On the algebraic variety $\mathcal{V}_{r,t}$

V. Pepe

Abstract

The variety $\mathcal{V}_{r,t}$ is the image under the Grassmannian map of the (t-1)-subspaces of PG(rt-1,q) of the elements of a Desarguesian spread. We investigate some properties of this variety, with particular attention to the case r = 2: in this case we prove that every t + 1 points of the variety are in general position and we give a new interpretation of linear sets of $PG(1,q^t)$.

Keywords: Desarguesian spread; Grassmann variety; Veronese variety; Segre variety; subgeometry; linear set.

1 Definitions and preliminary results

Let V(n,q) be the vector space of dimension n over GF(q) and PG(n-1,q) be the projective space defined by the lattice of subspaces of V(n,q); we will denote by (x_0, \ldots, x_{n-1}) both the vector of homogeneous coordinates of a certain point $P \in PG(n-1,q)$ and the point P as well. The group PGL(n,q) is the group of all the projectivities of PG(n-1,q). A subspace Π of PG(n-1,q) has dimension t-1 and rank t if it is a t-dimensional subspace of V(n,q). A subgeometry Σ of PG(n-1,q) is a subset isomorphic to PG(n-1,q'), where GF(q') is a subfield of GF(q). Since a frame consisting of n+1 points determines a PG(n-1,q')and PGL(n,q) acts transitively on frames, all the subgeometries PG(n-1,q')contained in PG(n-1,q') is the set of fixed points of a suitable cyclic semilinear (i.e. GF(q')-linear) collineation (see [9], Theorem 4.28 and [6], Chapter 1).

A (t-1)-spread S of PG(n-1,q) is a partition of the point set of PG(n-1,q)in subspaces of dimension (t-1) and it exists if and only if t divides n ([16]). Let S be a (t-1)-spread of PG(rt-1,q), embed PG(rt-1,q) into PG(rt,q) as a hyperplane and let A(S) be the following incidence structure: the points are the points of $PG(rt,q) \setminus PG(rt-1,q)$, the lines are the t-dimensional subspaces of PG(rt,q) intersecting PG(rt-1,q) in an element of S and the incidence is the natural one. Then A(S) is a $2 - (q^{rt}, q^t, 1)$ translation design with parallelism (see [1]) and we will say that S is a *Desarguesian* spread if A(S) is isomorphic to the affine space $AG(r, q^t)$. An easy construction of a Desarguesian spread of PG(rt-1,q) is by the so called *field reduction* of $PG(r-1,q^t)$. The underlying vector space of the projective space $PG(r-1,q^t)$ is $V(r,q^t)$; if we consider $V(r,q^t)$ as a vector space over GF(q), then it has dimension rt and it defines a PG(rt-1,q). Every point $P \in PG(r-1,q^t)$ corresponds in this way to a subspace Π_P of PG(rt-1,q) of dimension (t-1) and the set $S = \{\Pi_P, P \in$ $PG(r-1,q^t)\}$ is a spread of PG(rt-1,q). Moreover, it is easy to see that any two elements Π_P and $\Pi_{P'}$ of S span a (2t-1)-dimensional subspace completely partitioned by elements of S, and they are precisely the ones corresponding to the points of the line $\langle P, P' \rangle$ of $PG(r-1, q^t)$. For r > 2, such a spread is called *normal* in [14] and in [1] it is proven that S is normal if and only if it is Desarguesian; for r = 2, the proof that a spread constructed in such a way is Desarguesian is in [16].

In [14], a *linear set* is defined as a generalization of the concept of subgeometry. More precisely, a GF(q)-linear set L of $PG(r-1, q^t)$ of rank s is a set of points of $PG(r-1, q^t)$ defined by a subset U of $V(r, q^t)$ that is an s-dimensional vector space over GF(q). Such a linear set L is equivalent, by field reduction, to the elements of a Desarguesian spread S of PG(rt-1,q) having non-empty intersection with the subspace of PG(rt-1,q) defined by U. Finally, there is another equivalent way to define a linear set as a (projected) subgeometry of a suitable projective space (for an overview about this topic see [15]). In this paper we present a fourth point of view to describe linear sets of $PG(1, q^t)$.

We now introduce some algebraic varieties that play an important role in finite geometry.

