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Abstract

The parallel rule activation and rule synthesis (PRAS) model is a computational model

for generalization in category learning, proposed by Vandierendonck (1995). An important

concept underlying the PRAS model is the distinction between primary and secondary

generalization. In Vandierendonck (1995), an empirical study is reported that provides

support for the concept of secondary generalization. In this paper, we re-analyze the data

reported by Vandierendonck (1995) by fitting three different variants of the Generalized

Context Model (GCM) which do not rely on secondary generalization. Although some of

the GCM variants outperformed the PRAS model in terms of global fit, they all have

difficulty in providing a qualitatively good fit of a specific critical pattern.
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Secondary generalization in categorization: an

exemplar-based account

Perhaps the most important work of André Vandierendonck in the field of

categorization and concept learning is his paper entitled “A parallel rule activation and

rule synthesis model for generalization in category learning” (Vandierendonck, 1995). In

this paper, a computational model of category learning is proposed that –certainly at its

time– was unlike any other model in the categorization field. The parallel rule activation

and rule synthesis (PRAS) model is a production model, similar to Anderson’s ACT

model (Anderson, 1978, 1983), where information is stored in a special if-then format

called production rules. However, during the late eighties and early nineties, most of the

computational models (both in categorization and elsewhere) were so-called connectionist

models. Indeed, in this period, several highly influential connectionist models had been

published in the categorization literature (Gluck & Bower, 1988; Kruschke, 1992). There

was a wide-spread sentiment during that period among many modelers (including the first

author of this paper at that time) that connectionist models were the future. Other types

of models, including the PRAS model, did not receive so much attention. Perhaps, this is

the reason why some important ideas underlying the PRAS model have been somewhat

ignored in the categorization literature. One such idea that I will focus on in this paper is

the idea of secondary generalization. Briefly, secondary generalization is generalization

that stems from abstract information, while primary generalization is generalization that

stems from exemplar information. In Vandierendonck (1995), an empirical study was

presented that supported the idea of secondary generalization. The empirical evidence was

fairly convincing, and still poses a challenge for models that only rely on primary

generalization.

In this paper, we will re-analyze the data reported by Vandierendonck (1995).

Because we will often refer to this paper and its dataset, we will refer to the
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Vandierendonck (1995) paper as the ‘PRAS paper’, and the dataset in that paper will be

referred to as the ‘PRAS dataset’. The goal of this paper is to give an exemplar-based

account of the results in the PRAS paper. We will push the exemplar models to the limit

(and perhaps even over the limit) in an attempt to fit the PRAS data without relying

(explicitly) on secondary generalization. If we succeed, the exemplar theorists may cry

victory once again. If we fail, the empirical study of the PRAS paper will stand as one of

a few interesting exceptions where the exemplar theory falls short, and categorization

modelers should consider the implications for their models.

The paper is organized as follows. First, we will briefly review exemplar and

abstraction based models in categorization, including hybrid models like the PRAS model.

Next, we discuss the concept of secondary generalization and describe the empirical study

that was reported in the PRAS paper. We then give an overview of the exemplar models

that we will fit to this dataset. Finally, we will reflect on the results of our model fitting

experiment and their implications for old and new models of categorization.
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Exemplars, Abstraction and the PRAS model

Individual members of a category are called exemplars. There is a strong tradition

in the categorization literature which assumes that a category is simply represented by a

set of exemplars which are known to belong to that category (Hayes-Roth & Hayes-Roth,

1977; Medin & Schaffer, 1978; Nosofsky, 1984; Estes, 1986). Category learning then is

merely a matter of storing these exemplars if they present themselves as a member of the

category (hence, implicitly assuming that we can only learn from ‘labeled’ exemplars).

Many different flavors of exemplar theory have been proposed, but importantly, at the

heart of every model based on exemplar theory is the idea that no abstraction takes place

during category learning. Categorizing a new target stimulus is solely based on the set of

stored exemplars.

A different perspective is taken by so-called abstraction models. In these models,

category level information is inferred from the observed exemplars by some sort of

mechanism for abstraction. For example, in prototype models, a category is represented by

a single prototype, a special (possibly unobserved) exemplar that captures the central

tendency of the individual exemplars that belong to that category (Homa, 1984; Reed,

1972; Posner & Keele, 1968; Minda & Smith, 2001; Smith & Minda, 2002). After learning,

the prototype has replaced the individual exemplars and forms the only basis for

categorizing future stimuli.

