collectors with Jikes RVM. We consider
two basic collection strategies, namely SemiSpace which is the simplest
copying garbage collector (worst heap usage) and MarkSweep which
is the simplest non-copying garbage collector (worst collector-specific
overhead). Furthermore, we will examine two generational collection
schemes. A generational garbage collector segregates the heap in sev-
eral generations. The generational garbage collectors we use, have 2
generations: a nursery generation and a mature generation. New ob-
jects are allocated in the nursery generation. At GC-time, the surviving
objects from the nursery generation are copied into the mature genera-
tion (minor GC). As the mature generation fills up, less and less space
becomes available for the nursery generation. If the size of the nurs-

1http://www.ibm.com/developerworks/oss/jikesrvm

22 64-bit versus 32-bit computing: a characterization

Table 2.1: Cache hierarchy of the IBM POWER4.

cache size line size associativity
L1 I-cache 64 KB 128 B direct mapped
L1 D-cache 32 KB 128 B 2-way set assoc.
L2 unified 1.41 MB 128 B 8-way set assoc.
L3 unified 32 MB 512 B 8-way set assoc.

ery generation drops below a specified limit, a major GC is triggered
and both the nursery and mature generations will be collected. The
surviving objects from both generation are copied into the mature gen-
eration. Generational collectors are very popular in todays VMs, since
they typically provide better performance and they decrease collector
pause times [40]. The two generational collection schemes we use, are
GenCopy, which is a generational version of the SemiSpace collector,
and GenMS (generational MarkSweep), which is the best performing
garbage collector of Jikes RVM and which in essence is a combination
of SemiSpace (copying between young generation and old generation)
and MarkSweep. The heap size that can be occupied before triggering
a GC is controlled by two parameters. First the value of initial heap size
will set an upperbound to the available heap size. Jikes RVM can ad-
just this value at run time, according to its needs and the pressure on
the GC-system. However, the value will never exceed the value of the
second parameter, called the maximum heap size.

Jikes RVM was extended to support reading the Hardware Perfor-
mance Monitors per thread [66]. We make use of this extension to mea-
sure cache and TLB miss rates as well as overall performance. We mea-
sure these performance numbers for both the mutator threads and the
garbage collection threads.

2.2.2 PowerPC platform

The hardware platform used in this chapter (and the entire thesis) is
the IBM POWER4 microprocessor [11]. The IBM POWER4 is a 64-bit
microprocessor implementing the PowerPC ISA with two cores on a
single chip. Each core is an 8-issue superscalar out-of-order micro-
processor capable of processing over 200 in-flight instructions at any
given time. The POWER4 can be used in a multiprocessor system with

2.2 Experimental setup 23

several POWER4 chips on the same motherboard. Our machine how-
ever, a 615 pSeries, only has one single POWER4 chip. The amount of
RAM memory equals 1 GB. The memory subsystem of the POWER4
has three levels of cache. Each core has an L1 instruction cache (I-
cache) and L1 data cache (D-cache). The L1 D-cache is a write through
cache, which means that all data stored in the L1 D-cache is immedi-
ately stored through to the L2 cache. The L2 cache is a unified cache
and is shared by the 2 cores on the chip. The L2 cache is a write back
cache, meaning that data is not immediately written to memory—this
is done upon replacement. The L3 cache is designed to be shared by
multiple POWER4 chips. The L3 controller containing the tag arrays
are stored on chip whereas the L3 data arrays are stored off-chip. More
details on the cache hierarchy of the POWER4 can be found in Table 2.1.

The unified TLB (for both instructions and data) has 1024 entries in
a 4-way set-associative structure. The effective to real address transla-
tion tables (I-ERAT and D-ERAT) operate as caches for the TLB. They
are organized as 128-entry 2-way set-associative arrays. The POWER4
has standard 4 KB pages but also supports large 16 MB pages. In our
measurements we only use 4 KB pages. 16 MB pages are limited in use
since they are limited in number (to be provided at boot time of the
machine) and are only accessible for privileged users.

In the evaluation section later in this chapter we will characterize
the behavior of the 32-bit and 64-bit VM using hardware performance
monitors. Current microprocessors are generally equipped with a set
of specialized registers to count a variety of hardware events such as
number of cycles executed, instructions executed, cache misses, branch
mispredictions, etc. The AIX 5.1 operating system provides an appli-
cation programming interface in the form of a kernel extension (the
pmapi library2) to access these hardware performance counter values.
This library automatically handles hardware counter overflows and
kernel thread context switches. These performance counters measure
both user and kernel activity.

2.2.3 Statistical analysis

Since we measure on real hardware, non-determinism in evaluation
runs results in slight fluctuations in the number of execution cycles.

2http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=
/com.ibm.aix.prftools/doc/prftools/perfmon api.htm

24 64-bit versus 32-bit computing: a characterization

Table 2.2: Benchmarks used from the SPECjvm98 suite.

db This benchmark makes some database requests on a
memory resident database.

jack An early version of the JavaCC Java source code
parser generator.

javac The Java Development Kit (JDK) 1.0.2 Java to byte-
code compiler.

jess An expert shell system, based on NASA’s CLIPS ex-
pert system, solving a set of puzzles with varying
degree of difficulty.

In order to be able to draw statistically valid conclusions, we use the
unpaired or noncorresponding setup for comparing means, see [53]
(pages 64–69). This statistical test goes goes as follows. We first calcu-
late the difference of the means x̄ = x̄1 − x̄2. We subsequently compute
the standard deviation of the difference of the means: sx =

√

s2
1

n1
+

s2
2

n2
,

with n1 and n2 the number of measurements and s1 and s2 the stan-
dard deviations in the two setups. The two setups in this chapter are
the 32-bit VM and the 64-bit VM, respectively. The confidence interval
can then be computed as [x̄ − t1−α/2;ndf

; x̄ + t1−α/2;ndf
], with t1−α/2;ndf

the critical value of the Student t-distribution with ndf degrees of free-
dom at the 1 − α confidence level. The number of degrees of freedom

is computed as follows: ndf =

„

s21
n1

+
s22
n2

«2

(s2
1

/n1)2

n1−1
+

(s2
2

/n2)2

n2−1

.

In our experimental results, we report 95% confidence intervals. In
all of our experiments, we run 15 measurements, i.e., n1 = n2 = 15.

2.2.4 Benchmarks

We selected several benchmark suites to construct our benchmark set:
SPECjvm983, SPECjbb20004 , Java Grande Forum (JGF)5 and DaCapo6.

SPECjvm98 is a client-side Java benchmark suite, for which we use
the s100 input set. We were unable to run the mtrt benchmark on Jikes

3http://www.spec.org/jvm98
4http://www.spec.org/jbb2000
5http://www.javagrande.org
6http://dacapobench.org/

2.2 Experimental setup 25

Table 2.3: The PseudoJBB benchmark.

pseudojbb A variant of SPECjbb2000, which is a three-tier
transaction system server benchmark, where the
user interaction (first tier) is simulated by random
input selection and the database (third tier) is re-
presented by a set of binary trees. The bench-
mark focuses on the business logic found (middle
tier). Pseudojbb runs for a fixed number of transac-
tions (35,000) whereas SPECjbb2000 runs for a fixed
amount of time. The number of warehouses goes
from 1 to 8.

Table 2.4: Benchmarks used from the Java Grande Forum suite.

crypt This benchmark performs IDEA (International Data
Encryption Algorithm) encryption and decryption
on an array of N bytes. (N = 50M)

heapsort Sorts an array of N integers using a heap sort
algorithm.(N = 25M)

lufact Solves an N x N linear system using LU factoriza-
tion followed by a triangular solve. (N = 2, 000)

moldyn Evaluation of an N-body model for particles inter-
acting under a Lennard-Jones potential in a cubic
space. (N = 8, 788)

search A program solving a connect-4 game, using an
alpha-beta pruning technique. N positions are eval-
uated. (N = 34, 517, 760)

sor This benchmark performs 100 iteration of succes-
sive over-relaxation on a N x N grid. (N = 2, 000)

sparse A N x N sparse matrix is used for 200 iterations.
The sparse matrix is stored in a compressed-row
format with a prescribed sparsity structure. This
benchmarks exercises indirect addressing and non-
regular memory references. (N = 500K)

RVM 2.3.5. We did not use the compress and mpegaudio benchmarks,
because they allocate almost no memory. The initial heap size is set to
100 MB and the maximum heap size to 200 MB for all the benchmarks.
Each benchmark is given a short description in Table 2.2.

26 64-bit versus 32-bit computing: a characterization

Table 2.5: Benchmarks used from the DaCapo benchmark suite.

antlr parses one or more grammar files and generates a
parser and lexical analyzer for each

fop takes an XSL-FO file, parses it and formats it, gener-
ating a PDF file

hsqldb executes a JDBCbench-like in-memory benchmark,
executing a number of transactions against a model
of a banking application

pmd analyzes a set of Java classes for a range of source
code problems

Pseudojbb, see Table 2.3, is a variant of SPECjbb2000, a server-side
benchmark focusing on the business logic of a three-tier system. We
used increments of 1 warehouse, ranging from 1 to 8 warehouses.
Instead of running for a fixed amount of time as done in standard
SPECjbb2000, pseudojbb processes a fixed amount of work. We have
set the transaction parameter to 35,000 units. We set the maximum
heap size to 512 MB for the MarkSweep and GenMS collectors and to
768 MB for the SemiSpace and GenCopy collectors. The initial heap
size is set to 256 MB.

A very different set of applications are the sequential benchmarks
from the Java Grande Forum suite. A more detailed description for
each benchmark can be found in Table 2.4. These so-called Grande ap-
plications require large amounts of memory, bandwidth and/or pro-
cessing power. Examples include computational science and engineer-
ing codes, as well as business and financial models. For each of the
selected benchmarks we have chosen the largest input set available.
For the JGF benchmarks the initial heap size is set to 256 MB and the
maximum heap size to 384 MB.

Finally, we also use the DaCapo benchmark suite [13], which ex-
hibits more complex code, richer object behaviors and more demanding
memory system requirements than the SPECjvm98 client-side bench-
marks. We use the DaCapo benchmarks under version beta-2006-08.
Unfortunately, we were unable to run all the DaCapo benchmarks on
Jikes RVM 2.3.5; we use the 4 DaCapo benchmarks mentioned in Ta-
ble 2.5. These were the only 4 DaCapo benchmarks we could run with
the large input set on our version of Jikes RVM. We set the maximum
heap size to 512 MB with a 100 MB initial heap size in all of the DaCapo

2.3 32-bit versus 64-bit VM 27

experiments, except for hsqldb, for which we set the maximum heap
size to 768 MB for the GenCopy and SemiSpace collectors.

2.3 32-bit versus 64-bit VM

Before quantifying the performance overhead when switching from the
32-bit VM to the 64-bit VM, we will start by highlighting some key dif-
ferences between the 32-bit and 64-bit versions of the Jikes RVM. We
identify four key differences: (i) the extended ISA, (ii) the increased
stack size, (iii) argument passing and (iv) the increased object size on
the heap.

2.3.1 64-bit ISA

Basically the 64-bit PowerPC ISA is a superset of the 32-bit ISA. Only
64-bit applications can make use of the 64-bit ISA. The 64-bit ISA in-
cludes additional instructions such as arithmetic operations on 64-bit
integer values, loading and storing 64-bit values to and from memory,
etc. This can be beneficial for applications working on 64-bit quan-
tities, since 32-bit compiled applications would require a sequence of
instructions to compute the same result as demonstrated earlier in Ta-
ble 1.1. In these cases, the 64-bit VM will need fewer native instructions.
However, in other cases, the 64-bit VM might require more native in-
structions than the 32-bit VM. For example, manipulating 32-bit offsets
in 64-bit computing needs additional operations to sign/zero extend
offsets, or, loading a constant reference into a register requires extra in-
structions to load the upper 32 bits.

2.3.2 Increased stack size

The sizes for the different Java types when used as object fields in
Jikes RVM, i.e., when allocated on the heap, are listed in Table 2.6 in
the ‘field size’ column. This is the same in 32-bit mode as in 64-bit
mode, except for the ‘reference’ and ‘returnAddress’ types which are
addresses. When pushing and popping these Java types on/off the
operand stack, a different number of bytes will be allocated and de-
allocated. As shown in the ‘size on stack’ column in Table 2.6, the size
of the Java types doubles for all Java types, when comparing the 64-bit
VM to the 32-bit VM. As such, the amount of stack space needed in

28 64-bit versus 32-bit computing: a characterization

Table 2.6: Java types and their sizes measured in the number of bits when
used on the heap (‘field size’ column) and when used on the stack (‘size on
stack’ column).

32-bit platform 64-bit platform
Field Size on Field Size on

Java types size stack size stack
boolean 32 32 32 64
byte 32 32 32 64
char 32 32 32 64
short 32 32 32 64
int 32 32 32 64
float 32 32 32 64
reference 32 32 64 64
returnAddress 32 32 64 64
long 64 64 64 128
double 64 64 64 128

64-bit mode is twice as much as in 32-bit mode. Note that the baseline
compiler in the Jikes RVM uses the operand stack intensively for stor-
ing intermediate values—the baseline compiler nearly literally trans-
lates the Java bytecode stack processing to native stack processing. The
reason that all types take twice as much stack space is due to the fact
that all Java types use a fixed number of stack slots (requirement for
the Java bytecode) and a stack slot needs to be able to host an address,
whose size doubles in 64-bit mode. A detailed discussion of this issue
however is out of the scope of this thesis. We refer the interested reader
to [68] for more details.

2.3.3 Argument passing

Argument passing may also cause differences between 32-bit and 64-bit
VMs. Passing a long in 32-bit mode requires 2 general purpose regis-
ters, but requires only 1 register in 64-bit mode. This reduces register
pressure in 64-bit VMs.

2.3.4 Increased object size

There are four causes why objects as they are allocated on the heap are
larger in a 64-bit VM than in a 32-bit VM. All four are depicted in Fig-

2.3 32-bit versus 64-bit VM 29

(a) pointer and header size increase

64-bit :

pointer 1

object header

intra-object alignment

32-bit :

object header

pointer 1

(b) intra-object alignment

64-bit :

pointer 132-bit :

pointer 1

integer 1

integer 1

(c) inter-object alignment

32-bit :

64-bit :

object 2object 1

object 1 object 2
inter-object alignment

padding

Figure 2.1: Causes for object size increase when going from the 32-bit VM to
the 64-bit VM.

ure 2.1. The first reason obviously is the increased size of the pointers
inside the body of an object, namely 64 bits instead of 32 bits. The sec-
ond reason concerns the header. Both the first and the second reason
are shown in Figure 2.1(a). The default object model in 32-bit Jikes uses
2 header words (32 bits each) and 1 extra header word for array objects
containing the array’s length (also 32 bits). These header words dou-
ble in size in 64-bit Jikes RVM7. However, we observed there is room
for improvement because 64-bit Jikes does not fully use all words at
all times. More in particular, the array length needs only 4 bytes, 4
out of 8 bytes in the status word are only used by copying garbage
collectors, and the Type Information Block (TIB) word could possibly
be compressed. The third reason for the increased object size, shown
in Figure 2.1(b), is the fact that additional bytes need to be allocated
for alignment. On 64-bit platforms, one typically wants references to
be aligned on 8-byte boundaries, whereas in 32-bit mode, alignment
at 4-byte boundaries is sufficient. Note that 64-bit fields (in both 32-

7The first two words effectively double in size. The array length field always takes 4
bytes, but the resulting 20 bytes in 64-bit mode need 4 bytes in addition for alignment.

30 64-bit versus 32-bit computing: a characterization

bit and 64-bit mode) will get aligned on 8-byte boundaries. This im-
plies the possible existence of a hole (e.g., an unused padding field of
4 bytes) inside an object; in the remainder of this dissertation, we will
refer to this padding as intra-object alignment. The fourth reason is the
extra overhead introduced by the memory manager due to inter-object
alignment—not to be confused with the intra-object alignment as just
discussed. Inter-object alignment is shown in Figure 2.1(c). Inter-object
alignment comes from aligning the object pointer in the allocated heap
space; intra-object alignment comes from aligning the fields to the ob-
ject pointer. In general, all four causes cause the object size to increase
when transitioning from a 32-bit machine to a 64-bit machine. This po-
tentially impacts cache and TLB behavior and by consequence overall
performance.

2.4 Memory behavior

Now we will quantify the allocation behavior and the increase in mem-
ory usage when comparing the 64-bit VM with the 32-bit VM. We will
measure the increase in overall object size.We subsequently separate
our measurements for application objects and RVM objects, in order to
verify whether our measurements would still hold for VMs other than
Jikes RVM that are not written in Java. Next, a quantification of the
memory increase caused by the memory manager is presented. Finally,
we compare the heap behavior of the 32-bit VM and the 64-bit VM.

2.4.1 Average object size

As pointed out in section 2.3.4, the object size on the heap increases
when comparing 64-bit and 32-bit Java computing because of four
causes: (i) 64-bit versus 32-bit pointers, (ii) the header doubling in size,
(iii) additional padding for intra-object alignment and (iv) extra space
due to inter-object alignment.

Table 2.7 presents the average object size in 32-bit and 64-bit mode
along with its relative increase. This is done for all objects (both array
and non-array), array objects and non-array objects. For non-array ob-
jects, we observe an increase in size from 32-bit to 64-bit objects that is
nearly constant over all benchmarks. The average increase is about 16
to 20 bytes. Recall from the previous section that for non-array objects 8

2.4
M

em
o

ry
b

eh
avio

r
31

Table 2.7: Average object size (in bytes) in 32-bit and 64-bit VM mode for all objects, array objects and non-array objects.

overall array objects non-array objects
Benchmark 32-bit 64-bit increase (%) 32-bit 64-bit increase (%) 32-bit 64-bit increase (%)
db 25.6 48.5 89.6 136.5 248.6 82.1 17.6 34.1 94.0
jack 37.0 58.6 58.4 50.8 75.2 48.0 25.7 44.3 72.3
javac 32.9 53.9 63.8 51.7 76.2 47.4 25.6 45.3 76.8
jess 34.7 59.8 72.4 49.0 96.9 97.9 28.0 42.4 51.6
antlr 48.9 67.2 37.3 66.4 83.2 25.4 25.6 45.0 75.6
fop 64.7 87.9 35.8 124.5 153.9 23.6 28.1 46.7 66.2
hsqldb 37.8 64.3 70.0 64.4 109.8 70.6 29.2 49.3 68.6
pmd 24.5 43.7 78.1 52.8 96.8 83.2 19.7 34.6 75.8
crypt 719.7 876.5 21.8 4,425.0 4,693.5 6.1 30.8 54.3 76.1
heapsort 373.8 403.4 7.9 1,870.4 1,935.2 3.5 27.4 48.3 76.6
lufact 174.3 205.8 18.0 786.6 863.2 9.7 28.2 49.4 75.5
moldyn 44.3 72.8 64.4 93.7 152.1 62.3 29.7 49.4 66.3
search 43.5 56.1 29.0 44.3 56.6 27.8 24.8 44.7 80.0
sor 292.3 329.6 12.7 1,167.0 1,247.7 6.9 30.0 51.5 71.3
sparse 310.5 341.3 9.9 1,551.7 1,608.9 3.7 29.8 51.2 72.0
pseudojbb 33.9 52.8 55.8 44.6 63.6 42.6 27.6 46.3 67.9
Average 45.3 40.1 72.9

32 64-bit versus 32-bit computing: a characterization

of these bytes come from the increased header. The remaining increase
thus comes from alignment and larger pointers in the object fields.

The average relative increase in size for non-array objects is 72.9%.
This is fairly high and will lead to poorer cache utilization, as will be
shown in section 2.5. For array objects, the picture is different: the ar-
ray object size increases by 40.1% on average. Some benchmarks have
small object size increases (e.g., 3.5% for heapsort) whereas others suf-
fer from large object size increases (e.g., 97.9% for jess). This suggests
that most arrays in jess contain references (which all double in size)
whereas for heapsort, most arrays do not contain references (those ar-
ray objects only have a header increase). This big difference between
array and non-array objects can be explained by the fact that most non-
array objects are small [26]. For small objects, even a few extra bytes
can lead to a severe size increase.

When considering both array and non-array objects, we observe an
average object size increase of 45.3%. The average increase is the largest
for SPECjvm98 suite (71.1%) and the least for Java Grande Forum suite
(23.4%). DaCapo has an increase of 55.3%, sligthly above the average.

Until now, we considered all objects, both small and large objects. In
the following set of measurements we focus on small objects. The rea-
son for doing this is that in Java most objects are typically small [23] and
that small objects and their placement can be manipulated easily by the
memory allocator and the garbage collector. Previous work has shown
that data layout is an important issue (especially for small objects) for
exploiting spatial and temporal locality—for example, collocating ob-
jects that are related to each other on the same cache line can improve
locality [24, 67]. The increase in small object sizes can thus affect the
performance of such optimizations.

Distinguishing between small and large objects can be easily done
in Jikes RVM since it maintains a Large Object Space and an Immortal
Space next to (a) collector-specific space(s) (three spaces for the Gen-
Copy collector, two spaces for the SemiSpace and GenMS collectors and
one space for the MarkSweep collector). The Large Object Space, as its
name suggests, is used for allocating objects that are larger than a given
threshold which is 8 KB for Jikes RVM 2.3.5. A copying garbage collec-
tor will not move objects in this space. The Immortal Space contains ob-
jects that are never collected, i.e., specific RVM objects. Table 2.8 shows
the average object size in 32-bit and 64-bit mode solely for objects allo-
cated in the collector-specific space(s), i.e., objects in the Large Object

2.4
M

em
o

ry
b

eh
avio

r
33

Table 2.8: Average object size (in bytes) in the collector-specific spaces in 32-bit and 64-bit VM mode for all objects, array
objects and non-array objects.

overall array objects non-array objects
Benchmark 32-bit 64-bit increase (%) 32-bit 64-bit increase (%) 32-bit 64-bit increase (%)
db 19.2 36.1 88.1 41.8 64.2 53.8 17.6 34.1 94.0
jack 36.7 58.3 58.5 50.3 74.6 48.3 25.7 44.3 72.3
javac 32.8 53.4 62.8 51.2 74.3 45.2 25.6 45.3 76.8
jess 34.6 59.5 72.2 48.7 96.3 97.6 28.0 42.4 51.6
antlr 29.4 47.1 60.1 32.2 48.6 50.8 25.6 45.0 75.6
fop 48.1 68.5 42.5 80.9 103.6 28.1 28.1 46.7 66.3
hsqldb 32.8 54.2 65.5 43.7 69.3 58.5 29.2 49.3 68.6
pmd 21.3 37.1 74.0 30.9 51.8 67.6 19.7 34.6 75.8
crypt 36.8 61.9 68.2 69.0 97.3 41.1 30.8 54.2 76.1
heapsort 32.7 55.6 69.8 55.9 86.9 55.4 27.4 48.3 76.6
lufact 34.6 57.5 66.1 63.0 93.2 47.9 28.2 49.4 75.5
moldyn 37.4 58.9 57.3 63.7 91.1 42.9 29.7 49.4 66.3
search 43.3 55.8 28.9 44.0 56.2 27.7 24.8 44.7 80.0
sor 39.0 61.1 56.8 71.0 95.3 34.2 30.0 51.4 71.4
sparse 36.7 59.0 60.5 67.6 92.9 37.5 29.8 51.2 72.0
pseudojbb 33.7 52.5 55.8 44.2 63.0 42.4 27.6 46.3 67.9
Average 61.7 48.7 72.9

34 64-bit versus 32-bit computing: a characterization

Space and Immortal Space are excluded from these measurements. We
observe that the object sizes in the collector-specific space are indeed
smaller than the average object size presented in Table 2.7. This is due
to the array objects since for non-array objects, there is no significant
difference between Tables 2.7 and 2.8. This confirms the general belief
that non-arrays are small, while arrays are generally large. In general,
the average object size increases by 61.7%. If we try to translate this
into the impact on cache performance, we can state that for the objects
in the collector-specific spaces, in terms of cache lines, an IBM POWER4
L1 D-cache line can hold 3.7 and 2.3 objects on average in 32-bit and 64-
bit mode, respectively. This is a difference of more than one object per
cache line on average. These measurements clearly illustrate that the
object size increase problem when transferring from 32-bit systems to
64-bit systems is even worse for the majority of objects than the 45.3%
increase we measured on average.

Objects allocated by the Jikes RVM

Because Jikes RVM itself is written in Java and hence its objects get in-
termingled with application objects, it is interesting to make a comment
about the Jikes RVM and how it might influence our measurements.
The data presented so far included application objects as well as objects
supporting the internals of the VM. All VM-allocated data are heap ob-
jects and these objects are not separated from the application data. In
previous work, authors typically only reported object sizes for objects
belonging to the application and not the virtual machine because they
used a VM not written in Java, see for example [26]. In order to validate
if our conclusions are also valid for other VMs, not written in Java, we
choose to present the data once again, distinguishing between applica-
tion objects and VM objects. In order to acquire this data, we examined
the call stack. When the frame of a method is encountered on the stack
that can not be assigned to either the application, or the RVM, we sim-
ply walk up the stack until such a decision can be made. Examples of
such undecidable methods, are library methods and some VM methods
that merely assist other methods to perform certain functionality, e.g.,
object allocation, exception handling, etc.

