
Robust analysis of trends in noisy tokamak confinement data using geodesic

least squares regressiona)

G. Verdoolaege,1, 2, b) A. Shabbir,1, 3 and G. Hornung1
1)Department of Applied Physics, Ghent University, B-9000 Ghent, Belgium
2)Laboratory for Plasma Physics, Royal Military Academy, B-1000 Brussels,

Belgium
3)Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching,

Germany

(Dated: 4 July 2016)

Regression analysis is a very common activity in fusion science for unveiling trends and parametric depen-
dencies, but it can be a difficult matter. We have recently developed the method of geodesic least squares
regression (GLS) that is able to handle errors in all variables, is robust against data outliers and uncertainty
in the regression model, and can be used with arbitrary distribution models and regression functions. We
here report on first results of application of GLS to estimation of the multi-machine scaling law for the energy
confinement time in tokamaks, demonstrating improved consistency of the GLS results compared to standard
least squares.

I. INTRODUCTION

Fitting a trend line or a nonlinear relation to a data set
is extremely common in almost all areas of science, and
fusion is no exception. In fusion research, applications in-
clude capturing parametric dependencies of a variable of
interest, extrapolation towards new operational regimes
or future machines, estimating the parameters of a theo-
retical model from a data set, as well as various diagnos-
tic applications such as calibration. However, in the vast
majority of cases, practitioners use ordinary least squares
regression (OLS) to perform the fit. While OLS has the
advantage of simplicity and availability in any software
package for scientific analysis, it should be stressed that
OLS relies on a number of assumptions that are often
not fulfilled in real-world data.1 Geodesic least squares
regression (GLS) is a new method that is also simple
and fast, yet is much more general than OLS and many
other common regression techniques. In this paper, af-
ter briefly sketching the working of GLS, we apply the
method to estimate the classic scaling law for the energy
confinement time in tokamaks.2 We obtain results that
are consistent, whether the relation is fitted in logarith-
mic space or as a nonlinear power law, in contrast to
OLS.

II. REGRESSION METHODOLOGY

The idea behind OLS regression for a single response
variable y is to estimate the parameters βk (k = 0, . . . , p)
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of the regression model by minimizing the difference be-
tween, on the one hand, the prediction of the values of
y, given n measurements xij of the m predictor variables
xj , and, on the other hand, the actually observed values
yi (i = 1, . . . , n, j = 1, . . . ,m). However, this only takes
into account the statistical error on y, whereas the xj may
have non-negligible uncertainty as well. Furthermore, the
errors may be different from one measurement to another
(e.g. when they originate from different diagnostics or de-
vices). A way around this is to consider the more general
maximum likelihood method (ML), which maximizes the
probability distribution of the response variable condi-
tional on the predictor variables. For the remainder of
the paper we will assume normally distributed uncertain-
ties, reducing ML to the following optimization problem:

{β̂k} = argmax
{βk}

pm,

pm ≡ 1√
2πσm
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Here, f is the regression function (possibly nonlinear),
while the measurements yi are assumed to be mutually
independent, and similar for the xij . The standard devi-
ation σm in general describes uncertainty on the response
and the predictor variables. We refer to σm as the stan-
dard deviation of the modeled distribution pm, since it
depends on the regression model: the uncertainty on the
xj propagates through f .
There is one flaw in this reasoning, which is shared

by most regression methods, including many of the more
sophisticated. It assumes that σm is indeed the correct
standard deviation on the yi, leaving no room for un-
forseen sources of uncertainty. Still, such additional un-
certainties often occur, e.g. due to outliers in the data,
plasma fluctuations or transients, uncertainty in the re-
gression model, etc. The GLS regression method ac-
commodates these situations by considering, apart from
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pm, another distribution for the dependent variable that
makes as few assumptions about the data as possible. We
call this the observed distribution po, and here we will
assume only that it is a normal distribution centered on
each measurement yi, with some unknown standard devi-
ation σo that is to be estimated from the data. As such,
every measurement yi is actually treated as a probability
distribution and GLS aims to minimize the overall dif-
ference between the modeled and observed distributions,
just like OLS minimizes the overall difference between the
modeled and observed values of y. As a distance measure
between probability distributions we choose the geodesic

distance (GD) rooted in information geometry, which is
a geometric approach to probability theory.1 Hence, the
p+2 parameters β0, . . . , βp, σo are estimated via the fol-
lowing optimization problem:1

{β̂k, σ̂o}

= argmin
{βk,σo}

GD2

[

n
∏

i=1

po(y|yi, σo),

n
∏

i=1

pm(y|{xij}, {βk})
]

.

