Symmetry, Integrability and Geometry: Methods and Applications SIGMA 12 (2016), 003, 27 pages

Doubling (Dual) Hahn Polynomials:
Classification and Applications

Roy OSTE and Joris VAN DER JEUGT

Department of Applied Mathematics, Computer Science and Statistics, Ghent University,
Krijgslaan 281-59, B-9000 Gent, Belgium
E-mail: Roy.Oste@UGent.be, Joris. VanderJeugt@UGent.be

Received July 13, 2015, in final form January 04, 2016; Published online January 07, 2016
http://dx.doi.org/10.3842/SIGMA.2016.003

Abstract. We classify all pairs of recurrence relations in which two Hahn or dual Hahn
polynomials with different parameters appear. Such couples are referred to as (dual) Hahn
doubles. The idea and interest comes from an example appearing in a finite oscillator
model [Jafarov E.I, Stoilova N.I., Van der Jeugt J., J. Phys. A: Math. Theor. 44 (2011),
265203, 15 pages, arXiv:1101.5310]. Our classification shows there exist three dual Hahn
doubles and four Hahn doubles. The same technique is then applied to Racah polynomials,
yielding also four doubles. Each dual Hahn (Hahn, Racah) double gives rise to an explicit
new set of symmetric orthogonal polynomials related to the Christoffel and Geronimus trans-
formations. For each case, we also have an interesting class of two-diagonal matrices with
closed form expressions for the eigenvalues. This extends the class of Sylvester—Kac matrices
by remarkable new test matrices. We examine also the algebraic relations underlying the
dual Hahn doubles, and discuss their usefulness for the construction of new finite oscillator
models.
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1 Introduction

The tridiagonal (N + 1) x (N + 1) matrix of the following form

Cnt1 = L (1.1)

2 0 N
1 0

appears in the literature under several names: the Sylvester-Kac matrix, the Kac matrix, the
Clement matrix, . ... It was already considered by Sylvester [28], used by M. Kac in some of his
seminal work [17], by Clement as a test matrix for eigenvalue computations [9], and continues
to attract attention [6, 7, 29]. The main property of the matrix C'y41 is that its eigenvalues are
given explicitly by

~N,-N+2,—-N+4,...,N—2,N. (1.2)

Because of this simple property, Cn+1 is a standard test matrix for numerical eigenvalue com-
putations, and part of some standard test matrix toolboxes (e.g., [12]).
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One of the outcomes of the current paper implies that Cn41 has appealing two-parameter
extensions. For odd dimensions, let us consider the following tridiagonal matrix

0 2y +2
2N 0 2
W+2N 0 2y+4
2N — 2 0 4
Con41(7,6) = . L - (13)
2644 0 2y42N
2 0 2N
2042 0

In the following, we shall sometimes use the term “two-diagonal” [10] for tridiagonal matrices
with zero entries on the diagonal (not to be confused with a bidiagonal matrix, which has also
two non-zero diagonals, but for a bidiagonal matrix the non-zero entries are on the main diagonal
and either superdiagonal or the subdiagonal). So, just as Con 1 the matrix (1.3) is two-diagonal,
but the superdiagonal of Con 1,

[1,2,3,4,...,2N — 1,2N]
is replaced by
27 +2,2,2v 4+ 4,4,...,2y+ 2N, 2N],
and in the subdiagonal of Cony1,
[2N,2N —1,2N —2,...,3,2,1]
the odd entries are replaced, leading to
[2N,20 + 2N, 2N —2,...,20 +4,2,20 + 2].

Clearly, for v = 6 = —% the matrix Con1(7,0) just reduces to Con41. One of our results is
that Con41(7,9) has simple eigenvalues for general v and §, given by

0,£2/1(v+ 6 +2),+2/2(y + 0+ 3),£2/3(y+ 6 +4),...,+2/N(y+ 5 + N + 1).

This spectrum simplifies even further for § = —y — 1; in this case one gets back the eigenva-
lues (1.2).

For even dimensions, we have a similar result. Let Can(,0) be the (2N) x (2N) tridiagonal
matrix with zero diagonal, with superdiagonal

27 +2,2,2v+4,4,...,2N — 2,2y + 2N]
and with subdiagonal
[20 +2N,2N — 2,26 + 2N —2,...,4,25 +4,2,20 + 2].

Then Can(7,d) has simple eigenvalues for general v and §, given by!

+2/ (v +1)(0+1),22/(v +2)(6 + 2),...,+2/(y + N)(6 + N). (1.4)

n this paper, we shall usually take v > —1 and § > —1, yielding real eigenvalues for the matrices under
consideration. But the expressions for the eigenvalues remain valid even when these conditions are not satisfied.
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This spectrum simplifies for 6 = +, and obviously for v = § = —% one gets back the eigenva-
lues (1.2) since in that case Con(7,0) just reduces to Cop.

What is the context here for these new tridiagonal matrices with simple eigenvalue proper-
ties? Well, remember that C'n1 also appears as the simplest example of a family of Leonard
pairs [24, 30]. In that context, this matrix is related to symmetric Krawtchouk polynomials [13,
19, 23]. Indeed, let K,(z) = Kn(a:;%,N), where K, (z;p, N) are the Krawtchouk polyno-
mials [13, 19, 23]. Then their recurrence relation [19, equation (9.11.3)] yields

nKp_1(z) + (N —n)K,q1(x) = (N — 2z)K,(x), n=0,1,...,N. (1.5)

Writing this down for z = 0,1,..., N, and putting this in matrix form, shows indeed that the
eigenvalues of Cy41 (or rather, of its transpose C'% +1) are indeed given by (1.2). Moreover, it
shows that the components of the kth eigenvector of C%, 41 are given by K, (k).

So we can identify the matrix Cy 41 with the Jacobi matrix of symmetric Krawtchouk poly-
nomials, one of the families of finite and discrete hypergeometric orthogonal polynomials. The
other matrices Cn (7, d) appearing in this introduction are not directly related to Jacobi matri-
ces of a simple set of finite orthogonal polynomials. In this paper, however, we show how two
sets of distinct dual Hahn polynomials [13, 19, 23] can be combined in an appropriate way such
that the eigenvalues of matrices like Cn(7,d) become apparent, and such that the eigenvector
components are given in terms of these two dual Hahn polynomials. This process of combining
two distinct sets is called “doubling”. We examine this not only for the case related to the
matrix C'y (7, d), but stronger: we classify all possible ways in which two sets of dual Hahn poly-
nomials can be combined in order to yield a two-diagonal “Jacobi matrix”. It turns out that
there are exactly three ways in which dual Hahn polynomials can be “doubled” (for a precise
formulation, see later). By the doubling procedure, one automatically gets the eigenvalues (and
eigenvectors) of the corresponding two-diagonal matrix in explicit form.

This process of doubling and investigating the corresponding two-diagonal Jacobi matrix can
be applied to other classes of orthogonal polynomials (with a finite and discrete support) as well.
In this paper, we turn our attention also to Hahn and to Racah polynomials. The classification
process becomes rather technical, however. Therefore, we have decided to present the proof of
the complete classification only for dual Hahn polynomials (Section 3). For Hahn polynomials
(Section 4) we give the final classification and corresponding two-diagonal matrices (but omit
the proof), and for Racah polynomials we give the final classification and some examples of
two-diagonal matrices in Appendix A.

We should also note that the two-diagonal matrices appearing as a result of the doubling
process are symmetric. So matrices like (1.3) do not appear directly but in their symmetrized
form. Of course, as far as eigenvalues are concerned, this makes no difference (see Section 6).

The doubling process of the polynomials considered here also gives rise to “new” sets of
orthogonal polynomials. One could argue whether the term “new” is appropriate, since they
arise by combining two known sets. The peculiar property is however that the combined set has
a common unique weight function. Moreover, we shall see that the support set of these doubled
polynomials is interesting, see the examples in Section 5. In this section, we also interpret
the doubling process in the framework of Christoffel-Geronimus transforms. It will be clear
that from our doubling process, one can deduce for which Christoffel parameter the Christoffel
transform of a Hahn, dual Hahn or Racah polynomial is again a Hahn, dual Hahn or Racah
polynomial with shifted parameters.

In Section 6 we reconsider the two-diagonal matrices that have appeared in the previous
sections. It should be clear that we get several classes of two-diagonal matrices (with parameters)
for which the eigenvalues (and eigenvectors) have an explicit and rather simple form. This section
reviews such matrices as new and potentially interesting examples of eigenvalue test matrices.
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In Section 7 we explore relations with other structures. Recall that in finite-dimensional
representations of the Lie algebra su(2), with common generators J;, J_ and Jy, the matrix
of J4 + J_ also has a symmetric two-diagonal form. The new two-diagonal matrices appearing
in this paper can be seen as representation matrices of deformations or extensions of su(2). We
give the algebraic relations that follow from the “representation matrices” obtained here. The
algebras are not studied in detail, but it is clear that they could be of interest on their own.
The general algebras have two parameters, and we indicate how special cases with only one
parameter are of importance for the construction of finite oscillator models.

