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Abstract. In this paper, we define twisted higher spin Dirac operators
and explain how these invariant differential operators can be used to
define more general higher spin Dirac operators acting on functions f(x)
on Rm which then take values in general half-integer representations for
the spin group.
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1. Introduction

Classical Clifford analysis is usually defined as a function theory generalizing
complex analysis to the case of arbitrary dimension m ∈ Z (considered as a
formal parameter). Note that the case m ≤ 0 corresponds to super Clifford
analysis, see e.g. [7] and the references mentioned therein. At the same time,
Clifford analysis is a refinement of classical harmonic analysis in Rm. The
main operator of interest, lying at the very heart of this function theory,
is the so-called Dirac operator. This is a conformally invariant first order
differential operator, acting on spinor-valued functions. Note that one often
focusses on the rotational invariance with respect to the spin group or its
orthogonal Lie algebra so(m). We refer the interested reader to the standard
references [1, 8, 13], in which this Dirac operator is studied from a function
theoretical point of view (i.e. studying polynomial null-solutions, integral
representations, special functions, etcetera).

Within the general theory of Riemannian spin manifolds, there exists
an entire system of conformally invariant elliptic first order differential op-
erators D, see [3, 12, 17, 18]. In recent years, Clifford analysis has shown
to offer an elegant framework to study the aforementioned function theo-
retical problems not only for the Dirac operator, but also for far-reaching
generalizations of it, acting on functions which take their values in arbitrary
half-integer irreducible spin-representations. The earliest generalizations in-
volved the so-called Rarita-Schwinger operator (shortly: the RS-operator),

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55714334?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 H. De Schepper, D. Eelbode and T. Raeymaekers

again inspired by equations coming from theoretical physics. In e.g. [4, 5] one
can find the function theoretical fundaments for spin-invariant operators act-
ing on functions taking values in irreducible modules of so(m) with highest
weight (l1 + 1

2 ,
1
2 , · · · ,

1
2 ), where l1 ≥ 1.

The present paper is part of a program to study general spin-invariant
operators and their polynomial solutions, in which both the dimension and
the highest weight of the space of values are treated as parameters. In a
recent paper [9] we have established explicit definitions for these operators,
which we will refer to as higher spin Dirac operators (or HSD-operators for
short), as operators acting on spinor-valued functions in several variables.
A special case is the operator Ql1,l2 , constructed and studied in [2], which
acts on polynomials taking values in irreducible so(m)-representations with
highest weight

(
l1 + 1

2 , l2 + 1
2 ,

1
2 · · · ,

1
2

)
, with l1 ≥ l2 ≥ 1.

Rotationally invariant differential operators are usually constructed us-
ing the Stein-Weiss method [18]: this means that one acts with the gradient
operator ∇ on functions f(x) taking values in the desired representation V
for the orthogonal Lie algebra (adding a suitable conformal weight in case
the resulting operators are meant to be conformally invariant). In view of
the fact that ∇f(x) transforms as an element of Cm ⊗ V under so(m), it
then suffices to make a suitable projection on the irreducible summands ap-
pearing in the tensor product (roughly speaking: ‘monogenics times vectors’
in our case of interest) in order to find invariant operators. In these cases
(i.e. for half-integer highest weight representations), there is an alternative:
instead of acting with the gradient one can also act with the Dirac operator
∂x, hereby fully exploiting the power of the Clifford multiplication. From the
point of view of invariant operators, the Dirac operator is (strictly speaking)
only defined on spinor-valued functions (i.e. for V the spinor space), which
is why this method is referred to as the ‘twisted Dirac operator method’.
The word ‘twisted’ hereby captures the idea that the Dirac operator acts on
functions taking values in the ‘wrong’ space. One is then again led to a tensor
product, which is however different from the one mentioned above (roughly
speaking: ‘harmonics times spinors’). In the present paper, we will show that
HSD operators can also be constructed using twisted operators ‘of a lower
order’ (to be clarified in what follows): instead of working with the gradient
or Dirac operator, we thus choose yet another operator acting on functions
with values in V, hereby again reducing the construction of invariant opera-
tors to a tensor product. However, as we will see, this time the tensor product
will only contain two relevant components (which is considerably less than
the number of components obtained using e.g. the twisted Dirac operator).
In a sense, this approach leads to an inductive pattern (which was already
mentioned in [9], although there it was a purely formal observation, which
we now elaborate from the representation theoretical point of view), which
will in its own term be exploited when constructing null solutions (in an
upcoming paper).



Twisted higher spin Dirac operators 3

The outline of this paper is as follows. In Section 2, we will give some
general results and notations from Clifford analysis. This will turn out to be
very useful for our purposes, since arbitrary irreducible half-integer represen-
tations for the spin group can be realized by means of polynomial models in
the language of Clifford analysis. In Section 3, we will introduce the twisted
Dirac operator and its use in higher spin analysis. In Section 4, the twisted
RS-operators are defined and used to obtain an alternative realization for the
operator Ql1,l2 . We have chosen to include this operator as a special case,
in order to illustrate the more general procedure from Section 5, in which
the operators Ql1,...,lk are obtained through an inductive procedure involving
twisted HSD-operators.

