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Abstract

A stability analysis of Gauss-Seidel coupling iteratioosgartitioned simulation
of fluid-structure interaction is performed for the flow in exible tube. In a pre-
vious study the inertia of the structure and the interactietween the segments
of the structure were not taken into account. It is now derrated that espe-
cially the structural inertia has a significant effect on skebility of Gauss-Seidel
iterations for a certain range of the time step’s size.
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1. Introduction

The interaction of a fluid with a flexible structure can be daed in either a
monolithic or a partitioned way. The monolithic approacloisolve the govern-
ing equations of the flow and the structural displacementkaneously whereas
in a partitioned simulation the flow and the structural defation are calculated
with two separate solvers. Generally, a Dirichlet-Neumadegomposition of
the coupled problem is employed which means that the pasiiomposed as
a boundary condition on the fluid side of the fluid-structunteiface and that the
stress is imposed on the solid side.
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For a partitioned simulation of strong interaction betwdes fluid and the
solid, e.g. blood flow in a flexible artery, a coupling algbnit is required to find
the position of the interface for which the stresses on biddsf the interface are
in equilibrium. One can use Gauss-Seidel iterations betwiee flow solver and
the structural solver as coupling algorithm but these ii@na converge slowly, if
at all. A detailed explanation of this coupling algorithmlidavs later. The con-
vergence of Gauss-Seidel iterations is improved by Aitkdaxation [L] which
uses a dynamically-adapted relaxation factor. Fasterazgewce is obtained with
Newton methodsd] or in case of black-box solvers with the Interface Geneeali
Minimum Residual method3] or with quasi-Newton methods like the interface
block quasi-Newton method with approximate Jacobians teast-squares mod-
els (IBQN-LS) #] and the interface quasi-Newton method with inverse Jagobi
from a least-squares model (IQN-ILSG][ In case of weak interaction between
the fluid and the solid, e.g. aeroelasticity, an algorithrthaut coupling itera-
tions between the solver6][can be used which means that the equilibrium on the
fluid-structure interface is not enforced strictly.

The convergence of the coupling iterations depends on aleparameters,
such as the geometry, the time step, the structural stffaes the ratio of the
fluid density to the solid density. dfster et al. T] analyzed the effect of these
parameters on algorithms without coupling iterations. @aesal. [8] studied al-
gorithms with and without coupling iterations and derivied maximal relaxation
factor that leads to convergence of coupling iterations fametion of the afore-
mentioned parameters for a simplified model of blood flow iragery and then
validated the formulas with numerical experiments. Detg@b al. P] analyzed a
more simplified model for the artery and performed a modabdgaosition of the
interface’s displacement during the coupling iteratiohisis Fourier error analy-
sis demonstrates that especially error modes with a low wawger have a high
amplification factor. The modal decomposition gives addil information com-
pared to a single relaxation factor and explains why theigNaston techniques
with Jacobians from a least-squares model like IBQN-LS and-I5 perform
well.

However, the structural model iB][neglects the mass of the structure and it is
a so-called independent rings modHl|[because the interaction between the seg-
ments of the tube is not taken into account. In this work, tloeleh of the tube’s
wall is improved such that the structural mass and the ioterabetween the seg-
ments is included which leads to important new insights, ragrathers with regard
to the effect of the time step. The analytical findings fromlihearized equations
are confirmed by means of simulations with the original noedrr equations.
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It has been shown in several studi8s 7, 9] that the instability of the cou-
pling iterations within the time step has a physical causens€quently, the time
discretization schemes are not expected to have much icBumnthe stability of
the coupling iterations although they will influence the Firessult of the coupling
iterations. To confirm this expectation, the stability gs# is performed with the
backward Euler scheme for the flow equations and the Newncéudnse 1] for
the structural equations but also with the Bathe compositerse [L2, 13, 14] for
both the flow equations and the structural equations.