It has been demonstrated that, despite its simplicity,
GLS consistently outperforms several other regression
methods in various challenging regression tasks.1

III. CONFINEMENT SCALING

We next apply GLS to the classic multi-machine scal-
ing law for the confinement time τE (s) for the ELMy
H-mode in tokamaks, in terms of engineering variables:

τE = β0 I
βI

p B
βB

t n̄βn

e P
βP

l RβR κβκ ǫβǫ M
βM

eff .

Here, Ip is the plasma current (MA), Bt the vacuum
toroidal magnetic field (T), n̄e the central line-averaged
electron density (1019 m−3), Pl the loss power (MW), R
the plasma major radius (m), ǫ the inverse aspect ratio,
κ the elongation and Meff the effective atomic mass. The
version of this scaling law that is currently mostly quoted
is IPB98(y,2),2, the coefficients of which were estimated
using OLS regression on a logarithmic scale, as shown
in Table I. It should be noted that, in estimating this
scaling law, the coefficient for the Bt scaling was fixed
at 0.15, in accordance with observations at individual
machines.3

We now invoke GLS and compare it with the classic
OLS approach using a more recent version of the confine-
ment database, namely version DB3 13f,4, limited to the
standard set. This consists of 1310 entries from 9 ma-
chines, together with (simple) error estimates for each
of the variables. We use these relative errors to derive
the standard deviations that are required in the GLS
method. The error bar on a specific quantity, in particu-
lar the measured confinement time, can be different from
one machine to another. Therefore, for each machine
we need a parameter representing the observed standard
deviation.

TABLE I. Estimates of the regression coefficients and ITER
predictions (τ̂E) in log-linear scaling of the energy confine-
ment time (constrained: OLSc, GLSc; unconstrained: OLSu,
GLSu).

β0 βI βB βn βP βR βκ βǫ βM τ̂E (s)

IPB98 0.056 0.93 0.15 0.41 -0.69 1.97 0.78 0.58 0.19 4.9

OLSc 0.053 0.88 0.15 0.45 -0.66 2.12 0.22 0.43 0.20 3.3

GLSc 0.053 0.84 0.15 0.48 -0.74 2.26 0.28 0.58 0.37 3.1

OLSu 0.049 0.78 0.32 0.44 -0.67 2.23 0.38 0.58 0.19 4.2

GLSu 0.048 0.65 0.43 0.49 -0.76 2.52 0.62 0.86 0.28 4.0

We first impose the same constraint βB ≡ 0.15, but
then we also derive the unconstrained coefficients. Fur-
thermore, we start the analysis in the logarithmic do-
main, where a linear regression model is usually imposed
on the data. The results are given in Table I, together
with the predicted confinement time in ITER under the
conditions Ip = 15 MA, Bt = 5.3 T, n̄e = 10.3 × 1019

m−3, Pl = 87 MW, R = 6.2 m, κ = 1.7, ǫ = 0.32,
M = 2.5. Uncertainty estimates on the coefficients will
be reported elsewhere, in a future, more comprehensive
study. As expected, the dependence on Bt in the uncon-
strained analysis is somewhat stronger compared to the
constrained analysis. It was also observed before that
the constraint has an influence on the coefficient of Ip.
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In addition, the coefficients of the geometrical quantities
R, κ and ǫ turn out to be relatively difficult to estimate,
depending both on the data set and analysis method.
When considering the unconstrained estimates only, the
geometrical dependencies estimated by GLS are consider-
ably stronger than those given by OLS. The dependence
on magnetic field, loss power and effective mass is also
somewhat stronger with GLS.
Although conducting the analysis of a power law in

