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On the algebraic variety V,;
V. Pepe

Abstract

The variety V,: is the image under the Grassmannian map of the
(t—1)—subspaces of PG(rt—1, q) of the elements of a Desarguesian spread.
We investigate some properties of this variety, with particular attention
to the case r = 2: in this case we prove that every ¢ 4+ 1 points of the
variety are in general position and we give a new interpretation of linear
sets of PG(1,q").
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1 Definitions and preliminary results

Let V(n, q) be the vector space of dimension n over GF(q) and PG(n—1,q) be
the projective space defined by the lattice of subspaces of V'(n, q); we will denote
by (zg, ..., Zn—1) both the vector of homogeneous coordinates of a certain point
P € PG(n—1,q) and the point P as well. The group PGL(n, q) is the group of
all the projectivities of PG(n—1,q). A subspace II of PG(n—1, q) has dimension
t—1 and rank t if it is a t—dimensional subspace of V(n,q). A subgeometry % of
PG(n—1,q) is a subset isomorphic to PG(n—1,¢"), where GF(¢') is a subfield
of GF(q). Since a frame consisting of n + 1 points determines a PG(n — 1,¢’)
and PGL(n,q) acts transitively on frames, all the subgeometries PG(n — 1,¢’)
contained in PG(n — 1,q) are projectively equivalent. It is easy to see that a
subgeometry PG(n—1,¢’) is the set of fixed points of a suitable cyclic semilinear
(i.e. GF(q¢)-linear) collineation (see [9], Theorem 4.28 and [6], Chapter 1).

A (t—1)-spread S of PG(n—1, q) is a partition of the point set of PG(n—1, q)
in subspaces of dimension (t—1) and it exists if and only if ¢ divides n ([16]). Let
S be a (t — 1)-spread of PG(rt —1,q), embed PG(rt —1,q) into PG(rt,q) as a
hyperplane and let A(S) be the following incidence structure: the points are the
points of PG(rt,q) \ PG(rt — 1, q), the lines are the t—dimensional subspaces of
PG(rt, q) intersecting PG(rt — 1,q) in an element of S and the incidence is the
natural one. Then A(S) is a 2 — (¢"%, ¢%, 1) translation design with parallelism
(see [1]) and we will say that S is a Desarguesian spread if A(S) is isomorphic
to the affine space AG(r,q"). An easy construction of a Desarguesian spread of
PG(rt—1,q) is by the so called field reduction of PG(r —1,q"). The underlying
vector space of the projective space PG(r — 1,q") is V(r,q'); if we consider
V(r,q) as a vector space over GF(q), then it has dimension rt and it defines
a PG(rt — 1,q). Every point P € PG(r — 1,¢") corresponds in this way to a
subspace IIp of PG(rt — 1,q) of dimension (¢ — 1) and the set S = {Ilp, P €
PG(r—1,q")} is a spread of PG(rt —1,q). Moreover, it is easy to see that any
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two elements IIp and IIp/ of S span a (2t — 1)—dimensional subspace completely
partitioned by elements of S, and they are precisely the ones corresponding to
the points of the line (P, P’) of PG(r — 1,q"). For r > 2, such a spread is
called normal in [14] and in [1] it is proven that S is normal if and only if it is
Desarguesian; for r = 2, the proof that a spread constructed in such a way is
Desarguesian is in [16].

In [14], a linear set is defined as a generalization of the concept of subgeom-
etry. More precisely, a GF(q)-linear set L of PG(r — 1,q") of rank s is a set of
points of PG(r—1,q") defined by a subset U of V (r, ¢*) that is an s—dimensional
vector space over GF(q). Such a linear set L is equivalent, by field reduction,
to the elements of a Desarguesian spread S of PG(rt — 1, ¢) having non—empty
intersection with the subspace of PG(rt — 1,q) defined by U. Finally, there is
another equivalent way to define a linear set as a (projected) subgeometry of
a suitable projective space (for an overview about this topic see [15]). In this
paper we present a fourth point of view to describe linear sets of PG(1, ¢).

We now introduce some algebraic varieties that play an important role in
finite geometry.

The Veronese variety V(n, d) is an algebraic variety of PG ((
of the injective map v, 4 : PG(n,q) — PG((":I'd) —1,q), where v, 4(zo, T1,...,2p)
is the vector of all the monomials of degree d in zq, ...,z, (for d = 2, see [10],
Chapter 25, and for general d see e.g. [5]) and we recall that V(1,d) is a normal
rational curve of PG(d,q). We will use the notation V(n,d, q) to recall also the
field under consideration.