2. Modé€

2.1. Analytical description

The flow in an artery is simplified to the unsteady incompitdssilow in a

straight, flexible tube with a circular cross section andyter.. This problem

is analyzed analytically with a one-dimensional model inalilgravity and vis-

cosity are not taken into account. The flow is governed by th#icuity and

momentum equation, given by

da  Oau

E + W =0 (18.)

dau  Oau?® 1 (8ap’ ,8a> 0

o o o Car Pas (10)

with z the coordinate along the axis of the tubes 712 the cross sectional area
of the tube and the inner radius? is the time,u the velocity along the axis of
the tubep’ the pressure angd, the density of the fluid. The kinematic pressure
p =p'/py is referred to as the pressure in the remainder of this text.

The structural deformation in the radial direction is detiered by

2 4 2
peh S+ AT~ BI L4 Cr — 1) = ps (0 p0) @

with p, the solid density and the thickness of the tube’s wall(]. Axial de-
formations of the structure are neglected. The parametexsd B respectively
account for the inner action of the bending in the tissue andhe tension and
they depend on the properties of the structure. The paradieseequal to%
with E the Young modulus and the Poisson coefficient, is the radius that cor-
responds withp,.

Boundary conditions are not discussed here as they are raut tado account
in a Fourier error analysis.



2.2. Gauss-Seidel coupling algorithm

As in [9], Gauss-Seidel iterations between the flow problem andtthetsral
problem are analyzed. This scheme to find the coupled solofithe time step
is described below, with a superscripor k + 1 to indicate the coupling iteration
within the time step.

1. Solve Eq. {) for the new velocity.* ! (x) and pressurg"™!(z) with a given
geometryr”(z).

2. Solve Eq. 2) for the new geometry**!(x) with the pressurge**!(x) from
the preceding step.

3. Increase: and return to steft if the iterations have not yet converged.

2.3. Spatial discretization

The tube is discretized iV cells of lengthAz as depicted in Figl. Central
discretization is used for all terms in the flow equations. (@3), except for the
convective term in the momentum equation which is disceetizith a first-order
upwind scheme. The conservation of mass and momentum irotiteotvolume
around cell center (with i = 1, ..., N) is given by

6&2‘
Axa + Uiy1/2@ip172 — Uio1/20i-172 — a(pis1 — 2p;i +pic1) = 0 (3a)

8uiai
Ax 1 T Uilip1 /200412 — Ui—1Ui—1/205—-1/2

+ % (air1/2 (Piv1 — pi) + ai1y2 (pi — pi-1)) =0 (3b)
for u; > 0. The subscripts + 1/2 denote the value at the cell interfaces,
Ui—1j2 = (Ui—1 + u;)/2 @ndu1/2 = (u; + u41)/2. The pressure stabilization
term with coefficientv = a,/(u, + Az/At) is added in the continuity equation
to inhibit pressure wiggles due to the central discretmatf the pressure in the
momentum equation, with, the reference flow velocity. This stabilization term

can be written as
S — N Op
u, + Az /At Ox?

e (Ax4)> @)

i

on Cartesian grids. For larget, the stabilization term scales with( Ax) with re-
spect to the other terms in EQRd) and for smallAt, the stabilization term scales
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with O(At) with respect to the other terms. Thus, the stabilizatiomtdpes
not affect the accuracy of the scheme because the other teenadso first-order
accurate. In 5], the suppression of pressure wiggles by this term is imvest
gated with Fourier analysis and its implementation withleigorder accuracy on
non-Cartesian grids using a finite volume discretizationascdbed. In the fi-
nite element context, the inf-sup condition can be used sorenthe stability and
optimality of a discretization schemag].

