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Ljiljana Platǐsa,1,∗ Bart Goossens,1 Ewout Vansteenkiste,1 Subok Park,2

Brandon D. Gallas,2 Aldo Badano,2 and Wilfried Philips1

1TELIN-IPI-IBBT, Ghent University, St-Pietersnieuwstraat 41, B-9000 Ghent, Belgium

2CDRH\FDA, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA

∗Corresponding author: Ljiljana.Platisa@Telin.UGent.be

1



OSA
Published by

Current clinical practice is rapidly moving in the direction of volumetric

imaging. For two-dimensional (2D) images, task-based medical image quality

is often assessed using numerical model observers. For 3D images, however,

these models have been little explored so far. In this work, first, two novel

designs of a multi-slice channelized Hotelling observer (CHO) are proposed

for the task of detecting 3D signals in 3D images. The novel designs are

then compared and evaluated in a simulation study with five different CHO

designs: a single-slice model, three multi-slice models and a volumetric

model. Four different random background statistics are considered, both

Gaussian (non-correlated and correlated Gaussian noise) and non-Gaussian

(lumpy and clustered lumpy backgrounds). Overall, the results show that the

volumetric model outperforms the others, while the disparity between the

models decreases for greater complexity of the detection task. Among the

multi-slice models, the second proposed CHO could most closely approach

the volumetric model whereas the first new CHO seems to be least affected

by the number of training samples. c© 2011 Optical Society of America

OCIS codes: 110.2960, 110.2970, 110.3000, 110.4155, 330.1880, 330.5510.

1. Introduction

Today, medical imaging is an essential part of clinical practice. The primary goal of medical

imaging is to assist physicians in the diagnostic process. Given the seriousness of a diag-

nostic error, reliable and valid image quality assessment is of fundamental importance in

optimization and evaluation of medical imaging systems.
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In its most general sense, image quality is often characterized as a measurement of the

image degradation. To that end, a number of “task-independent” metrics have been defined

to evaluate a great range of factors which may affect the quality of a medical image: noise

[1, 2], contrast resolution [1], and spatial resolution [3], to mention just a few. However,

medical images are inherently task-specific rather than task-independent. In this respect,

image quality for medical applications shall be defined in terms of how well, given the images,

the specific diagnostic task can be performed by a physician [4, 5].

In that manner, the task-based image quality assessment is determined by the task of

interest, the image data, the observer to perform the task and the measure of observer per-

formance [6]. The diagnostic task in medical imaging is generally either estimation, quanti-

fying one or more parameters of interest using the given image data; classification, deciding

to what class an image belongs; or hybrid estimation-classification, when estimation and

classification are combined [7]. In this work, we focus on one particular classification task

called signal detection, where the image is classified as signal-absent (normal clinical case) or

signal-present (abnormal clinical case). Tumor detection in PET scans, bone metastasis de-

tection in bone SPECT scans, and mass detection in breast tomosynthesis are some common

examples of relevant clinical tasks.

Until recently, medical images and thus the detection tasks were limited to single-slice or

two-dimensional (2D) views, i.e., detection of planar signals in 2D images, often projections

or reconstructed 2D images. In recent years, the advent of volumetric image acquisition and

visualization (PET/SPECT, MRI, breast tomosynthesis, CT) has profoundly shifted the

paradigm towards the detection of lesions (signals) using multi-slice reconstructed image

data [8–10]. Following these trends, assessing and optimizing image quality for volumetric
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image analysis is one of the major challenges in medical imaging today.

The most obvious and currently still the most widely used task-based assessment of medical

image quality is a reader study. In reader studies, the observers, often true medical experts,

read a set of test images, synthetic or real clinical ones, and make a diagnostic decision for

those images. To their disadvantage, reader studies are often time consuming and expensive.

As an alternative, mathematical model observers may be used [11,12]. In general, two major

types of model observers can be identified [7]: ideal observers which set an upper bound on the

signal-detection performance of any observer [12–15], and anthropomorphic observers which

are designed to mimic human observer mechanisms and performance in a given detection

task [16, 17]. Commonly, two figures of merit are used to quantify observer performance in

a binary classification task [6, 18–20]: the area under the receiver operating characteristic

curve (AUC) and the task signal-to-noise ratio (SNR).

In signal detection theory [21], the observer which has a full knowledge of the statistical

information of the image data is known as the Bayesian ideal observer (IO). The IO is

optimal among all observers, either human or model, in the sense that it maximizes the

diagnostic accuracy as measured by the AUC. Consequently, for design and optimization

of data acquisition hardware, detection performance of the IO is preferred over any other

observer. In practice, however, it is often difficult, if not impossible, to derive or estimate the

IO performance. This is due to high dimension and great complexity of the image statistics

that are unknown and poorly estimated for real clinical data sets. The IO is tractable only

for simple stylized settings, like when the data is Gaussian, in which case the IO is linear.

It needs no debate that the clinical detection task is a complex mechanism to model,

already in 2D, let alone in 3D, and thus simplifications are inevitable. This concerns both the
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observer model and the image data. One practical alternative to the ideal observer is the ideal

linear observer known as the Hotelling observer (HO). The HO is optimal among all linear

observers in that it maximizes the SNR [7]. Additionally, when the image data are Gaussian

distributed, the HO is equal to the IO. Another simplification for the observer models is

the so-called channelized Hotelling observer (CHO) proposed by Myers and Barrett [22]. In

essence, the CHO is an HO constrained to a number of channels. Originally, the channels

were inspired by the properties of human visual system (HVS) related to examination of

the data through frequency selective channels. An important advantage of the channelized

models over the non-channelized ones is dimensionality reduction of the problem, which has

been discussed by Barrett et al. [23].

Depending on the properties of the channels relative to the image statistics in the task, the

CHO can be used either to approximate the ideal observer (efficient channels) or to track

humans (anthropomorphic channels). For example, in 2D images, Gallas and Barrett [15]

found Laguerre-Gauss (LG) channels to be efficient in detection tasks using various lumpy

backgrounds and rotationally symmetric signals. Not limited to types of backgrounds and

signals are the singular-value-decomposition channels used by Park et al. [24,25] which only

require the system to be linear and the system’s response functions to be known. Most

recently, Witten et al. [26] investigated channels chosen by the partial least squares (PLS)

method, which identifies channels based on the image and truth data covariance. Regarding

anthropomorphic channels, their most common feature is that they have low or no response

to low-frequency data, such as Gabor filters used in the study of Eckstein et al. [16] or the

difference-of-Gaussian (DOG) and square channels which Abbey et al. [17] used in their

experiments.
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As an attempt to incorporate higher order statistics to the CHO and better approximate

the IO, Park et al. [24,25,27,28] developed what they call a channelized ideal observer (CIO).

The authors demonstrate that the CIO using LG channels [27, 28], or more generally using

system singular vectors [24, 25] or PLS channels [26], could well approximate the IO even

for non-Gaussian images.

On the side of image data, the most simplified approach of task-based image quality

assessment restricts the task of interest to detecting whether a known object (signal) is

present at one specified location in a known background, the so-called binary signal-known-

exactly and background-known-exactly (SKE/BKE) detection task [22, 29, 30]. More com-

plicated and more clinically relevant, are the paradigms of background-known-statistically

(BKS) [13, 15, 17, 28, 31–38] and signal-known-statistically (SKS) [38–40] which incorporate

background and signal variability, respectively. For the scope of this work, we focus on

SKE/BKS tasks.

In recent publications, several authors proposed different approaches for manipulating the

3D image data during the process of signal detection. The most direct way to migrate the

model observer for 2D detection task to the 3D detection task is to use a conventional 2D

(planar) CHO and apply it on a single image slice only, the slice where the signal is centered.

We refer to this approach as single-slice CHO (ssCHO). It has been used by Liang et al. [41],

for example, to estimate observer performance in stack-mode reading of volumetric images.

As the authors pointed out, the limitation of the ssCHO is that model observers which are

designed for use in pure 2D detection tasks do not incorporate information about signal

contrast in the z -direction nor the spatial correlation of the background and signal in the

adjacent slices.
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A similar motivation underlies the analysis of Kim et al. [30] who compared the behavior

of 2D and 3D (volumetric) implementations of the numerical observers for simulated whole-

body PET oncology imaging. Their results indicate that there is a significant increase in

SNR or detectability of volumetric numerical observers relative to planar observers. Similarly,

Lartizien et al. [35] used 3D implementations of model observers with 3D channels to compare

different acquisition protocols in whole-body PET imaging, and found these to be a useful

tool for their task of interest. We call a 3D implementation of the CHO a volumetric CHO

(vCHO).

Chen et al. [34] proposed a more sophisticated two-layer model which combines 2D CHOs

followed by an HO. The model which they called a multi-slice CHO-HO was used to process

simulated multi-slice multi-view images similar to SPECT myocardial perfusion scans. First,

the image slices of each of the three orthogonal views (coronal, sagittal and axial) were

channelized and the 2D CHO was computed for each slice and each view, giving arrays

of the decision variables. Then, an HO was applied on these decision variable arrays to

obtain a single scalar detection score for the 3D image, known in statistical hypothesis

testing as the test statistic. This approach was guided by the assumption that, for multi-

slice images, human observers make their detection decision in a two-stage process. The first

stage assessing each slice separately and the second stage, integrating these slice assessments

to yield the final classification decision. Later, Gifford et al. [38] tested two different processes

for modeling the observer capacity for integrating the information from multiple slices in the

image stack. One process describes an observer that is able to integrate the slice information

by computing the sum of the decision variables for each slice. There, this sum represents the

final test statistic for the image stack. The other process supposes that the observer is unable
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to do any integration, and instead the image test statistic is assigned to the maximum of the

decision variables across slices. Further on, we use the term multi-slice CHO (msCHO) to

refer to any approach which treats the 3D image as a conglomerate of multiple slices rather

than just a single volume.

Most recently, Young et al. [36] used 2D projections of 3D breast tomosynthesis data to

approximate the performance of ideal linear observer. Unlike the conventional CHO that

would use a single 2D projection only, they built a CHO model that uses concatenated chan-

nelized angular projections. By doing so, Young et al. were able to incorporate correlations

between multi-projections. Again, their preliminary results indicate that the observer using

multiple projections outperforms the single-slice observer in their considered range of image

acquisition parameters.

