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Abstract

In this note, we use the theory of Desarguesian spreads to investigate good
eggs. Thas showed that an egg in PG(4n− 1, q), q odd, with two good elements is
elementary. By a short combinatorial argument, we show that a similar statement
holds for large pseudo-caps, in odd and even characteristic. As a corollary, this
improves and extends the result of Thas, Thas and Van Maldeghem (2006) where
one needs at least 4 good elements of an egg in even characteristic to obtain the
same conclusion. We rephrase this corollary to obtain a characterisation of the
generalised quadrangle T3(O) of Tits.

Lavrauw (2005) characterises elementary eggs in odd characteristic as those good
eggs containing a space that contains at least 5 elements of the egg, but not the
good element. We provide an adaptation of this characterisation for weak eggs in
odd and even characteristic. As a corollary, we obtain a direct geometric proof for
the theorem of Lavrauw.

Keywords: Pseudo-caps; Eggs; Translation generalised quadrangles

1 Preliminaries

In this note, we study eggs and pseudo-caps in the projective space PG(n, q), where
PG(n, q) denotes the n-dimensional projective space over the finite field Fq with q ele-
ments, q = ph, p prime. Many previous proofs and characterisations of eggs rely on the
connection with eggs and translation generalised quadrangles [16]. It is our aim to study
eggs from a purely geometric perspective, without using this connection or coordinates.
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In Section 2 we obtain a connection between good eggs and Desarguesian spreads. This
link will enable us to reprove, improve or extend known results in Sections 3 and 4. We
begin by repeating some well-known definitions.

Definition 1. A cap in PG(n, q) is a set of points such that every three points span a
plane. A cap of size k is denoted as a k-cap.

A k-cap of PG(2, q) is often called a k-arc. A k-arc in PG(2, q) satisfies k 6 q+1 for q
odd and k 6 q+ 2 for q even. A (q+ 1)-arc is called an oval, a (q+ 2)-arc a hyperoval. A
k-cap of PG(3, q), q > 2 satisfies k 6 q2 + 1, moreover, a (q2 + 1)-cap of PG(3, q) is often
called an ovoid. We will consider the higher dimensional equivalent of these structures.

Definition 2. A pseudo-cap is a set C of (n− 1)-spaces in PG(2n + m− 1, q) such that
any three elements of C span a (3n− 1)-space.

If m = n, a pseudo-cap is often called a pseudo-arc. By [15], a pseudo-arc A in
PG(3n− 1, q) satisfies |A| 6 qn + 1 for q odd and |A| 6 qn + 2 for q even. If a pseudo-arc
A has qn + 1 or qn + 2 elements, A is a pseudo-oval or pseudo-hyperoval respectively. If
m = 2n, a pseudo-cap with q2n + 1 elements is called a pseudo-ovoid.

Examples of pseudo-caps in PG(kn− 1, q) arise by applying field reduction to caps in
PG(k − 1, qn) and if a pseudo-cap is obtained by field reduction, we call it elementary.
Field reduction is the concept where a point in PG(k−1, qn) corresponds in a natural way
to an (n−1)-space of PG(kn−1, q). The set of all points of PG(k−1, qn) then correspond
to a set of disjoint (n−1)-spaces partitioning PG(kn−1, q), forming a Desarguesian spread.
Every Desarguesian spread D has the property that the space spanned by 2 elements of
D is partitioned by elements of D, i.e. D is normal. Moreover, a normal (n − 1)-spread
of PG(kn− 1, q), k > 2, is Desarguesian, see [2]. For more information on field reduction
and Desarguesian spreads we refer to [9].

A partial spread in PG(n+m−1, q) is a set of mutually disjoint (n−1)-spaces. Every
element Ei of a pseudo-cap E of PG(2n+m− 1, q) defines a partial spread

Si := {E0, . . . , Ei−1, Ei+1, . . . , E|E|}/Ei

in PG(n+m− 1, q) ∼= PG(2n+m− 1, q)/Ei and we say that the element Ei induces the
partial spread Si.

A partial spread of PG(2n− 1, q) of size qn is said to have deficiency 1. From [3], we
know that a partial spread of PG(2n−1, q) with deficiency 1 can be extended to a spread
in a unique way, i.e. the set of points in PG(2n − 1, q) not lying on an element of the
partial spread, form an (n− 1)-space.

Definition 3. A weak egg in PG(2n+m− 1, q) is a pseudo-cap of size qm + 1.