Table 2.9 shows the average object size in 32-bit and 64-bit mode
solely for objects allocated by the application, while Table 2.10 is show-
ing the same data for objects allocated by Jikes RVM. As expected, the
VM object sizes are much more constant across the different bench-

2.4
M

em
o

ry
b

eh
avio

r
35

Table 2.9: Average Application object size (in bytes) in 32-bit and 64-bit VM mode for all objects, array objects and non-array
objects.

overall array objects non-array objects
Benchmark 32-bit 64-bit increase (%) 32-bit 64-bit increase (%) 32-bit 64-bit increase (%)
db 24.8 47.4 91.2 158.7 289.2 82.2 16.4 32.3 96.6
jack 37.9 58.8 55.3 50.5 74.7 47.8 25.5 43.2 69.7
javac 31.8 50.9 60.0 47.6 68.0 42.9 24.6 43.0 75.2
jess 35.0 60.0 71.7 48.7 97.1 99.2 28.0 41.5 47.8
antlr 54.9 70.9 29.2 70.0 85.6 22.3 22.8 39.7 74.0
fop 40.8 60.0 47.2 61.8 84.4 36.5 28.6 46.0 60.5
hsqldb 34.8 65.2 87.3 48.6 109.0 124.0 29.6 48.7 64.5
pmd 23.9 42.7 78.9 52.1 97.0 86.1 19.2 33.7 75.6
crypt 1,724,320.0 1,724,350.0 0.0 4,839,190.0 4,839,230.0 0.0 23.6 44.6 89.4
heapsort 1,219,610.0 1,219,630.0 0.0 3,846,400.0 3,846,440.0 0.0 23.2 43.9 89.1
lufact 15,733.8 15,738.9 0.0 16,159.2 16,163.9 0.0 24.7 45.9 85.7
moldyn 83.6 96.2 15.2 452.7 829.4 83.2 79.1 87.3 10.4
search 44.2 56.2 27.2 44.2 56.2 27.2 24.4 45.7 87.5
sor 15,729.3 15,734.4 0.0 16,163.0 16,167.7 0.0 23.1 43.9 90.2
sparse 533,483.0 533,509.0 0.0 1,412,120.0 1,412,160.0 0.0 23.4 44.5 89.9
pseudojbb 40.5 60.4 49.2 84.8 111.4 31.3 27.5 45.4 65.1
Average 38.3 42.7 73.2

36
64-b

it
versu

s
32-b

itco
m

p
u

tin
g

:
a

ch
aracterizatio

n

Table 2.10: Average Jikes RVM object size (in bytes) in 32-bit and 64-bit VM mode for all objects, array objects and non-array
objects.

overall array objects non-array objects
Benchmark 32-bit 64-bit increase (%) 32-bit 64-bit increase (%) 32-bit 64-bit increase (%)
db 32.6 58.4 79.3 56.0 100.3 79.0 28.6 51.3 79.5
jack 31.3 56.3 80.1 56.1 92.0 63.9 26.6 50.3 89.3
javac 37.0 64.5 74.5 78.5 129.3 64.7 28.6 51.6 80.3
jess 31.9 57.1 78.9 53.8 94.4 75.5 27.6 49.9 80.6
antlr 33.4 56.8 70.0 44.3 68.4 54.3 29.0 51.9 79.1
fop 87.8 115.9 32.0 181.0 217.5 20.1 27.5 47.5 72.5
hsqldb 45.7 61.5 34.6 133.1 113.8 -14.5 28.4 50.8 79.0
pmd 34.1 58.8 72.6 61.2 94.2 54.0 27.8 50.4 81.5
crypt 42.9 79.9 86.2 108.0 199.0 84.3 30.8 54.3 76.1
heapsort 37.3 67.0 79.5 80.2 147.3 83.7 27.4 48.3 76.6
lufact 40.0 71.4 78.3 91.9 167.7 82.4 28.2 49.4 75.5
moldyn 43.1 72.1 67.3 93.2 151.1 62.2 27.8 48.0 72.4
search 30.5 55.3 81.5 59.1 108.6 83.6 24.8 44.7 80.0
sor 49.2 86.6 76.1 117.4 210.8 79.5 30.0 51.5 71.3
sparse 44.3 77.5 75.1 108.4 192.6 77.7 29.8 51.2 72.0
pseudojbb 21.5 38.2 77.2 17.8 31.5 77.6 28.0 50.4 79.9
Average 71.5 64.3 77.8

2.4 Memory behavior 37

marks than the application objects, especially the non-array object sizes
seem to be nearly constant across all benchmarks. An observation that
can be made from both tables is that the VM objects are much more
sensitive to the size increase due to 64-bit execution. For non-array VM
objects, on average there is a 77.8% size increase, which is slightly larger
than the 73.2% increase for non-array application objects. For array ob-
jects the contrast is much bigger: 64.3% size increase for VM arrays
against only 42.7% increase on average for application arrays. This can
be explained by the fact that the VM uses lots of arrays for housekeep-
ing purposes and many of those arrays contain references. In general,
Jikes RVM objects have a 71.5% object size increase when going from
a 32-bit VM to a 64-bit VM, while the application data only suffers a
38.3% increase on average. In general when we compare Table 2.7 with
Table 2.9 we can conclude that the data we measured for the application
objects are more or less comparable to the data we measured for both
VM and application objects. This gives us confidence that the intrusion
of Jikes RVM objects is limited and that the results obtained here will
be in line with results for VMs not written in Java.

The object size increase due to the memory manager

As discussed before, the average overall object size increases with
45.3% measured with the GenMS collector. We already identified the
four main causes for this object size increase, namely: (i) increased
pointer size, (ii) the increased header, (iii) the increased intra-object
alignment and (iv) the increased inter-object alignment. While the first
three causes are memory manager independent, the last one, how-
ever, is not. In this section, we would like to quantify how much of
this increase is dependent on the memory manager used. The addi-
tional memory overhead introduced by the memory manager can be
further split up into two parts, but both are a consequence of the dif-
ference in object alignment between 64-bit mode and 32-bit mode. The
64-bit VM will align all objects at an 8-byte boundary, while the 32-
bit VM will align most objects at a 4-byte boundary. The first part is
inter-object alignment. Inter-object alignment comes from aligning the
object pointer in the allocated heap space. The second part has to do
with fixed-sized cells. Some memory managers use fixed-sized cells
for allocating objects (in Jikes RVM, all spaces that use a MarkSweep
strategy). When the object size does not match the cell size used, an
additional overhead incurs, i.e., a number of bytes remains unused in

38
64-b

it
versu

s
32-b

itco
m

p
u

tin
g

:
a

ch
aracterizatio

n

Table 2.11: Raw object size, object size after inter-object alignment and total object heap size in 32-bit and 64-bit mode for
the MarkSweep collector. The right most columns shows the average increase for each stage when going from 32-bit mode to
64-bit mode.

32-bit 64-bit Increase (%)
raw +inter raw +inter raw +inter

object object object object object object
Benchmark size alignment on heap size alignment on heap size alignment on heap
db 25.5 25.5 25.9 48.1 52.1 55.9 88.4 104.0 115.6
jack 37.1 37.3 39.3 56.2 60.2 62.2 51.5 61.5 58.3
javac 33.0 33.0 35.4 52.5 56.5 60.0 59.3 71.2 69.3
jess 34.3 34.9 38.2 58.5 62.5 65.7 70.5 79.1 71.9
antlr 44.8 45.1 51.6 60.9 64.9 72.5 35.9 44.1 40.6
fop 63.7 63.9 69.9 84.9 88.9 95.4 33.2 39.1 36.4
hsqldb 37.2 37.6 40.4 62.9 66.9 70.8 69.0 78.0 75.2
pmd 24.1 24.1 27.4 42.9 46.9 51.9 77.7 94.2 89.9
crypt 731.4 731.8 734.4 891.6 895.6 900.2 21.9 22.4 22.6
heapsort 374.1 374.3 376.7 405.5 409.5 413.8 8.4 9.4 9.9
lufact 171.7 172.0 177.3 202.0 206.2 213.1 17.7 19.9 20.2
moldyn 43.6 44.0 47.1 71.4 75.4 79.9 63.7 71.5 69.7
search 43.5 43.5 47.4 56.1 60.1 64.1 28.9 38.1 35.2
sor 287.3 287.9 296.4 331.0 335.3 344.9 15.2 16.5 16.4
sparse 309.5 309.9 312.7 352.5 356.5 361.0 13.9 15.0 15.4
pseudojbb 33.7 34.2 35.8 50.8 54.8 57.7 50.5 60.4 61.1
Average 44.1 51.5 50.5

2.4 Memory behavior 39

a cell (internal fragmentation). The cell size in the 64-bit VM, is also a
multiple of 8 bytes.

To quantify the heap overhead introduced by the memory manager,
we first consider the MarkSweep collector in Jikes RVM because it is the
collector with the worst overhead of all 4 collectors used. The Mark-
Sweep collector in Jikes RVM uses fixed-sized cells per page and a data
structure to keep track of used and unused cells per page. The results
are shown in Table 2.11: the raw object size, the additional overhead
due to inter-object alignment and the additional overhead due to the
memory manager using fixed cells. The average increase in object size
when going from 32-bit mode to 64-bit mode with the MarkSweep col-
lector is 50.5%. When looking at the raw object size only (i.e., with-
out the overhead of the memory manager), the average increase is only
44.1%. Since this number is lower than after alignment, it is clear that
the extra alignment overhead introduced by the memory manager is
much worse on 64-bit platforms than on 32-bit platforms. This is not
surprising since the 32-bit VM tries to align most of the time to a 4-byte
boundary, while the 64-bit VM exclusively aligns on an 8-byte bound-
ary.

As said before, the MarkSweep collector has the worst overhead of
all 4 collectors used. The extra allocation overhead of the MarkSweep
collector is 2.6% and 5.0% on average for 32-bit and 64-bit mode, re-
spectively, while it is only 0.8% and 1.3% on 32-bit and 64-bit mode for
the SemiSpace collector, respectively. Remark that for the generational
collectors, the memory manager overhead actually is not constant over
time, because the generational collector copies objects from the nurs-
ery to the mature generation. The measurements for the generational
collectors were done during object allocation in the nursery generation
and by consequence do not include the (changed) overhead for objects
moved from the nursery to the mature generation. As such their mea-
sured overhead is the same as with the SemiSpace collector (same mem-
ory strategy used in nursery generation as in one half of the SemiSpace
collector). For GenCopy, both generations have the same allocation pol-
icy, so the overhead will remain the same. For GenMS, however, in
each of the generations a different collector is used: the nursery uses
the SemiSpace collection strategy whereas the mature generation uses
MarkSweep. As such, the real average overhead of the GenMS collector
lies somewhere between the overhead of the SemiSpace collector and
the overhead of the MarkSweep collector.

40 64-bit versus 32-bit computing: a characterization

0 200 400 600 800 1000 1200

h
e
a
p
 s

iz
e
 (

4
 K

B
 p

a
g
e
s
)

allocations (x100 000)

antlr genMS

32-bit

0

5000

10000

15000

20000

25000

30000

0 20 40 60 80 100 120 140 160 180

antlr genMS

64-bit

0

5000

10000

15000

20000

25000

30000

35000

40000

0 50 100 150 200 250 300

javac genMS

64-bit

javac genMS

32-bit

pseudojbb genMS

32-bit

0

20000

40000

60000

80000

100000

120000

140000

0 200 400 600 800 1000 1200

pseudojbb genMS

64-bit

0

20000

40000

60000

80000

100000

120000

140000

0

5000

10000

15000

20000

25000

30000

35000

40000

0 50 100 150 200 250 300

0

5000

10000

15000

20000

25000

30000

0 20 40 60 80 100 120 140 160 180

Figure 2.2: Heap growth for GenMS collector as a function of time (measured
per allocation site) for three benchmarks, antlr (top), javac (middle) and pseu-
dojbb(bottom) for 32-bit processing (left column) and 64-bit processing (right
column).

2.4.2 Run time behavior of the heap

Until now we studied the size of objects at allocation time. Table 2.11
provided the average size per allocated object, i.e., the size for each
allocated object is used to compute the average object heap size. Even
more interesting when evaluating a VM, is not the object size per se,
but the amount of memory it occupies at run time. At run time, the
heap only contains live objects, so by consequence, the actual run time

2.4 Memory behavior 41

Table 2.12: Number of minor and major GCs under the GenMS and GenCopy
collection scheme for the 32-bit and 64-bit scenario.

GenMS GenCopy
minor GCs major GCs minor GCs major GCs

Benchmark 32 bit 64 bit 32 bit 64 bit 32 bit 64 bit 32 bit 64 bit
db 22.9 62.7 1.0 2.0 18.1 32.8 1.0 3.0
jack 39.1 184.0 0.0 2.0 54.8 193.9 0.1 2.1
javac 83.2 120.7 2.0 3.5 82.6 115.1 3.0 5.9
jess 28.6 75.9 0.0 0.0 31.8 167.5 0.0 1.0
antlr 68.1 106.7 4.0 5.0 68.2 104.7 5.0 5.9
fop 5.5 25.3 0.0 0.5 20.5 15.2 0.9 1.0
hsqldb 35.6 58.3 3.0 5.0 26.6 60.1 4.0 6.0
pmd 260.6 275.6 8.0 13.0 230.7 214.7 9.0 13.9
crypt 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0
heapsort 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0
lufact 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0
moldyn 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0
search 13.8 18.9 0.0 0.0 14.1 21.0 0.0 0.0
sor 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0
sparse 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0
pseudojbb 100.3 116.9 3.0 4.1 91.0 112.2 4.7 6.2

heap, when comparing 64-bit with 32-bit computing, might grow more
or less than the average 45.3% object size increase reported above.

The Java heap grows until its size reaches a given threshold, after
which a GC occurs. A GC tries to shrink down the heap to a lower
size; at the same time the threshold might increase. The next time a GC
occurs, the heap might grow larger than with the previous GC, because
the GC threshold value is dynamically adjusted—but never exceeds the
maximum heap size. We now take a look at the growing/shrinking
behavior of the heap as a function of time. In Figure 2.2, the heap size
is shown as a function of time measured by the number of allocations
for the GenMS collector. This is shown for three benchmarks, antlr,
javac and pseudojbb. Graphs for the other collectors are similar. In
most cases, the high watermark heap size in 64-bit mode is only slightly
bigger than in 32-bit mode, however, in some cases, for example for
pseudojbb, we observe that the 64-bit VM uses nearly twice as much
heap size as the 32-bit VM.

In general, Figure 2.2 shows similar growing/shrinking behavior
for the 32- and 64-bit VMs. Each larger dip represents a major collec-
tion. These graphs show that the major collections are performed more

42 64-bit versus 32-bit computing: a characterization

S
p

e
e

d
u

p

d
b

ja
c
k

ja
v
a

c

je
s
s

a
n

tl
r

fo
p

h
s
q

ld
b

p
m

d

c
ry

p
t

h
e

a
p
s
o

rt

lu
fa

c
t

m
o

ld
y
n

s
e

a
rc

h

s
o

r

s
p
a

rs
e

p
s
e

u
d

o
jb

b

A
V

G

-100%

-80%

-60%

-40%

-20%

0%
GenCopy 64-bit GenMS 64-bit

Figure 2.3: Garbage collection performance: 64-bit mode versus 32-bit mode.

frequently in 64-bit mode. For example, for javac, 2 large dips are ob-
served in 32-bit mode, whereas in 64-bit mode 4 large dips can be rec-
ognized. Table 2.12 quantifies the actual number of garbage collections
performed for the GenMS and GenCopy collectors. As expected, the
number of GCs increases for the 64-bit VM. The number of minor and
major GCs increases by on average 60.1% and 64.8%, respectively.

Now in order to quantify the overhead of the memory increase due
to 64-bit mode on the memory system, we measure the time spent dur-
ing garbage collection. Figure 2.3 shows a slowdown in GC time when
going from 32-bit mode to 64-bit mode. This graph shows GC speedup,
hence the negative values. We observe that about half the benchmarks
show about 20% slowdown for the garbage collector. Some bench-
marks have over a 50% slowdown in terms of GC performance: for
the GenMS collector this is the case for jack (69.6%), jess (64.3%) and
fop (52.4%); for the GenCopy collector this is the case for jess (72.6%)
and jack (60.4%). On average we observe a 33.4% slowdown in terms
of GC performance for both collectors.

So far, we did not take object lifetime into account. The longer an
object is reachable, the longer it occupies memory and, in the case of
64-bit mode, the worse the extra memory overhead might be compared
to 32-bit mode. For example, a long-lived object with a large memory
overhead in 64-bit mode might set more pressure on the performance
of 64-bit mode than a short-lived object. This can be explained by the
fact that the memory space a short-lived object occupies, can soon be
reclaimed by the garbage collector, while a long-lived object occupies
memory space typically across multiple garbage collections. In order

2.4 Memory behavior 43

0 200 400 600 800 1000 1200

h
e

a
p

 s
iz

e
 (

4
 K

B
 p

a
g

e
s
)

allocations (x100 000)

0 50 100 150 200 250 300

javac

64-bit

pseudojbb

0

1000

2000

3000

4000

5000

0 20 40 60 80 100 120 140 160 180

antlr

32-bit

5000

3000

2000

1000

0

4000

6000

7000

64-bit
32-bit

0

10000

20000

30000

40000

50000 64-bit
32-bit

Figure 2.4: Maximum reachable bytes (measured in 4KB pages) as a function
of time (measured per allocation site) for three benchmarks, antlr (top left),
javac (top right), pseudojbb (bottom) for 32-bit and 64-bit processing.

to verify that not only the short-lived objects introduce extra memory
overhead, we measure the maximum reachable bytes of the application
at runtime8. The maximum reachable bytes is a good indication for the
minimum heap size an application needs since these are all occupied by
objects that can not be reclaimed by the garbage collector: it will contain
almost exclusively long-lived objects. Figure 2.4 shows the maximum
reachable bytes (in 4KB pages) for the antlr, javac and pseudojbb bench-
mark, measured at an interval of 0.5 MB allocated bytes. These graphs
show that the extra memory overhead in terms of maximum reachable
bytes is about 46% for antlr, 78% for javac and only 20% for pseudo-
jbb when comparing 64-bit mode to 32-bit mode. If we compare these
numbers with Table 2.7, we see that these overheads are even worse for
antlr and javac than the average object size increase, measured for all
objects. For pseudojbb it is less: 20% compared to 55.8%. Pseudojbb is
a server-side benchmark, that generates more small short-lived objects.

8Another possible experiment that takes an object’s lifetime into account is to mea-
sure the (space x time) product.

44 64-bit versus 32-bit computing: a characterization

S
p

e
e

d
u

p

d
b

ja
c
k

ja
v
a

c

je
s
s

a
n

tl
r

fo
p

h
s
q

ld
b

p
m

d

c
ry

p
t

h
e

a
p
s
o

rt

lu
fa

c
t

m
o

ld
y
n

s
e

a
rc

h

s
o

r

s
p
a

rs
e

p
s
e

u
d

o
jb

b

A
V

G

-40%

-20%

0%

20%

40%

60%

80%

GenCopy 64-bit GenMS 64-bit

170,2% 171,0%

Figure 2.5: Overall speedup for 64-bit mode compared to 32-bit mode.

2.5 Overall Performance

In this section, we quantify the impact on execution time when com-
paring 64-bit computing with 32-bit computing. We then explain the
measured differences by discussing other metrics such as (i) the num-
ber of instructions executed, (ii) the number of cache misses and (iii) the
number of TLB misses. This is done using the hardware performance
monitors. In these measurements we use the GenCopy and GenMS col-
lectors of Jikes RVM, because generational collectors perform better in
general and are used in most production VMs.

2.5.1 Execution time

Figure 2.5 shows the speedup for 64-bit mode compared to 32-bit mode.
Negative values thus indicate that 64-bit mode is slower than 32-bit
mode execution. In general, 64-bit mode is slower than 32-bit mode.
For some benchmarks, we observe large performance decreases of up
to 31.1% (hsqldb, pmd and db under the GenCopy collector), For other
benchmarks, 64-bit is much faster than 32-bit computing, see for ex-
ample crypt (171.0%) and moldyn (42.1%). However, nearly half the
benchmarks show about 5% to 10% performance degradation running
in 64-bit mode, while the remaining other benchmarks are barely af-
fected.

2.5 Overall Performance 45

instruction ratio 64-bit/32-bit

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6
d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
s
o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

p
s
e
u
d
o
jb

b

GenCopy

GenMS

Figure 2.6: Ratio of the number of executed instructions of 64-bit to 32-bit
mode.

2.5.2 Number of instructions executed

Figure 2.6 quantifies the ratio of executed instructions in 64-bit mode
versus 32-bit mode. For most benchmarks, this ratio is close to 1,
with a slight increase for most benchmarks in 64-bit mode. There
are two benchmarks with a high increase in executed instructions,
hsqldb (36.6 %) and pmd (21.4 %). These extra instruction executed
in 64-bit mode come from e.g., extra sign operations on 32-bit values.
The significantly higher dynamic instruction count explains the worse
performance under 64-bit mode for hsqldb and pmd. Two other bench-
marks have a significantly lower dynamic instruction count under
64-bit mode than under 32-bit mode: crypt (-83 %) and search (-8 %).
From a detailed analysis we discovered that crypt and search perform
a large number of arithmetic operations on longs. As such, they can
benefit from the 64-bit instructions available in 64-bit mode.

2.5.3 Data cache misses

In this section as well as in the next subsection we will focus on the
memory system performance of the data stream only. We do not con-
sider the instruction stream because a larger variability between 64-bit
and 32-bit processing was observed in the data stream than in the in-
struction stream. We first study the performance of the data caches;
in the next subsection we discuss data translation lookaside buffer (D-
TLB) behavior. Figures 2.7, 2.8 and 2.9 show the numbers of D-cache
misses per 1000 instructions in the reference run for the L1, L2 and L3
D-cache, respectively. The 32-bit runs were used as reference runs, for

46 64-bit versus 32-bit computing: a characterization

L1 misses

0

20

40

60

80

100
d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
s
o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

p
s
e
u
d
o
jb

b

GenCopy 32

GenCopy 64

GenMS 32

GenMS 64

n
o

.
o

f
m

is
s
e

s
 p

e
r

1
0

0
0

 i
n

s
n

s

Figure 2.7: The number of L1 D-cache misses for 64-bit and 32-bit mode, per
1000 executed instructions in 32-bit mode.

L2 misses

0

10

20

30

40

50

60

d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
s
o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

p
s
e
u
d
o
jb

b

GenCopy 32

GenCopy 64

GenMS 32

GenMS 64

n
o
.
o
f
m

is
s
e
s
 p

e
r

1
0
0
0
 i
n
s
n
s

n
o

.
o

f
m

is
s
e

s
 p

e
r

1
0

0
0

 i
n

s
n

s

L2 misses (zoomed in)

0

0,5

1

1,5

2

2,5

3

3,5

4

d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
s
o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

p
s
e
u
d
o
jb

b

GenCopy 32

GenCopy 64

GenMS 32

GenMS 64

Figure 2.8: The number of L2 D-cache misses for 64-bit and 32-bit mode, per
1000 executed instructions in 32-bit mode. The only difference between the
first and second graph is the scale of the vertical-axis.

both 32-bit and 64-bit modes, so that the difference in dynamic instruc-
tion count is not reflected in these measurements. The graphs for the
L2 and L3 D-cache in Figures 2.8 and 2.9 are shown a second time to

2.5 Overall Performance 47

L3 misses

0

5

10

15

20

25

30

35
d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
s
o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

p
s
e
u
d
o
jb

b

GenCopy 32

GenCopy 64

GenMS 32

GenMS 64

n
o
.
o
f
m

is
s
e
s
 p

e
r

1
0
0
0
 i
n
s
n
s

n
o

.
o

f
m

is
s
e

s
 p

e
r

1
0

0
0

 i
n

s
n

s L3 misses (zoomed in)

0

0,5

1

1,5

2

2,5

3

3,5

4

d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
s
o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

p
s
e
u
d
o
jb

b

GenCopy 32

GenCopy 64

GenMS 32

GenMS 64

Figure 2.9: The number of L3 D-cache misses for 64-bit and 32-bit mode, per
1000 executed instructions in 32-bit mode. The only difference between the
first and second graph is the scale of the vertical-axis.

magnify the results for benchmarks with a small number of misses per
1000 instructions. with a small number of misses per 1000 instructions.

Given the increased object size, the increased alignment, and by
consequence an increased heap size, we expect that 64-bit VMs will
have an increased number of D-cache misses over 32-bit VMs. Fig-
ures 2.7, 2.8 and 2.9 show that most benchmarks indeed experience an
increase in the number of misses. On average the increase is 21.3%,
48.8% and 66.5% for the L1, L2 and L3 caches, respectively. Observe
that the 3 benchmarks with the largest performance penalty (db, hsqldb
and pmd) in Figure 2.5, correspond with the 3 benchmarks showing
the largest increase in L3 misses. Note that most Java Grande Forum
benchmarks have nearly the same number of misses in 64-bit mode
as in 32-bit mode on L2 and L3 cache levels, and a modest increase
in number of L1 D-cache misses. The SPECjvm98, Pseudojbb and Da-
Capo benchmarks on the other hand, generally have larger cache miss
increases on all cache levels, although most of them have a very low

48 64-bit versus 32-bit computing: a characterization

DTLB misses

0

5

10

15

20

25

30
d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
s
o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

p
s
e
u
d
o
jb

b

GenCopy 32

GenCopy 64

GenMS 32

GenMS 64

n
o
.
o
f
m

is
s
e
s
 p

e
r

1
0
0
0
 i
n
s
n
s

Figure 2.10: Number of D-TLB misses for 64-bit and 32-bit mode, per 1000
executed instructions in 32-bit mode

number of misses at the L2 and L3 levels. This can be explained by
the fact that the JGF benchmarks show relatively small object size in-
creases compared to SPECjvm98 between 64-bit mode and 32-bit mode
(see Table 2.7). As we discussed earlier, JGF benchmarks have large nu-
meric data structures and SPECjvm98 benchmarks have more pointer-
rich data structures. Note that especially SPECjvm98’s db suffers in
terms of L3 cache misses in 64-bit mode: an increase of more than a fac-
tor 3.5 in the number of misses. This can be explained in part by the fact
that db experiences the highest heap object size increase (89.6%) as re-
ported in Table 2.7. This high increase in data cache misses explains the
high performance degradation for db (37.9%) as observed when com-
paring 64-bit computing to 32-bit computing.

