
A&A 590, A55 (2016)
DOI: 10.1051/0004-6361/201528063
c� ESO 2016

Astronomy

&
Astrophysics

Composite biasing in Monte Carlo radiative transfer

Maarten Baes1, Karl D. Gordon2, 1, Tuomas Lunttila3, Simone Bianchi4, Peter Camps1, Mika Juvela5, and Rolf Kuiper6

1 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, 9000 Gent, Belgium
e-mail: maarten.baes@ugent.be

2 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
3 Chalmers University of Technology, Department of Earth and Space Sciences, Onsala Space Observatory, 439 92 Onsala, Sweden
4 INAF–Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Florence, Italy
5 Department of Physics, PO Box 64, University of Helsinki, 00014 Helsinki, Finland
6 Institute of Astronomy and Astrophysics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany

Received 30 December 2015 / Accepted 25 March 2016

ABSTRACT

Biasing or importance sampling is a powerful technique in Monte Carlo radiative transfer, and can be applied in di↵erent forms
to increase the accuracy and e�ciency of simulations. One of the drawbacks of the use of biasing is the potential introduction of
large weight factors. We discuss a general strategy, composite biasing, to suppress the appearance of large weight factors. We use
this composite biasing approach for two di↵erent problems faced by current state-of-the-art Monte Carlo radiative transfer codes:
the generation of photon packages from multiple components, and the penetration of radiation through high optical depth barriers.
In both cases, the implementation of the relevant algorithms is trivial and does not interfere with any other optimisation techniques.
Through simple test models, we demonstrate the general applicability, accuracy and e�ciency of the composite biasing approach. In
particular, for the penetration of high optical depths, the gain in e�ciency is spectacular for the specific problems that we consider:
in simulations with composite path length stretching, high accuracy results are obtained even for simulations with modest numbers of
photon packages, while simulations without biasing cannot reach convergence, even with a huge number of photon packages.
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1. Introduction

The Monte Carlo (MC) simulation method can be defined as
a rather direct transcription of natural stochastic processes into
computing terms, and is a widely applied method to simulate
complex problems. MC simulations are routinely used for trans-
port problems of all kinds of particles, including neutrons, cos-
mic rays, neutrinos and photons. In the case of photon transport,
or radiative transfer, the MC method has grown to be the most
popular method, both for line radiation and continuum radiation
(for overviews, see e.g. Dupree & Fraley 2002; Whitney 2011;
Steinacker et al. 2013; Marchuk et al. 2013).

All modern Monte Carlo radiative transfer (MCRT) meth-
ods incorporate a number of acceleration methods to speed up
the simple MC loop. The essential ingredient of all acceleration
methods is the assignment of a weight to each photon package,
which can alter during its life cycle. The weight of a photon
package is equivalent to the fraction of the original luminosity
carried by that photon package, or the number of photons con-
tained within it.

Several of the most popular acceleration methods in MCRT
are based on the technique of biasing. Biasing consists of gener-
ating random numbers from a di↵erent probability density func-
tion (pdf) from the physical one, and correcting for this biased
probability by adapting the weight of the photon package. This
technique can be applied in order to sample particular parts of
the pdf more heavily than others.

In the context of MCRT, biasing is used in several optimi-
sation techniques. Probably the most widespread application of
biasing is the technique of forced scattering (Cashwell & Everett
1959; Mattila 1970; Witt 1977), which is built into most modern

radiative transfer codes in some form. Another direct application
of biasing is the principle of biased emission, by which the loca-
tion from which and/or the propagation direction into which pho-
ton packages are emitted are biased (Yusef-Zadeh et al. 1984;
Juvela 2005). An advanced application of biasing is the case
of polychromatism, in which photon packages containing pho-
tons of di↵erent wavelengths are used in the simulation (Jonsson
2006).

While biasing is undeniably a powerful technique to make
MCRT simulations more e�cient, it also comes with its poten-
tial dangers. One aspect that should be kept in mind is that if one
uses biasing to sample particular parts of the pdf more heavily
than one should naturally do, other parts of the pdf are auto-
matically sampled less heavily. In other words, while biasing is
designed to decrease the noise where desired, the logical price
to pay is that the noise will increase in other places. This implies
that biasing needs to be used with care, and this can limit the
applicability of the technique in “blind” applications where little
a priori information about the system is known.

A second important aspect is that biasing adds an additional
weight factor to each photon package. Small weight factors are
usually not a problem, but photon packages with large weight
factors can be a significant source of noise, and this can com-
pletely ruin the potential advantages of biasing (see e.g. Juvela
2005; Jonsson 2006).

In this paper, we further explore the use of biasing in MCRT
simulations. In Sect. 2 we go deeper into the idea of biasing and
we introduce a specific approach of biasing (which we call com-
posite biasing) that automatically avoids the problem of large
weight factors. In the following two sections we present two
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novel applications of (composite) biasing in MCRT. In Sect. 3
we focus on the emission of photon packages from a source that
is composed of multiple components. In Sect. 4 we focus on the
problem of penetrating through an optically thick medium. We
demonstrate there that the use of composite biasing to the gen-
eration of random optical depths can be an elegant way to deal
with this problem. A discussion and conclusions are presented
in Sect. 5.

2. Composite biasing

The biasing principle is used in many MC applications and
can be a very e↵ective acceleration technique (Dupree & Fraley
2002). It is known as importance sampling in MC nu-
merical integration and computer graphics (Lepage 1978;
Kalos & Whitlock 2009), and as umbrella sampling in com-
putational molecular sciences (Torrie & Valleau 1977; Kästner
2011).

