On the algebraic variety $\mathcal{V}_{r, t}$

V. Pepe

Abstract

The variety $\mathcal{V}_{r, t}$ is the image under the Grassmannian map of the $(t-1)$-subspaces of $P G(r t-1, q)$ of the elements of a Desarguesian spread. We investigate some properties of this variety, with particular attention to the case $r=2$: in this case we prove that every $t+1$ points of the variety are in general position and we give a new interpretation of linear sets of $P G\left(1, q^{t}\right)$.

Keywords: Desarguesian spread; Grassmann variety; Veronese variety; Segre variety; subgeometry; linear set.

1 Definitions and preliminary results

Let $V(n, q)$ be the vector space of dimension n over $G F(q)$ and $P G(n-1, q)$ be the projective space defined by the lattice of subspaces of $V(n, q)$; we will denote by $\left(x_{0}, \ldots, x_{n-1}\right)$ both the vector of homogeneous coordinates of a certain point $P \in \operatorname{PG}(n-1, q)$ and the point P as well. The group $P G L(n, q)$ is the group of all the projectivities of $P G(n-1, q)$. A subspace Π of $P G(n-1, q)$ has dimension $t-1$ and rank t if it is a t-dimensional subspace of $V(n, q)$. A subgeometry Σ of $P G(n-1, q)$ is a subset isomorphic to $P G\left(n-1, q^{\prime}\right)$, where $G F\left(q^{\prime}\right)$ is a subfield of $G F(q)$. Since a frame consisting of $n+1$ points determines a $P G\left(n-1, q^{\prime}\right)$ and $P G L(n, q)$ acts transitively on frames, all the subgeometries $P G\left(n-1, q^{\prime}\right)$ contained in $P G(n-1, q)$ are projectively equivalent. It is easy to see that a subgeometry $P G\left(n-1, q^{\prime}\right)$ is the set of fixed points of a suitable cyclic semilinear (i.e. $G F\left(q^{\prime}\right)$-linear) collineation (see [9], Theorem 4.28 and [6], Chapter 1).

A $(t-1)$-spread \mathcal{S} of $P G(n-1, q)$ is a partition of the point set of $P G(n-1, q)$ in subspaces of dimension $(t-1)$ and it exists if and only if t divides n ([16]). Let \mathcal{S} be a $(t-1)$-spread of $P G(r t-1, q)$, embed $P G(r t-1, q)$ into $P G(r t, q)$ as a hyperplane and let $A(\mathcal{S})$ be the following incidence structure: the points are the points of $P G(r t, q) \backslash P G(r t-1, q)$, the lines are the t-dimensional subspaces of $P G(r t, q)$ intersecting $P G(r t-1, q)$ in an element of \mathcal{S} and the incidence is the natural one. Then $A(\mathcal{S})$ is a $2-\left(q^{r t}, q^{t}, 1\right)$ translation design with parallelism (see [1]) and we will say that \mathcal{S} is a Desarguesian spread if $A(\mathcal{S})$ is isomorphic to the affine space $A G\left(r, q^{t}\right)$. An easy construction of a Desarguesian spread of $P G(r t-1, q)$ is by the so called field reduction of $\operatorname{PG}\left(r-1, q^{t}\right)$. The underlying vector space of the projective space $P G\left(r-1, q^{t}\right)$ is $V\left(r, q^{t}\right)$; if we consider $V\left(r, q^{t}\right)$ as a vector space over $G F(q)$, then it has dimension $r t$ and it defines a $P G(r t-1, q)$. Every point $P \in P G\left(r-1, q^{t}\right)$ corresponds in this way to a subspace Π_{P} of $P G(r t-1, q)$ of dimension $(t-1)$ and the set $\mathcal{S}=\left\{\Pi_{P}, P \in\right.$ $\left.P G\left(r-1, q^{t}\right)\right\}$ is a spread of $P G(r t-1, q)$. Moreover, it is easy to see that any
two elements Π_{P} and $\Pi_{P^{\prime}}$ of \mathcal{S} span a ($2 t-1$)-dimensional subspace completely partitioned by elements of \mathcal{S}, and they are precisely the ones corresponding to the points of the line $\left\langle P, P^{\prime}\right\rangle$ of $P G\left(r-1, q^{t}\right)$. For $r>2$, such a spread is called normal in [14] and in [1] it is proven that \mathcal{S} is normal if and only if it is Desarguesian; for $r=2$, the proof that a spread constructed in such a way is Desarguesian is in [16].

In [14], a linear set is defined as a generalization of the concept of subgeometry. More precisely, a $G F(q)$-linear set L of $P G\left(r-1, q^{t}\right)$ of rank s is a set of points of $P G\left(r-1, q^{t}\right)$ defined by a subset U of $V\left(r, q^{t}\right)$ that is an s-dimensional vector space over $G F(q)$. Such a linear set L is equivalent, by field reduction, to the elements of a Desarguesian spread \mathcal{S} of $P G(r t-1, q)$ having non-empty intersection with the subspace of $P G(r t-1, q)$ defined by U. Finally, there is another equivalent way to define a linear set as a (projected) subgeometry of a suitable projective space (for an overview about this topic see [15]). In this paper we present a fourth point of view to describe linear sets of $P G\left(1, q^{t}\right)$.