2. Clifford analysis background

Let Rm be the universal Clifford algebra generated by an orthonormal basis
(e1, . . . , em) for the m-dimensional vector space Rm and let Cm = Rm ⊗ C
be its complexification. The multiplication in these algebras is governed by
the relations eiej + ejei = −2δij for all i, j = 1, . . . ,m. Any vector x =
(x1, . . . , xm) ∈ Rm will be identified with the corresponding Clifford vector
x =

∑m
j=1 xjej . Inside the complex algebra Cm, one can then realize the

so-called spinor space S as a minimal left ideal, see e.g. [8] for the explicit
definition. For odd dimensions m, the vector space S defines a model for the
basic half-integer representation for the spin group described by the highest
weight ( 1

2 ,
1
2 , · · · ,

1
2 ) under the action ψ 7→ sψ, for all ψ ∈ S and s ∈ Spin(m).

Note that the spin group itself can be realized inside the Clifford algebra by
means of

Spin(m) =

s =

2k∏
j=1

sj : k ∈ N , sj ∈ Sm−1

 ,

where Sm−1 ⊂ Rm denotes the unit sphere in Rm. In even dimensions
m, the spinor space S = S+ ⊕ S− is reducible and decomposes into a di-
rect sum of positive and negative spinors. Both spaces are irreducible under
the multiplicative action of Spin(m), with highest weights ( 1

2 ,
1
2 , · · · ,

1
2 ) and

( 1
2 ,

1
2 , · · · ,

1
2 ,−

1
2 ). Lying at the core of Clifford analysis is the unique con-

formally invariant elliptic differential operator acting between spinor-valued
functions, known as the Dirac operator:

∂x =
m∑
j=1

ej∂xj .

This operator factorizes the Laplace operator ∆x = −∂2
x, reflecting the state-

ment that Clifford analysis refines harmonic analysis on Rm. Note that in
case of even dimensions m the Dirac operator acts as a linear map ∂x :
C∞(Rm,S±) → C∞(Rm,S∓), which means that the action of this operator
changes the parity of the spinors. For the sake of notational convenience, we
will therefore restrict ourselves to the odd-dimensional case in this article.
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Note however that the even-dimensional case is not conceptually different.
One only needs to take into account that also the HSD-operators will change
the parity, and can therefore be expressed in terms of a skew-symmetric ma-
trix.

A crucial piece of information is the fact that not only the spinor space
S, but also other irreducible half-integer Spin(m)-representations can be char-
acterized in the language of Clifford algebras and Clifford analysis, see e.g.
[6]. This is done using the notion of Clifford analysis in several vector vari-
ables ui ∈ Rm. Throughout this paper, we will assume that the number of
vector variables k ≤

⌊
m
2

⌋
, which means that we will restrict ourselves to the

so-called stable range [14]. From now on, we will denote the corresponding
Dirac operators ∂ui by ∂i and reserve the underlined letter u for ‘dummy
variables’. The notation 〈·, ·〉 is reserved vor the Euclidean inner product on
Rm, which means that e.g. 〈∂x, ∂y〉 =

∑m
j=1 ∂xj∂yj . In order to define our

models for these spin-representations, we need particular classes of polyno-
mials which are introduced in the following definitions.

Definition 1. A function f : Rkm → C : (u1, . . . , uk) 7→ f(u1, . . . , uk) is called
simplicial harmonic if it satisfies the system

〈∂i, ∂j〉f = 0, for all i, j = 1, . . . , k

〈ui, ∂j〉f = 0, for all 1 ≤ i < j ≤ k.

The vector space of C-valued simplicial harmonic polynomials which are
homogeneous of degree li in ui will be denoted by Hl1,...,lk , or Hλ for short
(with λ = (l1, . . . , lk)) where, from now on, we assume that l1 ≥ · · · ≥ lk (the
dominant weight condition).

Definition 2. A function f : Rkm → S : (u1, . . . , uk) 7→ f(u1, . . . , uk) is called
simplicial monogenic if it satisfies the system

∂if = 0, for all i = 1, . . . , k

〈ui, ∂j〉f = 0, for all 1 ≤ i < j ≤ k.

The vector space of S-valued simplicial monogenic polynomials which
are homogeneous of degree li in ui will be denoted by Sl1,...,lk or Sλ for short
(λ = (l1, . . . , lk)), where again, from now on, we assume that l1 ≥ · · · ≥ lk.
The following definition involves weaker conditions on the S-valued functions,
but will nevertheless be crucial in what follows.

Definition 3. A function f : Rkm → S : (u1, . . . , uk) 7→ f(u1, . . . , uk) is called
monogenic in k variables if it satisfies ∂if = 0, for all 1 ≤ i ≤ k.

The vector space of S-valued monogenic polynomials which are li-homo-
geneous in ui will be denoted byMl1,...,lk orMλ for short (λ = (l1, . . . , lk)),
again with l1 ≥ · · · ≥ lk. Each of these polynomial vector spaces can be seen
as a module for the spin group under the induced regular representation. For
C-valued polynomials, this is the H-action

H(s)P (u1, . . . , uk) := P (su1s, . . . , suks), s ∈ Spin(m),
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whereas for S-valued polynomials this becomes the L-action

L(s)P (u1, . . . , uk) := sP (su1s, . . . , suks), s ∈ Spin(m).