In MCRT, biasing is typically used in the following manner.
Assume that, in the course of the life cycle of a photon pack-
age, we need to determine a random event x from a given pdf
p(x) 1. The most obvious way to proceed is to generate a random
x directly from the pdf p(x) using any of the techniques for uni-
variate or multivariate nonuniform random number generation
available in the literature (see e.g. Devroye 1986; Hörmann et al.
2004). Sometimes, however, we want to promote certain parts of
the domain more in order to increase the signal-to-noise ratio
there. For example, one could have good reasons to prefer more
photon packages to be emitted in a certain direction, even though
the emission is intrinsically isotropic (Yusef-Zadeh et al. 1984;
Juvela 2005). The technique of biasing consists of generating x

not from the original pdf p(x), but from a di↵erent pdf q(x). The
biased behaviour is corrected for by altering the weight of the
photon package with a weight factor

w(x) =
p(x)
q(x)
· (1)

In MC integration, the pdf q(x) is often a scaled or translated
version of the original pdf, but this is not required: the biased
pdf can in principle be chosen completely arbitrarily. The only
restriction is that q(x) > 0 for all x where p(x) > 0, except for
those x that one knows will not contribute to the final tally.

As already mentioned, one of the limitations of the applica-
bility of the biasing technique is the possible appearance of large
weight factors. Since both p(x) and q(x) are normalised proba-
bility functions, it is unavoidable that the weight function w(x)
will be larger than unity in some part of the domain. If the weight
of a photon package is boosted significantly, it can become a se-
rious source of noise. The choice of the biased pdf is therefore a
delicate job. On the one hand, q(x) should be chosen such that it
does promote those parts of the domain that are desired. On the
other hand, it should be such that, when combined with the orig-
inal pdf, the weight factor is never boosted to excessively large
values.

A general way to combine these two requirements is what we
propose as composite biasing. Assume that we have an intrinsic
pdf p(x) (for example, a uniform distribution on the unit sphere

1 This event can be, for example, the location of the emission, the path
distance that can be covered before the next interaction, or the propaga-
tion direction after a scattering event. The probability density function
p(x) is completely determined by the radiative transfer problem that is
being considered.

to represent isotropic emission), and that we would ideally pre-
fer a biased pdf q(x) (for example, a distribution strongly peaked
towards one specific direction). If p(x) and q(x) are radically dif-
ferent, it is possible (and even likely) that the weight factor (1)
becomes very large in some part of the domain. We propose to
solve this problem by using a new biased pdf

q?(x) = (1 � ⇠) p(x) + ⇠ q(x). (2)

This expression is just a linear combination of the original pdf
and the desired biased pdf, where the parameter ⇠ sets the rel-
ative importance of the latter component. Generating a random
event x from the pdf q?(x) is easy: it is a direct application of
the so-called composition method or probability mixing method,
a simple method that allows to generate random numbers from
pdf that can be decomposed as a weighted sum (Devroye 1986;
Baes & Camps 2015). The power of this composite biasing be-
comes clear if we look at the weight factor,

w?(x) =
p(x)

q?(x)
=

1
(1 � ⇠) + ⇠/w(x)

· (3)

Even if the pdfs p(x) and q(x) are radically di↵erent and the
weight factor w(x) would become very large in some part of
the domain, the composite biasing weight factor w? is always
bounded by the finite value

w?(x) <
1

1 � ⇠ · (4)

If we take ⇠ = 1
2 , half of the events are sampled from the original

pdf and the other half from the desired pdf, and the weight of
a photon package will never be boosted by more than a factor
two. Note that this accounts for a single event: in case a photon
undergoes multiple consecutive events with composite biasing,
it is possible that the cumulative weight exceeds this factor two.

In the following sections we test the advantages of composite
weighting in two applications useful for (MC) radiative transfer.

3. Emission from multiple components

3.1. Problem description

The first step in the life cycle of every photon package in a
MCRT simulation is the generation of a random position from
which it is launched into the medium. If most of the radiation
originates from a point source, as is often the case for radia-
tive transfer simulations of circumstellar discs (Robitaille et al.
2006; Whitney et al. 2013), reflection nebulae (Witt 1977;
Yusef-Zadeh et al. 1984) or the dusty tori around active galactic
nuclei (AGNs; Stalevski et al. 2012; Siebenmorgen et al. 2015),
this is an easy process.

In general, the pdf that describes the position x from which
a photon package (at a given wavelength) should be generated is
the normalised monochromatic luminosity distribution,

f (x) =
j(x)
L

(5)

where j(x) is the luminosity density at x and L is the total lu-
minosity. In many MCRT simulations, the source that emits the
radiation is built up out of a number of components. These can be
a limited number of physical components (such as multiple stars,
or an individual bulge and disc component in a galaxy simula-
tion). Often, however, the source consists of a large number of
components defined by the numerical setup of the simulation.
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A typical example is when radiative transfer is used to post-
process snapshots from hydrodynamical simulations that use ei-
ther grid-based or smoothed particle hydrodynamics techniques.
In the former case, each cell is a component, in the latter case,
each smoothed particle is a separate component. Another fre-
quent case is the thermal emission by dust in a dust radiative
transfer simulation: in such simulations, each of the grid cells
that have been used to absorb the primary radiation (typically
from stars or AGNs) acts as a source itself.

