Characterisations of elementary pseudo-caps and good eggs

Sara Rottey
Department of Mathematics
Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussel, Belgium
srottey@vub.ac.be

Geertrui Van de Voorde *
Department of Mathematics
Universiteit Gent
Krijgslaan 281, S22, 9000 Gent, Belgium
gvdvoorde@cage.ugent.be

Submitted: Dec 16, 2014; Accepted: Feb 5, 2015; Published: Feb 25, 2015
Mathematics Subject Classifications: 51E20, 05B25

Abstract

In this note, we use the theory of Desarguesian spreads to investigate good eggs. Thas showed that an egg in $\operatorname{PG}(4 n-1, q), q$ odd, with two good elements is elementary. By a short combinatorial argument, we show that a similar statement holds for large pseudo-caps, in odd and even characteristic. As a corollary, this improves and extends the result of Thas, Thas and Van Maldeghem (2006) where one needs at least 4 good elements of an egg in even characteristic to obtain the same conclusion. We rephrase this corollary to obtain a characterisation of the generalised quadrangle $T_{3}(\mathcal{O})$ of Tits.

Lavrauw (2005) characterises elementary eggs in odd characteristic as those good eggs containing a space that contains at least 5 elements of the egg, but not the good element. We provide an adaptation of this characterisation for weak eggs in odd and even characteristic. As a corollary, we obtain a direct geometric proof for the theorem of Lavrauw.

Keywords: Pseudo-caps; Eggs; Translation generalised quadrangles

1 Preliminaries

In this note, we study eggs and pseudo-caps in the projective space $\operatorname{PG}(n, q)$, where $\mathrm{PG}(n, q)$ denotes the n-dimensional projective space over the finite field \mathbb{F}_{q} with q elements, $q=p^{h}, p$ prime. Many previous proofs and characterisations of eggs rely on the connection with eggs and translation generalised quadrangles [16]. It is our aim to study eggs from a purely geometric perspective, without using this connection or coordinates.

[^0]In Section 2 we obtain a connection between good eggs and Desarguesian spreads. This link will enable us to reprove, improve or extend known results in Sections 3 and 4. We begin by repeating some well-known definitions.

Definition 1. A cap in $\operatorname{PG}(n, q)$ is a set of points such that every three points span a plane. A cap of size k is denoted as a k-cap.

A k-cap of $\mathrm{PG}(2, q)$ is often called a k-arc. A k-arc in $\mathrm{PG}(2, q)$ satisfies $k \leqslant q+1$ for q odd and $k \leqslant q+2$ for q even. A $(q+1)$-arc is called an oval, a $(q+2)$-arc a hyperoval. A k-cap of $\operatorname{PG}(3, q), q>2$ satisfies $k \leqslant q^{2}+1$, moreover, a $\left(q^{2}+1\right)$-cap of $\operatorname{PG}(3, q)$ is often called an ovoid. We will consider the higher dimensional equivalent of these structures.

Definition 2. A pseudo-cap is a set \mathcal{C} of $(n-1)$-spaces in $\operatorname{PG}(2 n+m-1, q)$ such that any three elements of \mathcal{C} span a $(3 n-1)$-space.

If $m=n$, a pseudo-cap is often called a pseudo-arc. By [15], a pseudo-arc \mathcal{A} in $\mathrm{PG}(3 n-1, q)$ satisfies $|\mathcal{A}| \leqslant q^{n}+1$ for q odd and $|\mathcal{A}| \leqslant q^{n}+2$ for q even. If a pseudo-arc \mathcal{A} has $q^{n}+1$ or $q^{n}+2$ elements, \mathcal{A} is a pseudo-oval or pseudo-hyperoval respectively. If $m=2 n$, a pseudo-cap with $q^{2 n}+1$ elements is called a pseudo-ovoid.

Examples of pseudo-caps in $\operatorname{PG}(k n-1, q)$ arise by applying field reduction to caps in $\mathrm{PG}\left(k-1, q^{n}\right)$ and if a pseudo-cap is obtained by field reduction, we call it elementary. Field reduction is the concept where a point in $\operatorname{PG}\left(k-1, q^{n}\right)$ corresponds in a natural way to an $(n-1)$-space of $\mathrm{PG}(k n-1, q)$. The set of all points of $\mathrm{PG}\left(k-1, q^{n}\right)$ then correspond to a set of disjoint $(n-1)$-spaces partitioning $\operatorname{PG}(k n-1, q)$, forming a Desarguesian spread. Every Desarguesian spread \mathcal{D} has the property that the space spanned by 2 elements of \mathcal{D} is partitioned by elements of \mathcal{D}, i.e. \mathcal{D} is normal. Moreover, a normal $(n-1)$-spread of $\mathrm{PG}(k n-1, q), k>2$, is Desarguesian, see [2]. For more information on field reduction and Desarguesian spreads we refer to [9].

A partial spread in $\mathrm{PG}(n+m-1, q)$ is a set of mutually disjoint $(n-1)$-spaces. Every element E_{i} of a pseudo-cap \mathcal{E} of $\operatorname{PG}(2 n+m-1, q)$ defines a partial spread

$$
\mathcal{S}_{i}:=\left\{E_{0}, \ldots, E_{i-1}, E_{i+1}, \ldots, E_{|\mathcal{E}|}\right\} / E_{i}
$$

in $\operatorname{PG}(n+m-1, q) \cong \operatorname{PG}(2 n+m-1, q) / E_{i}$ and we say that the element E_{i} induces the partial spread \mathcal{S}_{i}.

A partial spread of $\operatorname{PG}(2 n-1, q)$ of size q^{n} is said to have deficiency 1. From [3], we know that a partial spread of $\operatorname{PG}(2 n-1, q)$ with deficiency 1 can be extended to a spread in a unique way, i.e. the set of points in $\operatorname{PG}(2 n-1, q)$ not lying on an element of the partial spread, form an ($n-1$)-space.

Definition 3. A weak egg in $\operatorname{PG}(2 n+m-1, q)$ is a pseudo-cap of size $q^{m}+1$.
Clearly, pseudo-ovals and pseudo-ovoids are examples of weak eggs. A weak egg \mathcal{E} in $\mathrm{PG}(2 n+m-1, q)$ is called an egg if each element $E \in \mathcal{E}$ is contained in a $(n+m-1)$-space, T_{E}, which is skew from every element of \mathcal{E} different from E. The space T_{E} is called the tangent space of \mathcal{E} at E. It is not hard to show that if $n=m$, then every weak egg is an
egg. Eggs are studied mostly because of their one-to-one correspondance with translation generalised quadrangles of order $\left(q^{n}, q^{2 n}\right)$, see Subsection 3.2.

The only known examples of eggs in $\mathrm{PG}(2 n+m-1, q)$ have either $m=n$ or $m=2 n$ and we have the following theorem restricting the number of possibilities for the parameters n and m.