A second type of abstraction are rules, which can often be verbally expressed

(Trabasso & Bower, 1968; Bourne, 1982). Rules can be one dimensional, as for example

“all red objects belong to category A”, but multidimensional rules can be constructed as

well. In a rule-based model of categorization, the rules have replaced the exemplars, and

the categorization of new stimuli is solely based on these rules. During learning, new rules

can be constructed, and existing rules can be adapted, capturing the common features of

exemplars belonging to the same category.
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Inevitably, hybrid models have been proposed where the representation of a

category can consist of both exemplar information and abstract information. Models that

combine exemplars and prototypes have been proposed by Medin, Altom, and Murphy

(1984) and Busemeyer, Dewey, and Medin (1984). Hybrid models involving both

exemplars and rules have been proposed by Erickson and Kruschke (1998) and Nosofsky,

Palmeri, and McKinley (1994), among others.

The PRAS model of Vandierendonck (1995) is also a hybrid model. In the PRAS

model, both exemplar-based and rule-based information can be used to represent a single

category. Both types of information are stored by means of production rules (Anderson,

1983). In the context of categorization, production rules can be considered as if-then

statements where the if-part contains a description of an exemplar or exemplar features,

and where the then-part implies a category assignment. For example, a production rule

for classifying animals as birds or non-birds could be:

IF the animal has feathers

AND the animal has wings

THEN classify it as a bird

The beauty of a production system is that the condition part (the if-part) can contain

either a highly specific description of a unique exemplar, or it can describe a set of

features that apply to a larger set of exemplars (for example “has wings”). By combining

different types of information for the condition part, a production system is an ideal

environment for building a hybrid model of categorization, where both exemplar-level and

more abstract information can be stored in a similar representational format. The

representation of a single category may consist of many (possibly conflicting) production

rules, at different levels of abstraction. When a target stimulus must be classified, all

these production rules may become activated (hence the name parallel rule activation),

albeit with different strengths. Each production rule provides evidence for a certain
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category. When a category assigment must be made, the production system collects the

accumulated evidence for each of the competing categories. Finally, a decision rule

converts the evidence for the different categories into a category decision, often in a

probabilistic manner.

A vital feature of production systems is that they are capable of making inferences

based on experience. Borrowing the example used in Vandierendonck (1995): if a

production system learns that a specific brown animal is a horse, and it learns that a

specific black animal is also a horse, it may infer that a horse can have any color.

Combining information of two production rules into a new production rule is called rule

synthesis. Inferring that a horse can have any color is of course a rather crude

(over)generalization. In the PRAS model, a more subtle type of generalization is used.

For example, after observing both a black and a brown horse, the PRAS model would

typically infer that the color of a horse is somewhere between brown and black. The exact

range of the generalization is governed by a free parameter in the model (i.e. the ρ

parameter, see page 445 in the PRAS paper). This type of generalization is not confined

to a single dimension. If several dimensions are involved, the PRAS model assumes that a

rectangular area in the psychological space is constructed in between the exemplars over

which the generalization takes place (see Figure 1 in the PRAS paper).

To make things more concrete, suppose that our exemplars vary in only two

dimensions (as will be the case in the empirical example below). A typical production rule

in the PRAS model has the following form:

IF x ∈ [a1.min, a1.max]

AND x ∈ [a2.min, a2.max]

THEN classify x in category A

where x is a new target stimulus, and a1.min and a1.max are the lower and upper end of a

range in the psychological space along the first dimension. Note that if the values of a1.min
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and a1.max are minus and plus infinity respectively, the condition is always fulfilled. On

the other hand, if am.min = am.max for every dimension m, the range is confined to a single

point in the psychological space. This is how exemplars are represented in the PRAS

model. The example illustrates an important feature of the PRAS model: unlike other

hybrid models that combine exemplar and rule information, there is no separate system or

submodel for the exemplar part and the abstracted (rule) part of the system. Instead, the

representation of exemplar information and abstracted information forms a continuum.

On this continuum, examplars are represented by zero-range condition parts. By widening

the ranges over one or more dimensions, more general (and hence more abstract)

information is gradually formed, all within the same representational format.

Primary and Secondary generalization and the PRAS dataset

Once the PRAS model has been trained to categorize a set of training exemplars,

how does the model proceed to categorize a new target stimulus? Suppose for simplicity

that the representation of a category currently consists of a single production rule where

the condition part corresponds to a specific examplar:

IF x ∈ [6, 6] (first dimension)

AND x ∈ [5, 5] (second dimension)

THEN classify x in category A

where the coordinates (6, 5) correspond with the location of a stored exemplar in a

two-dimensional psychological space. What happens if a new stimulus with coordinates,

say, (5, 4) is presented to the system? The coordinates do not perfectly match the stored

exemplar in the production rule. However, the coordinates are fairly close together, and

therefore, the target stimulus and the stored exemplar are perceived to be rather similar.