In e.g. [6, 13], it was proven that under this action, the Spin(m)-modules
Hl1,··· ,lk define a model for the irreducible highest weight representation char-
acterized by means of

Hl1,··· ,lk → (l1, · · · , lk, 0, · · · , 0) =: (l1, · · · , lk),

whereas the Spin(m)-modules Sl1,··· ,lk define a model for the irreducible high-
est weight representation characterized by means of

Sl1,··· ,lk →
(
l1 +

1

2
, · · · , lk +

1

2
,

1

2
, · · · , 1

2

)
=: (l1, · · · , lk)′.

As shown in the notations above, we will omit redundant zeros in the highest
weight, and denote the Cartan product with the spinor space S by means of
a prime. Note that when m = 2n, a parity index needs to be added to the
spaces of simplicial monogenics, according to the one for spinors.

Remark 1. In order for (l1, . . . , lk) of (l1, . . . , lk)′ to be a Spin(m)-representa-
tion, we need that l1 ≥ l2 ≥ · · · ≥ lk, the so called dominant weight condition.
That is the reason why we imposed this condition on the spaces Sλ and Hλ.

On functions f(x;u1, · · · , uk) taking values in the vector space Sl1,...,lk ,
we can define operators playing the role of ∂x for S-valued functions (the
HSD-operators mentioned in the introduction). These are first order Spin(m)-
invariant differential operators Qλ, with λ = (l1, · · · , lk), uniquely defined up
to a multiplicative constant (they are even conformally invariant, but this
fact will not be needed in the present paper):

Qλ : C∞(Rm,Sλ)→ C∞(Rm,Sλ) : f(x;u1, . . . , uk) 7→ Qλf(x;u1, . . . , uk).

The existence and uniqueness of such (conformally) invariant differential op-
erators follows from e.g. Fegan’s result [12]; their explicit form as an operator
acting on spinor-valued functions in several vector variables was determined
in [9] as

Qλ =

(
k∏
p=1

(
1 +

up∂p
m+ 2lp − 2p

))
∂x.

Remark 2. Note that we have to see this product as an ordered product,
because elements in Cm do not necessarily commute. The product above is
taken in the ascending order, from left to right.

In case k = 1, we obtain the well-known Rarita-Schwinger operator (see
e.g. [4]):

Ql1 =

(
1 +

u1∂1

m+ 2l1 − 2

)
∂x.

The case k = 2 has been extensively studied as well, see e.g. [11]:

Ql1,l2 =

(
1 +

u1∂1

m+ 2l1 − 2

)(
1 +

u2∂2

m+ 2l2 − 4

)
∂x.
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In the next section, we will develop an alternative approach to construct these
operators inductively, using the notion of twisted higher spin operators.

3. The twisted Dirac operator

In this section we consider the twisted Dirac operator, which can be defined
on Hλ-valued functions (for arbitrary λ) and enables us to define the afore-
mentioned HSD-operators. More explicitly, we have the following.

Definition 4. For arbitrary integer-valued highest weights λ for Spin(m), the
twisted Dirac operator on (Hλ⊗S)-valued polynomials is defined by means of

∂Tx := 1λ ⊗ ∂x : C∞(Rm,Hλ ⊗ S)→ C∞(Rm,Hλ ⊗ S).

In order to explain why this operator is so useful to define HSD-operators
acting on Sλ-valued polynomials, we invoke the following result.

Lemma 1 (e.g. [10]). As a Spin(m)-representation, the tensor product Hλ⊗S
can be decomposed as the direct sum of (at most) 2|λ| irreducible Spin(m)-
modules, each one appearing with multiplicity 1:

Hλ ⊗ S ∼=
1⊕

i1=0

· · ·
1⊕

ik=0

(l1 − i1, . . . , lk − ik)′. (1)

Each summand (l1− i1, . . . lk− ik)′ is contained in the decomposition as long
as its highest weight satisfies the dominant weight condition.

Note that it follows from this lemma that Sλ is a submodule of Hλ⊗ S,
which is precisely what lies behind Definition 4. Note also that all other mod-
ules are isomorphically embedded into the tensor product, but we will omit
the embedding factor (unless explicitly mentioned). Using the method of con-
structing conformally invariant operators by means of generalized gradients
(see e.g. [12, 18]), one can deduce from the lemma above that the twisted
Dirac operator 1λ ⊗ ∂x can be written as the sum of at most |λ| + 1 first
order differential operators: a HSD-operator Qλ and (at most) |λ| twistor

operators T λλ−δi , defined as the unique first order differential operators map-

ping Sλ-valued functions to Sλ−δi-valued functions. Each of these operators
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is defined through the following scheme:

C∞(Rm,Sλ) ∂Tx
// C∞(Rm,Hλ ⊗ S)

C∞(Rm,Sλ) Qλ //

T λλ−δ1
((

T λλ−δi

!!
T λλ−δk

��

C∞(Rm,Sλ)

C∞(Rm,Sλ−δ1)

...

C∞(Rm,Sλ−δi)

...

C∞(Rm,Sλ−δk)

(2)

Here, λ− δi stands for (l1, . . . , li− 1, . . . , lk). Note that there are less twistor
operators than summands in the decomposition from Lemma 1, which follows
from Fegan’s result on existence or easy Clifford analysis calculations.