2.5.4 D-TLB performance

Figure 2.10 shows the number of D-TLB misses per 1000 instructions in
32-bit mode, for both 64-bit mode and 32-bit mode. Due to the larger
object sizes in 64-bit mode, we expect more pages will get accessed,
and thus we expect more TLB misses due to an increase in the number
of TLB conflicts. We observe that the number of D-TLB misses for the
Jikes RVM only increases for db. The number of D-TLB misses remains
constant for a small set of benchmarks, while for several benchmarks
we observe a decrease. On average we observe a(n) (unexpected) de-
crease in D-TLB misses of 25.1% in 64-mode compared to 32-bit mode.
This is not a peculiarity of Jikes RVM, since a decrease in D-TLB misses
was also found for the production IBM 1.4.0 VM in [69].

2.6 Related work 49

2.6 Related work

As mentioned in the introduction, the increased memory usage caused
by using 64-bit pointers is not unexpected. We postpone the description
of the related works addressing the increased memory usage in 64-bit
VMs to the following chapters.

To the best of our knowledge there is no prior work on comparing
64-bit Java workloads with 32-bit Java workloads. However, several
studies have been done on characterizing the memory allocation be-
havior and memory system performance of such workloads. All these
studies were done on one particular platform, either 32-bit or 64-bit—
and, as far as we can verify this statement, most (if not all) of them are
done on a 32-bit platform.

The study that is probably most related to this work, is the work
done by Dieckmann and Hölzle [26] in which they characterize the al-
location behavior of SPECjvm98 benchmarks. They measure the heap
size as a function of time. They quantify heap composition, i.e., the dif-
ferentiation between array and non-array objects on the heap. And they
also compute object size and object alignment. This study was done on
a 32-bit platform.

Shuf et al. [64] characterize the memory behavior of Java workloads.
They measure for example the distribution of heap accesses over dif-
ferent types such as object fields, arrays and virtual method tables. In
addition, they also measure cache miss rates and TLB miss rates.

Blackburn et al. [12] present a detailed study on the performance
impact of garbage collection. For this use they use hardware perfor-
mance monitors on three different hardware platforms.

Li et al. [52] use complete system simulation to study the SPECjvm98
benchmarks. They conclude that most of the kernel activity is due to
TLB miss handling and that those TLB misses are due to JIT compila-
tion, garbage collection and class loading.

Kim and Hsu [45] characterize the memory system behavior of Java
workloads. They measure the lifetime characteristics of objects, the
temporal locality and the impact of associativity on cache miss rate.

Next to these there exist yet other studies characterizing the (mem-
ory) performance of Java workloads, more specifically the time varying
behavior in terms of cache miss rates and TLB miss rates [66], method-
level phase behavior [30], impact of VMs and input sets on overall
Java performance [28], Java middleware benchmarks (SPECjbb2000

50 64-bit versus 32-bit computing: a characterization

and SPECjAppServer2001) using real hardware as well as full-system
simulation [43], Java TPC-W which exercises the web server and trans-
action processing of a typical e-commerce web site [16], cache behavior
of SPECjvm98 benchmarks [59], Java server applications (SPECjbb2000
and VolanoMark 2.1.2) [54, 61].

2.7 Conclusion

The purpose of this chapter was to compare 64-bit VMs with 32-bit VMs
for Java applications in general and the allocation behavior and mem-
ory system performance more in particular, so that we have a firm basis
to build upon in subsequent chapters when attacking the cost of the in-
creased memory usage of 64-bit computing.

We performed our study on a collection of different benchmarks
suites (SPECjvm98, DaCapo, pseudojbb and Java Grande Forum) on
the Jikes Research VM. The underlying hardware platform was the 64-
bit PowerPC-based IBM POWER4 processor. By running virtual ma-
chines both in 32-bit and 64-bit mode, we were able to compare the
characteristics and performance of 32-bit to 64-bit virtual machines for
Java.

We measured and compared the average object size, and the heap
growth from 32-bit to 64-bit computing. We conclude that the average
object size increases by 45.3% in 64-bit mode compared to 32-bit mode.
This is due to the increased pointer size (64 bits versus 32 bits), the
increased header and the increased alignment. We have shown that this
leads to an increased number of garbage collections performed and to
an increased amount of time spent during GC when run in 64-bit mode.
For the setup used in this chapter, a Java application running on a 64-
bit VM shows an average GC slowdown of 33.4% compared to running
on a 32-bit VM. Also, the number of minor and major collections are
increased by 60.1% and 64.8%, respectively.

Using the POWER4’s hardware performance monitors, we were
able to measure the total execution time, the number of instructions
executed, the number of data cache and TLB misses. We conclude
that 64-bit computing inside Jikes RVM is generally a few percentage
slower than 32-bit computing for most benchmarks. Some benchmarks
are much faster because of the extra 64-bit instructions available in 64-
bit mode. We conclude that 64-bit Java results in a larger number of

2.7 Conclusion 51

data cache misses at all levels in the cache hierarchy: 21.9%, 50.3% and
66.2% more misses for the L1, L2 and L3 caches, respectively.

52 64-bit versus 32-bit computing: a characterization

Chapter 3

Object-Relative Addressing

To live a creative life, we must lose our fear of being wrong.
Joseph Chilton Pearce

The previous chapter identified the increased pointer size as the main rea-
son why 64-bit Java environments demand about 45.3% more memory than
32-bit environments. In this chapter we examine a pointer compression tech-
nique, called Object-Relative Addressing (ORA), to reduce the memory usage
of 64-bit pointers in the context of Java virtual machines. Unlike previous
work on the subject, like that of by Adl-Tabatabai et al. [3] which targeted
applications that need less than 4 GB of memory, our compression technique
allows for applying pointer compression to Java programs that allocate more
than 4 GB of memory. The experimental results evaluating ORA show that
the overhead introduced is statistically insignificant on average compared to
the raw 64-bit pointer representation, while reducing the total memory de-
mands by on average 10.7%, 12.2% and 11.3% for the DaCapo, SPECjvm98
and Pseudojbb benchmark suites, respectively.

3.1 Introduction

Object-Relative Addressing (ORA) is a pointer compression technique
with a simple basic idea. It compresses pointers in object fields as 32-
bit offsets relative to the referencing object’s address. The 64-bit virtual
address of the referenced object is then obtained by adding the 32-bit
offset to the 64-bit virtual address of the referencing object.

Compressing pointers as a relative offset introduces a number of is-
sues that need to be dealt with. For instance, at store time, we need to

54 Object-Relative Addressing

check if a pointer is at all compressible, and, at load time, the pointer
needs to be decompressed properly. Moreover a fall-back mechanism is
needed in case a pointer value is not compressible. Another issue is the
the null pointer. It will need a new compressed 32 bit representation:
null pointers will need to be initialized to this new representation in-
stead of using all zeros. Also extra care needs to be taken to make sure
all pointers are updated correctly during garbage collection: the rela-
tive 32-bit offset gets invalid in both situations where the referenced or
the referencing object is moved.

Our experimental results on Jikes RVM using the SPECjvm98, Java
Grande Forum, SPECjbb2000 and the DaCapo benchmarks on an IBM
POWER4 machine show that object-relative addressing does almost not
incur any run time overhead. On average, no statistically significant
performance impact is observed for the GenMS collector; the GenCopy
collector shows a small performance degradation of 1.5%. The benefit
of ORA comes in terms of memory savings: the amount of allocated
memory gets reduced by more than 10% for several benchmark suites
and, in addition, ORA reduces the number of minor and major GCs
with 10.6% and 17.8% on average, respectively.

We envision that object-relative addressing is to be used in con-
junction with a memory management strategy that strives at limit-
ing the number of inter-object references that cross the 32-bit address
range. Crossing the 32-bit address range might lead to pointers that
can not be compressed. This incurs overhead because then extra data
structures need to be accessed for retrieving the uncompressed 64-bit
pointer. Limiting the number of incompressible pointers thus calls
for a memory allocator and garbage collector that strives at allocat-
ing objects within a virtual memory region that is reachable through
the (signed) 32-bit offset. Such memory allocators and garbage col-
lectors can be built using techniques similar to object collocation [34],
connectivity-based memory allocation and collection [38, 39], region-
based systems [22, 57], etc.

3.2 Object-Relative Addressing

The prior work on the subject by Adl-Tabatabai et al. [3] propose
a straightforward compression scheme for addressing the increased
memory usage in 64-bit Java virtual machines. They represent 64-bit
pointers as 32-bit offsets from a fixed base address of a contiguous

3.2 Object-Relative Addressing 55

object address object address

+

64-bit virtual address 32-bit offset

object header object fields

(a) 64-bit object addressing (b) object-relative addressing

fast path

slow path

Long Address Table

referencing object

referenced object

32

3264

64

64 64

64
64

Figure 3.1: Illustrating the basic idea of object-relative addressing (on the
right) compared to the traditional 64-bit addressing (on the left).

memory region. Decompressing a pointer then involves adding the
32-bit offset to this fixed base address, compressing a 64-bit pointer
results in only storing the 32 least significant bits. The fact that 64-bit
virtual addresses are represented as 32-bit offsets from a fixed base
address implies that this pointer compression technique is limited to
Java programs that demand less than 4 GB of memory.

Object-Relative Addressing (ORA) is a pointer compression technique
for 64-bit Java virtual machines that does not suffer from the 4 GB heap
limitation in Adl-Tabatabai et al.’s method [3]. The goal of ORA is to
enable heap pointer compression for all Java programs, even for pro-
grams that allocate more than 4 GB of memory.

3.2.1 Basic idea

Figure 3.1 illustrates the basic idea of object-relative addressing (ORA)
and compares ORA to the traditional way of referencing objects in 64-
bit Java virtual machines. We call the referencing object the object that
contains a pointer in its data fields. The object being referenced is called
the referenced object. ORA references objects through 32-bit offsets.
The ‘fast’ decompression path then adds this 32-bit offset to the refer-
encing object’s virtual address for obtaining the virtual address of the
referenced object. This is the case when both the referencing object and
the referenced object are close enough to each other so that a 32-bit
offset is sufficiently large. In case both objects are further away from
each other in memory than what can be addressed through a 32-bit off-
set, ORA follows the ‘slow’ decompression path. In this case, the least
significant bit of the 32-bit offset is set to one and the offset is then con-

56 Object-Relative Addressing

read 32-bit object reference;
if (least significant bit

of 32-bit reference is NOT set) {
/* fast decompression path */
add 32-bit object reference to 64-bit object

virtual address to form 64-bit object address;
}
else {

/* slow decompression path */
index LAT for reading 64-bit object address;

}

Figure 3.2: High-level pseudocode for decompressing 32-bit object references.

sidered as an index into the Long Address Table (LAT) which holds 64-bit
virtual addresses corresponding to 32-bit indices.

The end result of object-relative addressing is that only 32 bits of
storage are required for storing object references. This saves memory
compared to the traditional way of storing object references which re-
quires 64 bits of storage. We now go through the details of how ORA
can be implemented. We discuss (i) how pointers are decompressed,
(ii) how to compress pointers, (iii) how to deal with null pointer rep-
resentation, (iv) how to manage the LAT, (v) what the implications are
for garbage collection, (vi) how ORA compares to Adl-Tabatabai et al.’s
method [3] in terms of anticipated run time overhead and finally (vii)
what the implications are for memory management,

3.2.2 Decompressing pointers

Decompressing 32-bit object references requires determining whether
the fast or slow path is to be taken. This is done at run time by inspect-
ing the least significant bit of the 32-bit offset; in case the least signifi-
cant bit is zero, the fast path is taken; otherwise, the slow path is taken.
This is illustrated in Figure 3.2 showing the high-level pseudocode for
decompressing 32-bit object references into 64-bit virtual addresses.

The way how the high-level pseudocode is translated into native
machine instructions has a significant impact on overall performance.
And in addition, efficient pointer decompression is likely to result in
different implementations on different ISAs. For example, in case pred-
icated execution is available in the ISA [55], a potential implementation
could predicate the fast and slow paths. Or, in case a ‘base plus index

3.2 Object-Relative Addressing 57

;; R4 :referencing object’s
;; virtual address

ld4 R1, [R4 + offset] ;; load 32-bit object offset
;; and sign-extend into R1
;; fast decompression path

add R2, R4, R1 ;; compute 64-bit address
tst R1, 1 ;; test least significant bit
bre L2 ;; if non-zero: jump to L2

L1: ... ;; referenced object’s
;; virtual address is

... in R2 here

L2: ;; slow decompression path
mask R1 ;; compute LAT index
ld8 R2, [R5 + R1] ;; load address from LAT

;; R5 contains LAT address
;; R1 contains LAT index

jmp L1

Figure 3.3: Low-level pseudocode for decompressing 32-bit object references:
the if-then decompression approach.

plus offset’ addressing mode is available in the ISA, computing the ad-
dress of an object field being accessed in the referenced object could
be integrated into a single memory operation, i.e., the decompression
arithmetic could be combined with the field access. The referencing ob-
ject’s virtual address plus the 32-bit offset plus the offset of the object
field in the referenced object could then be encoded in a single address-
ing mode.

In our experimental setup using a PowerPC machine, we were not
able to implement these optimizations because the PowerPC ISA does
not provide predication, nor does it support the ‘base plus index plus
offset’ addressing mode. Instead, we consider two implementations
to pointer decompression that are generally applicable across different
ISAs. These two decompression implementations have different per-
formance trade-offs which we discuss now and which will be experi-
mentally evaluated in section 3.5.

58 Object-Relative Addressing

;; R4 contains the referencing
;; object’s virtual address

ld4 R1, [R4 + offset] ;; load 32-bit object offset
;; and sign-extend into R1
;; fast decompression path

add R2, R4, R1 ;; compute 64-bit address
L1: ... ;; referenced object’s virtual

;; address is in R2 here

Figure 3.4: Low-level pseudocode for decompressing 32-bit object references:
the patched decompression approach before code patching is applied.

If-then pointer decompression.

The if-then implementation is shown in Figure 3.3. The assembler code
generated for decompressing 32-bit object references implements the
corresponding high-level pseudocode by optimizing for the most com-
mon case, namely the fast path. We (speculatively) compute the virtual
address of the referenced object by adding the 32-bit offset with the ref-
erencing object’s virtual address. In case the least significant bit of the
32-bit offset is zero, we then continue executing instructions along the
fall-through path. Only in case the least significant bit of the 32-bit off-
set is set, we jump to the slow path. The slow path selects a number
of bits from the 32-bit offset that will serve as index into the LAT. The
slow path then indexes the LAT which reads the 64-bit virtual address
of the referenced object.

Patched pointer decompression.

Patched pointer decompression optimizes the common case even fur-
ther by assuming that the fast path is always taken. This results in the
code shown in Figure 3.4. In other words, the 32-bit offset is added to
the referencing object’s virtual address to obtain the referenced object’s
virtual address. This avoids the conditional branch as needed in the if-
then decompression implementation. In case the referenced object may
not be reachable using a 32-bit offset, the decompression code needs to
be patched. Code patching is done at run time whenever pointer com-
pression reveals that objects may no longer be reachable using com-
pressed pointers, as will be discussed in the next section. The decom-
pression code after patching is shown in Figure 3.5. Code patching
replaces the addition (of the 32-bit offset with the referencing object’s

3.2 Object-Relative Addressing 59

;; R4 contains the referencing
;; object’s virtual address

ld4 R1, [R4 + offset] ;; load 32-bit object offset
;; and sign-extend into R1

jmp L2

L1: ... ;; referenced object’s virtual
;; virtual address in R2 here

...
L2: add R2, R4, R1 ;; compute 64-bit address

tst R1, 0 ;; test least significant bit
bre L1 ;; jump to L1 in case zero

;; slow decompression path
mask R1 ;; compute LAT index
ld8 R2, [R5 + R1] ;; load address from LAT

;; R5 contains LAT address
;; R1 contains LAT index

jmp L1

Figure 3.5: Low-level pseudocode for decompressing 32-bit object references:
the patched decompression approach after code patching is applied.

virtual address) with a jump to a piece of code that does the pointer de-
compression using the if-then approach. Since most object references
will follow the fast path, the patched decompression approach (before
patching is applied) will be substantially faster than the if-then decom-
pression approach.

3.2.3 Compressing pointers

Compressing 64-bit pointers to 32-bit offsets is done the other way
around, see Figure 3.6. We first compute the difference between the
64-bit virtual addresses of the referenced and referencing objects. If
this difference is smaller than 2 GB, i.e., can be represented by a 32-bit
offset, we then store the difference as a 32-bit offset in the referencing
object’s data fields. If on the other hand the difference is larger than
2 GB, we allocate a LAT entry and store the referenced object’s virtual
address in the allocated LAT entry. The LAT entry’s index is then stored
in the referencing object’s data fields while setting the least significant
bit (LSB) of the stored LAT index. In case of the patched decompres-
sion approach, all pointer decompressions that may read the 32-bit
offset need to be patched. In our experimental setup we maintain the
corresponding locations in the code per object type. As such we do

60 Object-Relative Addressing

compute difference between 64-bit virtual addresses
of the referenced object and the referencing object;

if (difference is smaller than 2 GB) {
/* fast compression path */
store 32-bit offset;

}
else {

/* slow compression path */
allocate entry in LAT;
store the referenced object’s address in the

LAT in allocated entry;
store LAT index as a 32-bit value while setting

the LSB of 32-bit value being stored;

/* for the patched approach */
patch pointer decompressions that need to;

}

Figure 3.6: High-level pseudocode for compressing 64-bit object references.

not need to patch all load locations when a too large offset is detected,
but only those locations that potentially load the current object type at
hand. This requires that the VM keeps track of the accesses to a given
data field in an object of a given type. The patching itself is done as
described in the previous section.

3.2.4 Null pointer representation

An important issue when compressing references is how to deal with
null pointers. The representation of a null value in native code is typ-
ically a 64-bit zero value. Compressing a 64-bit null value to a 32-bit
representation under ORA is not trivial. A naive approach would rep-
resent the compressed null value as a 32-bit zero value. However, the
32-bit null value would then be decompressed to the this pointer, i.e.,
the pointer to the object itself. This would make the null value indistin-
guishable from the this pointer.

For dealing with null pointer representation, we take the following
approach. We first add the 32-bit compressed pointer to the referenc-
ing object’s 64-bit virtual address. In case the least significant 32 bits of
the resulting value are zero, we consider the 32-bit compressed pointer
as the null value. This means we no longer have a single null value.
Also special treatment is required when comparing two pointers. In

3.2 Object-Relative Addressing 61

case both pointers represent the null value, a simple comparison may
evaluate to not equal, for example, in case both compressed pointers
come from different objects. We need to capture this special case in the
virtual machine’s code generator when generating code that compares
pointers. In addition, given that all memory addresses with the 32 least
significant bits set to zero represent null values, we cannot allocate ob-
jects at these 4 GB memory boundaries.

Another solution for the null pointer problem would be to make
use of one of the free least significant bits in an aligned pointer. In
the bit-stealing used under ORA, we already steal the least significant
bit to determine whether the compressed value is a truly compressed
pointer or an index into the LAT. Typically, 3 bits are always zero due
to 8-byte alignment. So we could steal another bit to encode the null
pointer. On certain architectures, e.g., Itanium, unaligned memory ac-
cesses generate traps. Under these circumstances these accesses can be
flagged as null pointer exceptions. However, on our PowerPC machine,
unaligned accesses are allowed and hence we are unable to implement
this scheme.

3.2.5 Managing the LAT

Another important issue to deal with is how to manage the Long Ad-
dress Table (LAT). Allocating LAT entries is very straightforward by
advancing the LAT head pointer. Managing LAT entries is done dur-
ing garbage collection. Let us first consider non-generational garbage
collection. A SemiSpace garbage collector for example, which copies
reachable objects from one space to the other upon a GC, requires that
the LAT be recomputed, i.e., a new LAT is built up during GC and the
old LAT is discarded. A Mark-Sweep garbage collector that does not
need to copy reachable objects, in theory, does not require recomputing
the LAT. However, in order not to let the LAT explode because of en-
tries pointing to dead objects, a good design choice is to also recompute
the LAT upon a mark-sweep collection.

For generational garbage collectors, we recommend using two
LATs, one associated with the nursery generation and another one
associated with the mature generation. The nursery LAT contains ref-
erences in and out of the nursery space; the mature LAT contains all
other references. Upon a nursery GC, all reachable nursery objects are
copied to the mature generation; as such, the nursery LAT can be dis-

62 Object-Relative Addressing

carded and the mature LAT possibly needs to be extended with entries
for the newly copied objects. Upon a major GC, a similar strategy can
be used as under a non-generational garbage collector, i.e., the mature
LAT needs to be rebuilt and in addition, the nursery LAT is discarded.

In case of the unlikely event of the LAT running full — the LAT can
be chosen to be sufficiently large, and, in addition, a good object alloca-
tion strategy would strive at reducing the number of LAT entries allo-
cated — a garbage collection could be triggered to reclaim unreachable
memory. The garbage collector will rebuild the LAT, and as a result the
LAT will likely shrink (or if needed, the LAT size could be increased).
A data structure linking memory pages makes increasing the LAT rel-
atively easy, i.e., the LAT does not need to be copied, since it is not
necessarily contiguous in memory.

3.2.6 Implications to copying garbage collectors

Object-relative addressing raises the following issue to copying garbage
collectors. Consider the case where object A has a reference to object B
in its data fields. Assume object A is reachable; by consequence, object
B is also reachable. The garbage collector has to assume both objects
are live and a copying collector will thus have to copy both objects.
Assume the copying collector will first copy object A. The compressed
pointer in A referencing to B then needs to be updated because object
A was copied which changes the compressed pointer’s base address.
Upon copying object B, the compressed pointer in A referencing to B
needs to be computed again because now B is moved. In other words,
the compressed pointer in A needs to be recomputed twice under a
copying garbage collector.

In order not to recompute the compressed pointer twice, but only
once, we do the following. During garbage collection, we maintain
both the original object A and a copied version of object A in the scan
list, and we use the original object A to retrieve the virtual address of
the referenced object B. As such, we need to recompute the compressed
pointer only once, namely upon scanning object B.

3.2.7 Discussion

Note that pointer compression and decompression in ORA cannot be
optimized as in the simple pointer compression technique proposed by

3.2 Object-Relative Addressing 63

Adl-Tabatabai et al. [3]. Adl-Tabatabai et al. report that it is “crucial to
optimize the unnecessary compression and decompression in order to
get net performance gains”. This can be done by considering the phase
ordering between code optimization and compression/decompression
arithmetics to make sure the additional compression/decompression
arithmetics get optimized whenever possible. The optimizations by the
Adl-Tabatabai et al. approach include for example:

• load-store forwarding: If a loaded 32-bit offset is subsequently
stored, the 32-bit offset does not need to be decompressed and
subsequently compressed again; the 32-bit offset can be stored
right away. This is not the case for ORA because the base address
to which the 32-bit offset relates is the virtual address of the refer-
encing object. And since the objects from which the 32-bit offset is
loaded is likely to be different from the object to which the 32-bit
offset needs to be stored, the 32-bit offset to be stored needs to be
recomputed.

• reference comparison: Comparing objects’ virtual addresses can be
done easily by comparing the 32-bit offsets in the Adl-Tabatabai
et al. approach. This is not the case for ORA; the 64-bit virtual ad-
dresses need to be decompressed from the 32-bit offsets before al-
lowing for a comparison, the reason being that the base addresses
are likely to be different for both 32-bit compressed pointers.

• reassociation of address expressions: Computing the address of an
object field or array element involves two additions in Adl-
Tabatabai et al.’s approach: the heap base needs to be added
to the 32-bit offset plus the object field’s offset. Under many cir-
cumstances, one addition can be pre-computed at compile time.
For example, in case of an object field access, the heap base ad-
dress and the object field’s offset are both constants and can be
pre-computed. Again, this is an optimization that cannot be ap-
plied to ORA because the base address is not constant. A related
optimization is to apply common subexpression elimination. For
example, if multiple fields of the same object are accessed, then
the heap base address plus the 32-bit offset is a common subex-
pression that can be eliminated, i.e., does not need to be recom-
puted over and over again. The latter optimization can also be
applied under ORA.

64 Object-Relative Addressing

In summary, the pointer compression approach by Adl-Tabatabai
et al. allows for a number of optimizations that cannot be applied to
ORA. Hence, it is to be expected that ORA will perform poorer than
the pointer compression technique proposed by Adl-Tabatabai et al.
However, ORA can apply pointer compression to Java programs that
allocate more than 4 GB of heap memory, which cannot be done using
Adl-Tabatabatai et al.’s method.

It is interesting to note that, in case the ‘base plus index plus offset’
memory addressing mode would be available in the host ISA — again,
which is not the case in our PowerPC setup — ORA would be able to
apply an important optimization that would likely close (part of) the
gap between ORA and Adl-Tabatabai et al.’s technique. Pointer de-
compression can then be combined with field offset computation into a
single address expression. In that case, the optimization done by Adl-
Tabatabai et al. to pre-compute constants would be subsumed by com-
bining the pointer decompression with field offset computation.

