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Analysis

Sirkka-Liisa Eriksson, Heikki Orelma, Frank Sommen

January 9, 2014

Abstract

In this paper we consider the solutions of the equationMκf = 0,
whereMκ is the so called modi�er Dirac operator acting on functions
f de�ned in the upper half space and taking values in the Cli�ord
algebra. We look for solutions f(x, xn) where the �rst variable is in-
variant under rotations. A special type of solution is generated by
the so called spherical monogenic functions. These solutions may be
characterize by a vekua-type system and this system may be solved
using Bessel functions. We will see that the solution of the equation
Mκf = 0 in this case will be a product of Bessel functions.

1 Introduction and History

In the early 1990s, Professor Heinz Leutwiler from University Erlangen
Nürnberg began to investigate a function theory related to this model.
He looked at the vector valued function u = (u0, u1, ..., un) satisfying
the equation system

xn

(∂u0
∂x0
− ∂u1
∂x1
− · · · − ∂un

∂xn

)
+ (n− 1)un = 0,

∂ui
∂xk

=
∂uk
∂xi

, i, k = 1, ..., n,

∂u0
∂xk

= −∂uk
∂x0

, k = 1, ..., n

on the hyperbolic upper half space Rn+1
+ = {(x0, x1, ..., xn) ∈ Rn :

xn > 0} with the metric g = x−2n (dx20 + dx21 + ... + dx2n) (see [5, 6]).
This system is called the system (Hn) (in honor of Hodge). If u =
(u0, u1, ..., un) is a solution of the system then the corresponding 1-
form

η = u0dx0 − u1dx1 − · · · − undxn
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is harmonic on the upper half space i.e. it satis�es the Hodge-de Rham
system. After that Leutwiler started to study the solutions of this
system using quaternions in R3

+ and the Cli�ord algebra. Leutwiler
and the �rst author introduced the so called modi�ed Dirac operator
for Cli�ord algebra valued functions f : Ω ⊂ Rn+1 → C`n in the form

Mf = Df +
n− 1

xn
Q′f,

where Ω is an open subset and the function admits the decomposition
f = Pf + Qfen, where Pf and Qf takes values in C`n−1, and Q′f
is de�ned such, that it satis�es the equation Qfen = enQ

′f . In the
above the operator

D = ∂x0 + e1∂x1 + · · ·+ en∂xn

is the standard Euclidean Dirac-Weyl-Delanghe -operator. A null so-
lution of the equation Mf = 0 is called the hypermonogenic functions
and if we consider functions with values in R ⊕ Rn we see, that the
components satis�es the system (Hn). Nowadays this theory is called
the hyperbolic function theory. See more information e.g. in [3].

Around the same time when Leutwiler started to study the Hn-system,
the third author and Pertti Lounesto started, independently, to con-
sider axially monogenic functions in the Euclidean Cli�ord analysis i.e.
functions which are solutions of the system Df = 0 invariant under
the spin group, see [8] and [7]. The introduction to this topic may be
found e.g. in the famous �green book� [1].

In this paper our goal is to consider similar type of axially symmetric
solutions on the hyperbolic upper half space. These solutions form
a kind of basis for the space of all solutions to the hypermonogenic
system. The method of separation of variables leads to solutions that
may be expressed as products of Bessel functions.

2 Preliminaries

2.1 Cli�ord Algebra

Let C`n be the Cli�ord algebra for the quadratic form Q(x) = −|x|2 on
Rn. If e1, ..., en is a basis of Rn then we obtain the generating relations

eiej + ejei = −2δij

for i, j = 1, ..., n. We de�ne the subspace C`kn as a real vector space
spanned by all products of k linearly independent vectors. This may
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be characterized using the basis as follows. We de�ne the increasing
lists A = {a1, ...., ak} ⊂ N = {1, ..., n} where 0 ≤ a1 < · · · < ak ≤ n,
and then we de�ne

eA = ea1 · · · eak .