Before we turn our attention to arbitrary twisted HSD-operators, we
will illustrate our approach by means of a low order example: for k = 1 we
encounter the classical Dirac operator, leading by means of its decomposition
to the definition of the RS-operator. Here, Lemma 1 reduces to the classical
Fischer decomposition (this time including the embedding factor):

Hl1 ⊗ S = Sl1 ⊕ u1Sl1−1. (3)

Since

f(x;u) ∈ C∞(Rm,Sl1)
∂Tx−→ ∂Tx f(x;u) ∈ C∞(Rm,Hl1 ⊗ S),

we only need to project ∂Tx f onto the space C∞(Rm,Sl1) in order to obtain
an expression for the RS-operator Ql1 , in view of Lemma 1. Schematically,
we have:

C∞(Rm,Sl1) ∂Tx
//

=

C∞(Rm,Hl1 ⊗ S)

∼=

C∞(Rm,Sl1) Ql1 //

T l1l1−1 ((

C∞(Rm,Sl1)

⊕

C∞(Rm,Sl1−1)

Here, we can see that the twisted Dirac operator decomposes into two opera-
tors. These are two natural invariant operators acting on the Sl1-valued func-
tions under consideration: the Rarita-Schwinger operator Ql1 and a twistor

operator T l1l1−1 (see e.g. [4]).



8 H. De Schepper, D. Eelbode and T. Raeymaekers

Remark 3. As k increases, it will be harder to obtain a projection operator
on Sλ, since the scheme (2) will contain more arrows.

Remark 4. When using ∂x to construct Ql1 , one actually uses the natural
operator acting on functions taking values in the space “with one dummy
variable less” (here: spinors). This observation has inspired us to follow a
similar approach for more general values.

As illustrated above, explicit realisations for the HSD-operators can be
obtained by decomposing the twisted Dirac operator. However, our main
aim is to eventually describe the polynomial null-solutions for general HSD-
operators. As k increases, the complexity of this kernel space increases as
well (see e.g. [2]). This is why we will use a different approach to construct
HSD-operators in the remainder of this article (using recursion), which will
then lead to an alternative method to determine null-solutions. Instead of
using the twisted Dirac operator, we will construct the HSD-operators using
twisted HSD-operators of ‘lower order’. This will be illustrated in the next
section, where we will use the twisted RS-operator, in order to define the
HSD-operator Ql1,l2 (k = 2).

4. The twisted Rarita-Schwinger operator

The main aim of this section is to construct the HSD-operators Ql1,l2 using
twisted RS-operators. The classical RS-operator is the HSD-operator of or-
der 1, defined on Sl1-valued functions f(x;u1). It is however clear that the
operator Ql1 , given by

1V ⊗Ql1 = 1V ⊗
(

1 +
u1∂1

m+ 2l1 − 2

)
∂x,

can act on any function space of the form C∞(Rm,V ⊗ Sl1). Just as for the
Dirac operator, this will then lead to the twisted RS-operator. In this paper,
we will take V = Hl2 . The reason for this is that we eventually want to
determine the expression for Ql1,l2 starting from the twisted RS-operator.
This choice will prove to be very useful.

Definition 5. For any highest weight (µ1, . . . , µk−1) with l1 ≥ µ1, we define
the twisted RS-operator by means of

QTl1 = 1(µ1,...,µk−1) ⊗Ql1 :

C∞(Rm,Hµ1,...,µk−1
⊗ Sl1)→ C∞(Rm,Hµ1,...,µk−1

⊗ Sl1). (4)

Note that we have chosen not to include the highest weight (µ1, . . . , µk−1) in
the symbol for the twisted RS-operator to avoid overloaded notations, although
the precise definition obviously depends on the choice of these integers.

Remember that Ql1,l2 acts on functions taking values in Sl1,l2 . Recalling
the meaning of this space as a vector space containing polynomial solutions to
systems of differential equations, it is easily seen that the spin-module Sl1,l2 is
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a subspace of Hl2⊗Sl1 . So we can determine Ql1,l2 by letting the twisted RS-
operator act on functions in the space C∞(Rm,Sl1,l2) and projecting the result
on the very same space afterwards. To prove the uniqueness of this projection,
we need to prove that Sl1,l2 is contained in Hl2⊗Sl1 with multiplicity 1. This
is the subject of the following theorem, whose proof is rather technical and
therefore postponed until Section 6.1.

Theorem 1. For each pair of integers l1 ≥ l2 > 0, we have that Sl1,l2 and
Sl1,l2−1 are Spin(m)-submodules of Hl2 ⊗ Sl1 with multiplicity 1.

Let us then start from an arbitrary function f(x;u1, u2) ∈ C∞(R,Sl1,l2).
After applying the twisted RS-operator (4), we obviously get that

QTl1f =

(
1 +

u1∂1

m+ 2l1 − 2

)
∂xf ∈ ker(∂1).

It is no longer true that QTl1f ∈ ker(∂2, 〈u1, ∂2〉) but we do have that

QTl1f ∈ ker(∂1,∆2, 〈u1, ∂2〉2) ,

where ∆2 stands for the Laplace operator in the variable u2. This can easily
be seen, due to the fact that QTl1 projects on the kernel of ∂1, ∆2 commutes

with QTl1 and

〈u1, ∂2〉QTl1f = − u1∂2

m+ 2l1 − 2
∂xf.