3.2.8 Implications for memory management

As mentioned in the introduction, object-relative addressing is envi-
sioned to be used in conjunction with a dedicated memory manage-
ment approach for allocating objects in memory regions such that all
inter-object references within a memory region can be represented by a
32-bit offset. To this end, ORA can rely on previously proposed mem-
ory management approaches that allocate connected objects into mem-
ory regions while minimizing the number of references across memory
regions. Example memory management approaches that serve this
need are object collocation [34], connectivity-based garbage collec-
tion [38, 39] and region-based systems [22, 57]. The smarter the mem-
ory management strategy, the smaller the number of LAT accesses,
the smaller the compression/decompression overhead, and thus the
higher overall performance.

In this context, it is also important to note that ORA is flexible in
the sense that ORA can be activated and deactivated for particular ob-
ject types; or, if needed, ORA can even be activated/deactivated for
particular references between pairs of object types. It was this insight
on ORA’s flexibility that lead us to our compression/decompression
scheme with patching. The slow decompression path is not called for
at the beginning of the program execution as the heap is small enough

3.3 Experimental setup 65

— as such we always execute the fast path and thus eliminate execut-
ing the if-then decompression code. Once an inter-object reference is
detected that cannot be represented by a 32-bit value, all the code that
may possibly read the compressed pointer needs to be patched. We
envision however that this is a very rare event, since there exist tech-
niques that we can build upon, such as region-based memory man-
agers, that never create inter-region references at all [57]. But ORA is
flexible enough to handle large inter-object reference cases; namely, it
uses the LAT as a safety net in case the memory management strategy
would fail to allocate objects so that all pointers can be represented as
32-bit offsets.

3.3 Experimental setup

Our experimental setup is the same as for the previous chapter. We use
the Jikes RVM version 2.3.5, with the GenCopy and GenMS garbage
collectors1. The hardware platform on which we have done our exper-
iments is the IBM POWER4. The benchmarks are taken from a variety
of suites (SPECjvm98, SPECjbb2000, DaCapo and the Java Grande Fo-
rum benchmarks). In order to be able to draw statistically valid con-
clusions, we employ statistics to determine 95% confidence intervals
from 15 measurement runs. These statistics will help us in determining
whether ORA results in statistically significant or statistically insignif-
icant performance gains or degradations. The experimental setup is
described in detail in section 2.2.

3.4 Memory usage and impact on GC

We first analyze the impact of ORA on memory performance. We quan-
tify the impact of ORA on the number of bytes allocated and the num-
ber of memory pages touched.

Figure 3.7 shows the reduction in the number of allocated bytes
through object-relative addressing, compared to the 64-bit base case.
Our base case is a 64-bit version of Jikes RVM which assumes 64-bit
pointer representations in object data fields. Compressing 64-bit ob-

1The ORA technique can also be implemented for all other garbage collection
schemes. We limit our implementation to the two best performing garbage collection
algorithms available in Jikes RVM 2.3.5.

66 Object-Relative Addressing

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
s
o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

p
s
e
u
d
o
jb

b

A
V

G

GenCopy, patched decompression

GenMS, patched decompression

Figure 3.7: Reduction in the number of allocated bytes through ORA.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
s
o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

p
s
e
u
d
o
jb

b

A
V

G

ORA part

uncompensated

Figure 3.8: Memory usage overhead of 64-bit mode compared to 32-bit mode
and the part thereof that is reduced through ORA.

ject references reduces the number of allocated bytes on average by
10.7%, 12.2% and 11.3% for the DaCapo, SPECjvm98 and Pseudojbb
benchmark suites, respectively. For the Java Grande Forum benchmark
suite, which operates on large numeric data structures and hence con-
tains less references between objects, we observe an average reduction
in number of allocated bytes of 0.7%. For some benchmarks it is possi-
ble that the reduction in bytes through the ORA-compression technique
is so small, that it merely compensates for the extra memory usage oc-
cupied by ORA constructs (e.g., patching information). That is why
we observe almost no reduction in the number of allocated bytes for
jack, see Figure 3.7. To validate the effect of ORA on the reduction of
the memory usage overhead introduced by the transition from 32-bit to
64-bit mode, Figure 3.8 shows the increase in number of bytes allocated
when going from 32-bit mode to 64-bit mode and we mark the part that

3.4 Memory usage and impact on GC 67

antlr genMS

64-bit

javac genMS

64-bit

pseudojbb genMS

64-bit

javac genMS

ORA

antlr genMS

ORA

pseudojbb genMS

ORA

allocations (x100 000)

h
e
a
p
 s

iz
e
 (

4
 K

B
 p

a
g
e
s
)

0 20 40 60 80 100 120 140 160 1800 20 40 60 80 100 120 140 160 180
0

5000

10000

15000

20000

25000

30000

0

5000

10000

15000

20000

25000

30000

0

5000

10000

15000

20000

25000

30000

35000

40000

0

5000

10000

15000

20000

25000

30000

35000

40000

0 50 100 150 200 250 300 0 50 100 150 200 250 300

0

20000

40000

60000

80000

100000

120000

140000

0

20000

40000

60000

80000

100000

120000

140000

0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200

Figure 3.9: Number of pages in use as a function of time for antlr (top), javac
(middle) and pseudojbb (bottom) with the GenMS collector: the base case (left
column) versus ORA (right column).

the ORA technique reduces thereof. On average, more than one quarter
of the memory usage overhead gets reduced.

Figure 3.9 shows the number of memory pages in use on the verti-
cal axis as a function of time (measured in the number of allocations)
on the horizontal axis for antlr, javac and pseudojbb, respectively. Each
figure shows two graphs, one for the base 64-bit pointer representa-
tion (on the left), and one for the compressed pointer representation
through object-relative addressing (on the right). (We observed similar
curves for the other benchmarks.) The curves in these graphs increase

68 Object-Relative Addressing

0 200 400 600 800 1000 1200

h
e

a
p

 s
iz

e
 (

4
 K

B
 p

a
g

e
s
)

allocations (x100 000)

0 50 100 150 200 250 300

javac

pseudojbb

0

1000

2000

3000

4000

5000

0 20 40 60 80 100 120 140 160 180

antlr

5000

3000

2000

1000

0

4000

6000

7000

0

10000

20000

30000

40000

50000

ORA64-bit32-bit ORA64-bit32-bit

ORA64-bit32-bit

Figure 3.10: Maximum reachable bytes (measured in 4KB pages) as a function
of time (measured per allocation site) for three benchmarks, antlr (top left),
javac (top right), pseudojbb (bottom) for 32-bit and 64-bit processing and for
ORA.

as memory gets allocated until a garbage collection is triggered after
which the number of used pages drops. The small drops correspond
to nursery collections; the large drops correspond to major collections
collecting the full heap. The graphs for javac and pseudojbb show that
the number of pages in use is lower under ORA than under the base
64-bit pointer representation. The graph also shows that the reduced
number of pages in use delays garbage collections, i.e., it takes a longer
time before a garbage collection is triggered.

Figure 3.10 shows the maximum reachable bytes (in pages) as a
function of time (measured in the number of allocations) on the hor-
izontal axis for antlr, javac and pseudojbb, respectively. We start from
the 32-bit and 64-bit graphs from Figure 2.4, and add now the curves
for the maximum reachable bytes under ORA. For antlr, we see no clear
reduction in the maximum reachable bytes for ORA compared to the
64-bit base case. Although, we reduced the total amount of allocated
bytes by more than 10%, it seems the case for this benchmark that the
ORA technique could only reduce the size of short-lived objects. For

3.4 Memory usage and impact on GC 69

Table 3.1: Number of minor and major GCs under the GenMS and GenCopy
collection scheme for the base 64-bit scenario and ORA.

GenMS GenCopy
minor GCs major GCs minor GCs major GCs

Benchmark base ORA base ORA base ORA base ORA
db 62.7 32.1 2.0 1.0 32.8 59.9 3.0 2.0
jack 184.0 112.7 2.0 1.3 193.9 195.3 2.1 2.1
javac 120.7 117.1 3.5 3.0 115.1 107.5 5.9 5.0
jess 75.9 48.2 0.0 0.0 167.5 81.1 1.0 0.0
antlr 106.7 104.5 5.0 4.3 104.7 89.5 5.9 5.0
fop 25.3 13.3 0.5 0.0 15.2 15.7 1.0 1.0
hsqldb 58.3 49.6 5.0 4.0 60.1 35.6 6.0 5.0
pmd 275.6 302.5 13.0 10.9 214.7 233.5 13.9 12.0
crypt 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0
heapsort 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0
lufact 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0
moldyn 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0
search 18.9 18.3 0.0 0.0 21.0 20.2 0.0 0.0
sor 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0
sparse 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0
pseudojbb 116.9 114.9 4.1 4.0 112.2 109.0 6.2 5.3

S
p

e
e

d
u

p

d
b

ja
c
k

ja
v
a

c

je
s
s

a
n

tl
r

fo
p

h
s
q

ld
b

p
m

d

c
ry

p
t

h
e

a
p
s
o

rt

lu
fa

c
t

m
o

ld
y
n

s
e

a
rc

h

s
o

r

s
p
a

rs
e

p
s
e

u
d

o
jb

b

A
V

G

-20%

0%

20%

40%

60%

80%

100%
GenCopy, if-then decompression

GenCopy, patched decompression

GenMS, if-then decompression

GenMS, patched decompression

Figure 3.11: Speedup of the garbage collector through ORA.

the javac benchmark, the reduction in maximum reachable bytes (12%)
is almost the same as the reduction in total allocated bytes, see Fig-
ure 3.7. The reduction in maximum reachable bytes for pseudojbb is
somewhere between 5% and 7%. It was expected that this value would
be smaller than the total allocated bytes reduction, since we already
showed in section 2.4.2 that there is only a limited memory overhead in-
crease from 32-bit to 64-bit mode in terms of maximum reachable bytes.

70 Object-Relative Addressing

While Figure 3.9 showed us qualitatively that the number of GCs
drops compared to the 64-bit base case, Table 3.1 quantifies the num-
ber of GCs performed under ORA. Compared to the 64-bit base case,
we observe that the number of GCs drops in correspondence with the
reduced number of pages in use as we explained before. On average
10.6% and 17.8% less minor and major GCs occur through ORA, re-
spectively.

Figure 3.11 quantifies the effect of ORA on the total garbage col-
lection time: speedup is shown for a number of ORA configurations
and two garbage collectors (GenCopy and GenMS). We observe that
for most Java Grande Forum benchmarks, we see small slowdowns,
up to 14.9% for sor, while most non- Java Grande Forum benchmarks
show a speedup, up to 79.0% for jess. This different behavior of the
Java Grande Forum benchmarks is to be expected, since Figure 3.7 al-
ready showed us that we could not substantially reduce the memory
usage for these applications. On average we observe a small speedup
of 5.1%. Although we have a reduced number of garbage collections,
the total garbage collection time seems only slightly affected. This can
be explained by the extra work that needs to be done by ORA dur-
ing garbage collection: every traced pointer needs to be decompressed
(and compressed again in case of a moving collector), as discussed in
section 3.2.6.

3.5 Overall performance evaluation

We now quantify the performance impact of ORA applied to Java ap-
plication objects. We consider a number of scenarios that we compare
with the 64-bit base case. Initially, we assume that all pointer compres-
sions and decompressions occur through the fast path, i.e., all inter-
object references can be represented as 32-bit offsets. In section 3.5.2,
we then quantify the overhead of patching and the overhead of pointer
compression and decompression through the slow path accessing the
LAT.

3.5.1 Execution time

Figure 3.12 shows the performance for each of the following four sce-
narios relative to the base case.

3.5 Overall performance evaluation 71

d
b

ja
c
k

ja
v
a

c

je
s
s

a
n

tl
r

fo
p

h
s
q

ld
b

p
m

d

c
ry

p
t

h
e

a
p
s
o

rt

lu
fa

c
t

m
o

ld
y
n

s
e

a
rc

h

s
o

r

s
p
a

rs
e

p
s
e

u
d

o
jb

b

A
V

G

S
p

e
e

d
u

p

-15%

-10%

-5%

0%

5%

10%

15%

20% compressed pointer, zero heap base

compressed pointer, non-zero heap base
ORA if-then decompression

ORA patched decompression w/o patching

S
p

e
e

d
u

p

d
b

ja
c
k

ja
v
a

c

je
s
s

a
n

tl
r

fo
p

h
s
q

ld
b

p
m

d

c
ry

p
t

h
e

a
p
s
o

rt

lu
fa

c
t

m
o

ld
y
n

s
e

a
rc

h

s
o

r

s
p
a

rs
e

p
s
e

u
d

o
jb

b

A
V

G

-15%

-10%

-5%

0%

5%

10%

15%

20%
compressed pointer, zero heap base

compressed pointer, non-zero heap base

ORA if-then decompression

ORA patched decompression w/o patching

Figure 3.12: Evaluating object-relative addressing in terms of performance:
the top graph is for the GenCopy collector, the bottom graph is for the GenMS
collector.

Compressed pointers with zero heap base.

The ‘compressed pointer with zero heap base’ is the scenario where
all 64-bit pointers in object data fields are compressed to 32-bit point-
ers with the heap base address being zero. This means that loading
the 32-bit compressed pointers (with zero extension) yields the vir-
tual address of the referenced object; storing a compressed pointer is
done by storing the four least significant bytes of the virtual address
to memory. This scenario shows the best possible performance that
can be achieved through compressed pointer representation: pointers
are compressed and there is no compression/decompression overhead.
The average performance gain is 2.9%, and up to 16.4% for hsqldb. This
performance gain is a direct consequence of the reduced memory usage
through a reduced number of data cache misses and D-TLB misses.

72 Object-Relative Addressing

Compressed pointers with non-zero heap base.

The ‘compressed pointer with non-zero heap base’ is similar to the pre-
vious scenario except that the heap base address is non-zero. In other
words, decompressing a 32-bit pointer requires adding the 32-bit off-
set to the 64-bit heap base address. This scenario corresponds to Adl-
Tabatabai et al.’s approach: it assumes that the heap space is no larger
than 4 GB, and assumes a fixed heap base address. The average perfor-
mance gain for compressed pointers with a non-zero heap base drops
to 0.8%; the maximum performance gain is observed for hsqldb (12.7%)
and the largest slowdown is observed for db (-6.1%).

The 0.8% average performance gain over the base case is smaller
than what is reported by Adl-Tabatabai et al. [3]. The reason is that our
results are for the PowerPC ISA using Jikes RVM whereas the results by
Adl-Tabatabai et al. are for the Intel Itanium Processor Family (IPF) us-
ing ORP and StarJIT. As a result, not all optimizations implemented by
Adl-Tabatabai et al. may be implemented in our system. Note however
that the goal of this scenario is not to re-validate the approach proposed
by Adl-Tabatabai et al., but rather to quantify the overhead of pointer
compression/decompression in our framework.

ORA with if-then decompression.

The ‘ORA if-then decompression’ scenario implements object-relative
addressing using the if-then decompression implementation. This sce-
nario includes testing the LSB of the 32-bit compressed pointer for de-
termining whether to take the fast or the slow path. This scenario incurs
an average slowdown of 1.9%. The highest slowdown observed is 9.1%
(jess); the highest speedup observed is 5.9% (hsqldb).

ORA with patched decompression.

This scenario removes the if-then test from the previous scenario. As
explained in section 3.2.2, this version assumes that the slow decom-
pression path is not called for at the beginning of the program exe-
cution as the heap is small enough—as such we always take the fast
path and thus eliminate executing the if-then statement. Once an inter-
object reference is detected that cannot be represented by a 32-bit value,
all the code that may possibly read the compressed pointer needs to be
patched.

3.5 Overall performance evaluation 73

-30%

-25%
-20%

-15%
-10%

-5%

0%
5%

10%

ORA if-then decompression
ORA patched decompression w/o patching
ORA patched decompression w/ patching
ORA with excessive LAT accesses

d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
s
o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

p
s
e
u
d
o
jb

b

A
V

G

S
p
e
e
d
u
p

-30%

-25%
-20%

-15%

-10%

-5%
0%

5%

10%

ORA if-then decompression
ORA patched decompression w/o patching
ORA patched decompression w/ patching
ORA with excessive LAT accesses

d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
s
o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

p
s
e
u
d
o
jb

b

A
V

G

S
p
e
e
d
u
p

Figure 3.13: Evaluating the overhead of different decompression schemes for
object-relative addressing in terms of performance, the top graph for the Gen-
Copy collector, the bottom graph for the GenMS collector.

In this section we will only consider the case where none of the
loads are patched, i.e., all pointer decompressions are done by (specu-
latively) adding the 32-bit offset to the referencing object’s virtual ad-
dress as shown in Figure 3.4. This scenario is labelled ‘w/o patching’.
Although patching never occurs, the results of this scenario do include
all overhead of keeping track of code that potentially needs patching.
The overhead of patched code will be discussed in the next section.

This scenario, which eliminates the if-then test in the decompres-
sion scheme results in a statistically insignificant average slowdown
for the GenMS collector of 0.7% and a small average slowdown of 1.5%
for the GenCopy collector. Although this scenario always uses the fast
decompression path, we see it as a realistic scenario, since there exist
analysis that can guide compilers to prevent too large inter-object ref-
erences to exist [57].

74 Object-Relative Addressing

3.5.2 Overhead evaluation

ORA with patched decompression

In the previous section we only evaluated the patched decompression
scenario w/o patching. Now we introduce a second patched decom-
pression scenario, labelled ‘w/ patching’, which assumes that all loads
are patched, i.e., all pointer decompressions are done by jumping to
an if-then decompression scheme as shown in Figure 3.5. Figure 3.13
shows the performance of the previous ORA scenarios together with
the scenario where all loads are patched. As expected, the ‘w/ patch-
ing’ scenario incurs a higher overhead than the ‘if-then decompression’
because of the extra jump instruction. The maximum slowdown ob-
served, compared to the 64-bit base case, is 14.8% (jess) and the maxi-
mum speedup observed is 2.1% (hsqldb). The measured overhead (on
average 3.1%) corresponds to a non-realistic scenario in case all code
needs to be patched (the worst case). If patching occurs (again this is a
rare event), our ORA implementation will only patch a limited amount
of code at once.

LAT access overhead.

So far, we assumed that all decompressions occur along the fast path,
i.e., the slow decompression path is never taken. In order to quantify
the overhead of going through the slow path we have set up a bench-
marking experiment in which the nursery and mature space are located
more than 4 GB away from each other. We want to emphasize that
the sole purpose of this benchmarking experiment is to quantify the
overhead due to taking the slow compression/decompression path; the
goal of this experiment is not to present a use case scenario, since for a
realistic scenario this would be a bad design choice. This benchmarking
experiment implies that all inter-generational pointers — from nursery
objects to mature objects, and vice versa — have to pass through the
LAT. In other words, a LAT entry is allocated for all inter-generational
pointers, and the slow path is taken when compressing/decompressing
inter-generational pointers. Although Figure 3.13 also shows the per-
formance of this benchmarking scenario, it is merely illustrative since
the overhead depends on the actual number of LAT-accesses. The aver-
age slowdown of this benchmarking experiment is 5.0%. On average,
30.9% of all references go through the slow path. By dividing the per-

3.5 Overall performance evaluation 75

instruction ratio ORA/64base

0

0,2

0,4

0,6

0,8

1

1,2

1,4
d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
s
o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

p
s
e
u
d
o
jb

b

compressed pointer, zero heap base

compressed pointer, non-zero heap base

ORA if-then decompression

ORA patched decompression w/o patching

Figure 3.14: Ratio of the number of executed instructions of ORA in relation
to the 64-bit base case for the GenMS collector.

formance slowdown by the number of LAT accesses we can compute
the performance overhead in terms of cycles per LAT access. We found
that the slow compression/decompression path incurs a 5 cycle penalty
on average.

3.5.3 Number of instructions executed

Figure 3.14 quantifies the ratio of executed instructions in ORA ver-
sus the 64-bit base run. Except for some Java Grande Forum bench-
marks, the number of dynamically executed instructions is higher, as
expected. ORA has to do extra work when compressing and decom-
pressing pointers. On average, ORA executes 4.3% more instructions.
The highest increase (up to 20%) is observed for jess. This is the rea-
son why we saw the biggest performance loss for jess in the previous
subsection.

3.5.4 Cache hierarchy performance

Figures 3.15, 3.16 and 3.17 show the number of D-cache misses per 1000
instructions of the base run, for the L1, L2 and L3 level D-cache, respec-
tively. The graphs for the L2 and L3 level are shown twice to magnify
the results for benchmarks with a small number of misses per 1000 in-
structions. In these graphs, we normalize the number of cache misses
for the above scenarios to the number of instructions in the base run.
We observe that on average the number of L1 misses is only slightly
reduced (0.8%). The reduction goes up to 10% for jess. Note that

76 Object-Relative Addressing
n
o
.
o
f
m

is
s
e
s
 p

e
r

1
0
0
0
 i
n
s
n
s

L1 misses

0
10
20
30
40
50
60
70
80
90

100
d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
s
o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

p
s
e
u
d
o
jb

b

GenMS, ref 64-bit
compressed pointer, zero heap base
compressed pointer, non-zero heap base
ORA if-then decompression
ORA patched decompression w/o patching

Figure 3.15: The number of L1 D-cache misses per 1000 instructions of the
base run for the GenMS collector.

n
o
.
o
f
m

is
s
e
s
 p

e
r

1
0
0
0
 i
n
s
n
s L2 misses

0

10

20

30

40

50

60

d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
s
o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

p
s
e
u
d
o
jb

b

GenMS, ref 64-bit
compressed pointer, zero heap base
compressed pointer, non-zero heap base
ORA if-then decompression
ORA patched decompression w/o patching

n
o
.
o
f
m

is
s
e
s
 p

e
r

1
0
0
0
 i
n
s
n
s

L2 misses (zoomed in)

0

0,5

1

1,5

2

2,5

3

3,5

4

d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
s
o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

p
s
e
u
d
o
jb

b

GenMS, ref 64-bit
compressed pointer, zero heap base
compressed pointer, non-zero heap base
ORA if-then decompression
ORA patched decompression w/o patching

Figure 3.16: The number of L2 D-cache misses per 1000 instructions of the
base run for the GenMS collector. The only difference between the first and
second graph is the scale of the vertical-axis.

although jess has the largest L1-miss decrease (corresponding to the
largest reduction in allocated bytes, see Figure 3.7), jess performs so

3.5 Overall performance evaluation 77
n
o
.
o
f
m

is
s
e
s
 p

e
r

1
0
0
0
 i
n
s
n
s

L3 misses

0

5

10

15

20

25

30

35

d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
s
o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

p
s
e
u
d
o
jb

b

GenMS, ref 64-bit
compressed pointer, zero heap base
compressed pointer, non-zero heap base
ORA if-then decompression
ORA patched decompression w/o patching

n
o
.
o
f
m

is
s
e
s
 p

e
r

1
0
0
0
 i
n
s
n
s L3 misses (zoomed in)

0

0,5

1

1,5

2

2,5

3

3,5

4

d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
s
o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

p
s
e
u
d
o
jb

b

GenMS, ref 64-bit
compressed pointer, zero heap base
compressed pointer, non-zero heap base
ORA if-then decompression
ORA patched decompression w/o patching

Figure 3.17: The number of L3 D-cache misses per 1000 instructions of the
base run for the GenMS collector. The only difference between the first and
second graph is the scale of the vertical-axis.

many compressions/decompressions, that the extra cost in terms of
performance is much higher than the gain from memory reduction.
Only for db, antlr and pseudojbb and only for the GenMS collector, we
see a small increase in the number of L1 misses; 2.4%, 2.3% and 1.3%,
respectively. Also L2 misses and L3 misses (main memory accesses) are
reduced through ORA, on average 5.5% and 6.1%, respectively. The
biggest reduction in L2 misses is observed for moldyn (19.6%); observe
that moldyn was also the only Java Grande Forum benchmark with a
large object size increase in the previous chapter (Table 2.7). With rela-
tion to L3 misses, the biggest reduction is seen for hsqldb (27.3%): not
surprisingly, also a benchmark with a large object size increase when
going from 32-bit mode to 64-bit mode, see Table 2.7. For a single
benchmark, namely db, we observe a large increase in L3 misses for
the GenMS collector (an increase of 26%). We believe that is due to ex-
tra conflict misses that are induced by an accidently bad data layout

78 Object-Relative Addressing
n

o
.

o
f

m
is

s
e

s
 p

e
r

1
0

0
0

 i
n

s
n

s

DTLB misses

0

5

10

15

20

25

30
d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
s
o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

p
s
e
u
d
o
jb

b

GenMS, ref 64-bit
compressed pointer, zero heap base
compressed pointer, non-zero heap base
ORA if-then decompression
ORA patched decompression w/o patching

Figure 3.18: The number of D-TLB misses for the GenMS collector, per 1000
instructions of the base run.

on the heap. On overall, we can conclude that ORA better utilizes the
cache hierarchy reducing the pressure on main memory.

3.5.5 D-TLB performance

Figure 3.18 shows the number of D-TLB misses per 1000 instructions
of the base run for the GenMS collector. The largest reduction (16%) is
observed for pmd. One big increase is observed (30%) for fop, but only
for the GenCopy collector. On average, ORA reduces the number of
D-TLB misses with 4.2%.

3.6 Related work

Adl-Tabatabai et al. [3] address the increased memory requirements of
64-bit Java implementations by compressing 64-bit pointers to 32-bit
offsets. They represent 64-bit pointers as 32-bit offsets from a fixed
base address of a contiguous memory region. Decompressing a pointer
then involves adding the 32-bit offset to a fixed base address yielding
a 64-bit virtual address. Compressing a 64-bit pointer results in storing
the 32 least significant bits only. The fact that 64-bit virtual addresses
are represented as 32-bit offsets from a fixed base address implies that
this pointer compression technique is limited to Java programs that de-
mand less than 4 GB of memory.