2 Introductory example

We start our analysis by the explanation of a known example taken from [27]. For this example,
we first recall the definition of Hahn and dual Hahn polynomials and some of the classical
notations and properties.

The Hahn polynomial Q,,(x; o, 5, N) [13, 19, 23] of degree n, n = 0,1, ..., N, in the variable z,
with parameters @ > —1 and 8 > —1 (or @« < —N and § < —N) is defined by [13, 19, 23]

-n,n+a+p+1,—x
Qn(zr;a, B,N) =3F2< p -1).

2.1
a+1,—-N ’ (2.1)

Herein, the function 3F5 is the generalized hypergeometric series [4, 26]

abye. \ _ o (@r(b)r(e)x 2
3FQ< i Z>kz—0 Do H (2.2)

In (2.1), the series is terminating because of the appearance of the negative integer —n as
a numerator parameter. Note that in (2.2) we use the common notation for Pochhammer
symbols [4, 26] (a)r =a(a+1)---(a+k—1) for k=1,2,... and (a)p = 1. Hahn polynomials
satisfy a (discrete) orthogonality relation [13, 19]

N
Zw(xaaaﬁaN)Qn(xa Oé,B,N)Qn/<I';CE,57N) - hn(OC?B’ N) 5n,n’7 (23>
=0
where
wwap ) = (T (VSIUT) emoniw

(C1)"(nt a4 B Dwaa (8 + 1)l
Cn+a+p+1)(a+1),(—=N),N!"

We denote the orthonormal Hahn functions as follows

Qn(x;a,ﬁ, N) = \/WQH('%;O@B7N)‘

hn(a, B,N) =

hn (e, B, N)
The Hahn polynomials satisfy the following recurrence relation [19, equation (9.5.3)]
A@)yn(@) = A(n)ynta1(z) = (A(n) + C(n)yn(x) + C(n)yn-1(x) (2.4)
with
yn(z) = Qn(z;0, B, N),  AMz) = -z, (2.5)
An) = (n+a+1)(n+a+B+1)(N—n) Cln) = nn+a+p+N+1)(n+p5)

Cn+a+B+1)2n+a+p+2) Cn+a+p)(2n+a+B+1)
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Related to the Hahn polynomials are the dual Hahn polynomials: R, (A(x);v,0, N) of deg-
ree n, n = 0,1,..., N, in the variable A\(z) = x(x + v + § + 1), with parameters v > —1 and
> —1 (or vy < —N and 0 < —N) which are defined similarly to (2.1) [13, 19, 23]

—z,c+v+d+1,—n
n(A(2);7v,0,N) = 3F ;1. 2.
R0, =y (77T TEOET) (2.6
As is well known, the (discrete) orthogonality relation of the dual Hahn polynomials is just the
“dual” of (2.3)

N
Z@(m;’y, 8, N)Ry(A(2); 7,0, N) Ry (A(2); 7,0, N) = (7,8, N )G (2.7)
=0
where
— |
i) = L2278+ DO+ DN,

()% (z4+~v4+ 6+ 1)ne1 (6 + 1)zl
B (7,0, N) = [<7:n> <N§i;n)]—1

Orthonormal dual Hahn functions are defined by

Ra(M():7, 6, N) = Vw(x; 7,6, N)Rp(A(x);7,,N) (2.8)

hn(’}/, 55 N)

Dual Hahn polynomials also satisfy a recurrence relation of the form (2.4), with [19, equa-
tion (9.6.3)]

yn(2) = Rn(A(2);7,0,N),  AMz) = AMa) =z(z+y+5+1),
An)=(n+~v+1)(n—N), C(n)=nn—6—-N—-1). (2.9)

In [27], the following difference equations involving two sets of Hahn polynomials were derived
(for convenience we use the notation Q, () = Qn(z;a, B+1, N) and Qn(z) = Qn(z;a+1,8,N)):

(n+a—|—1)(n—|—ﬂ+1)Qn($) (2.10)

(N +0+1-— :E)Qn(SU) - (N - CC)Qn($ + 1) =

a+1
(+1)Qn(z) — (@ +24+2)Qun(z+1) = —(a+ 1)Qn(x + 1). (2.11)
Writing out these difference equations for x = 0,1,..., N, the resulting set of equations can

easily be written in matrix form. For this matrix form, let us use the normalized version of the
polynomials, and construct the following (2N + 2) x (2N + 2) matrix U with elements

(-1)*

Ugc 7n:U:E n = —F— WnlT &, +17N’ 2.12

2, N 2z,N+n+1 \/iQ(CCOZB ) ( )
(1"

Usgii,N—n = —Usei1 Nint1 = ——=Qu(z;a+ 1,8, N), (2.13)
V2
where z,n € {0,1,..., N}. By construction, this matrix is orthogonal [27]: the fact that the

columns of U are orthonormal follows from the orthogonality relation of the Hahn polynomials,
and from the signs in the matrix U. Thus UTU = UUT = I, the identity matrix.
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The normalized difference equations (2.10), (2.11) for x = 0,1,..., N can then be cast in
matrix form. The coefficients in the left hand sides of (2.10), (2.11) give rise to a tridiagonal
(2N +2) x (2N + 2)-matrix of the form

0 My 0
My 0 M
M=o M 0 . o |, (2.14)
. . Msn
0 My 0
with
Moy, =\/(k+a+)(N+B+1—-k), My =+/(k+1)(N—k). (2.15)

Suppose a > —1, 8 > —lora < —N —1, 8 < —N — 1 and let U be the orthogonal matrix
determined in (2.12), (2.13). Then [27] the columns of U are the eigenvectors of M, i.e.,

MU =UD, (2.16)
where D is a diagonal matrix containing the eigenvalues of M

D = diag(—en, ..., —€1,—€0, €0, €1, ..., EN),

ee=+\(a+k+1)(B+k+1), k=0,1,...,N. (2.17)

Note that the eigenvalues of the matrix M are (up to a factor 2) the same as those of
the matrix Conio(a, B), the two-parameter extension of the Sylvester—Kac matrix. As we will
further discuss in Section 6, the above result proves that the eigenvalues of Conio(a, 3) are
indeed given by (1.4). Even more: the orthonormal eigenvectors of M are just the columns
of U.

Another way of looking at (2.16) is in terms of the dual Hahn polynomials. Interchanging x
and n in the expressions (2.12), (2.13), we have

1" .
Usnvos = Unnvioit = - R\, 54 1,), (218)
(1" ;
Usnt1i,N—z = —Uspnii Nyzt1 = — /2 R,(Mz);a+1,8,N), (2.19)
where z,n € {0,1,...,N}. In this way, each row of the matrix U consists of a dual Hahn

polynomial of a certain degree, having different parameter values for even and odd rows. Now,
the relation (2.16) can be interpreted as a three-term recurrence relation with M being the Jacobi
matrix. Two sets of (dual) Hahn polynomials (with different parameters) are thus combined
into a new set of polynomials such that the Jacobi matrix for this new set has a simple two-
diagonal form, with simple eigenvalues. The pair of difference equations (2.10), (2.11) involving
two sets of Hahn polynomials then corresponds to the following relations involving the dual
Hahn polynomials R,,(z) = R,(A(z);7,0 + 1, N) and R,(z) = R,(A(x);y + 1,5, N):

(z+y+1)(@+5+1) -
A A G0 R, (z), (2.20)

(n+1)Ry(z) — (n+ v+ 2)Rpyi1(z) = —(v + 1) Ryt (). (2.21)

This is in fact a special case of the so-called Christoffel transform of a dual Hahn polynomial
with its transformation parameter chosen specifically so that the result is again a dual Hahn
polynomial (with different parameters). We will further elaborate on this in Section 5.

This introductory example, taken from [27], opens the following question: in how many
ways can two sets of (dual) Hahn polynomials be combined such that the Jacobi matrix is
two-diagonal? This will be answered in the following section.

(N+0+1=n)Ry(z) = (N = n)Ry1(x) =
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3 Doubling dual Hahn polynomials: classification

The essential relation in the previous example is the existence of a pair of “recurrence rela-
tions” (2.20), (2.21) intertwining two types of dual Hahn polynomials (or equivalently a couple
of difference equations (2.10), (2.11) for two types of their duals, the Hahn polynomials). Let
us therefore examine the existence of such relations in general. Say we have two types of dual
Hahn polynomials with different parameter values for 7 and ¢ (and possibly N) denoted by
Rn(A(2);7,6,N) and R,(A(%);4,6, N), that are related in the following manner

a(n) Ra(M2); 7,6, N) + b(n) Ryus1 (A(@); 7,8, N) = d(@) Ra(M(2); 4,8, V) (3.1)
a(n)Ra(M@): 4,8, M) + b(n) Rus1 (M@); 4,8, V) = d(@) Rus1 (M); 7, 8, ). (3.2)

If we want these relations to correspond to a matrix identity like (2.16), then it is indeed
necessary that the (unknown) functions a(n), a(n), b(n) and b(n) are functions of n and not
of z, and that d(z) and d(z) are functions of z and not of n. Of course, the parameters v, 8, N,
v, ) , N can appear in these functions.