The Veronese variety $\mathcal{V}(n,d)$ is an algebraic variety of $PG(\binom{n+d}{d}-1,q)$ image of the injective map $v_{n,d}: PG(n,q) \longrightarrow PG(\binom{n+d}{d}-1,q)$, where $v_{n,d}(x_0,x_1,\ldots,x_n)$ is the vector of all the monomials of degree d in x_0,\ldots,x_n (for d=2, see [10], Chapter 25, and for general d see e.g. [5]) and we recall that $\mathcal{V}(1,d)$ is a normal rational curve of PG(d,q). We will use the notation $\mathcal{V}(n,d,q)$ to recall also the field under consideration.

Let $PG(n_1 - 1, q)$, $PG(n_2 - 1, q)$,..., $PG(n_k - 1, q)$ be k projective spaces, then the Segre embedding $\sigma : PG(n_1 - 1, q) \times PG(n_2 - 1, q) \times \cdots \times PG(n_k - 1, q) \longrightarrow PG(n_1n_2\cdots n_k - 1, q)$ is such that $\sigma(\mathbf{x}^1, \ldots, \mathbf{x}^k)$ is the vector of all the products $x_{j_1}^{(1)} x_{j_2}^{(2)} \cdots x_{j_k}^{(k)}$, with $\mathbf{x}^i = (x_0^{(i)}, x_1^{(i)}, \ldots, x_{n_i-1}^{(i)}) \in PG(n_i - 1, q)$. The image of σ is called the Segre variety $\Sigma_{n_1;n_2;\ldots;n_k}$ and it is in some way the product of projective spaces (see [10], Chapter 25 and [7]): for this reason we will say the image under σ of the subset $S_1 \times S_2 \times \ldots \times S_k$ of $PG(n_1 - 1, q) \times PG(n_2 - 1, q) \times \cdots \times PG(n_k - 1, q)$ is the Segre product of the subsets $S_1, S_2, \ldots, S_k, S_i \in PG(n_i - 1, q)$. We remark that $\mathcal{V}(n, d)$ is the diagonal of the Segre product of d PG(n, q)'s.

To introduce the last variety, we give some more details because the way it is defined is useful in the proof of a proposition of the next section. Let II be an (r-1)-dimensional subspace of PG(n-1,q), let $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \mathbf{x}^{(r)}$, with $\mathbf{x}^{(i)} \in V(n,q)$ be the coordinate vectors of r linearly independent points of II and let T_{Π} be the matrix whose rows are the vectors $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \mathbf{x}^{(r)}$. After choosing an ordering, we can then construct the vector of length $\binom{n}{r}$ of all possible $r \times r$ minors of T_{Π} and it is called a *coordinate vector* of II; by Lemma 24.1.1 of [10], this is unique up to a non-zero scalar factor. So we can define the *Grassmannian map* $g_{n,r}: PG^{(r-1)}(n-1,q) \longrightarrow PG(\binom{n}{r}-1,q)$, where $PG^{(r-1)}(n-1,q)$ is the set of all (r-1)-subspaces of PG(n-1,q), such that $g_{n,r}(\Pi)$ is a coordinate vector of II. This map is injective and its image $\mathcal{G}_{n,r}$ is called the *Grassmannian* or the *Grassmann variety* of the (r-1)-subspaces of PG(n-1,q) (for more details we refer to [10], Chapter 24).

The varieties described in this section are the image of injective maps, so every collineation of the projective space where the map is defined induces a collineation fixing the variety setwise and viceversa (for the Grassmann and the Segre variety, see [10] Theorem 24.2.16 and Theorem 25.5.13 respectively; for the Veronese variety, see [5] Theorem 2.15). If σ is a collineation of the projective space, we will denote by σ^* the collineation induced on the variety and we will call it the *lifting* of σ .