the logarithmic domain by means of linear regression is
a very common and convenient procedure in many ar-
eas of science, it is not necessarily an optimal strategy.
When the data are duely considered as samples from an
underlying probability distribution, one notices that the
operation of taking the logarithm leads to a skewing of
the distribution. In general it is safer to work in the origi-
nal data space, hence performing nonlinear regression on
the power law. OLS is perfectly capable of estimating
the exponents in the power law, but its results may dif-
fer from those emerging from the loglinear analysis. In-
deed, Table II shows the estimates by OLS and GLS us-
ing the original data without logarithmic transformation,
both in the constrained and unconstrained case. When
comparing with the results from linear regression, sev-
eral parameters estimated by OLS have changed consid-
erably, particularly those for the geometrical quantities.
In contrast, the parameters estimated by GLS are simi-
lar, whether derived from the logarithmic or the original
data and the predictions for ITER are the same.
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TABLE II. Estimates of the regression coefficients and ITER
predictions (τ̂E) in nonlinear scaling of the energy confine-
ment time (constrained: OLSc, GLSc; unconstrained: OLSu,
GLSu).

β0 βI βB βn βP βR βκ βǫ βM τ̂E (s)

OLSc 0.065 0.88 0.15 0.43 -0.80 2.33 0.73 0.52 -0.16 2.6

GLSc 0.055 0.81 0.15 0.46 -0.73 2.32 0.31 0.62 0.35 3.1

OLSu 0.058 0.68 0.49 0.47 -0.82 2.57 1.00 0.84 -0.25 3.5

GLSu 0.049 0.59 0.49 0.48 -0.74 2.57 0.70 0.96 0.25 4.0

TABLE III. Estimates by nonlinear GLS of the modeled and
observed standard deviations on the power threshold, ex-
pressed as percentage errors on τE, for the various tokamaks
in the database.

ASDEX AUG C-Mod DIII-D JET

σm (%) 29 21 24 20 22

σo (%) 32 25 26 25 26

JFT-2M JT-60U PBXM PDX

σm (%) 26 29 26 37

σo (%) 28 57 29 43

The reason for the more consistent performance of GLS
across different representations of the data lies in the flex-
ibility embodied within the σo parameters. By increasing
its estimate of the observed standard deviations for the
various machines, GLS can accommodate deviations from
the proposed regression model (e.g. outliers or secondary
lobes of data points), without compromising its estimate
of the actual trend in the data. A similar flexibility is not
shared by OLS. A detailed study of the features in the
data causing this behavior is beyond the scope of this pa-
per, but we can get an idea of which machines contribute
data far from the main regression surface by comparing
the estimates of σo for each tokamak with σm averaged
over the measurements coming from that machine. This
comparison for the unconstrained nonlinear analysis is
shown in Table III (the log-linear case is similar). One
notices that for all machines the observed standard de-
viation is higher than the modeled one, indicating the
presence of additional sources of uncertainty not taken
into account by the regression model. For some machines
this can become as high as 30% or even more, but JT-60U
is essentially the only device for which there is a major
discrepancy between the modeled and observed standard
deviations. Hence, it would be worthwhile to investigate

the data from this machine in more detail.

Finally, Figure 1 shows histograms for the predicted
confinement time for ITER, obtained by performing

FIG. 1. Histograms of the confinement time predicted by
nonlinear OLS and GLS on 100 permutations of the database
with repetition.

the nonlinear OLS and GLS regression analysis 100
times, each time generating a random permutation of
the database with repetition (‘bootstrapping’ in statistics
terminology). The histograms are relatively well sepa-
rated, with GLS predicting an average confinement time
of 4 seconds, while OLS predicts only 3.5 seconds.

IV. CONCLUSION

We have applied the method of geodesic least squares
regression (GLS) to estimate the classic scaling law for
the energy confinement in tokamaks, using the multi-
machine database. In comparison with ordinary least
squares, GLS performs more consistently, yielding simi-
lar results on the logarithmic and linear scales. GLS can
also be used to indicate subsets of the data that deviate
from the main trend. In future work, GLS will be used for
continued analysis of the energy confinement scaling in
tokamaks, as well as for various other regression analyses
in fusion science.
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