Clearly, pseudo-ovals and pseudo-ovoids are examples of weak eggs. A weak egg E in
PG(2n+m−1, q) is called an egg if each element E ∈ E is contained in a (n+m−1)-space,
TE, which is skew from every element of E different from E. The space TE is called the
tangent space of E at E. It is not hard to show that if n = m, then every weak egg is an

the electronic journal of combinatorics 22(1) (2015), #P1.49 2



egg. Eggs are studied mostly because of their one-to-one correspondance with translation
generalised quadrangles of order (qn, q2n), see Subsection 3.2.

The only known examples of eggs in PG(2n+m−1, q) have eitherm = n orm = 2n and
we have the following theorem restricting the number of possibilities for the parameters
n and m.

Theorem 4. [11, Theorem 8.7.2] If E is an egg of PG(2n + m − 1, q) then m = n or
ma = n(a+ 1) with a odd. Moreover, if q even, then m = n or m = 2n.

This explains why the study of eggs is mainly focused on pseudo-ovals and pseudo-
ovoids.

In the case of pseudo-ovals, all known examples are elementary. The classical example
of an oval in PG(2, qn) is a conic. It is a well-known theorem of Segre that an oval of
PG(2, qn), q odd, is always a conic. A pseudo-conic in PG(3n − 1, q) is an elementary
pseudo-oval, arising from applying field reduction to a conic in PG(2, qn). We have the
following theorems characterising elementary pseudo-ovals using the induced Desarguesian
spreads.

Theorem 5. [6] If O is a pseudo-oval in PG(3n− 1, q), q odd, such that for at least one
element the induced spread is Desarguesian, then O is a pseudo-conic.

Theorem 6. [13] If O is a pseudo-oval in PG(3n− 1, q), n prime, q > 2 even, such that
all elements induce a Desarguesian spread, then O is elementary.

In the case that q is odd, we have the following theorem which extends Theorem 5
from pseudo-ovals to large pseudo-arcs in PG(3n− 1, q).

Theorem 7. [12] Consider K = {K1, . . . , Ks} a pseudo-arc in PG(3n − 1, q), q odd, of
size greater than the size of the second largest complete arc in PG(2, qn). If for at least
one element Ki of K, the partial spread S = {K1, . . . , Ki−1, Ki+1, . . . , Ks}/Ki extends to
a Desarguesian spread of PG(2n − 1, q) = PG(3n − 1, q)/Ki, then K is contained in a
pseudo-conic.

In Theorem 15, we will prove a similar statement for pseudo-caps in PG(4n− 1, q).
All known examples of pseudo-ovoids in PG(4n− 1, q) are elementary when q is even,

but in contrast to the situation for pseudo-ovals, when q is odd, there are non-elementary
examples of pseudo-ovoids. The standard example of an ovoid in PG(3, qn) is an elliptic
quadric Q−(3, qn). By the famous result of Barlotti and Panella [1, 10], every ovoid
of PG(3, qn), q odd, is an elliptic quadric Q−(3, qn), however, there is no classification
of ovoids in PG(3, qn) for q even. For both even and odd order q, the classification of
pseudo-ovoids is an open problem.

2 Good eggs and Desarguesian spreads

A (weak) egg E in PG(2n + m − 1, q), m > n, is good at an element E ∈ E if every
(3n− 1)-space containing E and at least two other elements of E , contains exactly qn + 1
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elements of E . A (weak) egg that has at least one good element is called a good (weak)
egg. If E is good at E, then for any two elements E1, E2 ∈ E\{E} the (3n − 1)-space
〈E,E1, E2〉 intersects E in a pseudo-oval.

Lemma 8. Good weak eggs in PG(2n + m − 1, q) can only exist if n is a divisor of m.
Good eggs only exist in PG(4n− 1, q).

Proof. Consider a weak egg E of PG(2n+m− 1, q), m > n, good at an element E1 ∈ E .
Consider a second element E2 ∈ E\{E1}. For every element E ∈ E \ {E1, E2}, the
(3n − 1)-space 〈E,E1, E2〉 intersects E in a pseudo-oval. By considering the elements of
E \ {E1, E2}, we find a set T of (3n− 1)-spaces containing 〈E1, E2〉, such that each space
of T intersects E in a pseudo-oval. Every two spaces in T meet exactly in 〈E1, E2〉 and E
is the union of the pseudo-ovals {T ∩E|T ∈ T }. The set T contains qm−1

qn−1 (3n−1)-spaces;
as qn − 1 has to be a divisor of qm − 1, it follows that n is a divisor of m.