Question is now how the initial position of a random photon
package should be determined. If the source is composed of N

di↵erent components, one can write

j(x) =
NX

m=1

j

m

(x) (6)

where j

m

(x) is the luminosity density of the mth component. The
corresponding pdf from which a position should be generated is

f (x) =
NX

m=1

✓
L

m

L

◆  
j

m

(x)
L

m

!
(7)

with L

m

the total luminosity of the mth component. Thanks to the
composition method (Devroye 1986), the generation of a random
position from the pdf (7) comes down to two steps. In a first step,
a random component m is chosen according to the discrete pdf

p(m) =
L

m

L

m = 1, . . . ,N. (8)

In the second step, a random position is generated from this mth
component by sampling a random x from the pdf

f

m

(x) =
j

m

(x)
L

m

· (9)

In many cases the latter operation is relatively simple, in particu-
lar if the di↵erent “components” are cells with a uniform density.
Generating random positions from such a pdf is almost trivial.

The problem with this approach is that the discrete pdf (8)
is often very non-uniform: the contribution to the total luminos-
ity of the di↵erent components can easily vary many orders of
magnitude (especially since we are dealing with monochromatic
luminosities at one particular wavelength). The consequence is
that components with a very low contribution to the total lumi-
nosity will almost never be selected, which will result in a very
poor signal-to-noise in the regions where they are dominant.

3.2. The application of composite biasing

We can solve this problem by biasing the pdf that dictates the
choice of the component number m. Rather than selecting the
component from the discrete pdf (8), we can select a di↵erent
discrete pdf q(m), select random components from this biased
pdf, and correct for the biasing by applying an additional weight
to the photon package.

A logical choice for the biased pdf would be a uniform dis-
tribution where each component has the same probability. This
would guarantee that more or less the same number of photon
packages is launched from each component, and thus imply a
similar signal-to-noise. The biased pdf would then be

q(m) =
1
N

(10)

with the weight

w(m) =
p(m)
q(m)

=
N L

m

L

=
L

m

hLi (11)

with hLi the average luminosity emitted by each component. Ap-
plying this weight to each photon package essentially comes
down to assigning a luminosity to each emitted photon pack-
age that is directly proportional to the total luminosity emitted
from that component. Photon packages emitted from the most
luminous component obviously get the strongest boost in their
luminosity. As some components typically have a much higher
luminosity than others, and thus L

m

� hLi, these weight factors
can become very large.

The solution is to consider composite biasing. Rather than
choosing the uniform distribution (10) as a biased pdf, we can
use

q?(m) = (1 � ⇠) p(m) + ⇠ q(m) =
(1 � ⇠) L

m

L

+
⇠

N

· (12)

The weight function corresponding to this discrete biased pdf is

w?(m) =
1

(1 � ⇠) + ⇠hLi/L
m

· (13)

The maximum weight is obviously again obtained for the pho-
ton packages emitted from the most luminous component, but
the main advantage is now that the maximum weight is always
limited to 1/(1 � ⇠). In this particular application of composite
biasing, this weight factor can not accumulate (each photon is
only emitted once).

3.3. Implementation

We implemented this biased emission method in the SKIRT
code. SKIRT2 (Baes et al. 2003, 2011; Camps & Baes 2015) is
a highly modular MCRT code that comes with a suite of input
models for the distribution of the stars and dust. These compo-
nents can easily be altered and combined to form complex in-
put geometries. The code also contains the framework to read in
numerical input geometries defined on a hierarchical or an un-
structured Voronoi grid, or as a set of SPH particles. For details,
we refer to Baes & Camps (2015). We have implemented the
composite biasing as described for the primary emission (when
di↵erent components are combined, as well as when the pri-
mary sources are grid or particle based) and for thermal dust
re-emission. The value of the ⇠ can be chosen by the user.

Composite biased emission has also been implemented in
DIRTY (Gordon et al. 2001; Misselt et al. 2001) in a very simi-
lar way.

3.4. Simulations

As a test case, we used a simple toy model consisting of two
Plummer (1911) spheres that emit radiation according to their
luminosity density

j(x) =
2X

m=1

3L

m

4⇡c3
m

 
1 +
|x � x

m

|2
c

2
m

!�5/2

· (14)

Both components have the same scale length c

m

, but a di↵erent
luminosity (L1/L2 = 100), and they are o↵set from each other.

2
http://www.skirt.ugent.be
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Fig. 1. Simulated images of a composite system composed of two Plummer spheres. The di↵erence in intrinsic luminosity between the two
components is a factor 100. Two panels on the left: simulated image of the system without biasing (i.e. each component has a weight proportional
to its luminosity), for 105 and 106 photon packages. Panels on the right: similar images for the same system, but now composite biasing is applied.

We ran two simulations for this system: one in which we gen-
erate initial positions of the various photon packages using the
regular scheme, and one where we use the composite biasing
scheme.

The left panels of Fig. 1 show images resulting from the
simulations using the regular method, with 105 (top) and 106

(bottom) photon packages, respectively. As this method assigns
a probability to each component proportional to its luminosity,
less than 1% of all photon packages are emitted from the fainter
component, and more than 99% from the more luminous one.
The result is a poor signal-to-noise for the latter component, as
clearly visible in the image.

The right panels of Fig. 1 show images of the same system,
but now using composite biasing with ⇠ = 1

2 . For half of the pho-
ton packages, the component is selected using the same method
as before (resulting in less than 1% of these from the faint com-
ponent), and the other half are selected using a heads or tails
principle. The result is that 25.5% of all photon packages are
emitted by the fainter component and 74.5% from the luminous
one. The result is clearly visible in the image: the signal-to-noise
of the fainter Plummer sphere is much higher compared to the
previous simulation, whereas the signal-to-noise of the luminous
sphere is only slightly reduced.

We could have also opted for a more simple uniform pdf,
and sample half of the photon packages from the luminous and

half from the less luminous component. This would give both
components an equal signal-to-noise. The drawback here would
be that the weight di↵erence between photon packages emitted
from both components would increase. The weight of photon
packages from the luminous component would be boosted by
a factor 1.98, whereas those from the less luminous component
would be dampened by a factor 0.020. In our composite bias-
ing scheme, the di↵erence between these two is significantly
lower: the weight factor for the luminous component is only
1.33, whereas the one for the less luminous one is 0.039.