The purpose of this paper is to provide a well-founded overview of the properties of dif-

ferent model observer designs for 3D images which can then serve as a basis for building

the anthropomorphic models. Our investigations assume a sequential approach to modeling

human performance: (1) begin with the concept of the ideal observer; (2) compare perfor-

mance predictions to human performance results on actual classification tasks, (3) modify the

model to better predict human performance. Barrett and Myers [7] refer to this framework

for building a human-like model as modified-ideal-observer approach. Thus, in the future

investigations, during step 2 of the process, we will include human data in the analysis and

compare those to the models, looking for the model which performs closest to humans. There,

the comparative model analysis from the present work will assist us in better understanding

of how incorporating different approaches to multi-slice image treatment can limit optimal

detection performance, which will give intuition for explaining sub-optimal performance of
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the humans. Finally, in step 3 of the process, these findings will be used to guide the de-

sign modifications of the selected model observer such that it can better predict detection

performance of the human observers.

In particular, we consider a single-slice CHO [15, 22], three designs of a multi-slice CHO,

and a volumetric CHO model [30, 35]. The three multi-slice designs include the model pro-

posed by Chen et al. [34] only restricted to a single view (either coronal, sagittal or axial),

and two novel multi-slice CHO models introduced in this paper: one guided by the as-

sumptions from the work of Chen et al. [34] and one inspired by the recent work of Young

et al. [36]. To better understand the properties of the considered models in the practical

cases where only limited clinical images are available, we conduct a series of multiple-reader

multiple-case (MRMC) experiments (relying on the training and testing paradigm) and use

different statistical measures to characterize the models. To account for potential influence

of the background structure, we analyze all five CHO models within four different setups,

all SKE/BKS: white Gaussian noise (WNB), correlated Gaussian noise (CNB), lumpy back-

grounds (LB) [31] and clustered lumpy backgrounds (CLB) [41, 42]. Especially, for the two

Gaussian data setups we also estimate the IO strategy. We remark though that the IO is

mainly used as a point of reference in evaluating the range of disparity among the CHO

models which we compare. In addition, to provide guidelines for future research, we explore

and discuss the major considerations involved in selecting and using these models in specific

applications or approaches.

Overall, our results show that the volumetric model outperforms the others in all four

setups. The multi-slice observers are the next best, and the single-slice model expectedly

achieves the lowest detection scores. At the same time, the disparity between the models
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is most notable for high complexity detection tasks (e.g. detecting a Gaussian signal in a

correlated Gaussian noise background when their parameters are very similar) and it gets

less pronounced as the complexity of the task drops (e.g. detecting a Gaussian signal in a

white noise background). The concept of task complexity is detailed in Section 5.A.

The paper is organized as follows. Section 2 describes the models of image objects we use in

the study and provides the essential background information about the model observers. In

Section 3 we describe the aforementioned five CHO model designs investigated in this work

and in Section 4 we explain the setup of our experimental study. The results are presented

and discussed in Section 5. Finally, Section 6 draws some conclusions from this work.

2. Mathematical background

We are interested in a binary classification task determined by two hypotheses: signal is

absent (H1) or signal is present (H2). An observer decides which of these two is true for a

given image.

Let an image under consideration be denoted by g, a vector whose entries gm,m = 1, ...,M ,

are the intensity of image pixels in 2D data or image voxels in 3D data, and M is the number

of elements (pixels or voxels) in the image. An observer is defined by its discriminant function

which maps an image g to its test statistic, t = t(g). The decision is made by comparing the

test statistic to a certain threshold, t0. When t is greater than t0, the signal is considered

detected, hence H2 holds, and the image is classified as signal-present. Otherwise, H1 is

satisfied and the image is classified as signal-absent.

In the remaining of this section, we will introduce the image models considered in our

study, briefly outline the fundamentals of the ideal observer and review the mathematical
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framework for the linear observer models.

2.A. Object models

Since our work is aimed at investigating fundamental aspects of observer models for multi-

slice images, we use three-dimensional images with known statistical properties and different

levels of complexity. This provides a controllable test environment and allows for automated

generation of a large number of random realizations which increases the statistical significance

of the results.

Let us denote s the signal to be detected, b the noiseless image background and n the

measurement of noise in the image. Then the data under the two hypotheses are given by

H1 : g = b+ n, (1)

H2 : g = b+ n+ s. (2)

In our case, four different models are considered for b while the model of s is kept the same

for all four background models. The noise is white Gaussian noise with mean 0 and standard

deviation 1, n ∼ N(0, 1). The amount of noise is small so that it does not disturb the statis-

tical properties of the background. The models we use for background and signal simulations

are described in the remaining of this subsection, and their parameters are summarized in

Table 1.

2.A.1. Image backgrounds

The criteria for choosing the background models are twofold: on one side, given that the

purpose of the model observers is assessment of medical images, we aim at image data

models which may be of clinical relevance, and on the other side, as a point of reference for
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comparing the CHO models, we are interested in estimating the ideal observer strategy for

the selected data. In most cases, these two criteria exclude each other: the IO performance

is very difficult to estimate for clinical images, because their statistics are understandably

complex and often unknown.

In order to keep the analysis general, we select four different categories of background

images to be used in the study: white Gaussian noise (WNB), correlated Gaussian noise,

or colored noise backgrounds (CNB), lumpy backgrounds (LB) [31] and clustered lumpy

backgrounds (CLB) [41, 42]. Example background images with added noise are shown in

Fig. 1. These correspond to signal-absent images in the study.

The first two models are Gaussian so that the IO strategy is readily calculable for these

problems [7]. We will use these IO calculations to evaluate the non-ideal model observers

(variants of CHO) against the theoretical upper bounds of the performance, to be explained

in Section 2.B. In contrast, the LB and CLB models are used as representatives of non-

Gaussian data. The two-dimensional CLB have been shown by Bochud et al. [42] to have

a close visual appearance to real mammographic backgrounds. Recently, Castella et al. [43]

used a genetic algorithm to optimize the CLB generation and achieve even more realistic

mammographic texture synthesis. At the same time, both the LB and CLB models are

statistically well described which allows automated generation of large ensembles of images

required for the observer experiments. Due to their complexity, the IO strategy for LB and

CLB are not included in the present analysis. We remark here that for the non-Gaussian LB

data Kupinski et al. [14] and Park et al. [13] have been able to estimate the IO and the CIO,

respectively, using Markov-chain Monte Carlo (MCMC) techniques.

The simplest background considered in the paper is the fixed background, bWNB = 0.
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Since the statistics of these backgrounds are determined by the added measurement white

noise, n, (see Eq. (1,2)) we refer to them as white noise backgrounds, WNB. Next in order

of background complexity is CNB data, generated by convolving white noise following the

distribution N(0, 1) with a 3D Gaussian kernel characterized by σb. The correlated Gaussian

random backgrounds are sometimes also referred to as lumpy backgrounds, not to be confused

with the LB as we use them in this study, which are non-Gaussian. We describe these next.

As defined by Rolland and Barrett [31], a lumpy background, bLB, is produced by placing

a random number of lumps, l(r), at random locations in the image, rk. In our simulation,

bLB is extracted from a larger field of view (FOV), in order to avoid a boundary problem in

generating the LB images. In particular, the size of fLB is MFOV = 1283 voxels and the size

of bLB is M = 643 voxels (see also Table 1). Formally, the LB images can be described as

fLB(r) =
K∑

k=1

l(r− rk), (3)

where r is a 3D vector and K is the number of lumps selected using a Poisson probability

distribution with mean K. For the LB images, the values of lump locations, rk, are selected

using a uniform probability distribution over the support of the FOV, fLB. The set of K

lump locations may be referred to as a “lump map” of the image. We choose the lumps to

be 3D Gaussian signals of magnitude ab and with the spread parameter σb,

l(r) = ab exp

(−|r|2
2σb

2

)

. (4)

Finally, the most complex background we treat in this paper is the CLB. The original

concept of the two-dimensional CLB was introduced by Bochud et al. [42]. In [41], the 2D

concept is extended to 3D with the assumption that the projection of a 3D CLB yields a
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2D CLB with related characteristics in terms of the parameters of cluster and lump size and

density.

As with the LB, to prevent potential boundary effects, the clustered lumpy background

bCLB of size M = 643 voxels is extracted from a larger FOV, fCLB of size MFOV = 1283

voxels. The fCLB is created in a two step process. The first step is similar to the process

with the LB, only now we shall refer to the “lump map” as the “cluster map” and use rk

to denote cluster, rather than lump, location. In the next step, each cluster position, rk, is

used as the spatial origin for placing a random number, Nk, of lumps. These Nk lumps are

randomly positioned in the kth cluster at locations rkn. Thus,

fCLB(r) =
K∑

k=1

Nk∑

n=1

l(r− rk − rkn), (5)

where K stands for the number of clusters in the field of view fCLB. Again similar to the LB,

both K and Nk are selected using a Poisson probability distribution with mean values K and

Nk, respectively. The location of the kth cluster, rk, is selected using a uniform probability

distribution over the support of the fCLB. To create CLB images, anisotropic 3D exponential

blobs are used with characteristic lengths Lx, Ly and Lz in x, y and z directions, respectively.

The details can be found in [41].

2.A.2. Spherically symmetric signal (SKE)

Signal-present images are created by adding the signal s to a background image b. In par-

ticular, we use a spherically symmetric Gaussian blob created in 3D Cartesian space and

centered in the image volume. Similar to the lump in LB backgrounds, the signal is defined

by Eq. (4) only now we use as to represent signal magnitude and σs to denote signal spread

parameter. The central slice from a sample signal volume is depicted in Fig. 2(a) and the
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radial profile of the signal used in the study is given in Fig. 2(b).

Parameters of both the backgrounds and the signals used in the paper are listed in Table 1.

2.B. Observer models

According to the signal detection theory [21], the observer is completely characterized by

its discriminant function which assigns a scalar test statistic to each image object, t = t(g).

In the following, we introduce the ideal and the channelized mathematical model observers,

and define their discriminant functions.

2.B.1. The ideal observer

The Bayesian ideal observer (IO) is defined as one that has full knowledge of the problem in

terms of the conditional probability density functions of image data, g, under each hypothesis,

pr(g|Hi), i = {1, 2}. Hence, the test statistic of the ideal observer is defined as the likelihood

ratio [21],

Λ(g) =
pr(g|H2)

pr(g|H1)
. (6)

Clearly, calculation of the likelihood ratio, or more conveniently the log-likelihood ratio

λ(g) = lnΛ(g), requires knowledge of the probability density functions that make up the

Eq. (6). In practical applications, these are often complicated or even unknown. Here, though,

the IO can be derived for the WNB and CNB image models. The analytical expressions for

calculating the SNR and AUC of the IO for these two image categories are given later in

this section.