Suppose E is an egg. For q even, by Theorem 4, eggs only exist in PG(4n − 1, q) (or
PG(3n − 1, q)). Consider now a good egg of PG(2n + m − 1, q), q odd, where m is a
multiple of n. By Theorem 4, m = a+1

a
n, for some odd integer a, so we conclude that

m = 2n.

We will show that the good elements of an egg are exactly those inducing a partial
spread which is extendable to a Desarguesian spread. Part (i) of the following theorem,
for E an egg, is mentioned in [16, Remark 5.1.7].

Theorem 9.

(i) If a weak egg E in PG(2n + m − 1, q) is good at an element E, then E induces a
partial spread which extends to a Desarguesian spread.

(ii) Let E be a weak egg in PG(2n+m−1, q) for q odd and an egg in PG(2n+m−1, q) for q
even. If an element E ∈ E induces a partial spread which extends to a Desarguesian
spread, then E is good at E.

Proof. (i) Suppose E is a weak egg which is good at E. Consider the partial spread S of
PG(n+m− 1, q) of size qm induced by E. Because E is good at E, any two elements of
S span a (2n− 1)-space which contains a partial spread of qn elements of S. This partial
spread has deficiency 1, so extends uniquely to a spread by one (n− 1)-space (by [3]).

Consider three elements S1, S2, S3 ∈ S not lying in the same (2n − 1)-space, hence
spanning a (3n− 1)-space π. There are qn elements of S contained in 〈S2, S3〉. For every
element R of S ∩ 〈S2, S3〉, the (2n − 1)-space 〈S1, R〉 contains qn elements of S. Hence,
there are qn (2n− 1)-spaces of π containing S1 and qn− 1 other elements of S. Similarly,
there are qn (2n − 1)-spaces of π containing S2 and qn − 1 other elements of S. Since π
has dimension 3n− 1, two such distinct (2n− 1)-spaces, one containing S1 and the other
containing S2, intersect in at least an (n − 1)-space, hence, in exactly an (n − 1)-space.
This space is either an element of S or the (n− 1)-space which extends both of them to a
spread. It follows that there are q2n elements of S contained in π and if an element of S
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intersects π, then it is contained in π. Hence, if 〈S2, S3〉 meets a (2n− 1)-space spanned
by S1 and an other element of S, then they meet in an (n− 1)-space.

As S1, S2, S3 were chosen randomly, it follows in general that if two distinct (2n− 1)-
spaces spanned by elements of S intersect, then they meet in an (n−1)-space. They meet
either in an (n− 1)-space of S or in the (n− 1)-space which extends the partial spreads
of both (2n− 1)-spaces to a spread. We see that S can be uniquely extended to a spread
which is normal, thus Desarguesian.

(ii) Now let E be an egg if q is even and a weak egg if q is odd. Suppose E induces a
partial spread S of size qm which extends to a Desarguesian (n− 1)-spread D of PG(n+
m− 1, q), hence m = kn for some k > 1. There are qm−1

qn−1 elements of D not contained in
S.

When E is an egg, the elements of D\S span a (m − 1)-space, corresponding to TE.
Hence, any (2n − 1)-space spanned by two elements of S contains qn elements of S and
one element D\S. So, E is good at E.

Suppose E is a weak egg, with q odd. As q is odd, no (3n− 1)-space intersects E in a
pseudo-hyperoval. Hence, any (3n− 1)-space containing E intersects E in at most qn + 1
elements, so any (2n − 1)-space spanned by two elements of S can contain at most qn

elements of S. Hence, any such space must contain at least one element of D\S. By field
reduction, the elements of the Desarguesian spread D of PG(n+m− 1, q) are in one-to-
one correspondance with the points of PG(m

n
, qn). Any (2n − 1)-space spanned by two

elements of D must contain at least one element of D\S. Hence, the points corresponding
to D\S form a line-blocking set of PG(m

n
, qn). Since |D\S| = qm−1

qn−1 , from [4] it follows that

the points corresponding to D\S are the points of a (m
n
− 1)-space, hence the elements of

D\S span a (m− 1)-space. As before, it follows that E is good at E.

The following corollary, for E an egg, was also mentioned in [14, Theorem 4.3.4] in
terms of translation generalised quadrangles.

