
On the algebraic variety Vr,t

V. Pepe

Abstract

The variety Vr,t is the image under the Grassmannian map of the
(t−1)–subspaces of PG(rt−1, q) of the elements of a Desarguesian spread.
We investigate some properties of this variety, with particular attention
to the case r = 2: in this case we prove that every t + 1 points of the
variety are in general position and we give a new interpretation of linear
sets of PG(1, qt).

Keywords: Desarguesian spread; Grassmann variety; Veronese variety; Segre
variety; subgeometry; linear set.

1 Definitions and preliminary results

Let V (n, q) be the vector space of dimension n over GF (q) and PG(n− 1, q) be
the projective space defined by the lattice of subspaces of V (n, q); we will denote
by (x0, . . . , xn−1) both the vector of homogeneous coordinates of a certain point
P ∈ PG(n− 1, q) and the point P as well. The group PGL(n, q) is the group of
all the projectivities of PG(n−1, q). A subspace Π of PG(n−1, q) has dimension
t−1 and rank t if it is a t–dimensional subspace of V (n, q). A subgeometry Σ of
PG(n− 1, q) is a subset isomorphic to PG(n− 1, q′), where GF (q′) is a subfield
of GF (q). Since a frame consisting of n + 1 points determines a PG(n − 1, q′)
and PGL(n, q) acts transitively on frames, all the subgeometries PG(n− 1, q′)
contained in PG(n − 1, q) are projectively equivalent. It is easy to see that a
subgeometry PG(n−1, q′) is the set of fixed points of a suitable cyclic semilinear
(i.e. GF (q′)–linear) collineation (see [9], Theorem 4.28 and [6], Chapter 1).

A (t−1)–spread S of PG(n−1, q) is a partition of the point set of PG(n−1, q)
in subspaces of dimension (t−1) and it exists if and only if t divides n ([16]). Let
S be a (t− 1)–spread of PG(rt− 1, q), embed PG(rt− 1, q) into PG(rt, q) as a
hyperplane and let A(S) be the following incidence structure: the points are the
points of PG(rt, q) \PG(rt− 1, q), the lines are the t–dimensional subspaces of
PG(rt, q) intersecting PG(rt− 1, q) in an element of S and the incidence is the
natural one. Then A(S) is a 2 − (qrt, qt, 1) translation design with parallelism
(see [1]) and we will say that S is a Desarguesian spread if A(S) is isomorphic
to the affine space AG(r, qt). An easy construction of a Desarguesian spread of
PG(rt−1, q) is by the so called field reduction of PG(r−1, qt). The underlying
vector space of the projective space PG(r − 1, qt) is V (r, qt); if we consider
V (r, qt) as a vector space over GF (q), then it has dimension rt and it defines
a PG(rt − 1, q). Every point P ∈ PG(r − 1, qt) corresponds in this way to a
subspace ΠP of PG(rt − 1, q) of dimension (t − 1) and the set S = {ΠP , P ∈
PG(r− 1, qt)} is a spread of PG(rt− 1, q). Moreover, it is easy to see that any
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two elements ΠP and ΠP ′ of S span a (2t−1)–dimensional subspace completely
partitioned by elements of S, and they are precisely the ones corresponding to
the points of the line 〈P, P ′〉 of PG(r − 1, qt). For r > 2, such a spread is
called normal in [14] and in [1] it is proven that S is normal if and only if it is
Desarguesian; for r = 2, the proof that a spread constructed in such a way is
Desarguesian is in [16].

In [14], a linear set is defined as a generalization of the concept of subgeom-
etry. More precisely, a GF (q)–linear set L of PG(r − 1, qt) of rank s is a set of
points of PG(r−1, qt) defined by a subset U of V (r, qt) that is an s–dimensional
vector space over GF (q). Such a linear set L is equivalent, by field reduction,
to the elements of a Desarguesian spread S of PG(rt− 1, q) having non–empty
intersection with the subspace of PG(rt − 1, q) defined by U . Finally, there is
another equivalent way to define a linear set as a (projected) subgeometry of
a suitable projective space (for an overview about this topic see [15]). In this
paper we present a fourth point of view to describe linear sets of PG(1, qt).