In order to lift this technique also to other polynomials than just the dual Hahn polynomials,
say we have the following relations between two sets of orthogonal polynomials of the same class,
denoted by ¥, and ¢,, but with different parameter values

d(2)in, (3.3)
= d(z)Yn+1, (34)

a(n)yn + b(n)Yns1

a(n)in + b(n)int1

where a, @, b, b are independent of z and d, d are independent of 7. Although (3.3), (3.4) are not

actual recurrence relations since they involve both ¥, and ¢,, we will refer to a couple of such

relations intertwining two types of orthogonal polynomials as “a pair of recurrence relations”.
When substituting (3.4) in (3.3), we arrive at the following recurrence relation for ¢,

a(n)[a(n — 1)in—1 + b(n — )] + b(n)[a(n)in + b(n)ins1] = d(x)d(x) i (3.5)
In the same manner, 7, can be eliminated to find a recurrence relation for v,
a(n — 1)[a(n — yacr +b(n — Dya] +b(n — 1) [a(n)yn + b(n)ynss] = d@)d()yn.  (3.6)

Of course, the orthogonal polynomials y, already satisfy a three-term recurrence relation of
the form (2.4). A comparison of the coefficients of yp41, Yn, Yn—1 in (3.5), (3.6) with the known
coefficients given in (2.9) leads to the following set of requirements for a, a, b, b, d, d

a(n)a(n —1) = C(n), (3.7)
a(n —1)a(n —1) = C(n), (3.8)
a(n)b(n — 1) + a(n)b(n) — d(z) d(z) = — [A(z) + A(n) + C(n)], (3.9)
a(n)b(n — 1) + a(n — 1)b(n — 1) — d(z)d(z) = — [A(z) + A(n) + C(n)], (3.10)
b(n)b(n) = A(n), (3.11)
b(n)b(n — 1) = A(n). (3.12)

After a slight rearrangement of terms in the requirements (3.9) and (3.10), we arrive at two new
equations where the left hand side is independent of x while the right hand side is independent
of n, namely,

a(n)b(n) + A(n) + C(n) = d(z)d(z) — A(z), (3.13)
a(n —1)b(n — 1) + A(n) + C(n) = d(z)d(z) — A(z). (3.14)



8 R. Oste and J. Van der Jeugt

Hence, the two sides must be independent of both n and z. By means of (3.7)-(3.12) we can
eliminate A, A, C, C to find

a(n)[a(n —1) +b(n = D] +b(n) [a(n) + b(n)] = d(z)d() ~ A2),

A~

a(n—1)[a(n — 1) +b(n — 1)] +b(n — 1) [a(n) + b(n)] = d(z)d(z) — A(z).
Moreover, subtracting one from the other yields

A(z) — A(z) = a(n — D[a(n) — a(n — 1) = b(n — 1)] + b(n)[a(n) + b(n) — b(n — 1)].(3.15)

Now, for a given class of orthogonal polynomials with recurrence relation of the form (2.4),
we determine all possible functions a, a, b, b, d, d satisfying the list of requirements (3.7)—(3.12).
Hereto, we proceed as follows

e From (3.7) and (3.8) we observe that, up to a multiplicative factor, C'(n) is split into two
functions, a(n — 1) and a(n — 1). When a(n — 1) is shifted by 1 in n and multiplied again
by a(n — 1) we must arrive at C(n). Hence, C' and C' consist of an identical part, and
a part which differs by a shift of 1 in n. This observation gives a first list of possibilities
for a and a.

e Similarly we find a list for b and b by means of (3.11) and (3.12).

e These possibilities are then to be compared with requirements (3.9) and (3.10). From
(3.13), (3.14) and (3.15) we get an expression for the product d(z)d(z). Finally, the set
of remaining choices for a, @, b, b are to be plugged in (3.4) and (3.3) in order to get d, d
and to verify if these relations indeed hold.

The actual performance of the procedure just described is still quite long and tedious, when
carried out for a fixed class of polynomials. In what follows we achieve this for the dual Hahn
polynomials, which have the easiest recurrence relation, and it takes about three pages to present
this. The reader who wishes to skip the details can advance to Theorem 1.

For dual Hahn polynomials, the data is given by (2.9)

Un = Ra(M2);7,0,N), o= Ra(A@);4,0,N),  A(z)=\z)=a(@+y+6+1),
A(n) =(n+~v+1)(n—N), C(n)=nn—6—-N—1),

and with similar expressions for A(z), A(n) and C(n) (with x, ~, 6, N replaced by &, 4, 6, N).
From (3.15), the following expression must be independent of x

Az)—A@@)=a(@+y+6+1) —2(2+5+0+1).
In order for the term in 22 to disappear, we must have & = 2 + ¢ which gives

@+ +0+1)—(z+E(@+E+4+0+1)=(7+0—-A—0—-2)z—E(E+A+0+1)

and as we require the coefficient of z to be zero we find the following condition for £

v40— (5 +6) = 2. (3.16)
From (3.8) we see that we have four distinct possible combinations for a(n — 1) and a(n — 1)
a(n —1) = leg, an—1)=n(n—6 - N — 1), !, (al)
a(n — 1) = ne,, an—1)=(Mn—-6—-N —1)c, !, (a2)
aln—1)=(n—0—N —1)cg, a(n —1) =nc; b, (a3)
a(n—1)=n(n—0— N — 1)c,, a(n—1)=1¢, ", (ad)
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with ¢, a factor. Combining this with (3.7) we must have

A~

a(n)a(n —1) = C(n) =n(n— 65— N — 1).

This immediately implies that ¢, is independent of n, and (al)—(a4) yield the following possi-
bilities

nn—>0—N—-1)=n(n—56—-N—-1) — 0+N=0+N, (al’)
(n+1)(n—86—N—1)=n(n— 5 N—-1) = 0+N+1=0A6+N+2=0, (a2
(n—6—Nn=n(n—06—-N—1 = 0+N=0+N+1, (a3')
(n+1)(n—6—N)=n(n—6—N—1) — J+N=0A6+N+2=0.  (ad)

Because of the restriction on ¢ the option (a4’) is ineligible, leaving (al’)—(a3’) as only viable
options. )
In a similar way, from (3.12) we see that we have four possible combinations for b(n) and b(n),

b(n) = b(n—1)=(n+y+1)(n— N, (b1)
b(n) = (n—|—7+ ey, b(n—1)=(n—N)e, ', (b2)
b(n) = (n — N)ey, bn—1) = (n+7+ 1), (b3)
bn) = (n+y+ D= N)ep,  bln—1) = 1;* (b4)

Combining this with (3.11) we must have
b(n)b(n) = A(n) = (n+4+ 1)(n - N)

This implies that ¢ is independent of n and moreover for (b1)—(b4) yields
n+v+2)n—N+1)=n+4+1)n-N) = ~+1=4AN-1=N, (bl)
n+y+1)(n=N+1)=m+3+1)(n-N) = y=4AN-1=N, (b2')
(n+v+2)(n—N)=(n+45+1)(n—N) — y+1=4AN=N, (b3")
(n+v+1)(n—N)=(n+45+1)(n—N) — y=4AN=N. (b4’)

We thus have four viable options for b, b and three for a, a, giving a total of 12 possible
combinations, which we will systematically consider and treat.
Case (bl). Plugging (bl) in (3.14), we get

a(m)(n+y+1)(n—N)eg' +a(n— e+ (n+y+1)(n—N)+n(n—-05—N—1)

=d(x)d(x) — A(z).

As the right hand side is independent of n, so must be the left hand side. This eliminates op-
tions (a2) and (a3) for a, @ as that would result in a third order term in n which cannot vanish.
On the other hand, (al) yields

(n+’y+1)(n—N)%Z—l—n(n—(S—N—l)z—b+(n+'y+1)(n—N)—|—n(n—5—N—1)
= d(z)d(z) — A(z).

This must be independent of n, so the coefficient of n? in the left hand side must vanish, hence
Ca/Ch + p/ca +2 = 0 or thus ¢,/cy; = —1. For this value of ¢,/cp the left hand side equals
zero and is indeed independent of n. Note that this leaves one degree of freedom as only the
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ratio ¢q/cp is fixed. This is just a global scalar factor for (3.3) and (3.4), also present in (2.4).
Henceforth, for convenience, we set ¢, = 1 and ¢, = —1.

The combined options (bl) and (al) thus give a valid set of equations of the form (3.3)
and (3.4), and they correspond to the parameter values

y=v+1, d=6+1, N=N-1.

Moreover, by means of (3.16) we find £ = —1 and so & =  — 1. Finally, plugging these a, a,
b, b in (3.3) and (3.4), and putting n = 0 we find

(z+y+6+1)

Ro(A();7v,0,N) — Ri(A(x);7,0,N) = N(y+1)

= d(x)
and similarly d(z) = N(y + 1). Hence, for R, (z) = R,(A(z);7,8,N) and Ry (z) = R,(A(x —1);
v+ 1,6 +1, N — 1) we have the relations

—(n+1)(N=n+06)Ry(z)+ (N —n—1)(n+~+2)Rny1(x) = N(y + 1) Ryp1(z).

