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ABSTRACT 

Purpose: To develop a nanocrystalline paclitaxel formulation with a high paclitaxel-to-stabilizer ratio 

which can be used for hyperthermic intraperitoneal chemotherapy (HIPEC). 

Methods: Paclitaxel (PTX) nanocrystals were prepared via wet milling using Pluronic F127® as 

stabilizer. The suitability of paclitaxel nanosuspensions for HIPEC treatment was evaluated by 

analyzing the cytotoxicity of both stabilizer and formulation, and by determining the maximum 

tolerated dose (MTD) and bioavailability. The effect on tumor growth was evaluated by magnetic 

resonance imaging (MRI) at day 7 and 14 after HIPEC treatment in rats with peritoneal carcinomatosis 

of ovarian origin. 

Results: Monodisperse nanosuspensions (±400 nm) were developed using Pluronic F127® as single 

additive. The cytotoxicity and MTD of this nanocrystalline formulation was similar compared to 

Taxol®, while its bioavailability was higher. MRI data after HIPEC treatment with a PTX 

nanocrystalline suspension showed a significant reduction of tumor volume compared to the non-

treated group. Although no significant differences on tumor volume were observed between Taxol® 

and the nanosuspension, the rats treated with the nanosuspension recovered faster following the 

HIPEC procedure. 

Conclusion: Nanosuspensions with a high paclitaxel-to-stabilizer ratio are of interest for the treatment 

of peritoneal carcinomatosis of ovarian origin via HIPEC.  
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ABBREVIATIONS 

HIPEC: Hyperthermic intraperitoneal chemotherapy 

MTD: maximum tolerated dose 

PEO: Polyethylene oxide 

Plu F127: Pluronic  F127® 

Plu F68: Pluronic F68® 

PPO: polypropylene oxide  

PTX: Paclitaxel 

TGD: Tumor growth delay 
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1. INTRODUCTION 

 

Ovarian cancer is the fifth most common cancer affecting European women (1). Once the tumor starts 

growing in the ovary, spread of cancer cells throughout the abdominal-pelvic cavity occurs very early 

in the development of the disease (2). The standard therapy for patients with peritoneal carcinomatosis 

of ovarian origin is initial cytoreductive surgery followed by intravenous platinum-taxane 

chemotherapy (3, 4). Lately, this standard therapy has been modified as alternative treatments have 

been developed. A treatment following cytoreductive surgery is hyperthermic intraperitoneal 

chemotherapy (HIPEC). Administration of chemotherapy intraperitoneally under hyperthermic 

conditions may improve the mean overall survival of patients with advanced ovarian cancer from 19.0 

to 76.1 months (5). Paclitaxel is a suitable molecule for HIPEC treatment as it has a high 

peritoneal/plasma concentration ratio (>1000) and a significant first pass effect (6). However, 

paclitaxel is not commonly used for HIPEC treatment because of the side effects caused by 

Cremophor®EL present in the commercially available formulation Taxol®, like abdominal pain and 

life-threatening hypersensitivity reactions (7). Due to these side effects a lot of research is done, 

developing new paclitaxel formulations without resorting to toxic excipients to improve the solubility 

of paclitaxel.  

Nanomilling process which reduces the particle size is a popular technique in the pharmaceutical field 

for the delivery of poorly water soluble drugs. 

Two different techniques can be used to obtain nanosuspensions: either the top-down approach 

(particle size reduction) or the bottom-up approach (precipitation method) (9). The wet milling 

technique is a typical top-down method, which differs from other methods by avoiding the use of 

organic solvents. A size reduction leads to an increased surface area and according to the Noyes-

Witney equation to an increased dissolution velocity. Thus, nanosizing is a potential technique to 

enhance dissolution and bioavailability of poorly water soluble drugs such as paclitaxel (8). Breakage 

of micronized drug crystals into nanoparticles creates an increased particle surface area and during 
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milling due to the change of Gibbs free energy, a thermodynamically unstable nanosuspension can be 

formed. A proper selection of stabilizer is required during the preparation of the nanosuspension to 

prevent the nanoparticles from agglomeration or crystal growth due to Ostwald ripening, which 

influences the dissolution and in vivo performance of the nanosuspension  (10). 

