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Abstract 

Equilibrium and stability equations of functionally graded material (FGM) plate under 

thermal environment are formulated in this paper based on isogeometric analysis (IGA) in 

combination with higher-order shear deformation theory (HSDT). The FGM plate is made 

by a mixture of two distinct components, for which material properties not only vary 

continuously through thickness according to a power-law distribution but also depend on 

temperature. Temperature field is assumed to be constant in plate surfaces and uniform, 

linear and nonlinear through plate thickness, respectively. The governing equation is in 

nonlinear form based on von Karman assumption and thermal effect. A NURBS-based 

isogeometric finite element formulation is capable of naturally fulfilling the rigorous C
1
-

continuity required by the present plate model. Influences of gradient indices, boundary 

conditions, temperature distributions, material properties, length-to-thickness ratios on the 

behaviour of FGM plate are discussed in details. Numerical results demonstrate excellent 

performance of the present approach. 
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1 Introduction 

Laminated composite plates made by stacking several lamina layers together possess 

many favourable mechanical properties, e.g. wear resistance, high ratio of stiffness, 

strength-to-weight ratios, etc. Therefore, they are extensively used in aerospace, aircraft 

structures, high-speed vehicle frames and so on. However, an important feature in their 

designs is thermal effect. For an example, the space vehicles flying at hypersonic speeds 

experience extremely rapid temperature rise in very short time from aerodynamic heating 

due to friction between the vehicle surface and the atmosphere, i.e. in U.S. space shuttles, 

the temperature on their outside surface increases to an attitude of 1500C for a few 

minutes [1]. This can lead to  harmful effects due to stress concentration, cracking and de-

bonding, which can occur at the interface between two distinct layers [2, 3]. To overcome 

this shortcoming, a group of scientists in Sendai-Japan proposed an advanced material, so–

called functionally graded materials (FGMs) [4-6]. The most common FGMs are the 

mixtures of a ceramic and a metal, for which material properties vary smoothly and 

continuously in a predetermined direction. Consequently, they enable to reduce the thermal 

stresses due to smoothly transitioning the properties of the components. Furthermore, they 

inherit the best properties of the distinct components, e.g. low thermal conductivity, high 

thermal resistance by ceramic part, ductility, durability and superiority of fracture 

toughness of metal part. FGMs are now developed as the structural components in many 

engineering applications [1].  

In order to clearly understand the scientific and engineering communities in the field of 

modelling, analysis and design of FGM plate structures, many studies have been reported 

by various researchers. For instant, Praveen and Reddy [7] studied the nonlinear transient 

responses of FGM plates under thermal and mechanical loadings using FEM with von 

Karman assumptions. Vel and Batra [8, 9] obtained three dimensional exact solutions for 

the thermo-elastic deformation of FGM rectangular plates. Javaheri and Eslami [10, 11] 

investigated thermal buckling behaviour of the FGM plates. Ferreira et al. [12, 13] 
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performed static and dynamic analysis of FGM plate based on HSDT using the mesh-free 

method. Park and Kim [14] investigated thermal post buckling and vibration analyses of 

simply supported FGM plates by using FEM. Lee et al. [15, 16] developed the element-

free kp-Ritz method to study behaviour of FGM plate. Also, developed smoothed finite 

element methods based on triangular meshes were formulated to analyse static, free 

vibration and elastic stability of FGM plates [17-19] and so on. 

In the aforementioned studies, it can be seen that for modelling the plate structures, the 

formulation may be reduced to a linear problem based on small displacement and strain 

assumptions. Linear solution can be obtained easily with low computational cost and is a 

reasonable idealization. However, linear solution usually deviates from real response of 

structures [20-23]. In some cases, assumption of nonlinearity needs to be taken into 

account for analyst, e.g. post buckling phenomenon [24, 25]. In other words, the structures 

behave in large deformation manner. Therefore, geometrically nonlinear analysis is 

employed to fully investigate the plate behaviour in the large deformation regime. 

Furthermore, several plate theories are provided to predict accurately the structure 

responses. Among them, classical plate theory (CPT) requires C
1
-continuity elements and 

merely provides acceptable results for thin plate, whilst first order shear deformation 

theory (FSDT) is suitable for moderate and thick plate. However, it describes incorrect 

shear energy part. Numerically, the standard FSDT-based finite elements are too stiff and 

lead to shear locking. To treat this phenomenon, some improved techniques such as 

reduced integration [26], mixed interpolation of tensorial components (MITC) [27, 28], 

discrete shear gap (DSG) [17] elements, etc. were adopted. On the other hand, HSDT 

models [29-31], which take into account higher-order variations of the in-plane 

displacements through thickness, were proposed. Consequently, they enable to really 

describe shear strain/stress distributions with the non-linear paths and traction-free 

boundary condition at the top and bottom surfaces of the plate. Moreover, the HSDT 

models provide better results and yield more accurate and stable solutions. However, the 

HSDT requires C
1
-continuity elements that cause some obstacles in the standard finite 

element formulations. This requirement can be enforced by mesh-free method [32, 33]. 