A fundamental observation in the (category) learning literature is that similar stimuli lead

to similar responses. This is known as generalization and its properties have been studied
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extensively in the classical conditioning literature (Mostofsky, 1965; Ghirlanda & Enquist,

2003). In our example, generalization would suggest that a stimulus with coordinates

(5, 4) might still trigger the response part of the production rule. But how do we define

‘similar’? It seems natural that stimuli that are further apart in the psychological space

are less similar than stimuli that are closer together. Shepard (1957) suggested that

similarity between two exemplars i and j is an exponential decay function of their

psychological distance:

ηij = exp(−c ∗ dij)

where c determines the steepness of the exponential curve. This relationship has been

empirically observed in so many different studies that the relationship was coined the

universal law of generalization (Shepard, 1987). The distance measure in this formula is

often defined by the weighted Minkowski distance:

dij =

(
M∑
m=1

wm |xim − xjm|r
)1/r

where M is the number of dimensions, xim and xjm are the coordinates in psychological

space along the mth dimension, wm is a nonnegative weight expressing the degree of

attention to the mth dimension (using the constraint
∑

k wm = 1), and r defines the

metric. If r = 2, we obtain the Euclidean distance metric. However, in the PRAS paper

and in this paper, a city-block metric is assumed and r = 1. In the upper panel of

Figure 1, a typical generalization gradient is shown for the first dimension of the stored

exemplar in our example production rule.

Insert Figure 1 about here

But suppose now that our production rule contains a non-zero range on one of the

two dimensions:



Secondary generalization in categorization 10

IF x ∈ [4, 8] (first dimension)

AND x ∈ [5, 5] (second dimension)

THEN classify x in category A

If the coordinates of a target stimulus, say (6, 5), fall inside the range specified in the

condition part of the production rule, the distance between the target stimulus and the

stored information is defined to be zero (dij = 0). Therefore, all target stimuli that fall

inside this range will trigger the same respons. This type of generalization, which is based

on abstracted information, is called secondary generalization. In contrast, generalization

that is based on a single exemplar is called primary generalization. If the coordinates of a

target stimulus, say (3, 5), fall outside the range specified in the condition part of the

production rule, we need to compute the distance to the nearest boundary of that range.

In this case, dij > 0, and similarity is again computed by the univeral law of

generalization. Since we only compute the distance from the nearest boundary (and not

from the middlepoint) of the range, it is said that in these cases, both primary and

secondary generalization operate simultaneously. In the lower panel of Figure 1, both

primary (the gradient curves at the left and the right) and secondary generalization (the

plateau in the middle) is shown for the first dimension of the abstracted information in

our example production rule.

But do we really need a secondary generalization mechanism for learning categories?

The PRAS paper describes an empirical study that was specifically designed to answer

this question. We will briefly describe the setup and main results of the study. For more

details, we refer the reader to the PRAS paper.

Consider the stimulus pattern layout in Figure 2. The figure shows the positions of

9 stimuli in a two-dimensional space. The numbers in squares indicate category P

exemplars. The numbers in circles indicate category Q exemplars. The category

acquisition phase consisted of five blocks. In each block, all four training exemplars were
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shown in a random order. During this phase, feedback showing the correct category label

was given after each trial. The training phase was followed by a transfer phase where the

complete set of nine exemplars was presented five times in a random order. During the

transfer phase, no feedback was given.

Insert Figure 2 about here

Three variants of this task were used. In the first variant, the layout as shown in

Figure 2 was used. This is called the R0 condition. In a second variant, the stimulus

layout was rotated thirty degrees counterclockwise (the R30 condition). In a third variant,

the stimulus layout was rotated sixty degrees counterclockwise (the R60 condition). The

critical test patterns were pattern 5 and pattern 6. To see why these test patterns are

critical, consider pattern 5 in Figure 2. Note that patterns 3 and 4 are far apart. If no

abstractions are formed, the critical pattern 5 would be more similar to the top exemplars

(pattern 1 and 2) than to the bottom exemplars. Therefore, an exemplar-based account

would predict that pattern 5 is classified more often as a P pattern, while an

abstraction-based model would predict that pattern 5 is classified more often as a Q

pattern. The only way out for an exemplar model is to stretch dimension 2 (and hence

shrink dimension 1) to increase the intrasimilarity of the two category Q exemplars.

However, in the rotated conditions (R30 and R60), stretching and shrinking the

dimensions would not help. Therefore, if in these rotated sets, pattern 5 is indeed

classified more often in the Q category, this may provide evidence in favour of an

abstraction-based representation.

Sixty-eight first-year psychology students participated in the PRAS study.