Corollary 10. If a weak egg E, q odd, is good at an element E, then every pseudo-oval
of E containing E is a pseudo-conic.

Proof. Let Π be a (n + m− 1)-space disjoint from E. By Theorem 9, the partial spread
E/E in Π extends to a Desarguesian spread. Consider a pseudo-oval O of E containing E.
The qn elements of O/E are contained in E/E and thus extend to a Desarguesian spread
of the (2n− 1)-space 〈O〉 ∩ Π.

The element E of the pseudo-oval O induces a partial spread O/E which extends to
a Desarguesian spread, hence, by Theorem 5, the statement follows.

3 A characterisation of good eggs

3.1 Eggs with two good elements

An elementary pseudo-ovoid that arises from applying field reduction to an elliptic quadric
is called classical. We recall the following theorem from [16].
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Theorem 11. [16, Theorem 5.1.12]
If q is odd and an egg E in PG(4n − 1, q) has at least two good elements, then E is

classical. If q is even and an egg E in PG(4n− 1, q) has at least four good elements, not
contained in a common pseudo-oval on E, then E is elementary.

It was open problem whether, for q even, being good at two elements is sufficient to be
elementary, this was posed as Problem A.5.6 in [16]. We will give an affirmative answer
to this question in a more general setting, namely in terms of pseudo-caps. We first need
two lemma’s concerning Desarguesian spreads.

Lemma 12. [13, Corollary 1.8] Consider two Desarguesian (n− 1)-spreads S1 and S2 in
PG(2n − 1, q), q > 2. If S1 and S2 have at least 3 elements in common, then they share
exactly qt + 1 elements for some t|n.

The following lemma is a generalisation of [13, Lemma 1.4] and the proof is analogous.
We introduce some necessary definitions and notations.

A regulus R in PG(2n− 1, q) is a set of q + 1 mutually disjoint (n− 1)-spaces having
the property that if a line meets 3 elements of R, then it meets all elements of R. Let
us denote the unique regulus through 3 mutually disjoint (n − 1)-spaces A,B and C in
PG(2n − 1, q) by R(A,B,C). Every Desarguesian spread D has the property that for
3 elements A,B,C in D, the elements of R(A,B,C) are also contained in D, i.e. D is
regular (see also [5]).

We will use the following notation for points of a projective space PG(r − 1, qn).
A point P of PG(r − 1, qn) defined by a vector (x1, x2, . . . , xr) ∈ (Fqn)r is denoted by
Fqn(x1, x2, . . . , xr), reflecting the fact that every Fqn-multiple of (x1, x2, . . . , xr) gives rise
to the point P . We can identify the vector space Fqnr with (Fqn)r, and hence write
every point of PG(rn− 1, q) as Fq(x1, . . . , xr) with xi ∈ Fqn . In this way, when applying
field reduction, a point Fqn(x1, . . . , xr) in PG(r − 1, qn) corresponds to the (n− 1)-space
Fqn(x1, . . . , xr) = {Fq(αx1, . . . , αxr)|α ∈ Fqn} of PG(rn− 1, q).

Lemma 13. Let D1 be a Desarguesian (n− 1)-spread in a (kn− 1)-dimensional subspace
Π of PG((k+1)n−1, q), let µ be an element of D1 and let E1 and E2 be mutually disjoint
(n − 1)-spaces such that 〈E1, E2〉 meets Π exactly in the space µ. Then there exists a
unique Desarguesian (n − 1)-spread of PG((k + 1)n − 1, q) containing E1, E2 and all
elements of D1.

Proof. Since D1 is a Desarguesian spread in Π, we can choose coordinates for Π such that
D1 = {Fqn(x1, x2, . . . , xk)|xi ∈ Fqn} and µ = Fqn(0, . . . , 0, 1). We embed Π in PG((k +
1)n − 1, q) by mapping a point Fq(x1, . . . , xk), xi ∈ Fqn , of Π onto Fq(x1, . . . , xk, 0). Let
`P denote the unique transversal line through a point P of µ to the regulus R(µ,E1, E2).