More importantly, Hughes and his co-worker recently proposed a novel numerical method 

– so-called isogeometric analysis (IGA) [34, 35], which yields higher-order continuity 
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naturally and easily. The core idea of this method is to integrate both geometric description 

and finite element approximation through the same basis function space of B-spline or 

NURBS. The major strengths of this method are that it is flexible to control the high 

continuity of basis shape functions, e.g. C
p-1

-continuity for p
th
-order NURBS, which 

naturally fulfil higher-order continuity requirement of plate/shell models [36-38] 

Furthermore, by removal mesh generation feature, this method produces a seamless 

integration of computer aid design (CAD) and finite element analysis (FEA) tools. As a 

result, IGA simplifies the cost-intensive computational model generation procedure which 

is the major bottleneck in engineering analysis-design [39]. After more ten years of 

development, IGA has been widely applied in engineering and among them with FGM 

plate structures.  For example, Valizadeh et al. [40] and Yin et al. [41] employed this 

method to study the static and dynamic behaviours of FGM plates based on FSDT. Tran et 

al. [29, 30, 42] studied the static bending, buckling load and also natural frequency of 

intact FGM plates and cracked ones [43] based on HSDT and then extended their previous 

work for thermal buckling analysis with various types of temperature distribution [44]. 

Recently, Jari et al. [45] studied nonlinear thermal analysis of FGM plates based on C
0
 

HSDT with 7 DOFs/control point. In this work, the critical buckling temperature of the 

plates was derived from the linear thermal buckling analysis. However, FGM is not 

symmetric as its material properties and temperature field vary in the thickness direction. 

Hence, the bifurcation phenomenon does not occur, except in some special cases, e.g. 

clamped plates [46, 47]. Generally, the plates will be undergone bending due to thermal 

moments, which are developed together with thermal membrane forces as temperature 

changes. Thermal stability analysis of FGM plates seems to be confusing in the literature. 

To make this issue clear, in this paper equilibrium and stability equations of FGM plates 

under thermal environment are introduced and solved by an efficient computational 

approach based on IGA and HSDT. 

 The paper is outlined as follows. The next section introduces the theoretical 

formulation for functionally graded plate. The von Karman assumption is employed to 

depict behaviour of the plate structure in the large deformation regime. Assumption of 

temperature field due to uniform, linear and nonlinear distribution through the plate 

thickness is described in section 3. Section 4 presents a framework of isogeometric 
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analysis for the plate structure. Section 5 gives the solution procedure for the plate 

problems which can be categorized into two groups: geometrically nonlinear and nonlinear 

eigenvalue analysis for tracing the post-buckling paths. The present formulation is verified 

firstly by comparing with other available results in the literature and the influences of 

gradient indices, boundary conditions, temperature distributions, material properties and 

length-to-thickness ratio on the behaviour of FGM plate are then examined in section 6. 

Finally, this article is closed with some concluding remarks.  

2 A background on functionally graded plates  

2.1 Functionally graded material 

Functionally graded material is a composite material, which is commonly fabricated by 

mixing two distinct material phases, i.e. ceramic and metal, for which properties change 

continuously along certain dimensions of the structure, as shown in Figure 1. It is assumed 

that the volume fractions of the material phases are given by the power-law type function 

and satisfy the unity, i.e. 

1
( )

2

n

c

z
V z

h

 
  
     

,   1c mV V   (1) 

where n   is the power index or gradient index Then, the effective material properties 

such as the Young’s modulus (E), shear modulus (), Poisson’s ratio (), the density (), 

thermal conductivity (k) and thermal expansion () can be estimated according to the rule 

of mixture as follows 

e c c m mP PV P V   (2) 

Note that the subscripts m, c and e refer to metal, ceramic and effective constituents, 

respectively. 
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Figure 1 A Functionally graded material layer. 

Figure 2 illustrates the distribution of the effective Young’s modulus through thickness 

of Al/Al2O3 FGM plate via the power index n. As observed, n = 0  1, 0c mV V  , the 

structure is fully ceramic and when n =   0, 1c mV V  , the homogeneous metal is 

retrieved. Moreover, ( / 2) 1cV h   and ( / 2) 1mV h   means that fully ceramic and metal 

phase on the top and the bottom surfaces, respectively. 

 

Figure 2 The effective modulus of Al/Al2O3 FGM plate. 

In thermal environment, high temperature makes a significant change in mechanical 

properties of the constituent materials. Therefore, it is essential to take into account the 

temperature-dependent material property to accurately predict the mechanical responses of 
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FGM structures. According to Ref. [48], the properties of the common structural ceramics 

and metals are expressed as a nonlinear function of temperature 

 1 2 3

0 1 1 2 31P P P T PT PT PT

      (3) 

where P0, P-1, P1, P2 and P3 are the coefficients of temperature, which can be found in Ref. 

[49] as unique parameters for each constituent material. 

2.2 Plate formulation 

According to the generalized shear deformation plate theory [30], the displacement of 

an arbitrary point  , ,
T

u v wu  can be written as 

1 2 3( )z f z  u u u u  (4) 

where  1 0 0 0 
T

u v wu is the displacement components in x, y and z axes,  

 2 0, 0, 0
T

x yw w u and  3  0
T

x y u  are the rotations in the xz, yz and xy planes, 

respectively. The distributed function is choose following to Reddy’s theory [50] as 

3 2( ) 4 / (3 )f z z z h  .  