Twenty-four subjects were assigned to the R0 task, twenty-four subjects were assigned to

the R30 task, and twenty subjects were assigned to the R60 task. The results are shown in
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the first column of Table 2 in the PRAS paper, and again for convenience in the first

column of Tables 1, 2 and 3 in the current paper. These observed proportions are based

on the total number of category P responses during the transfer phase, pooled over blocks

and subjects. Interestingly, the critical pattern 5 was only assigned to category P in about

10.0%, 38.3% and 9% of the cases for the R0, R30 and R60 sets respectively. In the PRAS

paper, three variants of the PRAS model and the standard GCM model were fit to the

data. The first variant of the PRAS model is a primary generalization (PG) only mode,

where no abstractions are made. In the second variant of the PRAS model, secondary

generalization (SG) was obligatory whenever possible. In the third variant, secondary

generalization was probabilistic (FG), and the probability of making an abstraction

depended on a free parameter (the π parameter, see page 448 in the PRAS paper). The

fits of the different models are discused at length and summarized in Table 2 in the PRAS

paper. Briefly, the conclusions were that in the R0 set, there was little need for a

secondary generalization process. The fits of the GCM and PG models were very similar

to the fits of the SG and FG models, including the predictions for the critical pattern 5.

However, in the R30 condition, the fits of the primary generalization only models (GCM

and PG) were clearly inferior when compared to the secondary generalization models (SG

and especially FG). Indeed, for the critical pattern 5, only the predictions of the FG

model were more or less in line with the observed proportions. Similarly, in the R60

condition, the SG and FG models yielded the best predictions. Overall, in the R30 and

R60 conditions, the predictions of the models that allow for secondary generalization were

better than the exemplar based models, suggesting that –at least in these types of

categorization tasks– there is a need for an abstraction mechanism in order to

qualitatively explain subjects’ categorization behaviour.
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Alternative exemplar models

The goal of this paper is to re-analyze the PRAS data using a larger variety of

exemplar models. In what follows, we will describe three variants of the standard GCM

that have not been considered in the original PRAS paper. Two of these variants have

been described elsewhere (Ashby & Maddox, 1993; De Schryver, Vandist, & Rosseel,

2009), a third variant has been constructed solely for the purpose of this paper. But before

we describe the three variants of the GCM, we first describe its standard formulation.

The Standard GCM model

In what follows, we will assume a two-category task with categories P and Q and

two-dimensional stimuli. According to the standard formulation of the GCM (Nosofsky,

1984, 1986), the probability that stimulus i is classified in category P is given by

P (P |i) =

bP
∑
j∈P

ηij

bP
∑
j∈P

ηij + (1− bP )
∑
j∈Q

ηij
, (1)

where bP (0 ≤ bP ≤ 1) is the category P response bias and ηij denotes the similarity

between target stimulus i and stored exemplar j. The similarity measure is assumed to be

related to the psychological distance dij by,

ηij = exp(−c ∗ (dij)q), (2)

where q = 1 yields an exponential function and q = 2 yields a Gaussian function. The

parameter c (0 ≤ c <∞) is interpreted as a sensitivity parameter reflecting overall

discriminability in the psychological space. In a two-dimensional space, the psychological

distance between stimuli i and j is given by

dij = [w1 |xi1 − xj1|r + (1− w1) |xi2 − xj2|r]1/r, (3)

where xi1 and xi2 are the psychological values of exemplar i on the two dimensions. The

parameter w1 (0 ≤ w1 ≤ 1) is the attention weight for dimension 1. The exponent r
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defines the distance metric (r = 1: city-block-metric; r = 2: Euclidean metric). In this

paper, we have assumed q = r = 1. The standard GCM has three free parameters: the

response bias bP , the attention weight w1, and the sensitivity parameter c.

Alternative model 1: GCM-γ

An important extension of the GCM was proposed by Ashby and Maddox (1993).

By including a response-scaling parameter (γ), the GCM-γ can account for more

deterministic response patterns. Technically, the only change in this model is the response

rule which is now defined as:

P (P |i) =

bP
∑
j∈P

(ηij)γ

bP
∑
j∈P

(ηij)γ + (1− bP )
∑
j∈Q

(ηij)γ
. (4)

The GCM-γ model has four free parameters: bP , w1, c and γ. If γ = 1, we again obtain

the standard formulation of the GCM. In this case, the decision rule assumes that

observers respond probabilistically by “matching” to the relative summed similarities of

each category. On the other hand, when γ > 1, observers respond more deterministically

with the category that yields the larger summed similarity.

The response-scaling parameter (γ) seems to play a crucial role if exemplar-based

models are contrasted with abstraction-based models. For example, in the work of Smith

and colleagues (Minda & Smith, 2001; Smith & Minda, 2002), a number of studies were

reported that supported the prototype model. In their work, the standard formulation of

the GCM was used as a representative model for the exemplar account. However, their

results were heavily critized by Nosofsky and Zaki (2002). They showed that if the

GCM-γ variant was used instead of the standard GCM, all the experimental results

reported by Smith et. al. could be accounted for.