We now introduce some algebraic varieties that play an important role in finite geometry.

The Veronese variety $\mathcal{V}(n, d)$ is an algebraic variety of $P G\left(\binom{n+d}{d}-1, q\right)$ image of the injective map $v_{n, d}: P G(n, q) \longrightarrow P G\left(\binom{n+d}{d}-1, q\right)$, where $v_{n, d}\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ is the vector of all the monomials of degree d in x_{0}, \ldots, x_{n} (for $d=2$, see [10], Chapter 25 , and for general d see e.g. [5]) and we recall that $\mathcal{V}(1, d)$ is a normal rational curve of $\operatorname{PG}(d, q)$. We will use the notation $\mathcal{V}(n, d, q)$ to recall also the field under consideration.

Let $P G\left(n_{1}-1, q\right), P G\left(n_{2}-1, q\right), \ldots, P G\left(n_{k}-1, q\right)$ be k projective spaces, then the Segre embedding $\sigma: P G\left(n_{1}-1, q\right) \times P G\left(n_{2}-1, q\right) \times \cdots \times P G\left(n_{k}-\right.$ $1, q) \longrightarrow P G\left(n_{1} n_{2} \cdots n_{k}-1, q\right)$ is such that $\sigma\left(\mathbf{x}^{1}, \ldots, \mathbf{x}^{k}\right)$ is the vector of all the products $x_{j_{1}}^{(1)} x_{j_{2}}^{(2)} \cdots x_{j_{k}}^{(k)}$, with $\mathbf{x}^{i}=\left(x_{0}^{(i)}, x_{1}^{(i)}, \ldots, x_{n_{i}-1}^{(i)}\right) \in P G\left(n_{i}-1, q\right)$. The image of σ is called the Segre variety $\Sigma_{n_{1} ; n_{2} ; \ldots ; n_{k}}$ and it is in some way the product of projective spaces (see [10], Chapter 25 and [7]): for this reason we will say the image under σ of the subset $S_{1} \times S_{2} \times \ldots \times S_{k}$ of $P G\left(n_{1}-\right.$ $1, q) \times P G\left(n_{2}-1, q\right) \times \cdots \times P G\left(n_{k}-1, q\right)$ is the Segre product of the subsets $S_{1}, S_{2}, \ldots, S_{k}, S_{i} \in P G\left(n_{i}-1, q\right)$. We remark that $\mathcal{V}(n, d)$ is the diagonal of the Segre product of $d P G(n, q)$'s.

To introduce the last variety, we give some more details because the way it is defined is useful in the proof of a proposition of the next section. Let Π be an $(r-1)$-dimensional subspace of $P G(n-1, q)$, let $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \mathbf{x}^{(r)}$, with $\mathbf{x}^{(i)} \in V(n, q)$ be the coordinate vectors of r linearly independent points of Π and let T_{Π} be the matrix whose rows are the vectors $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \mathbf{x}^{(r)}$. After choosing an ordering, we can then construct the vector of length $\binom{n}{r}$ of all possible $r \times r$ minors of T_{Π} and it is called a coordinate vector of Π; by Lemma 24.1.1 of [10], this is unique up to a non-zero scalar factor. So we can define the Grassmannian map $g_{n, r}: P G^{(r-1)}(n-1, q) \longrightarrow P G\left(\binom{n}{r}-1, q\right)$, where $P G^{(r-1)}(n-1, q)$ is the set of all $(r-1)$-subspaces of $P G(n-1, q)$, such that $g_{n, r}(\Pi)$ is a coordinate vector of Π. This map is injective and its image $\mathcal{G}_{n, r}$ is called the Grassmannian or the Grassmann variety of the $(r-1)$-subspaces of $P G(n-1, q)$ (for more details we refer to [10], Chapter 24).

The varieties described in this section are the image of injective maps, so every collineation of the projective space where the map is defined induces a collineation fixing the variety setwise and viceversa (for the Grassmann and
the Segre variety, see [10] Theorem 24.2.16 and Theorem 25.5.13 respectively; for the Veronese variety, see [5] Theorem 2.15). If σ is a collineation of the projective space, we will denote by σ^{*} the collineation induced on the variety and we will call it the lifting of σ.

