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Abstract

The energy absorption of circular pultruded composite tubes subjected to axial crush

load, transmitted by a small attached mass accelerated by means of an explosive load

is presented in this paper. Different masses of explosive are used to provide a range

of transmitted impulse and crushed distance of the pultruded composite tubes. The

influence of the mass of the explosive on the tube response is investigated with regard to

crushed distance, the average crushing force and the specific energy absorption (SEA).

The crushing distance increases with increasing transmitted impulse. The results and

failure mode are also compared with compression tests carried out on a servo-hydraulic

machine (type: MTS-309 ).

Keywords: A. Glass fibres; B. Impact behaviour; C. Finite element analysis (FEA); D.

Pultrusion; Blast loading

1. Introduction

Composite structures such as plates, shells, tubes, stiffeners and stiffened sandwich

panels are used in numerous applications due to superior specific energy absorption (SEA)
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to weight ratio compared to metallic structures[2, 23]. When subjected to an axial load,

a typical composite tubular structure exhibits numerous damage mechanisms such as

delamination, matrix cracking, fiber cracking and debonding of the fibers. These failure

characteristics of composite tubular structure render them as suitable candidates for high

energy absorption applications because of the failure mechanisms that absorb energy, in

a highly effective way, during impact events [2, 3].

The most dominant failure mechanism of composite tubes and sections under com-

pressive loading are plastic microbuckling and microcracking [4]. These mechanisms de-

pend on the mechanical properties of the matrix and the fibers [5]. Farley et al. [6] define

the different collapse modes: transverse shearing, lamina bending and local buckling.

Apart from the material properties, failure also depends on the geometry of the tube,

on loading and boundary conditions. Studies have shown that cylindrical sections are

more effective to absorb energy during failure in comparison with square tubes [7, 8]. The

aforementioned failure modes (transverse shearing, lamina bending and local buckling)

affect the energy absorption capacity of the tube [9]. The energy absorption capacity

can be predicted in function of the strain energy release rate and the maximum failure

strain for inter-laminar crack growth as presented by Farley et al. [10, 11].

In an axial crash scenario it is essential that most of the kinetic energy in the system

is absorbed in such a way that the fiber reinforced tube collapses axially with constant

deceleration for an optimum energy absorbing system. The collapse process is often

initiated at one end of the tube by a trigger mechanism to reduce the initial peak crush

force and to control the crush process [8, 12]. Chung Kim Yuen and Nurick [13] presented

an overview of the energy absorbing characteristics of tubular structures with geometric

and material modifications. Extensive studies have been carried out on the bevel trigger

and tulip triggering mechanism showing that for square sections, with tulip triggering, the

crushing is more controllable and predictable and more energy per unit mass is absorbed

[14–17]. Thornton [18] reported that for reinforced uni-directionally polyvinylester and

polyester matrix circular tubes, during axial compression at high strain rates, a tulip

trigger demonstrates a more stable crush and the crushing force is fairly constant in

comparison with the bevel triggering. The orientation and the amount of the fibers

are directly related to the strain rate dependency of the SEA [18]. In terms of fiber
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orientation, the unidirectionally reinforced tubes show less strain rate sensitivity [18, 19].

Hitherto, most studies have been conducted under quasi-static loading and crushing

velocities of up to 15m/s. For higher crushing velocities, Karagiozova et al [20] carried out

experiments and numerical simulations to investigate the response of aluminium tubes

(both square and circular in cross-section) subjected to axial impact load transmitted by

a small mass accelerated by the detonation of explosive. Impact velocities in the range

of 63 to 127m/s were obtained. The analysis showed that the average crushing force is

influenced by the inertia of the striking mass. Theobald and Nurick [21] also reported on

tubular structures subjected to axial blast load. Theobald and Nurick [21] developed a

sandwich-type panel using thin-walled tubes between mild-steel plates and characterized

the global behavior and performance of the novel lightweight panel by response of the

tubular structure under severe blast load conditions. Different numbers of tubes were

used. In some cases the tubular structures had trigger mechanisms. The impact veloc-

ities of these tubular structures were not reported. However, after optimization of the

placement and thickness of the tubular structures, the panel was a good absorber under

severe loading condition.

