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Bone marrow-derived monocytes give rise to
self-renewing and fully differentiated Kupffer cells
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Self-renewing tissue-resident macrophages are thought to be exclusively derived from

embryonic progenitors. However, whether circulating monocytes can also give rise to such

macrophages has not been formally investigated. Here we use a new model of diphtheria

toxin-mediated depletion of liver-resident Kupffer cells to generate niche availability and

show that circulating monocytes engraft in the liver, gradually adopt the transcriptional profile

of their depleted counterparts and become long-lived self-renewing cells. Underlining

the physiological relevance of our findings, circulating monocytes also contribute to the

expanding pool of macrophages in the liver shortly after birth, when macrophage niches

become available during normal organ growth. Thus, like embryonic precursors, monocytes

can and do give rise to self-renewing tissue-resident macrophages if the niche is available

to them.
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T
issue-resident macrophages (mfs) are found in all organs
of the body, where they are adapted to perform
specific functions required for tissue homeostasis1.

Contrary to most immune cells which derive from
hematopoietic stem cells, tissue-resident mfs develop prenatally
from embryonic progenitors, including yolk-sac mfs and
foetal liver monocytes2–10. The specific contributions of
these two types of embryonic progenitors differs between
tissue-resident mf populations2,3,6,8–11. Crucially, mfs of
embryonic origin, irrespective of progenitor type, have the
capacity to self-renew and hence in most tissues the mf niche
remains populated by these embryonically derived mfs in
adulthood, with no input from circulating monocytes2,3,6–8,12.
Indeed monocytes only seem to contribute to the tissue-resident
mf niche following lethal irradiation and under these
circumstances the monocyte-derived mfs are quite distinct
from their embryonic counterparts13,14. These new insights
have undermined the concept of the common mononuclear
phagocyte system, where the circulating monocyte was seen as the
central progenitor of all tissue mfs (ref. 15). However, circulating
monocytes do contribute to the macrophage pool in the
intestine and the heart. In these tissues, mfs of embryonic
origin are replaced by circulating monocytes after birth and
these monocyte-derived mfs are subsequently continuously
replenished by the same monocyte progenitors throughout
life4,10. These recent studies have lead to the dogma that
circulating monocytes cannot generate self-renewing tissue-
resident mfs (ref. 2). However, it may also be that these tissues
are not permissive to mf self-renewal irrespective of their origin
and hence the validity of this dogma remains unclear. To examine
if circulating monocytes have the capacity to generate self-
renewing mfs we sought to create space in a mf niche where
self-maintenance occurs. Here, we demonstrate that circulating
monocytes can generate self-renewing bona fide Kupffer cells
(KCs), the resident mfs in the liver.

Results
Identification of Clec4f as a KC-specific gene. To date, it has
been impossible to selectively deplete only one population of
tissue-resident mfs, without disturbing the entire mononuclear
phagocyte system. Thus we first sought to generate an in vivo
model in which the liver KC niche could be selectively emptied.
To this end, we identified unique KC genes, by comparing KCs to
other tissue-resident mfs previously arrayed by the Immgen
Consortium16 (Fig. 1a,b). Analysis of the tissue-specific
expression of these genes using BioGPS revealed Clec4f to be
liver-specific (Supplementary Fig. 1). This in combination with
the fact that Clec4F has been previously described as a
KC-specific marker13,17, led us to follow-up on this C-type
lectin. To validate this, we generated and administered
Technetium-99 labelled Clec4F-specific nanobodies to mice and
performed whole-body imaging. The Clec4F-specific-binding
signal was restricted to the liver (Fig. 1c), while non-specific
signals were observed in the kidney and bladder, the
normal pathway of nanobody (Nb) excretion. Flow cytometric
analysis of whole liver homogenates confirmed that Clec4F
was a KC-specific marker, with all Clec4Fþ cells having the
CD45þF4/80þCD11bint phenotype of KCs (Fig. 1d), while mfs
in other tissues did not express Clec4F (Fig. 1e).