They apply their pointer compression technique to both the Type
Information Block (TIB) pointer — or the vtable pointer — and the for-

3.6 Related work 79

warding pointer in the object header and to pointers in the object itself.
Separate results for compressing pointers in the object are provided. We
do not apply ORA to vtable pointers, because it is highly unlikely that
allocating vtables requires more than 4 GB of memory. So, the pointer
compression method by Adl-Tabatabai et al. will work properly when
applied to vtable pointers. In this chapter, we focus on compressing ob-
ject references. We will handle object headers (and hence vtable point-
ers) in the next chapter.

For compressing pointers inside objects only, they report a 13.4 %
memory reduction and 14.2 % less GCs. The maximum execution time
reduction is observed for db (over 50 %). Their memory reduction
complies which our measurements. We do not obtain performance re-
sults similar to theirs though. There are two reasons for this. First,
as mentioned before, the approach by Adl-Tabatabai et al. targets ap-
plications that are limited within a 32-bit address space. As such, ap-
plications that require more than 4 GB of memory cannot benefit from
their pointer compression. ORA does not have that limitation but, in
order to achieve that goal, ORA performs a more complicated com-
pression/decompression scheme and hence we can not apply all opti-
mizations applied by Adl-Tabatabai et al., as discussed extensively in
section 3.2.7. Second, we use a different experimental setup (hardware
platform, virtual machine and memory manager). Measurements in
section 3.5.1 for the scenario ’compressed pointer with zero heap base’
show at best a 10 % improvement for db, while this scenario should
perform at least as good as Adl-Tabatabai et al.’s approach.

Lattner and Adve [48, 49] apply a similar approach as Adl-Tabatabai
et al. to compressing pointers in linked data structures. Linked data
structures are placed in a memory region where pointers are repre-
sented relative to the memory region’s base address. They need to keep
track of different fixed base pointers, one for each region. They can ap-
ply their technique only to data structures whose lifetime is bounded by
a function’s lifetime; ORA on the other hand can apply its compression
technique to all pointers. Moreover, ORA implements a safety guard
for when certain pointers can not be compressed to 32-bits. Lattner
and Adve evaluated their technique for a number of pointer-intensive
benchmarks (such as ks and ft from PtrDist, see also Table 1.2) and
one microbenchmark. For these benchmarks, they report a reduction
in memory footprint of up to 50% (remark that 50% is the maximum
possible reduction, namely the case when all data are pointers). For

80 Object-Relative Addressing

some benchmarks they observe almost no memory reduction and even
report slowdowns (up to 11%).

Zhang and Gupta [74] compress pairs of 32-bit integer values and
32-bit pointer values to pairs of 15-bit values, each pair packed in a sin-
gle 32-bit field. Integer values are compressed if the 18 most significant
bits are identical. Pointer values are compressed if they share the 17
most significant order bits with their base address, in which case only
the 15 least significant order bits are saved. Their scheme has a variable
base address for compressing/decompressing pointers, as is the case
for ORA. The difference with ORA though is that the offsets in ORA are
relative to the referencing object’s virtual address. Two addresses can
be very close to each other, and hence have different values for their re-
spectively 17 most significant bits (e.g., 0x1234 7F10 and 0x1234 8000).
In this case ORA can be applied because they are close to each other,
but the technique of Zhang and Gupta can not compress the pointer
because the most significant bits differ.

For values that are not compressible by the technique of Zhang and
Gupta, extra storage is allocated to store the entire 32-bit values. Since
values are always compressed in pairs, this newly allocated storage is
64 bit wide. The value stored at the place of the (pair of) compressed
field(s) is then a pointer to the newly allocated storage. The most sig-
nificant bit is used to indicate whether the compressed field contains a
packed pair or whether it contains a pointer to unpacked data.

Zhang and Gupta apply their technique to pairs of hot fields and
pairs of cold fields in C programs. They evaluated six pointer-intensive
benchmarks of the Olden test suite on the simplescalar simulator. They
also added extra data compression extensions (DCX) to the instruction set.
Zhang and Gupta report a 25% allocation space saving and an average
reduction in execution time of 12.5% without DCX and 30% with DCX.

Kaehler and Krasner [42] describe the Large Object-Oriented Mem-
ory (LOOM) technique for accessing a 32-bit virtual address space on
a 16-bit machine. Objects in secondary memory have 32-bit pointers to
other objects. Primary (main) memory serves as a cache for secondary
memory. Object pointers in main memory are represented as short 16-
bit indices into an Object Table. This Object Table contains the full 32-bit
address of the object. Objects need to be moved to main memory before
they can be referenced. Translation between 32-bit pointers and 16-bit
indices is performed when moving objects to main memory.

3.7 Conclusion 81

A number of studies have been done on compressing object head-
ers [8, 63]. They will be discussed more extensively in the next chapter.

Other studies aimed at reducing the memory usage of Java appli-
cations, for example, field packing [6], or field reusing [20], or using
techniques such as heap compression [21], object compression [19], etc.
We will discuss these techniques now briefly.

Ananian and Rinard [6] compute ranges of values that the program
may assign to each field. The compiler then transforms the field to the
smallest type capable of storing that range of values. They use byte
packing to pack different smaller fields in one 32-bit value. They also
try to find fields whose values do not change after initialization, or al-
most always have the same value. They do not store these fields in the
object, but provide an alternative access schemes through hash tables.

In [20], Chen et al. examine the lifetime of object fields and they
observe that some fields can have disjoint lifetimes. In that case, these
fields can share the same memory space.

Chen et al. [21] propose a new memory management strategy that
compresses objects in an memory constrained embedded JVM. Their
goal is to enable the execution of Java applications using a smaller heap
footprint than the original VM can handle. They compress objects as
soon as the compaction phase of their GC can not provide enough space
for the new object. A compressed object contains a bitmap with one bit
for each byte of uncompressed data. If the bit is zero, it means the en-
tire byte is zero, otherwise the non-zero byte is kept in the compressed
object. They also apply lazy allocation on portions of large arrays.

In [19], Chen et al. use static analysis to identify fields that fre-
quently have the same value across objects. Fields that are always zero
are omitted and other frequent value fields are split off in a separate
data structure. These fields in the original object are then replaced with
a pointer to this new data structure. These data structures, that contain
the frequent fields, are then shared across different objects.

Some other studies investigate hardware compression techniques
to compress data in caches [50, 73, 75] or in main memory [29].

3.7 Conclusion

Pointers in 64-bit address spaces require twice as much memory as in
32-bit address spaces. This results in increased memory usage which

82 Object-Relative Addressing

degrades cache and TLB performance; in addition, physical memory
gets exhausted quicker. This chapter presented object-relative address-
ing (ORA) for implementation in 64-bit Java virtual machines. ORA
compresses 64-bit pointers in object fields into 32-bit offsets relative to
the referencing object’s virtual address. The important benefit of ORA
over prior work, which assumed 32-bit offsets relative to a fixed base
address, is that ORA enables pointer compression for programs that al-
locate more than 4 GB of memory. Our experimental results using Jikes
RVM on an IBM POWER4 machine using SPECjvm98, Java Grande Fo-
rum, SPECjbb and DaCapo benchmarks show that ORA incurs a sta-
tistically insignificant impact on overall performance compared to raw
64-bit pointer representation, while reducing the amount of memory
allocated by more than 10% for many benchmarks and up to 16-18%
for some benchmarks. The reduction in allocated memory also leads
to decreases in the number of D-cache misses: 0.8%, 5.5% and 6.1% on
average for the L1, L2 and L3 caches, respectively.

Chapter 4

Selective Typed Virtual
Addressing

Nothing fixes a thing so intensely in the memory as the wish to forget it.
Michel de Montaigne

In this chapter we reduce the memory usage of 64-bit Java VM imple-
mentations by completely eliminating the object header. This is done through
Selective Typed Virtual Addressing (STVA) which means that the object type
information is encoded in the object’s virtual address. STVA encodes the object
type in the object’s virtual address by allocating all objects of a given type in a
contiguous memory segment. Our results show that STVA yields a reduction
in the number of allocated bytes by 15% on average and up to 35% for some
benchmarks. Performance is not statistically significantly affected in general,
however, some benchmarks exhibit significant overall speedups of up to 20%.

4.1 Introduction

In chapter 1, we pointed out that the increased memory usage is the
major drawback for 64-bit systems. Next, chapter 2 identified four rea-
sons why objects in a 64-bit VM occupy more memory than in a 32-bit
VM, namely (i) the increased pointer size, (ii) the increased header, (iii)
the increased intra-object alignment and (iv) the increased inter-object
alignment. The previous chapter, chapter 3, focused on the first reason,
and reduced memory usage of 64-bit applications by the object-relative
addressing technique. This technique focused on the body part of an

84 Selective Typed Virtual Addressing

object, also called the object data. In this chapter we will continue work-
ing on the topic of object memory reduction, but now we will focus on
reasons (ii) and (iv): the header part of an object and the inter-object
alignment.

The key technique proposed in this chapter to completely remove
the object’s header is Typed Virtual Addressing (TVA). By allocating ob-
jects of the same type in a contiguous memory segment, type informa-
tion can be shared by all objects in such a segment and does no longer
need to be stored for each object individually. Along with a number of
other header layout modifications (which will be detailed further), this
allows to remove the Type Information Block (TIB) pointer field as well
as the status field from the object header. As such, we are able to com-
pletely eliminate the 16-byte object header for non-array objects. For
array objects we only keep the 4-byte length field. Accessing the TIB
is then done by masking a number of bits from the object’s virtual ad-
dress, and using that as an offset in the TIB space that holds all the TIBs.
Removing the status field from the object header is done by keeping GC
bits and hash bits in so-called side arrays—1 byte per object in our im-
plementation. Our proposal does not apply TVA to all object types but
only to a selected number of types that are frequently allocated, hence
the name Selective TVA (STVA). The reason is that applying TVA to
all object types results in too much memory fragmentation because of
memory pages being sparsely filled with only a few objects.

The idea of typed addressing or implicit typing is not new. Typed
addressing has been proposed in the past with proposals such as Big
Bag of Pages (BiBOP), typed pointers and others [7, 27, 36, 62, 65]. In
fact, it was fairly popular in the 1970s, 1980s and early 1990s in var-
ious functional and logic programming languages. However, typed
addressing has fallen into disfavor from then on because of the fact
that all of these proposals applied typed addressing for all object types.
As mentioned above, applying typed addressing to all objects results
in memory fragmentation, and eventually performance degradation.
With the advent of 64-bit Java implementations, a well designed typed
virtual addressing mechanism becomes an interesting option for reduc-
ing the memory usage of 64-bit Java VMs because the 64-bit virtual
address space is huge which facilitates the implementation of implicit
typing compared to 32-bit platforms.

4.2 The 64-bit Java object model 85

TIB pointer

forwarding pointer

status field

(a) 64-bit Java object model

object data

TIB pointer

forwarding pointer

status field

(b) shortening the TIB pointer for all objects

object data

forwarding pointer

status field

(c) eliminating the TIB pointer for TVA objects

object data

forwarding pointer

status field

(d) remapping the forwarding pointer for TVA objects

object data

forwarding pointer

(e) eliminating the status field for TVA objects

object data

Figure 4.1: The Java (non-array) object models studied in this chapter.

4.2 The 64-bit Java object model

The object model is a key part in the implementation of an object-
oriented language and determines how an object is represented in
memory. A key property of object-oriented languages is that objects
have a run time type. Virtual method calls allow for selecting the ap-
propriate method at run time depending on the run time type of the
object. The run time type identifier for an object is typically a pointer
to a virtual method table.

An object in an object-oriented language consists of the object data
fields along with a header. For clarity, we refer to an object as the object
data plus the object header throughout this thesis; the object data refers
to the data fields only. The object header contains a number of fields

86 Selective Typed Virtual Addressing

for bookkeeping purposes. The object header fields and their layout
depend on the programming language, the virtual machine, etc. In
this work we assume Java objects and we use the Jikes RVM in our
experiments. The object model that we present below is for the 64-
bit Jikes RVM, however, a similar structure will be observed in other
virtual machines, or other object-oriented languages. An object header
typically contains the following information, see Figure 4.1(a):

• The first field is the TIB pointer field, i.e., a pointer to the Type In-
formation Block (TIB). The TIB holds information that applies to
all objects of the same type. In the Jikes RVM, the TIB is a structure
that contains the virtual method table, i.e., a pointer to an object
that represents the object type and a number of other pointers for
facilitating interface invocation and dynamic type checking. The
TIB pointer is 8 bytes in size on a 64-bit platform.

• The second field is the status field. The status field can be further
detailed into a number of elements.

– The first element in the status field is the hash code. Each Java
object has a hash code that remains constant throughout the
program execution. Depending on the chosen implementa-
tion in the Jikes RVM, the hash code can be a 10-bit hash field
in the header or a 2-bit hash state.

– The second element in the status field is the lock element
which determines whether the object is being locked. All
objects contain such a lock element. A thin lock field [9] in
the Jikes RVM is 20 bits in size.

– The third element is related to garbage collection. This could
be a single bit that is used for marking the object during a
mark-and-sweep garbage collection. Or this could be a num-
ber of bits (typically two) for a copying or reference counting
garbage collector.

• The third field is the forwarding pointer. The forwarding pointer is
used for keeping track of objects during generational or copying
garbage collection and is 8 bytes in size. The forwarding pointer
overwrites the hash code and lock element in the status field, but
not the garbage collection bits. The garbage collection bits are
chosen as the least significant bits so that they do not get over-
written by the forwarding pointer (due to 8-byte alignment of the
forwarding pointer).

4.3 Eliminating the header in the 64-bit Java object model 87

So far, we considered non-array objects. For array objects there is
an additional 4-byte length field that needs to be added to the object
header. As a result, for array objects the header field requires at least
20 bytes. But given the fact that alignment usually requires objects to
start on 8-byte boundaries on a 64-bit platform, the array object header
typically uses 24 bytes of storage.

4.3 Eliminating the header in the 64-bit Java object
model

We eliminate the header of 64-bit Java objects in a number of steps. Our
initial Java object model is the 16-byte header as shown in Figure 4.1(a)
— we limit the discussion to non-array objects for now, and will discuss
array objects later.

• We first reduce the TIB pointer size from 64-bit to 32-bit through
pointer compression as proposed by [3]. This is shown in Fig-
ure 4.1(b). This object model implies that all the TIBs are allocated
in a contiguous virtual address space that is small enough to be
accessed using a 32-bit offset. The TIB pointer is then computed
by adding the 32-bit TIB pointer stored in the object header to a
64-bit TIB base pointer. TIB pointer compression is applied to all
objects.

• As a second step we apply Selective Typed Virtual Addressing
(STVA) to completely eliminate the TIB pointer from the object
header, see Figure 4.1(c). STVA applies Typed Virtual Addressing
(TVA) to a selected number of object types.

• In the third step, we map the forwarding pointer in a differ-
ent way so that the forwarding pointer overlaps with the 4-byte
status field and the first four bytes of the object data, see Fig-
ure 4.1(d). Note that the object data is already copied during
garbage collection whenever the forwarding pointer gets used.
This allows us to freely overwrite the first four bytes of the object
data1. This layout requires to move the GC status bits from the
least significant status field bit positions to the most significant

1Obviously, this cannot be done for data structures belonging to the garbage collec-
tor itself—this is only of concern whenever the garbage collector (or the entire VM) is
written in Java.

88 Selective Typed Virtual Addressing

status field bit positions so that the GC bits are not overwritten
by the forwarding pointer.

• As a final step, we remove the status field from the object header,
see Figure 4.1(e). As discussed in section 4.2, the status field con-
tains multiple components. The removal of each of these com-
ponents will be explained in detail in section 4.5.1. The end re-
sult is that the object header is completely eliminated for all TVA-
enabled objects.

In the following sections, we discuss STVA in detail since it is the
key enabler for completely eliminating the object header.

4.4 TIB pointer compression

In addition to removing the header for all TVA-enabled objects, we also
compress the 64-bit TIB pointers to 32-bit pointers for all TVA-disabled
objects. Previous work [3] proposed pointer compression to all point-
ers (not just TIB pointers) in a 64-bit VM implementation. However,
the limitation of compressing all pointers is that applications that re-
quire more than a 32-bit virtual address space cannot benefit from this
pointer compression approach. Applying pointer compression to TIB
pointers only does not suffer from this limitation; the case where more
than a 32-bit virtual address space is needed for type information only
is highly unlikely. Pointer compression inside the object data was stud-
ied in more detail in chapter 3. Here we will only consider the object
header.

4.5 Selective Typed Virtual Addressing

This section explains the idea and the implementation details behind
Selective Typed Virtual Addressing (STVA) for 64-bit Java objects. We
first detail on the TVA 64-bit Java non-array object model followed by
the TVA array object model. We then go through a number of virtual
machine implementation issues that follow from the TVA object mod-
els.

4.5 Selective Typed Virtual Addressing 89

4.5.1 The non-array TVA object model

We consider two TVA Java object models: the small-header object
model and the no-header object model.

The small-header object model

The small-header TVA object model eliminates the TIB pointer from the
object header and remaps the forwarding pointer to overwrite the 4-
byte status field and the first 4 bytes of the object data, see Figure 4.1(d).
This implies that the minimum size occupied by a TVA-enabled object
is 8 bytes: 4 bytes of object header and 4 bytes of data. We will refer
to the obtained object model in Figure 4.1(d) as the small-header object
model throughout this chapter.

The no-header object model

The no-header object model extends on the small-header object model
by eliminating the 4-byte status field, see Figure 4.1(e). This requires
that we eliminate the lock, the hash and the GC elements, as well as the
forwarding pointer from the object header. This is done as follows.

• We eliminate the GC elements from the object header by storing
the GC elements in what we call a side array. We implement a
side array every two pages on which TVA-enabled objects are al-
located and allocate one byte per object in the side array. Note
that depending on the garbage collector only one or two bits are
used from the allocated byte in the side array. The position in
the side array for a given object is determined by the position of
the object on the memory page. Note that this can be done be-
cause all objects in a TVA region are of the same type and thus
are equally sized. By consequence, during garbage collection, we
do not adjust the GC elements in the header for TVA-enabled ob-
jects but we adjust the GC elements in the side arrays. The index
in the side array is computed from the object’s virtual address
which incurs an additional overhead compared to the default and
small-header object models.

• Dealing with the lock element in the no-header format is done
along what is described in [8]. Objects from a class that contains
at least one synchronized method (or at least one of the class

90 Selective Typed Virtual Addressing

methods contains the synchronized(this) statement) have
an additional implicit field member that contains the lock. This
is a 4-byte field in our implementation. This implicit lock field
scheme cannot be applied to arrays or in cases where a lock is
taken on the general object type. In these cases or in case a lock
needs to be taken on a different object type, a new lock object is
then created in the lock nursery [8].

• The hash elements in the Java object model can take three states:
unhashed, hashed and hashed-and-moved [4, 8]. For the first two
states, unhashed and hashed, the hash code is calculated from
the object’s address. In case the garbage collector moves an ob-
ject that is in the hashed state, its state then changes to hashed-and-
moved and the hash code is attached to the end of the new version
of the object. In the traditional Java object model as well as in the
small-header object model, these three states are encoded using
two hash bits. In the no-header object model on the other hand,
we store only one bit per TVA-enabled object in the side arrays
just described. The hash bit in the side array is zero if the object is
unhashed; the hash bit in the side array is set if the object is hashed.
When a hashed object is moved by the garbage collector, we TVA-
disable the object, i.e., the object moves from the TVA space to the
non-TVA space.

• The forwarding pointer, whenever needed during garbage collec-
tion, overwrites the first 8 bytes of the object data. This implies
that the minimum size for a TVA-enabled object is 8 bytes — this
is the same as for the small-header object model.

The advantage of using a side array over a small header is twofold.
First, a side array consumes less memory, since a header needs to be
minimal 4 bytes long due to alignment issues. Second, accesses to the
meta data stored in the header or side array and accesses to the ac-
tual object data are often uncorrelated. In particular, during garbage
collection we often only require the meta data, during program execu-
tion mostly object data is accessed. So by separating these two parts
physically in memory, locality of either parts might improve. The dis-
advantage of a side array over a small header, is that it takes an extra
computation to access the side array.

4.5 Selective Typed Virtual Addressing 91

4.5.2 The array TVA object model

The array TVA object model more or less follows the same lines as the
non-array TVA object model, however, there are some peculiarities in
relation to memory management. In case of a copying collector, the
memory allocator typically uses a bump pointer to allocate new objects,
i.e., the bump pointer is incremented by the size of the newly allocated
object. In case of a mark-sweep collector, at least in the Jikes RVM,
the memory allocator works with fixed-sized cells. The choice of the
memory management method affects the array TVA object model.

The small-header object model

The small-header TVA array object model has an 8-byte header con-
sisting of a 4-byte status field and a 4-byte array length field. We can
select all arrays of all lengths to be TVA-enabled for a copying collec-
tor. Although selecting all arrays is also possible in case of a mark-
sweep collector, this would result in a considerable run time overhead
and memory fragmentation because of the fixed-sized cells in the Jikes
RVM implementation. Therefore, in case of a mark-sweep collector, we
only select a single array length to be TVA-enabled2.

The no-header object model

The no-header TVA array object model eliminates the same header
fields as the no-header TVA non-array object model, hence only the 4-
byte length remains in the header. In order not to incur a large run time
overhead, we select at most one array length on which to apply TVA
for both the copying and the mark-sweep collectors. The underlying
reason is that a single array length eases accessing the side arrays; the
side array index can be computed directly from the object’s address.

4.5.3 Implications of the TVA object model

We now focus on a number of implications because of the TVA Java
object model. Although some of these issues are geared towards our
implementation in the Jikes RVM on an IBM AIX system, similar issues
will need to be taken care of on other systems.

2We only selected a single array length, although it is possible to experiment with a
small number of array lengths as well.

92 Selective Typed Virtual Addressing

TIB offset
(bits)t

object offset
(bits)58-t

STVA bit

AIX
(5 bits)

object offset
(58 bits)

STVA bit

AIX
(5 bits)

0

1

(a)

(b)

63 0

63 0

Figure 4.2: The 64-bit virtual address for a TVA-disabled object (a) and for a
TVA-enabled object (b).

Memory allocation

The general idea behind Typed Virtual Addressing is to devote seg-
ments (large contiguous chunks of memory) in the virtual address
space to specific object types. This means that the object type is implic-
itly encoded in the object’s virtual address. Object types that fall under
TVA are then allocated in particular segments of the virtual address
space. For example, all objects of type A get allocated in the virtual
address space segment with addresses ranging from address 0x04FF
FFFE 0000 0000 to address 0x04FF FFFF FFFF FFFF; all objects
of type B then get allocated in the virtual address space segment in the
range 0x0500 0000 0000 0000 to 0x0500 0003 FFFF FFFF.

The virtual memory address of a Java object in an STVA-enabled
VM implementation is depicted in Figure 4.2. The five most significant
bits are AIX-reserved bits and should be set to zero. The following bit
(bit 58) is the STVA bit that determines whether the given object falls
under TVA. This divides the virtual address space in two regions, the
TVA-disabled region and the TVA-enabled region. Note that although
we consume half of the virtual address range for TVA-enabled object
types, we leave 258 bytes for TVA-disabled object types. If bit 58 is
set, then the object is a TVA-enabled object, i.e., the object follows the
TVA Java object model detailed in section 4.5.1. If bit 58 is not set (the
object type is a TVA-disabled type), the object falls under the default
Java object model from Figure 4.1(a). In the latter case (a TVA-disabled
object type), the least significant 58 bits determine the object’s offset, see
Figure 4.2(a). In case of a TVA-enabled object, see Figure 4.2(b), the next

4.5 Selective Typed Virtual Addressing 93

t bits of the virtual address constitute the TIB offset (t equals 25 in our
implementation). The TIB offset determines in what memory segment
the objects of the given type reside. By doing so, an object type specific
memory segment is a contiguous chunk of memory of size 258−t bytes;
this is 8 GB in our implementation. The least (58− t) significant bits are
the object offset bits (33 bits in our implementation). These bits indicate
the object’s offset within its type specific segment.

In order to support this memory layout, we obviously need to mod-
ify the memory allocator to support TVA. We now need to keep track
of multiple allocation pointers that point to the free space in the ob-
ject type specific segments in order to know where to allocate the next
object of the given object type. The selection of an individual alloca-
tion pointer requires an extra indirection for TVA-enabled object types.
We eliminate this additional indirection by refactoring the code, i.e., by
inlining the allocation pointer array.

Another peculiarity related to the no-header TVA memory alloca-
tors is that we know that all objects within a type-specific segment have
equal sizes. With this knowledge we can layout fixed sized cells into
the TVA-enabled regions, prior to allocation. This layout will include
proper alignment, so that we are able to remove the alignment burden
from the memory allocator. If it is known that the specific object type
does not require 8-byte alignment (i.e., no references in its data fields),
this type can be pre-aligned on a 4-byte multiple in the TVA-enabled
region. Hence this pre-alignment potentially reduces the extra inter-
object alignment overhead on 64-bit versus 32-bit mode (reason (iv) in
this chapter’s introduction).

Yet another peculiarity relates to copying collectors. A traditional
copying collector needs to figure out the size of the object to be allo-
cated. This is done by accessing the TIB, reading the pointer that points
to the object that represents its class, and retrieving the object size from
the class object. In our TVA-aware copying collector, we keep track of
the object sizes for the various object types in an array structure. Thus,
a single array lookup yields us the object size to be allocated.