2 The algebraic variety $\mathcal{V}_{r,t}$

The algebraic variety $\mathcal{V}_{r,t}$ appeared for the first time in the literature in [16] and it has been described in a more detailed way and with a modern terminology in [14]. This variety is the image under the Grassmannian map $g_{rt,t}$ of the elements of a Desarguesian (t-1)-spread S of PG(rt-1,q): in [14], Lunardon proves that $\mathcal{V}_{r,t}$ is the complete intersection of the Grassmann variety $\mathcal{G}_{rt,t}$ with a suitable $(r^t - 1)$ -space. In fact he proves that $\mathcal{V}_{r,t} = \Delta \cap \Sigma_{r;r;\ldots;r}$, where $\Delta = PG(r^t - 1, q)$ and $\Sigma_{r;r;...;r}$ is the Segre variety product of $t PG(r - 1, q^t)$'s contained in the Grassmannian of the (r-1)-subspaces of $PG(n-1,q^t)$. As showed in the previous section, by field reduction, we can get a Desarguesian (t-1)-spread S of PG(rt-1,q) from $PG(r-1,q^t)$: in this way, to every point P of $PG(r-1,q^t)$ corresponds a spread element Π_P and to every line m of $PG(r-1,q^t)$ correspond the spread elements $\Pi_P, P \in m$, hence the incidence structure of the points of $\mathcal{V}_{r,t}$ and $\mathcal{O}_m = \{g_{rt,t}(\Pi_P), P \in m\}, m \text{ a line of }$ $PG(r-1,q^t)$, is isomorphic to $PG(r-1,q^t)$. There are remarkable examples of such varieties: for r = t = 2, $\mathcal{V}_{2,2}$ is an elliptic quadric contained in the Klein quadric $\mathcal{Q}^+(5,q)$ (see [8], Chapter 16); for t=2, we have the so called Hermitian Veronesean (see for example [4]); for t = 3, r = 2 and q even, $\mathcal{V}_{3,2}$ is the Desarguesian ovoid of $\mathcal{Q}^+(7,q)$ and for t = 2, r = 3 and $q \equiv 2 \mod q$ 3, a suitable hyperplane section of $\mathcal{V}_{2,3}$ is the Unitary ovoid of $\mathcal{Q}^+(7,q)$, (see [11, 14]).

We start giving an explicit description of $\mathcal{V}_{r,t}$ in terms of coordinates.

Proposition 1. The algebraic variety $\mathcal{V}_{r,t}$ is isomorphic to the set of points of $PG(r^{t}-1,q^{t})$ with coordinates $(\mathbf{x}^{\alpha_{1}},\mathbf{x}^{\alpha_{2}},\ldots,\mathbf{x}^{\alpha_{r^{t}}})$, where $\mathbf{x}^{\alpha_{i}} = x_{0}^{\alpha_{0}^{(i)}} x_{1}^{\alpha_{1}^{(i)}} \cdots x_{r-1}^{\alpha_{r-1}^{(i)}}$, $(\alpha_{0}^{(i)},\alpha_{1}^{(i)},\ldots,\alpha_{r-1}^{(i)})$ is such that $\alpha_{k}^{(i)}$ is a sum of distinct powers of q, $\sum_{k=0}^{r-1} \alpha_{k}^{(i)} = q^{t-1} + q^{t-2} + \ldots + 1 \quad \forall i, \ (x_{0},x_{1},\ldots,x_{r-1}) \in PG(r-1,q^{t}) \text{ and it is contained}$ in a subgeometry isomorphic to $PG(r^{t}-1,q)$.

Proof. In $\Sigma^* = PG(rt - 1, q^t)$, consider the subgeometry $\Sigma = \{(x_0, \ldots, x_{r-1}, x_0^q, \ldots, x_{r-1}^q, \ldots, x_0^{q^{t-1}}, \ldots, x_{r-1}^{q^{t-1}}), x_i \in GF(q^t)\}$: Σ is the set of fixed points of the GF(q)-linear collineation

$$\sigma : (\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(t)}) \longmapsto (\mathbf{x}^{(t)q}, \mathbf{x}^{(1)q}, \dots, \mathbf{x}^{(t-1)q}), \mathbf{x}^{(i)} = (x_0^{(i)}, \dots, x_{r-1}^{(i)}) \in V(r, q^t)$$