Generation and validation of a KC-DTR mouse model. We
next generated a mouse in which KCs expressed the human
diphtheria toxin receptor (KC-DTR mice) by introducing an
expression cassette encoding for an internal ribosome entry site, a
yellow fluorescent protein (YFP), a self-cleaving 2A peptide and
the human DTR into the 30 untranslated region of the Clec4f gene
(Fig. 2a). YFP expression confirmed specific labelling of KCs in
KC-DTR mice (Fig. 2b–d) and administration of diphtheria toxin
(DT) resulted in 100% ablation of F4/80þCD11bint KCs within
24 h (Fig. 2e,f). All other tissue-resident mfs were left intact after
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Figure 1 | Identification of a KC-specific gene. (a) Principle component analysis of transcriptional profiles of KCs compared with other tissue-resident

mfs. (b) Heatmap of mean fold change in core KC genes. Expression level in KCs was set at one. (c) SPECT/mCT images 1 h post injection with control

(NbBcII10) or anti-Clec4f (NbC4m22) 99mTechnetium-labelled nanobodies. Representative of two experiments with n¼6. (d) Clec4F, CD45, F4/80 and

CD11b expression in liver cells. Representative of 5 experiments. (e) Clec4F expression by mf populations. AMFs, alveolar mfs; red pulp, splenic red pulp

mfs; SI, small intestinal Mfs; Representative of two experiments.
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systemic DT administration (Fig. 2g and Supplementary Fig. 2).
Importantly, DT-mediated loss of KCs did not result in overt
inflammation in the liver, as there was no eosinophil or
neutrophil infiltration (Fig. 2h and Supplementary Fig. 3), and
mice appeared healthy.

Depleted embryonic KCs are replaced by monocyte-derived KCs.
Using this model, we next investigated the consequences
of completely emptying the KC niche. Within a period of
4 (96 h)–14 days (336 h) of DT administration, a population of
Clec4FþF4/80þ cells resembling KCs gradually appeared in the
liver (Fig. 3a,e and Supplementary Fig. 4). These arose through an

F4/80þClec4F� intermediate, which could be seen in the liver
already 48 h after DT administration (Fig. 3a,e). To examine the
origin of the repopulating liver mfs, we generated shielded bone
marrow (BM) chimeras in which KC-DTR mice were irradiated
with their abdomen shielded to prevent genotoxic radiation
damage and inflammation in the liver. In addition, abdomens
were shielded from irradiation to prevent any confounding effects
of irradiation on the origins of the KC population. These were
then reconstituted with congenic wild-type BM (Fig. 3b).
Administration of DT depleted KCs in these mice and these were
subsequently repopulated at a chimerism level equal to that of
blood Ly6Chi monocytes (Fig. 3c,d), demonstrating that the
repopulating KCs were of BM origin. As the initial stages of KC
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Representative of five experiments. (f) Proportion of KCs amongst live CD45þ cells 24 h post administration of DT. Data are pooled from three
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repopulation following DT depletion were associated with a
transient increase in Ly6Chi monocytes in the liver (Fig. 3e),
we examined directly whether the repopulating KCs were
derived from Ly6Chi monocytes. Thus we adoptively transferred
CD45.1þ BM Ly6Chi monocytes (Supplementary Fig. 5a) into
CCR2� /�xKC-DTR mice which had received DT to deplete the
endogenous KCs. This confirmed that Ly6Chi monocytes act as
progenitors of the repopulating KCs (Fig. 3f). Thus, hereafter we
refer to these as monocyte-derived KCs (mo-KCs).