Theorem 4. [11, Theorem 8.7.2] If \mathcal{E} is an egg of $\operatorname{PG}(2 n+m-1, q)$ then $m=n$ or $m a=n(a+1)$ with a odd. Moreover, if q even, then $m=n$ or $m=2 n$.

This explains why the study of eggs is mainly focused on pseudo-ovals and pseudoovoids.

In the case of pseudo-ovals, all known examples are elementary. The classical example of an oval in $\mathrm{PG}\left(2, q^{n}\right)$ is a conic. It is a well-known theorem of Segre that an oval of $\mathrm{PG}\left(2, q^{n}\right), q$ odd, is always a conic. A pseudo-conic in $\mathrm{PG}(3 n-1, q)$ is an elementary pseudo-oval, arising from applying field reduction to a conic in $\operatorname{PG}\left(2, q^{n}\right)$. We have the following theorems characterising elementary pseudo-ovals using the induced Desarguesian spreads.

Theorem 5. [6] If \mathcal{O} is a pseudo-oval in $\operatorname{PG}(3 n-1, q)$, q odd, such that for at least one element the induced spread is Desarguesian, then \mathcal{O} is a pseudo-conic.

Theorem 6. [13] If \mathcal{O} is a pseudo-oval in $\operatorname{PG}(3 n-1, q)$, n prime, $q>2$ even, such that all elements induce a Desarguesian spread, then \mathcal{O} is elementary.

In the case that q is odd, we have the following theorem which extends Theorem 5 from pseudo-ovals to large pseudo-arcs in $\operatorname{PG}(3 n-1, q)$.

Theorem 7. [12] Consider $\mathcal{K}=\left\{K_{1}, \ldots, K_{s}\right\}$ a pseudo-arc in $\mathrm{PG}(3 n-1, q)$, q odd, of size greater than the size of the second largest complete arc in $\mathrm{PG}\left(2, q^{n}\right)$. If for at least one element K_{i} of \mathcal{K}, the partial spread $\mathcal{S}=\left\{K_{1}, \ldots, K_{i-1}, K_{i+1}, \ldots, K_{s}\right\} / K_{i}$ extends to a Desarguesian spread of $\mathrm{PG}(2 n-1, q)=\mathrm{PG}(3 n-1, q) / K_{i}$, then \mathcal{K} is contained in a pseudo-conic.

In Theorem 15, we will prove a similar statement for pseudo-caps in $\operatorname{PG}(4 n-1, q)$.
All known examples of pseudo-ovoids in $\operatorname{PG}(4 n-1, q)$ are elementary when q is even, but in contrast to the situation for pseudo-ovals, when q is odd, there are non-elementary examples of pseudo-ovoids. The standard example of an ovoid in $\mathrm{PG}\left(3, q^{n}\right)$ is an elliptic quadric $Q^{-}\left(3, q^{n}\right)$. By the famous result of Barlotti and Panella [1, 10], every ovoid of $\operatorname{PG}\left(3, q^{n}\right), q$ odd, is an elliptic quadric $Q^{-}\left(3, q^{n}\right)$, however, there is no classification of ovoids in $\operatorname{PG}\left(3, q^{n}\right)$ for q even. For both even and odd order q, the classification of pseudo-ovoids is an open problem.

2 Good eggs and Desarguesian spreads

A (weak) egg \mathcal{E} in $\operatorname{PG}(2 n+m-1, q), m>n$, is good at an element $E \in \mathcal{E}$ if every (3n-1)-space containing E and at least two other elements of \mathcal{E}, contains exactly $q^{n}+1$
elements of \mathcal{E}. A (weak) egg that has at least one good element is called a good (weak) egg. If \mathcal{E} is good at E, then for any two elements $E_{1}, E_{2} \in \mathcal{E} \backslash\{E\}$ the (3n-1)-space $\left\langle E, E_{1}, E_{2}\right\rangle$ intersects \mathcal{E} in a pseudo-oval.

Lemma 8. Good weak eggs in $\operatorname{PG}(2 n+m-1, q)$ can only exist if n is a divisor of m. Good eggs only exist in $\mathrm{PG}(4 n-1, q)$.

Proof. Consider a weak egg \mathcal{E} of $\mathrm{PG}(2 n+m-1, q), m>n$, good at an element $E_{1} \in \mathcal{E}$. Consider a second element $E_{2} \in \mathcal{E} \backslash\left\{E_{1}\right\}$. For every element $E \in \mathcal{E} \backslash\left\{E_{1}, E_{2}\right\}$, the $(3 n-1)$-space $\left\langle E, E_{1}, E_{2}\right\rangle$ intersects \mathcal{E} in a pseudo-oval. By considering the elements of $\mathcal{E} \backslash\left\{E_{1}, E_{2}\right\}$, we find a set \mathcal{T} of $(3 n-1)$-spaces containing $\left\langle E_{1}, E_{2}\right\rangle$, such that each space of \mathcal{T} intersects \mathcal{E} in a pseudo-oval. Every two spaces in \mathcal{T} meet exactly in $\left\langle E_{1}, E_{2}\right\rangle$ and \mathcal{E} is the union of the pseudo-ovals $\{T \cap \mathcal{E} \mid T \in \mathcal{T}\}$. The set \mathcal{T} contains $\frac{q^{m}-1}{q^{n}-1}(3 n-1)$-spaces; as $q^{n}-1$ has to be a divisor of $q^{m}-1$, it follows that n is a divisor of m.

Suppose \mathcal{E} is an egg. For q even, by Theorem 4, eggs only exist in $\operatorname{PG}(4 n-1, q)$ (or $\operatorname{PG}(3 n-1, q))$. Consider now a good egg of $\mathrm{PG}(2 n+m-1, q), q$ odd, where m is a multiple of n. By Theorem $4, m=\frac{a+1}{a} n$, for some odd integer a, so we conclude that $m=2 n$.

We will show that the good elements of an egg are exactly those inducing a partial spread which is extendable to a Desarguesian spread. Part (i) of the following theorem, for \mathcal{E} an egg, is mentioned in [16, Remark 5.1.7].

Theorem 9.

(i) If a weak egg \mathcal{E} in $\mathrm{PG}(2 n+m-1, q)$ is good at an element E, then E induces a partial spread which extends to a Desarguesian spread.
(ii) Let \mathcal{E} be a weak egg in $\mathrm{PG}(2 n+m-1, q)$ for q odd and an egg in $\mathrm{PG}(2 n+m-1, q)$ for q even. If an element $E \in \mathcal{E}$ induces a partial spread which extends to a Desarguesian spread, then \mathcal{E} is good at E.

Proof. (i) Suppose \mathcal{E} is a weak egg which is good at E. Consider the partial spread \mathcal{S} of $\mathrm{PG}(n+m-1, q)$ of size q^{m} induced by E. Because \mathcal{E} is good at E, any two elements of \mathcal{S} span a $(2 n-1)$-space which contains a partial spread of q^{n} elements of \mathcal{S}. This partial spread has deficiency 1 , so extends uniquely to a spread by one ($n-1$)-space (by [3]).