In the present study the response and failure of pultruded composite tubes subjected

to axial dynamic and impact load is investigated. Two different diameters are used with

a tulip triggering of two different angles. The SEA and crushing force are compared

between dynamic and impulsive loading. A finite element model is created to calculate

the crushing force vs time under impulsive loading. The experimental results from the

dynamic loading of the tubes are used to calibrate the material model for the finite

element calculations. A comparison is made between numerical and experimental results

under impulsive loading. The goal of the study is to evaluate the crashworthiness of the

examined pultruded composite tubes under impulsive loading.

2. Experimental Setup

2.1. Specimen

The specimens used are cylindrical pultruded composite tubes made of vinylester

matrix reinforced with E-glass fibers. The main orientation of the fibers is unidirectional

along the tube axis. There are also two layers in the tube wall: one crosswind in 0.5mm
3



  

of the thickness, measuring from the inner diameter, and one glass fiber mat on the outer

surface of the tube to hold the unidirectional glass fibers during the pultrusion process.

The section of the tube with the different groups of fibers is shown in Fig. 1.

(a) The groups of glass

fibers: 1. Unidirectional,

2. Crosswind, 3. Unidi-

rectional, 4. Glass strand

mat

(b) The tubular specimens with the tulip triggering of 30 and 60 degrees.

Figure 1: The examined specimens

The tubes are 100mm in length and have a wall thickness of 2mm. Two different

outer tube diameters 23mm and 30mm indicated as tube A and tube B respectively

are investigated. All the specimens have a tulip type trigger on the impact end. For

tubes A (outer diameter 23mm) and B (outer diameter 30mm) two different angles of

tulip triggering are used; 30o and 60o. The mass per length is 0.21kg/m for tube A 30 ,

0.20kg/m for tube A 60, 0.32kg/m for tube B 30 and 0.30kg/m for tube B 60.

2.2. Dynamic compression-dynamic loading

The specimens are crushed axially using a servo-hydraulic machine (type: MTS-309)

at a speed of 1000mm/min to obtain typical crush force displacement characteristics.

The maximum load capacity of the machine piston in tension or compression is 100kN .
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For each tube geometry the dynamic compression test is carried out three times for

repeatability of experimental results. The specific energy absorption(SEA) is considered

to be equal to the energy absorbed by the tube divided by the crushed mass. The energy

absorbed is equal to the area under the force displacement graph. If ml is the mass per

meter of the tube and sf the maximum crushed distance, then:

The energy absorbed is calculated by:

Ed =
∫ sf

0

F (s) ds. (1)

And the SEA is calculated by:

SEA =
Ed

mlsf
(2)

2.2.1. Results

The tubes are crushed up to 50mm to obtain the average crushing force of the tube.

The average values obtained are shown in Table 1.

Table 1: Dynamic compression results

Specimen Average force(kN) SEA(kJ/kg)

Tube A 30 8 38.34

Tube A 60 8 35.81

Tube B 30 13 39.64

Tube B 60 14 35.77

The curves presented in Fig. 2 show the force vs displacement and SEA (Specific

Energy Absorption) for each specimen. For all tubes the tulip triggering creates a stable

crushing zone and as the crushing zone advances the force increases. Once the crushing

zone has consumed the triggering length, the crushing force reaches a maximum and it

is stabilized. In both tubes A and B the triggering angle influences the rising slope of

the force vs displacement diagram; for the 30o triggering the maximum crushing force is

reached faster in comparison with the 60o triggering due to the trigger length difference

between the two different triggering angles. As a result the triggering angle has an effect

on the SEA, since the area under the curve is affected, but not on the peak force. The
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average crushing force is similar for the same crushing distance. The crushing force

required for tube B is higher in comparison with tube A due to the larger diameter [16].
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Figure 2: The results under dynamic compression
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2.3. Blast tests-impulsive loading

The experimental setup is similar to that used in previous experimental investigations

[20, 21]. An impulsive load, created by the detonation of plastic explosive (PE4), is used

to accelerate a small mass onto the tubular structure. Three different masses of PE4 (4g,