of order t, hence $\Sigma = PG(tr - 1, q)$. Let $\Pi = \{(\mathbf{x}, \mathbf{0}, \dots, \mathbf{0}), \mathbf{x} \in V(r, q^t)\} \subset \Sigma^*$ and for any $P \in \Pi$ let $\ell(P) = \langle P, P^{\sigma}, \dots, P^{\sigma^{q^{t-1}}} \rangle$, then $\mathcal{S} = \{\ell(P), P \in \Pi\}$ is a Desarguesian spread of Σ (see [3]). Let $g_{rt,t}^*$ be the Grassmannian map of subspaces of rank t of Σ^* : by [14], page 250, the image under $g_{rt,t}^*$ of the subspaces of rank t of Σ is the Grassmannian of (t - 1)-subspaces of Σ . The image under $g_{rt,t}^*$ of $\ell(P)$ is the vector of all minors of order t of the matrix whose rows are the coordinate vectors of $P, P^{\sigma}, \ldots, P^{\sigma^{q^{t-1}}}$, that is the matrix $(\mathbf{x} \quad \mathbf{0} \quad \ldots \quad \mathbf{0})$

$$T(P) = \begin{pmatrix} \mathbf{n} & \mathbf{v} & \cdots & \mathbf{v} \\ \mathbf{0} & \mathbf{x}^{q} & \cdots & \mathbf{0} \\ \cdots & \cdots & \cdots & \cdots \\ \mathbf{0} & \cdots & \cdots & \mathbf{x}^{q^{t-1}} \end{pmatrix}, \text{ where } \mathbf{x} = (x_0, \dots, x_{r-1}) \in V(r, q^t) \text{ and}$$

$$\begin{split} P &= (\mathbf{x}, 0, \dots, 0) \in \Pi. \text{ The submatrices of order } t \text{ of } T(P) \text{ are such that every } \\ \text{column has only one non-zero entry, hence the determinant is 0 or it is in the } \\ \text{form } x_0^{\alpha_0^{(i)}} x_1^{\alpha_1^{(i)}} \cdots x_{r-1}^{\alpha_{r-1}^{(i)}}, \sum_{k=0}^{r-1} \alpha_k^{(i)} &= q^{t-1} + q^{t-2} + \ldots + 1, \, \alpha_k^{(i)} \text{ is a sum of distinct } \\ \text{powers of } q. \text{ This set of points is contained in a subgeometry isomorphic to } \\ PG(r^t - 1, q) \text{ by } [14], \text{ page 250.} \end{split}$$

Remark 1 We want to emphasize the analogy of $\mathcal{V}_{r,t}$ with the Veronese variety $\mathcal{V}(r-1,t,q^t)$. We have already mentioned that $\mathcal{V}_{r,t}$ is the intersection of $\Sigma_{r;r;...;r}$ (the Segre variety product of $t PG(r-1,q^t)$'s) with a suitable subgeometry $PG(r^t-1,q)$, more precisely, it is the Segre embedding of the points of type $(\mathbf{x}, \mathbf{x}^q, \ldots, \mathbf{x}^{q^{t-1}}) \in PG(r-1,q^t) \times PG(r-1,q^t) \times \cdots PG(r-1,q^t)$, whereas $\mathcal{V}(r-1,t,q^t)$ is the diagonal of $\Sigma_{r;r;...;r}$, i.e. is the Segre embedding of the points of type $(\mathbf{x}, \mathbf{x}, \ldots, \mathbf{x}) \in PG(r-1,q^t) \times PG(r-1,q^t) \times \cdots PG(r-1,q^t)$. Moreover, $\mathcal{V}(r-1,t,q^t)$ is defined by the vectors of all monomial of degree t in $x_0, x_1, \ldots, x_{r-1}$, whereas $\mathcal{V}_{r,t}$ is defined by the vectors of all monomials of degree $1 + q + \ldots q^{t-1}$, but the only powers admitted for x_i are of type $q^{\alpha_1} + \ldots + q^{\alpha_k}, \alpha_i \neq \alpha_j \quad \forall i \neq j$.

Example 1 The variety $\mathcal{V}_{3,2}$ is the image of the map $\alpha : (x_0, x_1, x_2) \in PG(2, q^2) \longmapsto (x_0^{q+1}, x_0x_1^q, x_0^qx_1, x_1^{q+1}, x_1x_2^q, x_1^qx_2, x_2^{q+1}, x_2x_0^q, x_2^qx_0) \in PG(8, q^2).$ Let σ be the following GF(q)-linear collineation of order two:

 $(y_0, y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8) \in PG(8, q^2) \mapsto (y_0^q, y_2^q, y_1^q, y_3^q, y_5^q, y_4^q, y_6^q, y_8^q, y_7^q) \in PG(8, q^2).$

The points of $\mathcal{V}_{3,2}$ are fixed by σ and hence $\mathcal{V}_{3,2}$ is contained in the PG(8,q) defined by σ (compare with [4]).