Enforcing the assumptions of small strains, moderate rotations and large displacements, 

the von Karman nonlinear theory is adopted in strain-displacement relations as follows 

[51] 

2

, ,

2

, ,

, , , ,

, ,

, ,

1
2

2
0

0

x xx

y y y

xy y x x y

xz z x

yz z y

u w

v w

u v w w

u w

v w











   
   
   

     
       

     
     

          

 (5) 

As using the assumed displacement field in Eq. (4), the strain vector with separated in-

plane strain  and shear strain  are given as 



  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 
8 

1 2( )

0 ( )0

m z f z

f z

      
        

      

κ

γ β

 
  (6) 

where the in-plane, the bending and the shear strains are defined, respectively, 

2

0, 0,

2

0, 0,

0, 0, 0, 0,

1

2
2

x x

m y x L NL

y x x y

u w

v w

u v w w

  
  

     
     

  

 

0,

1 0,

0,2

xx

yy

xy

w

w

w

 
 

  
 
 

κ ,     

,

2 ,

, ,

x x

y y

x y y x





 

 
 

  
  

κ ,    
x

y





 
 
 

β   

(7) 

In Eq. (7) the nonlinear component of in-plane strain can be rewritten as 

1

2
NL  A θ  (8) 

where 

0,
0,

0,

0,

0, 0,

0

0 and

x
x

y

y

y x

w
w

w
w

w w



 
    

    
   

 

A θ  (9) 

Regarding thermal effect, the thermal strain is given by 

 ( ) ( ) 1 1 0
Tth

e z T z   (10) 

in which ( )e z is the effective thermal coefficient according to Eq. (2) and T  is the 

temperature change defined as 

( ) ( ) iT z T z T    (11) 

where Ti is the initial temperature and T(z) is the current temperature. 

In these plate theories, the transverse normal stress z is assumed to be zero. Hence, the 

reduced constitutive relation for the FGM plate is given by 
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th    
    
    

σ C 0

0 Gτ γ

  
 (12) 

where the material matrices are given as 

2

1 0

1 0
1

0 0 (1 ) / 2

e

e
e

e

e

E







 
 


 
  

C  (13) 

1 0

0 12(1 )

e

e

E



 
  

  
G  (14) 

The in-plane forces, moments and shear forces are calculated by 

/2

/2

1

d

( )

h

h
z z

f z


   
   

   
   
   



N

M σ

P

   and   
/2

/2
( ) d

h

h
f z z


 Q τ  (15) 

Substituting Eq. (12) into Eq.(15), stress resultants are rewritten in matrix form as 

1

2

0

0

ˆ ˆˆ ˆ

th

m

th

th

S

     
     

            
      
            

NN A B E 0

M B D F 0 M

E F H 0P P

0 0 0 DQ β

σ ε σD






 

(16) 

in which 

/2
2 2

/2
, , , , , (1, , , ( ), ( ), ( )) d

h

ij ij ij ij ij ij ij
h

A B D E F H z z f z zf z f z C z


 
 

 
/2 2

/2
( ) d

h
s

ij ij
h

D f z G z


   

(17) 

and the thermal stress resultants are the functions of the incremental temperature T   
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   
/2

3

/2
1 d

0

e
h

th th th

e
h

z z T z






 
 

  
 
 

N M P C  (18) 

It is evident that the function 2 2( ) 1 4 /f z z h    is a parabolic function of thickness 

and produces zero values at / 2z h  . It means that the traction-free boundary condition 

is automatically satisfied at the top and bottom plate surfaces. Furthermore, the transverse 

shear forces are described parabolically through the plate thickness. Hence, the shear 

correction factors are no longer required in this model. 

Employing the principle of virtual displacement, the variation of total energy of the 

plate can be derived by  

ˆ ˆd d 0T T

zU V f    
 

       ε σ u  (19) 

where zf is the transverse load. 

3 Type of temperature distribution 

Under thermal environment, the temperature is assumed to be uniform on the top and 

bottom surfaces and varies through the plate thickness. Some case studies are given as 

3.1 Uniform temperature rise 

It is assumed that the reference temperature initially equals to Ti and then uniformly 

increases to a final value at which the plate is bucked. Therefore, the temperature change 

f iT T T    is constant everywhere in the plate. Substituting it into Eq. (18) leads to the 

critical buckling temperature as follows 

     /th

cr crT N X   

where                                    
/2

/2

( )
( )d

1 ( )

h
e

e
h

e

E z
X z z

z





  

(20) 
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3.2 Linear temperature across the plate thickness 

Consider a FGM plate, which initial temperature at the ceramic-rich and metal-rich 

surfaces are Tc and Tm, respectively. Temperature is assumed to be linear distribution 

through the plate thickness by 

 
1

( )
2

c m m

z
T z T T T

h

 
    

 
,     (21) 

Substituting Eq. (21) into Eq. (11) and then solving Eq. (18), the critical buckling 

temperature difference between two plate surfaces c mT T T  
 
is calculated as 

     
 th

cr m i

cr

N X T T
T

Y

 
   

where                          
/2

/2

( ) ( ) 1
d

1 ( ) 2

h
e e

h
e

E z z z
Y z

z h





 
  

  
  

(22) 

3.3 Non-linear temperature change across the thickness 

The temperature field in the FGM plate follows the one-dimensional steady state heat 

conduction equation and the boundary conditions are given by 

d d
( ) 0 , ( / 2) , ( / 2)

d d
c m

T
k z T h T T h T

z z

 
     

 
 (23) 

The solution of Eq. (23) is obtained in Fourier series [52, 53] as: 

( ) ( )( )m c mT z T z T T    (24) 

where 

0 0

1 1 1 1
( ) /

2 1 2 1

i ini

m c m c

i im m

k k k kz z
z

h ni h k ni k


 

 

       
         

        
   (25) 

Figure 3 illustrates the effect of the gradient index n on the temperature distribution 

through the thickness of the Al/Al2O3 FGM plate subjected to a thermal load where the top 
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and bottom surfaces are held at 300C and 20C, respectively. It is evident that the 

temperature in the FGM plates follows a nonlinear distribution and is always lower than 

that in the homogenous plates. In addition, there is linearly distributed temperature through 

thickness as same as Eq. (21) in case of the homogeneous plate. 