We now introduce some algebraic varieties that play an important role in
finite geometry.

The Veronese variety V(n, d) is an algebraic variety of PG(
(
n+d
d

)
−1, q) image

of the injective map vn,d : PG(n, q) −→ PG(
(
n+d
d

)
−1, q), where vn,d(x0, x1, . . . , xn)

is the vector of all the monomials of degree d in x0, . . . , xn (for d = 2, see [10],
Chapter 25, and for general d see e.g. [5]) and we recall that V(1, d) is a normal
rational curve of PG(d, q). We will use the notation V(n, d, q) to recall also the
field under consideration.

Let PG(n1 − 1, q), PG(n2 − 1, q), . . . , PG(nk − 1, q) be k projective spaces,
then the Segre embedding σ : PG(n1 − 1, q) × PG(n2 − 1, q) × · · · × PG(nk −
1, q) −→ PG(n1n2 · · ·nk − 1, q) is such that σ(x1, . . . ,xk) is the vector of all

the products x
(1)
j1
x

(2)
j2
· · ·x(k)

jk
, with xi = (x

(i)
0 , x

(i)
1 , . . . , x

(i)
ni−1) ∈ PG(ni − 1, q).

The image of σ is called the Segre variety Σn1;n2;...;nk and it is in some way
the product of projective spaces (see [10], Chapter 25 and [7]): for this reason
we will say the image under σ of the subset S1 × S2 × . . . × Sk of PG(n1 −
1, q) × PG(n2 − 1, q) × · · · × PG(nk − 1, q) is the Segre product of the subsets
S1, S2, . . . , Sk, Si ∈ PG(ni − 1, q). We remark that V(n, d) is the diagonal of
the Segre product of d PG(n, q)’s.

To introduce the last variety, we give some more details because the way
it is defined is useful in the proof of a proposition of the next section. Let
Π be an (r − 1)–dimensional subspace of PG(n − 1, q), let x(1), x(2), . . . ,x(r),
with x(i) ∈ V (n, q) be the coordinate vectors of r linearly independent points
of Π and let TΠ be the matrix whose rows are the vectors x(1), x(2), . . . ,x(r).
After choosing an ordering, we can then construct the vector of length

(
n
r

)
of

all possible r × r minors of TΠ and it is called a coordinate vector of Π; by
Lemma 24.1.1 of [10], this is unique up to a non–zero scalar factor. So we can
define the Grassmannian map gn,r : PG(r−1)(n−1, q) −→ PG(

(
n
r

)
−1, q), where

PG(r−1)(n− 1, q) is the set of all (r − 1)–subspaces of PG(n− 1, q), such that
gn,r(Π) is a coordinate vector of Π. This map is injective and its image Gn,r is
called the Grassmannian or the Grassmann variety of the (r− 1)–subspaces of
PG(n− 1, q) (for more details we refer to [10], Chapter 24).

The varieties described in this section are the image of injective maps, so
every collineation of the projective space where the map is defined induces a
collineation fixing the variety setwise and viceversa (for the Grassmann and
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the Segre variety, see [10] Theorem 24.2.16 and Theorem 25.5.13 respectively;
for the Veronese variety, see [5] Theorem 2.15). If σ is a collineation of the
projective space, we will denote by σ∗ the collineation induced on the variety
and we will call it the lifting of σ.