2 The algebraic variety $\mathcal{V}_{r, t}$

The algebraic variety $\mathcal{V}_{r, t}$ appeared for the first time in the literature in [16] and it has been described in a more detailed way and with a modern terminology in [14]. This variety is the image under the Grassmannian map $g_{r t, t}$ of the elements of a Desarguesian $(t-1)$-spread \mathcal{S} of $P G(r t-1, q)$: in [14], Lunardon proves that $\mathcal{V}_{r, t}$ is the complete intersection of the Grassmann variety $\mathcal{G}_{r t, t}$ with a suitable $\left(r^{t}-1\right)$-space. In fact he proves that $\mathcal{V}_{r, t}=\Delta \cap \Sigma_{r ; r ; \ldots ; r}$, where $\Delta=P G\left(r^{t}-1, q\right)$ and $\Sigma_{r ; r ; \ldots ; r}$ is the Segre variety product of $t P G\left(r-1, q^{t}\right)$'s contained in the Grassmannian of the $(r-1)$-subspaces of $P G\left(n-1, q^{t}\right)$. As showed in the previous section, by field reduction, we can get a Desarguesian $(t-1)$-spread \mathcal{S} of $P G(r t-1, q)$ from $P G\left(r-1, q^{t}\right)$: in this way, to every point P of $P G\left(r-1, q^{t}\right)$ corresponds a spread element Π_{P} and to every line m of $P G\left(r-1, q^{t}\right)$ correspond the spread elements $\Pi_{P}, P \in m$, hence the incidence structure of the points of $\mathcal{V}_{r, t}$ and $\mathcal{O}_{m}=\left\{g_{r t, t}\left(\Pi_{P}\right), P \in m\right\}, m$ a line of $P G\left(r-1, q^{t}\right)$, is isomorphic to $P G\left(r-1, q^{t}\right)$. There are remarkable examples of such varieties: for $r=t=2, \mathcal{V}_{2,2}$ is an elliptic quadric contained in the Klein quadric $\mathcal{Q}^{+}(5, q)$ (see [8], Chapter 16); for $t=2$, we have the so called Hermitian Veronesean (see for example [4]); for $t=3, r=2$ and q even, $\mathcal{V}_{3,2}$ is the Desarguesian ovoid of $\mathcal{Q}^{+}(7, q)$ and for $t=2, r=3$ and $q \equiv 2 \bmod$ 3 , a suitable hyperplane section of $\mathcal{V}_{2,3}$ is the Unitary ovoid of $\mathcal{Q}^{+}(7, q)$, (see [11, 14]).

We start giving an explicit description of $\mathcal{V}_{r, t}$ in terms of coordinates.
Proposition 1. The algebraic variety $\mathcal{V}_{r, t}$ is isomorphic to the set of points of $P G\left(r^{t}-1, q^{t}\right)$ with coordinates $\left(\mathbf{x}^{\alpha_{1}}, \mathbf{x}^{\alpha_{2}}, \ldots, \mathbf{x}^{\alpha_{\mathbf{r}}}\right)$, where $\mathbf{x}^{\alpha_{\mathbf{i}}}=x_{0}^{\alpha_{0}^{(i)}} x_{1}^{\alpha_{1}^{(i)}} \cdots x_{r-1}^{\alpha_{r-1}^{(i)}}$, $\left(\alpha_{0}^{(i)}, \alpha_{1}^{(i)}, \ldots, \alpha_{r-1}^{(i)}\right)$ is such that $\alpha_{k}^{(i)}$ is a sum of distinct powers of $q, \sum_{k=0}^{r-1} \alpha_{k}^{(i)}=$ $q^{t-1}+q^{t-2}+\ldots+1 \forall i,\left(x_{0}, x_{1}, \ldots, x_{r-1}\right) \in P G\left(r-1, q^{t}\right)$ and it is contained in a subgeometry isomorphic to $P G\left(r^{t}-1, q\right)$.