On the other hand, for greater complexity of the image data statistics, even in cases of

simulated data such as LB or CLB from our study, and especially in cases of real clinical
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data, analytical formulas for calculating the theoretical upper bounds for the observer perfor-

mance cannot be derived. Rather, computation of the likelihood ratio in those cases requires

specialized procedures to be developed. As we mention earlier, in current literature this has

been done for LB and CLB backgrounds using MCMC techniques [13, 14, 25].

2.B.2. Channelized observers

In case of real clinical images, it is often complicated or impossible to know the probabilities

required to calculate λ. Primarily, this is caused by random variations in both anatomical

background (bones, veins, organs) and the signal (size, shape and location of the lesion)

which are not all well understood to date and thus accurate models of those are not yet

available. To circumvent this problem, a linear approximation of the ideal observer has been

defined, where linearity refers to the discriminant function

t(g) =
M∑

m=1

wmgm, (7)

where M is the number of elements in the image g. The weights, wm, m = {1, ...,M}, form

an image w called the template of the observer. Thus, the discriminant function may be

written as a scalar product

t(g) = wtg. (8)

Within the framework of linear discriminant analysis, the optimal linear discriminant is

defined as the one which maximizes the SNR. In this context, the ideal linear observer is

known as the Hotelling observer (HO) [7]. The template of the HO is defined as

wHO = Kg
−1Δg, (9)
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where Δg = 〈g|H2〉− 〈g|H1〉 and 〈·〉 denotes ensemble average. The average of the ensemble

covariance matrices of the signal-absent and signal-present data is denoted Kg. It is defined

as follows:

Kg =
1

2
(Kg,1 +Kg,2), (10)

with Kg,i = 〈(g− gi)(g− gi)
t|Hi〉, i = {1, 2}, and gi = 〈g|Hi〉. When the images are

Gaussian random vectors, the HO equals the IO. However, to their disadvantage, both the

IO and HO encounter the difficulty of high-dimensionality computations [23]. The main

difficulty in computing the HO stems from the inversion of a large covariance matrix, Kg,

which is used in Eq. (9) to estimate the observer template, wHO.

The template is often estimated from the data for which the ground truth is known a priori

(trainer data). We refer to this as the training phase. Next, in the testing phase, the estimated

observer template is used to classify the data for which the ground truth is unknown (tester

data).

To overcome the dimensionality problem of the HO model, another variant of the linear

observer named the channelized Hotelling observer was defined [22]. The CHO may be seen

as a specialization of the HO model which makes use of the frequency selective channels to

model the HVS while reducing the dimensionality of the problem. The channels can be seen

as M -dimensional images, up, p = {1, ..., P}, where P is the number of channels. In contrast

to the HO where all image data is used to build the template wHO, the CHO model only

makes use of the channel outputs,

v = Utg, (11)

where U denotes the channel matrix, U = [u1,u2, ...,uP ]. We note that processing the
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images through channels has greatly reduced the dimensionality of the problem, P � M . To

illustrate this reduction, we refer to the parameter values used in the study: the size of the

image is M = 64× 64× 64 voxels while the number of channels P is of the order of 10. Note

that real clinical images are usually larger while the number of channels usually remains of

the order of 10.

If we denote the ensemble covariance matrix of the channelized data as Kv, the template

of a CHO model is

wCHO = Kv
−1Δv, (12)

where Kv = UtKgU and Δv = UtΔg. Finally, the test statistic is calculated as a linear

combination of all channel responses, tCHO(v) = wCHO
tv.

In selecting the channels for the present study, we refer to the primary objective of compar-

ing optimal performance of the observer models rather than their ability to mimic humans.

Additionally, the following assumptions apply to the study: there is no preferred orientation

in the correlation structure of the background and the signal is spherically symmetric in a

known location. Accordingly, we chose LG channels centered on the location of the signal.

The details about the specific use of the channels in different CHO designs are given in the

next section.

The LG functions are a product of Laguerre polynomials and Gaussian functions, and

defined by

up(r) =

√
2

au
exp

(−πr2

au2

)

Lp

(
2πr2

au2

)

, (13)

where r ∈ 
2, au is the spread parameter of the LG channel, and Lp denotes Laguerre
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polynomials defined by

Lp(x) =
p∑

k=0

(−1)p
(
p

k

)
xk

k!
. (14)

The weight of the polynomials is concentrated within a Gaussian envelope with spread σu,

where a2u = 2πσ2
u.

The procedure used for selecting the LG channel parameters is described in Section 4.B

and the corresponding results are summarized in Table 2. In Fig. 3 we show the first 5 LG

channels used in the study for CNB and CLB images when σs = 8.

2.C. Performance measures

In objective image quality assessment [20], AUC and SNR are often used to quantify the

performance of the model observers. In the first step, we use the test statistics, t, for signal-

present and signal-absent images and apply the Wilcoxon-Mann-Whitney statistic to esti-

mate the AUC of a CHO model. Then, AUC is used to calculate the SNR. The relationship

between SNR and AUC can be expressed as

SNRAUC = 2 erf−1(2AUC− 1), (15)

where erf(·) represents the error function. In the literature [7], the SNRAUC is also called the

detectability index, dA, and it is commonly used for performance comparison in the domain

of observer studies.

For two out of four image categories considered in the study, we also estimate the IO

strategy and use it as a reference to evaluate performances of the CHO models. In this

study, the IO performance will be calculated for WNB and CNB images while for LB and

CLB these calculations shall not be included.
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In the case of the IO, we first calculate the SNR and then use it in Eq. (15) to get the

AUC. When the signal is assumed exactly known, the SNR of the IO equals

SNRλ = (stK−1s)1/2. (16)

Here, K stands for the covariance matrix of the background: KWNB = σWNB
2I in case of

WNB, or KCNB(ri, rj) = ab
2(πσb

2)3/2exp (−(rj − ri)
2/(4σb

2)) in case of 3D CNB with the

Gaussian kernel determined by Eq. (4).

Observer performance experiments are often limited in size, especially when real data is

used. In these cases, it is important to determine the errors in the estimated AUC or SNR.

The source of the errors is twofold: variation in test case difficulty (case variability) and

variation in estimating the reader performance (reader variability) [44]. In the terminology

of linear model observers, a reader is determined by the template of the model, and we

estimate the template. So for our study, we generate multiple estimates of the template and

assess them within a fully-crossed multiple-reader multiple-case (MRMC) study design which

assumes that every reader reads every case. One non-parametric estimate of the variance of

AUC in such MRMC study design is the one-shot method defined by Gallas [45]. The one-

shot algorithm gives the estimate of AUC averaged over the readers, ÂUC, together with

the estimate of its variance, V̂
ÂUC

. We use these two metrics to calculate the error bars when

measuring the performance of the CHO models.

In the course of comparing the CHO models, we also make use of the metric named

statistical efficiency. Commonly, the relative efficiency η of the current observer characterized

by SNRcurr relative to the reference observer characterized by SNRref is defined as follows

η =
SNRcurr

2

SNRref
2 . (17)
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The efficiency metric is used within the study to investigate several different parameters of

the model observer designs (see Section 4.C).

3. Methods

We compare three different designs of the channelized Hotelling observer model: (1) a single-

slice model (ssCHO), (2) three variants of a multi-slice model (msCHO), one existing and

two novel ones, and (3) a volumetric model (vCHO). The models are defined in this section

along with the corresponding notation.

To avoid confusion, in this work we will use 2D-CHO and 3D-CHO, respectively, to denote

the CHO for 2D and 3D images in general, without implying any specific model design.

3.A. Single-slice CHO (ssCHO)

Let N denote the number of slices in the image and Q the number of voxels in each slice so

that the number of elements in the image g is M = Q×N . In our study, there are N = 64

image slices and Q = 642 = 4096 voxels per slice, thus the number of voxels in the image is

M = Q × N = 643 = 262144. Lastly, the column vector of voxel intensities of the nth slice

in the stack is denoted g(n), n = 1, ..., N .

We use the name single-slice CHO to refer to the conventional 2D-CHO [15] when it is run

on a single slice in the volume, the central slice of the signal; this is shown in Fig. 4(a). In

our study, for example, the signal is centered in the central slice of the image, g(N/2) = g(32).

Thus, for the purpose of ssCHO, we limit our experiments to this particular slice in the

image, gssCHO = g(N/2). Consequently, in view of Eq. (11), the size of both the channels,

up, p = 1, ..., P , and the concerned image data, gssCHO, is equal to the size of image slice,
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Q. The resulting vector of the channelized image data is equal to the vector of channelized

data of the selected image slice, vssCHO = Utg(N/2). Once the channel responses are known,

the template of the ssCHO model, wssCHO, is estimated using Eq. (12).

Since the ssCHO design is only using limited image information to perform the detection

task, it is expected and proven [30, 34, 47] to perform not as high as the model designs

described next, and for the scope of this work it is used merely as a reference method.

3.B. Volumetric CHO (vCHO)

As known from the literature [7], the definition of the CHO model is not limited by the

dimensionality of the problem as long as the related calculations are manageable. Therefore,

a straightforward approach in solving a 3D detection task could remain in the scope of

Eq. (11), just as it was in case of ssCHO.

In contrast to the ssCHO where the conventional CHO is applied only on a single slice in the

image, g(N/2) of size Q, the vCHO makes use of the complete image volume, g = [g(1) ...g(N)]

of the size M = Q × N as we depict in Fig. 4(b). Similarly, instead of planar channels of

the size Q used in ssCHO design, we now use volumetric channels up, p = 1, 2, ..., P , of the

size M = Q × N . In this way, the vCHO becomes “aware” of the contrast and correlation

between the adjacent image slices which was not the case with the ssCHO.

Specifically, given the fact that the signal in our study is smooth and spherically symmetric,

we select to use 3D LG functions which are isotropic in all three dimensions (see Fig. 3).

The 3D LG channels are created in 3D Cartesian space (r ∈ 
3), they are the same size as

the image and they are centered on the location of the 3D signal.

The same as with the ssCHO, the channelized data vvCHO is used in Eq. (12) to estimate
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the template of the model wvCHO. It is important to note that the size of the vector of the

channelized data vvCHO is the same as those of vssCHO, that is 1× P .