2 The algebraic variety Vr,t
The algebraic variety Vr,t appeared for the first time in the literature in [16] and
it has been described in a more detailed way and with a modern terminology
in [14]. This variety is the image under the Grassmannian map grt,t of the
elements of a Desarguesian (t− 1)–spread S of PG(rt− 1, q): in [14], Lunardon
proves that Vr,t is the complete intersection of the Grassmann variety Grt,t with
a suitable (rt − 1)–space. In fact he proves that Vr,t = ∆ ∩ Σr;r;...;r, where
∆ = PG(rt − 1, q) and Σr;r;...;r is the Segre variety product of t PG(r− 1, qt)’s
contained in the Grassmannian of the (r − 1)–subspaces of PG(n − 1, qt). As
showed in the previous section, by field reduction, we can get a Desarguesian
(t− 1)–spread S of PG(rt− 1, q) from PG(r− 1, qt): in this way, to every point
P of PG(r − 1, qt) corresponds a spread element ΠP and to every line m of
PG(r − 1, qt) correspond the spread elements ΠP , P ∈ m, hence the incidence
structure of the points of Vr,t and Om = {grt,t(ΠP ), P ∈ m}, m a line of
PG(r − 1, qt), is isomorphic to PG(r − 1, qt). There are remarkable examples
of such varieties: for r = t = 2, V2,2 is an elliptic quadric contained in the
Klein quadric Q+(5, q) (see [8], Chapter 16); for t = 2, we have the so called
Hermitian Veronesean (see for example [4]); for t = 3, r = 2 and q even, V3,2

is the Desarguesian ovoid of Q+(7, q) and for t = 2, r = 3 and q ≡ 2 mod
3, a suitable hyperplane section of V2,3 is the Unitary ovoid of Q+(7, q), (see
[11, 14]).

We start giving an explicit description of Vr,t in terms of coordinates.

Proposition 1. The algebraic variety Vr,t is isomorphic to the set of points of

PG(rt−1, qt) with coordinates (xα1 ,xα2 , . . . ,xαrt ), where xαi = x
α

(i)
0

0 x
α

(i)
1

1 · · ·xα
(i)
r−1

r−1 ,

(α
(i)
0 , α

(i)
1 , . . . , α

(i)
r−1) is such that α

(i)
k is a sum of distinct powers of q,

r−1∑
k=0

α
(i)
k =

qt−1 + qt−2 + . . . + 1 ∀i, (x0, x1, . . . , xr−1) ∈ PG(r − 1, qt) and it is contained
in a subgeometry isomorphic to PG(rt − 1, q).

Proof. In Σ∗ = PG(rt− 1, qt), consider the subgeometry Σ =

{(x0, . . . , xr−1, x
q
0, . . . , x

q
r−1, . . . , x

qt−1

0 , . . . , xq
t−1

r−1 ), xi ∈ GF (qt)}: Σ is the set of
fixed points of the GF (q)–linear collineation

σ : (x(1),x(2), . . . ,x(t)) 7−→ (x(t)q,x(1)q, . . . ,x(t−1)q),x(i) = (x
(i)
0 , . . . , x

(i)
r−1) ∈ V (r, qt)

of order t, hence Σ = PG(tr − 1, q). Let Π = {(x,0, . . . ,0),x ∈ V (r, qt)} ⊂ Σ∗

and for any P ∈ Π let `(P ) = 〈P, P σ, . . . , P σq
t−1

〉, then S = {`(P ), P ∈ Π}
is a Desarguesian spread of Σ (see [3]). Let g∗rt,t be the Grassmannian map
of subspaces of rank t of Σ∗: by [14], page 250, the image under g∗rt,t of the
subspaces of rank t of Σ is the Grassmannian of (t − 1)–subspaces of Σ. The
image under g∗rt,t of `(P ) is the vector of all minors of order t of the matrix
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whose rows are the coordinate vectors of P, P σ, . . . , P σ
qt−1

, that is the matrix

T (P ) =


x 0 . . . 0
0 xq . . . 0
. . . . . . . . . . . .

0 . . . . . . xq
t−1

, where x = (x0, . . . , xr−1) ∈ V (r, qt) and

P = (x, 0, . . . , 0) ∈ Π. The submatrices of order t of T (P ) are such that every
column has only one non–zero entry, hence the determinant is 0 or it is in the

form x
α

(i)
0

0 x
α

(i)
1

1 · · ·xα
(i)
r−1

r−1 ,

r−1∑
k=0

α
(i)
k = qt−1 + qt−2 + . . .+ 1, α

(i)
k is a sum of distinct

powers of q. This set of points is contained in a subgeometry isomorphic to
PG(rt − 1, q) by [14], page 250.