Example 2 The variety $\mathcal{V}_{2,4}$ is the image of the map $\alpha : (x, y) \in PG(1, q^4) \mapsto (x^{q^3+q^2+q+1}, x^{q^2+q+1}y^{q^3}, x^{q^3+q^2+q}y, x^{1+q^3+q^2}y^q, x^{q+1+q^3}y^{q^2}, x^{q+1}y^{q^3+q^2}, x^{q^2+q}y^{1+q^3}, x^{q^3+q^2}y^{q+1}, x^{1+q^3}y^{q^2+q}, x^{q^2+1}y^{q^3+q}, x^{q^3+q}y^{1+q^2}, xy^{q^3+q^2+q}, x^{qy^{1+q^3+q^2}}, x^{q^2}y^{q+1+q^3}, x^{q^3}y^{q^2+q+1}, y^{q^3+q^2+q+1}) \in PG(15, q^4).$ Let τ be the following GF(q)-linear collineation of order four: $(z_0, z_1, \ldots, z_{15}) \in PG(15, q^4) \mapsto (z_0^q, z_4^q, z_1^q, z_2^q, z_3^q, z_6^q, z_7^q, z_{10}^{q^3}, z_9^{q^3}, z_{14}^q, z_{11}^q, z_{12}^q, z_{13}^q, z_{15}^q)$. The points of $\mathcal{V}_{2,4}$ are fixed by τ and hence $\mathcal{V}_{2,4}$ is contained in the PG(15, q) defined by τ .

Remark 2 There is a group isomorphic to $PGL(r, q^t)$ acting 2-transitively on $\mathcal{V}_{r,t}$ ([14], Corollary 1).

The following result is a generalization of Theorem 2.6 of [13], where Lunardon proves that a subline PG(1,q) of $PG(1,q^t)$ corresponds in $\mathcal{V}_{2,t}$ to a normal rational curve that is the complete intersection of $\mathcal{V}_{2,t}$ with a suitable t-dimensional space. We keep the notation of the proof of the previous proposition.

Theorem 2. Let g be the map $P \in PG(r-1,q^t) \mapsto g_{rt,t}(\ell(P))$. The image under g of a subgeometry $PG(r-1,q^s), s|t$, is the intersection of the Segre product of s Veronese varieties $\mathcal{V}(r-1,\frac{t}{s},q^s)$ with a $PG(\binom{r-1+\frac{t}{s}}{s}^s-1,q)$ and it is the complete intersection of $\mathcal{V}_{r,t}$ with a suitable space of rank $\binom{r-1+\frac{t}{s}}{t}^s$. In particular, the image of a subgeometry PG(r-1,q) is a Veronese variety $\mathcal{V}(r-1,t,q)$ and it is the intersection of $\mathcal{V}_{r,t}$ with a suitable space of rank $\binom{r-1+t}{t}$.

Proof. Since all the subgeometries are projectively equivalent and by Remark 2, we can assume that the points of $PG(r-1, q^s)$ are the ones with coordinates in $GF(q^s)$. If $P \in PG(r-1, q^s)$, then the image under the Grassmannian map of $\ell(P)$ is the vector of all minors of order t of the matrix

	/ x	0		0				0	0		0)
T(P) =	0	\mathbf{x}^q		0				0	0		0
				•••	• • •						
	0	0		$\mathbf{x}^{q^{s-1}}$				0	0		0
		• • •	•••	• • •	•••	• • •	•••	•••	• • •	•••	
		• • •	•••	• • •	• • •	• • •	• • •	• • •	• • •	• • •	
		• • •	•••	• • •	• • •	• • •	• • •	• • •	•••	• • •	
		• • •	•••			• • •	• • •	• • •	• • •	•••	
	0	0		0				х	0		0
	0	0		0				0	\mathbf{x}^q		0
	0 /	0		0				0	0		$\mathbf{x}^{q^{s-1}}$

where $\mathbf{x} = (x_0, \dots, x_{r-1}) \in V(r, q^s)$. Next, consider the following matrix:

	(\mathbf{x}_1)	0		0				0	0		0)
$T(P)^* =$	0	\mathbf{x}_2		0		• • •		0	0		0
	0	 0	 	\mathbf{x}_s	 	 	· · · ·	 0	 0	 	 0
										• • •	
		• • •	• • •	• • •	• • •	• • •	• • •		• • •	• • •	
		• • •	• • •	• • •	• • •	•••	•••	•••	• • •	•••	• • •
							• • •				
	0	0		0				\mathbf{x}_1	0		0
	0	0		0				0	\mathbf{x}_2		0
	0 /	0		0		• • •		0	0		\mathbf{x}_s /

where $\mathbf{x} = (x_0, \dots, x_{r-1}) \in V(r, q^s)$; the vectors of all the minors of $T(P)^*$ is the Segre product of *s* Veronese varieties $\mathcal{V}(r-1, \frac{t}{s}, q^s)$ and the minors of T(P)are the points of this variety fixed by the GF(q)-linear collineation $\sigma^{\frac{t}{s}}$. Hence, as in [14] page 250, this variety is $\mathcal{V}(r-1, \frac{t}{s}, q^s) \cap \Delta$, where $\Delta = PG((\binom{r-1+\frac{t}{s}}{s})^s - 1, q)$.

2.1 The case r = 2

In this section, we focus on the case r = 2. In [14], Theorem 1, Lunardon proves that the algebraic variety $\mathcal{V}_{r,t}$ is a cap of $PG(r^t - 1, q)$, i.e. any three points of $\mathcal{V}_{r,t}$ are not collinear. In the case r = 2, we can prove a stronger result, but we first need a technical lemma. **Lemma 1.** Let $S = \{\alpha_1, \alpha_2, ..., \alpha_n\}$ be a set of n distinct non-negative integers, with $n \leq t$ and $\alpha_i < t \forall i$. Let M be the $(n + 1) \times 2^n$ matrix over $GF(q^t)$, such that the columns of M are in bijective correspondence with the elements of the power set of S, namely $\mathcal{P}(S)$, and $M_{i,j} = x_i^{v(j)}$, where $v(j) = q^{\alpha_{i_1}} + ... + q^{\alpha_{i_k}}$ and $\{i_1, \ldots, i_k\}$ is the j-th element of $\mathcal{P}(S)$ (by convention, if the j-th element is the empty set, then $x_i^{v(j)} = 1$). If $x_h \neq x_k \forall h \neq k$, then the $GF(q^t)$ -rank of M is n + 1.

Proof. We prove the statement by induction on n. For n = 1, $M = \begin{pmatrix} 1 & x^{q^{\alpha}} \\ 1 & y^{q^{\alpha}} \end{pmatrix}$ and the statement is obviously true. Let now n > 1 and suppose it is true for n-1. We assume that the first column is the all-one column. After adding to every column a suitable linear combination of the other ones, we can get a matrix M' such that the first row is the vector $(1, 0, \ldots, 0)$ and $M'_{i,j} = (x_i - x_1)^{v(j)}$, $\forall i = 2, \ldots, n+1$ and $\forall j = 1, \ldots, 2^n$. Consider the submatrix of components $M'_{i,j}$ with $i \ge 2$ and j such that the j-th element of $\mathcal{P}(S)$ contains α_1 ; under the hypothesis that $x_i \ne x_1 \ \forall i \ge 2$, we can divide each row by $(x_i - x_1)^{\alpha_1}$ and in this way we get a $n \times 2^{n-1}$ matrix over $GF(q^t)$ determined by the set $S' = S \setminus \{\alpha_1\}$: by the induction hypothesis the rank of this matrix is n and so the rank of M is n + 1.

Theorem 3. Any t + 1 points of $\mathcal{V}_{2,t}$ are in general position, i.e. any t + 1 points of $\mathcal{V}_{2,t}$ span a t-dimensional space.