Mo-KCs compete with em-KCs for KC niche repopulation.
These results suggest that availability of an empty KC niche, as
achieved by depletion of embryonic KCs (em-KCs), allows cir-
culating monocytes to differentiate into mo-KCs. To determine if
recruited monocytes were able to compete with em-KCs, we next
titrated the dose of DT to only partially deplete the liver niche of
KCs (Fig. 4a–c). Treatment with 2 ng of DT depleted B80% of
em-KCs and similarly to full-depletion triggered a transient
appearance of Ly6Chi monocytes followed by F4/80þClec4F�

mfs and the subsequent restoration of the full F4/80þClec4Fþ

KC population (Fig. 4d,e). To examine whether the recruited
monocytes were responsible for this repopulation, we generated
shielded chimeras, reconstituted them with congenic wild-type
BM and then administered the partial dose of DT (Fig. 4f). Under
these conditions, the level of chimerism averaged only 50% of that
of blood Ly6Chi monocytes (Fig. 4g), despite B80% of resident
em-KCs having been depleted. Thus monocyte differentiation
could not account for the complete repopulation of the KC niche
when a proportion of endogenous em-KCs remained. We thus

hypothesized that proliferation of the remaining em-KCs may
also play a role in the repopulation of the KC niche. This was
confirmed in two ways. First, we found increased proportions of
Clec4Fþ KCs expressing the proliferation marker Ki-67 between
36 and 96 h after DT administration (Fig. 4h,i). Second, we
measured an increased number of F4/80þClec4Fþ KCs between
36 and 72 h (Fig. 4j). This expanded population of F4/80þ

Clec4Fþ KCs at 72 h can only be of embryonic origin as Clec4Fþ

mo-KCs are not observed until 96 h post depletion (Fig. 3a,e).
Thus, following partial depletion, monocytes compete with
proliferating resident em-KCs for niche occupancy.

Mo-KCs are highly homologous to em-KCs. Using full-body
genotoxic irradiation to deplete em-KCs, others found that
hematopoietic cells can give rise to liver mfs, but the resulting
cells acquired o50% of the tissue-specific enhancers of their
em-KC counterparts13. This could suggest that a substantial
component of the KC-specific gene signature may reflect
embryonic origin, thus, we investigated whether our mo-KCs
adopted the characteristic features of em-KCs. Scanning electron
microscopy (SEM) of FACS-purified em-KCs and mo-KCs
showed the two cell-types to be morphologically similar, being
large, granular and with an adherent appearance (Fig. 5a). In
addition, mo-KCs and em-KCs were equally capable of
phagocytozing pHRodo-labelled Escherichia coli bioparticles
(Fig. 5b). Finally, we performed microarray analysis on mo-KCs
obtained 15 and 30 days post depletion (Supplementary Fig. 5b);
comparing their transcriptional profiles with em-KCs. Principle
component analysis (PCA) showed that mo-KCs and em-KCs
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clustered together and separately from the other tissue mfs
(Fig. 5c). The mo-KCs expressed the 100 most specific em-KC-
associated genes identified through comparison of em-KCs with
other tissue-resident mf populations (Fig. 5d). Mo-KCs also
expressed similar levels of the genes associated with iron (Fig. 5e)
and lipid (Fig. 5f) metabolism, two putative em-KC functions.
Consistent with the high degree of genetic homology between
mo-KCs and em-KCs, we found only 54 genes to be differentially
expressed, of which merely 12 were 41.5-fold different, with the
greatest mean difference being only 3.5-fold (Cd209f; Fig. 5g).
Interestingly, day 30 mo-KCs were even closer to the em-KC
profile than day 15 mo-KCs (Fig. 5g), suggesting that most genes
would be equally expressed with further time after replenishment.
To validate these differences at the protein level, we stained for
Tim4 (a receptor for eat-me signals of apoptotic cells and

damaged red blood cells, encoded by Timd4). Fitting with the
temporal increase in Timd4 mRNA expression, mo-KCs were
found to gradually acquire Tim4 protein with time (Fig. 5h).