Remark 1 We want to emphasize the analogy of Vr,t with the Veronese
variety V(r−1, t, qt). We have already mentioned that Vr,t is the intersection of
Σr;r;...;r (the Segre variety product of t PG(r−1, qt)’s) with a suitable subgeom-
etry PG(rt−1, q), more precisely, it is the Segre embedding of the points of type

(x,xq, . . . ,xq
t−1

) ∈ PG(r − 1, qt) × PG(r − 1, qt) × · · ·PG(r − 1, qt), whereas
V(r − 1, t, qt) is the diagonal of Σr;r;...;r, i.e. is the Segre embedding of the
points of type (x,x, . . . ,x) ∈ PG(r − 1, qt)× PG(r − 1, qt)× · · ·PG(r − 1, qt).
Moreover, V(r − 1, t, qt) is defined by the vectors of all monomial of degree
t in x0, x1, . . . , xr−1, whereas Vr,t is defined by the vectors of all monomials
of degree 1 + q + . . . qt−1, but the only powers admitted for xi are of type
qα1 + . . .+ qαk , αi 6= αj ∀i 6= j.

Example 1 The variety V3,2 is the image of the map α : (x0, x1, x2) ∈
PG(2, q2) 7−→ (xq+1

0 , x0x
q
1, x

q
0x1, x

q+1
1 , x1x

q
2, x

q
1x2, x

q+1
2 , x2x

q
0, x

q
2x0) ∈ PG(8, q2).

Let σ be the following GF (q)–linear collineation of order two:

(y0, y1, y2, y3, y4, y5, y6, y7, y8) ∈ PG(8, q2) 7→ (yq0, y
q
2, y

q
1, y

q
3, y

q
5, y

q
4, y

q
6, y

q
8, y

q
7) ∈ PG(8, q2).

The points of V3,2 are fixed by σ and hence V3,2 is contained in the PG(8, q)
defined by σ (compare with [4]).

Example 2 The variety V2,4 is the image of the map α : (x, y) ∈ PG(1, q4) 7−→
(xq

3+q2+q+1, xq
2+q+1yq

3

, xq
3+q2+qy, x1+q3+q2yq, xq+1+q3yq

2

, xq+1yq
3+q2 ,

xq
2+qy1+q3 , xq

3+q2yq+1, x1+q3yq
2+q, xq

2+1yq
3+q, xq

3+qy1+q2 , xyq
3+q2+q,

xqy1+q3+q2 , xq
2

yq+1+q3 , xq
3

yq
2+q+1, yq

3+q2+q+1) ∈ PG(15, q4). Let τ be the fol-
lowing GF (q)–linear collineation of order four: (z0, z1, . . . , z15) ∈ PG(15, q4) 7→
(zq0 , z

q
4 , z

q
1 , z

q
2 , z

q
3 , z

q
8 , z

q
5 , z

q
6 , z

q
7 , z

q3

10, z
q3

9 , zq14, z
q
11, z

q
12, z

q
13, z

q
15). The points of V2,4

are fixed by τ and hence V2,4 is contained in the PG(15, q) defined by τ .
Remark 2 There is a group isomorphic to PGL(r, qt) acting 2–transitively

on Vr,t ([14], Corollary 1).
The following result is a generalization of Theorem 2.6 of [13], where Lu-

nardon proves that a subline PG(1, q) of PG(1, qt) corresponds in V2,t to a
normal rational curve that is the complete intersection of V2,t with a suitable
t–dimensional space. We keep the notation of the proof of the previous propo-
sition.

Theorem 2. Let g be the map P ∈ PG(r − 1, qt) 7−→ grt,t(`(P )). The image
under g of a subgeometry PG(r − 1, qs), s|t, is the intersection of the Segre

product of s Veronese varieties V(r − 1, ts , q
s) with a PG(

(r−1+ t
s

t
s

)s
− 1, q) and
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it is the complete intersection of Vr,t with a suitable space of rank
(r−1+ t

s
t
s

)s
.

In particular, the image of a subgeometry PG(r − 1, q) is a Veronese variety
V(r − 1, t, q) and it is the intersection of Vr,t with a suitable space of rank(
r−1+t
t

)
.