Proof. In $\Sigma^{*}=P G\left(r t-1, q^{t}\right)$, consider the subgeometry $\Sigma=$ $\left\{\left(x_{0}, \ldots, x_{r-1}, x_{0}^{q}, \ldots, x_{r-1}^{q}, \ldots, x_{0}^{q^{t-1}}, \ldots, x_{r-1}^{q^{t-1}}\right), x_{i} \in G F\left(q^{t}\right)\right\}: \Sigma$ is the set of fixed points of the $G F(q)$-linear collineation
$\sigma:\left(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \mathbf{x}^{(t)}\right) \longmapsto\left(\mathbf{x}^{(t) q}, \mathbf{x}^{(1) q}, \ldots, \mathbf{x}^{(t-1) q}\right), \mathbf{x}^{(i)}=\left(x_{0}^{(i)}, \ldots, x_{r-1}^{(i)}\right) \in V\left(r, q^{t}\right)$
of order t, hence $\Sigma=P G(\operatorname{tr}-1, q)$. Let $\Pi=\left\{(\mathbf{x}, \mathbf{0}, \ldots, \mathbf{0}), \mathbf{x} \in V\left(r, q^{t}\right)\right\} \subset \Sigma^{*}$ and for any $P \in \Pi$ let $\ell(P)=\left\langle P, P^{\sigma}, \ldots, P^{\sigma^{q^{t-1}}}\right\rangle$, then $\mathcal{S}=\{\ell(P), P \in \Pi\}$ is a Desarguesian spread of Σ (see [3]). Let $g_{r t, t}^{*}$ be the Grassmannian map of subspaces of rank t of Σ^{*} : by [14], page 250, the image under $g_{r t, t}^{*}$ of the subspaces of rank t of Σ is the Grassmannian of $(t-1)$-subspaces of Σ. The image under $g_{r t, t}^{*}$ of $\ell(P)$ is the vector of all minors of order t of the matrix
whose rows are the coordinate vectors of $P, P^{\sigma}, \ldots, P^{\sigma^{q^{t-1}}}$, that is the matrix $T(P)=\left(\begin{array}{cccc}\mathbf{x} & \mathbf{0} & \ldots & \mathbf{0} \\ \mathbf{0} & \mathbf{x}^{q} & \ldots & \mathbf{0} \\ \ldots & \ldots & \ldots & \ldots \\ \mathbf{0} & \ldots & \ldots & \mathbf{x}^{q^{t-1}}\end{array}\right)$, where $\mathbf{x}=\left(x_{0}, \ldots, x_{r-1}\right) \in V\left(r, q^{t}\right)$ and $P=(\mathbf{x}, 0, \ldots, 0) \in \Pi$. The submatrices of order t of $T(P)$ are such that every column has only one non-zero entry, hence the determinant is 0 or it is in the form $x_{0}^{\alpha_{0}^{(i)}} x_{1}^{\alpha_{1}^{(i)}} \ldots x_{r-1}^{\alpha_{r-1}^{(i)}}, \sum_{k=0}^{r-1} \alpha_{k}^{(i)}=q^{t-1}+q^{t-2}+\ldots+1, \alpha_{k}^{(i)}$ is a sum of distinct powers of q. This set of points is contained in a subgeometry isomorphic to $P G\left(r^{t}-1, q\right)$ by [14], page 250 .

Remark 1 We want to emphasize the analogy of $\mathcal{V}_{r, t}$ with the Veronese variety $\mathcal{V}\left(r-1, t, q^{t}\right)$. We have already mentioned that $\mathcal{V}_{r, t}$ is the intersection of $\Sigma_{r ; r ; \ldots ; r}$ (the Segre variety product of $t P G\left(r-1, q^{t}\right.$)'s) with a suitable subgeometry $P G\left(r^{t}-1, q\right)$, more precisely, it is the Segre embedding of the points of type $\left(\mathbf{x}, \mathbf{x}^{q}, \ldots, \mathbf{x}^{q-1}\right) \in P G\left(r-1, q^{t}\right) \times P G\left(r-1, q^{t}\right) \times \cdots P G\left(r-1, q^{t}\right)$, whereas $\mathcal{V}\left(r-1, t, q^{t}\right)$ is the diagonal of $\Sigma_{r ; r ; \ldots ; r}$, i.e. is the Segre embedding of the points of type $(\mathbf{x}, \mathbf{x}, \ldots, \mathbf{x}) \in P G\left(r-1, q^{t}\right) \times P G\left(r-1, q^{t}\right) \times \cdots P G\left(r-1, q^{t}\right)$. Moreover, $\mathcal{V}\left(r-1, t, q^{t}\right)$ is defined by the vectors of all monomial of degree t in $x_{0}, x_{1}, \ldots, x_{r-1}$, whereas $\mathcal{V}_{r, t}$ is defined by the vectors of all monomials of degree $1+q+\ldots q^{t-1}$, but the only powers admitted for x_{i} are of type $q^{\alpha_{1}}+\ldots+q^{\alpha_{k}}, \alpha_{i} \neq \alpha_{j} \forall i \neq j$.

Example 1 The variety $\mathcal{V}_{3,2}$ is the image of the map $\alpha:\left(x_{0}, x_{1}, x_{2}\right) \in$ $P G\left(2, q^{2}\right) \longmapsto\left(x_{0}^{q+1}, x_{0} x_{1}^{q}, x_{0}^{q} x_{1}, x_{1}^{q+1}, x_{1} x_{2}^{q}, x_{1}^{q} x_{2}, x_{2}^{q+1}, x_{2} x_{0}^{q}, x_{2}^{q} x_{0}\right) \in P G\left(8, q^{2}\right)$. Let σ be the following $G F(q)$-linear collineation of order two:
$\left(y_{0}, y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}, y_{7}, y_{8}\right) \in P G\left(8, q^{2}\right) \mapsto\left(y_{0}^{q}, y_{2}^{q}, y_{1}^{q}, y_{3}^{q}, y_{5}^{q}, y_{4}^{q}, y_{6}^{q}, y_{8}^{q}, y_{7}^{q}\right) \in P G\left(8, q^{2}\right)$.
The points of $\mathcal{V}_{3,2}$ are fixed by σ and hence $\mathcal{V}_{3,2}$ is contained in the $\operatorname{PG}(8, q)$ defined by σ (compare with [4]).