Since we know that the result is harmonic in the variable u2, we can use the
monogenic decomposition (3):

QTl1f = Fl2 + u2Fl2−1,

where Fl2 and Fl2−1 are both monogenic in u2. Applying ∂2 on both sides
of the equation, explicit calculations involving the explicit expression for Ql1
lead to

Fl2−1 = −
∂2QTl1f

m+ 2l2 − 2
= − (m+ 2l1 − 2)∂2 − 2〈u1, ∂2〉∂1

(2l1 +m− 2)(2l2 +m− 2)
∂xf

= 2
2l1 +m

(2l1 +m− 2)(2l2 +m− 2)
〈∂2, ∂x〉f. (5)

Notice that the operator 〈∂2, ∂x〉 appearing here is (up to a multiplicative

constant) the twistor operator T l1,l2l1,l2−1, which is the unique first order differ-
ential operator acting between the following spaces:

〈∂2, ∂x〉 : C∞(Rm,Sl1,l2)→ C∞(Rm,Sl1,l2−1).

Remember that this operator also appeared in the scheme 2 (for k = 2).
Defining πl1 [u2] as the projection of the multiplication operator u2 on

the kernel of the Dirac operator ∂1, gives rise to a mapping

πl1 [u2] :=

(
1 +

u1∂1

m+ 2l1 − 2

)
u2 : C∞(Rm,Sl1,l2−1)→ C∞(Rm,Hl2 ⊗ Sl1) ,

we can prove the following proposition.
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Proposition 1. For all integers l1 ≥ l2 > 0 and for all f(x;u1, u2) ∈ C∞(Rm,
Sl1,l2) with 〈∂2, ∂x〉f 6= 0, there exists a unique constant γl2 ∈ R such that

QTl1f = φ0 + γl2πl1 [u2]〈∂2, ∂x〉f,
with φ0 satisfying

∂1φ0 = ∂2φ0 = 〈u1, ∂2〉φ0 = 0.

This clearly means that φ0 = Ql1,l2f . This constant is given by

γl2 =
2

2l2 +m− 4
.

Proof. Let us consider a function f ∈ C∞(Rm,Sl1,l2) with 〈∂2, ∂x〉f 6= 0, and
define φ0 by means of

φ0 := QTl1f − γl2πl1 [u2]〈∂2, ∂x〉f ∈ C∞(Rm,Hl2 ⊗ Sl1) ,

where the constant γ2 is to be fixed in such a way that φ0 indeed satisfies
the requirements mentioned above. In view of the fact that QTl1f ∈ ker ∆2,
we can use (3) to arrive at

QTl1f = Fl2 + u2Fl2−1,

where both functions Fi are homogeneous of degree i and monogenic in u2.
Applying the Dirac operator ∂2 on both expressions for QTl1f gives us:

−(2l2 +m− 2)Fl2−1 = ∂2φ0 − γl2
(2l1 +m)(2l2 +m− 2)

2l1 +m− 2
〈∂2, ∂x〉f.

Using equation (5), we thus get that

∂2φ0 =

(
γl2

(2l1 +m)(2l2 +m− 2)

2l1 +m− 2
− 2(2l1 +m)

2l1 +m− 2

)
〈∂2, ∂x〉f.

If we choose

γl2 =
2

2l2 +m− 4
,

one immediately sees that the proposition holds. �

Remark 5. If f ∈ C∞(Rm,Sl1,l2) ∩ ker〈∂2, ∂x〉, the proposition above reduces
to

QTl1f ∈ C
∞(Rm,Sl1,l2) .

Note that the operator γl2πl1 [u2]〈∂2, ∂x〉 is nothing but the operator

T l1,l2l1,l2−1 = 〈∂2, ∂x〉 and an embedding factor γl2πl1 [u2], which means that we

get the following scheme for the action of QTl1 (up to isomorphic embeddings):

C∞(Rm,Sl1,l2) QTl1
// C∞(Rm,Hl2 ⊗ Sl1)

C∞(Rm,Sl1,l2) Ql1,l2 //

T l1,l2l1,l2−1 ))

C∞(Rm,Sl1,l2)

C∞(Rm,Sl1,l2−1)
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Due to Theorem 1, this decomposition is unique.

5. The twisted higher spin Dirac operator

Similar to the derivation of Ql1,l2 in the previous section, we can now obtain
an explicit realization for the most general HSD-operators, using a related
twisted HSD-operator of ‘lower order’. Suppose λ = (l1, . . . , lk), with l1 ≥
· · · ≥ lk > 0. The standard HSD-operator in k vector variables was defined
as the first order differential operator:

Qλ : C∞(Rm,Sλ)→ C∞(Rm,Sλ).

Just as for the twisted RS-operator, we introduce the following definition.

Definition 6. The twisted HSD-operator QTλ is the operator

QTλ = 1V ⊗Qλ : C∞(Rm,V⊗ Sλ)→ C∞(Rm,V⊗ Sλ) , (6)

acting on V-valued simplicial monogenics. Note that we again prefer not to
mention this space V explicitly in the symbol for the twisted HSD-operator,
in order to avoid overloaded notations.