In the PRAS paper, the standard GCM model was unable to qualitatively fit the

observed data in the R30 and R60 conditions. This finding was used to support the idea
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of secondary generalization. But perhaps, by extending the GCM with a response-scaling

parameter, an exemplar-based model relying on primary generalization only might be able

to fit the data after all.

Alternative model 2: GCM-REX

The core assumption of exemplar models is that a category is represented by a set of

exemplars. In practice, most applications of exemplar theory have implicitly or explicitly

assumed that all exemplars that were encountered during a training phase are stored and

become part of the category representation, even if this number is excessively high. For

example, in the McKinley and Nosofsky (1995) study, 4000 exemplars were presented

during a category learning task, and all exemplars were assumed to be part of the

category representations.

However, it may be the case that instead of a full set of exemplars, only a subset of

these exemplars is used to represent a category. This hypothesis has led to the

development of a family of exemplar models collectively called Reduced Exemplar (REX)

models (Rosseel, 2002; De Schryver et al., 2009). Here, we will use the most basic variant,

called ‘Rex Leopold I’. Rex Leopold I is designed to be identical to the GCM, with the

only exception that the full set of exemplars can be replaced by a reduced set of exemplars.

The remaining exemplars form a true subset of the full set. Several other variants of the

Rex family have been developed (e.g. Rex Leopold II, Rex Albert I), but since we only use

one version, we will refer to it as GCM-REX in the remainder of this paper.

Originally, the REX models were designed to reduce the set of exemplars in large

datasets. In addition, REX models are usually fit to individual data, since it is assumed

that the reduced exemplar sets may differ among individual subjects. Nevertheless, we

had some limited success in datasets where the responses are aggregated over individuals,

and the number of exemplars is relatively small.
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In this dataset, there are only two training exemplars per category. That means

there are only 9 possible subsets (including the full set). For each subset, we have fitted

the standard GCM (where the full set was replaced by a reduced set), and for each

condition, we only retain the subset with the best fit (in terms of loglikelihood).

Implicitly, the GCM-REX model adds an extra (binary) free parameter for each exemplar:

it is either included in the representation or not. Therefore, the GCM-REX model has

seven free parameters: bP , w1, c, and 4 binary parameters for the training exemplars.

Note that we have not included the γ parameter when fitting the GCM-REX models to

the data. The reason is that we do not want to confound the various extensions of the

standard GCM. In the first variant, we only change the response rule. In this variant, we

only allow for training exemplars to be removed. In the third variant, we allow for

exemplars to move around in the psychological space.

Alternative model 3: GCM-MOVE

Just like it is ‘standard practice’ to include all training exemplars in the

representation of a category when the GCM is fitted to empirical data, it is ‘standard

practice’ to assume that the coordinates of these training exemplars in the psychological

space remain fixed and do not change over time. Here, we suggest that exemplars may

very well move around in the psychological space, after they have been stored. When we

store an exemplar for the first time, the features of that exemplar (the exact colour, the

exact height, . . . ; in short, all the features of that specific exemplar) may be stored in

memory with great precision. But when time passes, and many more exemplars of the

same category have been encountered, our recollection of that original exemplar may have

become somewhat blurred, or imprecise. There is a large literature in the memory

literature describing the loss of accuracy and distortion of memory traces (see Koriat,

Goldsmith, and Pansky (2000) for a review). In the categorization literature, it is largely
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acknowledged that the memory for specific exemplars is not perfect. But only a few

computational models of categorization have taken this explicitly into account. In their

work on General Recognition Theory (GRT), Ashby and his colleagues have advocated a

probabilistic approach: instead of representing an exemplar as a fixed point in the

psychological space, GRT-based models assume that they are represented by a (typical

Gaussian) probability distribution in the psychological space (Ashby & Townsend, 1986;

Ashby & Perrin, 1988; Ashby, 1992; Rosseel, 2002).

Here, we propose an alternative way to reflect the ambiguity of the exact location of

stored exemplars in their psychological space. Instead of using a probabilistic

representation, we again use a fixed-point representation, as this is the default approach

for exemplar models. However, we will assume that the location of an exemplar has been

shifted towards the center of the category. The amount by which the exemplar is shifted is

governed by a free parameter 0 ≤ δ < 1. If δ = 0, the coordinates of the exemplars remain

fixed at their original locations, as in the standard formulation of the GCM. Note that we

do not consider δ = 1, since in this case, all exemplars would move to the center of the

category, and we get a prototype model. However, for values of δ between zero and one,

the exemplars are somewhere located between their original location and the category

center.