Proof. Since all the subgeometries are projectively equivalent and by Remark
2, we can assume that the points of PG(r− 1, qs) are the ones with coordinates
in GF (qs). If P ∈ PG(r − 1, qs), then the image under the Grassmannian map
of `(P ) is the vector of all minors of order t of the matrix

T (P ) =



x 0 . . . 0 . . . . . . . . . 0 0 . . . 0
0 xq . . . 0 . . . . . . . . . 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . xq
s−1

. . . . . . . . . 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 . . . . . . . . . x 0 . . . 0
0 0 . . . 0 . . . . . . . . . 0 xq . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 . . . . . . . . . 0 0 . . . xq
s−1


where x = (x0, . . . , xr−1) ∈ V (r, qs). Next, consider the following matrix:

T (P )∗ =



x1 0 . . . 0 . . . . . . . . . 0 0 . . . 0
0 x2 . . . 0 . . . . . . . . . 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . xs . . . . . . . . . 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 . . . . . . . . . x1 0 . . . 0
0 0 . . . 0 . . . . . . . . . 0 x2 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 . . . . . . . . . 0 0 . . . xs


where x = (x0, . . . , xr−1) ∈ V (r, qs); the vectors of all the minors of T (P )∗ is
the Segre product of s Veronese varieties V(r− 1, ts , q

s) and the minors of T (P )

are the points of this variety fixed by the GF (q)–linear collineation σ
t
s . Hence,

as in [14] page 250, this variety is V(r−1, ts , q
s)∩∆, where ∆ = PG(

(r−1+ t
s

t
s

)s
−

1, q).

2.1 The case r = 2

In this section, we focus on the case r = 2. In [14], Theorem 1, Lunardon proves
that the algebraic variety Vr,t is a cap of PG(rt − 1, q), i.e. any three points of
Vr,t are not collinear. In the case r = 2, we can prove a stronger result, but we
first need a technical lemma.
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Lemma 1. Let S = {α1, α2, . . . , αn} be a set of n distinct non–negative integers,
with n ≤ t and αi < t ∀i. Let M be the (n+ 1)× 2n matrix over GF (qt), such
that the columns of M are in bijective correspondence with the elements of the

power set of S, namely P(S), and Mi,j = x
v(j)
i , where v(j) = qαi1 + . . .+ qαik

and {i1, . . . , ik} is the j–th element of P(S) (by convention, if the j–th element

is the empty set, then x
v(j)
i = 1). If xh 6= xk ∀h 6= k, then the GF (qt)–rank of

M is n+ 1.

Proof. We prove the statement by induction on n. For n = 1, M =

(
1 xq

α

1 yq
α

)
and the statement is obviously true. Let now n > 1 and suppose it is true for
n− 1. We assume that the first column is the all–one column. After adding to
every column a suitable linear combination of the other ones, we can get a matrix
M ′ such that the first row is the vector (1, 0, . . . , 0) and M ′i,j = (xi − x1)v(j),
∀i = 2, . . . , n + 1 and ∀j = 1, . . . , 2n. Consider the submatrix of components
M ′i,j with i ≥ 2 and j such that the j–th element of P(S) contains α1; under
the hypothesis that xi 6= x1 ∀i ≥ 2, we can divide each row by (xi − x1)α1

and in this way we get a n × 2n−1 matrix over GF (qt) determined by the set
S′ = S \ {α1}: by the induction hypothesis the rank of this matrix is n and so
the rank of M is n+ 1.

Theorem 3. Any t + 1 points of V2,t are in general position, i.e. any t + 1
points of V2,t span a t–dimensional space.

Proof. The points of V2,t are {(xα1 , xα2 , . . . , xα2t ), αi are all the possible sums
of distinct powers qi, 0 ≤ i ≤ t− 1} ∪ {P = (0, 0, . . . , 0, 1)}. Since by Remark 2
there is a transitive group fixing V2,t, we can assume that the t + 1 points we
consider are distinct from P . Let M be the matrix the rows of which are the
coordinate vectors of t+1 points of V2,t \{P}. We can apply the Lemma 1 to M
with n = t, hence the t+ 1 rows vectors of M are GF (qt)–linearly independent
and so they are also GF (q)–linearly independent.