Ry (),

Interchanging = and n, these recurrence relations for dual Hahn polynomials are precisely the
known actions of the forward and backward shift operator for Hahn polynomials [19, equa-
tions (9.5.6) and (9.5.8)].

Case (b2). Next, we consider the option (b2) for b, b. Plugging (b2) in (3.14), we get

a(n)(n—N)e;' +a(n—1)(n+v)ep+(n+y+1)(n—N)+nn—-35—N—1)
= d(z)d(z) — A(z).
Since the left hand side must be independent of n, option (al) is ruled out. Also option (a2)

is ruled out: using (a2) and § + N +1 = 0 (from (a2')), the left hand side again cannot be
independent of n. Only (a3) remains, giving

(n—é—N)(n—N)%:—l—n(n—l—’y)%—k(n+7+1)(n—N)+n(n—5—N—1)
= d(z)d(z) — Alz).
In order for n? in the left hand side to vanish, we again require ¢,/c, = —1. This gives
~N(N +~+40+1) =d(x)d(z) — Az),

and we see that both sides are indeed independent of n.
The combined options (b2) and (a3) also give a valid set of equations of the form (3.3)
and (3.4), now corresponding to the parameter values

5 =7, 5=24, N=N-1.

Moreover, by means of (3.16) we find £ = 0 and so & = z. Putting again n = 0 in (3.3) and (3.4)
for these a, a, b, b we find

(=0 = N)Ro(Mx);7,6, N) — (v + 1)R1(A(x); 7,0, N)

. N—-z)z+y+0+N+1)
=— N = d(x)
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and similarly d(z) = N. The relations in question are then, for R,(z) = Ry (A(z);7,d,N) and

(N—z)(x+7y+0+N+1)

N Ry (),

(n—=06—N)Rn(x) — (n+7+1)Rnya1(z) = —
(n+1)Ry(z) — (n — N + 1)Rpy1(2) = NRpy1(2),

which can be verified algebraically or by means of a computer algebra package.
Case (b3). The next option to consider is (b3), for which (3.14) becomes

a(n)(n+~y+ e, +an—1)(n—N—-1De+n+y+1)(n—N)+nn—-6—-N-1)
= d(z)d(z) — A(z).

The independence of n in the left hand side again rules out options (al) and (a2), while (a3)
gives

(n—é—N)(n+’y+1)i—a+n(n—N—l)z—b—I—(n+7+1)(n—N)+n(n—5—N—1)
b a

= d(z)d(z) — Alz).
Also here, we require ¢,/c;, = —1 to arrive at a left hand side independent of n, namely

(v 4 1)6 = d(z)d(z) — A(x).

The combined options (b3) and (a3) thus give a valid set of equations of the form (3.3) and (3.4),
and they correspond to the parameter values

y=y+1, 0=6—-1, N=N;

by means of (3.16) we find ¢ = 0 and so # = x. Finally, plugging these a, @, b, b in (3.3)
and (3.4) and putting n = 0 we find

z+~+1)(z+0)
(v+1)

(=6 = N)Ro(A(@);,6, V) + N (A); 7,6, N) = i)
and similarly d(z) = v + 1.

Hence we have the relations, for R,(z) = R,(\(z);v,6, N) and R, (z)
d—1,N)

Rno(Mx);y + 1,

(z+v+1)(z+9)
(v+1)
—(n+ 1) Ru(z) + (n+ 7+ 2)Rui1(z) = (v + 1) Ruyr (2).

—(n =5 = N)Ru(2) + (n = N) Ry (2) = Ra(a),

These can again be verified algebraically or by means of a computer algebra package. Note that
these relations coincide with (2.20), (2.21) from the previous section (up to a shift 6 — 6 + 1).
Case (b4). The final option (b4) for b, b does not correspond to a valid set of equations of
the form (3.3) and (3.4) as the left hand side of (3.14) can never be independent of n for either
options (al), (a2) or (a3).
This completes the analysis in the case of dual Hahn polynomials, and we have the following
result
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Theorem 1. The only way to double dual Hahn polynomials, i.e., to combine two sets of dual
Hahn polynomials such that they satisfy a pair of recurrence relations of the form (3.1), (3.2) is
one of the three cases:

dual Hahn I, R, (z) = R,(A(2);7,0,N) and Ry(z) = Ry(Mz —1);7+ 1,6 + 1, N —1):

r(@+v+05+1)

Ry(z) — Rpy1 () = N+ 1)

—n+1)(N—n+9)Rp(x)+ (N —n—1)(n+v+2)Rpt1(z) = Ny + 1) Rpy1(2).

Rn(m),

dual Hahn II, R, (z) = R,(\(2);7,6, N) and R,(z) = R,(A\(x);7,0,N —1):

(n =6 = N)Ru(a) = (n+ 7+ 1) R (1) = == x”“"*}(ﬁ AN ),

A N

(n+1)Rp(x) — (n— N+ 1)Rpi1(x) = NRyy1(x).
dual Hahn III, R, (z) = R,(\(2);7,0,N) and R,(z) = Ry(M(z);v+1,6 — 1, N):

(z+v+1)(z+9)
(v+1)
—(n+ 1) Ru(z) + (n+ 7+ 2)Rui1(z) = (v + 1) R yr (2).

—(n =5 = N)Ru() + (n = N) Ry (2) = Ra(a),

By interchanging x and n, each of the recurrence relations for dual Hahn polynomials in the
previous theorem gives rise to a set of forward and backward shift operators for regular Hahn
polynomials. The case dual Hahn I corresponds just to the known forward and backward shift
operators for Hahn polynomials [19]: Q,(z) = Qn(z;a, 8, N) and Qn(x) =Qn(z;a+ 1,841,
N —1):

Qo) = Qula+1) = " EEEAEDG, o)

@+ (N =2+ B)Qna(@) + (N =2 — D +a+2)Qn (e +1)
=N(a+1)Qn(z +1).

The case dual Hahn III corresponds to our introductory example (2.10), (2.11) (up to a shift
B — B+ 1), and appears already in [27]. The case dual Hahn II yields a new set of relations
(encountered recently in [16, equations (16), (17)]), namely Q,(x) = Qn(z;a, 3, N) and Q, () =
Qn(z;a, B, N —1):

(@~ B~ N)Qulw) ~ (@ + 0+ DQula + 1) = - V=W EAFFINED 5 )

(:E + 1)@%(33) - (ZL‘ - N+ 1)@71(33 + 1) = NQn(x + 1)'

The most important thing is, however, that we have classified the possible cases.

Because the sets of recurrence relations are of the form (3.1), (3.2), they can be cast in matrix
form, like in (2.16), with a simple two-diagonal matrix. For the case dual Hahn I, note that
the N-values of R, (z) and R, (x) differ by 1, so the definition of the matrix U (again in terms
of the normalized version of the polynomials) requires a little bit more attention. The matrix U
is now of order (2N + 1) x (2N + 1) with matrix elements

—1)" -
UQnVN_x = UQnJ\H_Qc = (\/5) Rn()\(x);'y, 5, N), xr = 1, Ce. ,N,

—1)" .
U2n+1,N—:r = _U2n+1,N+x = _(\[;Rn()‘(l‘ - 1);7 + 175 + 1,N - 1)7 xr = 1a s aNa

U2n,N = (_1)an()\(O)7 Y, 57 N)a U2n+1,N - 07 (317)
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where the row index of the matrix U (denoted here by 2n or 2n + 1, depending on the parity
of the index) also runs over the integers from 0 up to 2/N. This matrix U is orthogonal: the
orthogonality relation of the dual Hahn polynomials (2.7) and the signs in the matrix U imply
that its rows are orthonormal. Thus UTU = UU” = I, the identity matrix. Then the recurrence
relations for dual Hahn I of Theorem 1 are now reformulated in terms of a two-diagonal
(2N 4+ 1) x (2N + 1)-matrix of the form

0 My O
My 0 M

M=1o0 M o . o |- (3.18)

. Moy
0 Moy 0

Explicitly

Proposition 2 (dual Hahn I). Suppose v > —1, 6 > —1. Let M be the two-diagonal mat-
riz (3.18) with

Moy, = /(k+~+ 1)(N — k), Mojy1 =/ (k+1)(N +6 — k), (3.19)

and U the orthogonal matriz determined in (3.17). Then the columns of U are the eigenvectors
of M, i.e., MU = UD, where D is a diagonal matriz containing the eigenvalues of M

D = diag(—GN,...,—61,0,61,...,€N>,
e« =vVk(k+y+d+1), k=1,...,N. (3.20)

Note that we have kept only the conditions under which the matrix M is real. The other
conditions for which the dual Hahn polynomials in (3.17) can be normalized (namely v < —N,
d < —N) would give rise to imaginary values in (3.19). In such a case, the relation MU = UD
remains valid, and also D would have imaginary values.