We can still choose coordinates for n+ 1 points in general position in PG((k + 1)n−
1, q) \ Π. We will choose these n + 1 points such that n of them belong to E1 and one
of them belongs to E2. Consider a set {yi|i = 1, . . . , n} forming a basis of Fqn over Fq.
We may assume that the line `Pi

through Pi = Fq(0, . . . , 0, yi, 0) ∈ µ meets E1 in the
point Fq(0, . . . , 0, 0, yi). It follows that E1 = Fqn(0, . . . , 0, 0, 1). Moreover, we may assume
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that `Q with Q = Fq(0, . . . , 0, 0,
∑n

i=1 yi, 0) ∈ µ meets E2 in Fq(0, . . . , 0,
∑n

i=1 yi,
∑n

i=1 yi).
Since Fq(0, . . . , 0

∑n
i=1 yi,

∑n
i=1 yi) has to be in the space spanned by the intersection

points Ri = `Pi
∩ E2, it follows that Ri = Fq(0, . . . , 0, yi, yi) and consequently, that

E2 = Fqn(0, . . . , 0, 1, 1).
It is clear that the Desarguesian spread D = {Fqn(x1, . . . , xk+1)|xi ∈ Fqn} contains the

spread D1 and the (n− 1)-spaces E1 and E2. Moreover, since every element of D, not in
〈E1, E2〉, is obtained as the intersection of 〈E1, X〉 ∩ 〈E2, Y 〉, where X, Y ∈ D1, it is clear
that D is the unique Desarguesian spread satisfying our hypothesis.

Lemma 14. Consider a pseudo-cap E of PG(4n − 1, q) containing an element E that
induces a partial spread which extends to a Desarguesian spread. If Π is a (3n− 1)-space
spanned by E and two other elements of E, then every element of E is either disjoint from
Π or contained in Π.

Proof. Let Σ be a (3n − 1)-space skew from E and consider the induced partial spread
E/E in Σ. If F is an element of E which meets Π, then the projection F/E of F from E
onto Σ is an element of E/E which meets the space Π/E. By assumption, the space Π/E
is spanned by spread elements of a partial spread extending to a Desarguesian spread.
Hence, since a Desarguesian spread is normal, F/E is contained in Π/E. It follows that
since Π contains E, the element F is contained in Π.

Theorem 15. Consider a pseudo-cap E in PG(4n− 1, q), q > 2, with |E| > qn+k + qn −
qk + 1, q odd, and |E| > qn+k + qn + 2, q even, where k is the largest divisor of n with
k 6= n. The pseudo-cap E is elementary if and only if two of its elements induce a partial
spread which extends to a Desarguesian spread.

Proof. If E is elementary, then the elements of E are contained in a Desarguesian spread
of PG(4n − 1, q), so every element of E induces a partial spread which extends to a
Desarguesian spread.

Now suppose that E contains two distinct elements E1, E2 that induce a partial spread
which extends to a Desarguesian spread. Since |E| > qn + 2, using Lemma 14, we can find
two elements E3, E4 ∈ E such that 〈E1, E2, E3, E4〉 spans PG(4n− 1, q).

The partial spread induced by E1 in the space 〈E2, E3, E4〉 can be extended to a
Desarguesian spread D1. Analogously, the partial spread induced by E2 in the space
〈E1, E3, E4〉 can be extended to a Desarguesian spread D2. Since E3 and E4 are elements
of the spreads D1 and D2, the Desarguesian spreads D1 and D2 intersect the (2n−1)-space
〈E3, E4〉 each in a Desarguesian spread, say S1 and S2 respectively.

Take an element E ∈ E\{E1, E2} and consider the (3n − 1)-subspace 〈E1, E2, E〉.
From Lemma 14 it follows that any element of E is either contained in or disjoint from
〈E1, E2, E〉. By considering the elements of E \{E1, E2}, we find a set T of (3n−1)-spaces
containing 〈E1, E2〉, such that each space of T intersects E in a pseudo-arc. Every two
spaces in T meet exactly in 〈E1, E2〉 and E is the union of the pseudo-arcs {T ∩E|T ∈ T }.
The set T intersects 〈E3, E4〉 in a partial (n− 1)-spread P .

Let P be an element of P , then 〈P,E1, E2〉 is a (3n− 1)-space containing at least one
element E of E\{E1, E2}. The projection E ′ of E from E1 onto 〈E2, E3, E4〉 is contained
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in D1. We obtain that P = 〈E2, E
′〉 ∩ 〈E3, E4〉, and since the elements E2, E

′, E3, E4 are
contained in D1, this implies that P is contained in D1. Moreover, since P ⊂ 〈E3, E4〉,
the element P is contained in S1. Similarly, we obtain that P is contained in S2 and we
conclude that every element of P must be contained in both S1 and S2.