5g and 6g), cylindrical disc in shape, are used for tubes A 30 and A 60 and 5g for tubes B

30 and B 60. For tube A, the cylindrical disc of PE4 has diameter of 25mm and for tube

B the cylindrical disc of PE4 is 30mm in diameter. The explosive charge is evenly spread

onto a polystyrene disc, which has a thickness of 13mm and the same diameter of the

free striking mass. For tube A, a striking mass of 50mm in diameter weighing nominally

107g is used. For tube B the striking mass used has a diameter of 60mm diameter and

is nominally 153g in mass. The striking mass slides freely in an opening in the support

plate and in contact with the specimen that is attached on the ballistic pendulum (see

Fig.3).

Explosive

Specimen

Polystrene Striking mass

Pencil

Support plate

(a) The schematic of the pendulum (b) The specimen placed on the pen-

dulum

Figure 3: The experimental setup

A detonator taped to 1g of explosive is attached to the centre of the disc of explosive.

After the detonation the polystyrene is burnt, the striking mass is accelerated onto the

tubular specimen, in an axial direction, causing the specimen to crush. The mass of

the explosive is varied by retaining the prescribed diameter but changing the height of

the disc of explosive; the aim is to provide a range of crushed distances for the different

specimens. The same loading conditions are repeated 4 times for each experiment for
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repeatability. The impulse imparted onto the specimen is calculated using the swing of

the pendulum as performed by [20, 21]. Assuming the conservation of momentum, the

initial impact velocity of the striking mass is calculated using the measured impulse:

I = MV = mv ⇒ v =
MV

m
(3)

Where M is the mass of the pendulum, m is the mass of the striking mass, V is the

pendulum velocity and v is the velocity of the striking mass after the detonation. The

kinetic energy of the striking mass is assumed to be absorbed by the specimen and is

given by:

Ekinetic = Eabsorbed =
mv2

2
=

(MV )2

2m
(4)

and the average crushing force:

Fa =
Eabsorbed

sf
(5)

The crush distance for the tubes is measured by taking the average of four measure-

ments around the circumference every 90o. For each group of tubes charges of three

different masses of explosive (4g, 5g and 6g) are used and for the each charge mass, four

tests are conducted for the three different groups of tubes: Tube A 30o, Tube A 60o,

Tube B 30o and Tube B 60o.

2.3.1. Results

The results are listed in Table 2 and are discussed in the subsequent paragraphs.

2.3.2. Impulse and mass of the explosive

The impulse transmitted onto the specimens is calculated from the swing of the

pendulum that has a mass of 71, 78kg. The relation between mass of the explosive and

the transmitted impulse is shown in Fig. 4. An increasing linear trend in measured

impulse is observed with an increasing mass of explosives with a small variation around

the mean value due to experimental variation. The size and mass of the striking mass
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  Table 2: Summary of experimental results

Specimen Mass of explosive(g) Impulse(Ns) Crush distance(mm) Striking mass velocity(m/s) SEA(kJ/kg) Average Force(kN)