Importantly, by moving the exemplars towards the category center, the

intrasimilarity of the exemplars belonging to the same category is increased. In the R0

condition of the PRAS study, we observed that the intrasimilarity of the category P and

category Q exemplars could be increased by shrinking the first dimension (see Figure 2).

However, for the R30 and R60 condition, stretching and shrinking did not help. We

speculate that instead of stretching and shrinking the dimensions, we can increase the

intrasimilarity of the exemplars by shifting their coordinates towards the category center.

The GCM-MOVE variant has four free parameters: the three parameter of the standard
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GCM, and the δ parameter.

Fitting the GCM and its variants to the PRAS data

To fit these models to the observed proportions reported in Tables 1, 2 and 3, a

computer search was used to find the values of the free parameters (separately for each

condition) that maximed the loglikelihood function,

L =
∑
i

lnNi!−
∑
i

∑
k

ln fik! +
∑
i

∑
k

fik ln pij

where Ni is the total frequency with which stimulus i was presented and fik and pik are,

respectively, the observed frequency and predicted probability with which stimulus i is

classified in category k (Nosofsky, Clark, & Shin, 1989). Based on the information in the

PRAS paper, we have used Ni = 120, Ni = 120 and Ni = 100 for the R0, R30 and R60

conditions respectively. The observed frequencies were computed by multiplying the

observed proportions as reported in the PRAS paper by these total frequencies. For each

model, we report two measures of global fit. The loglikelihood, multiplied by minus two

for convenience (−2L), and the AIC score, which is defined by

AIC = −2L+ 2p

where p is the number of free parameters in the model. The AIC score penalizes models

with more free parameters. Lower values for −2L and AIC are better. In addition,

following the PRAS paper, we also report the root mean squared deviations (RMSDs) for

the training patterns (1–4), the critical patterns (5 and 6) and the remaining transfer

patterns (7–9).

Results

The predicted proportions category P responses for each model are reported in

Table 1 for the R0 condition, Table 2 for the R30 condition, and Table 3 for the R60
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condition. The RMSD values are reported in Table 4. Finally, the estimated parameter

values for the GCM model and its three variants are reported in Table 5.

Insert Table 1 about here

Insert Table 2 about here

Insert Table 3 about here

Insert Table 4 about here

Insert Table 5 about here

GCM

When the standard GCM is fitted to the PRAS data, the estimated values for the

free parameter are highly similar to the values reported in Table 5 of the PRAS paper (cf.

the rows labeled ‘GCM-9’). Similarly, the predicted proportions category P responses are

very close to the values reported in Table 2 of the PRAS paper (cf. the column labeled

‘GCM-9’). In the R0 condition, the global fit of the standard GCM is (much) better than
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the global fit of the PRAS models. However, for the R30 and R60 condition, the PRAS

models fit the data equally well, and sometimes slightly better (i.e. PRAS-SG in the R60

condition). Nevertheless, and this is the important point made by Vandierendonck (1995),

the GCM is not able to qualitatively fit the critical pattern 5 in the R30 and R60

conditions. This is best illustrated in Table 4 which contains the root mean squared

deviations for the critical patterns. Especially the PRAS-FG variant does a much better

job predicting the subjects’ responses of the critical pattern 5 than the standard GCM

model.

GCM-γ

Overall, the fits of the GCM-γ variant are much better than the fits of the standard

GCM. Moreover, the GCM-γ model did a much better job in predicting the responses of

the critical pattern 5 in the R30 and R60 conditions. For the R30 condition, the

predictions are even closer to the observed proportions than the best of the two PRAS

models. For the R60 condition, the predictions are much closer to the observed data than

the standard GCM model, but the PRAS predictions are qualitatively still better for the

critical patterns.

At first sight, this seems to confirm the findings of Nosofsky and Zaki (2002) that

adding a response-scaling parameter γ to the standard GCM can make a huge difference.

Indeed, the good overall fits and the excellent fit of the GCM-γ model for the critical

pattern 5 in the R30 condition may cast doubt over the claim in the PRAS paper that

secondary generalization is an essential mechanism if we wish to explain the PRAS data.

However, there are two caveats. First, the PRAS models did still fit the critical

pattern 5 better in the R60 condition. Second, the estimated parameter values of the

GCM-γ model are rather extreme, in all three conditions. As can be seen in Table 5, either

the value of the c parameter or the value of the γ parameter is extremely high. Moreover,
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the higher the value of c, the lower the value of γ and vice versa. In fact, it turns out that

for this particular dataset, the c and γ parameters are not identified. Only their ratio c/γ

is identified. There is a whole range of values for c and γ that yield the same fit if the ratio

c/γ is kept constant. It is not clear at this point if this problem is due to the small number

of training exemplars, the specific layout of the stimulus patterns in the psychological

space, or the specific values for the observed proportions, or any combination of these.