It is easy to come up with more extreme examples. In Fig. 2
we consider a system composed of 1000 emitting smoothed par-
ticles, with positions randomly generated from a uniform den-
sity sphere, and an additional central point source. Each of the
smoothed particles has the same luminosity, and the point source
is 1000 times more luminous than a single smoothed particle.
This could be an idealised simulation of an AGN embedded in a
smooth stellar system. Figure 2 shows the mean intensity of the
radiation field in a 2D slice through the simulation volume, cal-
culated using the method of Lucy (1999). The three panels cor-
respond to di↵erent schemes: without biasing (left), with com-
posite biasing (centre) and with uniform biasing (right). In the
simulation with the regular scheme, half of the photon packages
are emitted from the nuclear point source, while the other half
are distributed over all the smoothed particles, which results in
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Fig. 2. Monochromatic mean intensity slices of a composite system composed of 1000 smoothed particles and a luminous central point source.
Left panel corresponds to the regular scheme (8), the central one to the composite biasing scheme (12), and the right one to the uniform biasing
scheme (10).

a relatively poor signal-to-noise in the observed image. If we
adopt uniform biasing and assign the same probability to each
component, the vast majority of the photon packages are emit-
ted by the smooth particles and the signal-to-noise in the image
is improved. However, the few photon packages emitted by the
AGN component are boosted by a factor of more than 500, and
this has a huge e↵ect on the mean intensity. The photon packages
emitted from the AGN have very large weights and they leave a
bright trace through the system, and boost the value of the mean
radiation field in the cells they pass through to unrealistically
high values, whereas the level of the radiation field strength is
underestimated in those cells that are not crossed by an AGN
photon package. The composite biasing scheme resides between
these two extremes: the signal-to-noise of the host galaxy is bet-
ter than in the regular scheme, whereas the weight factor for pho-
ton packages emitted by the AGN is strongly reduced to slightly
below 2, which results in a mean intensity distribution that is not
a↵ected by extreme boosting.

The two example source geometries, shown in Figs. 1 and 2,
illustrate an important point concerning composite biasing. In
the first case, choosing the regular method was a poor idea, since
it produced a poor signal-to-noise for the second component. We
described the benefit of a biasing scheme with composite bias-
ing, but in the end, also a simple uniform pdf would not have
been a bad option. For the second case, biasing with a uniform
pdf would have been a poor choice because of the huge weight
factor, whereas the regular scheme would be a reasonable al-
ternative to our composite biasing scheme. In both cases, we
could hence obtain a good simulation without our composite bi-
asing scheme, but we would have needed to pick a di↵erent algo-
rithm for each situation. This is, in our opinion, a nice advantage
of the composite biasing scheme (at least for its application to
emitting photon packages from multiple components): it is one
single recipe that can be applied to these two radically di↵er-
ent cases. There is hence no need to study the characteristics of
the radiative transfer problem in detail before choosing a proper
algorithm.

4. Path length stretching

4.1. Problem description

We now turn our attention to a di↵erent problem where biasing,
and composite biasing in particular, can contribute, namely the

problem of penetration of radiation through an optically thick
medium. This is a notoriously hard nut to crack for MCRT sim-
ulations (e.g. Min et al. 2009; Pinte et al. 2009).

The standard radiative transfer theory (e.g. Chandrasekhar
1960) dictates that the pdf corresponding to the path length cov-
ered between two interaction events (i.e. emission, absorption or
scattering events) in optical depth coordinates is an exponential
distribution. In an MCRT code this means that, after the posi-
tion and propagation direction of a photon package have been
determined, a random optical depth ⌧ is generated from an expo-
nential distribution,

p(⌧) = e�⌧. (15)

This optical depth is subsequently converted to a physical path
length, which can be combined with the initial position and prop-
agation direction to yield the next interaction site.

It is immediately clear why large optical depths pose a chal-
lenge for MCRT simulations. An exponentially declining distri-
bution is strongly peaked towards small values, and the probabil-
ity that a large optical depth is randomly generated from such a
distribution is hence extremely small. For example, the probabil-
ity that a value ⌧ > 20 is chosen is only one out of 485 million,
and for ⌧ = 50 this reaches one out of 5.2 ⇥ 1021. If we want
to determine the radiation field at a position behind an optically
thick barrier, we hence have to generate huge numbers of pho-
ton packages to ensure that some of them have a random optical
depth large enough to pass the barrier. This would result in an
excessive computation time.

4.2. The application of composite biasing

One way to tackle this problem is by biasing the pdf (15), such
that larger values of the optical depth are artificially promoted
compared to lower values. This idea has mainly been used in
the nuclear engineering community, where it is known under the
names path length stretching or exponential biasing (Levitt 1968;
Spanier 1970; Dwivedi 1982). In these studies, the exponential
pdf (15) is replaced by

q(⌧) = ↵ e�↵⌧. (16)

This means that, e↵ectively, the cross section or opacity of the
medium is modified by a factor ↵. The stretching parameter ↵
can be given any value between 0 and 1 to provide a more uni-
form sampling, and hence to promote the generation of higher
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Fig. 3. Composite biased pdf (top row) and corresponding weight factor (bottom row) for path length stretching. The first and second columns

correspond to the path length stretching for two di↵erent optical depths along the path (⌧path = 5 and 20 respectively). The third and fourth columns

correspond to the same cases, but now path length stretching is combined with forced interaction. Within each panel, the di↵erent lines correspond
to di↵erent values of the mixing parameter ⇠, ranging from ⇠ = 0 (no biasing) to ⇠ = 1 (pure biasing, no composite biasing).