Proof. The points of $\mathcal{V}_{2,t}$ are $\{(x^{\alpha_1}, x^{\alpha_2}, \ldots, x^{\alpha_{2t}}), \alpha_i \text{ are all the possible sums of distinct powers <math>q^i, 0 \leq i \leq t-1\} \cup \{P = (0, 0, \ldots, 0, 1)\}$. Since by Remark 2 there is a transitive group fixing $\mathcal{V}_{2,t}$, we can assume that the t+1 points we consider are distinct from P. Let M be the matrix the rows of which are the coordinate vectors of t+1 points of $\mathcal{V}_{2,t} \setminus \{P\}$. We can apply the Lemma 1 to M with n = t, hence the t+1 rows vectors of M are $GF(q^t)$ -linearly independent and so they are also GF(q)-linearly independent.

Remark3 This is another analogy with the Veronese variety: $\mathcal{V}(1,t)$ is a normal rational curve and it has the property that any t + 1 points span a t-dimensional space.

The next theorem is about linear sets of $PG(1, q^t)$. In Section 1 we have recalled the three different ways to define a linear set of a projective geomerty, but for our proof we shall use the following: a linear set of $PG(1, q^t)$ of rank r is the set of the elements of S, where S is a Desarguesian (t-1)-spread of PG(2t-1,q), with non-empty intersection with a subspace of PG(2t-1,q) of dimension r-1; in this case, a linear set is a proper one when $r \leq t$.

We need to recall the following property of the Grassmannian. Let \mathcal{G} be the Grassmannian of the (t-1)-subspaces of PG(2t-1,q): \mathcal{G} is in PG(N-1,q), where $N = \binom{2t}{t}$. By [10], page 109, in PG(N-1,q) there exists a polarity \bot , called the *fundamental polarity* of \mathcal{G} , such that for every (t-1)-space Π , the (t-1)-spaces with non-empty intersection with Π correspond to the points of $\mathcal{G} \cap g(\Pi)^{\bot}$, where g is the Grassmannian map.

Theorem 4. A linear set L of rank $r \leq t$ of $PG(1,q^t)$ corresponds to the points of $\Pi \cap \mathcal{V}_{2,t}$, where Π is a suitable subspace of the $PG(2^t - 1,q)$ containing $\mathcal{V}_{2,t}$. Moreover, if r = t, then Π is a hyperplane of $PG(2^t - 1,q)$; if r = t - 1, then Π is a subspace of codimension t + 1 of $PG(2^t - 1,q)$. Proof. The points of L correspond to the elements of S intersecting an (r-1)-dimensional subspaces Ω of PG(2t-1,q). An element $\pi \in S$ intersects Ω if and only if π intersects all the (t-1)-spaces through Ω . In PG(N-1,q), let Λ be the (2^t-1) -dimensional subspace containing $\mathcal{V}_{2,t}$ and let $\mathcal{G}' = \{g(\pi), \Omega \subseteq \pi\}$: by [10], Corollary 1 page 117, \mathcal{G}' is projectively equivalent to the Grassmannian of the (t-r-1)-spaces of PG(2t-r-1,q), hence $\langle \mathcal{G}' \rangle = \Sigma$ is a $\binom{2t-r}{t-r} - 1$ -space. Hence, the points of L correspond to the points of $\mathcal{V}_{2,t} \cap \Sigma^{\perp}$. If r = t, then Σ is a point and $\mathcal{V}_{2,t} \cap \Sigma^{\perp}$ is a hyperplane section of $\mathcal{V}_{2,t}$ ($\mathcal{V}_{2,t}$ can not be contained in the hyperplane because not all the elements of S can intersect a given (t-1)-space). If r = t-1, then \mathcal{G}' is a maximal subspace of \mathcal{G} and it has dimension t. The space Λ^{\perp} has empty intersection with \mathcal{G} , since no (t-1)-space can intersect all the spread elements, hence $\Lambda^{\perp} \cap \mathcal{G}' = \emptyset$, and so $\Lambda \cap \mathcal{G}'^{\perp}$ is the minimum possible, i.e. it is a subspace of codimension t+1 of Λ .

The following result is a generalization of the main result of Section 3 of [12], where Lavrauw and Van de Voorde show how a GF(q)-linear set of $PG(1, q^t)$ can intersect a subline PG(1, q).

Proposition 5. A GF(q)-linear set L of $PG(1, q^t)$ either contains a fixed subline $PG(1, q^s), s|t$, or it intersects it in at most $\frac{t}{s}(q^{s-1} + q^{s-2} + \ldots + 1)$ points.