The mechanical grinding by milling pearls in water is used to obtain drug/stabilizer suspensions (11) 

with a particle size lower than 1µm. In this study, the wet milling technique is applied to obtain a 

paclitaxel nanosuspension stabilized with a surfactant (polyethylene oxide-polypropylene oxide block 

copolymers, Pluronic F68® and Pluronic F127®). Pluronic-stabilized paclitaxel nanocrystals have 

already been formulated, but were characterized by a low drug-to-stabilizer ratio: Lui et al. required at 

least a paclitaxel/Pluronic F127® ratio of 1/5, as at lower stabilizer concentrations stable nanocrystals 

could not be formed (12). In order to maximize the drug concentration at the delivery site, which is 

one of the challenges of HIPEC therapy (13), the stabilizer content in the nanocrystalline formulation 

was minimized in our study. As HIPEC is a promising technique for the treatment of peritoneal 

carcinomatosis of ovarian origin, after the characterization of the nanocrystals processed via the wet 

milling technique. The feasibility of the nanosuspension for HIPEC treatment was assessed (in 

comparison with Taxol®) by evaluating in vitro cytotoxicity of the excipients as well as the 

formulation on  a ovarian cancer cell line, and the toxicity, bioavailability and the effect on tumor 

growth in a rat model.  
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2. MATERIALS AND METHODS 

2.1. Materials 

Paclitaxel (PTX) was purchased from Enzo Life Sciences (Zandhoven, Belgium). Polyethylene oxide-

polypropylene oxide (PEO-PPO) block copolymers, Pluronic F68® and Pluronic® F127, were obtained 

from BASF (Ludwigshafen, Germany), Taxol® from Bristol-Myers Squibb (Brussels, Belgium) and 

Cremophor EL® from Alpha Pharma (Waregem, Belgium). 

2.2. Preparation of paclitaxel nanocrystals 

Paclitaxel nanosuspensions were prepared by a wet milling technique using two different stabilizers 

(Pluronic F68® and Pluronic® F127) in three PTX/stabilizer ratios (2/1, 4/1 and 8/1). After dissolving 

the stabilizer in a 20 ml vial containing 5 ml of 0.9 % NaCl, paclitaxel powder (50 or 100 mg) was 

dispersed in this aqueous phase. Zirconium oxide beads (amount 30 g, diameter 0.5 mm) were added 

to the suspension as milling pearls. The vials were placed on a roller-mill (Peira, Beerse, Belgium) and 

grinding was performed at 150 rpm for 24 or 60 h. After milling the nanoparticles were separated from 

the grinding pearls by sieving.  

For solid state characterization of the PTX nanocrystals, the nanosuspension was freeze dried for 24 h 

at -50 °C and 1 mbar. 

2.3. Nanocrystal characterization 

The mean particle size and polydispersity index (PI) of the nanosuspensions was determined by 

photon correlation spectroscopy, using a Zetasizer 3000 (Malvern Instruments, Worcestershire, UK). 

Prior to analysis, the nanosuspensions were diluted with distilled water and were analyzed at room 

temperature. 

The morphology of the freeze dried drug particles was observed under a scanning electron microscope 

(SEM) (JSM 5600 LV, Jeol, Tokyo, Japan) after coating the powder particles with platinum using a 

sputtering equipment (Auto Fine Coater, JFC-1300, Jeol, Tokyo, Japan). 
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Thermal properties of the freeze dried samples were analyzed by differential scanning calorimetry 

(DSC Q2000, TA instruments, Leatherhead, UK). Samples were placed in sealed aluminum pans, and 

evaluated over a temperature range from -20 to 190 °C with a heating rate of 10 °C/min. Pure drugs 

and physical mixtures were tested as controls. The thermal profiles were analyzed using the TA 

Instruments Universal Software. 2.4. In vitro cytotoxicity 

The human ovarian carcinoma cell line (SKOV-3, obtained from the American Type Culture 

Collection) was cultured at 37 °C in a 5 % CO2-containing humidified atmosphere in McCoys medium 

(Invitrogen, Merelbeke, Belgium). The medium was supplemented with 10 % fetal bovine serum, 

penicillin, streptomycin (Invitrogen, Merelbeke, Belgium) and fungizone (Bristol Myers Squibb, 

Brussels, Belgium). 