Let PG(ny —1,q), PG(n2 —1,q),...,PG(n; — 1,q) be k projective spaces,
then the Segre embedding o : PG(n1 — 1,q) X PG(n2 —1,q) x -+ x PG(ny —

";d) —1,q) image

1,q) — PG(ning---ni — 1,q) is such that o(x!,...,x*) is the vector of all
the products xﬁ)xg) e m;:), with x* = (ac(()l), a:(lz), ... 75551?—1) € PG(n; — 1,q).

The image of o is called the Segre variety ¥,,.n,:....n, and it is in some way
the product of projective spaces (see [10], Chapter 25 and [7]): for this reason
we will say the image under o of the subset S; x So x ... x Sy of PG(n; —
1,q) x PG(n2 — 1,q) x --- x PG(n — 1,q) is the Segre product of the subsets
S1,82,...,5%, S;i € PG(n; —1,q). We remark that V(n,d) is the diagonal of
the Segre product of d PG(n, q)’s.

To introduce the last variety, we give some more details because the way
it is defined is useful in the proof of a proposition of the next section. Let
II be an (r — 1)-dimensional subspace of PG(n — 1,q), let xV, x® . x()
with x(9) € V(n,q) be the coordinate vectors of r linearly independent points
of TI and let Ti; be the matrix whose rows are the vectors x(1), x(® . x(").
After choosing an ordering, we can then construct the vector of length () of
all possible r x r minors of Ty and it is called a coordinate vector of 1I; by
Lemma 24.1.1 of [10], this is unique up to a non—zero scalar factor. So we can
define the Grassmannian map g, : PG"~Y(n—1,q) — PG((")—1,q), where
PG =Y (n —1,q) is the set of all (r — 1)-subspaces of PG(n — 1, ¢), such that
gn.r(II) is a coordinate vector of II. This map is injective and its image G,, , is
called the Grassmannian or the Grassmann variety of the (r — 1)-subspaces of
PG(n —1,q) (for more details we refer to [10], Chapter 24).

The varieties described in this section are the image of injective maps, so
every collineation of the projective space where the map is defined induces a
collineation fixing the variety setwise and viceversa (for the Grassmann and



the Segre variety, see [10] Theorem 24.2.16 and Theorem 25.5.13 respectively;
for the Veronese variety, see [5] Theorem 2.15). If o is a collineation of the
projective space, we will denote by ¢* the collineation induced on the variety
and we will call it the lifting of o.

2 The algebraic variety V),

The algebraic variety V., appeared for the first time in the literature in [16] and
it has been described in a more detailed way and with a modern terminology
in [14]. This variety is the image under the Grassmannian map g¢,;, of the
elements of a Desarguesian (¢t — 1)-spread S of PG(rt —1,q): in [14], Lunardon
proves that V,.; is the complete intersection of the Grassmann variety G, with
a suitable (r' — 1)-space. In fact he proves that V,.; = AN Y., .., where
A = PG(rt —1,q) and 3, .. is the Segre variety product of ¢t PG(r —1,q")’s
contained in the Grassmannian of the (r — 1)-subspaces of PG(n — 1,q"). As
showed in the previous section, by field reduction, we can get a Desarguesian
(t —1)-spread S of PG(rt —1,q) from PG(r —1,4"): in this way, to every point
P of PG(r —1,4") corresponds a spread element IIp and to every line m of
PG(r —1,q") correspond the spread elements Ilp, P € m, hence the incidence
structure of the points of V,; and O, = {g..(Ilp),P € m}, m a line of
PG(r —1,¢%), is isomorphic to PG(r — 1,q"). There are remarkable examples
of such varieties: for r =t = 2, V,5 is an elliptic quadric contained in the
Klein quadric Q7 (5,q) (see [8], Chapter 16); for ¢ = 2, we have the so called
Hermitian Veronesean (see for example [4]); for ¢ = 3,7 = 2 and ¢ even, Vs o
is the Desarguesian ovoid of Q7 (7,¢) and for t = 2,r = 3 and ¢ = 2 mod
3, a suitable hyperplane section of Vs 3 is the Unitary ovoid of Q1(7,q), (see
11, 14)).
We start giving an explicit description of V,.; in terms of coordinates.