For the case dual Hahn II, the matrix U is again of order (2N + 1) x (2N + 1) with matrix
elements

Usn,e = U: = L R.(\@)v, 6N =0,...,N—1
2n,x — 2”,2N—$_ﬁ n( (l‘),’}/, ) )7 r=Uu,..., -

1 =~
U2n+1,:1: = —UQTH_LQN_Q; = —ERH()\(JJ);’)/,(S,N — 1), Tr = 0, PN ,N — 1,
U2n7N = Rn()\(N)7 7> 67 N)7 U2n+1,N = 07 (321)

where the row indices are as in (3.17). The orthogonality relation of the dual Hahn polynomials
and the signs in the matrix U imply that its rows are orthonormal, so UTU = UU”T = I. The
pair of recurrence relations for dual Hahn IT of Theorem 1 yield

Proposition 3 (dual Hahn II). Suppose v > —1, § > —1. Let M be a tridiagonal (2N + 1) X
(2N + 1)-matriz of the form (3.18) with

Moy, = /(N +6 — k)(N — k), Mopyr =/ (k+1)(k+7+ 1), (3:22)

and U the orthogonal matriz determined in (3.21). Then the columns of U are the eigenvectors
of M, i.e., MU = UD, where D 1is a diagonal matriz containing the eigenvalues of M

D:diag(—GN,...,—61,0,61,...,€N>,
e = Vk(Y+d+14+2N — k), k=1,...,N.




14 R. Oste and J. Van der Jeugt

Note that the order in which the normalized dual Hahn polynomials appear in the matrix U
is different for (3.17) and (3.21). This is related to the indices of the polynomials in the relations
of Theorem 1.

Finally, for the case dual Hahn III, the matrix U is given by (2.18), (2.19) and we reca-
pitulate the results given at the end of the previous section, now in terms of the dual Hahn
parameters vy and J.

Proposition 4 (dual Hahn III). Suppose v > —1,0 > -1 ory < —-N—1,0 < —N —1. Let M
be the tridiagonal matriz (2.14) with

Mop=/(k+7+1)(N+6+1—k),  Myp=+(k+1)(N—k), (3.23)

and U the orthogonal matriz determined in (2.18), (2.19). Then the columns of U are the
etgenvectors of M, i.e., MU = UD, where D is a diagonal matriz containing the eigenvalues

of M

D:diag(—EN,...,—61,—60,60,61,...,61\[),
=kt y+Dk+to+1), k=0,1,...,N.

To conclude for dual Hahn polynomials: there are three sets of recurrence relations of the
form (3.1), (3.2). Each of the three cases gives rise to a two-diagonal matrix with simple and
explicit eigenvalues, and eigenvectors given in terms of two sets of dual Hahn polynomials.

4 Doubling Hahn polynomials

The technique presented in the previous section can be applied to other types of discrete orthogo-
nal polynomials with a finite spectrum. We have done this for Hahn polynomials. One level up
in the hierarchy of orthogonal polynomials of hypergeometric type are the Racah polynomials.
Also for Racah polynomials we have applied the technique, but here the description of the results
becomes very technical. So we shall leave the results for Racah polynomials for Appendix A.

For Hahn polynomials the analysis is again straightforward but tedious, so let us skip the
details of the computation and present just the final outcome here. Applying the technique
described in (3.3)-(3.15), with y, = Qn(z;a, 8, N) and §,, = Qn(#; &, 3, N) yields the following
result.

Theorem 5. The only way to combine two sets of Hahn polynomials such that they satisfy a pair
of recurrence relations of the form (3.3), (3.4) is one of the four cases:

Hahn I, Q,(z) = Qn(z;, 5,N) and Qn(z) = Qn(z;a+1,5,N):

(n+a+B+N+2) (N —n) _latztl),
2n+a+p+2) Qn(m>_(2n+a+,3+2)Q"+l(x)_ (a+1) @n(),
(n+1)(n+B+1) A n+a+pB+2)(n+a+2) 4 B

C (2n+a+3+3) @n(@) + (2n—+ o+ B+ 3) @Qni1(2) = (@ + 1)@ns1().

Hahn II; Qn(l') = Qn(l';Oé,B,N) and Qn(x) = Qn(w - 1;04 + 17/87N - 1)

1 1 x A
a1 " Erar s @@= R @@
_(n+1)(n+5+1)(n+a+B+N+2)Q ()

2n+a+B+3) ni®

m+a+B8+2)(N—n—-1(n+a+2)4 -
- GntatBid) Qn+1(z) = N(a + 1)Qnt1(2).




Doubling (Dual) Hahn Polynomials: Classification and Applications 15

Hahn II1, Q,(x) = Qu(z;«, 5, N) and Qn(x) =Qn(z;a, 0+ 1,N):
n+B8+1)(n+N+2+a+p) (N —=n)(n+a+1)

2n+a+5+2) @n() + 2n+a+ 5+ 2) @nt1(7)
= (B+1+N —2)Qu(),
(n+1) A m+a+pB+2) 4 B
Gntat 53T Gnray sl = Qunlo)

Hahn IV, Q,(7) = Qu(; 0, 8, N) and Qn(z) = Qu(x;0, 8+ 1, N — 1):
(n+B8+1) (n+a+1) _ (N—2z) 4
Gntat i) DT Gurarprg =Ty @)

n+)(n+a+B+N+2) (N-n—-1)n+a+pB+2) . B

Note that when interchanging x and n the relations in Hahn IT coincide with the known
forward and backward shift operator relations for dual Hahn polynomials [19, equations (9.6.6)
and (9.6.8)]. In the same way, the other cases yield new forward and backward shift operator
relations for dual Hahn polynomials.

Since the recurrence relations are of the form (3.3), (3.4), they can be cast in matrix form
with a two-diagonal matrix. We shall write the matrix elements again in terms of normalized
polynomials. For the case Hahn I, the matrix U of order (2N + 2) x (2N + 2), with elements

()" 5
Un —:r:Un T = —F— nl\T; O, 7N7
om,N 2n,N+a+1 7 Qn( B,N)

1) -
Usnt1,N—z = —Upy1i Nyat1 = _{ \/5) Qn(z;a+1,3,N) (4.1)

where x,n € {0,1,..., N}, is orthogonal, and the recurrence relations yield

Proposition 6 (Hahn I). Suppose that v,6 > —1. Let M be a tridiagonal (2N +2) x (2N +2)-
matriz of the form (2.14) with

v [E+at Dktat B+ Dktat B2+ N)
S Ck+tat+p+D)2k+atB+2) ’

N N E T
PN Ck+a+B+2)2k+a+B+3)

and U the orthogonal matrixz determined in (4.1). Then the columns of U are the eigenvectors
of M, i.e., MU = UD, where D is a diagonal matriz containing the eigenvalues of M

D = diag(—en, ..., —€1,—€0, €0, €1, ..., EN),
e =Vk+a+1, k=0,1,...,N. (4.2)

For the case Hahn II, the orthogonal matrix U is of order (2N +1) x (2N +1), with elements

1) -
U2n,N—:p:U2n,N+m:(\/§)Qn(x;aaﬁaN)v lea--'aNa

1) -
U2n+1,Nx:_U2n+1,N+x:_(\/§) Qn($_1>a+1)B7N_1)) :1::17"‘7N7 (43)

UQn,N == (_1)71@”(0’ «, 67 N)7 U2n+1,N == 07

where the row indices are as in (3.17). The recurrence relations for Hahn IT yield
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Proposition 7 (Hahn II). Suppose that a, 8 > —1 or o, < —N. Let M be a tridiagonal
(2N + 1) x (2N + 1)-matriz of the form (3.18) with

Mor — (k+a+1)(k+a+8+1)(N—k)
TN @k+a+B+D)2k+a+B+2) ]

Vo B Dot B2+ N)(k+1)
2Rl Ck+a+pB+2)2k+a+p+3)

and U the orthogonal matrixz determined in (4.3). Then the columns of U are the eigenvectors
of M, i.e., MU = UD, where D is a diagonal matriz containing the eigenvalues of M :

D:diag(—ﬁN,...,—61,0,61,...,61\7), Gk:\/E, k‘:l,...,N.

Note that for both cases, the two-diagonal matrix M becomes more complicated compared
to the cases for dual Hahn polynomials, but the matrix D of eigenvalues becomes simpler.

For the two remaining cases we need not give all details: the matrix M for the case Hahn III
is equal to the matrix M for the case Hahn I with the replacement a +> 3, and so its eigenvalues
are =v/k+ B8 +1, k =0,1,...,N. And the matrix M for the case Hahn IV is equal to the
matrix M for the case Hahn IT with the same replacement o < 3, so its eigenvalues are 0
and +vk, k=1,...,N.

5 Polynomial systems, Christoffel and Geronimus transforms

So far, we have only partially explained why the technique in the previous sections is referred to as
“doubling” polynomials. It is indeed a fact that the combination of two sets of polynomials, each
with different parameters, yields a new set of orthogonal polynomials. This can be compared to
the well known situation of combining two sets of generalized Laguerre polynomials (both with
different parameters o and « — 1) into the set of “generalized Hermite polynomials” [8]. There,
for a > 0, one defines

n!