Mo-KCs acquire the capacity to self-renew. Although it is
currently believed that the property of self-maintenance is
restricted to embryonic mf progenitors2,18–20, the kinetics of
KC repopulation (Figs 3e and 4d) suggested that monocytes
may colonize the empty KC niche in a single wave and then
self-renew. To explore this directly, we allowed the liver to
be colonized by mo-KCs for 15 days after KC depletion,
before subjecting the mice to shielded irradiation and
reconstitution with congenic wild-type (WT) BM (Fig. 6a).
Under these conditions, we could not observe KCs derived from
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Figure 5 | Mo-KCs are highly homologous to em-KCs. (a) SEM imaging of em-KCs and mo-KCs 30 days post DT administration. Scale bar, 4mm. Images are

representative of n¼ 3 per group. (b) Uptake of E. coli bioparticles conjugated to the pH-sensitive fluorescent pHrodo dye by em-KCs and day 7 mo-KCs shown as D
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newly recruited BM progenitors in the liver 5, 10 or 15 weeks
after irradiation (Fig. 6b). Thus, the mo-KC population
self-maintains for at least 4 months without any additional
input from circulating monocytes. In support, we found that mo-
KCs have the same degree of Ki-67 expression as unmanipulated
em-KCs (Fig. 6c), suggesting they have equal rates of proliferation
and self-renewal. These results demonstrate that once circulating
monocytes gain access to an artificially emptied niche, they
acquire the capacity to self-renew within 2 weeks.

Mo-KCs are generated in the first weeks of life. We next sought
to investigate if monocytes also give rise to KCs under more
physiological conditions of mf niche availability. We
hypothesized that normal postnatal organ development might
represent such a situation. Liver mass increases exponentially due
to hepatocyte proliferation between birth and week 4 (ref. 21),
and liver sinusoids are only properly fenestrated postnatally22.
Liver growth was associated with an increase in the proportion
(% of live CD45þ cells) and total number of KCs during the first
weeks after birth, stabilizing at 4–5 weeks of age (Fig. 7a,b). To
examine monocyte contribution during this period of
development, we performed a single adoptive transfer of
congenic BM into unmanipulated WT pups within the first 7
days after birth (Fig. 7c). Engrafted transplanted cells were
identified 8–12 weeks later amongst the pool of KCs (Fig. 7d,e).
Interestingly, splenic red pulp mfs and colonic mfs were also
partially derived from transplanted cells, whereas alveolar mfs
and microglia were not (Fig. 7d,e). These data demonstrate that
circulating BM-derived monocytes are not only capable of
repopulating the KC niche following artificial DT-mediated
depletion but also contribute significantly to the KC pool in the
growing liver after birth.

Discussion
It was recently proposed that only mfs of embryonic origin have
the capacity to self-renew2 and that genetic engineering of
monocytes would be necessary to generate self-repopulating mfs
in vivo2,18–20. However, we show here that BM-derived
monocytes give rise to self-renewing KCs when the niche is
rendered available. In addition to the unexpected ability of the
BM mo-KCs to self-renew, mo-KCs show a significant
phenotypical and transcriptional overlap with their embryonic
counterparts. Indeed only 12 genes were Z1.5-fold differentially
expressed between em- and mo-KCs, with some of these
differences appearing to be only temporal. Importantly,
availability of the KC niche to BM-monocytes is not an artifact
of experimental KC depletion, but also occurs during the first
weeks of life in unmanipulated mice, yielding a significant
fraction of mo-KCs in the adult KC pool. Although these data
seem to contrast with recent reports employing fate-mapping,
which proposed that most resident mfs derive exclusively from
embryonic precursors3,5–7,12, it is important to note that these
previous studies were performed either in prenatal or adult mice,
and thus will have missed the postnatal period of organ
development. Two recent studies employing fate-mapping in
the embryo in fact found a declining proportion of labelled mfs
as mice reached adulthood4,8, and although this was unexplained
in these studies, based on our findings we propose that this is due
to dilution of the mf pool by BM-derived monocytes during
organ growth.