Consider three elements $S_{1}, S_{2}, S_{3} \in \mathcal{S}$ not lying in the same ($2 n-1$)-space, hence spanning a $(3 n-1)$-space π. There are q^{n} elements of \mathcal{S} contained in $\left\langle S_{2}, S_{3}\right\rangle$. For every element R of $\mathcal{S} \cap\left\langle S_{2}, S_{3}\right\rangle$, the $(2 n-1)$-space $\left\langle S_{1}, R\right\rangle$ contains q^{n} elements of \mathcal{S}. Hence, there are $q^{n}(2 n-1)$-spaces of π containing S_{1} and $q^{n}-1$ other elements of \mathcal{S}. Similarly, there are $q^{n}(2 n-1)$-spaces of π containing S_{2} and $q^{n}-1$ other elements of \mathcal{S}. Since π has dimension $3 n-1$, two such distinct ($2 n-1$)-spaces, one containing S_{1} and the other containing S_{2}, intersect in at least an $(n-1)$-space, hence, in exactly an $(n-1)$-space. This space is either an element of \mathcal{S} or the $(n-1)$-space which extends both of them to a spread. It follows that there are $q^{2 n}$ elements of \mathcal{S} contained in π and if an element of \mathcal{S}
intersects π, then it is contained in π. Hence, if $\left\langle S_{2}, S_{3}\right\rangle$ meets a ($2 n-1$)-space spanned by S_{1} and an other element of \mathcal{S}, then they meet in an $(n-1)$-space.

As S_{1}, S_{2}, S_{3} were chosen randomly, it follows in general that if two distinct ($2 n-1$)spaces spanned by elements of \mathcal{S} intersect, then they meet in an $(n-1)$-space. They meet either in an $(n-1)$-space of \mathcal{S} or in the $(n-1)$-space which extends the partial spreads of both $(2 n-1)$-spaces to a spread. We see that \mathcal{S} can be uniquely extended to a spread which is normal, thus Desarguesian.
(ii) Now let \mathcal{E} be an egg if q is even and a weak egg if q is odd. Suppose E induces a partial spread \mathcal{S} of size q^{m} which extends to a Desarguesian $(n-1)$-spread \mathcal{D} of $\operatorname{PG}(n+$ $m-1, q)$, hence $m=k n$ for some $k>1$. There are $\frac{q^{m}-1}{q^{n}-1}$ elements of \mathcal{D} not contained in \mathcal{S}.

When \mathcal{E} is an egg, the elements of $\mathcal{D} \backslash \mathcal{S}$ span a ($m-1$)-space, corresponding to T_{E}. Hence, any $(2 n-1)$-space spanned by two elements of \mathcal{S} contains q^{n} elements of \mathcal{S} and one element $\mathcal{D} \backslash \mathcal{S}$. So, \mathcal{E} is good at E.

Suppose \mathcal{E} is a weak egg, with q odd. As q is odd, no ($3 n-1$)-space intersects \mathcal{E} in a pseudo-hyperoval. Hence, any ($3 n-1$)-space containing E intersects \mathcal{E} in at most $q^{n}+1$ elements, so any $(2 n-1)$-space spanned by two elements of \mathcal{S} can contain at most q^{n} elements of \mathcal{S}. Hence, any such space must contain at least one element of $\mathcal{D} \backslash \mathcal{S}$. By field reduction, the elements of the Desarguesian spread \mathcal{D} of $\operatorname{PG}(n+m-1, q)$ are in one-toone correspondance with the points of $\operatorname{PG}\left(\frac{m}{n}, q^{n}\right)$. Any $(2 n-1)$-space spanned by two elements of \mathcal{D} must contain at least one element of $\mathcal{D} \backslash \mathcal{S}$. Hence, the points corresponding to $\mathcal{D} \backslash \mathcal{S}$ form a line-blocking set of $\mathrm{PG}\left(\frac{m}{n}, q^{n}\right)$. Since $|\mathcal{D} \backslash \mathcal{S}|=\frac{q^{m}-1}{q^{n}-1}$, from [4] it follows that the points corresponding to $\mathcal{D} \backslash \mathcal{S}$ are the points of a $\left(\frac{m}{n}-1\right)$-space, hence the elements of $\mathcal{D} \backslash \mathcal{S}$ span a ($m-1$)-space. As before, it follows that \mathcal{E} is good at E.

The following corollary, for \mathcal{E} an egg, was also mentioned in [14, Theorem 4.3.4] in terms of translation generalised quadrangles.

Corollary 10. If a weak egg \mathcal{E}, q odd, is good at an element E, then every pseudo-oval of \mathcal{E} containing E is a pseudo-conic.

Proof. Let Π be a $(n+m-1)$-space disjoint from E. By Theorem 9, the partial spread \mathcal{E} / E in Π extends to a Desarguesian spread. Consider a pseudo-oval \mathcal{O} of \mathcal{E} containing E. The q^{n} elements of \mathcal{O} / E are contained in \mathcal{E} / E and thus extend to a Desarguesian spread of the $(2 n-1)$-space $\langle\mathcal{O}\rangle \cap \Pi$.

The element E of the pseudo-oval \mathcal{O} induces a partial spread \mathcal{O} / E which extends to a Desarguesian spread, hence, by Theorem 5 , the statement follows.

3 A characterisation of good eggs

3.1 Eggs with two good elements

An elementary pseudo-ovoid that arises from applying field reduction to an elliptic quadric is called classical. We recall the following theorem from [16].

Theorem 11. [16, Theorem 5.1.12]
If q is odd and an egg \mathcal{E} in $\mathrm{PG}(4 n-1, q)$ has at least two good elements, then \mathcal{E} is classical. If q is even and an egg \mathcal{E} in $\operatorname{PG}(4 n-1, q)$ has at least four good elements, not contained in a common pseudo-oval on \mathcal{E}, then \mathcal{E} is elementary.

It was open problem whether, for q even, being good at two elements is sufficient to be elementary, this was posed as Problem A.5.6 in [16]. We will give an affirmative answer to this question in a more general setting, namely in terms of pseudo-caps. We first need two lemma's concerning Desarguesian spreads.

Lemma 12. [13, Corollary 1.8] Consider two Desarguesian $(n-1)$-spreads \mathcal{S}_{1} and \mathcal{S}_{2} in $\operatorname{PG}(2 n-1, q), q>2$. If \mathcal{S}_{1} and \mathcal{S}_{2} have at least 3 elements in common, then they share exactly $q^{t}+1$ elements for some $t \mid n$.

The following lemma is a generalisation of [13, Lemma 1.4] and the proof is analogous. We introduce some necessary definitions and notations.