Poy () = — e (z?), Popii(z) =

2L (22). .
@) @ o (@) -1

Then the orthogonality relation of Laguerre polynomials leads to the orthogonality of the poly-
nomials (5.1):

+oo
| @R el = D@,

—0o0

where
w(z) = e |z2 . (5.2)

Note that the even polynomials are Laguerre polynomials in x? (for parameter o — 1), and the
odd polynomials are Laguerre polynomials in 2 (for parameter o) multiplied by a factor .
The weight function (5.2) is common for both types of polynomials. It is this phenomenon that
appears here too in our doubling process of Hahn or dual Hahn polynomials.

From a more general point of view, this fits in the context of obtaining a new family of
orthogonal polynomials starting from a set of orthogonal polynomials and its kernel partner
related by a Christoffel transform [8, 22, 32]. In a way, our classification determines for which
Christoffel parameter v (see [32] for the notation) the Christoffel transform of a Hahn, dual
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Hahn or Racah polynomial is again a Hahn, dual Hahn or Racah polynomial with possibly
different parameters. This determines moreover quite explicitly the common weight function.

For a dual Hahn polynomial R, (z) = R,(\(x);7,d, N), with data given in (2.9), and a Chris-
toffel parameter v the kernel partner is given by the transform

Ryt1(x) — anRp () = Ryp1(v)
Az) —A(v) 7 " Ru(v)

Because of the recurrence relation (2.4) and what is called the Geronimus transform the original
polynomials can also be expressed in terms of the kernel partners. This is usually done for
monic polynomials (see [32, equations (3.2) and (3.3)]), but it can be extended to non-monic
dual Hahn polynomials as follows

R, (z) = A(n)P,(z) — bpPr—1(x) (5.4)
where the coefficients b, are related to the recurrence relation (2.4) as follows
bpan—1 = C(n), A(n)an, + by, = A(n) + C(n) + A(v). (5.5)

Our classification now shows that only for v equal to one of the values 0, NV or —4¢, the kernel
partner P, (z) will again be a dual Hahn polynomial. Indeed, taking for example v = 0 in (5.3)
we have R, (0) =1 and

Ryi1(x) — Ry(x) _ -1
A(x) N(y+1)

Py (x) = Ry(Mz —1);v+1,0+1,N —1),
where we used the first relation of dual Hahn I to obtain again a dual Hahn polynomial. The
reverse transform (5.4) follows immediately from the second relation of dual Hahn I. Similarly,
taking ¥ = N in (5.3) we have R, (N) = (=N —§),/(y + 1), and

Roi1(z) — Rp(z)(n—0—N)/(n+~v+1) -1

Ful) = z-N)a+N+~y+0+1) = Ny o nA@ye N 1),

which we obtained using the first relation of dual Hahn II. For the reverse transform (5.4) we
find, using the second relation of dual Hahn II with shifted n — n — 1,

A Po(x) ~ b P () = P R (@), 1) 4 R (M)A N )

= R, (x).
For the last case, taking v = —0 in (5.3) we have R, (—0) = (=N —§),/(—N), and
Rni1(2) = Bo(2)(n =0 = N)/(n - N)
(x+v+1)(z+90)

1
= G T W RO @ LI L),

P, (z)=

which we obtained using the first relation of dual Hahn III. For the transform (5.4) we have

A(n) Py (2) — by P () = LL“Rn(A(a:); N+ 1,6—1,N —1)
i

7_”: R (M@);y + 1,6~ 1, N),

which equals R, (z) by the second relation of dual Hahn III.
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In a similar way, for the Hahn polynomials, putting Q,(z) = Qn(z;a,b,N), using the
data (2.5) in

_ Qn-&-l(x) - anQn(x) Qn-i—l(V)

Aoy —Aw) 7 T Q.

and in (5.4), (5.5), the cases Hahn I, IT, ITI, V correspond respectively to the choices —a — 1,
0, N+ 58+1and N for v.

The task of determining for which Christoffel parameter v the kernel partner of a dual Hahn
polynomial is again of the same family is not trivial. It comes down to finding a pair of recurrence
relations of the form (3.1), (3.2) with coefficients related to v as in (5.3). We have classified
these for general coefficients, without a relation to v, and we observe that each solution indeed
corresponds to a specific choice for v.

The transforms (5.3), (5.4) give rise to new orthogonal systems, but in general there is no way
of writing the common weight function. However, since here both sets are of the same family,
we can actually do this. Let us begin with the dual Hahn polynomials, in particular the case
dual Hahn I, for which the corresponding matrix U is given in (3.17). They give rise to a new
family of discrete orthogonal polynomials with the relation MU = UD corresponding to their
three term recurrence relation with Jacobi matrix M (3.19). In general the support of the weight
function is equal to the spectrum of the Jacobi matrix [5, 18, 20, 21]. After simplifying with the
normalization factors (2.8), this leads to a discrete orthogonality of polynomials, with support
equal to the eigenvalues of M (so in this case, the support follows from (3.20)). Concretely, for
the case under consideration, we have

P, (z)

Proposition 8. Let v > —1, § > —1, and consider the 2N + 1 polynomials

_17’L
PQn(q):(\/i) Rn( 2;,77(5,N)7 n:O,l,...,N,

()" + DN —n)
V2 (v+1N
n=0,1,...,N —1.

qRy(* —v—36—2;v+1,6+1,N —1),

Poni1(q) =

These polynomaals satisfy the discrete orthogonality relation

S D kA +04 DO+ DeNNY 5 b () p(0)

(E4+~v4+0+1)ny1(0 + 1)gk!

O3 ] e

qeS

with

S=1{0,£Vk(k+~v+5+1), k=1,2,...,N}.

Note that for ¢ € S, ¢*> = k(k +~ + 6 + 1) = A(k), and the polynomial P»,(q) is of the form
R, (A(k);v,0, N). In that case, ¢>? —y—6—2= (k—1)(k—1)+(y+ 1)+ (+1)+1) = Mk —1),
so the polynomial Py, 1(q) is of the form R, (A(k —1);5 + 1,8 + 1, N — 1). The interpretation
of the weight function in the left hand side of (5.6) is as follows: each ¢ in the support S is
mapped to a k-value belonging to {0,1,..., N}, and then the weight depends on this k-value.

Now we turn to the classification of Section 4, where the corresponding orthogonal matri-
ces U are given in terms of (normalized) Hahn polynomials. for the case Hahn I, the matrix U
is given in (4.1), and the spectrum of the matrix M is given by (4.2). After simplifying the

normalization factors, the orthogonality of the rows of U gives rise to
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Proposition 9. Let a > —1, § > —1, and consider the 2N + 2 polynomials, n =0,1,..., N,

Pon(q) = (_\/li)nc)n(q2 —a—1a,8,N),

Poner(q) = — =11 (n+a+D)n+a+f+1)2n+2+a+p)
m+1(q) = V2 (a+1) mM+N+a+B+2)2n+a+8+1)

X qQn(q® —a—1;a+1,8,N).

These polynomials satisfy the discrete orthogonality relation

2 _ _ 2
Z< q : )(N ’ +a+l6+1>Pn(Q>Pn’(q):hL"/QJ(avﬁaN)ﬂn,n’

g€s ¢?—a—1 N-¢@+a+1
with

S—{-VN¥aFL-vVN¥a,....vatLvaFtl.. VNiavNiatl)
and

h(a, 8, ) = S (ot B+ Dy (B4 Dan!

(2n+a+ B+ 1)(a+ 1), (=N),N! "

So P,(q) is a polynomial of degree n in the variable ¢, of different type (with different
parameters when expressed as a Hahn polynomial) depending on whether n is even or n is odd.
The support points of the discrete orthogonality are given by

q=tVk+a+1, k=0,...,N.
In the same way, the dual orthogonality for the case Hahn II gives rise to

Proposition 10. Let o > —1, 8 > —1, and consider the 2N + 1 polynomials

Pon(q) = (_\}Q)nQn(qQ;a,B,N), n=0,1,...,N,

P (= 1 (N=n)(n+a+1)(n+a++1)2n+a+F+2)
wnt1(0) =~ TN 2ntatB+1)

X qQn(¢* = La+1,8,N-1), n=01,...,N—1.

These polynomials satisfy the discrete orthogonality relation

2 N — 2
Z (q q—|2_ a) < N z q_;_ ﬁ) (1 + 6Q,O)PH(Q)PTL’ (Q) = th/QJ (Oé, B, N)Bn,n’
qeSs

with
S={-VN,-VN-1,...,-1,0,1,... VN —1,VN}

and

_(=D)"(n+a+ B+ 1)Np1(B+ 1)un!
hn((X,ﬂyN) - (2n+a+5+ 1)(a+ 132(_]\[)”]\[' .