Integrating our data with previous work, we propose a model
in which embryonic progenitors colonize the tissues before
birth2–8, but as the mouse grows, BM-derived monocytes fill up
additional mf niches that become available, competing with the
resident populations. This scenario occurs in the liver and spleen,
but not in the brain or lung. Therefore, we propose to
also incorporate niche accessibility in the model to explain the
differing contributions of the distinct mf progenitors to the
tissue-resident mf pools in various organs23. Accordingly,
microglia in the brain arise exclusively from yolk-sac mfs as
the niche is available and accessible to these progenitors while the
blood–brain barrier later prevents foetal liver monocytes or
BM-monocytes from accessing the brain mf niche8,12.
Conversely, alveolar mfs derive predominantly from foetal liver
monocytes as the alveolar space is not formed and hence not
accessible when yolk-sac mfs predominate in the embryo6,12.
After birth, the lung epithelium impedes the influx of BM
monocytes23, resulting in the exclusive foetal monocyte origin of
alveolar mfs2,6,8. In addition, strong, but as of yet unknown,
quorum sensing mechanisms appear to be at play, such that once
mf niches are full, there is no further input from circulating
progenitors even in mf niches that are accessible to BM-
monocytes like the spleen and the liver. However, in the heart or
intestine, the scenario of niche filling keeps repeating itself, and
gradually all em-mfs are replaced4,10. In the intestine, niche
availability is created in part by signals from the microbiome that
likely compromise mf lifespan4,23, whereas in the heart it might
be mechanical damage causing mf demise24. However, how
monocytes are recruited to these tissues on niche availability
remains an open question. IL-33 has been proposed to
be involved during Listeria infection in the liver25 but whether
this holds true under homeostatic conditions or in other
tissues remains to be seen. Finally, although we show here
that repopulation of the KC pool upon partial DT-mediated
depletion occurs through the simultaneous proliferation of the
remaining em-mfs and the differentiation of monocytes into
mo-KCs, it appears that inflammation and tissue damage can
influence the competition between these two repopulation
mechanisms. Indeed, repopulation of the KC pool after
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N-acetyl-p-aminophenol overdose was shown to be solely
mediated by em-KC proliferation26, while KC repopulation
following Listeria monocytogenes was mainly driven by
differentiation of monocytes into mo-KCs25. While these two
studies appear contradictory, during Listeria infection, the
remaining em-KCs did not proliferate25 perhaps explaining
why mo-KCs were generated in this model compared with
N-acetyl-p-aminophenol treatment. Thus, identifying the signals
regulating em-KC proliferation and monocyte recruitment and
differentiation in response to niche availability will be crucial in
understanding and manipulating this process and hence future
research should be focused on understanding the factors that
control quorum sensing and lifespan in specific macrophage
niches and how this is influenced by disease.

Methods
Mice. KC-DTR (CD45.1 and CD45.2), KC-DTRxCCR2� /� , wild-type (CD45.1,
CD45.1/CD45.2 and CD45.2) C57Bl/6 (Harlan Olac) mice were maintained under
specific-pathogen free conditions at the animal house of the VIB/UGent

Inflammation Research Center. All mice were backcrossed for at least five generations
onto the C57Bl/6 background and were used between 6 and 12 weeks of age unless
otherwise stated. Male and female mice were used. All experiments were carried out
in accordance with the ethical committee Ghent University—Faculty of Science/VIB.

Construction of the KC-DTR mice. The Clec4F-specific knock-in mouse
B6-Clec4ftm1Ciphe, termed here KC-DTR, was developed by the Centre
d’Immunophénomique, Marseille, France.

KC-DTR targeting vector. A genomic fragment encompassing exons 5–7 of the
Clec4F gene was isolated from a BAC clone of C57BL/6J origin (clone no.
RP23-84H4). Using ET recombination, an internal ribosome entry site-YFP-2A-
hDTR-loxP-Cre-neoR-loxP cassette was introduced in the 30 untranslated region of
the Clec4F gene, downstream of the stop codon. Finally, the targeting construct was
abutted to a DTA selection cassette and linearized.