A regulus \mathcal{R} in $\operatorname{PG}(2 n-1, q)$ is a set of $q+1$ mutually disjoint $(n-1)$-spaces having the property that if a line meets 3 elements of \mathcal{R}, then it meets all elements of \mathcal{R}. Let us denote the unique regulus through 3 mutually disjoint $(n-1)$-spaces A, B and C in $\operatorname{PG}(2 n-1, q)$ by $\mathcal{R}(A, B, C)$. Every Desarguesian spread \mathcal{D} has the property that for 3 elements A, B, C in \mathcal{D}, the elements of $\mathcal{R}(A, B, C)$ are also contained in \mathcal{D}, i.e. \mathcal{D} is regular (see also [5]).

We will use the following notation for points of a projective space $\operatorname{PG}\left(r-1, q^{n}\right)$. A point P of $\operatorname{PG}\left(r-1, q^{n}\right)$ defined by a vector $\left(x_{1}, x_{2}, \ldots, x_{r}\right) \in\left(\mathbb{F}_{q^{n}}\right)^{r}$ is denoted by $\mathbb{F}_{q^{n}}\left(x_{1}, x_{2}, \ldots, x_{r}\right)$, reflecting the fact that every $\mathbb{F}_{q^{n}}$-multiple of $\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ gives rise to the point P. We can identify the vector space $\mathbb{F}_{q^{n r}}$ with $\left(\mathbb{F}_{q^{n}}\right)^{r}$, and hence write every point of $\mathrm{PG}(r n-1, q)$ as $\mathbb{F}_{q}\left(x_{1}, \ldots, x_{r}\right)$ with $x_{i} \in \mathbb{F}_{q^{n}}$. In this way, when applying field reduction, a point $\mathbb{F}_{q^{n}}\left(x_{1}, \ldots, x_{r}\right)$ in $\mathrm{PG}\left(r-1, q^{n}\right)$ corresponds to the $(n-1)$-space $\mathbb{F}_{q^{n}}\left(x_{1}, \ldots, x_{r}\right)=\left\{\mathbb{F}_{q}\left(\alpha x_{1}, \ldots, \alpha x_{r}\right) \mid \alpha \in \mathbb{F}_{q^{n}}\right\}$ of $\mathrm{PG}(r n-1, q)$.

Lemma 13. Let \mathcal{D}_{1} be a Desarguesian $(n-1)$-spread in a $(k n-1)$-dimensional subspace Π of $\operatorname{PG}((k+1) n-1, q)$, let μ be an element of \mathcal{D}_{1} and let E_{1} and E_{2} be mutually disjoint ($n-1$)-spaces such that $\left\langle E_{1}, E_{2}\right\rangle$ meets Π exactly in the space μ. Then there exists a unique Desarguesian $(n-1)$-spread of $\operatorname{PG}((k+1) n-1, q)$ containing E_{1}, E_{2} and all elements of \mathcal{D}_{1}.

Proof. Since \mathcal{D}_{1} is a Desarguesian spread in Π, we can choose coordinates for Π such that $\mathcal{D}_{1}=\left\{\mathbb{F}_{q^{n}}\left(x_{1}, x_{2}, \ldots, x_{k}\right) \mid x_{i} \in \mathbb{F}_{q^{n}}\right\}$ and $\mu=\mathbb{F}_{q^{n}}(0, \ldots, 0,1)$. We embed Π in $\operatorname{PG}((k+$ 1) $n-1, q)$ by mapping a point $\mathbb{F}_{q}\left(x_{1}, \ldots, x_{k}\right), x_{i} \in \mathbb{F}_{q^{n}}$, of Π onto $\mathbb{F}_{q}\left(x_{1}, \ldots, x_{k}, 0\right)$. Let ℓ_{P} denote the unique transversal line through a point P of μ to the regulus $\mathcal{R}\left(\mu, E_{1}, E_{2}\right)$.

We can still choose coordinates for $n+1$ points in general position in $\operatorname{PG}((k+1) n-$ $1, q) \backslash \Pi$. We will choose these $n+1$ points such that n of them belong to E_{1} and one of them belongs to E_{2}. Consider a set $\left\{y_{i} \mid i=1, \ldots, n\right\}$ forming a basis of $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q}. We may assume that the line $\ell_{P_{i}}$ through $P_{i}=\mathbb{F}_{q}\left(0, \ldots, 0, y_{i}, 0\right) \in \mu$ meets E_{1} in the point $\mathbb{F}_{q}\left(0, \ldots, 0,0, y_{i}\right)$. It follows that $E_{1}=\mathbb{F}_{q^{n}}(0, \ldots, 0,0,1)$. Moreover, we may assume
that ℓ_{Q} with $Q=\mathbb{F}_{q}\left(0, \ldots, 0,0, \sum_{i=1}^{n} y_{i}, 0\right) \in \mu$ meets E_{2} in $\mathbb{F}_{q}\left(0, \ldots, 0, \sum_{i=1}^{n} y_{i}, \sum_{i=1}^{n} y_{i}\right)$. Since $\mathbb{F}_{q}\left(0, \ldots, 0 \sum_{i=1}^{n} y_{i}, \sum_{i=1}^{n} y_{i}\right)$ has to be in the space spanned by the intersection points $R_{i}=\ell_{P_{i}} \cap E_{2}$, it follows that $R_{i}=\mathbb{F}_{q}\left(0, \ldots, 0, y_{i}, y_{i}\right)$ and consequently, that $E_{2}=\mathbb{F}_{q^{n}}(0, \ldots, 0,1,1)$.

It is clear that the Desarguesian spread $\mathcal{D}=\left\{\mathbb{F}_{q^{n}}\left(x_{1}, \ldots, x_{k+1}\right) \mid x_{i} \in \mathbb{F}_{q^{n}}\right\}$ contains the spread \mathcal{D}_{1} and the $(n-1)$-spaces E_{1} and E_{2}. Moreover, since every element of \mathcal{D}, not in $\left\langle E_{1}, E_{2}\right\rangle$, is obtained as the intersection of $\left\langle E_{1}, X\right\rangle \cap\left\langle E_{2}, Y\right\rangle$, where $X, Y \in \mathcal{D}_{1}$, it is clear that \mathcal{D} is the unique Desarguesian spread satisfying our hypothesis.

Lemma 14. Consider a pseudo-cap \mathcal{E} of $\mathrm{PG}(4 n-1, q)$ containing an element E that induces a partial spread which extends to a Desarguesian spread. If Π is a $(3 n-1)$-space spanned by E and two other elements of \mathcal{E}, then every element of \mathcal{E} is either disjoint from Π or contained in Π.