The ideas described in the three propositions of this section should be clear. It would lead us
too far to give also the explicit forms corresponding to the remaining cases. Let us just mention
that also for these cases the support of the new polynomials coincides with the spectrum of the
corresponding two-diagonal matrix M.
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6 First application: eigenvalue test matrices

In Sections 3 and 4 we have encountered a number of symmetric two-diagonal matrices M with
explicit expressions for the eigenvectors and eigenvalues. In general, if one considers a two-
diagonal matrix A of size (m + 2) x (m + 2),

0 b O
co 0 b
A=10 ¢ 0 . 0> (6.1)
T by,
0 ¢, O
then it is clear that the characteristic polynomial depends on the products b;c;, i = 0,...,m,

only, and not on b; and ¢; separately. So the same holds for the eigenvalues. Therefore, if all
matrix elements b; and ¢; are positive, the eigenvalues of A or of the related symmetric matrix

0 Vbocg 0
Vboco 0 Vbt
A=l 0 Vb O 0
0 VbmCm 0

are the same. The eigenvectors of A’ are those of A after multiplication by a diagonal matrix
(the diagonal matrix that is used in the similarity transformation from A to A’).

For matrices of type (6.1), it is sufficient to denote them by their superdiagonal [b] =
[bo, .. .,bm] and their subdiagonal [c] = [co,...,cm]. So the Sylvester-Kac matrix from the
introduction is denoted by

with eigenvalues given by (1.2).

The importance of the Sylvester—Kac matrix as a test matrix for numerical eigenvalue routines
has already been emphasized in the Introduction. In this context, it is also significant that the
matrix itself has integer entries only (so there is no rounding error when represented on a digital
computer), and that also the eigenvalues are integers. Of course, matrices with rational numbers
as entries suffice as well, since one can always multiply the matrix by an appropriate integer
factor.

Let us now systematically consider the two-diagonal matrices encountered in the classification
process of doubling Hahn or dual Hahn polynomials. For the matrix (3.18) of the dual Hahn I
case, the corresponding non-symmetric form can be chosen as the two-diagonal matrix with

b]=[y+1,1,7v+2,2,...,v+ N, NJ,
] =[N,N4+8N—-1,N—1+6,...,1,6+1]. (6.2)

The eigenvalues are determined by Proposition 2 and given by 0, £y/k(k+~vy+0+1), k =
1,...,N. This is (up to a factor 2) the matrix (1.3) mentioned in the Introduction. As test
matrix, the choice v+ d + 1 = 0 (leaving one free parameter) is interesting as it gives rise to
integer eigenvalues. In Proposition 2 there is the initial condition v > —1, § > —1. Clearly, if
one is only dealing with eigenvalues, the condition for (6.2) is just v+ d + 2 > 0. And when
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one substitutes 6 = —y — 1 in (6.2), there is no condition at all for the one-parameter family of
matrices of the form (6.2).

For the dual Hahn IT case, the matrix (3.22) is given in Proposition 3, and its non-symmetric
form can be taken as

[b]=[y+N,1,v+N—-1,2,...,v+1,N],
[c] = [N.6+1,N~1,6+2,...,1,6 + N]. (6.3)

The eigenvalues are given by 0, i\/k(’y +0+14+2N —k), k =1,...,N. There is no simple
substitution that reduces these eigenvalues to integers.

For the dual Hahn III case, the matrix (2.15) is given in Proposition 4, and its simplest
non-symmetric form is

bl =[y+1,1,7+2,2,....,y+N,N,y+ N + 1],
c]=0+N+1,N,6+N,N—1,...,0+2,1,0 +1]. (6.4)

The eigenvalues are given by (2.17), i.e., /(Y +k+1)(6 +k+ 1), k=0,...,N. Up to a fac-
tor 2, this is the third matrix mentioned in the Introduction. The substitution 6 = ~ leads to
a one-parameter family of two-diagonal matrices with square-free eigenvalues. And in particular
when moreover 7 is integer, all matrix entries and all eigenvalues are integers.

The two-diagonal matrices arising from the Hahn doubles or the Racah doubles can also be
written in a square-free form of type (6.1). However, for these cases the entries in the two-
diagonal matrices M are already quite involved (see, e.g., Propositions 6, 7, 12 or 13), and we
shall not discuss them further in this context. The three examples given here, (6.2)—(6.4), are
already sufficiently interesting as extensions of the Sylvester—-Kac matrix as potential eigenvalue
test matrices.

7 Further applications: related algebraic structures
and finite oscillator models

The original example of a (dual) Hahn double, described here in Section 2, was encountered in
the context of a finite oscillator model [14]. In that context, there is also a related algebraic
structure. In particular, the two-diagonal matrices M of the form (2.14) or (3.18) are interpreted
as representation matrices of an algebra, which can be seen as a deformation of the Lie alge-
bra su(2). Once an algebraic formulation is clear, this structure can be used to model a finite
oscillator. The close relationship comes from the fact that for the corresponding finite oscillator
model the spectrum of the position operator coincides with the spectrum of the matrix M.

Therefore, it is worthwhile to examine the algebraic structures behind the current matrices M.
We shall do this explicitly for the three double dual Hahn cases.

For the case dual Hahn I, we return to the form of the matrix M given in (3.18) or (3.19).
For any positive integer N, let J; denote the lower-triangular tridiagonal (2N + 1) x (2N + 1)
matrix given below, and let J_ be its transpose

0 0
My 0 0
Jo=2|0 M 0 0 . Jo=Jb (7.1)
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Let us also define the common diagonal matrix

Jo = diag(—N,—-N +1,...,N), (7.2)
and the “parity matrix”

P = diag(1,-1,1,-1,...). (7.3)

Then it is easy to check that these matrices satisfy the following relations (as usual, I denotes
the identity matrix)

P? =1, PJy = JyP, PJy=—J.P,
[Jo, J+] = £J4,
[Ty, J]=2Jg+2(y+ 04+ 1)JoP — (2N + 1)(y — 6)P + (y — 6)1. (7.4)

Especially the last equation is interesting. From the algebraic point of view, it introduces some
two-parameter deformation or extension of su(2). When v = § = —1/2, the equations coincide
with the su(2) relations. Another important case is when § = —y — 1, leaving a one-parameter
extension of su(2) without quadratic terms.

For the case dual Hahn II, the corresponding expressions of J,, J_, Jo and P are the same
as above in (7.1)—(7.3), but with Mj-values given by (3.22). As far as the algebraic relations are
concerned, they are also given by (7.4) but with the last relation replaced by

[T, J_] = =200+ 2(y + 6 + 2N + 1)JoP + (2N + 1)(y — 6)P — (v — ).

For the case dual Hahn III, the size of the matrices changes to (2N +2) x (2N +2). For J,
and J_ one can use (7.1), with My-values given by (3.23). P has the same expression (7.3), but
for Jy we need to take

1 1 1
=di -N——= —-N+—,.... N+—-].
JO dlag( 27 +2> ) +2>

With these expressions, the algebraic relations are given by (7.4) but with the last relation
replaced by

[Ty, J ] =2Jo+2(y—8)JoP — (2N +2)(y + 8 + 1) + (27 + 1)(26 + 1)) P
+ (v = 0)1. (7.5)

The structure of these algebras is related to the structure of the so-called algebra H of the
dual —1 Hahn polynomials, see [11, 31]. It is not hard to verify that the algebra #, determined
by [11, equations (3.4)—(3.6)] or [11, equations (6.2)—(6.4)], can be cast in the form (7.4) (or vice
versa). Indeed, starting from the form [11, equations (6.2)—(6.4)] coming from dual —1 Hahn
polynomials, we can take

h=Ki—-L =K+ Ks J=K - K,
to get the same form as (7.4)
P? =1, PJy = JoP, PJy = —J.P,

o Ju) = £Ju,  [JoyJ-] =200+ 20 0P+ TP+ L1, (7.6)

where v, 0, p depend on the parameters of the dual —1 Hahn polynomials «, 5, N through [11,
equations (3.4)—(3.6)]. In our case, the algebraic relations are the same, but the dependence of
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the “structure constants” in (7.6) on the parameters v, 6, N of the dual Hahn polynomials is
different.

As far as we can see, the doubling of dual Hahn polynomials as classified in this paper
gives a set of polynomials that is similar but in general not the same as a set of dual —1
Hahn polynomials [31] (except for specific values of parameters, e.g., § = —y — 1 does coincide
with a specific dual —1 Hahn polynomial). For general parameters, the support of the weight
function is different, the recurrence relations (or difference relations) are different, and the
hypergeometric series expression is different.

The algebraic structures obtained here (or special cases thereof) can be of interest for the
construction of finite oscillator models [1, 2, 3, 14]. Two familiar finite oscillator models fall
within this framework: the model discussed in [14] corresponds to (7.5) with § = v, and the
one analysed in [15] to (7.4) with § = 7. Observe that there are some other interesting special
values. For example, the case (7.4) with § = —vy — 1 gives rise to an interesting algebra, and in
particular also to a very simple spectrum (3.20). We intend to study the finite oscillator that
is modeled by this case, and study in particular the corresponding finite Fourier transform; but
this will be the topic of a separate paper.