 

Figure 3 Temperature distributions through the thickness of Al/Al2O3 FGM plate. 

Being similar to the previous types, after solving Eq. (18) with temperature field 

described in Eq. (24), the critical buckling temperature difference between two opposite 

plate surfaces becomes 

     
 th

cr m i

cr

N X T T
T

Z

 
   

where                                    
/2

/2

( ) ( )
( )d

1 ( )

h
e e

h
e

E z z
Z z z

z







  

(26) 
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4 On isogeometric nonlinear analysis of plate structure 

4.1 A brief of isogeometric analysis 

Isogeometric approach (IGA) is proposed by Hughes and his co-workers [34] with the 

primary original purpose is to enable a tighter connection between computer aided design 

(CAD) and finite element analysis (FEA). The main idea of this method is to utilize the 

same basis functions such as: B-spline, non-uniform rational B-spline (NURBS), etc. in 

both geometry description and finite approximation. A B-splines basis of degree p is 

generated from a non-decreasing sequence of parameter value i , 1,...i n p  , called a 

knot vector  1 2 1, ,..., n p    Ξ , in which 1 2 1... n p       . i   is the i
th 

knot and n 

is number of the basis functions. In the so-called open knot, the first and the last knots are 

repeated by p+1times and very often get values of 1 0  and 1 1n p    . 

Using Cox-de Boor algorithm, the univariate B-spline basis functions  ,i pN   are 

defined recursively on the corresponding knot vector 

     1

1

11

1

1

p p p

i i

i pi
i

i p i i p i

N N N
  

  
   

 

   






 

 
 

as p = 0,    10
1  if  

0  otherwise

i i

iN
  

  
 


 

(27) 

By a simple way, so-called tensor product of univariate B-splines, the multivariate B-

spline basis functions are generated 

   
1

d
p

i

p

iN N 







ξ ξ  (28) 

where parametric 1, 2, 3d  according to 1D, 2D and 3D spaces, respectively. Figure 4 

gives an illustration of bivariate B-splines basic based on tensor product of two knot 

vectors  1 2 3 3 4

5 5 5 5 5
0,0,0, , , , , ,1,1,1Ξ  and  1 1 2 2

3 3 3 3
0,0,0,0, , , , ,1,1,1,1Η

 
in two parametric 

dimensions ξ and η, respectively. 
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a)
 

2,3

4,6 ( , )N                                                   b)
 

2,3

7,8 ( , )N    

Figure 4 Bivariate B-splines basic functions. 

After defining the B-spline basis functions, a domain, including B-spline curve, surface 

or solid, can be constructed from a linear combination of them with control points iP
 

   p

i

i

iNξ ξ PS  (29) 

However, for some conic shapes (e.g. circles, ellipses, spheres, etc.), NURBS offer a 

more generalized way in form of rational functions as  

     /p p p

i i i j j

j

N NR   ξ ξ ξ  (30) 

where 0i   is the so-called individual weight corresponding to B-splines basis functions 

( )p

iN ξ . It is seen that NURBS basic will become B-spline, when the individual weight is 

constant. 

4.2 Discrete system equation 

Being different from traditional finite element method, which utilizes the Lagrange 

basis functions in approximating the unknown solutions and the geometry, NURBS-based 

IGA employs the NURBS basis ones from geometric description to construct the 

approximated solution 

   A

h

A

A

Ru ξ ξ q  (31) 
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where 
0 0 0

T

A A A xA yA Au v w    q  denotes the vector of nodal degrees of freedom 

associated with the control point AP . 

Substituting Eq.(31) into Eq. (7), the generalized strains can be rewritten in matrix form 

as: 

1
ˆ

2

L NL 
  
 
B B q  

where B
L
 is the linear infinitesimal strain 

       1 2
T

T T T T
L m b b s

A A A A A
 
  

B B B B B  (32) 

in which 

,

,

, ,

0 0 0 0

0 0 0 0 ,

0 0 0

A x

m

A A y

A y A x

R

R

R R

 
 

  
 
 

B
 

, ,

1 2

, ,

, , ,

0 0 0 0 0 0 0 0

0 0 0 0 , 0 0 0 0 ,

0 0 2 0 0 0 0 0

A xx A x

b b

A A yy A A y

A xy A y A x

R R

R R

R R R

   
   

     
   
   

B B

 

,

,

0 0 0 00 0 0 0
,

0 0 0 00 0 0 0

A xAs g

A A

A yA

RR

RR

  
    
   

B B  

and the nonlinear strain matrix B
NL

 is found to be a linear function of the displacement 

( )NL g

A A

 
  
 

A
B q B

0    
 (33) 

Variation of the strain is defined as 

 ˆ L NL  B B q
   

 (34) 
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Substituting Eqs. (16) and (34) into Eq. (19) and eliminating the virtual displacement 

vector Tq , the governing equation can be written in the following matrix form 

 0L NL  K K K q F  (35) 

in which  
LK and NLK  are the linear and nonlinear stiffness matrices, respectively, whilst 

0K is the initial stress stiffness matrix due to the initial compressive load by temperature 

  ˆ d
T

L L

L


 K B DB  (36) 

     
1 1ˆ ˆ ˆd d d
2 2

T T T
L NL NL L NL NL

NL
  

     K B DB B DB B DB  (37) 

 0 d

th th
T x xyg g

th th

xy y

N N

N N

 
  

  
K B B  (38) 

and F is the load vector depending on mechanical and thermal loads 

  0
ˆ d

T
L T

zf


  F B σ R  (39) 

5 Solution procedure 

Depending on value of load vector, nonlinear analysis of FGM plates can be classified into 

two groups: nonlinear bending and nonlinear eigenvalue analyses. 