TIB access

In an STVA-aware VM implementation, reading the TIB pointer changes
compared to a traditional VM implementation. In a traditional imple-
mentation (without STVA), the TIB pointer is read from the object

94 Selective Typed Virtual Addressing

;; R3 contains the object’s virtual address

tst R3, 0x0400 0000 0000 0000 ;; test bit 58
bre L2 ;; jump to L3 in case bit is not set

L1: ;; TVA-enabled object:
;; mask the TIB offset from the object’s virtual address
rsh R4, R3, (64 - FIXED_BITS - NUM_TIB_BITS)

lsh R4, R4, 3 ;; align offset to 8 bytes
add R4, TIB_BASE, R4 ;; add TIB offset to the base TIB

;; pointer; the constant TIB_BASE equals
;; the real base TIB pointer with bit 58
;; set to zero -- as an optimization, bit
;; 58 is not masked away.

jmp L3

L2: ;;TVA-disabled object: load TIB pointer from the header
ld R4, R3, TIB_OFFSET

L3: ... ;; R4 contains the TIB value

Figure 4.3: Computing an object’s TIB pointer in an STVA-enabled VM imple-
mentation.

header through a load instruction. In an STVA-aware VM implemen-
tation, we make a distinction between a TVA-enabled object and a
TVA-disabled object. This is illustrated in pseudo-code in Figure 4.3.
A TVA-disabled object follows the traditional way of getting to the
TIB pointer. A load instruction reads the TIB pointer from the object
header. For a TVA-enabled object, the TIB pointer is computed from
the object’s virtual address. This is done by masking the TIB offset
from the virtual address and by adding this TIB offset to the TIB base
pointer — all the TIBs from all object types are allocated in a limited
address space starting at the TIB base pointer. The size of the TIB space
is limited to 256 MB in our implementation; this comes from the 25-bit
TIB offset that we use, see Figure 4.2, along with a 3-bit shift left for
8-byte alignment. Note again that this is not a hard limit and can be
easily adjusted by changing the address organization from Figure 4.2
in case a 256 MB TIB space would be too small for a given application
(which is unlikely for contemporary applications).

Due to the conditional jump for determining the TIB pointer, see
Figure 4.3, our STVA-enabled implementation clearly has an overhead

4.5 Selective Typed Virtual Addressing 95

compared to a traditional VM implementation. The single most im-
pediment to implementing STVA more efficiently is the branch that is
conditionally dependent on whether the object is TVA-enabled or TVA-
disabled. Unfortunately, in our PowerPC implementation we were not
able to remove this conditional branch through predication. Neverthe-
less, this could be a viable solution on ISAs that support predication,
for example through the cmov instruction in the Alpha ISA, or through
full predication in the Itanium ISA.

As an optimization to computing the TIB pointer, we limit the fre-
quency of going through the relatively slow TIB access path.3 This is
done by marking the class tree with the TVA-enabled object types. A
subtree is marked in case all types in this subtree are TVA-disabled. The
TIB access then follows the fast TIB access path as in a non STVA-aware
VM.

Since the TIB offset is computed from an object’s virtual address,
the position in memory of the TIB is obviously related to the object type
specific memory segment. We cannot position the TIB independently
from the object type specific memory segment. To address this prob-
lem, we make sure we first allocate the TIB in the TIB space. This will
give us the TIB offset to be used for all objects of the given TVA object
type. Once the type specific memory segment for a TVA object type is
properly initialized, TVA-enabled objects can be allocated in it.

Impact on garbage collection

Implementing TVA obviously also has an impact on garbage collection.
In this section we discuss garbage collection issues under the assump-
tion of a generational garbage collector which is a widely used garbage
collector type. Similar issues will apply to other collectors as well. In
a generational collector, there are two generations, the nursery and the
mature generation. Objects first get allocated in the nursery. When the
nursery fills up, a nursery collection is triggered and reachable objects
are copied to the mature generation. New objects then get allocated
from an empty nursery. This goes on until also the mature generation
fills up. When the mature generation is full, a major heap collection is
triggered.

In the original Jikes RVM implementation with a generational col-
3This is only possible in the offline STVA implementation, see later for a discussion

on the offline STVA implementation.

96 Selective Typed Virtual Addressing

T
V

A
n
u
rs

e
ry

T
V

A
m

a
tu

re

T
V

A
n
u
rs

e
ry

T
V

A
m

a
tu

re

n
o
n
-T

V
A

n
u
rs

e
ry

n
o
n
-T

V
A

m
a
tu

re

...

memory segment
for TVA-disabled

object types

memory segment
for TVA-enabled

object type A

memory segment
for TVA-enabled

object type B

Figure 4.4: Mapping the nursery and mature spaces in the virtual address
space in a TVA-aware VM.

lector, the nursery and mature generations consist of contiguous spaces.
This means that there is one or two contiguous spaces for the nursery
and mature generations. In an STVA-aware VM implementation, con-
tiguous memory segments are defined for specific object types that
fall under TVA, but the union of all these memory segments is no
longer contiguous. Because the nursery and mature spaces need to fall
within all type-specific memory segments, these spaces can obviously
no longer be contiguous. As such, we end up with non-contiguous
spaces in both the nursery and mature generations. The nursery gen-
eration now consists of a contiguous space for TVA-disabled object
types, and a non-contiguous space for TVA-enabled object types. The
mature generation is constructed in a similar way. This is illustrated in
Figure 4.4.

Jikes RVM however, works with contiguous spaces. Jikes RVM
identifies a space by a SpaceDescriptor, a numerical value encoding the
nature, size and starting address of the space. In order to be able to
use non-contiguous spaces in our TVA-aware VM, we extended Jikes
RVM’s implementation of a space. In our system, we identify a space
by the combination of its starting address and its mask. If we represent
a space i by Si, its mask by Mi, and its starting address as Bi, and if we
represent an address by A, then the following is true by definition:

Bi&Mi = Bi

A ∈ Si ⇔ A&Mi = Bi

with & being the bitwise ‘and’ operator. A mask M consists of one or
more series of ‘1’s and one or more series of ‘0’s; the following bit
patterns are examples:

‘00..011..100..0′, ‘11..100..0′

4.6 STVA type selection 97

A contiguous space is just a special case in which the mask has a leading
series of ‘1’s followed by a trailing series of ‘0’s, i.e., the mask looks
as follows:

‘11..100..0′

A non-contiguous space has a mask of any other form that does not
consist of a leading series of ‘1’s followed by a trailing series of ‘0’s,
for example:

‘00..011..100..0′

‘11..100..011.100..0′

‘00..011..100..011..100..0′

We also have a simple rule to check if two spaces are non-overlapping.
This is needed when allocating spaces:

¬(A ∈ Si ∧ A ∈ Sj) ⇔ (Mi&Mj 6= 0) ∧ ((Bj&Mi) 6= (Bi&Mj)),∀i, j

Note that the mask is part of the definition of a space. As such, each
space has a dedicated mask that does not need to be computed at run
time; however, the mask is part of the TVA-aware VM implementation.

4.6 STVA type selection

As mentioned before, we do not apply TVA to all objects. Object types
that are allocated infrequently would occupy memory pages that are
only sparsely filled with objects. This would result in too much mem-
ory fragmentation. To limit memory fragmentation we need to limit the
number of object types on to which TVA is applied. We believe that this
is a key difference to prior work on typed virtual memory addressing.
Prior work applied TVA to all object types. We propose to limit TVA to
only a subset of well chosen object types in order to control the amount
of memory fragmentation while pertaining the benefits of typed virtual
addressing. We now explore two approaches to selecting object types
on which to apply TVA, namely an offline selection strategy and an
online selection strategy.

4.6.1 Offline STVA type selection

In our offline STVA implementation, we apply the following strategy
for making an object type TVA-enabled. In order to select an object type
to fall under TVA, the object type needs to apply to one of the following

98 Selective Typed Virtual Addressing

two criteria. First, an object type needs to be allocated frequently, and
second, its instances are preferably long-lived. In our first criterion we
make a selection of object types of which a sufficient amount of objects
is allocated. Through a profiling run of the application, we collect how
many object allocations are done for each object type, and what the
object size is for each object type. Once this information is collected, we
compute for each type the total number of allocated header bytes (16
bytes per instance), and we compute the percentage volume of these
header bytes in relation to the total number of allocated bytes. We then
select object types for which this percentage volume exceeds a given
memory reduction threshold (MRT).

In our second criterion we limit the scope to long-lived objects be-
cause long-lived objects are likely to survive garbage collections. These
objects will thus remain on the heap for a fairly long period of time.
Giving preference to long-lived objects under TVA maximizes the po-
tential memory savings. In order to classify object types into long-lived
and short-lived object types, we take a pragmatic approach and inspect
a profile run of the application for objects that survive garbage collec-
tions. In these runs we use a fairly large heap in order to identify truly
long-lived objects. For those objects that survive a garbage collection,
we again compute the percentage volume of the header bytes in re-
lation to the total number of bytes surviving the collection. We then
retain object types for which this percentage volume exceeds the long-
lived memory reduction threshold (LLMRT).

4.6.2 Online STVA type selection

An important disadvantage of the offline STVA type selection method
is that a profiling run is needed for determining on what object types to
apply TVA. This is not practical in the context of a Virtual Execution En-
vironment. Therefore we now propose on online STVA type selection
mechanism. The mechanism that we propose is a simple but effective
approach. When re-compiling a method in the VM, we TVA-enable all
the object types that are allocated within these re-compiled methods.
The underlying idea is that frequently executed methods, so called hot
methods, are scheduled for re-compilation and re-optimization; if these
methods allocate objects, they will allocate lots of these objects. In other
words, the types of the objects allocated in methods that are scheduled
for optimization, are likely to be frequently allocated object types. By
consequence, these object types are good candidates for STVA selection.

4.6 STVA type selection 99

Note that the online STVA type selection method is different from
the offline approach. The reason is that a direct translation of the of-
fline approach into an online approach would be fairly complex. This
translation would require that we keep track of the number of bytes
allocated for each type at run time. In addition, we have to determine
when to convert an object type from TVA-disabled to TVA-enabled. And
once we have determined when to convert an object type, we then have
to recompile the methods allocating this object type. This is a fairly
complex mechanism. Instead we have chosen for a much simpler alter-
native that triggers TVA for objects allocated in recompiled methods;
this is motivated by the fact that methods need to be recompiled any-
way in order to enable TVA for objects allocated in these methods. So,
as for the when part, we choose recompilation time4 for triggering TVA,
and for the which object types part, instead of determining frequently
used object types, we simply select all objects allocated in hot methods.
This simple approach showed to perform well in practice, as we will
demonstrate in the evaluation section of this chapter.

In case of the no-header object model, we do not select array types
online because it is difficult for an online mechanism to select what
array length to support under TVA. Also, in order to limit the total
number of STVA types, we limit the number of TVA-enabled object
types to a maximum which is 85 types in our implementation (which is
about the maximum observed through our offline STVA type selection
method even under the lowest MRT thresholds, as shown in the evalu-
ation section). For the benchmarks that we ran, only javac and pmd ran
against this limit.

Note that some object types are selected when building the TVA-
aware VM. These are the so called bootlist TVA-enabled object types.
In other words, all object types from this bootlist are TVA-enabled for
all applications running on this VM. The bootlist TVA-enabled object
types were chosen out of the object types as selected through the of-
fline STVA type selection method from the previous subsection. The
bootlist contains these (VM and library) object types that are frequently
allocated across various application runs.

4The optimizing compiler in Jikes RVM uses sampling to detect recompilation can-
didates. In all of our measurements, we let the adaptive system of Jikes take the re-
compilation decisions, without enforcing certain methods being opt-recompiled. We
acknowledge that there might be small fluctuations in selected methods between dif-
ferent runs.

100 Selective Typed Virtual Addressing

4.7 Experimental setup

Our experimental setup is the same as for the previous chapters. We
use the Jikes RVM version 2.3.5, with the GenCopy and GenMS garbage
collectors5. The hardware platform on which we have done our exper-
iments is the IBM POWER4. The benchmarks are taken from a variety
of suites (SPECjvm98, SPECjbb2000, DaCapo and the Java Grande Fo-
rum benchmarks). In order to be able to draw statistically valid con-
clusions, we employ statistics to determine 95% confidence intervals
from 15 measurement runs. These statistics will help us in determining
whether the reduced header object models result in statistically signif-
icant or statistically insignificant performance gains or degradations.
The experimental setup is described in detail in section 2.2.

4.8 Evaluation

We now evaluate the reduced header Java object models using the ex-
perimental setup detailed in the previous section.

4.8.1 Feasibility study of STVA

We first inspect the potential of Selective Typed Virtual Addressing.
Since for small objects, the object header (fixed size for all objects) oc-
cupies a big part of the total object size, we already have an indication
that removing the object header from these objects has a big potential.
Indeed, in chapter 2 we already quantified the increase in object size,
of the transition from 32-bit mode to 64-bit mode, for small objects. On
average, the object’s size increases with about 20 bytes (see Table 2.8), of
which 16 comes from the header increase. So applying STVA to these
(small) objects, could decrease their size even further than the 32-bit
object size. In order to verify and quantify this potential, we now char-
acterize the profile input. As mentioned in section 4.6, we determine
whether an object type is TVA-enabled or TVA-disabled based on two
criteria for offline STVA type selection. First, a type needs to be allo-
cated frequently, i.e., the potential memory savings for the given type
need to exceed the memory reduction threshold (MRT). Or, second,

5The STVA technique can also be implemented for all other garbage collection
schemes. We limit our implementation to the two best performing garbage collection
algorithms available in Jikes RVM 2.3.5.

4.8 Evaluation 101

0

20

40

60

80

100
d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
S

o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

p
s
e
u
d
o
jb

b

A
V

G

MRT = 0.05%

MRT = 0.1%; LLMRT = 0.1%

MRT = 0.1%; LLMRT = 0.5%

MRT = 0.1%

MRT = 0.2%

MRT = 0.5%

MRT = 1%

n
o
.
o
f
s
e
le

c
te

d
 o

b
je

c
t
ty

p
e
s

0%

20%

40%

60%

80%

100%

d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
S

o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

p
s
e
u
d
o
jb

b

A
V

G

MRT = 0.05%

MRT = 0.1%; LLMRT = 0.1%

MRT = 0.1%; LLMRT = 0.5%

MRT = 0.1%

MRT = 0.2%

MRT = 0.5%

MRT = 1%

c
o

v
e

ra
g

e
 (

%
 o

f
a

ll
o

b
je

c
ts

)

0%

10%

20%

30%

40%

50%

d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
S

o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

p
s
e
u
d
o
jb

b

A
V

G

MRT = 0.05%

MRT = 0.1%; LLMRT = 0.1%

MRT = 0.1%; LLMRT = 0.5%

MRT = 0.1%

MRT = 0.2%

MRT = 0.5%

MRT = 1%

o
b

je
c
t

h
e

a
d

e
rs

 (
%

 o
f

to
ta

l
b

y
te

s
)

Figure 4.5: The top graph shows the number of selected object types as a
function of the MRT and LLMRT thresholds. The middle graph shows the
coverage by the selected objects as a percentage of the total number of objects.
The bottom graph shows the number of allocated bytes in the headers of the
selected object types as a percentage of the total number of allocated bytes.

the potential memory savings for the given type in case it is a long-
lived type need to exceed the long-lived memory reduction threshold
(LLMRT). We now study the sensitivity of the number of selected ob-
ject types and the potential memory savings to the chosen MRT and
LLMRT thresholds. This is shown in Figure 4.5 by varying MRT from
0.05% up to 1% and by varying LLMRT over three values 0.1%, 0.5%
and infinite. Note that the data in Figure 4.5 is for the profile input, and
only gives a rough indication of what is to be expected for the reference
input. In addition, Figure 4.5 only contains data concerning the nursery
and mature generations. The data allocated in the Large Object Space
(LOS) — the LOS is the space in which all large objects get allocated —

102 Selective Typed Virtual Addressing

is removed from this graph for clarity; STVA is expected to give only a
very marginal benefit for large objects.

The top graph in Figure 4.5 shows the number of selected object
types. As expected, we observe that the number of selected types de-
creases with increasing MRT and LLMRT. For example, an MRT of
0.05% selects on average 55.6 types whereas an MRT of 0.2% selects
on average 20 types. The number of selected types varies across the
benchmarks; for example for a 0.2% MRT, the number of selected ob-
jects varies from 8 up to 34. Note that this is only a small fraction of
the total number of object types. The total number of types allocated at
least once ranges from 450 to 2800 across the various benchmarks. The
middle graph in Figure 4.5 shows the coverage by the selected object
types, i.e., the fraction of the total number of allocated objects that is ac-
counted for by the selected object types. We observe that selecting only
a small number of types results in a fairly large coverage. A 0.05% MRT
yields an average coverage of 78.3%; a 0.2% MRT yields an average cov-
erage of 65.8%. The bottom graph in Figure 4.5 shows the percentage
of the total number of allocated bytes due to headers of the selected ob-
ject types. This percentage shows the potential memory savings in case
the complete header would be removed from the selected objects for
the profile input. For example, a 0.05% MRT potentially yields an av-
erage 23.5% potential reduction in allocated bytes, with a peak for pmd
of 46.7%. A 0.2% MRT yields an average potential reduction of 20%.

4.8.2 Memory usage and impact on GC

Figures 4.6 and 4.7 show the reduction in allocated bytes for the of-
fline and online header reduction techniques, respectively. For the of-
fline technique, these numbers are for the reference input from a cross-
validation setup. We observe an average reduction in allocated bytes of
15%. For some benchmarks we even observe a reduction in allocated
bytes of 26% (antlr), 28% (search) and 35% (db). There are a number of
important notes that we would like to make:

• Our first note relates to the data presented in Figure 4.6 compared
to the data presented in Figure 4.5 for the feasibility study. The
data in Figure 4.6 is for the reference runs whereas Figure 4.5 is
for the profile input. Note that for some benchmarks such as db
we obtain larger memory savings with the reference input than
what we expected from the profile input, compare Figure 4.6 with

4.8 Evaluation 103

0%

5%

10%

15%

20%

25%

30%

35%
d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
s
o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

p
s
e
u
d
o
jb

b

A
V

G

GenCopy, small header GenCopy, no header GenMS, small header GenMS, no header

Figure 4.6: Reduction in the number of allocated bytes for the offline header
reduction techniques with MRT and LLMRT set to 0.1%.

0%

5%

10%

15%

20%

25%

30%

35%

d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
s
o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

p
s
e
u
d
o
jb

b

A
V

G

GenCopy, small header GenCopy, no header GenMS, small header GenMS, no header

Figure 4.7: Reduction in the number of allocated bytes for the online header
reduction techniques.

Figure 4.5. This is explained by the fact that the reference input
spends more time in the application than the profile input does.
And since the VM objects tend to be larger than application ob-
jects, it is to be understood that the memory savings are larger for
the reference input than for the profile input.

• A second note we would like to make is that some benchmarks,
such as some of the JGF benchmarks, have a fairly low reduction
in allocated bytes. The reason is that these benchmarks allocate
long arrays — reducing the header size thus has a limited effect
on the overall memory reduction. In addition, the data in Fig-
ure 4.5 shows potential memory reductions in the nursery and
mature generations only, no data is included concerning the large

104 Selective Typed Virtual Addressing

benchmark offline online in common
db 35 38 35
jack 37 43 36
javac 56 85 48
jess 41 44 38
antlr 41 60 38
fop 41 35 33
hsqldb 36 53 36
pmd 59 85 42
crypt 33 34 32
heapSort 34 33 32
lufact 34 32 32
moldyn 35 33 32
search 34 33 32
sor 33 32 32
sparse 33 33 32
pseudojbb 44 57 39

Table 4.1: Number of TVA-enabled object types for offline STVA type selec-
tion, online STVA type selection and the number of object types in common be-
tween offline and online type selection. This includes 32 bootlist TVA-enabled
object types.

object space (LOS). The data in Figures 4.6 and 4.7 show the effec-
tive memory reduction.

• A third note is that for some benchmarks, the no-header object
model allocates more bytes than the small-header object model.
There are two reasons for this. First, in case of a copying collector,
the small-header object model is applied to arrays of all lengths
whereas the no-header object model is only applied to arrays of a
single length as discussed in section 4.5.2. Some benchmarks suf-
fer from the fact that TVA cannot be applied to all array sizes. Sec-
ond, when a TVA-enabled object, on which a hashcode is taken, is
moved in the no-header object model, the object is TVA-disabled
which causes the object to grow in size.

• Finally, the reduction in allocated bytes is comparable between
the offline and online header reduction techniques, in spite of
the different approaches taken for selecting TVA-enabled object
types, as discussed in section 4.6. The reason is that the offline and
online header reduction techniques have various selected TVA-
enabled object types in common. This is quantified in Table 4.1
where the number of TVA-enabled types are shown for offline
and online type selection as well as the number of object types in
common between offline and online type selection.

4.8 Evaluation 105

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
s
o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

p
s
e
u
d
o
jb

b

A
V

G

STVA part

uncompensated

Figure 4.8: Memory usage overhead of 64-bit mode compared to 32-bit mode
and the part thereof that is reduced through STVA under the online no-header
model.

0%

5%

10%

15%

20%

25%

30%

35%

d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
s
o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

p
s
e
u
d
o
jb

b

A
V

G

TIB reduction

STVA GenMS no-header

Figure 4.9: The reduction in allocated bytes partitioned by TIB pointer com-
pression and online no-header STVA for the GenMS collector.

To validate the effect of STVA on the reduction of the memory us-
age overhead introduced by 64-bit mode, we present in Figure 4.8 the
increase in the number of bytes allocated when going from 32-bit mode
to 64-bit mode and we mark the part that STVA under the online no-
header model reduces thereof. On average, more than half of the mem-
ory usage overhead is reduced and even a reduction of up to 100% is
seen for antlr.

Reduction through TIB pointer compression versus STVA

Figure 4.9 shows the reduction in allocated bytes partitioned by (i) the
TIB pointer compression technique and (ii) the no-header STVA object
model. We observe that approximately half the memory savings comes

106 Selective Typed Virtual Addressing

0%

5%

10%

15%

20%

25%

30%

35%

d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
s
o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

p
s
e
u
d
o
jb

b

A
V

G

JikesRVM

Application

Figure 4.10: Accounting the overall memory reduction to application and VM
objects; this graph assumes the GenMS garbage collector and the online no-
header STVA object model.

from TIB pointer compression that is applied to all objects; the other
half comes from the no-header STVA object model that can be applied
only to TVA-enabled objects.

Reduction in application objects versus VM objects

As mentioned in previous chapters, Jikes RVM is a VM that is written
in Java. As a consequence, STVA also applies to objects allocated by the
VM and thus, the results presented account for applying STVA to both
VM objects and application objects. Other VMs that are not written in
Java on the other hand, may not get similar benefits from STVA as what
is presented here. In order to quantify the impact of our experimental
setup using Jikes RVM, we classify the objects as VM and application
objects and then compute the amount of memory reduction for VM and
application objects separately. Classifying objects as VM and applica-
tion objects is done by the technique described in section 2.4.1.

Figure 4.10 quantifies the amount of memory reduction for the ap-
plication objects and VM objects. The important observation here is
that the most significant part of the overall 15.2% memory reduction
is obtained through the application objects (11.6% on average); about
3.6% is accounted for by VM objects. These results show that other
VMs that are not written in Java can also significantly benefit from im-
plementing STVA for reducing overall memory usage.

4.8 Evaluation 107

allocations (x100 000)

antlr genMS

64-bit

javac genMS

64-bit

pseudojbb genMS

64-bit

javac genMS

STVA

antlr genMS

STVA

pseudojbb genMS

STVA

h
e

a
p

 s
iz

e
 (

4
 K

B
 p

a
g

e
s
)

0

20000

40000

60000

80000

100000

120000

140000

0 200 400 600 800 1000 12000 200 400 600 800 1000 1200
0

20000

40000

60000

80000

100000

120000

140000

0 50 100 150 200 250 300 0 50 100 150 200 250 300
0

5000

10000

15000

20000

25000

30000

35000

40000

0

5000

10000

15000

20000

25000

30000

35000

40000

0 20 40 60 80 100 120 140 160 1800 20 40 60 80 100 120 140 160 180
0

5000

10000

15000

20000

25000

30000

0

5000

10000

15000

20000

25000

30000

Figure 4.11: Heap growth for GenMS collector as a function of time (measured
per allocation site) for antlr (top), javac (middle) and pseudojbb (bottom). The
graphs on the left show the results for a traditional VM; the graphs on the
right show the results for a STVA-aware VM.

Reduction in in-use memory pages

Figure 4.11 shows the heap size counted as the number of pages in use
on the vertical axis as a function the number of allocations on the hor-
izontal axis for antlr, javac and pseudojbb, respectively. The curves in
these graphs increase as memory gets allocated until a garbage collec-
tion is triggered after which the number of used pages drops to the
amount of reachable data at that point. This explains the shape of these

108 Selective Typed Virtual Addressing

0 200 400 600 800 1000 1200

h
e

a
p

 s
iz

e
 (

4
 K

B
 p

a
g

e
s
)

allocations (x100 000)

0 50 100 150 200 250 300

javac

pseudojbb

0

1000

2000

3000

4000

5000

0 20 40 60 80 100 120 140 160 180

antlr

5000

3000

2000

1000

0

4000

6000

7000

0

10000

20000

30000

40000

50000
STVA64-bit32-bit

STVA64-bit32-bit STVA64-bit32-bit

Figure 4.12: Maximum reachable bytes (measured in 4KB pages) as a function
of time (measured per allocation site) for three benchmarks, antlr (top left),
javac (top right), pseudojbb (bottom) for 32-bit and 64-bit processing and for
STVA under the online no-header model.

graphs. There are two important observations to be made from these
graphs. First, since STVA reduces the amount of allocated bytes per al-
location, garbage collections get delayed — the STVA curve is shifted
to the right compared to the original Jikes RVM curve. In other words,
fewer garbage collections are required. Second, when garbage is col-
lected, the number of pages in use for STVA can drop below the num-
ber of pages in use for the original Jikes RVM. The reason is that the
amount of reachable bytes is smaller under STVA because of the space-
efficient STVA object model. If we compare the graphs for STVA with
the graphs in chapter 2 (Figure 2.2), we see that the shape of the graph
shifts back towards the shape it has on the 32-bit platform. This of
course is the behavior we expect, since the original shift towards the
64-bit graphs was caused by the increased memory usage and the goal
of STVA is to reduce memory usage again.