Example 2 The variety $\mathcal{V}_{2,4}$ is the image of the map $\alpha:(x, y) \in P G\left(1, q^{4}\right) \longmapsto$ $\left(x^{q^{3}+q^{2}+q+1}, x^{q^{2}+q+1} y^{q^{3}}, x^{q^{3}+q^{2}+q} y, x^{1+q^{3}+q^{2}} y^{q}, x^{q+1+q^{3}} y^{q^{2}}, x^{q+1} y^{q^{3}+q^{2}}\right.$, $x^{q^{2}+q} y^{1+q^{3}}, x^{q^{3}+q^{2}} y^{q+1}, x^{1+q^{3}} y^{q^{2}+q}, x^{q^{2}+1} y^{q^{3}+q}, x^{q^{3}+q} y^{1+q^{2}}, x y^{q^{3}+q^{2}+q}$, $\left.x^{q} y^{1+q^{3}+q^{2}}, x^{q^{2}} y^{q+1+q^{3}}, x^{q^{3}} y^{q^{2}+q+1}, y^{q^{3}+q^{2}+q+1}\right) \in P G\left(15, q^{4}\right)$. Let τ be the following $G F(q)$-linear collineation of order four: $\left(z_{0}, z_{1}, \ldots, z_{15}\right) \in P G\left(15, q^{4}\right) \mapsto$ $\left(z_{0}^{q}, z_{4}^{q}, z_{1}^{q}, z_{2}^{q}, z_{3}^{q}, z_{8}^{q}, z_{5}^{q}, z_{6}^{q}, z_{7}^{q}, z_{10}^{q^{3}}, z_{9}^{q^{3}}, z_{14}^{q}, z_{11}^{q}, z_{12}^{q}, z_{13}^{q}, z_{15}^{q}\right)$. The points of $\mathcal{V}_{2,4}$ are fixed by τ and hence $\mathcal{V}_{2,4}$ is contained in the $P G(15, q)$ defined by τ.

Remark 2 There is a group isomorphic to $\operatorname{PGL}\left(r, q^{t}\right)$ acting 2-transitively on $\mathcal{V}_{r, t}$ ([14], Corollary 1).

The following result is a generalization of Theorem 2.6 of [13], where $\mathrm{Lu}-$ nardon proves that a subline $P G(1, q)$ of $P G\left(1, q^{t}\right)$ corresponds in $\mathcal{V}_{2, t}$ to a normal rational curve that is the complete intersection of $\mathcal{V}_{2, t}$ with a suitable t-dimensional space. We keep the notation of the proof of the previous proposition.

Theorem 2. Let g be the map $P \in P G\left(r-1, q^{t}\right) \longmapsto g_{r t, t}(\ell(P))$. The image under g of a subgeometry $P G\left(r-1, q^{s}\right), s \mid t$, is the intersection of the Segre product of s Veronese varieties $\mathcal{V}\left(r-1, \frac{t}{s}, q^{s}\right)$ with a $P G\left(\binom{r-1+\frac{t}{s}}{\frac{t}{s}}^{s}-1, q\right)$ and
it is the complete intersection of $\mathcal{V}_{r, t}$ with a suitable space of rank $\binom{r-1+\frac{t}{s}}{\frac{t}{s}}^{s}$. In particular, the image of a subgeometry $P G(r-1, q)$ is a Veronese variety $\mathcal{V}(r-1, t, q)$ and it is the intersection of $\mathcal{V}_{r, t}$ with a suitable space of rank $\binom{r-1+t}{t}$.
Proof. Since all the subgeometries are projectively equivalent and by Remark 2, we can assume that the points of $P G\left(r-1, q^{s}\right)$ are the ones with coordinates in $G F\left(q^{s}\right)$. If $P \in P G\left(r-1, q^{s}\right)$, then the image under the Grassmannian map of $\ell(P)$ is the vector of all minors of order t of the matrix

$$
T(P)=\left(\begin{array}{ccccccccccc}
\mathbf{x} & \mathbf{0} & \ldots & \mathbf{0} & \ldots & \ldots & \ldots & \mathbf{0} & \mathbf{0} & \ldots & \mathbf{0} \\
\mathbf{0} & \mathbf{x}^{q} & \ldots & \mathbf{0} & \ldots & \ldots & \ldots & \mathbf{0} & \mathbf{0} & \ldots & \mathbf{0} \\
\ldots & \ldots \\
\mathbf{0} & \mathbf{0} & \ldots & \mathbf{x}^{q^{s-1}} & \ldots & \ldots & \ldots & \mathbf{0} & \mathbf{0} & \ldots & \mathbf{0} \\
\ldots & \ldots \\
\ldots & \ldots \\
\ldots & \ldots \\
\ldots & \ldots \\
\mathbf{0} & \mathbf{0} & \ldots & \mathbf{0} & \ldots & \ldots & \ldots & \mathbf{x} & \mathbf{0} & \ldots & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \ldots & \mathbf{0} & \ldots & \ldots & \ldots & \mathbf{0} & \mathbf{x}^{q} & \ldots & \mathbf{0} \\
\ldots & \ldots \\
\mathbf{0} & \mathbf{0} & \ldots & \mathbf{0} & \ldots & \ldots & \ldots & \mathbf{0} & \mathbf{0} & \ldots & \mathbf{x}^{q^{s-1}}
\end{array}\right)
$$