The length of a list A is denoted by |A| = k. Then C`0n = R and
C`1n = Rn. We may express the Cli�ord algebra C`n as a direct sum

C`n = C`0n ⊕ · · · ⊕ C`nn.

The natural projection is denoted by [·]k : C`n → C`kn.

A (smooth) k-multivector �eld in an open domain U ⊂ Rn is a map

Fk : U → C`kn.

Any k-multivector �eld Fk admits the expression

Fk =
∑
|A|=k

FAeA,

where FA : U → R is the smooth function. The space of k-multivector
�elds on U is denoted by Ek(U).

The conjugation is an automorphism − : Ek(U) → Ek(U) de�ned
by

eA = (−1)
k(k+1)

2 eA.

Especially eAeA = eAeA = 1.

A fundamental di�erential operator on the space of k-multivector �elds
is the Dirac operator ∂x : Ek(U)→ Ek−1(U)⊕ Ek+1(U) de�ned by

∂x : Fk =
∑
|A|=k

FAeA 7→ ∂xFk =
n∑
j=1

∑
|A|=k

∂FA
∂xj

ejeA.

The product of a 1-vector x and a k-vector�eld Fk may be decomposed
into

xFk = x · Fk + x ∧ Fk,

where x · Fk is called the interior product and x ∧ Fk is called the
exterior product. They admit the expressions

x · Fk = [xFk]k−1 =
1

2
(xFk − (−1)kFkx)

and

x ∧ Fk = [xFk]k+1 =
1

2
(xFk + (−1)kFkx).
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For basis elements we make the following observation. For any eA we
get

eA = ea1 · · · eak = ea1 ∧ · · · ∧ eak
and if aj ∈ A we have

eaj · eA = (−1)jeA\{aj}.

If y is a 1-vector we have

x · y = −
n∑
j=1

xjyj .

Using the interior and the exterior product we have

∂xFk = ∂x · Fk + ∂x ∧ Fk,

where ∂x·Fk = [∂xFk]k−1 and ∂x∧Fk = [∂xFk]k+1. Then we may de�ne
the operators ∂x· : Ek(U)→ Ek−1(U) and ∂x∧ : Ek(U)→ Ek+1(U).

2.2 Hodge-de Rham Operators and Modi�ed

Dirac operator in Upper-Half Space

In this section we de�ne our fundamental operator in the hyperbolic
Upper-Half Space. By hyperbolic upper half space we shall mean the
set

Rn+ = {(x1, ..., xn) ∈ Rn : xn > 0}

with the metric

g =
dx21 + ...+ dx2n

x2n
.

We start form the following famous �rst order operators act on sections
of the cotangent bundle. Let

ωr =
∑
|A|=r

fAdxa1dxa2 · · · dxar

be an arbitrary di�erential form in the upper-half space. The form ωr

is called harmonic, if it is a solution of the system

dωr = 0 and d∗ωr = 0,

where d is the standard exterior derivative operator and d∗ its adjoint
(Hodge star). We may make the 1−1 identi�cation between di�erential
r-forms and Cli�ord r-multivector �elds given by

ωr =
∑
|A|=r

fAdxa1dxa2 · · · dxak ↔ Fr =
∑
|A|=r

fAea1ea2 · · · eak .
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Let us de�ne a family of operators

DrFr = ∂xFr −
n− 2r

xn
en · Fr

acting on the multivector �eld Fr. We have that ωr is harmonic if and
only if the corresponding Fr satis�es the equation DrFr = 0, see [4, 9].
So, we may study harmonic di�erential forms using the operator Dr
and tools from Cli�ord analysis. Keeping this in our mind, we may
make the following generalization.

On di�erentiable Cli�ord algebra -valued functions depending on vec-
tor variables, the modi�ed Dirac operators de�ned by

Mκ = ∂x −
κ

xn
en·,

where κ is an arbitrary real parameter and

∂x =
n∑
j=1

ej∂xj

the Euclidean Dirac operator.