Once again, note that the difference between the ordinary HSD-operator
and its twisted version lies in the values of the functions f(x) these operators
are meant to act on. The ‘twisted’ refers to the fact that this operator acts
on a ‘bigger’ space than the canonical domain of the ordinary HSD-operator.
Now, let λ+ = (l1, . . . , lk, lk+1) be a dominant highest weight. In order to use
this twisted HSD-operator to construct more complicated HSD-operators,
one must choose V in such a way that Sλ+ ⊂ V ⊗ Sλ. We will prove that
V = Hlk+1

, with lk ≥ lk+1 > 0, fits this purpose.

In view of our polynomial models, it is easily seen that Sλ+ indeed is
a subspace of the tensor product Hlk+1

⊗ Sλ. In order to obtain a HSD-
operator Qλ+ which is well-defined, we need to prove that Sλ+ is contained
in this tensor product with multiplicity one.

Theorem 2. Defining the (dominant) highest weights

λ− = (l1, . . . , lk, lk+1 − 1) and λ+ = (l1, . . . , lk, lk+1) ,

both Sλ− and Sλ+ are contained in Hlk+1
⊗ Sl1,...,lk as a submodule with

multiplicity 1.

Because the proof for this theorem is again rather technical, it is post-
poned until the last section. Let us now consider a function f ∈ C∞(Rm,Sλ+).

When applying the twisted HSD-operator QTλ on this function, we get that

QTλ f =

(
k∏
i=1

(
1 +

ui ∂i
m+ 2li − 2i

))
∂xf
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is an element of ker(∂1, . . . , ∂k, 〈u1, ∂2〉, . . . , 〈uk−1, ∂k〉). However, it does no
longer belong to ker(∂k+1, 〈uk, ∂k+1〉). Denoting the Laplace operator in uk+1

by means of ∆k+1, one can easily prove that

QTλ f ∈ ker(∆k+1, 〈uk, ∂k+1〉2) ,

since ∆k+1 commutes with QTλ , and

〈uk, ∂k+1〉QTλ f = −
k−1∏
i=1

(
1 +

ui ∂i
m+ 2li − 2i

)
uk∂k+1

m+ 2lk − 2k
∂xf.

This implies that QTλ f takes values in Hlk+1
⊗Sλ and explains our choice for

V in (6). In order to derive the explicit expression for the HSD-operator Qλ+ ,

we thus need the projection of QTλ f on C∞(Rm,Sλ+). Since we know that

QTλ f is harmonic in uk+1, we can use the monogenic Fischer decomposition

(3) in this variable:

QTλ f = Flk+1
+ uk+1Flk+1−1,

where both functions Fj are monogenic of degree j in the variable uk+1.
Applying ∂k+1 on both sides of this equation then yields

Flk+1−1 = −
∂k+1QTλ f

m+ 2lk+1 + 2
.

Further calculations on the right-hand side of the latter expression lead to

Flk+1−1 = − 1

m+ 2lk+1 + 2

k∏
i=1

m+ 2li − 2(i− 1)

m+ 2li − 2i
∂k+1∂xf

=
2

m+ 2lk+1 + 2

k∏
i=1

m+ 2li − 2(i− 1)

m+ 2li − 2i
〈∂k+1, ∂x〉f. (7)

For the operator appearing in the last equation, we have the following aux-
iliary result.

Lemma 2. The operator 〈∂k+1, ∂x〉 is (up to a multiplicative constant) equal
to the twistor operator defined by means of

T λ
+

λ−
: C∞(Rm,Sλ+)→ C∞(Rm,Sλ−).

Next, let us define πλ[uk+1] as

πλ[uk+1] :=

k∏
i=1

(
1 +

ui∂i
m+ 2li − 2i

)
uk+1.

In other words: this is the simplicial monogenic projection of the multiplica-
tion operator uk+1, defined by means of

πλ[uk+1] : C∞(Rm,Sλ−)→ C∞(Rm,Hlk+1
⊗ Sλ) .

One can then prove the following generalization of Proposition 1.
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Proposition 2. For all integers l1 ≥ l2 ≥ . . . ≥ lk+1 > 0 and for all f ∈
C∞(Rm,Sλ+) with 〈∂k+1, ∂x〉f 6= 0, there exists a unique constant γlk+1

∈ R
such that

QTλ f = φ0 + γlk+1
πλ[uk+1]〈∂k+1, ∂x〉f,

with φ0 ∈ C∞(Rm,Sλ+). This clearly means that φ0 = Qλ+f . The constant

is given by γlk+1
:= 2

2lk+1+m−2(k+1) .

Proof. Define a function φ0 by means of

φ0 := QTλ f − γlk+1
πλ[uk+1]〈∂k+1, ∂x〉f ,

where the constant γlk+1
is to fixed in such a way that φ0 meets the require-

ments of the proposition. The Fischer decomposition for Sλ-valued harmonic
polynomials gives us that

QTλ f = Flk+1
+ uk+1Flk+1−1,

since QTλ f ∈ ker ∆k+1. Applying the Dirac operator ∂k+1 on both sides of
the equality gives us that

−(2lk+1 +m− 2)Flk+1−1 =

∂k+1φ0 − γlk+1

k∏
i=1

(
2li +m− 2(i− 1)

2li +m− 2i

)
(m+ 2lk+1 − 2k)〈∂k+1, ∂x〉f.

Using (7), we then get that

∂k+1φ0 =(
γlk+1

(2lk+1 +m− 2(k + 1))− 2
) k∏
i=1

(
2li +m− 2(i− 1)

2li +m− 2i

)
〈∂k+1, ∂x〉f.