5.1  Nonlinear bending analysis 

To solve the nonlinear equilibrium equation in Eq. (35), an iterative Newton-Raphson 

technique is employed. Let introduce a residual force as 

 0( ) ( ) 0ext

L NL    φ q K K q K q F  (40) 

The residual force represents the error in this approximation and tends to zero during 

iteration. If i
q , the approximate trial solution at the i

th
 iteration, makes unbalance residual 

force an improved solution 1i
q  is then suggested as 
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1i i  q q q  (41) 

The increment displacement can be defined by 

 0( ) /i i i

L NL T
     
 

q F K K q K q K  (42) 

where TK  is called tangent stiffness matrix is defined as 

( )i

T NL gi


  



φ q
K K K

q
 (43) 

in which the matrix NLK  is strongly dependent on displacement 

   ˆ d
T

L NL L NL

NL


   K B B D B B  (44) 

and the geometric stiffness matrix is given by 

   d
T x xyg g

g

xy y

N N

N N

 
  

 
K B B  (45) 

It is noted that being different from the initial stress stiffness matrix, 0K , the geometric 

stiffness matrix is calculated due to the internal forces according to Eq. (16). 

5.2 Nonlinear eigenvalue analysis 

For a case of the homogeneous plates, under uniform temperature rise the thermal 

moments in Eq. (18) are equal to zero and only membrane forces are generated. Thus, the 

initially perfect plate is still flat with no transverse deflection. As a result, there is no effect 

of geometrical nonlinearity and Eq. (35) is simplified as 

 0L  K K q 0
 (46) 

where   is the load factor. 

This is called linear buckling equation in order to determine the critical value of loading 

for a particular plate. As temperature increases to a critical point, the plate suddenly bucks 
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and may lose its load carrying capacity but it is typically capable of working and carrying 

considerable additional load before the collapse or ultimate load is reached. In some cases 

this is even several times higher than the critical load [54]. This is called the post-buckling 

phenomenon. At this time, the plate structure undergoes a large deformation. Therefore, 

the effect of geometric nonlinearity based on von Karman nonlinear strain must be 

consider in governing equation as: 

 0 0L NL   K K K q  (47) 

In case of FGM plate, because of un-symmetric material distribution through the 

thickness, bending moments, which forces the plate laterally deform, develop together with 

the membrane forces during temperature change. Consequently, the plate is deflected as 

soon as thermal load is applied. Thus, the bifurcation phenomenon does not occur. 

However, for a special case, that is clamped edges, the supports are capable of handling the 

produced thermal moments [25, 46, 47, 55]. It maintains the plate in un-deformed pre-

buckling state. Therefore, buckling bifurcation phenomenon does exist. FGM is also a 

function of temperature as shown in Eq.(3). Thus, solution of Eq. (47), which is a function 

of both the nodal variables q and temperature T(z), should be solved by the incremental 

iterative methodology. 

Firstly, using thermo-elastic properties at Tm (the final temperature at the plate bottom), 

the smallest eigenvalue (load factor) and its corresponding eigenvector are obtained from 

the linear eigenvalue equation, Eq. (46). The buckling load, computed from multiplying 

the initial load with the load factor, is utilized to calculate the critical buckling temperature 

difference using Eqs. (20), (22) and (26) according to the type of temperature distribution. 

Next, the thermo-elastic properties at m crT T T   is updated. Besides, the eigenvector is 

normalized and scaled up to desired amplitude to make sure that its magnitude is kept 

constant for each displacement incremental step. Then it is used as the displacement vector 

for evaluation of the nonlinear stiffness. Equation (47) is solved to obtain the load factor 

and the associated eigenvector. Subsequently, updated temperature T is implemented. 

Convergence is verified by using a desired tolerance, i.e. = 0.01. If this is not satisfied, 

all the matrices are updated at the updated temperature by current load factor and 
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displacement vector according to current buckling mode shape. Equation (47) is solved 

again to obtain the load factor and buckling mode shape. This iterative procedure keeps 

going until the convergence of the thermal buckling temperature is achieved. 

6 Numerical examples 

This section focuses on studying the nonlinear behaviour of FGM plate, which material 

properties are listed in Table 1, under transverse and thermal load. It is assumed in the 

latter that the temperature is uniform on the top and bottom surfaces and varies through the 

thickness direction as a constant, linear or nonlinear function. In these problems, we 

assume that the plate is constrained on all edges by: 

- Simply supported condition, which is divided in two cases: movable and immovable 

in the in-plane directions. 