The cytotoxicity of PTX nanosuspensions (at a PTX/Plu F127 ratio of 4/1) and of Taxol® was tested at 

PTX concentrations of 0.01, 0.1, 1, 5 and 10 µg/ml, 8 wells per concentration were used. Both Taxol® 

and PTX nanosuspensions were diluted with 0.9 % NaCl to the appropriate concentration. In addition, 

the cytotoxicity of the excipients in these formulations (Pluronic F127® and Cremophor EL®) was 

tested using 9 concentrations: 0, 0.01, 0.1, 1, 1.5, 2, 2.5, 3 and 3.5 mg/ml.  

To evaluate the cytotoxicity, 20x103 cells/ml were seeded in 96-well plates (Sarstedt, Newton NC, 

USA). After 72 h, 20 µl medium was removed and replaced by the test formulation. After incubation 

for 1 h at 41.5 °C (i.e. to mimic the HIPEC procedure used during in vivo studies), the medium was 

entirely removed, cells were washed with PBS and 200 µl fresh medium was placed in each well. 

Afterwards, the cells were incubated for 24 and 96 h at 37 °C under 5 % CO2-atmosphere. The 

cytotoxicity of the test formulations was determined via MTT assay and compared with the non-

treated cells (14). Afterwards, the optical density was measured at 570 nm normalizing with a 

reference wavelength of 650 nm using an ELISA-plate reader (Paradigm Detection Platform, 

Beckman Coulter, Suarleé, Belgium). 

2.5. In vivo testing 

2.5.1. HIPEC procedure 
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Adult female athymic nude rats (Harlan, Horst, The Nederlands) were kept in standard housing 

conditions with water and food ad libitum and a 12 hours light/dark circle. All animal experiments 

were approved by the Ethical Committee of the Faculty of Medicine, Ghent University (ECD 09/06). 

After anesthetizing each rat with 3% isoflurane (Forene®, Abbott, Belgium) a vertical incision was 

made along the midline in the abdominal wall muscle. The abdominal wall muscle was attached to a 

metal ring which was placed a few centimeters above the incision. The inlet and outlet tubing 

(Pumpsil®, Watson-Marlow, Zwijnaarde, Belgium) was placed in the peritoneal cavity for perfusion 

with the cytostatic solution over a period of 45 min. A roller pump (Watson-Marlow, Zwijnaarde, 

Belgium) circulated the cytostatic solution through a heat exchanger set at 41.5 °C. During perfusion, 

the perfusate solution and body temperature of the rat were closely monitored and data was collected 

using E-Val® 2.10 Software (ELLAB®, Roedovre, Denmark). After HIPEC, the cytostatic perfusate 

solution was removed and the incision was sutured. 

2.5.2. Maximum tolerated dose  

The maximum tolerated dose (MTD) was determined for both PTX formulations: Taxol® and PTX/Plu 

F127 nanosuspension (ratio 4/1). The MTD was defined as the highest non-lethal dose with a 

maximum reduction of body weight of 10 % after 2 weeks of HIPEC treatment. The test procedure 

was based on the Organization for Economic Co-operation and Development (OECD) guidelines. 

Based on the maximum tolerated dose of Taxol® (0.24 mg/ml) determined by Bouquet et al. in 

Wag/Rij rats (15), and based on the lower body weight and the reduced immune system of the athymic 

nude rats used in this study, a PTX dose of 0.21 mg/ml was used as starting point. To determine MTD, 

the PTX concentration in the formulation was gradually increased (increments of 0.03 mg/ml) using 1 

rat per concentration. When mortality occurred, 3 more rats were tested at the highest non-lethal dose 

to confirm MTD. MTD of both formulations was determined using HIPEC settings (i.e. 41.5 °C 

during 45 min). The PTX nanosuspension as well as Taxol® were diluted with 0.9 % NaCl to obtain 

the correct dose.  