If we choose

γlk+1
=

2

2lk+1 +m− 2(k + 1)
,

one can directly verify that the proposition holds. �

Schematically, we can represent this decomposition as follows:

C∞(Rm,Sλ+) QTk // C∞(Rm,Hlk+1
⊗ Sλ)

C∞(Rm,Sλ+) Qλ+ //

〈∂k+1,∂x〉 ))

C∞(Rm,Sλ+)

C∞(Rm,Sλ−)

Remark 6. In case f ∈ C∞(Rm,Sλ+) ∩ ker〈∂k+1, ∂x〉, the proposition above
immediately reduces to

QTλ f ∈ C∞(Rm,Sλ+) .
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6. Technical proofs

In this section, we have gathered the proofs for technical results which were
omitted in the preceeding text.

6.1. Representations of order 2

Let us first take a look at the tensor product Hl1 ⊗Hl2 . It was proven in [16]
that

Lemma 3. For all integers l1 ≥ l2 > 0, we have that

(l1, 0, · · · , 0)⊗ (l2, 0, · · · , 0) ∼=
l2⊕
i=0

i⊕
j=0

(l1 + l2 − 2i+ j, j, 0, · · · , 0),

where each highest weight refers to an irreducible representation for the spin
group.

We can nicely represent this in the following scheme:

(l1, l2) ⊕ (l1 − 1, l2 − 1) ⊕ · · · ⊕ (l1 − l2 + 1, 1) ⊕ (l1 − l2, 0)

.

.

.
(l1 + l2 − j, j) ⊕ · · · ⊕ (l1 + l2 − 2j, 0)

.

.

.
(l1 + l2 − 1, 1) ⊕ (l1 + l2 − 2, 0)

(l1 + l2, 0)

(8)

In this decomposition, each summand appears with multiplicity 1. Using this
lemma, Theorem 1 from Section 4 can now be proven.

Theorem 1. For each pair of integers l1 ≥ l2 > 0, we have that Sl1,l2 and
Sl1,l2−1 are Spin(m)-submodules of Hl2 ⊗ Sl1 with multiplicity 1.

Proof. In view of our polynomial models, it is easily seen that Sl1,l2 is a
subset of Hl2 ⊗ Sl1 . It is multiplicity-free, since

Hl2 ⊗ Sl1 ⊂ Hl1 ⊗Hl2 ⊗ S,

and Sl1,l2 only appears as a submodule of Hl1,l2 ⊗ S, using (8) and (1). The
vector space Sl1,l2−1 however, is a submodule ofHl1⊗Hl2⊗S with multiplicity
2, since it is both a submodule of Hl1,l2 ⊗ S and Hl1+1,l2−1 ⊗ S, again using
(8) and (1). On the other hand, we also have that

Hl1 ⊗Hl2 ⊗ S ∼= (Hl2 ⊗ Sl1)⊕ (Hl2 ⊗ Sl1−1).

If one can prove thatHl2⊗Sl1−1 has Sl1,l2−1 as a submodule with multiplicity
1, then the theorem is proven. This indeed is the case since

Hl1−1 ⊗Hl2 ⊗ S ∼= (Hl2 ⊗ Sl1−1)⊕ (Hl2 ⊗ Sl1−2),

and the module Sl1,l2−1 is contained in the subrepresentation Hl1,l2−1 ⊗ S of
the tensor product (Hl1−1 ⊗Hl2)⊗ S with multiplicity 1. It is however not a
submodule of Hl2 ⊗ Sl1−2, since

Hl2 ⊗ Sl1−2 ⊂ Hl1−2 ⊗Hl2 ⊗ S,
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and Sl1,l2−1 is not a submodule of Hl1−2⊗Hl2 ⊗ S, again because of (8) and
(1). �

6.2. Representations of order k

Let V be an arbitrary representation of Spin(m), or its Lie algebra so(m).
Denote by Γλ the finite-dimensional irreducible representation with highest
weight λ. The multiplicity of Γλ in V is denoted by mλ(V), and the multi-
plicity of an arbitrary weight µ in Γλ is denoted by nµ(Γλ). We will use the
following result (see e.g. [15]).

Theorem 3. If ν is a dominant weight such that mν(Γλ⊗Γµ) > 0, then there
is a weight µ′ of Γµ such that ν = λ+ µ′. Moreover, if this is the case, then
we at the same time have that mν(Γλ ⊗ Γµ) ≤ nλ−ν(Γµ).

Put λ− = (l1, l2, . . . , lk, lk+1−1) and λ+ = (l1, l2, . . . , lk, lk+1), as above.
In view of definitions 1 and 2, it is easily seen that Sλ+ indeed is contained
as a submodule in the tensor product Hlk+1

⊗ Sλ, since all polynomials in
Sλ+ indeed are simplicial monogenic in the first k variables and harmonic in
uk+1. Recalling the definition of the projection operator πλ[uk+1], it is also
clear that

k∏
i=1

(
1 +

ui∂i
m+ 2li − 2i

)
[uk+1]Sλ− ⊂ Hlk+1

⊗ Sl1,...,lk ,

whence Sλ− is, up to an embedding factor, also contained in Hlk+1
⊗Sl1,...,lk

We then proceed with the proof of Theorem 2 to obtain uniqueness (in two
parts).