Movable edge (SSSS1):          
0 0

0 0

0 on 0,

0 on 0,

y

x

v w x L

u w y W





   


     
(48) 

Immovable edge (SSSS2):      
0 0 0

0 0 0

0 on 0,

0 on 0,

y

x

u v w x L

u v w y W





    


      
(49) 

Immovable edge (SSSS3) :      0 0 0 0u v w              on all edges  (50) 

- Clamped support 

                                          
0 0 0

0, 0,

0

0

x y

x y

u v w

w w

     


 
   on all edges  (51) 

The Dirichlet boundary condition (BC) on 0 0 0, , , andx yu v w    is easily treated as in the 

standard FEM, while the enforcement of Dirichlet BC for the derivatives 0, 0,,x yw w  can be 

solved as follows an idea of rotation-free of thin shell [56, 57]. The idea is to impose zero 

deflection for the control points, which are adjacent to the boundary control points. 
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Table 1  Material properties of functionally graded material 

  E (GPa)  k (W/mK)  (10
-6

 /K)  (kg/m
3
) 

Aluminium (Al) 70 0.3 204  23 2707 

Alumina (Al2O3) 380 0.3 10.4  7.2 3800  

Zirconia (ZrO2) 151 0.3 2.09 10 3000 

For convenience, the following normalized transverse displacement, in-plane stresses 

and shear stresses are expressed as: 

 
w

w
h

 , 
2

2

z

h

f a


  , 

z

h

f a


  , 

4

4

z

m

f a
P

E h
  

6.1 Nonlinear bending analysis 

In order to validate the present formulation, a moderate (L/h = 10) isotropic square plate 

( = 0.3) subjected to a uniformly distributed load is first considered. Figure 5 shows the 

variation of the central deflection w
 
versus load parameter P  of this plate under two types 

of boundary conditions: SSSS1 and SSSS3. It can be seen that the present solutions are in 

excellent agreement with those of FEM reported by Reddy [51]. 

 

Figure 5  The load-deflection curves of an isotropic square plate under SSSS1 and 

SSSS3 boundary conditions. 

Next, the geometrically nonlinear behaviour of Al/ZrO2 plate in dimension as length L 

= 0.2 m and thickness h = 0.01 m is investigated. The plate is subjected to uniformly 
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distributed load, which is increased sequential to equal to 710zf    N/m
2
 after five steps. 

Figure 6 shows the variation of the load-central deflection curves via power index n. It 

should be noted that, index n = 0 corresponds to the ceramic plate, whilst n =  indicates 

the metal plate. As expected, the deflection response of FGM plates is moderate for both 

linear and nonlinear cases compare to that of ceramic (stiffer) and metal (softer) plates. 

One more interesting point may be noted that the nonlinear deflections are smaller than 

linear ones and their discrepancy by increasing load. This is due to adding in the overall 

stiffer stiffness matrix by the nonlinear stiffness matrix NLK
 
which strongly depends on 

the deflection. Figure 7 plots the stress distributions through the plate thickness of the 

FGM plate (n = 1) via the change of load intensity. It can be seen that the effect of 

nonlinearity reduces the amplitude of the normalized stresses. Regarding the HSDT, the 

shear stress distributes as a curve with traction-free boundary condition at the top and 

bottom surfaces of the plate. 

 

Figure 6 Non-dimensional center deflection via load parameter and power index: non-

linear results (in solid line) and linear results (in dash line). 
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a) The shear stress ( / 2,0)yz a  

 

b) The axial stress ( / 2, / 2)x a a . 

Figure 7 Effect of the load parameter P on the stresses distributions. 

By enforcing the temperature field to this plate as Tm = 20C and Tc = 300C at the 

bottom and top surfaces, respectively, the mechanical load – deflection curves via gradient 

index are plotted in Figure 8 in both cases of linear and nonlinear analyses. It is seen that 

the behaviour of deflection under thermo-mechanical load is quite different from purely 

mechanical load as shown in Figure 6. Because the higher temperature at the top surface 

causes the thermal expansion, the plates result in upward deflections. Among them, the 

metallic plate is found to be very sensitive to the temperature with the largest upward 

displacement. Then the deflection varies from positive side to negative side when the 

mechanical load increases. The similar tendency is observed for nonlinear analysis as 

compared with linear one except that the nonlinear deflections are larger than the linear 

ones under purely thermal load. This is due to the fact that development of the initial stress 

stiffness matrix K0, which is generated by thermal in-plane forces, reduces the overall plate 

stiffness. Another difference from linear solution is that the nonlinear results cannot be 

superimposed. For instant, as n = 0 the total deflection  0.3963w    is higher than a sum 

of 0.4385w    and 0.124w   in case of purely transverse and thermal load. 

Linear 
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a)                                                                   b) 

Figure 8 Non-dimensional central deflection w of FGM plate under thermo-

mechanical load via a)linear and b) nonlinear analyses. 

Let’s continuously investigate behaviour of the simply supported square Al/Al2O3 plate 

subjected to only thermal load. Figure 9 reveals the non-dimensional centre deflection via 

gradient temperature and power index. It can be seen that the plate is immediately bended 

toward the upper side as soon as temperature is enforced because of presence of extension-

bending coupling effect due to un-symmetric material distribution through the thickness. 