where $\mathbf{x}=\left(x_{0}, \ldots, x_{r-1}\right) \in V\left(r, q^{s}\right)$. Next, consider the following matrix:

$$
T(P)^{*}=\left(\begin{array}{ccccccccccc}
\mathbf{x}_{1} & \mathbf{0} & \ldots & \mathbf{0} & \ldots & \ldots & \ldots & \mathbf{0} & \mathbf{0} & \ldots & \mathbf{0} \\
\mathbf{0} & \mathbf{x}_{2} & \ldots & \mathbf{0} & \ldots & \ldots & \ldots & \mathbf{0} & \mathbf{0} & \ldots & \mathbf{0} \\
\ldots & \ldots \\
\mathbf{0} & \mathbf{0} & \ldots & \mathbf{x}_{s} & \ldots & \ldots & \ldots & \mathbf{0} & \mathbf{0} & \ldots & \mathbf{0} \\
\ldots & \ldots \\
\ldots & \ldots \\
\ldots & \ldots \\
\ldots & \ldots \\
\mathbf{0} & \mathbf{0} & \ldots & \mathbf{0} & \ldots & \ldots & \ldots & \mathbf{x}_{1} & \mathbf{0} & \ldots & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \ldots & \mathbf{0} & \ldots & \ldots & \ldots & \mathbf{0} & \mathbf{x}_{2} & \ldots & \mathbf{0} \\
\ldots & \ldots \\
\mathbf{0} & \mathbf{0} & \ldots & \mathbf{0} & \ldots & \ldots & \ldots & \mathbf{0} & \mathbf{0} & \ldots & \mathbf{x}_{s}
\end{array}\right)
$$

where $\mathbf{x}=\left(x_{0}, \ldots, x_{r-1}\right) \in V\left(r, q^{s}\right)$; the vectors of all the minors of $T(P)^{*}$ is the Segre product of s Veronese varieties $\mathcal{V}\left(r-1, \frac{t}{s}, q^{s}\right)$ and the minors of $T(P)$ are the points of this variety fixed by the $G F(q)$-linear collineation $\sigma^{\frac{t}{s}}$. Hence, as in [14] page 250, this variety is $\mathcal{V}\left(r-1, \frac{t}{s}, q^{s}\right) \cap \Delta$, where $\Delta=P G\left(\binom{\frac{t}{s}}{\frac{t}{s}}^{s}-\right.$ $1, q)$.

2.1 The case $r=2$

In this section, we focus on the case $r=2$. In [14], Theorem 1, Lunardon proves that the algebraic variety $\mathcal{V}_{r, t}$ is a cap of $P G\left(r^{t}-1, q\right)$, i.e. any three points of $\mathcal{V}_{r, t}$ are not collinear. In the case $r=2$, we can prove a stronger result, but we first need a technical lemma.

Lemma 1. Let $S=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ be a set of n distinct non-negative integers, with $n \leq t$ and $\alpha_{i}<t \forall i$. Let M be the $(n+1) \times 2^{n}$ matrix over $G F\left(q^{t}\right)$, such that the columns of M are in bijective correspondence with the elements of the power set of S, namely $\mathcal{P}(S)$, and $M_{i, j}=x_{i}^{v(j)}$, where $v(j)=q^{\alpha_{i_{1}}}+\ldots+q^{\alpha_{i_{k}}}$ and $\left\{i_{1}, \ldots, i_{k}\right\}$ is the j-th element of $\mathcal{P}(S)$ (by convention, if the j-th element is the empty set, then $\left.x_{i}^{v(j)}=1\right)$. If $x_{h} \neq x_{k} \forall h \neq k$, then the $G F\left(q^{t}\right)-r a n k$ of M is $n+1$.
Proof. We prove the statement by induction on n. For $n=1, M=\left(\begin{array}{cc}1 & x^{q^{\alpha}} \\ 1 & y^{q^{\alpha}}\end{array}\right)$ and the statement is obviously true. Let now $n>1$ and suppose it is true for $n-1$. We assume that the first column is the all-one column. After adding to every column a suitable linear combination of the other ones, we can get a matrix M^{\prime} such that the first row is the vector $(1,0, \ldots, 0)$ and $M_{i, j}^{\prime}=\left(x_{i}-x_{1}\right)^{v(j)}$, $\forall i=2, \ldots, n+1$ and $\forall j=1, \ldots, 2^{n}$. Consider the submatrix of components $M_{i, j}^{\prime}$ with $i \geq 2$ and j such that the j-th element of $\mathcal{P}(S)$ contains α_{1}; under the hypothesis that $x_{i} \neq x_{1} \forall i \geq 2$, we can divide each row by $\left(x_{i}-x_{1}\right)^{\alpha_{1}}$ and in this way we get a $n \times 2^{n-1}$ matrix over $G F\left(q^{t}\right)$ determined by the set $S^{\prime}=S \backslash\left\{\alpha_{1}\right\}$: by the induction hypothesis the rank of this matrix is n and so the rank of M is $n+1$.