2.5.3. Bioavailability 
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Blood was sampled in heparin-containing tubes via a catheter that was placed in the arteria carotis, at 

0, 15, 30, 45, 60 and 90 min after starting the perfusion blood samples were taken. Perfusate samples 

were collected at 0, 15, 30 and 45 min after starting the perfusion, to ensure that an accurate dose was 

administered during the HIPEC procedure. After the bioavailability study the rats were euthanized. 

Blood samples were centrifuged immediately afterwards, and separated plasma was stored frozen at – 

20°C until analysis. 

The perfusate samples were analyzed by high performance liquid chromatography (HPLC). The 

HPLC-system (Merck-Hitachi, Tokyo, Japan) consisted of a pump (L-6000), an integrator (D-2000), 

an autosampler (L-7200) with a 25µl loop and a UV/VIS detector (L-4200). Detection was performed 

at 227 nm. To achieve chromatographic separation a guard column (Lichrospher® 100-RP-18, 4*4 mm 

(5 µm), Merck, Darmstadt, Germany) and an analytical column (Lichrospher® 100-RP-18, 125*4 mm 

(5 µm), Merck, Darmstadt, Germany) were used. The mobile phase consisted of acetonitrile (Biosolve, 

Valkenswaard, The Netherlands) and 0.1 % (v/v) phosphoric acid in ultrapure water (Acros Organics, 

Geel, Belgium) (42:58, v/v) degassed by ultrasonication under vacuum. The PTX concentration in the 

perfusate samples could be analyzed compared with the values of the calibration curve. 

Frozen plasma samples, calibrator samples and QC samples were allowed to thaw at room temperature. 

For samples within the assay range a volume of 50 µl was transferred to an empty well of a 96-well 

filtration plate. Other samples (samples above upper limit of quantitation) were diluted sixfold with 

blank rat plasma prior to the analysis. Subsequently 200 µl of acetonitrile containing internal standard 

(C13-paclitaxel) was added. After vacuum filtration, the filtrate was diluted with 150 µl of water and 

injected onto the Waters Acquity UPLC system for analysis. After chromatographic separation on a 

Waters Acquity UPLC BEH C18 column (100 mm x 2.1 mm, 1.7 µm particle size), PTX and the 

internal standard were detected using a Waters Quattro Ultima triple quadrupole system (Micromass 

Waters, Manchester, UK). The validation of the method was conducted with reference to the FDA’s 

guidance for bioanalytical method validation. The calibration curve was constructed by least squares 

linear regression of the peak area ratio of PTX/internal standard against nominal concentration with a 

weighting of concentration-1. The measurement range of the analytical method was 2.0 – 500 ng/mL 

for PTX in rat plasma. The range was further extended up to 3 µg/ml by appropriately diluting plasma 
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samples prior to analysis. Total imprecision and trueness were calculated on results of repeated 

analysis of quality controls on different days. For all levels of the QC samples, imprecision and 

trueness measurements comply with the FDA guidance specifications on maximum tolerable bias and 

imprecision. 

2.5.4. Tumor growth delay  

Donor rats were injected with 30x106 SKOV-3 cells between the peritoneum and the abdominal 

muscle. The animals received daily subcutaneous cyclosporine injections (dose: 3 mg) over a period 

from 3 days prior until 10 days after tumor cell injection. After 3 to 4 weeks, the size of the tumor was 

sufficient to transplant tissue samples (5 x 5 mm, with a thickness of 3 mm) on the parietal peritoneum 

of an acceptor rat. The acceptor rat also received daily subcutaneous cyclosporine injections (dose: 

3 mg) from 3 days prior until 10 days after tumor transplantation to ensure tumor attachment. Two 

weeks after transplantation, the tumor had attached on the peritoneum and was sufficiently grown to 

perform the tumor growth delay (TGD) experiment. 