If f is a solution of the equationMκf = 0 it is called κ-hypermonogenic.
0-hypermonogenic functions are called brie�y monogenic. The di�er-
ence to the modi�ed operator in the introduction is that now we con-
sider functions with a vector variable x, but in the original setting
authors considered functions with paravector variable x0 + x. Note
that these de�nition coincide since Q′f(x) = −en · f . We use the dif-
ferent notation for the operators in order to stress that we consider
functions depending on vector variables. See the detailed de�nition
for the operator in [4].

3 A Vekua system related to Rotation

Invariant κ-hypermonogenic Solutions

Recall that we are looking for solutions of the modi�ed Dirac operator

Mκf = (∂x −
κ

xn
en·)f = 0,

where κ is a real parameter. Let x ∈ Rn+ be of the form x = (x, xn),
where x = (x1, ..., xn−1). Let us make the similar decomposition for
the Dirac operator

∂x = ∂x + en∂xn ,
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where

∂x =
n−1∑
j=1

ej∂xj .

We also de�ne
r = |x| and ω =

x

|x|
for every x 6= 0. Using these concepts we may express

x = x+ xnen = rω + xnen.

We recall that

De�nition 3.1 A k-homogeneous polynomial Pk(x) is called k-spherical
monogenic if ∂xPk(x) = 0 in Rn−1.

General homogeneous polynomials and spherical monogenics have the
following connection.

Lemma 3.2 ([1]) Let Hm be a m-homogeneous Cli�ord algebra val-

ued polynomial in Rn−1. Then there exist spherical monogenic polyno-

mials Pk(x) such that

Hm(x) =

m∑
k=0

xm−kPk(x),

where x = x1e1 + ...+ xn−1en−1.

Also it is well known that:

Lemma 3.3 ([2]) Let Ω be an open subset of the upper half space Rn+.
If f : Ω→ C`n is κ-hypermonogenic in Ω then it is real analytic.

We may prove the following result:

Theorem 3.4 Let Ω be an open subset of the upper half space Rn+. If
f : Ω → C`n is κ-hypermonogenic on Ω and a ∈ Ω then it has locally

the presentation

f(x) =
∑

(α,β)∈Nn−1
0 ×N0

|α|∑
k=0

x|α|−kPαk (x)(xn − an)βcα,β

valid in some neighbourhood of a.
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Proof. Let f : Ω → C`n be κ-hypermonogenic on Ω. It is enough
to prove the result for a = anen, since κ-hypermonogenic functions are
invariant under the translation τa(x) = x− a. Then f is real analytic
and therefore it admit the prower series representation

f(x) =
∑

(α,β)∈Nn−1
0 ×N0

xα(xn − an)βcα,β

converging uniformly and absolutely in some neighbood of a. Since
xα is a homogenous polynomial of order |α| then there exists spherical
monogenics Pαk (x) such that

xα(xn − an)βcα,β =

|α|∑
k=0

x|α|−kPαk (x)(xn − an)βcα,β,

completing the proof. �

The preceding theorem allow us to look for solutions that depend only
on the r and xn in the form

fk(x) =
(
A(r2, xn)en +B(r2, xn)x

)
Pk(x).

The functions A and B are real valued and di�erentiable with respect
to both variables, and Pk(x) is a spherical monogenic. The functions
are de�ned on an open subset Ω ⊂ Rn+ that is rotation symmetric with
respect to xn-axis.

Next we'd like to compute Mκfk(x), but for that, we need the fol-
lowing lemmata. First we recall that:

Lemma 3.5 If Pk(x) is a spherical monogenic then

x

rn+2k−1Pk(x)

is monogenic.

Then we may compute the following formula.

Lemma 3.6 If Pk(x) is a spherical monogenic and B(r2, xn) a real

valued di�erentiable funtion, then

∂x(B(r2, xn)xPk(x)) = −(n+2k−1)B(r2, xn)Pk(x)−2∂1B(r2, xn)r2Pk(x),

where ∂1 is the derivative with respect to the �rst variable r2.
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Proof. Using the above lemma we compute

∂x(B(r2, xn)xPk(x)) = ∂x(rn+2k−1B(r2, xn)
x

rn+2k−1Pk(x))

= ∂x(rn+2k−1B(r2, xn))
x

rn+2k−1Pk(x).