Isolation of recombinant embryonic stem cell clones. JM8.F6 C57BL/6N ES
cells were electroporated with the linearized KC-DTR targeting vector.
After selection in G418, ES cell clones were screened for proper homologous
recombination by Southern blot. When tested on Drdl-digested genomic DNA,
a probe used to identify proper recombination events hybridized to a 12.8-kb
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wild-type fragment. A neomycin-specific probe was used to ensure that adventi-
tious non-homologous recombination events had not occurred in the selected ES
clones.

Production of knock-in mice. Properly recombined ES cells were injected into
Friend Virus B (FVB) blastocysts. Germline transmission led to the self-excision of
the loxP-Cre-NeoR-loxP cassette in male germinal cells. KC-DTR mice were
identified by PCR of tail DNA. In brief, tails were digested overnight with proteinase
K (500mg ml� 1) at 56 �C. DNA was precipitated by isopropanol, washed in ethanol
and resuspended in TER buffer (Tris-HCl 10 mM, EDTA 1 mM, RNase H
20mg ml� 1). PCR were performed using a mixture of the three following primers:
forward WT primer: 50-TCCTACCCCTGGGTGTGCAAGAAGT-30 ; forward
KC-DTR primer: 50-CACAAGCACTGGCCACACCAAACAA-30 ; reverse WT/KC-
DTR primer: 50-AAGGGAAGGAGGGGACAGTCCATGG-30 ; This trio of primers
amplified a 321-bp band in the case of the WT allele and a 730-bp band in the case
of the KC-DTR allele.

Anti-Clec4f Nb generation. A Nb phage library with an estimated 7.3� 107 clones
was generated by using peripheral blood lymphocytes isolated from an alpaca
(Vicugna pacos) immunized with recombinant mouse Clec4f protein
(R&D system) as described27. The selected Nbs were subcloned into the pHEN6
expression vector28, which fuses a 6�His tag to the Nb C-terminus, and confirmed
for Clec4F specificity via ELISAs and surface plasmon resonance. Nbs were produced
in the periplasm of E. coli WK6 cells. Nbs against the b-lactamase BcII enzyme of
Bacillus cereus (BCII10) with same His tag were used as a control Nb29.

99mTc-Nanobody labelling and pinhole SPECT/lCT analysis. Nbs were labelled
with 99mTechnetium (99mTc) via their His tag, purified and injected intravenously
into mice (1.4±0.53 mCi in 100ml, corresponding to B10 microgram Nb) as
described27. One hour post injection, anaesthetised mice were imaged using mCT
(Skyscan 1178; Skyscan) followed by pinhole SPECT (e.cam180; Siemens Medical
Solutions) as described previously27.

Isolation of tissue leukocytes. For the isolation of liver leukocytes, livers were
isolated from PBS-perfused mice, chopped finely and incubated for 15–20 min with
1 mg ml� 1 Collagenase A (Sigma) and 10 U ml� 1 DNase (Roche) in a shaking
water bath at 37 �C. For the isolation of lung, brain and spleen leukocytes, lungs,
brains and spleens were isolated from PBS-perfused mice finely chopped and
incubated for 30 min with 0.2 mg ml� 1 Liberase TM (Roche) and 10 U ml� 1

DNase (Roche) in a shaking water bath at 37 �C. Single cell suspensions from brain
were then subjected to a 100:40 percoll gradient (Sigma) to isolate leukocytes.
Colonic and small intestinal lamina propria leukocytes were isolated as described
previously30,31.

Generation of BM chimeras. In all, 6–10-week-old CD45.2 or CD45.1 KC-DTR
or wild-type mice were anaesthetized by intraperitoneal administration of
Ketamine (150 mg kg� 1) and Xylazine (10 mg kg� 1). Livers were protected with a
3-cm-thick lead cover before mice were lethally irradiated with 9 Gy. Once
recovered from the anaesthesia, mice were reconstituted by intravenous
administration of 10� 106 BM cells from congenic CD45.1, CD45.2 or
CD45.1/CD45.2 BM from wild-type mice. Mice were left for at least 5 weeks before
assessing chimerism in the blood and liver by flow cytometry.