3.C. Multi-slice CHO (msCHO)

Three different designs of multi-slice CHO are considered in this work: type a (msCHOa),

type b (msCHOb) and type c (msCHOc). To define these, the volumetric image g is referred

to as an array of slices g(1), ...,g(N), where N is the number of slices in the image.

Unlike the ssCHO which exploits information of a single slice only, the multi-slice model

design makes use of multiple slices in the image stack. Similar to ssCHO, yet unlike vCHO,

the multi-slice observer makes use of 2D rather than 3D channels to filter the image prior to

estimating the linear discriminant (see Fig. 5).

While the present work is not focused on modeling human observer performance, the

design of msCHO model is partly inspired by the postulates about how humans actually

view the volumetric image data sets while using the stack-mode presentation. For example,

we may think of a radiologist who is inspecting a multi-slice CT image of the chest. We follow

a simplifying assumption of Chen et al. [34] that humans interpret the multi-slice image in

a two stage process. First, they pre-process the image in planar views (xy-plane), slice after

slice, and buffer the scores obtained for each slice. Next, these scores are processed in the

z-direction to result in the stack test statistic, t, which is used to make the classification

decision: normal or abnormal case. Further on, we refer to these two phases as pre-processing

stage and integration stage, respectively. The array of intermediate scores assigned to the

slices in the pre-processing stage is hereafter called planar scores.
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3.C.1. Pre-processing stage

For all three multi-slice designs, the slice data is first processed with a set of 2D-LG channels,

as illustrated in Fig. 5. Here, each slice in the image, g(n), n = 1, ..., N , is channelized by

the set of P two-dimensional channels up, p = 1, ..., P , to get the channel outputs v(n) =

[v1(n), ..., vP (n)], where vp(n) = up
tg(n). This resembles ssCHO design only now the channels

are applied on each slice in the stack rather than on a single slice only. For simplicity, for

each N slices in the stack, we use exactly the same set of 2D channels. This approach is

practical but may be not the most efficient. In line with Eq. (11), the channelized data of

the nth slice is v(n) = Utg(n), where n = 1, ..., N and U is the channel matrix. The matrix

of the channel outputs for all slices in the image is denoted vmsCHO = [v(1),v(2), ...,v(N)].

The models differ in how they use the channelized slice data, vmsCHO. In general, two

approaches have been taken in handling the vmsCHO; these are illustrated in Fig. 6. For

one approach, applied for msCHOc, vmsCHO is seen as output of the stage, or planar scores

(see Fig. 6(c)). The other approach, applied for msCHOa and msCHOb, extends the pre-

processing stage to calculate a test statistic for each slice, t(n), n = 1, ..., N . In view of model

design, this corresponds to a 2D-CHO which is run on each slice in the stack to build an

array of test statistics for all slices denoted tplanar = [t(1), t(2), ..., t(N)] (see Fig. 6(a),(b)).

Here, tplanar is considered the vector of planar scores and it is used as input to the following

stage, the integration stage. The details of the three variants of the model are discussed next.

3.C.2. msCHO, type a (msCHOa)

This model design is illustrated in Fig. 6(a) and it corresponds to the work of Chen et al. [34]

and Gifford et al. [38]. The channelized slice data obtained in the early pre-processing stage
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is used to estimate 2D-CHO templates at each slice position in the stack. Let us denote the

template matrix for slice position n as

w(n) = Kv(n)

−1Δv(n), n = 1, ..., N. (18)

This type of msCHO model uses equally positioned slices of the trainer image stacks to

estimate the 2D-CHO template which is to be applied on the tester slices at exactly the

same position. For example, to build a template for the first slice in the tester stack (n = 1)

we use only the first slices of the trainer images. As such, there is a total of N different

templates, w(n).

Next, the templates are used to calculate the test statistic for each slice in the planar

view. The output data may be summarized in a vector of planar CHO metrics, tplanar =

[t(1), t(2), ..., t(N)], where

t(n) = w(n)
t v(n), n = 1, ..., N. (19)

In the final step, the integration phase, tplanar is used by the one-dimensional HO to

calculate the final scalar statistic of the msCHO model; namely

t(tplanar) = (K−1
planarΔtplanar)

t tplanar = wHOa

t tplanar. (20)

It is important to remark that the HO template is also estimated using the trainer data,

just as the 2D-CHO templates are. To do this, the 2D-CHO templates from Eq. (18) are

applied to the trainer images in order to estimate vectors of trainer slice test statistics which

are then used to estimate the HO template, wHOa = K−1
planarΔtplanar.
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3.C.3. msCHO, type b (msCHOb)

In contrast to the msCHOa where a different template was used for each of the consecutive

slices, we propose the first new model design using one 2D-CHO template over multiple

adjacent slices in the image. The model is illustrated in Fig. 6(b). Assuming the 3D signal is

centered on the image volume, the template is estimated using only the central slice, g(N/2),

from the trainer image stacks.

The number of consecutive slices to be processed with the same signal template depends

on the inter- and intra-slice thickness as well as on the signal properties, especially the signal

spread, and the background variability. Ideally, when the slice thickness is small and there

are few or no missing slices between slices, the background variability is not too high and

the signal characteristics are not changing significantly across slices, a single template could

be applied on every slice in the stack, independent of the slice position within the stack [46].

In view of Eq. (19), we shall call this template wplanar, w(n) = wplanar, n = 1, ..., N . For

simplification, in this study we assume that the aforementioned conditions are approximately

satisfied and use a single template for each slice in the image stack. The exact number of

slices used in our study is discussed at the end of the section.

If, on the other hand, the signal would be spread over fewer slices and there would be

pronounced disturbances in its isotropy, together with the greater variability of the back-

ground, it might be not correct to apply the same template on all slices in the stack. Rather,

a separate template should be estimated for each subset of “similar” adjacent slices of the

testing stacks. Eventually, for the greatest variability of the data, a separate template should

be estimated for each slice position in the stack, hence msCHOb would converge to msCHOa.
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The same as with type a of the msCHO model, in the integration phase of the model

msCHOb, the vector of slice test statistics is used by the HO with the template wHOb
to

infer the image test statistics, t.

3.C.4. msCHO, type c (msCHOc)

Inspired by the work of Young et al. [36], we propose an alternative multi-slice CHO approach

and the second novel CHO design in this study. Here, the channelized slice data vmsCHO are

fed directly to a HO to integrate into a final observer score for the image, as depicted in

Fig. 6(c). This approach is most similar to vCHO in that the correlation between slices are

directly incorporated in the model though the channels and the exact algorithm are different

from those of the vCHO. In the scenario of type c of the msCHO, the test statistic of the

model is

t(vmsCHO) = (K−1
msCHO ΔvmsCHO)

t vmsCHO = wHOc

t vmsCHO. (21)

We notice that the size of the covariance matrix KmsCHO is determined by the number of

slices in the image, N , and by the number of channels, P . As mentioned earlier, P is usually

of the order of 10 while N may well exceed this range. This suggests potential difficulties

in estimating the template wHOc in Eq. (21) caused by the large dimensionality of the

covariance matrix, similar as in [23], especially when the available trainer data set is limited

in size. For example, when N = 64 and P = 10, the number of elements in KmsCHO is

(N × P )2 = 409600.
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3.C.5. Region of interest (ROI)

As we have defined them so far, the multi-slice CHO models can use all slices in the image

stack. However, Wells et al. [47] found that, for the task of detection of small lesions in

thoracic Ga-67 SPECT data, the benefit of a multi-slice display comes primarily from the

two slices immediately adjacent to the central slice. The authors used a 1 cm diameter sphere

to model the signal, where each voxel width was 0.317 cm. We shall henceforth refer to this

subset of significant adjacent slices the region of interest (ROI), where the number of slices

in the ROI is denoted R.

The preferred size of the ROI is influenced by the imaging technology (slice thickness

and separation), as well as by the statistical properties of image data, including smoothness

and symmetry of the signal, the range of its spread over slices, and the variability of the

background content. All considered, the value of R shall be chosen to fit the properties of the

given data. In case of the human observer study from [47], for example, it was shown that

increasing the ROI (in their case R > 3) brings less significant improvement in the observer’s

performance.

In our experiments, each of the three msCHO designs illustrated in Fig. 6 are applied on

the ROI of size R for which the channelized slice data is depicted in Fig. 5. The value of R

is varied among the values of 3, 5 and 11 adjacent slices centered around the slice with the

peak signal intensity.
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4. Experimental setup

4.A. Sample images

For the experiment setup, the testbed of image ensembles is comprised of four categories:

WNB, CNB, LB and CLB, as described in Section 2.A. Detailed parameters of all background

images are summarized in Table 1. The total number of synthesized backgrounds is 22000

for each WNB and CNB categories, and 14000 for each LB and CLB categories, where

the simulation time is significantly longer. We aim at a data set which is large enough

to ensure statistical significance of the results while the computational time and computer

power required for both image generation and observer calculations remain within reasonable

limits. In each category, half of the set is used as signal-absent images and the remaining

half is used to create signal-present images by inserting a 3D Gaussian signal in the center

of the background volume (see Fig. 2). Given the parameters of the background images and

aiming at non-trivial detection tasks, the spread of the 3D Gaussian signal is assigned σs = 8

throughout the study. In addition, for CNB data we also consider σs2 = 5 and σs3 = 3. For

each image category and each considered σs, the peak intensity of the signal, as, is varied in

the range of four different values, selected to approximately fit the criterion of AUC covering

the range from 0.6 to 0.9 in equal steps. Due to different parameters of the backgrounds, as

values differ across four categories, as specified in Table 1.

The image data is used as follows. For WNB and CNB categories, 10000 pairs (hereafter

called trainer pairs) of signal-present and signal absent images are used as training data. For

LB and CLB categories, the number of trainer pairs is 6000. In all categories, 1000 image

pairs (hereafter called tester pairs) are used as test data. Tester data are kept independent
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from the trainer data.

4.B. Study design

We test the performance of five CHO designs: ssCHO, msCHOa, msCHOb, msCHOc, and

vCHO, for four image categories: WNB, CNB, LB and CLB. Initially, we run a set of exper-

iments to select the parameters of LG channels. Next, the performance and variance of the

CHO models are evaluated in MRMC studies. For CNB data, we investigate the influence

of signal parameters σs and as. This will allow the influence of the signal size to be assessed.

In addition, for WNB and CNB images, the IO performance is estimated using Eq. (16) and

Eq. (15). Finally, for the three multi-slice observers, we investigate the influence of ROI size

on the model observer performance.