The effect of the PTX formulations (Taxol® and nanosuspension) on tumor growth was evaluated via a 

Siemens® Trio 3T MRI (Erlangen, Germany). Prior to the MRI scan, the rats were anaesthetized with 

Rompun 2% (Bayer, Diegem, Belgium) and ketamine 1000 CEVA (Ceva, Amersham, UK) using a 

dose of 10 mg/kg and 90 mg/kg, respectively. The rats were placed prone in a (wrist) coil to measure 

the tumor volume. A T1-weighted 3D FLASH sequence was applied with a flip angle of 10°, a 

repetition time of 13 ms and echo time of 4.9 ms to obtain a voxel size of 0.19 x 0.19 x 0.4 mm3. In 

order to easily locate the tumor, the rat was palpated and a vitamin B12 pellet was attached to the skin 

where the tumor was located. Tumor volume was calculated using PMOD software (PMOD 

Technologies, Adliswil, Switserland). Rats were scanned 1 day before HIPEC treatment to measure 

the initial volume of the tumor. At day 0 the rats were treated with Taxol® or the nanocrystalline PTX 

formulation. Tumor volume was evaluated 7 and 14 days after HIPEC treatment to monitor the effect 

of both PTX formulations. 

 

2.6. Statistical analysis 
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Statistical Program for Social Scientists (SPSS 19.0) was used to analyze the results. 

For the bioavailability study, the pharmacokinetic parameters of both groups were compared using an 

unpaired sample t-test with a significance level of 0.05. 

For the TGD study, data of day 0 were used as reference (100 %). The different treatment groups were 

compared with each other on day 7 and 14 using a one-way ANOVA with a significance level of 0.05. 

Bonferroni post-hoc analysis was performed for pairwise comparisons between treatment groups. 
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3. RESULTS AND DISCUSSION 

3.1. Physico-chemical characterization of PTX nanocrystals 

Pluronic F68® and Pluronic F127® were selected as stabilizers because these block copolymers have 

already been successfully used to stabilize PTX nanosuspensions (both at a higher surfactant/PTX 

ratio than used in this study) (12). In addition, these surfactants are known to increase the solubility of 

low soluble drugs, and have cytotoxicity-promoting properties as they interact with multi-drug 

resistance cancer tumors, resulting in drastic sensitization of these tumors to the cytostatic drugs (16-

18). A wet milling cycle during 24 h did not yield nanocrystalline PTX when Pluronic F68® was used 

as stabilizer (independent of the PTX/stabilizer ratio) (Table I). In contrast, Pluronic F127®-containing 

formulations were efficiently grinded into nanosuspensions. Although Pluronic F68® and F127® have 

the same basic PEO-PPO-PEO structure, they differ in the number of PEO and PPO groups. The 

higher molecular weight and lower hydrophilic-lipophilic balance (HLB) value of Pluronic F127® 

compared to Pluronic F68® allowed more interaction between the amphiphilic surfactant and the 

nanoparticle surface, providing sufficient steric hindrance to stabilize the nanoparticles and prevent 

particle agglomeration (19). However, a minimum concentration of stabilizer was required as at the 

lowest Pluronic F127® content (i.e. PTX/stabilizer ratio of 8/1) the surfactant failed to sufficiently 

stabilize the PTX particles. A longer milling time (60 h) not only yielded PTX nanocrystals at all 

PTX/Pluronic F127® ratios, it also resulted in a narrower particle size distribution as indicated by the 

lower polydispersity indices (PI). Reducing the PTX amount during wet milling to 50 mg improved 

the efficiency of the milling process as all formulations yielded a mean particle size below 400 nm, in 

combination with low PI values (< 0.3). A further reduction of PTX load had no effect on particle size. 

SEM analysis showed a reduction in particle size compared with unmilled PTX (>5 µm). A size 

around 400 nm was obtained, which confirmed the results obtained by particle size analysis (Fig. 1). 