Proposition 1. The algebraic variety V,. . is isomorphic to the set of points of

(4) (i) (i)
PG(rt—1,q") with coordinates (x*1,x2,...,x%*), where x* = x,° =y - -x?fﬁ’ll ,
r—1
(a(()l), agl), . 7a5121) 1s such that a,(;) s a sum of distinct powers of g, Z a,(j) =

k=0
¢ R 1Y, (0,20, ..., 2eq) € PG(r—1,4¢") and it is contained
in a subgeometry isomorphic to PG(rt —1,q).

Proof. In ©* = PG(rt — 1, ¢"), consider the subgeometry ¥ =
t—1 t—1

{(@o, ..oy pr,xd, .2l o2l o2l ), 2 € GF(¢Y)}: X is the set of
fixed points of the GF(g)-linear collineation

»Vr—1

o:(xM,x®@ . xO)— (x®1 xWa | xEDa) () — (a:gi), L a® )€ V(r,q")

of order ¢, hence ¥ = PG(tr — 1,q). Let Il = {(x,0,...,0),x € V(r,¢")} C T*

and for any P € I let £(P) = (P,P°,...,P°" ), then S = {{(P), P € II}
is a Desarguesian spread of X (see [3]). Let g, , be the Grassmannian map
of subspaces of rank ¢ of X*: by [14], page 250, the image under gy, ; of the
subspaces of rank ¢ of ¥ is the Grassmannian of (¢ — 1)-subspaces of ¥. The
image under g;, , of £(P) is the vector of all minors of order ¢ of the matrix



whose rows are the coordinate vectors of P,P?,...,P°" |, that is the matrix

x 0 ... 0
0 g9 ... 0

T(P) = x , where x = (x¢,...,2,—1) € V(r,¢") and
0o ... ... x7'

P = (x,0,...,0) € II. The submatrices of order ¢t of T(P) are such that every
column has only one non—zero entry, hence the determinant is 0 or it is in the

NORINO) @ 1 = @ . o
form z,° xi* .- Tl,g a = +...+1, a;” is a sum of distinct

powers of ¢q. This set of pomtb is contained in a subgeometry isomorphic to
PG(rt —1,q) by [14], page 250. O

Remark 1 We want to emphasize the analogy of V,; with the Veronese
variety V(r —1,t,¢"). We have already mentioned that V,, is the intersection of
Y, (the Segre variety product of t PG(r—1,¢")’s) with a suitable subgeom-
etry PG(r* —1,q), more precisely, it is the Segre embedding of the points of type
(x,x7,...,x1" ") € PG(r —1,¢") x PG(r — 1,¢) x --- PG(r — 1,q"'), whereas
V(r — 1,t,q¢") is the diagonal of X, .., i.e. is the Segre embedding of the
points of type (x,%,...,x) € PG(r—1,¢") x PG(r —1,¢*) x --- PG(r — 1,¢%).
Moreover, V(r — 1,t,¢") is defined by the vectors of all monomial of degree
t in zg,21,...,2y—1, whereas V,, is defined by the vectors of all monomials
of degree 1 4+ ¢ + ...¢*~ !, but the only powers admitted for z; are of type
g+ %0 F oy ViFE .

Example 1 The variety Vs is the image of the map a : (zg,z1,22) €
PG(2,q%) — (a8 zoad, alay, a8t myad almy, 21T 2ozl 2lxg) € PG(8,¢%).
Let o be the following GF'(¢)-linear collineation of order two:

(Y0, Y1, Y2, Y3, Y4, Y5, Yo, Y7, Us) € PG(8,0%) — (y&,vd, v, vd, ve vl v, vd, %) € PG(8,4%).

The points of V5 5 are fixed by o and hence Vs 5 is contained in the PG(8,q)
defined by o (compare with [4]).

Example 2 The variety Vs 4 is the image of the map « : (z,y) € PG(1,¢*) —
(p0°+ 0 tatl g’ tatlyd® pa’+d’tay plta’+a’ya patiid’ya® patlyedte’
gy I+’ g’ e’ gatl 140y ta pa*+lya’ e paitaylda® gy a’+a’+a,
gyl T+ g0 yatltd® gt yatratl ya’ e tatl) ¢ PG(15,¢%). Let T be the fol-
lowing G F(q)-linear collineation of order four: (zq, 21, ...,215) € PG(15,q¢*)
(zg,zz,z‘f,zg,zg,zg,zg,zg,z?,zfg,zg,zh,zfl,zfg,zfg),z%). The points of Va4
are fixed by 7 and hence Vs 4 is contained in the PG(15, ¢) defined by 7.