Tube A 30 4 8.38 28 78.31 55.8 11.7

Tube A 30 4 8.19 25 76.54 59.7 12.5

Tube A 30 4 7.88 26 73.64 53.1 11.1

Tube A 30 4 7.97 29 74.48 48.7 10.2

Tube A 30 5 8.71 52 81.40 32.5 6.8

Tube A 30 5 9.35 37 87.38 52.6 11.0

Tube A 30 5 9.02 54 84.29 33.5 7.0

Tube A 30 5 9.56 39 89.34 52.1 10.9

Tube A 30 6 11.17 57 101.39 46.7 9.3

Tube A 30 6 10.56 59 98.69 40.7 8.1

Tube A 30 6 11.44 63 106.91 45.8 9.1

Tube A 30 6 10.70 58 100 43.9 8.9

Tube A 60 4 7.74 30 72.33 46.7 9.3

Tube A 60 4 7.47 32 69.81 40.7 8.1

Tube A 60 4 8.16 34 76.26 45.8 9.2

Tube A 60 4 8.11 35 75.79 43.9 8.8

Tube A 60 5 10.09 51 94.29 46.6 9.3

Tube A 60 5 8.95 49 83.64 38.2 7.6

Tube A 60 5 9.89 51 92.42 44.8 8.9

Tube A 60 5 8.95 48 83.64 39.0 7.8

Tube A 60 6 10.23 58 95.60 42.2 8.4

Tube A 60 6 10.91 55 101.96 50.6 10.1

Tube A 60 6 10.36 58 96.82 42.2 8.6

Tube A 60 6 11.86 60 110.84 54.8 11.0

Tube B 30 5 9.77 18 63.85 54.15 17.3

Tube B 30 5 9.15 16 59.80 53.43 17.1

Tube B 30 5 8.75 16 57.18 48.87 15.6

Tube B 30 5 9.51 17 62.15 54.33 17.4

Tube B 60 5 9.49 23 62.02 42.65 12.8

Tube B 60 5 10.32 22 67.45 52.73 15.8

Tube B 60 5 9.02 22 58.95 40.28 12.1

Tube B 60 5 9.15 20 59.80 45.60 13.7
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m do not appear to influence the measured impulse. The magnitude of the error bar

is equal to the standard deviation for each group of all the measurements taken for a

specific amount of charge.
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Figure 4: Impulse vs mass of the explosive

2.3.3. Effect of impulse on the crushing distance

The crush distance increases linearly with an increasing transmitted impulse (see

Fig. 5) for the range of impulse investigated. For tubes A 30 and A 60 the crush distance

is similar for the same impulses. However, it was observed for a charge of 4g of PE4

there is a distinctive difference in crush distance that could be attributed to the length

of the triggering in relation to the total crush distance. In the case of Tubes B the crush

distance is in general 30% lower in comparison with Tube A. This can be related to the

difference in geometry in combination with the increased amount of the material in the

section area; as a result, the kinetic energy of the striking mass is absorbed in shorter

distance.
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Figure 5: Crush distance vs impulse

2.3.4. Effect of impulse on the SEA

The SEA results are shown in Fig. 6. While the impulse is increased the SEA values

scatter between 37kJ/kg and 55kJ/kg. A distinctive reduction of the SEA is observed

in Tube A 30 whereas in the case of Tube A 60 the SEA does not change with the

increase of the charge. Comparing the two triggering angles it is observed that for the

lower values of impulse the SEA differs about 18% and for higher impulse values the

SEA is the same for both types of triggering. The triggering angle has effect on the

SEA of Tube B for a charge of 5g and in terms of geometry the SEA of Tube A is

higher in comparison with Tube B for both triggering angles. In general scattering is

observed in a lot of measurements and it is created by the irregular crushing due to the

boundary conditions; in some experiments the striking mass would impact the specimen

obliquely causing asymmetric progressive crushing. Such a specimen that is crushed

asymmetrically is shown in Fig. 7 where the irregularly(oblique) crushed tube gave a

high impulse reading and as a result the SEA is overestimated.
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Figure 6: SEA vs impulse

2.3.5. Effect of the mass of the explosive on the average crushing force

The average crushing force was calculated using Eq. 5. Fig. 8 shows the average force

required to crush each specimen vs the impulse. The average crushing force of tube A 30

shows a reduction with the increase of impulse from 11kN to 9kN. The force of tube A

60 shows no sensitivity to impulse variations and the average crushing force has a mean

value of 9kN. Between tubes A 30 and A 60 a difference observed in the crushing force

for a charge of 4g whereas for higher values of impulse the values overlap with a mean

value of 9kN. For tube B the crushing force values are higher in comparison with tube A

and the maximum crushing force is observed in tube B 30. The results are summarised

in Table 3.