Eqg. @) for the structure is discretized in space with the centifieience
method, giving

827’1' A

W + A_JLA (7’1‘+2 — 4Ti+1 + 67’i — 47"1'71 + 7"1',2)

psh

T A2 (riva =21 +1i1) + C(ri —=710) = py (pi — po) - (5)

2.4. Time discretization with the backward Euler and Newmark scheme

The spatially discrete equations are subsequently digecein time. In this
section, the backward Euler scheme is used for the timeadization of the flow
equations. The first superscriptdenotes the time step and the second superscript
k indicates the coupling iteration within time step+ 1. The time discretization
of Eq. (3) is thus given by

Ax
n+1,k n n+lk+1 n+lk n+lk+l n+lk
At (a; —ai)+ Uivrya Qiprj2 =~ Wimg2 Qg0
n+1,k+1 n+1,k+1 n+1,k+1Y\
-« <p2‘+1 —2p; + Pic1 > =0 (6a)
Ax
n+lLk+1 n+lk  n n n+1k+1 n+1k+1 n+lk  n+lk+1l nt+lk+1 n+1k
At (u; a; ujal)+u; Uirrrg Gipqjp — W1 Wiqyp g0
1
n+1,k n+1,k+1 n+1,k+1 n+1,k n+1,k+1 n+1,k+1 -
+ 92 (ai+1/2 (pi+1 —Pi ) Ay, (pz' —Di—1 )) =0 (6b)

for u; > 0 with At the time step.
Eqg. ) for the structure is discretized in time with the Newmarkinog [11],



giving

psh nt1,k+1 A nt1,k+1 n+1,k+1 n+1,k+1 nt1,k+1 n+1,k+1
—/BAtQ T +_A:v4 Tita —4ri, + 6r; —dr; + 7y

B
n+1,k+1 n+1,k+1 n+1,k+1 n+1,k+1
— A_xz (’T’Z-Jrl — 2T‘i + ri_q ) + C <T,L- — ’T'o)

n+1,k+1 n -n -n
! ( ! O> ° (ﬂAtzTZ ﬂAtrl (25 )TZ) ( )

in which an over-dot signifies a time derivative. Once theptiog iterations
within time stepn+1 have converged, the corresponding acceleration and tgloci
are calculated as

1 1 1
s+l ntl _,n)y _ _ = pn_ [ T _ g
" T A (i =) BAt' (26 1) K 7o)
P = A (L — ) 7+ Aty (7¢)

The Newmark parametefsand-y are chosen such that> £ andg > 1 (1 4 )
which results in an unconditionally stable integrationesole.

2.5. Time discretization with the composite scheme

The time discretization schemes employed in the previocisoseare incom-
patible because identical displacements on the fluid and siole of the interface
do not result in identical velocities and accelerations othtsides of the inter-
face. To verify that the outcome of the stability analysiaas influenced signifi-
cantly by this incompatibility, the flow equations and theustural equations are
also discretized in time with a compatible time discret@mascheme, namely the
composite schemdp, 13, 14]. The composite scheme divides the time sfep
in two sub-steps by means of an intermediate pointat (0 < 6 < 1) and uses
the trapezoidal rule in the first sub-step and the 3-poinkwacd Euler scheme in
the second sub-step.

For the composite scheme, values at the beginning of thegiapeare indi-
cated with a superscript, values at the intermediate point with a supersocripty
and values at the end of the time step with a superseriptl. Because the time
step is divided in two sub-steps, the Gauss-Seidel coupliggrithm has to be
applied twice and coupling iterations have to be perforrmethe first sub-step
(superscriptt) and in the second sub-step (supersckipt The stability of the
coupling iterations in both sub-steps will be analyzed.