Proof. Let Σ be a $(3 n-1)$-space skew from E and consider the induced partial spread \mathcal{E} / E in Σ. If F is an element of \mathcal{E} which meets Π, then the projection F / E of F from E onto Σ is an element of \mathcal{E} / E which meets the space Π / E. By assumption, the space Π / E is spanned by spread elements of a partial spread extending to a Desarguesian spread. Hence, since a Desarguesian spread is normal, F / E is contained in Π / E. It follows that since Π contains E, the element F is contained in Π.

Theorem 15. Consider a pseudo-cap \mathcal{E} in $\operatorname{PG}(4 n-1, q), q>2$, with $|\mathcal{E}|>q^{n+k}+q^{n}-$ $q^{k}+1, q$ odd, and $|\mathcal{E}|>q^{n+k}+q^{n}+2$, q even, where k is the largest divisor of n with $k \neq n$. The pseudo-cap \mathcal{E} is elementary if and only if two of its elements induce a partial spread which extends to a Desarguesian spread.

Proof. If \mathcal{E} is elementary, then the elements of \mathcal{E} are contained in a Desarguesian spread of $\operatorname{PG}(4 n-1, q)$, so every element of \mathcal{E} induces a partial spread which extends to a Desarguesian spread.

Now suppose that \mathcal{E} contains two distinct elements E_{1}, E_{2} that induce a partial spread which extends to a Desarguesian spread. Since $|\mathcal{E}|>q^{n}+2$, using Lemma 14, we can find two elements $E_{3}, E_{4} \in \mathcal{E}$ such that $\left\langle E_{1}, E_{2}, E_{3}, E_{4}\right\rangle$ spans $\operatorname{PG}(4 n-1, q)$.

The partial spread induced by E_{1} in the space $\left\langle E_{2}, E_{3}, E_{4}\right\rangle$ can be extended to a Desarguesian spread \mathcal{D}_{1}. Analogously, the partial spread induced by E_{2} in the space $\left\langle E_{1}, E_{3}, E_{4}\right\rangle$ can be extended to a Desarguesian spread \mathcal{D}_{2}. Since E_{3} and E_{4} are elements of the spreads \mathcal{D}_{1} and \mathcal{D}_{2}, the Desarguesian spreads \mathcal{D}_{1} and \mathcal{D}_{2} intersect the ($2 n-1$)-space $\left\langle E_{3}, E_{4}\right\rangle$ each in a Desarguesian spread, say \mathcal{S}_{1} and \mathcal{S}_{2} respectively.

Take an element $E \in \mathcal{E} \backslash\left\{E_{1}, E_{2}\right\}$ and consider the (3n-1)-subspace $\left\langle E_{1}, E_{2}, E\right\rangle$. From Lemma 14 it follows that any element of \mathcal{E} is either contained in or disjoint from $\left\langle E_{1}, E_{2}, E\right\rangle$. By considering the elements of $\mathcal{E} \backslash\left\{E_{1}, E_{2}\right\}$, we find a set \mathcal{T} of $(3 n-1)$-spaces containing $\left\langle E_{1}, E_{2}\right\rangle$, such that each space of \mathcal{T} intersects \mathcal{E} in a pseudo-arc. Every two spaces in \mathcal{T} meet exactly in $\left\langle E_{1}, E_{2}\right\rangle$ and \mathcal{E} is the union of the pseudo-arcs $\{T \cap \mathcal{E} \mid T \in \mathcal{T}\}$. The set \mathcal{T} intersects $\left\langle E_{3}, E_{4}\right\rangle$ in a partial $(n-1)$-spread \mathcal{P}.

Let P be an element of \mathcal{P}, then $\left\langle P, E_{1}, E_{2}\right\rangle$ is a (3n-1)-space containing at least one element E of $\mathcal{E} \backslash\left\{E_{1}, E_{2}\right\}$. The projection E^{\prime} of E from E_{1} onto $\left\langle E_{2}, E_{3}, E_{4}\right\rangle$ is contained
in \mathcal{D}_{1}. We obtain that $P=\left\langle E_{2}, E^{\prime}\right\rangle \cap\left\langle E_{3}, E_{4}\right\rangle$, and since the elements $E_{2}, E^{\prime}, E_{3}, E_{4}$ are contained in \mathcal{D}_{1}, this implies that P is contained in \mathcal{D}_{1}. Moreover, since $P \subset\left\langle E_{3}, E_{4}\right\rangle$, the element P is contained in \mathcal{S}_{1}. Similarly, we obtain that P is contained in \mathcal{S}_{2} and we conclude that every element of \mathcal{P} must be contained in both \mathcal{S}_{1} and \mathcal{S}_{2}.

Suppose that k is the largest divisor of n with $k \neq n$. The pseudo-cap \mathcal{E} has size $|\mathcal{E}|>\left(q^{n}-\epsilon\right)\left(q^{k}+1\right)+2$ and every $(3 n-1)$-space of \mathcal{T} contains at most $q^{n}-\epsilon$ elements different from E_{1}, E_{2}, where $\epsilon=1$ for q odd and $\epsilon=0$ for q even. By the pigeonhole principle, it follows that $|\mathcal{P}| \geqslant q^{k}+2$. Hence, the Desarguesian spreads \mathcal{S}_{1} and \mathcal{S}_{2} have at least $q^{k}+2$ elements in common, where k is the largest divisor of n with $k \neq n$. As $q>2$, by Lemma 12 , we find that $\mathcal{S}_{1}=\mathcal{S}_{2}$.

By Theorem 13 , consider the unique Desarguesian spread \mathcal{D} of $\mathrm{PG}(4 n-1, q)$ containing all elements of \mathcal{D}_{1} and two distinct elements of $\mathcal{D}_{2} \backslash \mathcal{D}_{1}$. It is clear that, since $\mathcal{S}_{1}=\mathcal{S}_{2}$, the spread \mathcal{D} contains all elements of \mathcal{D}_{2}.

Every element of \mathcal{E}, not in $\mathcal{D}_{1} \cup \mathcal{D}_{2}$, arises as the intersection $\left\langle E_{1}, X\right\rangle \cap\left\langle E_{2}, Y\right\rangle$ for some $X \in \mathcal{D}_{1} \subset \mathcal{D}$ and $Y \in \mathcal{D}_{2} \subset \mathcal{D}$, hence, since a Desarguesian spread is normal, every element of \mathcal{E} belongs to \mathcal{D}. It follows that \mathcal{E} is elementary.

We obtain the following corollary which improves [16, Theorem 5.1.12].
Corollary 16. A weak egg in $\operatorname{PG}(4 n-1, q)$ which is good at two distinct elements is elementary.

Proof. A weak egg is a pseudo-cap of size $q^{2 n}+1$ in $\operatorname{PG}(4 n-1, q)$. By Theorem 9, if the weak egg is good at two elements, these elements induce a partial spread which extends to a Desarguesian spread. We can repeat the proof of Theorem 15. Now the partial spread \mathcal{P} has size $q^{n}+1$, so the conclusion $\mathcal{S}_{1}=\mathcal{S}_{2}$ follows immediately. We do not require Lemma 12, hence the restriction $q>2$ can be dropped.