3. Comparison of failure pattern between dynamic and impulsive loading

The failure pattern is similar for both types of loading; some fibers bend towards the

inner diameter and some towards the outer diameter, the matrix is almost completely

fractured and removed, axial cracks are developed between the fibers along the length of

the tube and the crosswind fibers are fractured up to the crush front creating a brush
12



  

Figure 7: Tube A 60 specimens for a charge of 6g. The highlighted specimen is the one crushed

assymetricaly in comparison with the rest of the specimens
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Figure 8: Average crushing force vs impulse
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Table 3: Variation in impulse and average crushing force

A30 A60 B30 B60

Mass of explosive (g) Impulse (Ns) Impulse (Ns) Impulse (Ns) Impulse (Ns)

4 8.10±0.22 7.12±1.77

5 9.16±0.37 9.47±0.60 9.29±0.44 9.49±0.58

6 10.96±0.49 10.84±0.74

Mass of explosive (g) Average Force (kN) Average Force (kN) Average Force (kN) Average Force (kN)

4 11.37±0.97 8.85±0.54

5 8.92±2.34 8.40±0.82 16.85±0.84 13.60±1.60

6 8.85±0.52 9.52±1.24

type object (see Fig. 9 and 10).

Figure 9: The specimen failure under dynamic(left) and impulsive(right) loading

During axial compression under the two types of loading, differences are observed in

failure. The main difference between dynamic and impulsive loading is the development

of the main/principle crack along the section of the tube wall. For the dynamic loading

a small wedge from debris is formed on the top of the wall (at the crash front) and the

main crack develops in the middle of the wall thickness where the fibers split towards the

inner and outer side as illustrated in Fig. 11. In the case of impulsive loading the wedge

is developed by crosswind fibers and is bigger in comparison with the wedge created

during the dynamic compression. The crack is propagated at the interface between the

unidirectional and crosswind fibers as presented in Fig. 12.
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Figure 10: The failure pattern under impulsive loading

(a) Wall section (b) Schematic

Figure 11: The failure under dynamic compression tests

(a) Wall section (b) Schematic

Figure 12: The failure under impulsive compression tests
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4. Finite Element Model

Simulations are carried out for the crushing of the tubes A30, A60, B30 and B60

under dynamic and impulsive loading.

4.1. Geometry and Boundary Conditions

The finite element model of the dynamic loading contains only the tubular specimen

that is fixed at the bottom and a rigid wall(RIGID WALL GEOMETRIC FLAT MO-

TION) is compressing it with a coefficient of friction 0.22 [22] and with the same velocity

as in the experiment. The model of the impulsive loading includes the tubular specimen,

fixing the bottom nodes, and the striking mass. The striking mass is modeled with solid

elements using elastic material model with the properties of steel. The load is applied as

a rectangular impulse (force vs time), measured experimentally, with a duration equal

to the time required to burn the explosive [20, 23]. The time duration of the impulse is

calculated by dividing the radius of the cylindrical explosive by the burning velocity of

PE4(8200m/s).

The tubular specimen is modelled by four layers of shell elements of equal thick-

ness which are considered to be homogeneous. The size of the elements is 0.87mm to

1mm. Even though the tube walls are not composed by layers the main crack could

be considered as a type of delamination. The delamination mechanism can be simu-

lated using a tiebreak interface condition between the adjacent layers of the composite

shell structure. In the present model between the element layers the tiebreak condi-

tion AUTOMATIC SURFACE TO SURFACE TIEBREAK is used to simulate the

main crack that is developed on the tube wall. In the tie-break interface algorithm, two

nodes of the model are tied together until the interaction stresses between the two nodes

satisfies the following quadratic delamination conditions [24] :

σ2
z

S2
n

+ (
σ2

xz + σyz

S2
s

) ≥ 1 (6)

where σz is the out of plane normal stress, σyz and σxz are the inter-laminar shear stress.

Sn is the out of plane normal strength and Ss is the inter-laminar shear strength. In the

model the walls in order to split require a tensile stress equal to σyy or a shear stress

equal to τxy as indicated in table 4. After the separation of the nodes sliding is allowed

16



  

between the layers. Also a self-contact algorithm is included for simulating the contact

between the elements of the same layer. Static and dynamic coefficients of friction are

set to values of 0.22 to 0.35 [22].