Now
∂xr

n+2k−1 = (n+ 2k − 1)xrn−2k−3

and
∂xB(r2, xn) = 2x∂1B(r2, xn).

Then we have

∂x(B(r2, xn)xPk(x))

= ∂xr
n+2k−1B(r2, xn)

x

rn+2k−1Pk(x) + rn+2k−1∂xB(r2, xn)
x

rn+2k−1Pk(x)

= (n+ 2k − 1)xrn−2k−3B(r2, xn)
x

rn+2k−1Pk(x) + rn+2k−12x∂1B(r2, xn)
x

rn+2k−1Pk(x)

= (n+ 2k − 1)B(r2, xn)
x2

r2
Pk(x) + 2∂1B(r2, xn)x2Pk(x)

= −(n+ 2k − 1)B(r2, xn)Pk(x)− 2∂1B(r2, xn)r2Pk(x)

and the proof ist complete.�

This technical result allow us to prove following theorem.

Theorem 3.7 A function

fk(x) =
(
A(r2, xn)en +B(r2, xn)x

)
Pk(x).

is κ-hypermonigenic if and only if the functions A and B satis�es the

Vekua-type system

−2∂1B(r2, xn)r2 − ∂xnA(r2, xn) +
κ

xn
A(r2, xn)− (n+ 2k − 1)B(r2, xn) = 0,

∂xnB(r2, xn)− 2∂1A(r2, xn) = 0.

Proof. We compute

en∂xnfk(x) = (−∂xnA(r2, xn) + enx∂xnB(r2, xn)))Pk(x)

and
− κ

xn
en · fk(r, xn) =

κ

xn
A(r2, xn)Pk(x).

Using the preceding lemma, we have

Mκfk = (−2enx∂1A(r2, xn)− (n+ 2k − 1)B(r2, xn)− 2∂1B(r2, xn)r2)Pk(x)

+ (−∂xnA(r2, xn) + enx∂xnB(r2, xn)))Pk(x) +
κ

xn
A(r2, xn)Pk(x),

completing the proof.�
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4 A series solution for the system

De�ning u = r2 and v = xn we get system in the form

−2∂uB(u, v)u− ∂vA(u, v) +
κ

v
A(u, v)− (n+ 2k − 1)B(u, v) = 0,

(1)

∂vB(u, xn)− 2∂uA(u, v) = 0.
(2)

We look for solution in the form

A =
∞∑
i=0

uiAi(v)

and

B =
∞∑
j=0

ujBj(v).

We compute the derivatives

∂uA =
∞∑
i=1

iui−1Ai(v) =
∞∑
i=0

(i+ 1)uiAi+1(v),

∂vA =
∞∑
i=0

uiA′i(v),

∂uB =
∞∑
j=0

juj−1Bj(v),

∂vB =

∞∑
j=0

ujB′j(v).

Using the second equation (2) of the system, we get

∂vB(u, v)− 2∂uA(u, v) =
∞∑
j=0

ujB′j(v)− 2
∞∑
i=0

(i+ 1)uiAi+1(v)

=
∞∑
j=0

uj(B′j(v)− 2(j + 1)Aj+1(v)) = 0,

that is we get the relation

B′j(v) = 2(j + 1)Aj+1(v), j = 0, 1, 2, .... (3)
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Similarly, the �rst equation (1) gives

− ∂vA(u, v)− 2u∂uB(u, v) +
κ

v
A(u, v)− (n+ 2k − 1)B(u, v)

= −
∞∑
i=0

uiA′i(v)− 2u

∞∑
j=0

juj−1Bj(v) +
κ

v

∞∑
i=0

uiAi(v)− (n+ 2k − 1)

∞∑
j=0

ujBj(v)

=

∞∑
i=0

ui(−A′i(v) +
κ

v
Ai(v)− (2j + n+ 2k − 1)Bj(v)) = 0

so we get

−A′j(v) +
κ

v
Aj(v)− (2j + n+ 2k − 1)Bj(v) = 0, j = 0, 1, 2, 3, ... (4)