The first sub-step of the composite scheme for the time digat®n of Eq. §)
is given by

Azx
+4,k n n+6/2,k+1 n+6/2,k n+6/2,k+1 n+6/2,k
5At< i —ai) + Uivryo Qipre — Wige Gq)
n+3/2,k+1 n+8/2,k+1 n+6/2,k+1\
-« <pi+1 — 2p; + D > =0 (8a)

Ax n+6k+1 n+dk  n n

( )+ n+8/2,k+1 n+6/2,k+1 n+d6/2,k  n+d/2,k+1 n+6/2,k+1 n+6/2,k
SAL i Ui @ )T U, i+1/2 i+1/2 i—1 i—1/2 i—1/2
1 n+6/2,k [ n+8/2,k+1 n46/2,k+1 n+6/2.k [ n+6/2,k+1 ntd/2k+1)) _ )
+2 i+1/2 i+1 —D; +a;_1)9 i —Pia =
(8b)

for u; > 0 with u"+9/2F1 = (yn 4 " +ok+1) /2 and analogously fog" 0/
andpnto/2k+1,

For the structure, the first sub-step in the composite tinserdtization of
Eqg. ©) results in

4psh A
n+0,k+1 n+0,k+1 n+9,k+1 n+9,k+1 n+0,k+1 n+9,k+1
S2AF2 T Azt (TH-Q - 4702‘4—1 + 67, —dr, + 7o )

B
n+0,k+1 n+0,k+1 n+6,k+1 n+0,k+1
— E <7’i+1 — 2Ti + 1 > + C (Ti — To)
4

4
= Py <pi po) + psh (52At2rl + 5AtTZ +rz) (9a)

in which an over-dot again signifies a time derivative. Gebsglel coupling
iterations between Eq8) and Eq. 9 are performed and once these coupling
iterations within the first sub-step have converged, theesponding velocity and
acceleration are calculated as

2

i = g O =) = o0)
4 4

s ntd _,m\ _ _ T xn_ an

= s (T ) g )

In the second sub-step, all values from the previous tine (Si@perscript:)
and the end of the first sub-step (supersoriptd) are known. The flow equations



(Eqg. (3)) are discretized in time as

AJ}' / ’ ’
n+1,k" o n-+o n+1,k'+1 n+1,k" n+l, kK'+1 n+1k
1 —m)Al (a; —(1=n2)ai" —mea; )+uz+1/2 Qiprjp Wiy Qi)
n+1,k"+1 n+1,k"+1 n+1,k'+1\
-« (pi+1 —2p; + D1 =0 (10q)
AZC ’
n+1 k' +1 n+1 4 n+§ n+5
— N
n+1,k'+1 n+1,k'+1 n+1,k' n+1,k'+1 n+1,k'+1 n+1,k
+u; Uitrje Qiprjn — Wiy Ui /9 19
1 ! ! / ! ! !
n+1,k n+lLk'+1  nt+1,k'+1 n+1,k n+lLk'+1  nt+1,k'+1 o
+ 2 <ai+1/2 (Pi+1 D; ) t a1/ (Pi Di1 )) =0

(10b)

for u; > 0. The parametersin the previous equations are calculated as

1
= — 1lla
m=5"5 (11a)
2
N
= 11b
72 2 — 1 (11b)

The time discretization of the structural equations (E)). ih the second sub-
step of the composite scheme is given by

z+1

B 1,k'+1 1,k'+1 1, 1 1,k'+1
<r?++1,k+ _ gpmHlk AL | e k+>+0<n+ K+ —T‘o>

1,k'+1 A 1,k'+1 1,k +1 1,k'+1 1,k'+1 1,k'+1
Psh)\?gTEH N + rn4r2 +1 Ar n+1,k"+ + 67"n+ + 4rn+ + + rnJr +
Axt 7T

~ i
= p; <pn+1 K, ) + psh (AT — Aorl 0 — XA — Agdor? ) L (12a)
Gauss-Seidel coupling iterations are also performed ketkeg. (0) and Eq. 129.
When the coupling iterations within the second sub-step bawgerged, the cor-

responding velocity and acceleration are calculated as
P = A\l AP0 g (12Db)
P = M 4 A 4 Agr (12c)



The parameters used in the second sub-step of the composite time disciietiza
of the structural equations are defined as

1—90
)\1 - W (138.)
—1
AQ"u-aaAt (13b)
2—90
)\3 = m (130)