4.2. Material Model

As already mentioned, the tubes used for the tests are manufactured by a pultru-

sion process (M/s EXEL, Belgium) and both mechanical and strength properties are not

available. Consequently, the properties of the numerical model are estimated by calibrat-

ing the finite element model of the dynamic compression tests using, as an initial step,

typical values from the literature for pultruded profiles. The elastic properties and the

strength properties for a glass-fiber/polyester pultruded profile, as presented in [25], are

used as a starting point for the simulations. By repeating the simulations the strength

properties are updated in order to match the results up to the limit where the numerical

and experimental average crushing force of the dynamic compression are in good agree-

ment. The material model used, for both dynamic and impulsive loading, is MAT 58

from the material library of LS-DYNA, which is based on a continuum damage mechanics

model as proposed by Matzenmiller et al. [26]. The MAT 58 factors SLIMxx are used

to limit the stress so that the damage value is modified and elastoplastic like behaviour

is achieved with the threshold stress. Their values are chosen as recommended by [27].

The failure strains are equal to εy, calculated from the elastic and strength properties, in-

creased by 10% as illustrated in Fig. 13. The value of 10% is used because a value higher

than that leads to elastic bucking instead of progressive crushing and a value lower than

10% gives incorrect values for the crushing force. In the stress strain curve the stress

in the elements is increased reaching a maximum value. Due to the SLIMxx factors the

stress remains constant until erosion is achieved when strain at failure εf is reached. The

final properties, after the updating procedure, used for the numerical simulation of the

pulturded tubes are presented in Table 4.

4.3. Results

The numerical and experimental curves of force vs displacement for the dynamic

loading are shown in Fig. 14.
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✏y ✏f = ✏y + ✏y10%

SLIMxx ⇤ �y
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stress

strain

Figure 13: Stress-strain curve of MAT 58 where σy is the stress from the strength properties of the

material.

Table 4: Pultruded tube properties

Elastic Properties Strength Properties MAT 58 factors [27] Failure Strains

ExxT (GPa) 31.2 ExxC(GPa) 31.2 XT (GPa) 1.2 XC(GPa) 1.2 SLIMT1 0.05 ε11T 0.0423

EyyT (GPa) 9.36 EyyC(GPa) 9.36 YT (MPa) 800 YC(GPa) 1 SLIMC1 1 ε11C 0.0423

vxy 0.29 SLIMT2 0.05 ε22T 0.1177

vyx 0.1 SLIMC2 1 ε22C 0.0940

Gxy(GPa) 7.33 SC(MPa) 800 SLIMS 1.0e-08 τ12 0.275

The numerical curves follow the same pattern as the experimental; while the crush

front proceeds the force increases linearly until the triggering length is consumed, once

the rigid wall meets the full section of the tube the crushing force is stabilized at an

average crushing value. The average numerical crushing force is in good agreement with

the average experimental with the only difference that there are a fluctuations observed

in the numerical curve. In all models the tube walls bend outwards in contrast with the

experimental failure pattern, the typical crushing process is shown in Fig. 15.

Simulations of impulsive loading give a more accurate failure pattern as shown in

Fig. 16 and 17. The striking mass is accelerated by the impulsive load and it crushes

the tube until its kinetic energy is reduced to zero. The interior layer bends towards the

inner side of the tube an the three others bend outwards creating a crack in the wall
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Figure 14: Comparison of numerical and experimental force vs displacement curves under dynamic

loading.

Figure 15: The crushing process modeled under dynamic loading of tube A 60
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Figure 16: The crushing process modeled under impulsive loading of 4g of the A 60

according to the tiebreak condition.

Figure 17: The failure pattern comparison of tube B 30 under impulsive loading

The crushing force between the striking mass and the tube is presented in Fig. 18

in function of the displacement of the striking mass. A force peak is observed in the

beginning for 5mm, the force drops at 5kN and then increases until a maximum value

until it reduces until the end of the crushing process. The force diagrams for all tubes

of 60 degrees has a triangular form in comparison with the triggering of 30 degrees

which is more trapezoidal. For tubes A 30 and A 60 the force developed during the

crushing process is higher in comparison with the calculated from the experiments and

also higher in comparison with the numerical model of the dynamic compression. For

tubes B 30 and B 60 the numerical crushing force values are in good agreement with

the experimental values. The crushing distance comparison, under impulsive loading, is

summarised in Table 5. The numerical crush distance for 60 degrees triggering is higher
20
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Figure 18: Force vs striking mass displacement (impulsive loading) resulting from the numerical simu-

lation.