Theorem 3. Any $t+1$ points of $\mathcal{V}_{2, t}$ are in general position, i.e. any $t+1$ points of $\mathcal{V}_{2, t}$ span a t-dimensional space.

Proof. The points of $\mathcal{V}_{2, t}$ are $\left\{\left(x^{\alpha_{1}}, x^{\alpha_{2}}, \ldots, x^{\alpha_{2} t}\right), \alpha_{i}\right.$ are all the possible sums of distinct powers $\left.q^{i}, 0 \leq i \leq t-1\right\} \cup\{P=(0,0, \ldots, 0,1)\}$. Since by Remark 2 there is a transitive group fixing $\mathcal{V}_{2, t}$, we can assume that the $t+1$ points we consider are distinct from P. Let M be the matrix the rows of which are the coordinate vectors of $t+1$ points of $\mathcal{V}_{2, t} \backslash\{P\}$. We can apply the Lemma 1 to M with $n=t$, hence the $t+1$ rows vectors of M are $G F\left(q^{t}\right)$-linearly independent and so they are also $G F(q)$-linearly independent.

Remark3 This is another analogy with the Veronese variety: $\mathcal{V}(1, t)$ is a normal rational curve and it has the property that any $t+1$ points span a t-dimensional space.

The next theorem is about linear sets of $P G\left(1, q^{t}\right)$. In Section 1 we have recalled the three different ways to define a linear set of a projective geomerty, but for our proof we shall use the following: a linear set of $P G\left(1, q^{t}\right)$ of rank r is the set of the elements of \mathcal{S}, where \mathcal{S} is a Desarguesian $(t-1)$-spread of $P G(2 t-1, q)$, with non-empty intersection with a subspace of $P G(2 t-1, q)$ of dimension $r-1$; in this case, a linear set is a proper one when $r \leq t$.

We need to recall the following property of the Grassmannian. Let \mathcal{G} be the Grassmannian of the $(t-1)$-subspaces of $P G(2 t-1, q): \mathcal{G}$ is in $P G(N-1, q)$, where $N=\binom{2 t}{t}$. By [10], page 109, in $P G(N-1, q)$ there exists a polarity \perp, called the fundamental polarity of \mathcal{G}, such that for every $(t-1)$-space Π, the $(t-1)$-spaces with non-empty intersection with Π correspond to the points of $\mathcal{G} \cap g(\Pi)^{\perp}$, where g is the Grassmannian map.

Theorem 4. A linear set L of rank $r \leq t$ of $P G\left(1, q^{t}\right)$ corresponds to the points of $\Pi \cap \mathcal{V}_{2, t}$, where Π is a suitable subspace of the $P G\left(2^{t}-1, q\right)$ containing $\mathcal{V}_{2, t}$. Moreover, if $r=t$, then Π is a hyperplane of $P G\left(2^{t}-1, q\right)$; if $r=t-1$, then Π is a subspace of codimension $t+1$ of $P G\left(2^{t}-1, q\right)$.

Proof. The points of L correspond to the elements of \mathcal{S} intersecting an $(r-1)-$ dimensional subspaces Ω of $P G(2 t-1, q)$. An element $\pi \in \mathcal{S}$ intersects Ω if and only if π intersects all the $(t-1)$-spaces through Ω. In $P G(N-1, q)$, let Λ be the $\left(2^{t}-1\right)$-dimensional subspace containing $\mathcal{V}_{2, t}$ and let $\mathcal{G}^{\prime}=\{g(\pi), \Omega \subseteq \pi\}$: by [10], Corollary 1 page $117, \mathcal{G}^{\prime}$ is projectively equivalent to the Grassmannian of the $(t-r-1)$-spaces of $P G(2 t-r-1, q)$, hence $\left\langle\mathcal{G}^{\prime}\right\rangle=\Sigma$ is a $\left(\binom{2 t-r}{t-r}-1\right)-$ space. Hence, the points of L correspond to the points of $\mathcal{V}_{2, t} \cap \Sigma^{\perp}$. If $r=t$, then Σ is a point and $\mathcal{V}_{2, t} \cap \Sigma^{\perp}$ is a hyperplane section of $\mathcal{V}_{2, t}\left(\mathcal{V}_{2, t}\right.$ can not be contained in the hyperplane because not all the elements of \mathcal{S} can intersect a given $(t-1)$-space). If $r=t-1$, then \mathcal{G}^{\prime} is a maximal subspace of \mathcal{G} and it has dimension t. The space Λ^{\perp} has empty intersection with \mathcal{G}, since no $(t-1)$-space can intersect all the spread elements, hence $\Lambda^{\perp} \cap \mathcal{G}^{\prime}=\emptyset$, and so $\Lambda \cap \mathcal{G}^{\prime \perp}$ is the minimum possible, i.e. it is a subspace of codimension $t+1$ of Λ.