8 Conclusion

We have classified all pairs of recurrence relations for two types of dual Hahn polynomials (i.e.,
dual Hahn polynomials with different parameters), and refer to these as dual Hahn doubles.
The analysis is quite straightforward, and the result is given in Theorem 1, yielding three cases.
For each case, we have given the corresponding symmetric two-diagonal matrix M, its matrix
of orthonormal eigenvectors U and its eigenvalues in explicit form. The same classification has
been obtained for Hahn polynomials and Racah polynomials.

The orthogonality of the matrix U gives rise to new sets of orthogonal polynomials. These
sets could in principle also be obtained from, for example, a set of dual Hahn polynomials and
a certain Christoffel transform. In our approach, the possible cases where such a transform gives
rise to a polynomial of the same type follow naturally, and also the explicit polynomials and
their orthogonality relations arise automatically.

As an interesting secondary outcome, we obtain nice one-parameter and two-parameter ex-
tensions of the Sylvester—Kac matrix with explicit eigenvalue expressions. Such matrices can be
of interest for testing numerical eigenvalue routines.

The first example of a (dual) Hahn double appeared in a finite oscillator model [14]. For this
model, the Hahn polynomials (or their duals) describe the discrete position wavefunction of the
oscillator, and the two-diagonal matrix M lies behind an underlying algebraic structure. Here,
we have examined the algebraic relations corresponding to the three dual Hahn cases. It is clear
that the analysis of finite oscillators for some of these cases is worth pursuing.

A Appendix: doubling Racah polynomials

The technique presented in Sections 3 and 4 is applied here for Racah polynomials.
Racah polynomials R, (A(x);«, 3,7,0) of degree n (n = 0,1,...,N) in the variable A\(z) =
x(z 4+ v+ 0+ 1) are defined by [13, 19, 23]
—n,n+a+p+1,—z,x+y+5+1
Rn(A(z); v, B,7,0) = 4F: i1,
A@); : 8,7,9) 43( a+1,84+0+1,v+1 )

where one of the denominator parameters should be —N:

a+1=—-N or B++1=—-N or vy+1=-N. (A.1)
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For the (discrete) orthogonality relation (depending on the choice of which parameter relates
to —N) we refer to [19, equation (9.2.2)] or [25, Section 18.25]
Racah polynomials satisfy a recurrence relation of the form (2.4) with

yn(z) = Ry(A(2); a0, B,7,0), Az)=XNz)=z(z+v+ 5+ 1),
Aln) = m+a+)(n+a+B8+1)n+y+1)(n+B8+5+1)
nta+B+1)2ntatB+2) !
nn+a+pB—9y)(n+a—25n+p)
@2n+a+B)2n+a+B+1)

C(n) = (A.2)
We have applied the technique described in (3.3)-(3.15), with y, = R, (A(z);a, 8,7, 6) and

Gn = Rn(M2); &, 3,%,6). The analysis is again straightforward but tedious, and the final out-
come is

Theorem 11. The only way to combine two sets of Racah polynomials such that they satisfy
difference relations of the form (3.3), (3.4) is one of the four cases:
Racah I, R, (z) = R,(\(x); o, B,7,0) and Ry(x) = Ry(M(x); 0, B+ 1,7y + 1,5 —1):

m+B8+d+1)(n+a+1) (n—d0+a+1)(n+B+1)

2n+a+p+2) () = 2n+a+ 5+ 2) Bn(z)
(4 0)(r+y+1) 4
= ol R, (x),

n+a+B+2)(n+v+2) - n+l)(n—vy+a+p+1) .
2n+a+ B +3) B (@) - 2n+a+B+3) Bn(@)

= (v + D Rnpa(2).
Racah II, R, (z) = R,(\(2); o, 8,7,0) and Ry (x) = Ry(A(z); 0, B+ 1,7,6):

m+y+1)(n+a+1) m—y+a+p+1)n+p+1)

(2n+a+ B+2) Brna(2) - (2n+a+B+2) Fn(2)
(- BFI+ (x4 y— 5) fn ()
B B+0+1 ’
n+B8+d6+2)(n+a+5+2) 4 m+1)n—-0+a+1) .
(2n+a+B+3) B () = (2n+a+B+3) B (z)

— (B4 6+ 1)Ruyi(2).
Racah III, R, (z) = R,(\(z);, 8,7,0) and Ry(z) = Ry(Mz — 1);a+1, 8,7+ 1,5 +1):

1 1 r(x+v+06+1) .
Gntatirgt O - G5 @ = NGt D @)
(n+’y—i—2)(n—|—5+6+2)(n+a+2)(n+a+[3+2)

(2n+a+ B +3) )

_}n+Um—7+a+ﬂ+nm—5+a+nm+ﬁ+nR(m

(2n+a+B+3) "
=(y+1)(B+6+1)(a+ 1) Ry ().

n—l—l(x

Racah IV, R,(z) = R,(\(@);a, 8,7,0) and Ru(z) = Ro(A(@);a + 1, 8,7,0):

m+~v+1)(n+p+0+1)
2n+a+pB+2)

n—v+a+p+1)(z—0+a+1)
(2n+ o+ 5 +2)

Ryia(z) — Ry ()
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(x+~v+d—a)zx+a+1)

= (@t 1) Rn(x)’
= o i)in:ﬁa:?f 2 ) - (?22 i)in:ﬁﬁ:?)? finle) = e+ D)

Note that after interchanging n and x, and « <> v and 8 < J, the relations in Racah III
coincide with the known forward and backward shift operator relations [19, equations (9.2.6)
and (9.2.8)]. The relations in Racah I were already found in [16, equations (5) and (6)].

In the context of Section 5 it is worth noting that the above relations also correspond to
Christoffel-Genonimus transforms. Taking R,(z) = Ry, (A(z);«, ,7,d) in the relations (5.3)—
(5.5), with data given by (A.2), the above cases Racah I, II, ITI, IV correspond respectively
to the choices v = -6, v=F—~v,v=0and v = —a — 1.

For each of the four cases, one can translate the set of difference relations to a matrix identity
of the form MU = UD. In fact, for each of the four cases, there are three subcases depending on
the choice of —N in (A.1). We shall not give all of these cases: they should be easy to construct
for the reader who needs one. Let us just give an example or two.

Consider the case Racah I with o+ 1 = —N. It is convenient to perform the shift § —
0 + 1 in the two difference relations of Theorem 11. The orthogonal matrix U is of order
(2N +2) x (2N + 2), with elements

(1" &
Usn N—z = Uspy Ntgt1 = R,(A(z);a, 8,7, +1),
2n,N 2n,N+z+1 NG (A(z) B,y )

—1)" -
U2n+1,N—x = —U2n+1,N+w+1 = _( \[2) Rn(/\(m)v «, 6 + 17 Y+ 17 5)7 (A?’)

where R, is the notation for a normalized Racah polynomial. Then, one has

Proposition 12. Suppose that v,6 > —1 and 3 > N+~ or 8 < —N —§ — 1. Let M be
a tridiagonal (2N + 2) x (2N + 2)-matriz of the form (2.14) with

Ao — [N=B=R)( +1+k)(N+0+1—k)(k+5+1)
2k (N—B—2k)2k—N~+1+p5) ’

A QAN =B Kk DN — k)(k+ 5 +5+2)
2k+1 = (N—-p—-2k—2)2k—N+1+p0) 7

and U the orthogonal matriz determined in (A.3). Then the columns of U are the eigenvectors
of M, i.e., MU = UD, where D is a diagonal matriz containing the eigenvalues of M

D:diag(—ﬁN,...,—61,—60,60,61,...,61\[),
=kt y+)k+to+1), k=0,1,...,N.

As a second example, consider the case Racah III with o« + 1 = —N. The orthogonal
matrix U is now of order (2N + 1) x (2N + 1), with elements

AV
U2n,fo = U2n,N+x = (\/i) RH(A(J:);Q)/87775)7 n = 17 o >N7

(1" ;

Usn+1,N—2—1 = —Usnyi Ntat1 = — 7 R,(AMz);a+1,8,v+1,0+1),
n=0,...,N —1,
UQWN = (_1>an()‘(O)7 «, 57 v 5)7 U2n+1,N =0. (A4)

Then, one has
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Proposition 13. Suppose that v,6 > —1 and > N+~ or § < —N —§. Let M be a tridiagonal
(2N + 1) x (2N + 1)-matriz of the form (3.18) with

(k+v+D(-N+B+k)(N-k)(k+B+5+1)
(N—B—2k)(N—B—2k—1) ’

(y+N-B-k)(k+1)(k+B+1)(k—0—N)
(N—B—2k—2)(N—-B—2k—1) ’

My, =

Moy 1 =

and U the orthogonal matriz determined in (A.4). Then the columns of U are the eigenvectors
of M, i.e., MU = UD, where D is a diagonal matriz containing the eigenvalues of M

D = diag(—en, ..., —€1,0,€1,...,€n), ek:\/k(k—l—’y—ké—{—l), k=1,...,N.
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