optical depth values. The weight factor corresponding to the bi-
ased pdf (16) is

w(⌧) =
e�(1�↵) ⌧

↵
, (17)

which, logically, has its maximum for ⌧ = 0,

wmax =
1
↵
· (18)

A crucial issue is to determine an optimal value for ↵. The sim-
plest option would be to consider a single uniform value, but it
seems more reasonable to fine-tune the value of ↵ depending on
⌧path, the total optical depth between the current position and the
boundary of the model space3. Indeed, for paths with a modest
optical depth, ⌧path . 1, no biasing or soft biasing with ↵ . 1
is su�cient. For paths with a large optical depth, ⌧path � 1, a
much stronger biasing with ↵ ⌧ 1 is required in order to pro-
mote the probability of reaching the outer regions of the path. A
simple choice that would guarantee that the outer part of the path
is always promoted in roughly the same way is

↵(⌧path) =
1

1 + ⌧path
· (19)

3 In some codes, the value of ⌧path is calculated after every scatter-
ing/emission event before the next interaction site is randomly gener-
ated. This is particularly the case for those codes where continuous
absorption is implemented along the entire ray (Niccolini et al. 2003;
Baes et al. 2011). For such codes, the implementation of a scheme
where ↵ depends on ⌧path does not imply any overhead. Other MCRT
codes do not automatically calculate ⌧path along every path and calcu-
late the next interaction point on-the-fly by integrating along the path
until the covered optical depth reaches the randomly determined value.
In this case, the implementation of such a scheme would imply some
additional calculations.

The combination of Eqs. (18) and (19) results in weight factors
that can grow relatively large, in particular in simulations with a
large optical depth. In other words, in the regime of large optical
depths, where we need to choose ↵ small enough to promote
su�cient penetration to the outer regions along the path, we run
the risk of creating photon packages with large weight factors.

Composite biasing (or composite path length stretching)
presents a solution to this problem: instead of the biased pdf (16)
we adopt

q?(⌧) = (1 � ⇠) e�⌧ + ⇠ ↵ e�↵⌧ (20)

with corresponding weight factor

w?(⌧) =
1

(1 � ⇠) + ⇠ ↵ e(1�↵) ⌧ · (21)

This weight factor never grows larger than

w?,max =
1

1 � (1 � ↵) ⇠
<

1
1 � ⇠ · (22)

The panels on the two leftmost columns in Fig. 3 show the biased
pdf q?(⌧) and the corresponding weight function w?(⌧) for two
di↵erent values of ⌧path, where we have used the relation (19).
In each panel, the di↵erent curves correspond to di↵erent val-
ues of the parameter ⇠, with ⇠ = 0 corresponding to no biasing,
and ⇠ = 1 to complete biasing (i.e. no composite biasing). In
each case, the weight function decreases monotonically with in-
creasing optical depth. The e↵ect of composite biasing is clearly
visible: complete biasing reshu✏es the original pdf drastically,
with the implication that the weight factor can assume large val-
ues for small optical depths (especially for larger values of ⌧path).
Composite biasing creates a mixture of the original and desired
pdf; in particular, it has the same slope as the original pdf for
small ⌧ and the same slope as the desired pdf for large ⌧. The

A55, page 6 of 12

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201528063&pdf_id=3


M. Baes et al.: Composite biasing in Monte Carlo radiative transfer

result is that weight function remains under control at small op-
tical depths.

Interestingly, all curves in each panel pass through a single
point, located at

⌧crit =
� ln↵
1 � ↵ · (23)

This critical optical depth corresponds to w? = 1, and it hence
divides the range of optical depths in a part where the weight
factor is boosted (⌧ < ⌧crit) and a part where it is dampened
(⌧ > ⌧crit).

4.3. Combination with forced interaction

A biased pdf of the form (16), i.e. a shallower exponential
pdf, is obviously not the only possibility. A very interest-
ing option to promote di↵erent sections along the path more
equally is the combination of composite path length stretching
and forced interaction. Forced interaction or forced scattering
(Cashwell & Everett 1959; Witt 1977) is an MCRT acceleration
technique originally developed to deal with radiative transfer in
the low optical depth regime. It prevents photon packages to
leave the system without an interaction. It is by itself an applica-
tion of the biasing technique, where the exponential distribution
Eq. (15) is cut o↵ at ⌧path. This forced interaction is corrected for
by changing the weight of the photon package by an appropriate
weight factor

wfi = 1 � e�⌧path . (24)

Among the existing MCRT codes, di↵erent strategies are
adopted concerning forced interactions: some codes only force
the first interaction after the emission of each photon package,
and transition to unforced interaction for the remainder of the
life cycle of the photon package (in this case, the name forced
first scattering is adopted). Other codes apply forced interaction
throughout the simulation, an approach sometimes called eternal
forced interaction.

Now assume that we one wants to apply forced interaction.
The first step is then to apply the weight factor Eq. (24) to the
photon package, and the second step is to generate a random ⌧
from the appropriately normalised pdf

p(⌧) =
e�⌧

1 � e�⌧path
0 6 ⌧ < ⌧path. (25)

If the total optical depth to the model boundary is small (⌧path <
1), this pdf is close to a uniform distribution, which implies that
all values of ⌧ have more or less equal probability to be gener-
ated. For large values of ⌧path, the distribution is strongly peaked
and it is very unlikely that a large ⌧ will be chosen.