For all considered model observers, the observer templates are estimated using the trainer

data. For a given CHO, all template parameters (the covariance matrix K, the mean chan-

nelized signal Δv, the mean planar test statistics Δtplanar) are estimated using the exact

same pairs of signal-absent and signal-present trainer 3D images. In the testing phase, the

observer templates are used in estimating the test statistics for each of the tester 3D images.

There is no overlap between the trainer and the tester image sets.

As defined in the previous section, 2D channels are required for both ssCHO and msCHO

experiments while 3D channels are used by vCHO only. To that end, we explore two basic

types of the CHO models: ssCHO to select parameters of the 2D channels and vCHO to

select parameters of the 3D channels. Given that the sampled 3D LG channels as used in the

study are not exactly orthonormal, we considered also the orthonormalized version of the

3D LG channels. In line with the work of Gallas and Barrett [15], each model is investigated
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for several values of the channel spread parameter: for σs1 = 8, au = {7, 12, 18, 24, 32};

for σs2 = 5, au = {4, 7, 12, 15, 21}; and for σs3 = 3, au = {3, 5, 7, 9, 12}. For each spread

parameter, the number of LG channels is varied in the range of P = 1, ..., 30. The experiments

are conducted with Ntr = 2000 trainer pairs and Nts = 1000 tester pairs, and for the second

largest among four considered values of signal magnitude as given in Table 1. Further in the

study, these selected channel parameters are used. Within the same image category, a unique

set of 2D LG channels is used for both the ssCHO and msCHO, while the 3D LG channels

are used for the vCHO. The exact same set of 2D LG channels are used for all three types

of the msCHO and for all slices in the image stack.

The MRMC studies are characterized by the following parameters: the number of trainer

image pairs (Ntr), the number of tester image pairs (Nts) and the number of readers (Nrd).The

exact values of these parameters are given in Table 3. A range of different values of Ntr,

while Nrd and Nts are kept fixed, will allow the influence of the size of trainer data set to

be evaluated. Each of the specified MRMC configurations is repeated for every signal spread

value, σs, and related range of four signal magnitudes, as, all as specified in Table 1.

4.C. Figures of merit

The metrics used in the study include: AUC and the estimate of its variance, SNR, and model

efficiency η; these are all defined in Section 3. For each MRMC configuration, we first estimate

AUC and then use it in Eq. (15) to calculate the SNR. To evaluate the variability associated

with the results, we use the one-shot variance analysis [45]. Eventually, in analyzing the

influence of particular parameters of the CHO designs on their performances, we focus on

CNB category of the data and use Eq. (17) to estimate efficiency, η, of the observers.
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Three different types of the observer model efficiency are considered: efficiency of the CHO

relative to the IO, ηCHO, efficiency of the CHO trained with fewer trainer pairs relative to

its performance for the largest considered number of trainer pairs, ηNtr , and efficiency of the

ssCHO model relative to the vCHO model, ηss,v. In view of Eq. (17), the actual SNR values

used in place of SNRcurr and SNRref for each different type of the efficiency are specified in

Table 4.

5. Results and discussion

To facilitate the interpretation of the results, we first refer to the IO performance in 2D versus

3D detection tasks and analyze the influence of image parameters and level of task complexity

on the performance gap between 2D and 3D observer. We then proceed to elaborate on the

selection of the channel parameters used in the study and continue to present a detailed

comparative analysis of the five CHO models described in Section 3. Finally, we point to the

major differences among these models and think about their potential applications in the

future.

5.A. Complexity of the detection task: 2D versus 3D

Before we get into the analysis of the CHO model performances, it is worthwhile looking at

the performance of the ideal observer for the 2D (2D-IO) versus the 3D problem (3D-IO).

In Fig. 7, we show these results for the two image categories in the study for which the

data is Gaussian: WNB (top graph) and CNB (bottom graph). As stated in Section 2.B.1,

when the image data are Gaussian the ideal linear observer, the HO, equals the IO. We first

calculate the SNR of the IO using Eq. (16) and then use this to calculate the AUC of the
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IO by inverting Eq. (15).

Looking at Fig. 7, we notice that the 3D-IO outperforms the 2D-IO for both the WNB

and CNB. Such results confirm our intuition about the gain in the observer performance

from using the information from more than a single slice in the detection process. This is in

line with the fact that 3D observer, unlike the 2D one, exploits also the information about

signal contrast in z -direction and about spatial correlation structure between the slices of

the data which yields more accurate estimates of the signal s and the covariance matrix K

in Eq. (16).

Moreover, the difference between 2D-IO and 3D-IO performance is much more significant

in the case of WNB compared to the CNB images. This may be explained by different levels

of difficulty of the detection tasks in the two categories of image data. Namely, going from 2D

to 3D adds more information on the signal which results in 3D-IO outperforming the 2D-IO.

However, when there is correlation in the backgrounds, such as in CNB, 3D also adds more

complexity to the background which makes the detection task more difficult and diminishes

the positive impact of the additional signal information. Having together the benefit that

comes from extra signal information and the detriment that comes from increased background

complexity, the performance difference between 2D and 3D is narrower when the backgrounds

have correlation, that is when the complexity of the detection task is higher.

Clearly, similar performance trends are expected to be observed among ssCHO and vCHO

model designs, both in terms of the 2D versus 3D approach and uniform versus inhomoge-

neous image contents (backgrounds).

Last, we note that the difficulty of the detection task, either 2D or 3D, depends not only

on the correlation of the background data but also on other parameters of image objects.
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For example, in our study the signal is of Gaussian shape with the spread σs = 8 for both

WNB and CNB while the spread of the CNB Gaussian kernel is determined by σb = 8. Given

that the size and shape of the signal are the same as those of the filter kernel for the noise,

the CNB detection task may be described as difficult. In contrast, the task is relatively easy

for the WNB. When, for example, we would change the signal size to be smaller such as

σs = 5 the difficulty of the WNB task would increase while the difficulty of the CNB task

would decrease. Indeed, by looking at the parameters of CNB data in Table 1, we observe

that the decrease in the signal spreads, σs1 > σs2 > σs3, is followed by the decrease in the

signal amplitudes, ss1 > ss2 > ss3, while the background structure is fixed, σb = σs1. This

decreasing trend in the level of the signal, while preserving the value of the AUC, confirms

the decrease in the difficulty of the detection task.

5.B. Exploring channel parameters

On the way to evaluate the CHO models, we first run a series of experiments for each of

the four image categories aiming to select the parameters of 2D and 3D LG channels such

that they capture as much information as possible for the purpose of signal detection. The

results of this investigation for σs = 8 are depicted in Fig. 8. Here, the graphs in the left

and right column depict results for ssCHO and vCHO, respectively, while the rows represent

the image categories: WNB, CNB, LB and CLB, from top to bottom. Each curve in a graph

corresponds to a different au. The solid lines labeled “ideal observer” show AUC performance

of the IO calculated using Eq. (16) and Eq. (15): 2D-IO for 2D image data and 3D-IO for 3D

image data. Further in the text, IO is used to refer to 3D-IO unless otherwise indicated. The

number of trainer images used in these experiments is Ntr = 2000 which allows a meaningful
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estimate of the involved data covariance matrices. For each image category, the selected

number of 2D LG channels is denoted P2D and the selected number of 3D LG channels is

denoted P3D.

We observe in all plots that the curves nicely converge to an asymptote as the number

of channels increase. Looking in more detail, for both ssCHO and vCHO, the curves for

narrower channels reach to the higher range of performance with fewer channels but then

approach the asymptote more slowly. For wider channels, on the other hand, performance

improves more gradually as the number of channels increase but does not have the long

approach to the asymptote. Further on, we notice that in most categories ssCHO converges

faster than vCHO reaching to the asymptote with a fewer channels hence there P3D > P2D.

We found these results independent of the orthonormality of the 3D LG channels. In line

with the task complexity discussion at the beginning of this section, the distance between

the CHO asymptote and the IO score is more pronounced in the case of ssCHO compared

to vCHO where the linear model nearly approaches the IO.

Aiming at the best and stable performance of the CHO with a reasonable number of

channels and given the plots in Fig. 8, we select the channel parameters which are used further

in the study. For all four image categories and related signal size, the selected parameters of

the LG channels are listed in Table 2, these particular values of au, P2D and P3D are used in

the remaining of the study. With respect to the category, the narrowest and fewest channels

are used in case of WNB while wider and more of those are used for other image categories.

Again, the tendency conforms with the difficulty of the detection tasks. Thus, for example,

au = 12, P2D = 3, P3D = 4 for WNB while for more complex CNB these values increase to

au = 24, P2D = 9, P3D = 12.
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5.C. Comparing CHO performances

The performance results for the five CHO model designs are summarized in Fig. 9 for all four

categories of the backgrounds and their image parameters as defined in Table 1. The signal

size is the same in all images, σs = 8. The results correspond to the study design ofNtr = 2000

trainer pairs and Nts = 1000 tester pairs, and NRd = 5 readers (templates) for WNB and

CNB backgrounds or Nrd = 3 readers for LB and CLB data, all in accordance with Table 3.

The details about the size of image data sets and MRMC study configurations can be found

in Section 4. For the msCHO models the size of ROI is R = 11 with approximately 65% of the

signal energy included in the decision process. Here, the energy of the signal is calculated as

E(s) =
∑M

m=1 s
2
m, m = 1, ...,M where s is defined by Eq. (4) and M is the number of voxels

in the signal image. The size of ROI is selected such that the covariance matrix of msCHOc is

not unbearable, all other observers are less demanding. In each study experiment, the AUC

is averaged over the total number of readers. The error bars are ±2 standard deviations

estimated by the one-shot method [45]. For the purpose of this analysis, and in view of the

remarks from Section 4.A concerning the selection of the signal magnitudes, we shall avoid

directly comparing the absolute values of AUC for different categories. Instead, we look

at the absolute AUC values only within the same category, and use different categories to

compare relative trends amongst the CHO variants with regards to image data properties.

In all four data categories, vCHO clearly outperforms the other models. Among multi-

slice designs which are ranked next, msCHOc which infers the classification decision directly

from the channelized slice data, vmsCHO, outperforms the other two which use vmsCHO to

build the slice test statistics prior to estimating the final image statistic. On the lower side,
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expectedly, is the ssCHO design. For all five models, the error bars slightly decrease as the

magnitude of the signal grows.