4.8 Evaluation 109

Reduction in maximum reachable bytes

Figure 4.12 shows the maximum reachable bytes (in pages) as a func-
tion of time (measured in the number of allocations) on the horizontal
axis for antlr, javac and pseudojbb, respectively. We start with the 32-bit
and 64-bit graphs from Figure 2.4, and add now curves for the maxi-
mum reachable bytes for STVA under the online no-header model. We
observe a clear reduction in the maximum reachable bytes for STVA
compared to the 64-bit base case for all three benchmarks: between 5%
and 7% for pseudojbb, more than 7% for antlr and more than 10% for
javac. These reductions are less than the reduction in total allocated
bytes (Figure 4.7), so we can conclude for these three benchmarks, that
although the STVA technique also significantly reduces the memory
overhead of long-lived objects, it primarily works on the objects with
shorter lifetimes.

Impact on garbage collection

Tables 4.2 and 4.3 give an overview of the actual number of garbage
collections performed. If we compare the number of GCs of STVA to
the number of GCs in the base case, we observe an overall decrease of
the number of collections. On average 18.9% and 16.9% fewer collec-
tions are performed for minor and major collections, respectively. This
reduction comes from the reduced number of pages in use as discussed
above. Figure 4.13 shows the speedup of the garbage collector for the
online and offline configurations. For one configuration, the GenCopy
no-header configuration, we observe a general slowdown in GC time
(15.9%). Most benchmarks show a (small) speedup in total garbage col-
lection time for the small-header configuration. The highest speedup
is 132% for jack. The reason why the general significant speedup of
the total garbage collection time is small, while there is a significant re-
duction in number of GCs, is that extra work needs to be done during
each garbage collection to determine which object model applies to a
scanned object and to access the side arrays for the no-header configu-
rations.

4.8.3 Performance

Figures 4.14 and 4.15 show the speedup in terms of overall performance
for the offline and online reduced header object models, respectively.

110 Selective Typed Virtual Addressing

Table 4.2: Number of minor and major GCs under the GenMS collection
scheme for the base 64-bit VM and for the small header and the no-header
STVA-aware VMs.

minor GCs major GCs
Benchmark base small hdr no hdr base small hdr no hdr
db 62.7 31.8 31.4 2.0 2.0 2.0
jack 184.0 91.1 93.4 2.0 0.0 0.1
javac 120.7 115.9 117.1 3.5 3.0 3.0
jess 75.9 55.3 50.7 0.0 0.0 0.0
antlr 106.7 90.6 89.1 5.0 5.0 4.0
fop 25.3 13.1 13.6 0.5 0.0 0.0
hsqldb 58.3 74.3 65.0 5.0 4.0 4.0
pmd 275.6 257.4 218.6 13.0 10.9 9.5
crypt 1.0 1.0 1.0 0.0 0.0 0.0
heapsort 1.0 1.0 1.0 0.0 0.0 0.0
lufact 1.0 1.0 1.0 0.0 0.0 0.0
moldyn 1.0 1.0 1.0 0.0 0.0 0.0
search 18.9 16.0 16.0 0.0 0.0 0.0
sor 1.0 1.0 1.0 0.0 0.0 0.0
sparse 1.0 1.0 1.0 0.0 0.0 0.0
pseudojbb 116.9 100.5 100.0 4.1 4.0 4.0

Table 4.3: Number of minor and major GCs under the GenCopy collection
scheme for the base 64-bit VM and for the small header and the no-header
STVA-aware VMs.

minor GCs major GCs
Benchmark base small hdr no hdr base small hdr no hdr
db 32.8 37.0 33.4 3.0 3.0 3.0
jack 193.9 144.6 129.4 2.1 1.2 1.1
javac 115.1 104.6 104.6 5.9 5.4 5.1
jess 167.5 119.5 153.9 1.0 0.2 0.1
antlr 104.7 66.5 70.5 5.9 5.0 5.0
fop 15.2 13.5 14.8 1.0 1.0 1.0
hsqldb 60.1 54.4 52.9 6.0 5.0 5.0
pmd 214.7 212.1 198.6 13.9 12.7 12.7
crypt 1.0 1.0 1.0 0.0 0.0 0.0
heapsort 1.0 1.0 1.0 0.0 0.0 0.0
lufact 1.0 1.0 1.0 0.0 0.0 0.0
moldyn 1.0 1.0 1.0 0.0 0.0 0.0
search 21.0 14.9 17.4 0.0 0.0 0.0
sor 1.0 1.0 1.0 0.0 0.0 0.0
sparse 1.0 1.0 1.0 0.0 0.0 0.0
pseudojbb 112.2 91.5 95.6 6.2 5.9 6.0

4.8 Evaluation 111

S
p

e
e

d
u

p

d
b

ja
c
k

ja
v
a

c

je
s
s

a
n

tl
r

fo
p

h
s
q

ld
b

p
m

d

c
ry

p
t

h
e

a
p
s
o

rt

lu
fa

c
t

m
o

ld
y
n

s
e

a
rc

h

s
o

r

s
p
a

rs
e

p
s
e

u
d

o
jb

b

A
V

G

-60%
-40%
-20%

0%
20%
40%
60%
80%

100%
120%
140%
160%

GenCopy, small-header GenCopy, no-header GenMS, small-header GenMS, no-header

S
p
e
e
d
u
p

d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
s
o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

p
s
e
u
d
o
jb

b

A
V

G

-60%
-40%
-20%

0%
20%
40%
60%
80%

100%
120%
140%
160%

GenCopy, small-header GenCopy, no-header GenMS, small-header GenMS, no-header

Figure 4.13: Speedup of the garbage collector for offline and online header
reduction.

Data is shown for the small-header and no-header object models as
well as for the GenCopy and the GenMS collectors. These figures show
speedups along with the 95% confidence intervals. The offline reduced
header object models are obtained from a cross-validation setup, i.e.,
we use profile inputs for selecting the TVA-enabled types, and we use
reference inputs for reporting speedups. We set MRT and LLMRT to
0.1% in these experiments based on the results of the feasibility study
obtained in section 4.8.1.

We observe that for some benchmarks, STVA results in a statistically
significant performance degradation. This suggests that the run time
overhead introduced by STVA has a larger impact on overall perfor-
mance than the reduction in memory footprint for these benchmarks.
The performance degradation that we see is generally smaller than 5%,
For a number of benchmarks, we observe larger performance degra-
dations, but for only a few collector and object model configurations,

112 Selective Typed Virtual Addressing

d
b

ja
c
k

ja
v
a

c

je
s
s

a
n

tl
r

fo
p

h
s
q

ld
b

p
m

d

c
ry

p
t

h
e

a
p
s
o

rt

lu
fa

c
t

m
o

ld
y
n

s
e

a
rc

h

s
o

r

s
p
a

rs
e

p
s
e

u
d

o
jb

b

A
V

G

S
p

e
e

d
u

p

-15%

-10%

-5%

0%

5%

10%

15%

20%

25%

GenCopy, small-header GenCopy, no-header GenMS, small-header GenMS, no-header

Figure 4.14: Speedups along with the 95% confidence intervals for offline
header reduction. The MRT and LLMRT thresholds are set to 0.1%.

S
p

e
e

d
u

p

d
b

ja
c
k

ja
v
a

c

je
s
s

a
n

tl
r

fo
p

h
s
q

ld
b

p
m

d

c
ry

p
t

h
e

a
p
s
o

rt

lu
fa

c
t

m
o

ld
y
n

s
e

a
rc

h

s
o

r

s
p
a

rs
e

p
s
e

u
d

o
jb

b

A
V

G

-15%

-10%

-5%

0%

5%

10%

15%

20%

25%
GenCopy, small-header GenCopy, no-header GenMS, small-header GenMS, no-header

Figure 4.15: Speedups along with the 95% confidence intervals for online
header reduction.

DTLB misses

0

5

10

15

20

25

30

d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
s
o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

p
s
e
u
d
o
jb

b

GenMS, ref 64-bit

offline, small-header

online, small-header

offline, no-header

online, no-header

n
o

.
o

f
m

is
s
e

s
 p

e
r

1
0

0
0

 i
n

s
n

s

Figure 4.16: The number of D-TLB misses per 1000 instructions in the refer-
ence run for the GenMS garbage collector.

4.8 Evaluation 113
n
o
.
o
f
m

is
s
e
s
 p

e
r

1
0
0
0
 i
n
s
n
s L1 misses

0
10
20
30
40
50
60
70
80
90

100
d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
s
o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

p
s
e
u
d
o
jb

b

GenMS, ref 64-bit

offline, small-header

online, small-header

offline, no-header

online, no-header

Figure 4.17: The number of L1 D-cache misses per 1000 instructions in the
reference run for the GenMS garbage collector.

L2 misses

0

10

20

30

40

50

60

d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
s
o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

p
s
e
u
d
o
jb

b

GenMS, ref 64-bit

offline, small-header

online, small-header

offline, no-header

online, no-header

n
o
.
o
f
m

is
s
e
s
 p

e
r

1
0
0
0
 i
n
s
n
s

n
o
.
o
f
m

is
s
e
s
 p

e
r

1
0
0
0
 i
n
s
n
s L2 misses (zoomed in)

0

0,5

1

1,5

2

2,5

3

3,5

4

d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
s
o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

p
s
e
u
d
o
jb

b

GenMS, ref 64-bit

offline, small-header

online, small-header

offline, no-header

online, no-header

Figure 4.18: The number L2 D-cache misses per 1000 instructions in the ref-
erence run for the GenMS garbage collector. The only difference between the
first and second graph is the scale of the vertical-axis.

while other configurations even show performance improvements for
the same benchmarks, e.g., jack, javac, antlr and hsqldb. This indicates
that these benchmarks are very sensitive to the placement of objects on

114 Selective Typed Virtual Addressing

L3 misses

0

5

10

15

20

25

30

35

d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
s
o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

p
s
e
u
d
o
jb

b

GenMS, ref 64-bit

offline, small-header

online, small-header

offline, no-header

online, no-header

n
o

.
o

f
m

is
s
e

s
 p

e
r

1
0

0
0

 i
n

s
n

s
n

o
.

o
f

m
is

s
e

s
 p

e
r

1
0

0
0

 i
n

s
n

s

L3 misses (zoomed in)

0

0,5

1

1,5

2

2,5

3

3,5

4

d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
s
o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

p
s
e
u
d
o
jb

b

GenMS, ref 64-bit

offline, small-header

online, small-header

offline, no-header

online, no-header

Figure 4.19: The number L3 D-cache misses per 1000 instructions in the ref-
erence run for the GenMS garbage collector. The only difference between the
first and second graph is the scale of the vertical-axis.

the heap. A number of benchmarks show a significant performance im-
provement: db (7%), pmd (5%), lufact (4%), moldyn (3%), sparse (up to
20%) and jack and search for the GenMS collector (up to 9%), and also
hsqldb for the GenMS small-header configuration (up to 13%). For all
remaining benchmarks, STVA has no statistically significant impact on
overall performance. In conclusion, the space-efficient object models
do not have a negative impact on performance for most of the bench-
marks and a couple of benchmarks even show a significant speedup.

4.8.4 Cache and TLB performance

We now study the impact of STVA on cache and TLB performance in
more detail using hardware performance counters. Figure 4.16 quan-
tifies the number of D-TLB misses, Figures 4.17, 4.18 and 4.19 quan-
tify the number of D-cache misses for the L1, L2 and L3 level D-cache,

4.8 Evaluation 115

respectively. The number of misses are measured per 1000 instruc-
tions in the reference run for the GenMS garbage collector; we ob-
tained similar results for the GenCopy garbage collector. The graphs
for the L2 and L3 cache levels are shown twice to magnify the results
for benchmarks with a small number of misses per 1000 instructions.
We observe that for a few benchmarks the number of D-TLB misses
slightly increases due to the increased memory fragmentation because
of STVA. The number of cache misses typically decreases, especially for
the larger L2 and L3 caches; the reason is the reduced memory usage.
On average the number of cache misses are reduced by 2.7%, 11.1%
and 16.5% for L1, L2 and L3 misses, respectively. For some benchmarks
such as db and sparse, the number of L3 misses decreases by 50%. This
large decrease in L3 misses explains the speedup results reported in
Figures 4.14 and 4.15.

We acknowledge that our TVA technique might have a bad impact
on spatial locality of objects of different types that are frequently ac-
cessed together. However, our cache performance and overall perfor-
mance results show that the locality improvements introduced by TVA,
due to less memory usage and better cache usage, overcompensate for
this loss of spatial locality. Further exploration of techniques for reduc-
ing this spatial locality loss, might thus further improve our TVA tech-
nique. In particular, architectures that support virtual address aliasing,
could implement our TVA technique without interfering with the order
in which objects are layed out on the heap. Objects of different types
allocated on the same physical page, can than be assigned a (different)
virtual address of a different typed virtual address segment. This way,
spatial locality is not lost and fragmentation no longer exists (on the
physical page level).

4.8.5 STVA versus TVA

As mentioned before, one contribution of this work is to show that ap-
plying TVA to a selected number of object types (i.e., STVA) results in
better performance than applying TVA to all object types. This is clearly
shown in Figure 4.20 where STVA is compared to TVA. TVA performs
fairly well in general and achieves similar performance as STVA for
many benchmarks. However, for a number of benchmarks, TVA results
in significant performance degradations compared to STVA. This is the
case for javac, hsqldb, pmd, lufact, sparse and pseudojbb. The reason
for this is memory fragmentation: objects from not frequently allocated

116 Selective Typed Virtual Addressing

d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
s
o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

P
s
e
u
d
o
jb

b

S
p
e
e
d
u
p

-10%

-5%

0%

5%

10%

15%

20%

TVA GenCopy, offline GenCopy, online

Figure 4.20: Comparing STVA to TVA in terms of speedup for the GenCopy
garbage collector.

object types will all pollute memory chunks that all get sparsely filled.
All in all, we conclude that implicit typing on selected object types out-
performs implicit typing on all object types.

4.9 Related work

Adl-Tabatabai et al. [3] address the increased memory requirements of
64-bit Java implementations by compressing 64-bit pointers to 32-bit
offsets. They apply their pointer compression technique to all point-
ers, including the TIB pointer and the forwarding pointer in the object
header. By compressing the TIB pointer and the forwarding pointer in
the object header, they can actually reduce the size of the object header
from 16 bytes (for non-array objects) to only 8 bytes. There are three key
differences with our approach. First, we eliminate the TIB pointer com-
pletely from the object header for TVA-enabled objects; they only com-
press the TIB pointer. The second difference between Adl-Tabatabai et
al.’s approach and our proposal is that we do not need to compress
and decompress the TIB pointer. We compute the TIB pointer from the
object’s virtual address. And finally, the approach by Adl-Tabatabai et
al. limits applications to a 32-bit address space. As such, applications
that require more than 4 GB of memory cannot benefit from pointer
compression. STVA and TIB pointer compression do not suffer from
this limitation. The only assumption we make in our proposal is that
we do not need more than a 32-bit virtual address space for holding

4.9 Related work 117

type information, however, it is highly unlikely that this would ever be
needed in practice.

Bacon et al. [8] present a number of header compression techniques
for the Java object model on 32-bit machines. They propose three ap-
proaches for reducing the space requirements of the TIB pointer in the
header: bit stealing, indirection and the implicit type method. Bit steal-
ing uses the least significant bits from a memory address (which are
typically zero) for other purposes. The main disadvantage of bit steal-
ing is that it frees only a few bits. Indirection represents the TIB pointer
as an index into a table of TIB pointers. The disadvantages of indi-
rection are that an extra load is needed to access the TIB pointer, and
that there is a fixed limit on the number of TIBs and thus the number
of object types that can be supported. Bit stealing and indirection still
require a condensed form of a TIB pointer to be stored in the header.
The approach that we propose however, has the advantage over these
two approaches to completely eliminate the TIB pointer from the object
header.

The third header compression method discussed by Bacon et al. is
called the implicit type method. The general idea behind implicit types
is that the type information is part of the object’s virtual address. In fact,
there are number of ways of how to implement implicit typing. A first
possibility is to have a type tag included in the pointer to the object.
The type tag is then typically stored in the most-significant or least-
significant bits of the object’s virtual address. By consequence, obtain-
ing the effective memory address requires masking the object’s virtual
address. Storing the type tag in the most-significant bits of the object’s
virtual address usually restricts the available address space. Storing
the type tag in the least-significant bits of the object’s virtual address
on the other hand, usually forces objects to be aligned on multiple byte
boundaries. A second approach is to use the type tag bits as a part of
the address. By doing so, the address space gets divided into several
distinct regions where objects of the same type get allocated into the
same region. This is similar to the TVA implementation that we use in
this chapter.

Another approach is the Big Bag of Pages (BiBOP) approach pro-
posed by Steele [65] and Hanson [36]. In BiBOP, the type tag serves as
an index into a table where the type is stored. BiBOP views memory as
a group of equal-sized segments. Each segment has an associated type.
An important disadvantage of BiBOP typing is that the type tag that

118 Selective Typed Virtual Addressing

is encoded in the memory address serves as an index in a table that
points to the object’s TIB. In other words, an additional indirection is
needed for accessing the TIB. Dybvig et al. [27] propose a hybrid sys-
tem where some objects have a type tag in the least-significant bits and
where other objects follow the BiBOP typing.

The typed virtual memory addressing that we propose here in this
work differs from this prior work on typed virtual addressing in the
following major ways. First, we propose to apply implicit typing to
selected object types only; previous work applied implicit typing to
all object types. Applying implicit typing to all object types results in
significant memory fragmentation. We argue and show how to make
a good selection on what objects to apply the implicit type method.
Second, although previous work already describes the implicit type
method, we could not find any papers actually evaluating it or compar-
ing it to memory systems without typed virtual addressing. In this dis-
sertation, we propose a practical method of how to implement the im-
plicit typing method for 64-bit Java VM implementations and, in addi-
tion, we quantify the performance and memory usage impact of STVA
and compare that to traditional VM implementations without STVA.

Shuf et al. [63] propose the notion of prolific types versus non-
prolific types. A prolific type is defined as a type that has a sufficiently
large number of instances allocated during a program execution. In
practice, a type is called prolific if the fraction of objects allocated by
the program of this type exceeds a given threshold. All remaining
types are referred to as non-prolific. Shuf et al. found that only a lim-
ited number of types account for most of the objects allocated by the
program. They then propose to exploit this notion by using short type
pointers for prolific types. The idea is to use a few type bits in the
status field to encode the types of the prolific objects. This way, the TIB
pointer field can be eliminated from the object header. The prolific type
can then be accessed through a type table. A special value of the type
bits, for example all zeros, is then used for non-prolific object types.
Non-prolific types still have a TIB pointer field in their object headers.
A disadvantage of this approach is that the number of prolific types is
limited by the number of available bits in the status field. In addition,
computing the TIB pointer for prolific types requires an additional indi-
rection. Our STVA implementation does not have these disadvantages.
The advantage of the prolific approach is that the amount of memory
fragmentation is limited since all objects are allocated in a single seg-
ment, much as in traditional VMs. The STVA implementation that we

4.10 Conclusion 119

propose could be viewed of as a hybrid form of the prolific approach
and the implicit typed methods discussed above; we apply implicit
typing to prolific types.

Other proposed techniques, not specifically targeted towards 64-bit
systems, like object inlining [51], also save space although the objective
is to reduce pointer chasing. Object inlining saves the header space of
the inlined object and the pointer field in the referencing object. Object
inlining requires a uniqueness constraint on pointer fields in order to
be applicable.

4.10 Conclusion

This chapter proposed eliminating the header from the 64-bit Java ob-
ject model through Selective Typed Virtual Addressing (STVA). The
idea of STVA is to apply typed virtual addressing (TVA) or implicit typ-
ing to a selected number of object types. TVA means that the object type
is encoded in the object’s virtual address. We apply TVA selectively,
hence the name Selective TVA, on object types that are frequently allo-
cated. The end result is that the header can be eliminated completely
from the object header. The TIB pointers are stored in the TIB space and
the status field information is stored in side arrays. Accessing the ap-
propriate TIB pointer and status field is done through offsets computed
from the object’s virtual address. For the objects on which we do not
apply TVA, we compress the TIB pointer from 64-bit to 32-bit.

We evaluated our newly proposed space-efficient Java object model
in a 64-bit Java VM implementation, namely Jikes RVM, on an AIX
IBM POWER4 machine. Our results show that the space-efficient ob-
ject model yields a reduction in the number of allocated bytes by 15%
on average (and up to 35% for some benchmarks). Half the reduction
comes from STVA; the other half comes from TIB pointer compression.
The reduction of allocated bytes also impacts the D-cache misses: 2.7%,
11.1% and 16.5% fewer misses for the L1, L2 and L3 cache level, respec-
tively. In terms of performance, the space-efficient Java object model
generally does not affect performance in a statistically significant way,
however, some benchmarks exhibit significant overall speedups (up to
20%).

120 Selective Typed Virtual Addressing

Chapter 5

Conclusion

Science may set limits to knowledge,
but should not set limits to imagination.

Bertrand Russell

In this chapter we summarize the conclusions that can be drawn from this
dissertation and we highlight some research topics that could be investigated
as future work.

5.1 Summary

This thesis investigated and improved the behavior of Java applica-
tions on 64-bit general-purpose computer system. 64-bit technology
cannot be stopped: it has been used in high-end servers for over fif-
teen years now and currently it is incorporated in all general-purpose
personal computer systems. History has taught us that customers are
a bit doubtful towards sudden disruptive changes in computer hard-
ware designs that do not support upward compatibility. That is why
hardware manufacturers often build systems that are backward com-
patible, and why most of the 64-bit computer systems have some form
of 32-bit compatibility mode. Due to the co-existence of two modes, OS-
developers, compiler writers and people building other software tools,
are given the time to adapt to the newest mode. But eventually the
general-purpose computer systems will drop the compatibility mode.

As with most things, also 64-bit technology, when compared to 32-
bit technology, has certain advantages as well as disadvantages. The

122 Conclusion

largest disadvantage is the increased memory usage and the biggest
advantage is the availability of extra 64-bit instructions. The bene-
fit perceived by the user depends on the application. If an application
cannot benefit from the extra 64-bit instructions, it will almost certainly
suffer from the negative impact of the increased memory usage. The
larger the negative impact, the more reluctant consumers will be to
stop using the 32-bit compatibility mode. Although the effects of in-
creased memory usage can be reduced at the cost of increasing physical
memory, this is not a fundamental solution. Hence, in this dissertation
we studied and improved the increased memory usage due to 64-bit
computing. We performed this study in a Java environment, because
applications written in OO-languages (as is the case for Java) are very
sensitive for the increased memory usage problem due to the transition
from 32-bit to 64-bit computing.

We observed that objects are on average 45.3% larger in a 64-bit
VM than in a 32-bit VM. We identified four reasons for this increase:
(i) larger pointers in object data fields, (ii) the object’s header doubles
in size, (iii) additional padding for intra-object alignment and (iv) ex-
tra space between objects due to inter-object alignment. The increased
memory usage puts more pressure on the GC system. On average,
64.5% more time is spent during GC while 60.1% more minor collec-
tions and 64.8% more major collections are performed in the 64-bit VM
than in the 32-bit VM, for the setup used in this dissertation.

In order to reduce the pressure on the memory system we intro-
duced two memory reduction techniques. The first technique, Object-
Relative Addressing, compresses pointers inside object data fields as
a 32-bit offset from the object’s base address. This technique yields a
reduction in the number of allocated bytes of more than 10% for many
benchmarks. In addition, ORA also reduces the number of minor and
major GCs by 10.6% and 17.8% on average, respectively. In order to
apply a pointer compression scheme correctly, a number of issues need
to be dealt with. The most important issues are (i) to decompress the
pointer value correctly at all times, (ii) to choose an appropriate and ef-
ficient representation for special pointer values and (iii) to update com-
pressed pointer values correctly when objects are moved.

For the first issue, being able to decompress the pointer value cor-
rectly at all times, we created a Long Address Table (LAT) that holds
incompressible pointers in case a pointer cannot be compressed by the
ORA scheme. This table is dynamically extensible if needed and ob-

5.1 Summary 123

solete entries are removed during garbage collection. We use the least
significant bit of the compressed data to disambiguate between table
entries and truly compressed pointers. We proposed two mechanisms
to determine whether a value at hand is a truly compressed pointer or
not. The first mechanism is a simple bit test. If the bit is set, we access
the LAT, otherwise we decompress the fast way. As a second mecha-
nism, we initially assume that the value is a truly compressed pointer.
Only at the event that a pointer cannot be compressed, we patch all
code locations that potentially load that value to take the bit test mech-
anism.

For the second issue, to choose an appropriate and efficient repre-
sentation for special pointer values, we use 32 zero bits as the this
pointer, because our ORA decompression scheme automatically de-
compresses 32 zero bits to the this pointer. In order to represent the
null value, we choose the value that gets decompressed by our ORA
decompression scheme to a value with the 32 least significant bits set
to zero. As a consequence, there is no longer a single null value.

To handle the third issue, update compressed pointer values cor-
rectly when objects are moved, we keep track of both the original
pointer as well as the pointer to the copied object. As such, we do
not have to update the compressed pointer twice (on movement of
either the referencing or referenced object), but only once after both the
referencing and referenced objects are (possibly) moved.