Thus, although both the global and qualitative fits of the GCM-γ model are very

good, the fact that two parameters of the model were not identified in this datset, we

hesitate to interpret these results in favour of the GCM-γ model.

GCM-REX

In the R0 condition, the best fitting model is a reduced model using a subset of

three training exemplars (pattern 1 was removed). The overall fit of this reduced GCM is

very good, and certainly better than the standard GCM. However, the prediction for the

critical pattern 5 is not very good. In fact, all other models did better in this condition.

Thus although removing an exemplar in this condition may have improved the global fit,

it did not help for predicting the subjects’ proportions of the critical pattern 5.

For the two other conditions (R30 and R60), the best fitting model is the one were

no exemplars are removed. In other words, the best fitting model is simply the standard

GCM model where all exemplars are retained in the category representations.

GCM-MOVE

In the R0 condition, the estimated value for δ is zero. This suggests that there is no

need to move the exemplar coordinates to the center in order to improve the model fit. As

a result, the parameter values and predictions of GCM-MOVE in this condition are

identical to the standard GCM.

In the R30 condition, however, the estimated value for δ is 0.12. Not only is the
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global fit better than the standard GCM, the fit of the critical pattern 5 is better too,

although it is still not as good as the PRAS-FG fit of that pattern.

In the R60 condition, δ = 0.28, and the global fit is again better than the standard

GCM. Also, the fit of the critical pattern 5 has much improved in comparison to the

standard GCM, although again, the fit of the PRAS-FG model is still better.

Discussion of the fitting results

Of the three variants of the GCM that we have proposed in an attempt to fit the

PRAS data, only the GCM-MOVE model is able to provide both a good global fit, and a

decent fit of the critical pattern 5 in the R30 and R60 conditions. Although the global fits

of the GCM-γ model are even better, the c and γ parameter were not identified in this

model. The GCM-REX variant is only able to provide a good global fit of the data in the

R0 condition, but can not improve on the standard GCM in other conditions. As for the

critical pattern 5, the best predictions are still made by the PRAS variants.

What have we learned from our model fitting experiment? First, and this is not a

new finding, the GCM-γ model can behave strangely in certain circumstances. In our case,

the problem was that two parameters (c and γ) were not identified. In other studies, the

parameters of the GCM-γ are identified, but the estimated values are difficult to interpret

in terms of an exemplar model. Indeed, the GCM-γ model has been critized by several

authors because it is believed that the γ parameter may do more than merely making the

predictions of the model more deterministic. For example, Smith and Minda (2002) have

claimed that adding the γ parameter to the GCM “enlarged prototype-enhancement

effects” and that “adding gamma can be tantamount to adding a prototype”. Their claims

were partially confirmed by Navarro (2007). In this case, the GCM-γ model should not be

used as an example of an exemplar model that only relies on primary generalization.

Second, the GCM-REX model did not do any better than the standard GCM. Of
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course, the small number of training exemplars is a disadvantage for the GCM-REX

model. However, we believe that even with a larger number of training exemplars, the

GCM-REX model would still not be able to qualitatively fit the critical pattern 5 in this

dataset. The deeper reason is that the GCM-REX has difficulty fitting aggregated data.

Ideally, we should be able to fit the GCM-REX model to the individual datasets. Only in

this scenario would we be able to judge if the GCM-REX is capable or not to qualitatively

fit the critical pattern 5.

Third, the GCM-MOVE model did a excellent job in fitting the data. It may not

have done as well as the PRAS models for the critical pattern 5, but it fitted the data

much better than the standard GCM. In fact, we are pleasantly surprised by the good

performance of the GCM-MOVE variant, and we will investigate its capabilities in future

studies.

Conclusion

In this paper, we have tried to extend the standard GCM model in an attempt to fit

the data in the PRAS paper. Three variants were considered. In the first variant

(GCM-γ), we followed Nosofsky and Zaki (2002) and extended the GCM with a

response-scaling parameter. In a second variant, we followed De Schryver et al. (2009) and

allowed for the exemplar representation to exclude some exemplars. In the third and last

variant, we extended the GCM by allowing the exemplars to move towards the category

center. Although several variants were able to obtain a better global fit in some or all of

the conditions, no variant was able to convincingly do better for the critical pattern 5, at

least not for all three conditions.