Remark3 This is another analogy with the Veronese variety: V(1, t) is a
normal rational curve and it has the property that any t + 1 points span a
t–dimensional space.

The next theorem is about linear sets of PG(1, qt). In Section 1 we have
recalled the three different ways to define a linear set of a projective geomerty,
but for our proof we shall use the following: a linear set of PG(1, qt) of rank
r is the set of the elements of S, where S is a Desarguesian (t − 1)–spread of
PG(2t− 1, q), with non–empty intersection with a subspace of PG(2t− 1, q) of
dimension r − 1; in this case, a linear set is a proper one when r ≤ t.

We need to recall the following property of the Grassmannian. Let G be the
Grassmannian of the (t− 1)–subspaces of PG(2t− 1, q): G is in PG(N − 1, q),
where N =

(
2t
t

)
. By [10], page 109, in PG(N − 1, q) there exists a polarity ⊥,

called the fundamental polarity of G, such that for every (t − 1)–space Π, the
(t− 1)–spaces with non–empty intersection with Π correspond to the points of
G ∩ g(Π)⊥, where g is the Grassmannian map.

Theorem 4. A linear set L of rank r ≤ t of PG(1, qt) corresponds to the points
of Π ∩ V2,t, where Π is a suitable subspace of the PG(2t − 1, q) containing V2,t.
Moreover, if r = t, then Π is a hyperplane of PG(2t− 1, q); if r = t− 1, then Π
is a subspace of codimension t+ 1 of PG(2t − 1, q).
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Proof. The points of L correspond to the elements of S intersecting an (r− 1)–
dimensional subspaces Ω of PG(2t−1, q). An element π ∈ S intersects Ω if and
only if π intersects all the (t− 1)–spaces through Ω. In PG(N − 1, q), let Λ be
the (2t − 1)–dimensional subspace containing V2,t and let G′ = {g(π),Ω ⊆ π}:
by [10],Corollary 1 page 117, G′ is projectively equivalent to the Grassmannian
of the (t− r − 1)–spaces of PG(2t− r − 1, q), hence 〈G′〉 = Σ is a (

(
2t−r
t−r
)
− 1)–

space. Hence, the points of L correspond to the points of V2,t ∩ Σ⊥. If r = t,
then Σ is a point and V2,t ∩ Σ⊥ is a hyperplane section of V2,t (V2,t can not be
contained in the hyperplane because not all the elements of S can intersect a
given (t− 1)–space). If r = t− 1, then G′ is a maximal subspace of G and it has
dimension t. The space Λ⊥ has empty intersection with G, since no (t−1)–space
can intersect all the spread elements, hence Λ⊥ ∩ G′ = ∅, and so Λ ∩ G′⊥ is the
minimum possible, i.e. it is a subspace of codimension t+ 1 of Λ.

The following result is a generalization of the main result of Section 3 of [12],
where Lavrauw and Van de Voorde show how a GF (q)–linear set of PG(1, qt)
can intersect a subline PG(1, q).

Proposition 5. A GF (q)–linear set L of PG(1, qt) either contains a fixed sub-
line PG(1, qs), s|t, or it intersects it in at most t

s (qs−1 + qs−2 + . . .+ 1) points.

Proof. The points of L correspond to the points of the intersection of V2,t with a
suitable subspace. The variety V2,t consists of the points (xα1 ,xα2 , . . . ,xαm) ∈
PG((1+ t

s )s−1, q), where xαi = x
α

(i)
0

0 x
α

(i)
1

1 , (α
(i)
0 , α

(i)
1 ) is such that α

(i)
k is a sum of

distinct powers of q, α
(i)
0 +α

(i)
1 = t

s (qs−1+qs−2+. . .+1) ∀i, xαi 6= (xαi)q
h ∀i 6= j,

∀h = 0, . . . , t − 1, and (x0, x1) ∈ PG(1, qs). Hence, if a hyperplane section
of V2,t does not contain the image of PG(1, qs), then it consists of the points
corresponding to the points of PG(1, qs) that satisfy a homogeneous equation of
degree t

s (qs−1+qs−2+. . .+1) and so they are at most t
s (qs−1+qs−2+. . .+1).
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