Across four image categories, the most striking difference between the model performances

is observed for WNB images where ssCHO performs significantly worse than the other four

models. As explained earlier, the reason for this remarkable benefit of using information

from multiple slices in the process of signal detection stems from the low complexity of the

detection task. Even more, given the uniform structure of the white noise background and

the relatively “large” spread of the signal used in our study (σs = 8), the detection task gets

relatively “easy” as the observer gets access to all three-dimensions of the image. The least

amount of disagreement between the model performances is observed for CLB images which

use the most complex backgrounds in the study.

In further analysis and discussion, we focus on CNB data and explore the influence of

specific parameters: signal size, signal magnitude and size of trainer data set.

The results of MRMC studies for CNB images when the signal size is σs2 = 5 and σs3 = 3

are presented, respectively, in the top and bottom graphs of Fig. 10. For msCHO, the size

of ROI is the same as in Fig. 9, R = 11. The approximate percent of signal energy included

in the decision process is now 88% for σs2 and 99% for σs3. Overall, in Fig. 10 we observe

similar tendencies in CHO model performances as those in Fig. 9. Only now the absolute

difference between performances of the different models is more pronounced.

Let us first look at the ssCHO versus vCHO. We refer to the results for CNB with σs1

from Fig. 9 and those for CNB with σs2 and σs3 from Fig. 10. For example, let us examine

the experiment setups when the AUC of vCHO is in the range of 0.9 (the second largest as

for a given σs). By comparing these, we observe that the absolute differences in performance
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of vCHO and ssCHO for a given σsi, denoted D|σsi, i = 1, 2, 3, are ordered as follows:

(D|σs1 ≈ 0.07) < (D|σs2 ≈ 0.2) < (D|σs3 ≈ 0.22). Earlier in this section, we established that

the complexity of the detection task in three CNB image setups, each with the kernel size

of σb = 8, is highest for σs1 = 8, lower for σs2 = 5 and lowest for σs3 = 3.Here again, the

ordering of performance differences nicely agrees with the earlier discussion that the benefit

of vCHO over ssCHO is most significant when the task complexity is low (D|σs3 ≈ 0.22), and

it gets smaller for higher complexity tasks (D|σs1 ≈ 0.07). Similar trends appear with respect

to the difference between the ssCHO and msCHO. There also, the difference in performance

is largest when the task is of lowest complexity (σs3).

Another interesting aspect to these results is the influence of ROI size, the number of slices

used with the msCHO models. Even for σs3 when 99% of the signal energy is included in

the ROI, there is a difference between the msCHO models and vCHO. This may indicate

that the msCHO still has insufficient information on background statistics. The extent of

the vCHO is not limited to the ROI size. It is possible that the msCHO performance can

be increased by choosing more slices but still fewer than the whole volume. On the other

hand, especially with msCHOa and msCHOb, involving more slices that have little or no

signal in them might only add unnecessary noise. Of course, the specific choice of ROI size

should represent the best compromise between the aforementioned considerations. Moreover,

it would depend on the type of image data and its background statistics, and for msCHOc,

on the number of training images available to adequately estimate the covariance matrix.

Eventually, we remind that in our experiments the same 2D LG channels are used for each

slice of a given image stack which may not be optimal. The influence of the ROI size will be

discussed later in the section, yet detailed analysis in this respect requires future research.
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We continue with comparing CHO performances to the IO over a range of CNB image

parameters σs and as. By doing this, we aim at evaluating the range of disparity among

different CHO models. It is not the explicit focus of this study to select a CHO model which

approximates the IO; ; the IO model is used as a point of reference. The statistical efficiency

of the five CHO model observers relative to the IO, ηCHO, is calculated using Eq. (17) with

the corresponding SNR values from Table 4. The results are summarized in Table 5.

In general, the definition of SNR from Eq. (16) suggests a linear increase of SNR with

the increasing signal magnitude, as. Thus, for each σs1, σs2 and σs3, we expect the efficiency

ηCHO as defined in Eq. (17), to be constant with respect to as. Indeed, for CNB setups with

σs2 = 5 or σs3 = 3, and given the results in Table 5, the efficiencies of the CHO models

relative to the IO are approximately constant with the considered values of as. However,

the efficiencies observed with σs1 = 8 do not meet the expectations. Even, with very low

as = 0.25, it happens that ηvCHO > 100% which, in theory, is not really possible. Such

unstable behavior of the efficiency ηvCHO in the case of σs1 could be attributed to the effect

of training the CHO models (see later discussion of ηNtr|as and Table 6).

In comparing the ηCHO across three values of σs, we notice that the benefit of vCHO over

the other models is more significant for smaller σs that is for lower complexity of the signal-

to-background parameters, or lower complexity of the detection tasks. This is confirmed with

the calculations of the efficiency of ssCHO relative to the vCHO, ηss,v aimed to illustrate

the difference in observer efficiency caused by the restricted amount of information used by

the ssCHO compared to the vCHO model design. These are also included in Table 5. The

value of ηss,v varies significantly from approximately 60% for σs1 = 8 to approximately 17%

for σs2 = 5 or 14% for σs3 = 3.
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Knowing that the limited size of image ensembles is often encountered with sets of real

clinical data, we aim to evaluate the influence of the number of trainer pairs, Ntr, on the

efficiency of the CHO models. To do that, we calculate CHO efficiencies relative to the

scores obtained with the largest considered trainer data set. Eventually, the greater the

efficiency of the model for a smaller value of Ntr, the less the CHO depends on the number

of available trainer images and the better it suits the experiments with a limited number of

images. Specifically, we use ηNtr to investigate the influence of the size of trainer data set

in a twofold manner: with reference to the signal spread parameter, ηNtr|as - for all ssCHO,

msCHO and vCHO models; and with reference to the size of ROI, ηNtr|R - for the three

msCHO models.

The results of ηNtr|as calculations for all five CHO models and different levels of the signal

as are given in Table 6. Here, all experiment parameters correspond to the results in Fig. 9.

The rows labeled “SNRNtr=5000” give the SNR values for Ntr = 5000. These are included

to indicate the absolute range of the observer performance for different signal levels, as. We

notice that the efficiency ηNtr|as for ssCHO and vCHO are greater than those of the msCHO

models. This difference is more noticeable for the lower levels of the signal (as = 0.25) and

it gets less significant for higher signal levels (as = 1). Also, for each observer model, the

values of ηNtr|as significantly increase with the increase of Ntr for lower signal levels, and

this variability is greatly reduced for higher signal levels. Hence, the influence of the size

of trainer data set is less significant when the observer performance is higher. Given the

parameter values in our study, the CHO models are most sensitive to the size of trainer data

set when as = 0.25 where SNRNtr=5000 is below 1, and they are least sensitive to the value

of Ntr when as = 1 where SNRNtr=5000 is in the range of 2 or greater. This is in line with

40



OSA
Published by

the conclusions from Fukunaga and Hayes [48] who discussed the effect of finite sample size

on training a classifier showing that the bias is a function of the performance level.

For the msCHO models and CNB images with σs1 = 8 and as = 0.75, we vary the size of

ROI among 3, 5 and 11 adjacent slices and for each of them we calculate ηNtr|R. Additionally,

msCHOa and msCHOb models are applied on all slices in the image, R = 64. These results

are presented in Table 7 where columns denote the size of ROI and rows indicate the number

of trainers. In case of msCHOc, the covariance matrix of channelized slice data, KmsCHO in

Eq. (21) is of the greatest dimension, (R × P )2 compared to R2 of the other two models.

When the number of slices in ROI increase to R = 64 and given that P2D = 9, the size of our

data set (NtrMAX = 5000) is insufficient to properly estimate KmsCHO. Thus, for msCHOc

the analysis is restricted to the lower three values of R.

In Table 7, we first observe the row labeled “SNRNtr=5000” where the SNR values for

Ntr = 5000 are presented. For R = 3 and R = 5, SNRNtr=5000 = 1.49 for either msCHOa or

msCHOb. Given these scores, and reading from Table 6 that for ssCHO SNRNtr=5000 = 1.48

in the same test environment (as = 0.75), we conclude that for type a and type b of multi-

slice observers the benefit from first 3 or 5 adjacent slices is minor. With msCHOc, the

contribution of the first few slices around the signal is slightly greater yet notably less

compared to those of R = 11. All in all, from the results presented in Table 7, it is clear that

the major contribution in msCHO performance comes from the next few slices, mainly from

the ROI of 11 consecutive slices centered around the central slice of the 3D signal. Further

growing the ROI might be considered to fine tune R for a given data. To that end, we note

that msCHOc is able to reach SNRNtr=5000 = 1.75 already with R = 11 while the other two

models need all R = 64 slices to approach this level of the performance.
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Eventually, we evaluate the overall influence of the number of trainer pairs on the model

performances. As noted before, for all three msCHO designs the efficiency degrades as the

size of ROI grows. However, this is more pronounced for fewer trainer pairs and it gradually

disappears as Ntr grows. Looking back at Table 6 and together with Table 7, msCHOa and

msCHOb are less sensitive to Ntr than msCHOc. Even further, the msCHOb compared to

msCHOa appears slightly more robust to the changes of ROI size especially when Ntr is in the

lower range. To illustrate this, when as = 0.75 and R = 11, the msCHOb achieves ηNtr > 70%

with Ntr = 50 but then progresses to ηNtr > 90% already with Ntr = 200. The msCHOa is a

few percent lower while msCHOc is able to reach ηNtr > 90% only with Ntr = 1000 trainer

image pairs, which is in line with the earlier remarks about dimensionality restrictions of

the latter model. The least affected by the limited number of trainer images are vCHO and

ssCHO models, reaching over 80% of efficiency with as few as Ntr = 50.

5.D. Some practical considerations

In conclusion of this section, we think about potential applications of volumetric versus

multi-slice versus single-slice observer designs in the actual 3D signal detection tasks.

Based on the results of our study, vCHO approaches the IO scores most closely. Therefore,

it comes forward as a preferred model for optimization of the system to maximize detection

of the 3D signal. In contrast to vCHO, ssCHO performs worst among all five CHO models

in terms of actual performance metrics. Still, it follows the trends of the other models, and

it is the simplest and fastest to apply. Consequently, it might be considered for preliminary

experiments in 3D detection tasks, especially when the initial parameter space is large and

shall be downsized prior to further in-depth analysis.