Remark 2 There is a group isomorphic to PGL(r,¢') acting 2-transitively
on V¢ ([14], Corollary 1).

The following result is a generalization of Theorem 2.6 of [13], where Lu-
nardon proves that a subline PG(1,q) of PG(1,q") corresponds in V2 to a
normal rational curve that is the complete intersection of V,; with a suitable
t—dimensional space. We keep the notation of the proof of the previous propo-
sition.

Theorem 2. Let g be the map P € PG(r — 1,q4") — ¢,++(¢(P)). The image
under g of a subgeometry PG(r — 1,q¢°),sl|t, is the intersection of the Segre
t

product of s Veronese varieties V(r — 1, ¢,q°) with a PG((7 5 ) —1,q) and



L t. S
it is the complete intersection of V., with a suitable space of rank (7 1;-2) .
In particular, the image of a subgeometry PG(r — 1,q) is a Veronese bariety
V(r — 1,t,q) and it is the intersection of V., with a suitable space of rank

—1+4t

(")
Proof. Since all the subgeometries are projectively equivalent and by Remark
2, we can assume that the points of PG(r — 1, ¢®) are the ones with coordinates
in GF(q¢®). If P € PG(r — 1,¢°), then the image under the Grassmannian map
of ¢(P) is the vector of all minors of order ¢ of the matrix

X o ... 0 S ¢ o ... 0
0 x? 0 0 o ... 0
o 0 .. x"" ... ... .. 0 0 .. o0
T(P) =
0 o ... 0 R S 0
0 o ... 0 A (<A 0
o 0 .. 0 .. .. .. 0 0 ..x'
where x = (zg,...,2,—1) € V(r,¢*). Next, consider the following matrix:
x 0 ... 0 ... ... ... O o ... O
0 xo 0 0o 0 0
0O O X 0 O 0
T(P) =
0 0 ... 0 ... ... ... x, 0 ... 0
0 o ... 0 ... ... ... 0 x ... O
o o ... 0 ... ... ... O O ... x4
where x = (zg,...,z,—1) € V(r,¢°); the vectors of all the minors of T'(P)* is

the Segre product of s Veronese varieties V(r — 1, £, ¢*) and the minors of T'(P)
are the points of this variety fixed by the GF(q)-linear collineation . Hence,
as in [14] page 250, this variety is V(r —1, é, ¢°)NA, where A = PG((PlLJﬁ) -
1,q). ’ O

2.1 The case r =2

In this section, we focus on the case r = 2. In [14], Theorem 1, Lunardon proves
that the algebraic variety V,; is a cap of PG(r* —1,q), i.e. any three points of
V), are not collinear. In the case r = 2, we can prove a stronger result, but we
first need a technical lemma.



Lemma 1. Let S = {ay,aq,...,a,} be a set of n distinct non-negative integers,
with n <t and o; < t Yi. Let M be the (n+ 1) x 2" matriz over GF(q'), such
that the columns of M are in bijective correspondence with the elements of the
power set of S, namely P(S), and M, ; = xf(]), where v(j) = ¢®1 + ... 4 ¢¥
and {i1,... i} is the j—th element of P(S) (by convention, if the j—th element
is the empty set, then x;)(]) =1). If x, # xy, Yh # k, then the GF(qt)-rank of
M isn+1.

. : 1 29
Proof. We prove the statement by induction on n. Forn =1, M = < 1 :zqa )

and the statement is obviously true. Let now n > 1 and suppose it is true for
n — 1. We assume that the first column is the all-one column. After adding to
every column a suitable linear combination of the other ones, we can get a matrix
M" such that the first row is the vector (1,0,...,0) and M;; = (z; — x1)v0),
Vi=2,....,n+1and Vj = 1,...,2". Consider the submatrix of components
Ml’] with ¢ > 2 and j such that the j—th element of P(S) contains «a;; under
the hypothesis that x; # x; Vi > 2, we can divide each row by (z; — x1)™
and in this way we get a n x 2"~! matrix over GF(q') determined by the set
S" =8\ {a1}: by the induction hypothesis the rank of this matrix is n and so
the rank of M is n + 1. O

Theorem 3. Any t + 1 points of Vo are in general position, i.e. any t+ 1
points of Va1 span a t—dimensional space.