The second approach which we propose to reduce the memory us-
age of applications, is enabled by the Selective Typed Virtual Address-
ing technique. TVA encodes the object type in the object’s virtual ad-
dress by allocating objects of a given type in a designated memory seg-
ment. We showed that applying TVA to all object introduces memory
fragmentation and hence performance loss, and hence we make a se-
lection as to which object types TVA is applied. Hence, the name Se-
lective Virtual Typed Addressing (STVA). STVA reduces memory de-
mands with 15% on average and reduces the number of minor and ma-
jor garbage collections by 18.9% and 16.9%, respectively.

First, we proposed an offline selection technique for STVA. Through
a profiling run of the application we collect the number of allocated
objects and the number of collected objects for each object type and
the allocated objects’ sizes. From this information the amount of space
can be computed that can be gained for each type when applying TVA.
We selected those object types for STVA that give the largest memory

124 Conclusion

savings during allocation/collection. Subsequently, we proposed an
online selection technique, based on method sampling. The VM uses a
sampling technique to identify frequently executed methods, so called
hot methods. These methods are scheduled for re-compilation and re-
optimization. We select all object types allocated in these hot methods
to be candidates for STVA, because these types are likely to be allocated
frequently.

When applying STVA, we considered two variants: one that re-
duces the object header from 16 to 4 bytes and one that completely
removes the object header. The 4 bytes left in the former (the small-
header object model) contain space for information about hashing,
locking and GC. In the no-header object model we move this informa-
tion out of the object header. We apply an alternative locking scheme
and the hash state and GC bits are move into side-arrays. Side-arrays
are meta-data that we allocate on every two pages of memory: one
byte for every object on those pages. Because those pages contain
equally-sized objects, side-array access gets simplified.

5.2 Future work, a perspective

5.2.1 Embedded systems

The research in this dissertation was conducted on a general-purpose
computer system. In the embedded computer world, resources are
scarce. For example most embedded systems have strict memory con-
straints. There are only a few embedded domains that embraced 64-bit
technology, like digital signal processing and 3-D gaming. This is be-
cause these domains are targeted towards applications that can benefit
from the extra 64-bit instructions. Manufacturers of other embedded
systems, which cannot exploit these benefits, will not use 64-bit tech-
nology, because then they put extra pressure on their memory system.

A future research area would be to investigate how the techniques
presented in this dissertation could be implemented in the (32-bit) em-
bedded world. Different design choices will need to be made. We will
start with a brief discussion concerning the ORA technique. Using 16
bits as a relative offset, limits the reachability to 64 KB through a rela-
tive pointer. This is very limited, and thus trying to apply ORA (and
avoiding large overhead) in such circumstances would (probably) re-
quire that the ORA technique gets applied to certain small groups of

5.2 Future work, a perspective 125

strongly connected objects. This requires a more specific analysis of the
connectivity between objects in order to allow the memory allocator
and the garbage collector to lay out these connected groups together in
memory. An advantage in the embedded world is that extra hardware
instructions could be added to fasten compression/decompression and
some hardware support could be added to manage the representation
of pointers that are further away than 64 KB from each other.

Concerning the STVA technique, in a 32-bit embedded system,
the fragmentation impact of the STVA technique will be more signif-
icant because of the stricter memory constraints. Also, the encoding
of the type in a 32-bit pointer needs to be efficient, in order to keep
a type’s memory chunk large enough. As with the ORA technique,
hardware support could also assist STVA, namely in efficiently en-
coding/decoding the type and in distinguishing STVA-enabled objects
from STVA-disabled objects.

5.2.2 Creating ORA regions

As explained in chapter 3, we envision ORA to be used in conjunction
with a memory allocator and a garbage collector that strive at limiting
the number of inter-object references that cross the 32-bit address range.
A possible way to build such a memory manager, is to use techniques
similar to object collocation [34], connectivity-based memory allocation
and collection [38, 39], region-based systems [22, 57], etc. First, an anal-
ysis step is needed to determine points-to information. Next, a heuristic
needs to be designed to segregate objects into memory regions. A good
heuristic would divide objects across regions in such a way that no (or
almost no) inter-region pointers exist, and hence ORA could be applied
to all intra-region pointers. For inter-region pointers one may want to
ORA-disable them in order not to impose any overhead. Regions can
be garbage collected in order to keep them compact. In this case, the
garbage collector needs to be aware of the region an object belongs to.
Future research will need to examine how objects can be segregated ef-
ficiently in a way that suites ORA. Current points-to analyses are often
performed statically. In order to get more accurate points-to informa-
tion, an interesting research area is to investigate how these techniques
can be done dynamically with as less overhead as possible.

126 Conclusion

5.2.3 Combining ORA and STVA

ORA and STVA are both memory compression techniques at alloca-
tion time and each of them apply to a separate part of the object: ORA
applies to the pointers in the data part and STVA applies to the header
part. This makes them excellent candidates to be implemented together
as complementary techniques. However, this requires additional re-
search. Both techniques take a different approach to manage object
placement. The STVA technique on the one hand, segregates the mem-
ory in typed segments, thus objects of the same type are allocated close
to each other, and hence objects of different (STVA) types are allocated
far from each other. The ORA technique on the other hand, wants ob-
jects that are connected to be allocated in close proximity (which may
have different types).

These strategies seem to be in conflict at first glance, but they do
not need to be per se. The STVA memory segments do not need to be
contiguous as is the case in our implementation. It would be possible
to define memory regions according to the ORA technique, and to de-
fine typed memory segments within each region. One STVA memory
segment would then reappear in each ORA memory region: they are
interleaved. Another possibility is to apply both techniques to only a
subset of the objects in such a way that they no longer conflict.

Yet another possibility might be to keep both implementations as
they are: STVA allocates objects of a certain type in separate segments
in virtual memory, and all non-STVA objects get allocated in ORA re-
gions. Now a priori, ORA regions and STVA segments will not be in
close proximity, so short pointers from one to the other would always
need to go through the LAT. To solve this, one of the least significant
bits of a pointer can be used through bit-stealing to indicate that this
short pointer escapes to the STVA segment or vica versa. In case such a
short pointer escapes from an ORA region to a STVA segment, the ac-
tual type segment can be derived from the (static) type of that pointer.
The other way around, from a STVA segment to an ORA region, one
could favor one ORA region, all other ORA regions would still need to
use the normal slow path through the LAT.

Future research on this topic will need to investigate which pos-
sibility (or a combination) is best pursued. All by all, (small) objects
without references are always good candidates for STVA, e.g., objects
of type Integer.

5.2 Future work, a perspective 127

In terms of combined memory reductions, it is expected that the
combination of STVA and ORA will lead to a reduction in allocated
bytes of about the sum of the individual byte reductions, possibly more.
This is because they focus their effort on a different part of the object
(the header part versus the body part), and because the combination
can have extra inter-object alignment gains over both techniques. For
the no-header STVA object model, a reduction of the inter-object align-
ment overhead is only possible for objects without references in their
data fields. The ORA technique can only reduce the inter-object align-
ment overhead, if it first compressed at least one pointer. The com-
bination of both techniques can therefore not perform worse in terms
of byte reduction, only equally well or better as both techniques sepa-
rately, added together. An example of the latter is, for instance, when
considering an object with two integer fields and one reference field.
STVA can remove the header, and ORA can compress one pointer, but
will instead introduce an extra 4 bytes inter-object alignment. The com-
bination of both would no longer need to introduce the extra four bytes
because all the field sizes after applying both techniques are 4 bytes
in size and hence do not require 8-byte alignment. To present an in-
dication about the expected reduction of the memory overhead of 64-
bit compared to 32-bit, after the combination of the ORA and STVA
techniques, Figure 5.1 shows once again the extra memory overhead
of 64-bit mode compared to 32-bit mode. We mark the parts thereof
that get reduced by the ORA and STVA techniques separately. On av-
erage about one fifth of the 45% memory overhead is still not reduced.
This can be explained by the fact that (i) our techniques are not ap-
plied to all the objects, (ii) the extra memory used by data structures
needed by our techniques and (iii) the code increase due to implement-
ing our techniques (the code compiled by the VM also end up in the
data heap). For some benchmarks, we even see an overcompensation,
e.g., 14% for antlr. This can be the case if most objects are covered by our
techniques, and because the STVA technique can remove more bytes
from the header than were added by the transition from 32-bit to 64-bit
mode.

128 Conclusion

-20%

0%

20%

40%

60%

80%

100%

d
b

ja
c
k

ja
v
a
c

je
s
s

a
n
tl
r

fo
p

h
s
q
ld

b

p
m

d

c
ry

p
t

h
e
a
p
s
o
rt

lu
fa

c
t

m
o
ld

y
n

s
e
a
rc

h

s
o
r

s
p
a
rs

e

p
s
e
u
d
o
jb

b

A
V

G

ORA part

STVA part

uncompensated

overcompensated

Figure 5.1: Memory usage overhead of 64-bit mode compared to 32-bit mode
and the parts thereof that are reduced through ORA and STVA.

Bibliography

[1] The AMD x86-64 architecture programmers overview.
Technical Report 24108C, Advanced Micro Devices, 2001.
http://www.amd.com/us-en/assets/content type/white papers
and tech docs/x86-64 overview.pdf.

[2] Intel Itanium processor family reference guide. Technical Report
254318-003, Intel Corporation, 2004.

[3] A.-R. Adl-Tabatabai, J. Bharadwaj, M. Cierniak, M. Eng, J. Fang,
B. T. Lewis, B. R. Murphy, and J. M. Stichnoth. Improving 64-bit
Java IPF performance by compressing heap references. In Proceed-
ings of the International Symposium on Code Generation and Optimiza-
tion, pages 100–110. IEEE Computer Society, March 2004.

[4] O. Agesen. Space and time-efficient hashing of garbage-collected
objects. Theory and Practice of Object Systems, 5(2):119–124, 1999.

[5] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-
D. Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel,
D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar,
M. J. Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srini-
vasan, and J. Whaley. The Jalapeño Virtual Machine. IBM Systems
Journal, 39(1):211–238, February 2000.

[6] C. S. Ananian and M. Rinard. Data size optimizations for Java
programs. In Proceedings of the 2003 ACM SIGPLAN Conference on
Language, Compiler, and Tool Support for Embedded Systems, pages
59–68, June 2003.

[7] A. W. Appel. A runtime system. Technical Report CS-TR-220-89,
Princeton University, Computer Science Department, May 1989.

130 BIBLIOGRAPHY

[8] D. F. Bacon, S. J. Fink, and D. P. Grove. Space- and time-efficient
implementation of the Java object model. Sixteenth European Con-
ference on Object-Oriented Programming (ECOOP). Lecture Notes in
Computer Science, 2374:111–132, 2002.

[9] D. F. Bacon, R. Konuru, C. Murthy, and M. Serrano. Thin locks:
Featherweight synchronization for Java. In Proceedings of the ACM
SIGPLAN 1998 Conference on Programming Language Design and Im-
plementation (PLDI), pages 258–268, June 1998.

[10] L. Baraz, T. Devor, O. Etzion, S. Goldenberg, A. Skaletsky, Y. Wang,
and Y. Zemach. IA-32 execution layer: a two-phase dynamic trans-
lator designed to support IA-32 applications on Itanium-based
systems. In Proc. of 36th International Conference on Microarchitec-
ture (MICRO36), pages 191–201. IEEE Computer Society, Decem-
ber 2003.

[11] S. Behling, R. Bell, P. Farell, H. Holthoff, F. O’Connel, and W. Weir.
The POWER4 Processor Introduction and Tuning Guide. Redbooks.
IBM Corporation, International Technical Support Organization,
2001.

[12] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and realities:
the performance impact of garbage collection. In Proceedings of the
2004 ACM SIGMETRICS Joint International Conference on Measure-
ment and Modeling of Computer Systems, pages 25–36. ACM Press,
June 2004.

[13] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage,
and B. Wiedermann. The DaCapo benchmarks: Java benchmark-
ing development and analysis. In Proceedings of the 21st Annual
ACM SIGPLAN Conference on Object-Oriented Programing, Systems,
Languages, and Applications (OOPSLA). ACM Press, October 2006.

[14] D. Buytaert, K. Venstermans, L. Eeckhout, and K. De Bosschere.
Garbage collection hints. In Proceedings of the 1st International Con-
ference on High Performance Embedded Architectures and Compilers
(HiPEAC), LNCS 3793, pages 233–348. Springer Verlag, November
2005.

BIBLIOGRAPHY 131

[15] D. Buytaert, K. Venstermans, L. Eeckhout, and K. De Bosschere.
GCH: Hints for triggering garbage collections. Transactions on
High-Performance Embedded Architectures and Compilers, 1(1):52–72,
June 2006.

[16] H. W. Cain, R. Rajwar, M. Marden, and M. H. Lipasti. An architec-
tural evaluation of Java TPC-W. In Proceedings of the seventh IEEE
International Symposium on High-Performance Computer Architecture,
pages 229–240. IEEE Computer Society, January 2001.

[17] B. Calder, D. Grunwald, and B. Zorn. Quantifying behavioral dif-
ferences between C and C++ programs. Journal of Programming
Languages, 2(4):313–351, 1994.

[18] M. Chapman, I. Wienand, and G. Heiser. Itanium page tables and
TLB. Technical Report Technical Report UNSW-CSE-TR-0307, Uni-
versity of New South Wales, Sydney, Australia, May 2003.

[19] G. Chen, M. Kandemir, and M. J. Irwin. Exploiting frequent field
values in Java objects for reducing heap memory requirements. In
VEE ’05: Proceedings of the 1st ACM/USENIX International Confer-
ence on Virtual Execution Environments, pages 68–78. ACM Press,
2005.

[20] G. Chen, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin. Field
level analysis for heap space optimization in embedded Java en-
vironments. In International Symposium on Memory Management
(ISMM), pages 131–142. ACM Press, 2004.

[21] G. Chen, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, B. Mathiske,
and M. Wolczko. Heap compression for memory-constrained Java
environments. In Proceedings of the 18th ACM SIGPLAN Conference
on Object-Oriented Programing, Systems, Languages, and Applications
(OOPSLA), pages 282–301. ACM Press, October 2003.

[22] S. Cherem and R. Rugina. Region analysis and transformation for
Java programs. In ISMM ’04: Proceedings of the 4th International
Symposium on Memory Management, pages 85–96. ACM Press, 2004.

[23] T. M. Chilimbi, B. Davidson, and J. R. Larus. Cache-conscious
structure definition. In SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), pages 13–24. ACM Press,
May 1999.

132 BIBLIOGRAPHY

[24] T. M. Chilimbi and J. R. Larus. Using generational garbage collec-
tion to implement cache-conscious data placement. In Proceedings
of the first International Symposium on Memory Management (ISMM),
pages 37–48. ACM Press, October 1998.

[25] Advanced Micro Devices. x86-64 technology white paper. Au-
gust 2001. http://www.amd.com/us-en/assets/content type/
white papers and tech docs/x86-64 wp.pdf.

[26] S. Dieckmann and U. Hölzle. A study of the allocation behavior
of the SPECjvm98 Java benchmarks. In Proceedings of the 13th Eu-
ropean Conference for Object-Oriented Programming (ECOOP), pages
92–115. Springer, June 1999.

[27] R. K. Dybvig, D. Eby, and C. Bruggeman. Don’t stop the BIBOP:
Flexible and efficient storage management for dynamically-typed
languages. Technical Report 400, Indiana University, Computer
Science Department, 1994.

[28] L. Eeckhout, A. Georges, and K. De Bosschere. How Java pro-
grams interact with virtual machines at the microarchitectural
level. In Proceedings of the 18th ACM SIGPLAN Conference on Object-
Oriented Programing, Systems, Languages, and Applications (OOP-
SLA), pages 169–186. ACM Press, October 2003.

[29] M. Ekman and P. Stenstrom. A robust main-memory compression
scheme. In ISCA ’05: Proceedings of the 32nd Annual International
Symposium on Computer Architecture, pages 74–85. IEEE Computer
Society, June 2005.

[30] A. Georges, D. Buytaert, L. Eeckhout, and K. De Bosschere.
Method-level phase behavior in Java workloads. In Proceedings
of the 19th ACM SIGPLAN Conference on Object-Oriented Program-
ing, Systems, Languages, and Applications (OOPSLA), pages 270–287.
ACM Press, October 2004.

[31] R. Y. Gevai. Porting code to Intel EM64T-based platforms. Techni-
cal Report 254740, Intel Software and Solutions Group.

[32] P. N. Glaskowsky. Athlon 64 moving to mass market. Microproces-
sor report, January 2004.

[33] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. The
Java Series. Addison Wesley, Boston, MA, USA, 1997.

BIBLIOGRAPHY 133

[34] S. Z. Guyer and K. S. McKinley. Finding your cronies: static anal-
ysis for dynamic object colocation. In Proceedings of the 19th annual
ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA), pages 237–250. ACM
Press, October 2004.

[35] T. R. Halfhill. AMD and Intel harmonize on 64. Microprocessor
report, March 2004.

[36] D. R. Hanson. A portable storage management system for the
icon programming language. Software-Practice and Experience,
10(6):489–500, 1980.

[37] J. L. Hennessey and D. A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann, New York, USA, 3rd
edition, 2003.

[38] M. Hirzel, A. Diwan, and M. Hertz. Connectivity-based garbage
collection. In Proceedings of the 18th ACM SIGPLAN Conference
on Object-Oriented Programing, Systems, Languages, and Applications
(OOPSLA), pages 359–373. ACM Press, 2003.

[39] M. Hirzel, J. Henkel, A. Diwan, and M. Hind. Understanding the
connectivity of heap objects. In International Symposium on Memory
Management (ISMM), pages 36–39. ACM Press, jun 2002.

[40] R. Jones and R. Lins. Garbage Collection, Algorithms for Automatic
Dynamic Memory Management. John Wiley and Sons, Inc., 1996.

[41] R. Jones and C. Ryder. Garbage collection should be lifetime
aware. In Implementation, Compilation, Optimization of Object-
Oriented Languages, Programs and Systems (ICOOOLPS), page 8.
Springer Verlag, July 2006.

[42] T. Kaehler and G. Krasner. Loom: large object-oriented memory
for smalltalk-80 systems. pages 251–270, 1983.

[43] M. Karlsson, K. E. Moore, E. Hagersten, and D. A. Wood. Mem-
ory system behavior of Java-based middleware. In Proceedings of
the Ninth IEEE International Symposium on High-Performance Com-
puter Architecture, pages 217–228. IEEE Computer Society, Febru-
ary 2003.

134 BIBLIOGRAPHY

[44] K. Kersey. Intel’s new platform versus AMD’s 64-bit prowess,
September 2004. http://www.linuxhardware.org/article.pl?sid=
04/09/17/1453239.

[45] J.-S. Kim and Y. Hsu. Memory system behavior of Java programs:
methodology and analysis. In Proceedings of the 2000 ACM SIG-
METRICS International Conference on Measurement and Modeling of
Computer Systems, pages 264–274. ACM Press, June 2000.

[46] A. Kleen. Porting linux to x86-64. In Proceedings of the Linux sym-
posium, July 2001.

[47] K. Krewell. AMD serves up Opteron. Microprocessor report, April
2003.

[48] C. Lattner and V. Adve. Automatic Pool Allocation for Disjoint
Data Structures. In Proc. ACM SIGPLAN Workshop on Memory Sys-
tem Performance, Jun 2002.

[49] C. Lattner and V. S. Adve. Transparent pointer compression for
linked data structures. In MSP ’05: Proceedings of the 2005 Work-
shop on Memory Systems Performance, pages 24–35. ACM Press, June
2005.

[50] J.-S. Lee, W.-K. Hong, and S.-D. Kim. Design and evaluation of
a selective compressed memory system. In ICCD ’99: Proceedings
of the 1999 IEEE International Conference on Computer Design, page
184. IEEE Computer Society, November 1999.

[51] O. Lhotk and L. Hendren. Run-time evaluation of opportunities
for object inlining in Java. In Proceedings of the 2002 joint ACM-
ISCOPE conference on Java Grande, pages 175–184. ACM Press,
November 2002.

[52] T. Li, L. K. John, V. Narayanan, A. Sivasubramaniam, J. Sabari-
nathan, and A. Murthy. Using complete system simulation to char-
acterize SPECjvm98 benchmarks. In Proceedings of the 14th Interna-
tional Conference on Supercomputing, pages 22–33. ACM Press, May
2000.

[53] D. J. Lilja. Measuring Computer Performance: A Practitioner’s Guide.
Cambridge University Press, 2000.

BIBLIOGRAPHY 135

[54] Y. Luo and L. John. Workload characterization of multithreaded
Java servers. Technical Report Technical Report TR-010815-01, De-
partment of Electrical and Computer Engineering, University of
Texas at Austin, June 2001.

[55] S. A. Mahlke, R. E. Hank, J. E. McCormick, D. I. August, and W. W.
Hwu. A comparison of full and partial predicated execution sup-
port for ILP processors. In Proceedings of the 22nd Annual Interna-
tional Symposium on Computer Architecture (ISCA), pages 138–149,
June 1995.

[56] F. W. Miller. Simple memory protection for embedded operating
system kernels. In Proceedings of the FREENIX Track: 2002 USENIX
Annual Technical Conference, pages 299–308. The USENIX Associa-
tion, June 2002.

[57] C. Nakhli, C. Rippert, G. Salagnac, and S. Yovine. Efficient
region-based memory magement for resource-limited real-time
embedded systems. In Workshop on Implementation, Compilation,
Optimization of Object-Oriented Languages, Programs and Systems
(ICOOOLPS). Springer Verlag, 2006.

[58] T. Nelson and M. O’Connor. 64-bit computing update. Processor,
25(30):editorial article, July 2003.

[59] R. Radhakrishnan, N. Vijaykrishnan, L. K. John, A. Sivasubrama-
niam, J. Rubio, and J. Sabarinathan. Java runtime systems: Char-
acterization and architectural implications. IEEE Transactions on
Computers, 50(2):131–146, 2001.

[60] M. L. Seidl and B. G. Zorn. Segregating heap objects by reference
behavior and lifetime. In Proceedings of the Eighth International Con-
ference on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS-VIII), 1998.

[61] P. Seshadri and A. Mericas. Workload characterization of multi-
threaded Java servers on two PowerPC processors. In IEEE 4th
Annual Workshop on Workload Characterization, pages 36–44. IEEE
Computer Society, December 2001.

[62] S. T. Shebs and R. R. Kessler. Automatic design and implementa-
tion of language data types. In Proceedings of the ACM SIGPLAN
1987 Conference on Programming Language Design and Implementa-
tion (PLDI), pages 26–37, June 1987.

136 BIBLIOGRAPHY

[63] Y. Shuf, M. Gupta, R. Bordawekar, and J. P. Singh. Exploiting pro-
lific types for memory management and optimizations. In Proceed-
ings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles Of
Programming Languages (POPL), pages 295–306. ACM Press, Jan-
uary 2002.

[64] Y. Shuf, M. J. Serrano, M. Gupta, and J. P. Singh. Characteriz-
ing the memory behavior of Java workloads: a structured view
and opportunities for optimizations. In SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, pages
194–205. ACM Press, June 2001.

[65] G. L. Steele, Jr. Data representation in PDP-10 MACLISP. Tech-
nical Report AI Memo 420, Massachusetts Institute of Technology,
Artificial Intelligence Laboratory, September 1997.

[66] P. F. Sweeney, M. Hauswirth, B. Cahoon, P. Cheng, A. Diwan,
D. P. Grove, and M. J. Hind. Using hardware performance mon-
itors to understand the behavior of Java applications. In Proceed-
ings of USENIX 3rd Virtual Machine Research and Technology Sympo-
sium(VM’04), pages 57–72. The USENIX Association, May 2004.

[67] D. N. Truong, F. Bodin, and A. Seznec. Improving cache behav-
ior of dynamically allocated data structures. In PACT: Interna-
tional Conference on Parallel Architectures and Compilation Techniques,
pages 322–329. IEEE Computer Society, 1998.

[68] K. Venstermans and K. De Bosschere. JVM SPEC favours
32-bit platforms. In ProRISC, Veldhoven, the Netherlands,
November 2003. http://escher.elis.ugent.be/publ/Edocs/DOC/
P103 143.pdf.

[69] K. Venstermans, L. Eeckhout, and K. De Bosschere. 64-bit versus
32-bit virtual machines for Java. Software—Practice and Experience,
36(1):1–26, January 2006.

[70] K. Venstermans, L. Eeckhout, and K. De Bosschere. Space-efficient
64-bit Java objects through selective typed virtual addressing. In
Proceedings of the 4th Annual International Symposium on Code Gener-
ation and Optimization (CGO), pages 76–86. IEEE Computer Society,
March 2006.

[71] K. Venstermans, L. Eeckhout, and K. De Bosschere. Java object
header elimination for reduced memory consumption in 64-bit

BIBLIOGRAPHY 137

virtual machines. ACM Transactions on Architecture and Code Op-
timization (TACO), 2007. To be published.

[72] K. Venstermans, L. Eeckhout, and K. De Bosschere. Object-relative
addressing: Compressed pointers in 64-bit Java virtual machines.
In Proceedings of the 21st European Conference on Object-Oriented Pro-
gramming (ECOOP). Lecture Notes in Computer Science. Springer,
July 2007. To be published.

[73] J. Yang, Y. Zhang, and R. Gupta. Frequent value compression in
data caches. In MICRO 33: Proceedings of the 33rd annual ACM/IEEE
international symposium on Microarchitecture, pages 258–265. ACM
Press, December 2000.

[74] Y. Zhang and R. Gupta. Data compression transformations for dy-
namically allocated data structures. In Computational Complexity,
pages 14–28, 2002.

[75] Y. Zhang, J. Yang, and R. Gupta. Frequent value locality and value-
centric data cache design. SIGPLAN Notices, 35(11):150–159, 2000.