Proof. The points of *L* correspond to the points of the intersection of $\mathcal{V}_{2,t}$ with a suitable subspace. The variety $\mathcal{V}_{2,t}$ consists of the points $(\mathbf{x}^{\alpha_1}, \mathbf{x}^{\alpha_2}, \dots, \mathbf{x}^{\alpha_m}) \in PG((1+\frac{t}{s})^{s}-1, q)$, where $\mathbf{x}^{\alpha_1} = x_0^{\alpha_0^{(i)}} x_1^{\alpha_1^{(i)}}, (\alpha_0^{(i)}, \alpha_1^{(i)})$ is such that $\alpha_k^{(i)}$ is a sum of distinct powers of q, $\alpha_0^{(i)} + \alpha_1^{(i)} = \frac{t}{s}(q^{s-1}+q^{s-2}+\ldots+1) \quad \forall i, \mathbf{x}^{\alpha_1} \neq (\mathbf{x}^{\alpha_1})^{q^h} \quad \forall i \neq j, \forall h = 0, \dots, t-1$, and $(x_0, x_1) \in PG(1, q^s)$. Hence, if a hyperplane section of $\mathcal{V}_{2,t}$ does not contain the image of $PG(1, q^s)$, then it consists of the points corresponding to the points of $PG(1, q^s)$ that satisfy a homogeneous equation of degree $\frac{t}{s}(q^{s-1}+q^{s-2}+\ldots+1)$ and so they are at most $\frac{t}{s}(q^{s-1}+q^{s-2}+\ldots+1)$. □

Acknowledgments

The author thanks G. Lunardon for valuable discussions about the topic of this article.

References

- A. Barlotti and J. Cofman, Finite Sperner spaces constructed from projective and affine spaces, *Abh. Math. Sem. Univ. Hamburg* 40 (1974), pp. 230–241.
- [2] R.H. Bruk, Construction problems in finite projective spaces, in *Combina*torial Mathematics and its Applications, Chapel Hill, 1969, pp. 426–514.
- [3] L.R. Casse and C.M. O'Keefe, Indicator sets for t-spreads of PG((s + 1)(t + 1) 1, q), Boll. Un. Mat. Ital. B, 4 (1990), pp. 13–33.
- [4] A. Cossidente and A. Siciliano, On the geometry of the Hermitian matrices over finite fields, *European J. of Combinatorics*, 22 (2001), pp. 1047–1051.

- [5] A. Cossidente, D. Labbate and A. Siciliano, Veronese varieties over finite fields and their projections, *Des. Codes Cryptogr.*, 22 (2001), pp. 19–32.
- [6] P. Dembowski, *Finite Geometries*, Springer, Berlin–New York, (1968).
- [7] B. Hassett, Introduction to Algebraic Geometry, Cambridge University Press, Cambridge (2007).
- [8] J.W.P. Hirschfeld, *Finite Projective Spaces of Three Dimension*, Oxford University Press, USA (1986).
- [9] J.W.P. Hirschfeld, Projective Geometries over Finite Fields, Oxford University Press, New York (1998).
- [10] J.W.P. Hirschfeld and J.A. Thas, *General Galois Geometries*, Oxford University Press, New York (1991).
- [11] W.M. Kantor, Ovoids and translation planes, Can. J. Math., 36 (5) (1982), pp. 1195–1207.
- [12] M. Lavrauw and G. Van de Voorde, On linear sets on a projective line, Des. Codes Cryptogr., 56 (2010), pp 89–104.
- [13] G. Lunardon, Planar fibrations and algebraic subvarieties of the Grassmann variety, *Geometriae Dedicata*, 16 (1984) 3, pp. 291–313.
- [14] G. Lunardon, Normal Spreads, Geometriae Dedicata, 75 (1999), pp. 245– 261.
- [15] O. Polverino, Linear sets in finite projective spaces, Discrete Math., 22 (2010), pp 3096–3107.
- [16] B. Segre, Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane, Ann. Mat. Pura Appl., 64 (1964), pp. 1–76.

V. Pepe

DEPARTMENT OF MATHEMATICS, GHENT UNIVERSITY, KRIJGSLAAN 281-S22, 9000 GHENT, BELGIUM valepepe@cage.ugent.be