Suppose that k is the largest divisor of n with k 6= n. The pseudo-cap E has size
|E| > (qn− ε)(qk + 1) + 2 and every (3n− 1)-space of T contains at most qn− ε elements
different from E1, E2, where ε = 1 for q odd and ε = 0 for q even. By the pigeonhole
principle, it follows that |P| > qk + 2. Hence, the Desarguesian spreads S1 and S2 have
at least qk + 2 elements in common, where k is the largest divisor of n with k 6= n. As
q > 2, by Lemma 12, we find that S1 = S2.

By Theorem 13, consider the unique Desarguesian spread D of PG(4n−1, q) containing
all elements of D1 and two distinct elements of D2\D1. It is clear that, since S1 = S2, the
spread D contains all elements of D2.

Every element of E , not in D1 ∪ D2, arises as the intersection 〈E1, X〉 ∩ 〈E2, Y 〉 for
some X ∈ D1 ⊂ D and Y ∈ D2 ⊂ D, hence, since a Desarguesian spread is normal, every
element of E belongs to D. It follows that E is elementary.

We obtain the following corollary which improves [16, Theorem 5.1.12].

Corollary 16. A weak egg in PG(4n − 1, q) which is good at two distinct elements is
elementary.

Proof. A weak egg is a pseudo-cap of size q2n + 1 in PG(4n− 1, q). By Theorem 9, if the
weak egg is good at two elements, these elements induce a partial spread which extends to
a Desarguesian spread. We can repeat the proof of Theorem 15. Now the partial spread
P has size qn + 1, so the conclusion S1 = S2 follows immediately. We do not require
Lemma 12, hence the restriction q > 2 can be dropped.

3.2 A corollary in terms of translation generalised quadrangles

A generalised quadrangle of order (s, t), s, t > 1, is an incidence structure of points and
lines satisfying the following axioms:

• every line has exactly s+ 1 points,

• through every point, there are exactly t+ 1 lines,

• if P is a point, not on the line L, then there is exactly one line through P which
meets L non-trivially.

From every egg E in Σ∞ = PG(2n+m−1, q) we can construct a generalised quadrangle
(P ,L) as follows. Embed Σ∞ as a hyperplane at infinity of PG(2n+m, q).

P : (i) affine points of PG(2n+m, q), i.e. the points not lying in Σ∞,

(ii) the (n+m)-spaces meeting Σ∞ in TE for some E ∈ E ,

(iii) the symbol (∞).
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L: (a) the n-spaces meeting Σ∞ in an element of E ,

(b) the elements of E .

Incidence is defined as follows.

• A point of type (i) is incident with the lines of type (a) through it.

• A point of type (ii) is incident with the lines of type (a) it contains and the line of
type (b) it contains.

• The point (∞) is incident with all lines of type (b).

The obtained generalised quadrangle is denoted as T (E) and is called a translation gen-
eralised quadrangle (TGQ) with base point (∞). In [11, Theorem 8.7.1] it is proven that
every TGQ of order (qn, qm), where Fq is a subfield of its kernel, is isomorphic to a T (E)
for some egg E of PG(2n+m− 1, q).

When n = m = 1, then O is an oval of PG(2, q) and the construction above gives
the well-known construction of T2(O). When n = 1 and m = 2, then O is an ovoid of
PG(3, q) and the construction above is the construction of Tits of T3(O) (see [16]).

Lemma 17. Let T = T (E) be a TGQ of order (qn, q2n) with base point (∞). Let
m1,m2,m3 be three distinct lines through (∞), and let E1, E2, E3 denote the elements
of E corresponding to m1,m2,m3 respectively. Then there is a subquadrangle of order qn

through m1,m2,m3 if and only if the (3n − 1)-dimensional space 〈E1, E2, E3〉 contains
exactly qn + 1 elements of E.

Proof. Suppose that the (3n − 1)-space Σ = 〈E1, E2, E3〉 contains a set O of exactly
qn + 1 elements of E , then it is clear that T (E) defines the incidence structure T (O) in a
3n-space through Σ. The structure T (O) is a generalised quadrangle of order qn, forming
a subquadrangle of T (E) and containing the lines m1,m2,m3.