For a comparison purpose, linear solutions are also supplied by neglecting the nonlinear 

stiffness matrix. It is observed that as temperature rises, increase in the thermal in-plane 

forces leads the plate stiffness to tend toward zero. As a result, the transverse displacement 

increases rapidly and runs to infinitive. It may be physically incorrect because the plate 

experiences large deflection at this time. So, von Karman nonlinear strain should be 

considered in the plate formulation. With the nonlinear effect, plate becomes stiffer and 

enables to bear higher temperature rise. 
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Figure 9 Temperature-deflection curves of SSSS2 square Al/Al2O3 plate (L/h = 100) 

subjected to nonlinear temperature rise under linear analysis (in dash line) and nonlinear 

one (in solid line). 

Figure 10 depicts the temperature – central deflection curves using various values of 

gradient index n. It is noted that homogeneous plates exhibit bifurcation buckling paths 

whilst FGM plates show no bifurcation phenomenon. Furthermore, decrease in the 

gradient index n increases the thermal carrying capability of the plate. In Figure 11, for 

comparison aim, the nonlinear bending behaviour of Al/Al2O3 plate (n = 1) under uniform, 

linear and nonlinear temperature rise is studied. Herein, the plate boundaries are 

constrained by two simply supported conditions: movable edges (SSSS1) and immovable 

edges (SSSS2). It is found that at an enough high temperature level, the uniform 

temperature distribution produces more transverse displacement in the plates than linear 

and nonlinear temperature distributions. In addition, movable edge condition (SSSS1) 

helps the plate to undergo smaller deformation than immovable edge one (SSSS2). 

Because weaker edge support and movability of in-plane displacements around all edges 

(except four corners), as shown in Figure 12, reduce the thermal effect on the plate. As 

noted that for clear vision, the in-plane displacements are scale by 1000. 

T 
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Figure 10 Thermal post-buckling paths of SSSS2 square Al/Al2O3 plate (L/h = 100) 

under nonlinear temperature rise. 

 

 

Figure 11 Thermal post-buckling paths of the Al/Al2O3 plate (n = 1, L/h = 100). 

T 

T 
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a) Movable edges (SSSS1) 

 

b) Immovable edges (SSSS2). 

Figure 12 Displacement of Al/Al2O3 plate ( n = 1) at T = 40C under a) movable edge 

(SSSS1) and b) immovable edge (SSSS2) condition, whole plate profile (upper) and 

thermal deflection at cross section y = W/2 (lower). 

 

6.2 Thermal post-buckling analysis 

In this sub-section, two examples, for which solutions are available in the literature, are 

considered in order to validate the efficiency of the present method for the thermal 

instability. Firstly, the thermal post-buckling temperature – deflection curve of a simply 

supported square plate (L/h = 10,  = 0.3,  = 10
-6

/C) under uniform temperature rise is 

plotted in Figure 13. The obtained results are compared with those of Bhimaraddi and 

Chandashekhara [58] using the parabolic shear deformation theory and the closed form 

solutions by Shen [24] based on higher-order shear deformation plate theory. Herein, it is 

evident that identical results are obtained in comparison with Shen’s solutions for both 
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perfect and imperfect plates (initial deflection * / 0.1w h  ). Herein, obtained critical 

temperature * 410cr crT T   
 
is as same as Shen’s result [24] with the value of 119.783. 

 

Figure 13 Temperature-deflection curve of an isotropic square plate. 

 

 

Figure 14 Temperature-deflection curve of a clamped isotropic skew plate. 

Secondly, for the post-buckling path of a clamped skew plate (skew angle = 45, E = 

1GPa,  = 0.3,  = 10
-6

/C) as depicted in Figure 14, the present solution is compared to 


T

/
T

cr
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that of Prabhu and Durvasula [59]. In this example, the temperature is normalized as 

* 2 2/ ( )crT T E L h D   with the flexural rigidity 3 2/12(1 )D Eh   . An excellent 

agreement is again observed. 

Next, let us consider a clamped circular plate with radius-to-thickness ratio R/h = 100 

subjected to uniform and nonlinear temperature rise. The plate is made from Al/Al2O3, for 

which material properties are assumed to be independent of temperature. The comparison 

of critical temperature of this plate is listed in Table 2. It is observed that the present 

results agree well with the closed-form solutions [60] and FEM’s one [61] using a three-

node shear flexible plate element based on the field-consistency principle as well as the 

solutions based on TSDT [44].  

Table 2  Critical buckling temperature of FGM circular plate under temperature rise. 

n 
Temp. 

Present 
IGA [44] FEM [61] Closed form solution [60] 

Rise TSDT FSDT FSDT CPT 

0 
uniform 12.7298 12.7247 12.713 12.712 12.716 

nonlinear 25.4596 25.4494 25.426 25.924 25.433 

0.5 
uniform 7.2128 7.2107 7.203 7.202 7.204 

nonlinear 19.0255 19.0193 18.996 18.996 19.002 

1 
uniform 5.9144 5.9128 5.907 5.906 5.907 

nonlinear 15.3970 15.3929 15.377 15.373 15.378 

Furthermore, Figure 15 shows the effect of power index n on the thermal post-buckling 

paths of the plates under the uniform and non-linear temperature rise. It should be noted 

that in case of nonlinear temperature rise, it is assumed that no temperature changes in the 

bottom of the plate, 0mT  . Some following remarks are concluded: 

- The thermal resistance of the FGM plates reduces due to increase in the material 

gradient index, n, because of the stiffness degradation by the higher metal 

inclusion, e.g. the thermal resistance is the highest if the plate is fully ceramic (n = 

0) and the lowest if the homogeneous metal plate is retrieved (n = ). 