Solid state characterization by DSC of the freeze dried nanocrystalline formulation showed that the 

crystallinity of PTX was not affected by the wet milling process, thus avoiding possible stability issues 

due to crystalline-to-amorphous transitions induced by the friction generated during the high-intensity 

wet milling process (10).  
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A 6 month stability study at ambient conditions of the different PTX/Plu F127 formulations (Fig. 2) 

indicated that initially the particle size of all 3 formulations slightly increased. Afterwards the particle 

size of PTX/Plu F127 2/1 and 4/1 nanocrystals remained constant (±400 nm) with PI values below 0.3. 

In contrast, the PTX/Plu F127 8/1 formulations became polydispers (PI>0.5) and particle 

agglomeration was observed. Due to these stability issues the PTX/Plu F127 8/1 formulations was not 

used in further experiments. As the goal of this study was to reduce the stabilizer concentration in the 

nanosuspensions as much as possible, the PTX/Plu F127 4/1 formulation was selected for further in 

vitro and in vivo experiments.  

3.2. In vitro cytotoxicity  

The cytotoxicity of the PTX formulations (Taxol® and nanosuspension) as well as the excipients 

(Pluronic F127®, Cremophor EL®) was tested on human ovarian carcinoma cells (SKOV-3) as ovarian 

cancer commonly results in peritoneal carcinomatosis which can be treated via HIPEC. As the main 

drawback to the use of Taxol® for HIPEC treatment are the side effects caused by the excipient 

Cremophor EL®, the cytotoxicity of Cremophor EL® and Pluronic F127® was compared in a 

concentration range from 0.01 to 3.5 mg/ml. After 1 h incubation, there was no reduction of cell 

viability at the lowest concentration (Fig. 3). However, at higher concentrations the cell viability 

decreased after contact with Cremophor EL® while the cells treated with Pluronic F127® were 

unaffected, indicating a significantly lower cytotoxicity of Pluronic F127® compared to Cremophor 

EL®. Despite Pluronic F127® not being cytotoxic, both PTX formulations were equipotent, as the 

cytotoxicity of the new nanosuspension formulation was equal to Taxol® (Figure 4).  

 

3.3. Nanocrystalline PTX for HIPEC treatment 

The maximum tolerated dose (MTD) of both PTX formulations after HIPEC was determined by 

monitoring the survival rate and body weight of the rats following HIPEC treatment. While at a PTX 

dose of 0.21 and 0.24 mg/ml the rats regained their initial body weight after 2 weeks, a PTX 

concentration of 0.27 mg/ml for Taxol® and the nanosuspension resulted in mortality. Hence, 
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0.24 mg/ml was set as MTD for both formulations. At this concentration no significant differences 

were observed between both treatments based on the weight of the rats. However, rats treated with the 

nanosuspension recovered faster compared to the group treated with Taxol® as they already regained 

their initial body weight 5 days after HIPEC treatment, highlighting the advantage of using the non-

cytotoxic Pluronic F127®. Based on the body surface area, the MTD corresponded to a dose of 

960 mg/m2, which is much higher compared to the dose administered to humans (175 mg/m2) during 

HIPEC (20). This underlines one of the opportunities of HIPEC: the possibility to use higher doses, 

resulting in higher local concentrations which are maintained for a longer time in the abdominal cavity 

and which have a higher direct cytotoxic effect (21).  

During HIPEC treatment, a sample of the perfusate was taken every 15 min in order to monitor the 

delivered PTX concentration. Statistical analysis showed no differences between the applied 

concentration of the different formulations (p=0.348). 

Monitoring the PTX plasma concentrations over a 90 min period (Fig. 5) showed similar 

concentrations for Taxol® and the nanosuspension during the perfusion period. However, when the 

cytotoxic agent was removed after HIPEC treatment (i.e. after 45 min) the PTX plasma concentrations 

of the nanosuspension increased, while PTX plasma levels after Taxol® treatment remained constant 

during the entire monitoring period (i.e. 90 min). The enhanced absorption of PTX was also reflected 

in the pharmacokinetic parameters after perfusion with a PTX nanosuspension: in comparison to 

Taxol® Cmax was significantly higher (124.7 ng/ml vs. 42.0 ng/ml, p-value= 0.03), and AUCt= 90 min was 

1.5-fold higher but not significant different (95% CI 3.8 ± 1.06 µg.min/ml vs. 2.5 ± 0.212 µg.min/ml). 