We can of course also apply path stretching in this case,
i.e. we can bias the pdf (25) in a similar way as we did to the
pdf (15). Since this pdf is defined on a domain with a finite range,
we have a di↵erent set of biased pdfs that we can consider. An
obvious candidate would be a uniform distribution,

q(⌧) =
1
⌧path

0 6 ⌧ < ⌧path. (26)

When this option is chosen, there is an equal probability (in op-
tical depth space) for the scattering to take place anywhere along
the path to model boundary. The problem with this choice is the
weight factor

w(⌧) =
⌧path e�⌧

1 � e�⌧path
(27)

which can grow very large in the regime of high optical depths,

wmax =
⌧path

1 � e�⌧path
· (28)

This problem is avoided by using composite path length
stretching,

q?(⌧) =
(1 � ⇠) e�⌧

1 � e�⌧path
+
⇠

⌧path
0 6 ⌧ < ⌧path (29)

with the associated weight function

w?(⌧) =
1

(1 � ⇠) + ⇠
✓

1�e�⌧path

⌧path

◆
e⌧
· (30)

The maximum weight is now

w?,max =
1

(1 � ⇠) + ⇠
✓

1�e�⌧path

⌧path

◆ <
1

1 � ⇠ · (31)

The panels on the two rightmost columns in Fig. 3 are similar
to the leftmost panels, but now correspond to the case where
composite biasing is combined with forced interaction. The same
general conclusions can be drawn. Also in this case, the di↵erent
curves in each panel pass through a single point, now located at

⌧crit = � ln
 

1 � e�⌧path

⌧path

!
· (32)

Again, this critical optical depth corresponds to w? = 1, and
hence divides the range of optical depths in a boosting and a
damping part.

4.4. Implementation

We implemented composite path length stretching in the SKIRT
code. As the code adopts eternal forced interaction, we imple-
mented the biased pdf (29), with a value of ⇠ to be chosen by
the user. The implementation is almost trivial: the only changes
required are the replacement of optical depth generation and the
multiplication of the weight of the photon packages by an extra
weight factor. Actually, no more than 10 lines of code were al-
tered on a total of more than 50,000 lines in the current version
of SKIRT.

While all test performed in this paper were run with SKIRT,
composite path length stretching was also implemented in
DIRTY, TRADING (Bianchi 2008), and CRT (Lunttila & Juvela
2012).

4.5. Simulations and results

In order to test our new recipe, we designed a simple test case
(Fig. 4). The model consists of an cuboidal uniform density pil-
lar of dimensions 1 ⇥ 1 ⇥ 10, illuminated by a single anisotropic
point source located on top of it, emitting in the negative z di-
rection. The observer is located far from the pillar and observes
it from the side. This setup is optimised to study the penetration
of radiation to various optical depths. This model is scale-free,
and completely defined by the vertical optical depth through the
pillar, ⌧max and the optical properties of the medium. We adopt
a scattering albedo of 0.5 and isotropic scattering, and consider
di↵erent values of ⌧max.

The left panel of Fig. 5 compares the vertical surface bright-
ness profile of the model with ⌧max = 10. The blue, green
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τ = 0

τ = τmax

Fig. 4. The geometry of the uniform density pillar model described in
Sect. 4.5.

and dark green lines correspond to models without path length
stretching, for di↵erent photon package numbers in the simula-
tion. In all cases, the surface brightness in the top section of the
pillar (⌧ . 1) is well determined, and the agreement between the
di↵erent runs is nearly perfect. This is not surprising as this is
where the radiation enters the system. The situation gets grad-
ually worse the deeper we follow the radiation into the pillar.
For the simulation with only 106 photon packages, the surface
brightness profile becomes noisy around ⌧ ⇠ 4 and completely
breaks down from ⌧ ⇠ 6. There are just no photon packages that
penetrate this deeply.

When the number of photon packages in the simulation in-
creases, the signal-to-noise of the surface brightness profile ob-
viously increases, but also the penetration depth into the pillar
increases. Indeed, with more photon packages, the probability
that at least one of them has a value of ⌧ deep in the tail of
the exponential distribution becomes larger. With 1010 photon
packages, photon packages can penetrate the entire pillar and
the solution converges. Adding more photon packages further
increases the signal-to-noise, but does not systematically alter
the solution anymore.

The yellow, orange and red lines correspond to simula-
tions with our composite path length stretching algorithm (with
⇠ = 1

2 ). The three simulations were run with the same number
of photon packages as for the simulations without path length
stretching. Even with only 106 photon packages, the surface
brightness profile is already well reproduced, and the simula-
tion with 108 photon packages produces a very smooth surface
brightness profile that covers the entire pillar down to ⌧ = 10,
and that agrees very well with the non-biased result using 1010

photon packages. This demonstrates not only the accuracy, but
also the e�ciency of our approach.

The central and right panels of Fig. 5 show similar simula-
tions, but now with optical depths of 20 and 50, respectively.
Similarly to the ⌧max = 10 case, the surface brightness profile
is well determined in the top layer for all simulations, as ex-
pected. However, it gets progressively noisier when we move
deeper into the pillar for the non-biased simulations, until there
is no signal anymore. When the number of photon packages in
the simulation increases, the penetration depth increases, as the
tail of the exponential distribution gets better sampled. However,
it is clear that a huge number of photon packages is necessary.
For the ⌧max = 20 simulation, even a simulation with 1010 photon

packages does not yet fully penetrate the entire pillar, and for the
⌧max = 50 simulation, the situation is hopeless for any reasonable
number of photon packages. On the other hand, in our simula-
tions with composite path length stretching, the photon packages
can easily penetrate through the entire pillar, resulting in a high
signal-to-noise surface brightness profile even for a modest num-
ber of photon packages.