The following result is a generalization of the main result of Section 3 of [12], where Lavrauw and Van de Voorde show how a $G F(q)$-linear set of $P G\left(1, q^{t}\right)$ can intersect a subline $P G(1, q)$.

Proposition 5. $A G F(q)$-linear set L of $P G\left(1, q^{t}\right)$ either contains a fixed subline $P G\left(1, q^{s}\right), s \mid t$, or it intersects it in at most $\frac{t}{s}\left(q^{s-1}+q^{s-2}+\ldots+1\right)$ points.

Proof. The points of L correspond to the points of the intersection of $\mathcal{V}_{2, t}$ with a suitable subspace. The variety $\mathcal{V}_{2, t}$ consists of the points $\left(\mathbf{x}^{\alpha_{1}}, \mathbf{x}^{\alpha_{2}}, \ldots, \mathbf{x}^{\alpha_{\mathrm{m}}}\right) \in$ $P G\left(\left(1+\frac{t}{s}\right)^{s}-1, q\right)$, where $\mathbf{x}^{\alpha_{\mathbf{i}}}=x_{0}^{\alpha_{0}^{(i)}} x_{1}^{\alpha_{1}^{(i)}},\left(\alpha_{0}^{(i)}, \alpha_{1}^{(i)}\right)$ is such that $\alpha_{k}^{(i)}$ is a sum of distinct powers of $q, \alpha_{0}^{(i)}+\alpha_{1}^{(i)}=\frac{t}{s}\left(q^{s-1}+q^{s-2}+\ldots+1\right) \forall i, \mathbf{x}^{\alpha_{\mathbf{i}}} \neq\left(\mathbf{x}^{\alpha_{\mathbf{i}}}\right)^{q^{h}} \forall i \neq j$, $\forall h=0, \ldots, t-1$, and $\left(x_{0}, x_{1}\right) \in P G\left(1, q^{s}\right)$. Hence, if a hyperplane section of $\mathcal{V}_{2, t}$ does not contain the image of $P G\left(1, q^{s}\right)$, then it consists of the points corresponding to the points of $P G\left(1, q^{s}\right)$ that satisfy a homogeneous equation of degree $\frac{t}{s}\left(q^{s-1}+q^{s-2}+\ldots+1\right)$ and so they are at most $\frac{t}{s}\left(q^{s-1}+q^{s-2}+\ldots+1\right)$.

Acknowledgments

The author thanks G. Lunardon for valuable discussions about the topic of this article.

References

[1] A. Barlotti and J. Cofman, Finite Sperner spaces constructed from projective and affine spaces, Abh. Math. Sem. Univ. Hamburg 40 (1974), pp. 230-241.
[2] R.H. Bruk, Construction problems in finite projective spaces, in Combinatorial Mathematics and its Applications, Chapel Hill, 1969, pp. 426-514.
[3] L.R. Casse and C.M. O'Keefe, Indicator sets for t-spreads of $P G((s+$ $1)(t+1)-1, q)$, Boll. Un. Mat. Ital. B, 4 (1990), pp. 13-33.
[4] A. Cossidente and A. Siciliano, On the geometry of the Hermitian matrices over finite fields, European J. of Combinatorics, 22 (2001), pp. 1047-1051.
[5] A. Cossidente, D. Labbate and A. Siciliano, Veronese varieties over finite fields and their projections, Des. Codes Cryptogr., 22 (2001), pp. 19-32.
[6] P. Dembowski, Finite Geometries, Springer, Berlin-New York, (1968).
[7] B. Hassett, Introduction to Algebraic Geometry, Cambridge University Press, Cambridge (2007).
[8] J.W.P. Hirschfeld, Finite Projective Spaces of Three Dimension, Oxford University Press, USA (1986).
[9] J.W.P. Hirschfeld, Projective Geometries over Finite Fields, Oxford University Press, New York (1998).
[10] J.W.P. Hirschfeld and J.A. Thas, General Galois Geometries, Oxford University Press, New York (1991).
[11] W.M. Kantor, Ovoids and translation planes, Can. J. Math., 36 (5) (1982), pp. 1195-1207.
[12] M. Lavrauw and G. Van de Voorde, On linear sets on a projective line, Des. Codes Cryptogr., 56 (2010), pp 89-104.
[13] G. Lunardon, Planar fibrations and algebraic subvarieties of the Grassmann variety, Geometriae Dedicata, 16 (1984) 3, pp. 291-313.
[14] G. Lunardon, Normal Spreads, Geometriae Dedicata, 75 (1999), pp. 245261.
[15] O. Polverino, Linear sets in finite projective spaces, Discrete Math., 22 (2010), pp 3096-3107.
[16] B. Segre, Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane, Ann. Mat. Pura Appl., 64 (1964), pp. 1-76.
V. Pepe

Department of Mathematics, Ghent University, Krijgslaan 281-S22, 9000 Ghent, Belgium
valepepe@cage.ugent.be