21



  

in comparison with the 30 degrees triggering for both tubes A and B, as observed in

the experiments. Also by increasing the impulsive load the crush distance increases.

Numerical crush distance is lower in comparison with experimental for tubes A 30 and

A 60 for all charges and the best convergence is observed for tube B 30 and B 60.

Table 5: Experimental and numerical crush distance for impulsive loading

Specimen Mass of explosive(g) Average Experimental Numerical

crush distance(mm) crush distance(mm)

Tube A 30 4 27±1.82 22.8

Tube A 30 5 45.5±8.73 25.7

Tube A 30 6 59.25±2.63 36.4

Tube A 60 4 32.75±2.21 32.3

Tube A 60 5 49.75±1.5 39.2

Tube A 60 6 57.75±2.06 53.7

Tube B 30 5 16.75±0.95 21.7

Tube B 60 5 21.75±1.25 25.8
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5. Conclusions

The crashworthiness of pultruded composite tubes is studied under dynamic and

impulsive loading. The results of the dynamic loading are used to validate a finite

element model and compare the numerical results with experimental under impulsive

regime. The effect of impulse on the SEA, the crush distance and the crushing force is

investigated taking into account the influence of the triggering angle mechanism for three

tubular diameters.

Under dynamic loading conditions, the triggering angle affects the SEA but not the

average crushing force. The 30 degree triggering tubes have higher SEA and the increase

in the force is less gradual in comparison with the 60 degree triggering. Under impulsive

loading conditions, the relation between the mass of the explosive and the impulse is

linear and also the maximum crush distance is increased linearly with the increase of

impulse for the examined range of charges. The triggering angle seems to have an effect

on the crushing distance for the charge of 4g for tube A and 5g for tube B. On tube

A, for higher charges, there is no effect of the triggering angle on the crush distance.

The same effect is observed for the SEA and crushing force values; for lower charges the

SEA and the crushing force is higher for the 30 degree triggering and when the impulse

increases there is no difference observed between the examined triggering angles.

Comparing the dynamic and impulsive loading it is observed that for all tubes the

SEA is increased under impulsive regime and the crushing force developed at the crush

front is also increased. A significant difference is observed in the failure pattern and more

specifically on the main crack developed in the tube wall. In the case of the dynamic

loading the main crack develops in the middle of the wall thickness and in the case of

impulsive loading it develops in the layer of the crosswind fibers for all types of tubes,

so the variations along the thickness could have an effect on the failure pattern under

impulsive loading but further experimental work needs to be conducted.

In all values, under impulsive loading, scattering is observed that can be attributed

to the complexity of a blast load and the anisotropy of the composite specimens. Also

the non-uniform crush of the specimens, that were crushed obliquely, influence the swing

of the pendulum and the calculated values depending on the maximum displacement of

the pendulum. By increasing the diameter of the specimen it is observed that the SEA
23



  

does not increase significantly and higher average force is required during crushing.

Conclusively, tube A 30 seems to be the most suitable energy absorber for the specific

range of loads due to the reason that the average force required to crush is relatively low

and gives high SEA values for all charges. For dynamic compression the 30o tubes absorb

more energy so the higher the angle the more suitable is the tube for energy absorption

application.

Axial tube crush simulations were carried out for dynamic and impulsive loading.

The attempt to calibrate manually the parameters of MAT 58 was successful only for the

case of tubes with 60 degrees triggering since the numerical crush distance was closer to

experimental. Even though tube A 30 was indicated as the best energy absorber by the

finite element model, the values of crush distance were significantly underestimated. The

overall comparison between experimental and numerical results leads to the observation

that an optimisation method could be used to investigate further the effect of each

parameter of the specific material model for dynamic and impulsive loading. Finally,

further efforts need to be invested towards the numerical modeling of pultruded tubes in

order to simulate in detail the mechanisms of failure that absorb energy during crushing.
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