Previous research already described that nanoparticles (>50 nm) can adhere to mucosa, thus 

prolonging the contact time of the drug and enhancing its absorption (11). Prolonged retention of PTX 

in the peritoneal cavity (in combination with enhanced PTX penetration) can offer a therapeutic 

advantage as tumor cells are exposed for a longer time to higher local drug levels. This approach 

overcomes one of the limitations of conventional intraperitoneal (IP) drug therapy where drugs are 

rapidly cleared from the peritoneal cavity (13). As the higher plasma levels using PTX/Plu F127 4/1 
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nanocrystals indicated more penetration through the peritoneum-plasma barrier, one can also assume a 

better penetration of the cytostatic in the tumor.  

The effect of the PTX nanosuspension on tumor growth was evaluated via a tumor growth delay study, 

using Magnetic Resonance Imaging (MRI) as imaging technique to monitor tumor volume in a rat 

model. Although peritoneal carcinomatosis is characterized by a spread over the entire abdominal 

cavity, the rats were implanted with a single tumor nodule to simplify the tumor growth analysis 

(Fig. 6). At day 7 and 14 after HIPEC treatment with the PTX formulations, tumor growth was 

significantly different compared to the non-treated group (p=0.001 and 0.02 for Taxol®, and 0.003 and 

0.010 for the nanosuspension at day 7 and 14, respectively). No significant differences were observed 

between both PTX formulations (p=1.000 and p=0.929 at day 7 and day 14, respectively) (Fig. 7). The 

effect of the PTX/Plu F127 nanosuspension on the tumor volume was similar to Taxol®. At day 7 

tumor volume was reduced for both PTX formulations, however the results were not significantly 

different from the tumor volume at day 0 (p= 0.104 and 0.097 for Taxol® and the nanosuspension, 

respectively). At day 14, the tumor volume had increased compared to the status at day 7 and was not 

significantly different from the initial tumor volume. Although little is known about the penetration of 

drugs in solid tumors, cytotoxic agents penetrate only a few millimeters into the tumor tissue, mostly 

via diffusion (22). Due to the limited penetration of anticancer drugs in solid tumors, IP chemotherapy 

is in the abdominal cavity only effective in micrometastases or tumors smaller than 5 mm in diameter 

(23). Hence, HIPEC could not completely eradicate the solid tumor implanted in the rat model and 14 

days after treatment the tumor volume had increased as a result of proliferation of the remaining tumor 

cells. However, in clinical practice cytoreductive surgery precedes HIPEC treatment, while HIPEC is 

used to remove the remaining tumor cells which are not visible and also to prevent the implantation of 

tumor cells at the resection site and on other abdominal and pelvic surfaces (2). Therefore, it is likely 

that in practice HIPEC using a PTX nanosuspension will remove all remaining microscopic tumors. 

4. CONCLUSION 

A stable nanocrystalline paclitaxel formulation was developed via the wet milling technique using a 

high paclitaxel-to-stabilizer ratio. The cytotoxicity and antitumor efficacy in a rat model with 
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peritoneal carcinomatosis of ovarian origin was similar to Taxol®. However, the advantage of using a 

non-cytotoxic excipient (Pluronic F127®) in the nanosuspension was reflected in the faster recovery of 

the rat after HIPEC treatment.  
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Legend to Figures 

Figure 1: SEM images of freeze dried PTX nanocrystals, processed via wet milling (150 rpm, 60 h), 
using a PTX load of 50 mg per vial and a PTX/stabilizer ratio of 4/1. Pluronic® F127 was used as 
stabilizer. 

Figure 2: Particle size (mean ± STD) of PTX nanosuspensions as a function of storage time at ambient 
conditions. PTX/Pluronic F127 ratio: (●) 2/1 , (■) 4/1, (▲) 8/1 

Figure 3: Viability (mean ± STD) of the SKOV-3 cell line after application of different concentrations 
of Cremophor EL® and Pluronic F127® at hyperthermic conditions (41.5 °C) (n=8 wells per 
concentration). (●) Pluronic F127®, (■) Cremophor EL®. 