3.2 A corollary in terms of translation generalised quadrangles

A generalised quadrangle of order $(s, t), s, t>1$, is an incidence structure of points and lines satisfying the following axioms:

- every line has exactly $s+1$ points,
- through every point, there are exactly $t+1$ lines,
- if P is a point, not on the line L, then there is exactly one line through P which meets L non-trivially.

From every egg \mathcal{E} in $\Sigma_{\infty}=\mathrm{PG}(2 n+m-1, q)$ we can construct a generalised quadrangle $(\mathcal{P}, \mathcal{L})$ as follows. Embed Σ_{∞} as a hyperplane at infinity of $\operatorname{PG}(2 n+m, q)$.
\mathcal{P} : (i) affine points of $\operatorname{PG}(2 n+m, q)$, i.e. the points not lying in Σ_{∞},
(ii) the $(n+m)$-spaces meeting Σ_{∞} in T_{E} for some $E \in \mathcal{E}$,
(iii) the symbol (∞).
\mathcal{L} : (a) the n-spaces meeting Σ_{∞} in an element of \mathcal{E},
(b) the elements of \mathcal{E}.

Incidence is defined as follows.

- A point of type (i) is incident with the lines of type (a) through it.
- A point of type (ii) is incident with the lines of type (a) it contains and the line of type (b) it contains.
- The point (∞) is incident with all lines of type (b).

The obtained generalised quadrangle is denoted as $T(\mathcal{E})$ and is called a translation generalised quadrangle (TGQ) with base point (∞). In [11, Theorem 8.7.1] it is proven that every TGQ of order $\left(q^{n}, q^{m}\right)$, where \mathbb{F}_{q} is a subfield of its kernel, is isomorphic to a $T(\mathcal{E})$ for some egg \mathcal{E} of $\operatorname{PG}(2 n+m-1, q)$.

When $n=m=1$, then \mathcal{O} is an oval of $\operatorname{PG}(2, q)$ and the construction above gives the well-known construction of $T_{2}(\mathcal{O})$. When $n=1$ and $m=2$, then \mathcal{O} is an ovoid of $\mathrm{PG}(3, q)$ and the construction above is the construction of Tits of $T_{3}(\mathcal{O})$ (see [16]).

Lemma 17. Let $T=T(\mathcal{E})$ be a $T G Q$ of order $\left(q^{n}, q^{2 n}\right)$ with base point (∞). Let m_{1}, m_{2}, m_{3} be three distinct lines through (∞), and let E_{1}, E_{2}, E_{3} denote the elements of \mathcal{E} corresponding to m_{1}, m_{2}, m_{3} respectively. Then there is a subquadrangle of order q^{n} through m_{1}, m_{2}, m_{3} if and only if the $(3 n-1)$-dimensional space $\left\langle E_{1}, E_{2}, E_{3}\right\rangle$ contains exactly $q^{n}+1$ elements of \mathcal{E}.

Proof. Suppose that the $(3 n-1)$-space $\Sigma=\left\langle E_{1}, E_{2}, E_{3}\right\rangle$ contains a set \mathcal{O} of exactly $q^{n}+1$ elements of \mathcal{E}, then it is clear that $T(\mathcal{E})$ defines the incidence structure $T(\mathcal{O})$ in a $3 n$-space through Σ. The structure $T(\mathcal{O})$ is a generalised quadrangle of order q^{n}, forming a subquadrangle of $T(\mathcal{E})$ and containing the lines m_{1}, m_{2}, m_{3}.

On the other hand, suppose that there is a subquadrangle T^{\prime} of order q^{n} containing m_{1}, m_{2}, m_{3}, where the lines m_{1}, m_{2}, m_{3} are incident with (∞). This implies that the point (∞) is in T^{\prime}, and since (∞) lies only on lines of type (b) (i.e. the lines corresponding to elements of \mathcal{E}), we know that T^{\prime} contains exactly $q^{n}+1$ lines of type (b), among which the lines m_{1}, m_{2} and m_{3}. Let $\left\{E_{1}, \ldots, E_{q^{n}+1}\right\}$ be the egg elements corresponding to these lines. This means that there are $\left(q^{n}+1\right) q^{2 n}$ lines in T^{\prime} of type (a), containing in total $\left(q^{n}+1\right) q^{2 n}\left(q^{n}\right) /\left(q^{n}+1\right)=q^{3 n}$ points of type (i) (i.e. affine points).

Each $(n-1)$-space E_{j} is contained in $q^{2 n} n$-spaces corresponding to a line of type (a) of T^{\prime} and every affine point is contained in exactly one n-space containing E_{j}. Let P_{j} be a point of the space E_{j}, then we see that the $q^{3 n}$ affine points of T^{\prime} lie on $q^{2 n}$ lines through P_{j}. As this holds for every $j \in\left\{1, \ldots, q^{n}+1\right\}$, it is clear that the $q^{3 n}$ affine points of T^{\prime} are contained in a $3 n$-space. This in turn implies that the elements $\left\{E_{1}, \ldots, E_{q^{n}+1}\right\}$ are contained in a $(3 n-1)$-space, namely $\left\langle E_{1}, E_{2}, E_{3}\right\rangle$. Hence, this space contains at least $q^{n}+1$ elements of \mathcal{E}. Since \mathcal{E} is an egg, it is not possible that a ($3 n-1$)-space contains more than $q^{n}+1$ elements of \mathcal{E}, which concludes the proof.

Lemma 18. Let $T=T(\mathcal{E})$ be a $T G Q$ of order $\left(q^{n}, q^{2 n}\right)$ with base point (∞). Let ℓ be a line through (∞) and E_{ℓ} the element of \mathcal{E} corresponding to ℓ. The egg \mathcal{E} is good at E_{ℓ} if and only if for every two distinct lines m_{1}, m_{2} through (∞), where $m_{1}, m_{2} \neq \ell$, there is a subquadrangle of order q^{n} through m_{1}, m_{2}, ℓ.

Proof. This follows immediately from Lemma 17 and the definition of a being good at an element.

We are now ready to state the promised characterisation of the translation generalised quadrangle $T_{3}(\mathcal{O})$.

Theorem 19. Let T be a $T G Q$ of order $\left(q^{n}, q^{2 n}\right)$ with base point (∞). Suppose that T contains two distinct lines $\ell_{i}, i=1,2$ such that for every two distinct lines m_{1}, m_{2} through (∞), where $m_{1}, m_{2} \neq \ell_{i}, i=1,2$ there is a subquadrangle through $m_{1}, m_{2}, \ell_{i}, i=1,2$, then T is isomorphic to $T_{3}(\mathcal{O})$, where \mathcal{O} is an ovoid of $\operatorname{PG}\left(3, q^{n}\right)$.