DT-mediated depletion. KC-DTR mice were depleted of KCs by a single
intraperitoneal administration of 50 or 2 ng human DT (Sigma).

Adoptive transfer of Ly6Chi monocytes. Ly6Chi monocytes were FACS-purified
from the BM of congenic CD45.1þ wild-type mice as live CD45þCD11bþ

Ly6ChiLy6G�CD115þ cells and administered intravenously into CD45.2þ

KC-DTRxCCR2� /� mice, which had received 50 ng DT i.p. 2–4 h before
monocyte transfer to deplete endogenous KCs.

Flow cytometry. Cells (0.5–5� 106) were stained with appropriate antibodies
(Supplementary Table 1) at 4 �C in the dark for 20 min and were analysed with a
Fortessa (BD Biosciences) and FlowJo software (TreeStar). KCs were sorted as
live-gated CD45þLy6C�Ly6G�SiglecF�F4/80þClec4FþCD11bint cells using an
ARIA II or ARIA III (BD, Biosciences). The full list of antibodies used can be found
in Supplementary Table 1.

Assessment of proliferation. For the detection of Ki-67 expression, 3–5� 106

cells from liver homogenates were first stained with fixable viability dye eFluor780
as per manufacturer’s instructions (eBioscience), anti-CD16/32 for blockade of Fc
receptors and appropriate extracellular markers (Supplementary Table 1) in the
dark at 4 �C. Cells were then fixed and permeabilized at 4 �C for 30 min with a
FoxP3 staining buffer kit (eBioscience) before being stained with PerCp-Cy5.5 or
BV786 labelled anti-Ki67 (561284, BD biosciences) in the dark at 4 �C for 45 min.

Assessment of phagocytosis. Cells (2–3� 106) from liver homogenates were
incubated with pHRodo E. coli bioparticles as per the manufacturer’s instructions
and were analysed by flow cytometry.

Electron microscopy. Sorted em-KCs or mo-KCs were seeded in 24-well plates
(Nunc; CellSeed Inc. Labware) and 2 h later, the cells were washed with PBS
and fixed in 0.15 M cacodylate buffer with 2.5% paraformaldehyde and 2%
glutaraldehyde for 2 h and processed and imaged as previously described6.

Microarray. 25,000 Em-KCs from WT and KC-DTR mice with and without DT
and Mo-KCs from KC-DTR mice at day 15 and day 30 post DT administration
were FACS-purified into 500ml RLT buffer (Qiagen). RNA was isolated using the
micro-RNA isolation kit (Qiagen) and sent to the Nucleomics facility, VIB Leuven,
Belgium where the microarrays were performed using the GeneChip Mouse
Gene 1.0 ST arrays (Affymetrix). Samples were subsequently analysed using
R/Bioconductor. All samples passed quality control, and the Robust Multi-array
Average procedure was used to normalize data within arrays (probeset summar-
ization, background correction and log2-transformation) and between arrays
(quantile normalization). Only probesets that mapped uniquely to one gene were
kept, and for each gene, the probeset with the highest expression level was kept.
Principle component analysis plots were created using the 15% of genes with the
most variable expression.

Adoptive transfer to neonates. Total 8� 106 CD45.1þ BM cells were injected
intra-peritoneally in 50 ml PBS once to 0–7-day-old CD45.2 WT pups. Mice were
sacrificed 8–12 weeks later and the CD45.1 donor-derived cells identified.

Statistical analysis. Groups were compared with Two-way Student’s t-test and
multiple-group comparisons were performed using one or two way analysis of
variance (ANOVA) followed by a Bonferroni post-test with Prism Software
(GraphPad Software). Samples were assumed to be normally distributed with
similar variance between groups. No randomization was used to determine
experimental groups and no blinding of the investigator was performed. Group
sizes were determined on the basis of previous experience. No data were excluded
from the analyses.
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