Theorem 2 (I). The vector space Sλ− is contained as a submodule inside
the tensor product Hlk+1

⊗ Sl1,...,lk with multiplicity 1.

We already have shown thatmλ−(Hlk+1
⊗Sl1,...,lk) > 0. Putting λ = (l1, . . . , lk)′,

µ = (lk+1) and ν = (λ−)′ in Theorem 3, we then need to prove that
nλ−ν(Γµ) = 1, which will lead to the first part of Theorem 2. We see that
λ − ν = (0, . . . , 0,−lk+1 + 1, 0, . . . , 0), where the nonzero element is on the
(k + 1)-th position. Due to the action of the Weyl-group, we know that

n(0,...,0,−lk+1+1,0,...,0)(Hlk+1
) = n(lk+1−1)(Hlk+1

).

In order to calculate the multiplicity of the weight (lk+1− 1) in the Spin(m)-
representation Hlk+1

, we make use of Freudenthal’s formula, which we state
in the following theorem (in a form adapted to our needs).

Theorem 4. Let Γλ be an irreducible representation with highest weight λ for
g = so(m). The multiplicity nµ(Γλ) of the weight µ in Γλ is given recursively,
by means of(

2〈λ− µ, µ+ δ〉+ ‖λ− µ‖2
)
nµ(Γλ) = 2

∑
α∈∆+

∑
a≥1

〈µ+ αa, α〉nµ+αa(Γλ) .
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Hereby, δ stands for half the sum of the positive roots, 〈·, ·〉 is the Killing
form and ∆+ is the set of positive roots.

In our case, i.e. for the Lie algebra so(m) = so(2n+ 1), we get

∆+ = {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1),

(1, 1, 0, . . . , 0), (1, 0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1, 1),

(1,−1, 0, . . . , 0), (1, 0,−1, 0, . . . , 0), . . . , (0, . . . , 0, 1,−1)}. (9)

and the Killing form is the standard inner product. Thus δ = (n − 1
2 , n −

3
2 , . . . ,

1
2 ), with m = 2n + 1. Putting λ = (lk+1, 0, . . . , 0) and µ = (lk+1 −

1, 0, . . . , 0), the left-hand side of the Freudenthal formula becomes 2(lk+1 +
n − 1)nµ(Γλ). In order to determine the right-hand side of the equation, it
suffice to note that the only non-trivial µ + αa that will appear in the sum
are of the form

(lk+1, 0, . . . , 0), (lk+1 − 1, 1, 0, . . . , 0), . . . , (lk+1 − 1, 0, . . . , 0, 1),

where α is (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1) respectively, and a =
1. There are no other possibilities, in view of the following classical result.

Theorem 5. If λ = (λ1, . . . , λk) is the highest weight of an irreducible repre-
sentation Γλ, and µ = (µ1, . . . , µk) is a non-trivial weight in Γλ, then

k∑
i=1

|µi| ≤
k∑
i=1

|λi|.

We then get that

2
∑
α∈∆+

∑
a≥1

〈µ+ αa, α〉nµ+αa(Γλ)

= 2lk+1n(lk+1)(Γ(lk+1)) + 2

n∑
i=2

n(lk+1−1)+δi(Γlk+1
),

where δi = (0, . . . , 0, 1, 0, . . . , 0), with 1 on the i-th position. If one can now
prove that for each 2 ≤ i ≤ n one also has that n(lk+1−1)+δi(Γlk+1

) = 1,
our proof is complete. This indeed is the case, as follows from Freudenthal’s
formula again. Putting λ = (lk+1) and µ = (lk+1 − 1) + δi, the left-hand side
of the formula becomes 2(lk+1 +i−2)n(lk+1−1)+δi(Γ(lk+1)). For the right-hand
side, the only possible values for µ + αa in the sum are (lk+1), (lk+1 − 1) +
δ1, . . . , (lk+1 − 1) + δi−1. Induction on i indeed gives us that

n(lk+1−1)+δi(Γ(lk+1)) = 1,

for each 2 ≤ i ≤ n.

Finally, we also prove the remaining part of Theorem 2.

Theorem 2 (II). The vector space Sλ+ is contained as a submodule inside
the tensor product Hlk+1

⊗ Sl1,...,lk with multiplicity 1.
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Proof. We once again make use of Theorem 3. Putting λ = (l1, . . . , lk)′, µ =
(lk+1) and ν = (λ+)′, this theorem states that

m(λ+)′(Γ(l1,...,lk)′ ⊗ Γ(lk+1)) ≤ n(0,...,0,−lk+1,0,...,0)(Γ(lk+1))

Due to the action of the Weyl group,

n(0,...,0,−lk+1,0,...,0)(Γ(lk+1)) = n(lk+1)(Γ(lk+1)) = 1,

as this is the multiplicity of the highest weight space. �

7. Conclusion

In this article, we have shown that we can always deduce the higher spin
Dirac operator in (k+ 1) variables from the HSD-operator in 1 variable less,
using a procedure which we have called ‘twisting higher spin Dirac opera-
tors’. This will prove to be an invaluable step towards determining the set
of (polynomial) null solutions of arbitrary higher spin Dirac operators, as we
will elaborate in future work.
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