A particular aspect of the application of composite biasing to
path length stretching is that photon packages are scattered mul-
tiple times, and hence that the weight factor Eq. (30) is applied
multiple times. As a result, the e↵ective or cumulative weight
factor can grow to values exceeding two. This is illustrated in the
top left panel of Fig. 6, where we plot the distribution of the cu-
mulative weight factor due to path length stretching for all pho-
ton packages in the pillar simulations. These distributions show a
strong peak at w = 1, as expected. Some photon packages, how-
ever, can reach large weight factors, even up to 103. This seems
alarming, as this is actually what we wanted to avoid using com-
posite biasing in the first place. However, the situation is not as
bad as it seems at first sight. Indeed, the weight factor contri-
bution due to path length stretching can only grow to very large
values after many scattering events. Between two such events,
the weight factor is automatically dampened by other processes,
in particular by forced interaction (Eq. (24)) and the scattering-
absorption split (Steinacker et al. 2013). The net result is that
the total cumulative weight factor of photon packages always re-
mains limited, as shown in the top right panel of Fig. 6.

The bottom panels of Fig. 6 show similar distributions, but
now for the uniform biasing scheme Eq. (26). The bottom left
panel shows that the weight factor distribution due to path length
stretching is significantly broader, since each individual scatter-
ing event can result in a large weight factor. For the ⌧max = 50
case, cumulative weights larger than 104 can be obtained. The
bottom right panel shows that, contrary to the composite biasing
scheme, also the total weights can grow large. This again shows
the advantage of the composite biasing approach.

We have also considered di↵erent simulations with a more
complex geometry. Figure 7 shows the results of a set of sim-
ulations of a clumpy torus model, similar to the AGN torus
models used by Stalevski et al. (2012) and Saftly et al. (2013).
Half of the obscuring material in the torus is distributed in a
smooth component in which the density decreases as r

�1 in the
radial direction, and the remaining half is locked up in 103 opti-
cally thick clumps. The e↵ective optical depth of the model (i.e.
the optical depth if all the material were smoothly distributed)
in the equatorial plane is set to 20, but due to the clumpiness
and the density gradients, there are strong di↵erences from path
to path.

The panels in the left column of Fig. 7 show the result of
SKIRT simulations without application of the biasing technique.
Each panel shows the same view of the torus from an inclina-
tion angle of 80 degrees, with the number of photon packages
in the simulation increasing from 105 to 108. The right column
panels show the corresponding simulations including composite
path length stretching with the same number of photon packages.
In both columns, the signal-to-noise in the images logically in-
creases when the number of photon packages increases. Com-
paring the left and right panels for the same number of photon
packages, one can see that the simulations without biasing have a
lower signal-to-noise compared to the images with biasing, espe-
cially in the outer regions. We have quantified the noise in each
image in the following way. For each pixel, we calculated the rel-
ative di↵erence between the surface brightness in the image, and
the surface brightness in a very high signal-to-noise reference
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Fig. 5. Vertical surface brightness profiles of the simple pillar model described in Sect. 4.5. The three panels correspond to three di↵erent values
of the total optical depth through the pillar. The horizontal axis indicates the depth through the pillar, measured from the top where the radiation
enters. The di↵erent lines in each panel correspond to models with a di↵erent number of photon packages (ranging from 106 to 1010) and with and
without the application of composite path length stretching.

Fig. 6. Distribution of the cumulative weight factor of all photon packages in the pillar simulations described in Sect. 4.5. The panels in the left

column correspond to the cumulative weight factor contribution only due to multiple applications of path length stretching. The panels on the

right correspond to the total weight factor, i.e. also including the contribution from other events that alter the weight of a photon package. The top

row shows the results of simulations with the composite biasing scheme Eq. (29), the bottom panels correspond to the uniform biasing scheme
Eq. (26).
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Fig. 7. Simulated images of the clumpy torus model described in Sect. 4.5. The panels in the left column correspond to simulations without biasing,
those in the right column include composite path length stretching. The number of photon packages used in the simulation increases from the top

row to the bottom row. The estimated average noise level in each image is indicated in each panel.

image (we used the mean of two simulations with N = 109, one
with and one without path length stretching). We then calculated
the standard deviation � of this distribution of relative di↵er-
ences. The results are indicated in each panel. For each fixed
value of N, the noise level is systematically roughly a factor two
lower for the image with biasing compared to the one without.
For N = 105, the simulation without biasing has a noise value
of 4.494, compared to 2.357 for the one with composite bias-
ing. For N = 108 the noise levels decrease to 0.133 and 0.072
respectively.

5. Discussion and conclusions

Biasing is a powerful technique in MC calculations in general,
and in MCRT simulations in particular. One of the beautiful as-
pects of biasing is the freedom one has in the choice of the bi-
ased pdf: in principle one can use any possible pdf, as long as
one corrects for it by applying the correct weight factors. One of
the drawbacks of the use of biasing is the potential introduction
of large weight factors, especially if the chosen biased pdf dif-
fers radically from the original pdf. We have discussed a general
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strategy to suppress the appearance of large weight factors: we
propose a linear combination of the original and the biased pdf.
This combination ensures that the maximum boost factor for a
photon package never exceeds a preset limit.

We have discussed in this paper two applications of biasing
in MCRT that are not commonly used in current state-of-the-art
MCRT codes.