On the other hand, suppose that there is a subquadrangle T ′ of order qn containing
m1,m2,m3, where the lines m1,m2,m3 are incident with (∞). This implies that the point
(∞) is in T ′, and since (∞) lies only on lines of type (b) (i.e. the lines corresponding to
elements of E), we know that T ′ contains exactly qn + 1 lines of type (b), among which
the lines m1,m2 and m3. Let {E1, . . . , Eqn+1} be the egg elements corresponding to these
lines. This means that there are (qn + 1)q2n lines in T ′ of type (a), containing in total
(qn + 1)q2n(qn)/(qn + 1) = q3n points of type (i) (i.e. affine points).

Each (n− 1)-space Ej is contained in q2n n-spaces corresponding to a line of type (a)
of T ′ and every affine point is contained in exactly one n-space containing Ej. Let Pj be a
point of the space Ej, then we see that the q3n affine points of T ′ lie on q2n lines through
Pj. As this holds for every j ∈ {1, . . . , qn + 1}, it is clear that the q3n affine points of T ′

are contained in a 3n-space. This in turn implies that the elements {E1, . . . , Eqn+1} are
contained in a (3n − 1)-space, namely 〈E1, E2, E3〉. Hence, this space contains at least
qn + 1 elements of E . Since E is an egg, it is not possible that a (3n − 1)-space contains
more than qn + 1 elements of E , which concludes the proof.
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Lemma 18. Let T = T (E) be a TGQ of order (qn, q2n) with base point (∞). Let ` be a
line through (∞) and E` the element of E corresponding to `. The egg E is good at E` if
and only if for every two distinct lines m1,m2 through (∞), where m1,m2 6= `, there is a
subquadrangle of order qn through m1,m2, `.

Proof. This follows immediately from Lemma 17 and the definition of a being good at an
element.

We are now ready to state the promised characterisation of the translation generalised
quadrangle T3(O).

Theorem 19. Let T be a TGQ of order (qn, q2n) with base point (∞). Suppose that T
contains two distinct lines `i, i = 1, 2 such that for every two distinct lines m1,m2 through
(∞), where m1,m2 6= `i, i = 1, 2 there is a subquadrangle through m1,m2, `i, i = 1, 2,
then T is isomorphic to T3(O), where O is an ovoid of PG(3, qn).

4 A geometric proof of a Theorem of Lavrauw

In this section we obtain a second characterisation of good weak eggs. We need the
following lemma stating that every good element of a weak egg has a tangent space.

Lemma 20. If a weak egg E in PG(2n + m − 1, q) is good at an element E, then there
exists a unique (n+m− 1)-space T , such that T ∩ E = {E}.

Proof. Consider a (n + m − 1)-space Σ disjoint from E. If E is good at E, the element
E induces a partial spread S = E/E which extends to a Desarguesian spread D of Σ. By
following the proof of Theorem 9, part (ii), for both q odd and q even, the elements of
D\S span a (m− 1)-space. It is clear that the (n+m− 1)-space T = 〈E,D\S〉 satisfies
T ∩ E = E.

In [8] the authors proved that every egg of PG(7, 2) arises from an elliptic quadric
Q−(3, 4) by field reduction. Hence, in the following characterisation, when E is an egg in
PG(4n− 1, q), the condition qn > 4 is essentially not a restriction.

Theorem 21. Suppose n > 1, qn > 4, consider E a weak egg in PG(4n − 1, q). Then E
is elementary if and only if the following three properties hold:

• E is good at an element E,

• there exists a (3n− 1)-space, disjoint from E, with at least 5 elements E1, E2, E3,
E4, E5 of E,

• all pseudo-ovals of E containing {E,E1}, {E,E2} or {E,E3} are elementary.
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Proof. Clearly, if an egg is elementary, the statement is valid.
For the converse, consider the (3n−1)-space Π containing 5 elements E1, E2, E3, E4, E5

of E , but not the element E. As E is good at E, the element E induces a partial spread
which extends to a Desarguesian (n− 1)-spread D0 in Π, which contains Ei, i = 1, . . . , 5.

By Lemma 20, there exists a unique (3n− 1)-space T , such that T ∩ E = {E}. When
E is an egg, this space corresponds to the tangent space TE.