Proof. The points of Vo, are {(z*',x%2,...,x2%"), a; are all the possible sums
of distinct powers ¢*,0 <i <t—1}U{P = (0,0,...,0,1)}. Since by Remark 2
there is a transitive group fixing V5 ¢, we can assume that the ¢ + 1 points we
consider are distinct from P. Let M be the matrix the rows of which are the
coordinate vectors of t+1 points of Vs ;\ {P}. We can apply the Lemma 1 to M
with n = ¢, hence the t + 1 rows vectors of M are GF(q")-linearly independent
and so they are also GF(q)-linearly independent. O

Remark3 This is another analogy with the Veronese variety: V(1,t) is a
normal rational curve and it has the property that any ¢t 4+ 1 points span a
t—dimensional space.

The next theorem is about linear sets of PG(1,¢"). In Section 1 we have
recalled the three different ways to define a linear set of a projective geomerty,
but for our proof we shall use the following: a linear set of PG(1,q") of rank
r is the set of the elements of S, where S is a Desarguesian (¢ — 1)-spread of
PG(2t — 1, q), with non—empty intersection with a subspace of PG(2t —1,q) of
dimension r — 1; in this case, a linear set is a proper one when r < ¢.

We need to recall the following property of the Grassmannian. Let G be the
Grassmannian of the (¢ — 1)-subspaces of PG(2t —1,¢): G is in PG(N —1,q),
where N = (2;) By [10], page 109, in PG(N — 1, q) there exists a polarity L,
called the fundamental polarity of G, such that for every (¢t — 1)-space II, the
(t — 1)-spaces with non—empty intersection with IT correspond to the points of
G N g(I)*, where g is the Grassmannian map.

Theorem 4. A linear set L of rank r <t of PG(1,q") corresponds to the points
of ILN Va4, where I1 is a suitable subspace of the PG(2' —1,q) containing Vo ;.
Moreover, if r = t, then 11 is a hyperplane of PG(2 —1,q); if r =t —1, then 11
is a subspace of codimension t +1 of PG(2! —1,q).



Proof. The points of L correspond to the elements of S intersecting an (r — 1)—
dimensional subspaces 2 of PG(2t —1,¢). An element 7 € S intersects 2 if and
only if 7 intersects all the (¢ — 1)—spaces through Q. In PG(N — 1,q), let A be
the (2° — 1)-dimensional subspace containing Vs, and let G’ = {g(7),Q C 7}:
by [10],Corollary 1 page 117, G’ is projectively equivalent to the Grassmannian
of the (t — r — 1)-spaces of PG(2t —r — 1,q), hence (') =X is a ((3~7) — 1)~
space. Hence, the points of L correspond to the points of Vo, N X+, If r = ¢,
then ¥ is a point and VN ¥t is a hyperplane section of Vot (Va4 can not be
contained in the hyperplane because not all the elements of S can intersect a
given (¢ — 1)-space). If r =t — 1, then G’ is a maximal subspace of G and it has
dimension t. The space A* has empty intersection with G, since no (£—1)-space
can intersect all the spread elements, hence A+ NG’ = (), and so AN G+ is the
minimum possible, i.e. it is a subspace of codimension ¢ + 1 of A. O

The following result is a generalization of the main result of Section 3 of [12],
where Lavrauw and Van de Voorde show how a GF(q)-linear set of PG(1,q")
can intersect a subline PG(1,q).

Proposition 5. A GF(q)-linear set L of PG(1,q") either contains a fived sub-
line PG(1,q%),s|t, or it intersects it in at most ﬁ(qs_1 +q¢*"2+ ...+ 1) points.

Proof. The points of L correspond to the points of the intersection of V, ; with a

suitable subspace. The variety V5, consists of the points (x“*,x%2,...,x%") €
() () . . .
PG((1+1)*—1,q), where x® = z7® (! | (oz((f), agl)) is such that a,(j) is a sum of
distinct powers of g, ozél)+ozgl) =L@ gt L) Vi x ™ £ (x2)4" Vi £ j,
VYh = 0,...,t — 1, and (zg,z1) € PG(1,¢°). Hence, if a hyperplane section
of V5, does not contain the image of PG(1,¢®), then it consists of the points
corresponding to the points of PG(1, ¢®) that satisfy a homogeneous equation of

degree £(¢°"1+¢°*~?4...+1) and so they are at most £(¢° ' +¢*2+.. .4+1). O
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