- If we can keep the temperature varies non-uniformly through the thickness, FGM 

plates can resist higher buckling temperature. 

- The clamped plates exhibit a bifurcation-type of instability, which is vertically 

symmetric. 
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- It is also observed that, after achieving the bifurcation point, the post-buckling 

temperature increases monotonically with the increase in the transverse 

displacement and suddenly drops to the secondary instability path. The transition 

from primary post-buckling path to the secondary one is caused by redistribution 

of post-buckling displacement mode shape. The maximum transverse 

displacement shifts from the plate centre towards one plate corner. This 

phenomenon can be seen in the reports for angle-ply composite plate by Singha et 

al. [62] and FGM plates by  Prakash et al. [46, 47]. After the secondary instability, 

the post-buckling temperature slightly increases due to increase in deflection. This 

point is clearly illustrated in Figure 16.  

 

a) Uniform temperature rise              b) Nonlinear temperature rise 

Figure 15 Bifurcation buckling paths of the clamped circular Al/Al2O3 plate (R/h=100) 

under uniform and nonlinear temperature rise. 

 



  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 
30 

 

Figure 16 Buckling modes of the clamped circular Al/Al2O3 plate (n =1, R/h = 100) 

under uniform temperature rise. 

 

6.3 Temperature-dependent material Si3N4/SUS304 plate 

Finally, the thermal post-buckling of temperature-dependent material square plate, 

made of Silicon nitride (Si3N4) and Stainless steel (SUS304), is investigated. Their 

material properties are functions of temperature as indicated in Eq. (3) with the coefficients 

listed in Table 3 [49]. An example of the effect of temperature change on material 

properties of Si3N4/SUS304 FG plate, i.e. Young modulus is illustrated in Figure 17. It is 

observed that increase in temperature reduces Young modulus magnitude of both isotropic 

(n = 0) and FGM (n = 1, 10) plates. 



  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 
31 

 

Figure 17 The effective Young modulus of Si3N4/SUS304 plate at sepcified temperature: 

T=0 K (solid line), T=300 K (dashed line), T=1000 K (dash dot line). 

Table 3 Temperature dependent coefficients of Si3N4 and SUS304. 

Material Property P-1 P0 P1 P2 P3 

Silicon 

nitride 

Si3N4 

  

E (Pa) 0 3.4843e11 -3.0700e-4 2.1600e-7 -8.946e-11 

 0 0.24 0 0 0 

 (1/K) 0 5.8723e-6 9.0950e-4 0 0 

k (W/mK) 0 13.723 -1.0320e-3 5.47e-7 -7.88e-11 

Stainless 

steel 

SUS304 

  

E (Pa) 0 2.0104e11 3.0790e-4 -6.534e-7 0 

 0 0.3262 -2.00e-4 3.80e-7 0 

 (1/K) 0 1.2330e-5 8.0860e-4 0 0 

k (W/mK) 0 15.379 -1.26Ee-3 2.09e-6 -7.22e-10 

 

Figure 18 reveals the thermal post-buckling behaviours for Si3N4/SUS304 FGM plate 

with various power indices n =0, 1, 10. The post-buckling paths for temperature-dependent 

and temperature-independent are presented in solid and dashed curves, respectively. 

Herein, the results considering temperature-independent material property (values are 

estimated at T0 = 300K) are also presented for comparison purpose. It is observed that the 

thermal post-buckling curve becomes lower when considering the thermal dependent 

properties and increase in value of n. Furthermore, with thin plate (L/h = 100), the 
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discrepancy between temperature-independent solutions and temperature-dependent 

solutions is insignificant due to the very small buckling temperature. As expected, with an 

increase in the length-to-thickness ratio, the critical buckling temperature increases 

accordingly.  

 
a) L/h =100 

 
b) L/h =20  

Figure 18 Thermal post-buckling paths of Si3N4/SUS304 FGM plate via various power 

indices and length-to-thickness ratios L/h. 

T 

T 



  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 
33 

7 Conclusion 

We presented a simple and efficient formulation relied on the framework of NURBS-

based IGA for nonlinear bending and post-buckling analysis of FGM plate in thermal 

environment. The material properties of the FGM plate are assumed to be the functions of 

both thickness position and temperature. The nonlinear governing equation of the plate is 

formed in the total Lagrange approach based on the von Karman assumptions. Due to 

value of force vector, this problem can be classified into two categories: geometrical 

nonlinear and nonlinear eigenvalue analyses. Through various numerical results, some 

concluding remarks can be drawn: 

- There is a quite difference between linear and nonlinear solution. Under transverse 

load, nonlinear analysis achieves lower solutions because of additional nonlinear 

stiffness matrix. In case of purely thermal load, due to thermal membrane effect, the 

overall plate stiffness is reduced. As a result, the nonlinear deflections are larger 

than linear ones. 

- In the FGM plate, temperature rise causes presence of the extension-bending effect 

due to its non-symmetric material properties. Therefore, no bifurcation type of 

instability occurs. However, in the special case, that is clamped boundary condition, 

the boundary constraint is capable to neutralize the extra moment. Thus, the 

buckling bifurcation does exist. 

- The thermal resistance of the FGM plates reduces according to increase in the 

material gradient index n because of the stiffness degradation by the higher metal 

inclusion. 

- FGM plate reduces the thermal resistance as temperature-dependent material 

properties are taken into account. This reduction is more clearly observed in thick 

plate. 
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