We conclude that the PRAS dataset is still a challenging dataset for modelers of

category learning and generalization. We therefore hope that the fitting experiment that

we have reported in this paper will stimulate other people in the categorization field to
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take a (second?) look at both the PRAS model and the PRAS dataset reported in

Vandierendonck (1995).
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Table 1

Observed and predicted proportions of category P responses in the R0 condition

Pattern Obs GCM PRAS-SG PRAS-FG GCM-γ GCM-REX GCM-MOVE

Set R0

1 .900 .959 .967 .906 .954 .937 .959

2 .967 .964 .960 .907 .965 .970 .964

3 .033 .088 .041 .106 .076 .060 .088

4 .075 .038 .034 .110 .039 .033 .038

5 .100 .116 .026 .117 .126 .136 .116

6 .967 .927 .953 .891 .930 .929 .927

7 .767 .751 .722 .652 .726 .735 .751

8 .750 .657 .574 .545 .676 .698 .657

9 .683 .741 .797 .735 .749 .743 .741

-2L 64.73 94.92 94.60 60.66 55.01 64.73

npar 3 4 5 4 3 + 4 4

AIC 70.73 102.92 104.60 68.66 69.01 72.73



Secondary generalization in categorization 31

Table 2

Observed and predicted proportions of category P responses in the R30 condition

Pattern Obs GCM PRAS-SG PRAS-FG GCM-γ GCM-REX GCM-MOVE

Set R30

1 .817 .805 .861 .842 .895 .805 .847

2 .800 .803 .735 .756 .789 .803 .814

3 .242 .167 .154 .127 .242 .167 .217

4 .017 .084 .092 .088 .051 .084 .085

5 .383 .528 .124 .454 .440 .528 .499

6 .467 .560 .433 .518 .478 .560 .546

7 .717 .518 .563 .548 .625 .518 .500

8 .750 .687 .370 .633 .706 .687 .676

9 .250 .290 .249 .294 .215 .290 .257

-2L 94.45 201.43 93.88 61.20 94.45 90.24

npar 3 4 5 4 3 + 4 4

AIC 100.45 209.43 103.88 69.20 108.45 98.24
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Table 3

Observed and predicted proportions of category P responses in the R60 condition

Pattern Obs GCM PRAS-SG PRAS-FG GCM-γ GCM-REX GCM-MOVE

Set R60

1 .940 .934 .920 .915 .930 .934 .930

2 .810 .806 .816 .796 .810 .806 .810

3 .310 .326 .346 .342 .367 .326 .373

4 .080 .028 .045 .040 .040 .028 .042

5 .090 .205 .085 .103 .141 .205 .143

6 .310 .323 .362 .357 .342 .323 .321

7 .670 .557 .609 .958 .584 .557 .588

8 .390 .402 .420 .434 .440 .402 .445

9 .220 .239 .110 .111 .167 .239 .167

-2L 62.85 57.10 144.98 54.06 62.85 53.76

npar 3 4 5 4 3 + 4 4

AIC 68.85 65.10 154.98 62.06 76.85 61.77
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Table 4

Root mean squared deviations between model predictions and observed data for the three task

conditions

Pattern GCM PRAS-SG PRAS-FG GCM-γ GCM-REX GCM-MOVE

Set R0

1-4 .038 .040 .051 .033 .027 .038

5 .016 .057 .017 .026 .036 .016

6 .040 .014 .076 .037 .038 .040

7-9 .055 .124 .139 .060 .048 .055

Set R30

1-4 .039 .070 .072 .031 .039 .034

5 .145 .259 .071 .057 .145 .116

6 .093 .034 .051 .011 .093 .079

7-9 .101 .237 .121 .057 .101 .099

Set R60

1-4 .019 .027 .029 .027 .019 .028

5 .115 .005 .013 .051 .115 .053

6 .013 .052 .047 .032 .013 .011

7-9 .048 .075 .080 .063 .048 .063
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Table 5

Estimated parameter values of the standard GCM and its three variants

Par GCM GCM-γ GCM-REX GCM-MOVE

Set R0

c 1.94 14.03 2.06 1.93

bP 0.53 0.56 0.66 0.53

w1 0.27 0.23 0.31 0.26

γ – 0.13 – –

δ – – – 0.00

Set R30

c 1.61 0.29 1.61 1.81

bP 0.43 0.33 0.43 0.46

w1 0.62 0.62 0.62 0.63

γ – 8.75 – –

δ – – – 0.12

Set R60

c 1.53 0.07 1.53 1.40

bP 0.54 0.44 0.54 0.51

w1 1.00 1.00 1.00 1.00

γ – 20.04 – –

δ – – – 0.28
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Figure Captions

Figure 1. Similarity gradient for different values of a target stimulus along the first

dimension. The upper panel illustrates a primary generalization gradient. The lower panel

illustrates both secondary generalization (between the values 4 and 8) and primary

generalization. In both panels, the value for the steepness parameter of the exponential

decay function is c = 1.

Figure 2. Stimulus pattern layout in Condition R0 of the categorization task described in

the PRAS paper. The numbers in squares indicate category P exemplars. The numbers in

circles indicate category Q exemplars. The other patterns are only presented during the

transfer phase.
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