4 A geometric proof of a Theorem of Lavrauw

In this section we obtain a second characterisation of good weak eggs. We need the following lemma stating that every good element of a weak egg has a tangent space.

Lemma 20. If a weak egg \mathcal{E} in $\operatorname{PG}(2 n+m-1, q)$ is good at an element E, then there exists a unique $(n+m-1)$-space T, such that $T \cap \mathcal{E}=\{E\}$.

Proof. Consider a $(n+m-1)$-space Σ disjoint from E. If \mathcal{E} is good at E, the element E induces a partial spread $\mathcal{S}=\mathcal{E} / E$ which extends to a Desarguesian spread \mathcal{D} of Σ. By following the proof of Theorem 9, part (ii), for both q odd and q even, the elements of $\mathcal{D} \backslash \mathcal{S}$ span a ($m-1$)-space. It is clear that the $(n+m-1)$-space $T=\langle E, \mathcal{D} \backslash \mathcal{S}\rangle$ satisfies $T \cap \mathcal{E}=E$.

In [8] the authors proved that every egg of $\mathrm{PG}(7,2)$ arises from an elliptic quadric $Q^{-}(3,4)$ by field reduction. Hence, in the following characterisation, when \mathcal{E} is an egg in $\mathrm{PG}(4 n-1, q)$, the condition $q^{n}>4$ is essentially not a restriction.

Theorem 21. Suppose $n>1, q^{n}>4$, consider \mathcal{E} a weak egg in $\operatorname{PG}(4 n-1, q)$. Then \mathcal{E} is elementary if and only if the following three properties hold:

- \mathcal{E} is good at an element E,
- there exists a $(3 n-1)$-space, disjoint from E, with at least 5 elements E_{1}, E_{2}, E_{3}, E_{4}, E_{5} of \mathcal{E},
- all pseudo-ovals of \mathcal{E} containing $\left\{E, E_{1}\right\},\left\{E, E_{2}\right\}$ or $\left\{E, E_{3}\right\}$ are elementary.

Proof. Clearly, if an egg is elementary, the statement is valid.
For the converse, consider the ($3 n-1$)-space Π containing 5 elements $E_{1}, E_{2}, E_{3}, E_{4}, E_{5}$ of \mathcal{E}, but not the element E. As \mathcal{E} is good at E, the element E induces a partial spread which extends to a Desarguesian $(n-1)$-spread \mathcal{D}_{0} in Π, which contains $E_{i}, i=1, \ldots, 5$.

By Lemma 20, there exists a unique ($3 n-1$)-space T, such that $T \cap \mathcal{E}=\{E\}$. When \mathcal{E} is an egg, this space corresponds to the tangent space T_{E}.

Consider the two ($n-1$)-spaces $F=\left\langle E_{1}, E_{5}\right\rangle \cap\left\langle E_{2}, E_{4}\right\rangle$ and $F^{\prime}=\left\langle E_{1}, E_{5}\right\rangle \cap\left\langle E_{3}, E_{4}\right\rangle$. Both F and F^{\prime} are contained in \mathcal{D}_{0}, but at most one of them can be contained in the (2n-1)-space $\Pi \cap T$. Suppose F is not contained in T (note that this choice has no further impact as E_{2} and E_{3} play the same role). This implies that the ($2 n-1$)-space $\langle E, F\rangle$ contains an element $E_{6} \in \mathcal{E} \backslash\{E\}$. By Theorem 13, there exists a unique Desarguesian spread \mathcal{D} containing E, E_{6} and all elements of \mathcal{D}_{0}. We will prove that \mathcal{E} is contained in \mathcal{D}.

The $(3 n-1)$-space $\left\langle E, E_{1}, E_{5}\right\rangle$ intersect \mathcal{E} in a pseudo-oval \mathcal{O}_{1}, and the ($3 n-1$)-space $\left\langle E, E_{2}, E_{4}\right\rangle$ intersect \mathcal{E} in a pseudo-oval \mathcal{O}_{2}. Clearly, \mathcal{O}_{1} and \mathcal{O}_{2} both contain E_{6}.

By assumption, \mathcal{O}_{1} and \mathcal{O}_{2} are elementary pseudo-ovals. The Desarguesian $(n-1)$ spread in $\left\langle E, E_{1}, E_{5}\right\rangle$ containing \mathcal{O}_{1} contains E, E_{6} and the $q^{n}+1$ elements of $\mathcal{D}_{0} \cap\left\langle E_{1}, E_{5}\right\rangle$. It follows that this Desarguesian spread is contained in \mathcal{D}, hence \mathcal{O}_{1} is contained in \mathcal{D}. Analogously, the pseudo-oval \mathcal{O}_{2} is also contained in \mathcal{D}.

There are $q^{n}-2$ pseudo-ovals \mathcal{O} of \mathcal{E}, containing $\left\{E, E_{3}\right\}$, but not E_{6}, such that the (3n-1)-space $\langle\mathcal{O}\rangle$ does not contain the $(n-1)$-space $T \cap\left\langle\mathcal{O}_{1}\right\rangle$, nor the $(n-1)$-space $T \cap\left\langle\mathcal{O}_{2}\right\rangle$. Take such an oval \mathcal{O}, then there is an element E_{7} of $\mathcal{E} \backslash\{E\}$ contained in $\langle\mathcal{O}\rangle \cap\left\langle\mathcal{O}_{1}\right\rangle$, hence, $E_{7} \in \mathcal{O} \cap \mathcal{O}_{1}$. Likewise, there is an element E_{8} of $\mathcal{E} \backslash\{E\}$ contained in $\mathcal{O} \cap \mathcal{O}_{2}$.

By assumption, \mathcal{O} is elementary; let $\mathcal{S}_{\mathcal{O}}$ be the Desarguesian ($n-1$)-spread containing \mathcal{O}. As E_{7} and E_{8} are contained in \mathcal{D}, the Desarguesian spread \mathcal{D} intersects $\left\langle E_{7}, E_{8}\right\rangle$ in a Desarguesian spread. Let P be an element of $\mathcal{D} \cap\left\langle E_{7}, E_{8}\right\rangle$, not contained in T, then $\langle E, P\rangle$ meets Π in an element of \mathcal{D}, and hence, $\langle E, P\rangle$ contains an element P^{\prime} of $\mathcal{E} \backslash E$. As $\langle E, P\rangle$ is contained in $\langle\mathcal{O}\rangle, P^{\prime}$ is an element of \mathcal{O}, and hence also of $\mathcal{S}_{\mathcal{O}}$. Since $P^{\prime}, E, E_{7}, E_{8}$ are contained in $\mathcal{S}_{\mathcal{O}}$, the element $P=\left\langle E, P^{\prime}\right\rangle \cap\left\langle E_{7}, E_{8}\right\rangle$ is an element of $\mathcal{S}_{\mathcal{O}}$. This implies that $\mathcal{D} \cap\left\langle E_{7}, E_{8}\right\rangle$ and $\mathcal{S}_{\mathcal{O}}$ have at least q^{n} elements in common, which implies in turn that they have all their elements in common. We conclude that $\mathcal{S}_{\mathcal{O}}$ contains E, E_{3} and the $q^{n}+1$ elements of $\mathcal{D} \cap\left\langle E_{7}, E_{8}\right\rangle$, hence $\mathcal{S}_{\mathcal{O}}$ and thus all elements of \mathcal{O} are contained in \mathcal{D}.