Our first application deals with the generation of random po-
sitions from an emitting source that consists of multiple compo-
nents. As described in Sect. 3, this is a very common case, and
the number of components can range from only a few to sev-
eral millions. In some cases, it makes sense to give equal weight
to each of these components, irrespective of their contribution
to the total luminosity, whereas in other cases, it is more logi-
cal to give each component a weight proportional to its contri-
bution to the total luminosity. Composite biasing, where these
two extremes are averaged out, can be used as way to satisfy
both of these demands. It can hence be used without deep a pri-
ori knowledge of the system to be modelled. This is extremely
valuable when one needs to run many models in an automated
way and one does not have the opportunity to study the prop-
erties of each configuration in detail. It is particularly useful
when a large library of radiative transfer models is created (e.g.
Robitaille et al. 2006; Stalevski et al. 2012; Siebenmorgen et al.
2015), or when radiative transfer models are fit to observational
data (e.g. Schechtman-Rook et al. 2012; De Geyter et al. 2014;
Viaene et al. 2015).

Our second application is an extension of the so-called path
length stretching, a technique that has been explored in the nu-
clear engineering community. It is designed to bias the distri-
bution of step lengths between two interactions in such a way
that steps corresponding to larger optical depths are more easily
chosen. A simple test problem demonstrates that our compos-
ite biasing method helps to penetrate high optical depth barriers,
which always pose a strong challenge for MCRT codes. The im-
plementation of the algorithm is trivial, and it does not interfere
with any of the other optimisation techniques built in into most
MCRT codes, such as biased emission, continuous absorption or
photon-package peel-o↵ (Steinacker et al. 2013). For our most
simple test case, it corresponds to a gain in e�ciency of at least
three orders of magnitude (in the sense that simulations with at
least 1000 times more photon packages are necessary to obtain
a surface brightness profile with a comparable signal to noise).
For higher optical depths, the gain is many orders of magnitude
more.

Both applications that we have explored demonstrate the
benefit of biasing, and composite biasing in particular. They are
definitely not the last word on biasing that can (and needs to) be
said, however.

First of all, all MCRT algorithms involve the sampling
of many di↵erent probability density functions. We have just
dealt with two of these, but there are probably others that one
could consider for biasing in order to gain e�ciency. In this
context, it is striking that some techniques, such as the path
length stretching algorithm, have become relatively mainstream
in some MC communities and remain completely unknown in
others. More cross-fertilisation across domain borders is hence
strongly recommended.

Second, we have proposed composite biasing prescriptions
for two selected cases, but we do not make the claim that
these prescriptions are optimal. This is particularly relevant for
the path length stretching case. In the setup where path length
stretching is combined with forced interaction, we have adopted
a biased optical depth distribution that is the weighted sum of

a uniform and an exponential distribution. This biased distribu-
tion has the advantage that it can nicely cover the entire optical
depth range, while still avoiding the creation of photon pack-
ages with extreme weights. Still, this choice might not always
be optimal. Consider, for example, an extreme case consisting
of a compact, very optically thick region, embedded within an
extended low-density medium. In the standard approach with an
exponentially declining pdf, the interaction point will almost cer-
tainly be located in the dense region. If we use our biased pdf,
the possible interaction locations will be spread out much more
in optical depth space, but they will still cluster within the same
small physical region. The result is that it will remain hard for a
photon package to escape the high optical depth region. Our bi-
ased approach will hence not solve the problem in a significant
way (but, on the other hand, it will also not perform significantly
worse compared to the unbiased method). For this case, it would
make more sense to consider a di↵erent form for the biased pdf.
Rather than a uniform pdf in optical depth space, one could con-
sider a uniform pdf in physical path length space, or a discrete
pdf that gives equal weight to each cell crossed along the path.
Obviously, one could consider any mixture of these – the possi-
ble variations are endless.

Finally, even though our example simulations suggest that
our composite biasing schemes for the emission from multiple
components and for path length stretching are giving accurate
results and making simulations more e�cient, one should recall
that biasing remains a give-and-take. One simply cannot gain on
every front: if one promotes certain parts of the domain of a pdf,
one automatically demotes other parts. The usual goal of biasing
is to redistribute noise in a clever way, and reduce the signal-to-
noise in parts where it is high anyway, and invest that in parts
where the signal-to-noise is unacceptably low. If, however, one
is only interested in the most luminous parts of a system and one
cares less about the fainter components, biasing could be less
beneficial or even counter-productive.

Whether or not biasing is beneficial is not always obvious
to predict. For example, we have discussed two examples in
which path length stretching is an e↵ective way to penetrate op-
tically thick regions, but it is not necessarily a solution to all
radiation transfer problems with high optical depths. Especially
cases where most of the signal is caused by photon packages
that have been scattered multiple times are challenging even with
path length biasing. If path stretching is applied after every scat-
tering, the weight of a photon package must be multiplied by a
new biasing factor every time. The result is that the distribution
of package weights becomes wider, which increases the noise.
In those cases, other techniques such as di↵usion approximation
might be more appropriate (Fleck & Canfield 1984; Min et al.
2009; Robitaille 2010).

One way to quantify the value of biasing and to investigate
the circumstances in which potential drawbacks become rele-
vant, is to apply it to a range of radiative transfer problems with
a su�ciently large variety in geometry and optical depth. Such a
suite of simulations is currently ongoing: TRUST4 (Transport of
Radiation through a dUSTy medium: Camps et al. 2015; Gordon
et al., in prep.) is a suite of 3D dust radiative transfer bench-
mark simulations that is designed to cover the various numerical
problems arising in dust radiative transfer, to further develop and
improve the existing codes, and to test newly developed codes.
In fact, the first of the TRUST benchmark tests (Gordon et al.,
in prep.) was the direct motivation for the novel biasing experi-
ments presented here. In the course of the larger suite of TRUST

4
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benchmark simulations, the recipes presented here will be ap-
plied and evaluated more extensively than possible in this paper.
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