Figure 4: Viability (mean ± STD) of the SKOV-3 cell line (n=3 and 8 wells per concentration) after 
application of different PTX concentrations delivered under hyperthermic conditions (41.5°C) via (■) 
Taxol® and (●) PTX/Plu F127 4/1 nanosuspension. MTT after 24 hours (A) and 96 hours (B). 

Figure 5: Paclitaxel plasma concentration (mean ± STD) (ng/ml) in rats (n=6) during and post-HIPEC 
treatment with a PTX concentration of 0.24 mg/ml delivered via (▲) Taxol® and () a PTX/ Plu F127 
4/1 nanosuspension. 

Figure 6: Dorsal MRI image of a rat with a peritoneal tumor (white arrow). 

Figure 7: Tumor volume (mean ± STD) (%) compared to day 0, measured by MRI 7 days and 14 days 
after HIPEC treatment with () no treatment, () Taxol® and () PTX/Plu F127 4/1 nanosuspension 
(n=6). 
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Tables 

Table I: Mean particle size (nm) and polydispersity index after wet milling (at 150 rpm) of a paclitaxel 
suspension 
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Figure 1: SEM images of (A) un milled paclitaxel and (B) freeze dried PTX nanocrystals, processed 
via wet milling (150 rpm, 60 h), using a PTX load of 50 mg per vial and a PTX/stabilizer ratio of 4/1. 
Pluronic® F127 was used as stabilizer. 

A B 
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Figure 2: Particle size (mean ± STD) of PTX nanosuspensions as a function of storage time at ambient 
conditions. PTX/Pluronic F127 ratio: (●) 2/1 , (■) 4/1, (▲) 8/1 
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Figure 3: Viability (mean ± STD) of the SKOV-3 cell line after application of different concentrations 
of Cremophor EL® and Pluronic F127® at hyperthermic conditions (41.5 °C) (n=8 wells per 
concentration). (●) Pluronic F127®, (■) Cremophor EL®. 
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Figure 4: Viability (mean ± STD) of the SKOV-3 cell line (n=3 and 8 wells per concentration) after 
application of different PTX concentrations delivered under hyperthermic conditions (41.5°C) via ( ■) 
Taxol® and (●) PTX/Plu F127 4/1 nanosuspension. MTT after 24 hours (A) and 96 hours (B). 

A B 
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Figure 5: Paclitaxel plasma concentration (mean ± STD) (ng/ml) in rats (n=6) during and post-HIPEC 
treatment with a PTX concentration of 0.24 mg/ml delivered via (▲) Taxol® and () a PTX/ Plu F127 
4/1 nanosuspension. 
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Figure 6: Transverse MRI image of a rat with a peritoneal tumor (white arrow). 
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Figure 7: Tumor volume (mean ± STD) (%) compared to day 0, measured by MRI 7 days and 14 days 
after HIPEC treatment with () no treatment, () Taxol® and () PTX/Plu F127 4/1 nanosuspension 
(n=6). 
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Table I: Mean particle size (nm) and polydispersity index after wet milling (at 150 rpm) of a paclitaxel 
suspension 

Stabilizer PTX/stabilizer ratio  amount PTX milling time size ± STD PI 
  (w/w) (mg) (h)  (nm) 

 Pluronic F68® 2/1 100 24 4057 ± 1042 0.368 
  4/1 100 24 3374 ± 1731 0.421 
  8/1 100 24 3208 ± 765 0.470 

Pluronic F127® 2/1 100 24 417 ± 72 0.351 
  4/1 100 24 462 ± 128 0.308 
  8/1 100 24 812 ± 154 0.425 
  2/1 100 60 420 ± 18 0.260 
  4/1 100 60 440 ± 30 0.268 
  8/1 100 60 462 ± 66 0.302 
  2/1 50 60 325 ± 12 0.224 
  4/1 50 60 307 ± 12 0.232 
  8/1 50 60 375 ± 21 0.287 
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