Now, consider an element $E_{9} \in \mathcal{E}$, not contained in $\mathcal{O}_{1}, \mathcal{O}_{2}$ or any of the previously considered $q^{n}-2$ pseudo-ovals \mathcal{O}. Look at the pseudo-oval $\mathcal{O}^{\prime}=\left\langle E, E_{1}, E_{9}\right\rangle \cap \mathcal{E}$ and the pseudo-oval $\mathcal{O}^{\prime \prime}=\left\langle E, E_{2}, E_{9}\right\rangle \cap \mathcal{E}$. At least one of them does not contain E_{3}. Suppose \mathcal{O}^{\prime} does not contain E_{3} (the proof goes analogously if $\mathcal{O}^{\prime \prime}$ does not contain E_{3}). For at most one of the $q^{n}-2$ pseudo-ovals \mathcal{O} containing $\left\{E, E_{3}\right\}$ we have $\langle\mathcal{O}\rangle \cap\left\langle\mathcal{O}^{\prime \prime}\right\rangle \in T$. Hence, since $q^{n}-2 \geqslant 3$, we can find two distinct elementary pseudo-ovals containing $\left\{E, E_{3}\right\}$ that are contained in \mathcal{D} and have an element E_{10} and E_{11} respectively in common with \mathcal{O}^{\prime}.

Let $\mathcal{S}_{\mathcal{O}^{\prime}}$ be the Desarguesian $(n-1)$-spread containing \mathcal{O}^{\prime}. As E_{10} and E_{11} are elements of \mathcal{D} the same argument as before shows that all but one element of the Desarguesian
spread $\mathcal{D} \cap\left\langle E_{10}, E_{11}\right\rangle$ can be written as the intersection of $\left\langle E, P^{\prime \prime}\right\rangle$ with $\left\langle E_{10}, E_{11}\right\rangle$ for some $P^{\prime \prime}$ in \mathcal{O}^{\prime}. It follows that $\mathcal{S}_{\mathcal{O}^{\prime}}$ contains E, E_{1} and the $q^{n}+1$ elements of $\mathcal{D} \cap\left\langle E_{10}, E_{11}\right\rangle$, hence, that $\mathcal{S}_{\mathcal{O}^{\prime}}$ is contained in \mathcal{D}. In particular, the element E_{9} is contained in \mathcal{D}, which implies that $\mathcal{E} \subset \mathcal{D}$ and so that \mathcal{E} is elementary and more specifically, a field reduced ovoid.

When \mathcal{E} is good at E and q is odd, by Corollary 10 all pseudo-ovals of \mathcal{E} containing E are pseudo-conics; we use this to obtain the following corollary. The same statement, where \mathcal{E} is an egg, was proven in [7, Theorem 3.2] using coordinates. For \mathcal{E} an egg, this was also shown in [16, Theorem 5.2.3] where a different proof was obtained independently, relying on a technical theorem concerning the $\mathbb{F}_{q^{n}}$-extension of the egg elements. We have now obtained a direct geometric proof.

Corollary 22. A weak egg \mathcal{E} of $\mathrm{PG}(4 n-1, q), q$ odd, $n>1$, is classical if and only if it is good at an element E and there exists a (3n-1)-space, not containing E, with at least 5 elements of \mathcal{E}.

Acknowledgements

The authors wish to thank Simeon Ball for suggesting the study of eggs in terms of the induced (partial) spreads.

References

[1] A. Barlotti. Un'estensione del teorema di Segre-Kustaanheimo. Boll. Un. Mat. Ital. 3(10):498-506, 1955.
[2] A. Barlotti and J. Cofman. Finite Sperner spaces constructed from projective and affine spaces. Abh. Math. Sem. Univ. Hamburg 40:231-241, 1974.
[3] A. Beutelspacher. Blocking sets and partial spreads in finite projective spaces. Geom. Dedicata 9(4):425-449, 1980.
[4] R.C. Bose and R.C. Burton. A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the MacDonald codes. J. Combin. Theory 1:96-104, 1966.
[5] R.H. Bruck and R.C. Bose. The construction of translation planes from projective spaces. J. Algebra 1:85-102, 1964.
[6] L.R.A. Casse, J.A. Thas and P.R. Wild. $\left(q^{n}+1\right)$-sets of $\operatorname{PG}(3 n-1, q)$, generalized quadrangles and Laguerre planes. Simon Stevin 59(1):21-42, 1985.
[7] M. Lavrauw. Characterizations and properties of good eggs in $\mathrm{PG}(4 n-1, q), q$ odd. Discrete Math. 301:106-116, 2005.
[8] M. Lavrauw and T. Penttila. On eggs and translation generalised quadrangles. J. Combin. Theory Ser. A 96:303-315, 2001.
[9] M. Lavrauw and G. Van de Voorde. Field reduction in finite geometry. Topics in finite fields. Contemp. Math., 632, Amer. Math. Soc., Providence, RI, 2010.
[10] G. Panella. Caratterizzazione delle quadriche di uno spazio (tridimensionale) lineare sopra un corpo finito. Boll. Un. Mat. Ital. 3(10):507-513, 1955.
[11] S.E. Payne and J.A. Thas. Finite generalized quadrangles. Research Notes in Mathematics, 110. Pitman (Advanced Publishing Program), Boston, MA, 1984. vi+312 pp. ISBN 0-273-08655-3.
[12] T. Penttila and G. Van de Voorde. Extending pseudo-arcs in odd characteristic. Finite Fields Appl. 22:101-113, 2013.
[13] S. Rottey and G. Van de Voorde. Pseudo-ovals in even characteristic and ovoidal Laguerre planes. J. Combin. Theory Ser. A 129:105-121, 2015.
[14] J.A. Thas. Generalized quadrangles of order $\left(s, s^{2}\right)$, I. J. Combin. Theory Ser. A 67:140-160, 1994.
[15] J.A. Thas. The m-dimensional projective space $S_{m}\left(M_{n}(G F(q))\right)$ over the total matrix algebra $M_{n}(G F(q))$ of the $n \times n$-matrices with elements in the Galois field $G F(q)$. Rend. Mat. 6(4):459-532, 1971.
[16] J.A. Thas, K. Thas and H. Van Maldeghem. Translation generalized quadrangles. Series in Pure Mathematics 26. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006.

[^0]: *Supported by the Fund for Scientific Research Flanders (FWO - Vlaanderen).