Consider the two (n− 1)-spaces F = 〈E1, E5〉 ∩ 〈E2, E4〉 and F ′ = 〈E1, E5〉 ∩ 〈E3, E4〉.
Both F and F ′ are contained in D0, but at most one of them can be contained in the
(2n−1)-space Π∩T . Suppose F is not contained in T (note that this choice has no further
impact as E2 and E3 play the same role). This implies that the (2n − 1)-space 〈E,F 〉
contains an element E6 ∈ E\{E}. By Theorem 13, there exists a unique Desarguesian
spread D containing E, E6 and all elements of D0. We will prove that E is contained in
D.

The (3n−1)-space 〈E,E1, E5〉 intersect E in a pseudo-oval O1, and the (3n−1)-space
〈E,E2, E4〉 intersect E in a pseudo-oval O2. Clearly, O1 and O2 both contain E6.

By assumption, O1 and O2 are elementary pseudo-ovals. The Desarguesian (n − 1)-
spread in 〈E,E1, E5〉 containingO1 contains E, E6 and the qn+1 elements of D0∩〈E1, E5〉.
It follows that this Desarguesian spread is contained in D, hence O1 is contained in D.
Analogously, the pseudo-oval O2 is also contained in D.

There are qn − 2 pseudo-ovals O of E , containing {E,E3}, but not E6, such that the
(3n − 1)-space 〈O〉 does not contain the (n − 1)-space T ∩ 〈O1〉, nor the (n − 1)-space
T ∩ 〈O2〉. Take such an oval O, then there is an element E7 of E \ {E} contained in
〈O〉 ∩ 〈O1〉, hence, E7 ∈ O ∩ O1. Likewise, there is an element E8 of E \ {E} contained
in O ∩O2.

By assumption, O is elementary; let SO be the Desarguesian (n−1)-spread containing
O. As E7 and E8 are contained in D, the Desarguesian spread D intersects 〈E7, E8〉 in a
Desarguesian spread. Let P be an element of D∩〈E7, E8〉, not contained in T , then 〈E,P 〉
meets Π in an element of D, and hence, 〈E,P 〉 contains an element P ′ of E \E. As 〈E,P 〉
is contained in 〈O〉, P ′ is an element of O, and hence also of SO. Since P ′, E, E7, E8 are
contained in SO, the element P = 〈E,P ′〉 ∩ 〈E7, E8〉 is an element of SO. This implies
that D∩〈E7, E8〉 and SO have at least qn elements in common, which implies in turn that
they have all their elements in common. We conclude that SO contains E, E3 and the
qn + 1 elements of D ∩ 〈E7, E8〉, hence SO and thus all elements of O are contained in D.

Now, consider an element E9 ∈ E , not contained in O1, O2 or any of the previously
considered qn − 2 pseudo-ovals O. Look at the pseudo-oval O′ = 〈E,E1, E9〉 ∩ E and the
pseudo-oval O′′ = 〈E,E2, E9〉 ∩ E . At least one of them does not contain E3. Suppose O′
does not contain E3 (the proof goes analogously if O′′ does not contain E3). For at most
one of the qn − 2 pseudo-ovals O containing {E,E3} we have 〈O〉 ∩ 〈O′′〉 ∈ T . Hence,
since qn − 2 > 3, we can find two distinct elementary pseudo-ovals containing {E,E3}
that are contained in D and have an element E10 and E11 respectively in common with
O′.

Let SO′ be the Desarguesian (n−1)-spread containing O′. As E10 and E11 are elements
of D the same argument as before shows that all but one element of the Desarguesian
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spread D∩〈E10, E11〉 can be written as the intersection of 〈E,P ′′〉 with 〈E10, E11〉 for some
P ′′ in O′. It follows that SO′ contains E,E1 and the qn + 1 elements of D ∩ 〈E10, E11〉,
hence, that SO′ is contained in D. In particular, the element E9 is contained in D, which
implies that E ⊂ D and so that E is elementary and more specifically, a field reduced
ovoid.

When E is good at E and q is odd, by Corollary 10 all pseudo-ovals of E containing
E are pseudo-conics; we use this to obtain the following corollary. The same statement,
where E is an egg, was proven in [7, Theorem 3.2] using coordinates. For E an egg, this
was also shown in [16, Theorem 5.2.3] where a different proof was obtained independently,
relying on a technical theorem concerning the Fqn-extension of the egg elements. We have
now obtained a direct geometric proof.

Corollary 22. A weak egg E of PG(4n− 1, q), q odd, n > 1, is classical if and only if it
is good at an element E and there exists a (3n− 1)-space, not containing E, with at least
5 elements of E.
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