42



OSA
Published by

Another important aspect to consider when selecting the preferred CHO design is char-

acteristics of the signal. Throughout this study, the signal is a spherically symmetric 3D

Gaussian function. In practice, however, this would most often not be the case. Certainly,

as the signal gets more asymmetric the choice of LG channels as we use them in the study

might not be adequate and alternative channels shall be considered. Nonetheless, when this

asymmetry is in the z-direction, perhaps even due to the increased slice thickness, it might

be desirable to reconsider not only the channel selection but also the preferred model de-

sign for a given application. It may well be that the vCHO design which seems to be the

most efficient design in the case of a spherically symmetric 3D signal compares differently to

the msCHO designs when the signal characteristics are changed. Encouraged by the results

from [46] where the detection of 2D signal in 3D backgrounds is investigated, we favor further

investigating msCHO models when the signal is spread over a very limited number of slices

only or its symmetry in z-direction is noticeably distorted.

Last but not least, given the possible applications of the model observers from this study,

we are driven to think about the CHO model designs from the perspective of mimicking

humans. While the anthropomorphic models as such are outside the scope of this work, we

refer to some of their basic considerations to stimulate the discussion. As proposed by Myers

and Barrett [22], the property of frequency selective channels which are known to exist in

the HVS is used to model the process of signal detection in the two-dimensional environ-

ment. This mechanism certainly extends to three-dimensional problems. For video imaging

applications, for example, it has been modeled with a three-dimensional filter bank which is

separable in spatial and temporal frequency components [49]. However, current literature

does not tell us how exactly the HVS is channelizing the data when viewing it in stack
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browsing mode where the speed of browsing is not predetermined and the forward-backward

looping is allowed. Conveniently, the stack-mode viewing scenario itself resembles the tech-

nique of msCHO signal detection. Henceforth, it might be worthwhile to further explore the

msCHO model designs to better understand their relation to the human performance.

Even more challenging is the design of anthropomorphic models which operate on real clin-

ical images. Inevitably, there is a number of factors to be considered here, ranging from the

anatomical properties of the signal as well as of the background, through the parameters of

the underlying imaging technology (inter- and intra-slice reconstructed thickness), the speed

of browsing through the stack, and the limitations of the medium of image presentation such

as the temporal effects in slow medical displays. Again, considerations about robustness of

the model designs to the number of trainer images may play an important role in applica-

tions dealing with real clinical images where a limited number of samples are available. In

addition, an important aspect of modeling human observers is the issue of channel selection.

Undoubtedly, in-depth further investigations are necessary before the preferred design of the

anthropomorphic 3D model can be proposed.

6. Conclusions

This work was set to investigate potential CHO model observer designs for the task of signal

detection in a three-dimensional problem: three previously used in the literature (ssCHO,

msCHOa, vCHO) and two novel designs (msCHOb, msCHOc). In that sense, we have pre-

sented the theoretical background for the selected models and conducted an experimental

comparative analysis of those for a range of statistically different images. Where applicable,

the models were compared to the ideal observer known to set the theoretical boundary for
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the signal detection performance.

When the signal is known and spherically symmetric, our results indicate that the CHO

using volumetric channels is outperforming the other model designs. Even more, when the

data statistics are Gaussian, the vCHO closely approaches the scores of the IO. Next ranked

are the multi-slice observers, where the novel proposed msCHOc performed better than the

msCHOa and msCHOb, while the latter two were within the same range of performance.

Expectedly, on the low end of the detection performance scale was the ssCHO. Importantly,

the disparity between the models gets less pronounced as the complexity of the image content

grows, i.e., the difficulty of the detection task drops.

Further on, we found that the major benefit of multi-slice versus single-slice observer comes

from a number of adjacent slices centered around the signal referred to as ROI, rather than

all slices in the stack. This agrees with the conclusions from [47]. The exact size of the ROI is

subject to the properties of a particular data set (slice thickness, signal spread, background

statistics, etc.) and shall be determined on a case-by-case basis. Among msCHO designs, the

new msCHOb seems to be least affected by the number of training samples, assuming the size

of ROI is appropriately selected. Due to its design, in particular the relatively large size of

the covariance matrix, the msCHOc model is most sensitive to the size of training ensemble

and thus most susceptible to the dimensionality problem. For future work, one important

aspect to study is the size of ROI in relation to the thickness of image slices but also in

relation to the spatial spread of the signal over slices (signal parameters in the z -direction).

Finally, our work explored and discussed some basic aspects of the potential use of the

different CHO designs considered. Most fundamentally, the high level of vCHO performance

makes it a good candidate for what is called an efficient model, a model which can approx-
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imate the ideal linear observer performance. Along the assumptions about human visual

system which motivated the design of three msCHO models, this concept of CHO appears as

a candidate for anthropomorphic model design. In order to test this candidacy, it is essential

to acquire human observer performance data. These shall be used for analysis of the CHO

performance with human-like channels and modifying the models to better predict human

performance. This investigation is in progress and shall be reported in a separate publication.
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p = 1, ..., P where P is the total number of channels. The vector of channel
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the test score of the ssCHO, t. (b) Volumetric CHO. The main difference from

ssCHO model is that vCHO exploits not only a single slice from the volume

but the image volume as a whole, g = [g(1)...g(N)]. Here, the channels match

the dimension of the image volume and they are 3D LG functions in a 3D

Cartesian space. In any other aspect, the vCHO model is the same as ssCHO. 57

5 Multi-slice CHO. Processing slice data with 2D-LG channels. The multi-slice

image g is represented as an array of slices g(1), ...,g(N), where N is the number

of slices in the image. Each slice in the array g(n) is channelized by the same set
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8 Plots of estimated AUC as a function of a number of channels, P = 1, ..., 30.

Right: AUC for a single-slice CHO design (ssCHO) using 2D LG channels

applied on the central slice of the image stack. Left: AUC for a volumetric

CHO design (vCHO) using 3D LG channels. For both model designs, a set

of different spread parameters is considered, au = {7, 12, 18, 24, 32}. Top to

bottom: The results for WNB (as = 0.035), CNB (as1 = 0.75), LB (as = 12),

and CLB (as = 12). The plots are obtained for Ntr = 2000 trainer image

pairs and Nts = 1000 test image pairs. Selected channel parameters are listed

in Table 2: channel spread parameter au, and number of channels P2D for

ssCHO, and P3D for vCHO. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

9 Average AUC for the five model observer designs: ssCHO run on the cen-

tral slice in the image; msCHOa, msCHOb and msCHOc each applied on the

region-of-interest comprised of R = 11 adjacent slices centered on the central

signal slice; vCHO applied on the whole image volume. Each graph corre-

sponds to one of the four background categories (left to right, top to bottom):

WNB, CNB, LB and CLB. The value of signal spread parameter is σs1 = 8

and the related signal magnitudes as correspond to those defined in Table 1.

Number of trainer image pairs per reader Ntr = 2000, and number of tester

pairs Nts = 1000. Number of readers Nrd corresponds to the applicable study

configurations from Table 3. Error bars are ±2 standard deviations estimated
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10 For CNB image category, average AUC of the five CHO model designs and

the ideal 3D IO when the value of signal spread parameter is (top) σs2 = 3

and (bottom) σs3 = 5. The related signal magnitudes as correspond to those

defined in Table 1. The three msCHO models are applied on the region-of-

interest comprised of R = 11 adjacent slices centered on the central signal

slice. Number of trainer image pairs per reader Ntr = 2000, and number

of tester pairs Nts = 1000. Number of readers Nrd = 5. Error bars are ±2

standard deviations estimated by the one-shot method. . . . . . . . . . . . . 63
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Fig. 1. Four image categories: (a) white noise background (WNB), (b) cor-

related Gaiussian noise background (CNB), (c) Gaussian lumpy background

(LB), and (d) clustered lumpy background (CLB). In each case, a randomly

selected slice from the image volume is presented. Detailed parameters of the

background images are given in Table 1.
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Fig. 2. Sample signal image. (a) central slice of the signal volume, size of the

slice is 64 × 64 voxels, (b) contrast profile in the central slice of a simulated

3D Gaussian signal.
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Fig. 3. The first five Laguerre-Gauss channels with the spread parameter au =

24. Top: The images illustrate 2D channels or central slices of 3D channels.

Bottom: Plots of the LG functions. For 3D channels, these plots are the same

in planar view (xy-plane) as in z -direction.
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Fig. 4. (a) Single-slice CHO. The model is constrained to use only the informa-

tion of one slice in the volume, the slice in which the signal is centered, g(N/2).

The g(N/2) from all images are first channelized using a set of 2D LG channels,

up, p = 1, ..., P where P is the total number of channels. The vector of channel

outputs v of the size P is than processed by the template wCHO to estimate

the test score of the ssCHO, t. (b) Volumetric CHO. The main difference from

ssCHO model is that vCHO exploits not only a single slice from the volume

but the image volume as a whole, g = [g(1)...g(N)]. Here, the channels match

the dimension of the image volume and they are 3D LG functions in a 3D

Cartesian space. In any other aspect, the vCHO model is the same as ssCHO.
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Fig. 5. Multi-slice CHO. Processing slice data with 2D-LG channels. The multi-

slice image g is represented as an array of slices g(1), ...,g(N), where N is the

number of slices in the image. Each slice in the array g(n) is channelized by the

same set of P two-dimensional channels u(p), p = 1, ..., P , to get the channel

outputs v(n) = [v1(n), ..., vP (n)], where vp(n) = u(p)
tg(n). The matrix of the chan-

nel outputs for all slices in the image is denoted vmsCHO = [v(1),v(2), ...,v(N)].

The same procedure applies on both signal-present and signal-absent images.