Now we get an algorithm to �nd a solution for the system. If we take
an arbitary di�erentiable function A0, then we may compute the other
unknown functions in the series solution using the above formulae (3)
and (4) by

A0
(4) // B0

(3) // A1
(4) // B1

(3) // A2
(4) // · · ·

5 Solutions for the System generated by

Bessel fuctions

In this section we look for one special class of solutions. Taking deriva-
tives we get form (4), that

−A′′j (v) +
κ

v
A′j(v)− κ

v2
Aj(v)− (2j + n+ 2k − 1)B′j(v) = 0

and then we may substitute (3) and we get

−A′′j (v) +
κ

v
A′j(v)− κ

v2
Aj(v)− (2j + n+ 2k − 1)2(j + 1)Aj+1(v) = 0

that is

Aj+1(v) =
1

(2j + n+ 2k − 1)2(j + 1)

(
−A′′j (v) +

κ

v
A′j(v)− κ

v2
Aj(v)

)
.

(5)
We look for solution for the equation

−A′′j (v) +
κ

v
A′j(v)− κ

v2
Aj(v) = −Aj(v) (6)

and we have the linear independent solutions

v
κ+1
2 J |κ−1|

2

(v) or v
κ+1
2 Y |κ−1|

2

(v).
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Combining (5) and (6) we may compute the terms recursively by the
formula

Aj+1(v) =
−1

(2j + n+ 2k − 1)2(j + 1)
Aj(v).

Then we have

A1(v) =
−1

2(n− 2k + 1)2
v
κ+1
2 A0(v)

A2(v) =
−1

2(n− 2k + 3)3

−1

2(n− 2k + 1)2
v
κ+1
2 A0(v)

=
1

22(n− 2k + 3)(n− 2k + 1)2 · 3
v
κ+1
2 A0(v)

A3(v) =
−1

2(n− 2k + 5)4

1

22(n− 2k + 3)(n− 2k + 1)2 · 3
v
κ+1
2 A0(v)

=
−1

23(n− 2k + 5)(n− 2k + 3)(n− 2k + 1)2 · 3 · 4
v
κ+1
2 A0(v)

and in general

Aj(v) = − (−1)j

2j(n− 2k + 1)(n− 2k + 3) · · · (n− 2k + (2j − 1))j!
v
κ+1
2 A0(v)

and

A = −
∞∑
j=0

(−1)juj

2j(n− 2k + 1)(n− 2k + 3) · · · (n− 2k + (2j − 1))j!
v
κ+1
2 A0(v)

And since u = r2 and v = xn we have

A(r2, xn) = −
∞∑
j=0

(−1)jr2j

2j(n− 2k + 1)(n− 2k + 3) · · · (n− 2k + (2j − 1))j!
x
κ+1
2

n A0(xn).

Using a standard identity of the gamma function we get

(n− 2k + 1)(n− 2k + 3) · · · (n− 2k + (2j − 1))

= 2j(
n− 2k − 1

2
+ j) · · · (n− 2k + 1

2
+ 1)(

n− 2k + 1

2
)

= 2j
Γ(n−2k+1

2 + j)

Γ(n−2k+1
2 )

and then

A(r2, xn) = −Γ(
n− 2k + 1

2
)

∞∑
j=0

(−1)jr2j

22jΓ(n−2k+1
2 + j)j!

x
κ+1
2

n A0(xn).
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Using the de�nition of the Bessel function

Jν(z) =
zν

2ν

∞∑
j=0

(−1)jz2j

j!22jΓ(ν + j + 1)

we see that our solution is given by

A(r2, xn) = −2
n−2k+1

2 Γ(
n− 2k − 1

2
)r−

n−2k−1
2 Jn−2k+1

2
(r)x

κ+1
2

n A0(xn),

where A0(v) is either

v
κ+1
2 J |κ−1|

2

(v) or v
κ+1
2 Y |κ−1|

2

(v).
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