The concept of ROI is explained in Section 3.C.5.
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Fig. 6. Three different designs of the multi-slice CHO: (a) msCHOa, (b)

msCHOb, (c) msCHOc. Each observer is applied on the region-of-interest, ROI,

consisting of R consecutive slices where R ≤ N and R = N corresponds to

the whole image sequence; for details about ROI see Section 3.C.5. First, in

the early pre-processing stage, the channelized slice data v(n), ...,v(n+R) is ob-

tained, as illustrated in Fig. 5. In two out of three msCHO designs, (a) and

(b), this channelized data is used to calculate the vector of test statistics,

tplanar = [t(n), ..., t(n+R)], using different templates in Eq. (8): (a) a separate

2D template w(n), ...,w(n+R) is used for each slice, (b) one 2D template wplanar

is used for all slices in the ROI. Next, either tplanar, in case of (a) and (b),

or directly the channelized slice data, in case of (c), is used as input to the

integration stage. There, all three types of msCHO use 1D-HO to estimate the

final test statistic, t.
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Fig. 7. Ideal observer performances. Top: Category of white noise images,

WNB. Bottom: Category of colored noise images, CNB. The two curves in

each graph correspond to a two-dimensional (2D IO) and a three-dimensional

problem (3D IO). The 2D images are of size M = 642 with a 2D Gaussian

signal inserted in the center of the image, while the 3D images are of size

M = 643 with 3D spherically symmetric Gaussian signal inserted in the center

of the volume. For both 2D and 3D Gaussian signal, the value of signal spread

parameter is σs1 = 8. Further details about image parameters are given in

Table 1. The AUC values are obtained using Eq. (16) to calculate SNR and

then Eq. (15) to calculate the AUC of the IO.
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Fig. 8. Plots of estimated AUC as a function of a number of channels,

P = 1, ..., 30. Right: AUC for a single-slice CHO design (ssCHO) using 2D LG

channels applied on the central slice of the image stack. Left: AUC for a volu-

metric CHO design (vCHO) using 3D LG channels. For both model designs, a

set of different spread parameters is considered, au = {7, 12, 18, 24, 32}. Top to

bottom: The results for WNB (as = 0.035), CNB (as1 = 0.75), LB (as = 12),

and CLB (as = 12). The plots are obtained for Ntr = 2000 trainer image pairs

and Nts = 1000 test image pairs. Selected channel parameters are listed in Ta-

ble 2: channel spread parameter au, and number of channels P2D for ssCHO,

and P3D for vCHO.
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Fig. 9. Average AUC for the five model observer designs: ssCHO run on the

central slice in the image; msCHOa, msCHOb and msCHOc each applied on

the region-of-interest comprised of R = 11 adjacent slices centered on the

central signal slice; vCHO applied on the whole image volume. Each graph

corresponds to one of the four background categories (left to right, top to

bottom): WNB, CNB, LB and CLB. The value of signal spread parameter is

σs1 = 8 and the related signal magnitudes as correspond to those defined in

Table 1. Number of trainer image pairs per reader Ntr = 2000, and number of

tester pairs Nts = 1000. Number of readers Nrd corresponds to the applicable

study configurations from Table 3. Error bars are ±2 standard deviations

estimated by the one-shot method.
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Fig. 10. For CNB image category, average AUC of the five CHO model designs

and the ideal 3D IO when the value of signal spread parameter is (top) σs2 = 3

and (bottom) σs3 = 5. The related signal magnitudes as correspond to those

defined in Table 1. The three msCHO models are applied on the region-of-

interest comprised of R = 11 adjacent slices centered on the central signal slice.

Number of trainer image pairs per reader Ntr = 2000, and number of tester

pairs Nts = 1000. Number of readers Nrd = 5. Error bars are ±2 standard

deviations estimated by the one-shot method.
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Table 1. Signal and background parameters

Background category Background 3D image Gaussian 3D signal

White noise ∼ N(0, 1) σs = 8,

(WN) M = 643 as = {0.015, 0.025, 0.035, 0.045}

Coloured noise σb = 8, σs1 = 8,

(CN) M = 643 as1 = {0.25, 0.5, 0.75, 1}

σs2 = 5,

as2 = {0.01, 0.015, 0.02, 0.025}

σs3 = 3,

as3 = {0.0025, 0.0035, 0.0045, 0.0055}

Lumpy background σb = 8, ab = 255, σs = 8,

(LB) M = 643 as = {4, 8, 12, 16}

MFOV = 1283, K = 800

Clustered lumpy Lx = 3, Ly = 2, Lz = 3, σs = 8,

background ab = 255, M = 643, as = {4, 8, 12, 16}

(CLB) MFOV = 1283,

K = 80, N = 20

The following notation applies: M - number of voxels in the image; MFOV - number of voxels

in the FOV (LB, CLB); σs - spread parameter of the 3D Gaussian signal; as - magnitude of

the 3D Gaussian signal; σb - standard deviation of the 3D Gaussian kernel (CNB); or spread

parameter of the 3D Gaussian lump (LB); ab - peak intensity level in the background image;

K - mean number of lumps in the FOV (LB, CLB); Lx, Ly and Lz - characteristic lengths

of asymmetrical lumps in x, y and z directions, respectively (CLB).
68



OSA
Published by

Table 2. Parameters of the Laguerre-Gauss (LG) channels

Background Signal au P2D P3D

category size

WNB σs = 8 12 3 4

CNB σs1 = 8 24 9 12

σs2 = 5 21 11 12

σs3 = 3 12 12 12

LB σs = 8 18 15 15

CLB σs = 8 24 5 6

For each image category and their related signal size, parameters of the LG channels are

determined: the size of the channels, au, the number of 2D LG channels, P2D, and the

number of 3D LG channels, P3D. The parameters of 2D and 3D LG channels are selected in

the experiments with ssCHO and vCHO models, respectively. The models are investigated in

the space of five families of LG channels defined by the value of the channel spread parameter,

au = {7, 12, 18, 24, 32}. For each family, the number of LG channels is varied in the range of

P = 1, ..., 30. The experiments are conducted with Ntr = 2000 trainer pairs and Nts = 1000

tester pairs, and for the second largest among four considered values of signal magnitude as

given in Table 1. The results of these experiments are illustrated in Fig. 3.
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Table 3. MRMC study configurations

Background Number of trainer Number of

category image pairs (Ntr) readers (Nrd)

WNB, CNB Ntr = {50, 100, 200, 500, 1000, 2000} Nrd = 5

Ntr = {5000} Nrd = 2

LB, CLB Ntr = {50, 100, 200, 500, 1000} Nrd = 5

Ntr = {2000} Nrd = 3

The total number of each of WNB and CNB images is 11000 image pairs, and the total

number of each of LB and CLB images is 7000 image pairs. For all study configurations, the

number of tester image pairs is fixed to Nts = 1000. No overlap exists between the trainer

images and the tester images.
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Table 4. Terms of Eq. (17) for three different types of model observer

efficiency, η

Type of SNRcurr SNRref

efficiency

ηCHO SNR of a given CHO model SNR of the IO

ηNtr SNR of the CHO trained with SNR of the CHO trained with

Ntr image pairs, Ntr < 5000 maximum considered number of

(see Table 3) trainer pairs, Ntr = 5000

ηss,v SNR of the ssCHO model SNR of the vCHO model

71



OSA
Published by

Table 5. Efficiency of CHO models applied on CNB images with

different spread of the signal: efficiency of CHO model relative to

the IO performance, ηCHO; efficiency of ssCHO relative to the vCHO

performance, ηss,v

ssCHO msCHOa msCHOb msCHOc vCHO

σs as ηCHO [%] ηCHO [%] ηCHO [%] ηCHO [%] ηCHO [%] ηss,v [%]

8 0.25 69 85 86 91 >100 62

0.5 59 71 71 82 98 60

0.75 55 66 66 77 93 59

1 53 63 63 75 91 59

5 0.01 13 28 27 35 82 16

0.015 13 27 27 36 78 17

0.02 14 27 26 37 77 18

0.025 14 26 26 37 76 18

3 0.0025 12 36 35 46 88 13

0.0035 12 36 36 47 86 14

0.0045 12 36 35 47 85 14

0.0055 12 36 35 47 85 15

Three different values of signal spread parameter are considered: σs1 = 8, σs2 = 5 and

σs3 = 3. For each σs the exact same backgrounds are used and their lump spread parameter

is σb = 8. For multi-slice CHO models (msCHO), the efficiency for the ROI size of R = 11

are given. The values of ηCHO and ηss,v are calculated using the formula in Eq. (17) and

as explained in Section 4.C. The calculations are done for MRMC configuration with the

number of trainer image pairs Ntr = 5000.
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Table 6. Efficiency of five CHO models for different levels of the

signal as while the number of trainer images increase: ηNtr|as

as 0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.25 0.5 0.75 1

ηNtr|as [%] for ssCHO ηNtr|as [%] for vCHO

SNRNtr=5000 0.55 1.02 1.48 1.94 0.70 1.31 1.92 2.53

Ntr = 50 41 74 84 88 55 82 87 88

100 56 81 89 92 61 84 90 93

200 69 91 95 97 73 92 96 97

500 89 96 98 99 90 97 98 99

1000 96 99 99 100 94 99 99 100

2000 99 100 100 100 99 100 100 100

ηNtr|as [%] for msCHOa ηNtr|as [%] for msCHOb ηNtr|as [%] for msCHOc

SNRNtr=5000 0.61 1.12 1.62 2.11 0.61 1.12 1.62 2.11 0.63 1.20 1.75 2.30

Ntr = 50 13 51 69 75 23 58 72 78 0 0 3 5

100 34 71 81 85 37 70 82 87 11 26 36 42

200 44 83 91 93 54 86 93 95 16 43 60 68

500 78 94 96 97 81 94 97 98 41 70 80 85

1000 88 97 98 99 89 97 98 99 61 85 92 94

2000 97 99 99 100 97 99 99 100 85 95 97 98

For CNB images, the efficiency of CHO models: ssCHO, msCHOa, msCHOb, msCHOc, and

vCHO, trained with fewer image pairs relative to their performance for the largest considered

number of trainer images, ηNtr|as , are calculated using the formula in Eq. (17) and as explained

in Section 4.C. For three msCHO models, the efficiency for the ROI size of R = 11 are given.
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Table 7. Efficiency of msCHO models for different size of ROI while

the number of trainer images increase: ηNtr|R

R 3 5 11 64 3 5 11 64 3 5 11 64

ηNtr|R [%] for msCHOa ηNtr|R [%] for msCHOb ηNtr|R [%] for msCHOc

SNRNtr=5000 1.49 1.49 1.62 1.73 1.49 1.49 1.62 1.73 1.60 1.65 1.75 -

Ntr = 50 84 83 69 19 82 81 72 25 55 36 3 -

100 88 87 81 49 87 86 82 52 77 68 36 -

200 95 94 91 68 95 94 93 73 88 80 60 -

500 97 97 96 88 97 97 97 87 94 89 80 -

1000 99 99 98 94 99 99 98 94 98 96 92 -

2000 100 100 99 98 100 100 99 98 99 99 97 -

For CNB images, the efficiency of msCHO models: msCHOa, msCHOb, and msCHOc, trained

with fewer image pairs relative to their performance for the largest considered number of

trainer images, ηNtr|R , are calculated using the formula in Eq. (17) and as explained in

Section 4.C. In particular, the efficiency for the signal magnitude of as = 0.75, each for four

different ROI size, R = {3, 5, 11, 64}, are presented. Here, R = 64 implies that the CHO is

applied to all slices in the image.
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