3. Linear error analysis

3.1. Time discretization with the backward Euler and Newmark scheme

The stability of the Gauss-Seidel coupling algorithm is rdetermined with
Fourier error analysis on the flow equations with backwarkkEiime discretiza-
tion and on the structural equations with Newmark time @iszation. Therefore,
the velocity, pressure and inner radius of the tube in Bgaifd Eq. 7) are substi-
tuted by the sum of the coupled solution and the remainingy émrthe coupling
iteration (indicated with a tilde). The coupled solutionngurn linearized as the
sum of the reference value (subscrpand a perturbation (indicated with a hat).
For the velocity, this gives

ub = uy + 4 + ar (14)
and analogously for the pressure and radius.

Subsequently; is replaced byrr? and all equations are linearized by neglect-
ing the non-linear combinations of the error terms and thieupgeations. Because
the equations linearized around, p, andr, are satisfied by the coupled solu-
tion, all perturbations and the values from the previougtstep cancel out which
results in the following equations for the error terms

AI ~k ~ ~ ~k ~
EQTOU + 2u,To (7“5+1/2 - Tf—1/2) + 7"3 <u¢:11/2 - ufj11/2>
—o (P =205 +pY) = 0 (15a)
A
7 (2uoro 4 vt ) 4 2l (7, — 7 o)

2
T
+ ur; (ﬂﬁ_llh +a; - ﬂ];jf/z - ﬁfjll) + 30 (ﬁﬁf - ﬁfjll) =0 (15b)



psh A

~k+1 ~k+1 ~k+1 ~k+1 ~k+1 ~k+1
ﬁAtQ z+ + At (Tz-:_Q - 47”1-:_1 +6Tz’+ 4T B +Tz+2)
B
T Ag2 (Tffll - kaﬂ + 7:firll) + Cff“ =P pf“ (15¢)

with o/ = /7. All variables in the previous equations are at time level1 and
therefore the first superscript has been omitted. Ba).gnd Eq. {c) are only used
at the end of the time step and hence they are of no importanted stability of
the coupling iterations within the time step, so thas not a parameter therein.
The error terms are expanded as the sun¥ dfourier modes, resulting in

1 N-1

~k _k .
U =5 ; uy exp(JweiAz) (16)

for the error on the velocity with = /—1 andw, = 27¢/L the angular wave
number. The amplification of every wave number can be stusigudrately as
Eq. (15) is linear ina, 7 andp. Thereforeut is substituted byif exp(jwiiAz)
and analogously for the error on the pressure and the ratiesproductu,Ax is
further denoted a8, and for clarity the bar and the subscripdre omitted.

A
527“07’]"’+2uorojsin(19)rk+7"gjsin(19) uFtt =20/ (cos(¥) — 1) p*tt =0 (17a)

A
Af(QuOTOT + r2u™ ) 4 202, sin(9)r*
+ tory (14 gsin(®) — exp(—)) u**! + r2ysin(@)p* = 0 (17b)
psh 4A ) 2B o .
(ﬂAtQ + A (cos(¥) — 1) A7 (cos(¥) = 1)+ C | r* = psp

(17¢c)
By combining these equations, the amplification fagtaf every mode in the
error on the radius is calculated as

rhl
k| THT |11 a2 (18a)
with o
Ps
H1 = r2(1—02 A2 (l8b)
) 4 L (cos(9) — 1?
2Bri(1—v
B E(;L(AJZQ 1o <COS(19) )+ Z_jsc
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and

(ﬁ—f + u, (7sin(d) + 1 — exp(—ﬂ?)))
- (282 + 2u,ysin(d))
N . (28%uysin(v) — 2u? sin® (1))
Eh (3% + u, (ysin(V) + 1 — exp(—y0)))

.?ﬁ (cos() — 1)) — sin®(¥)

The termus in the above equation is identical to the error amplificafi@ctor
that has been derived i®][using a simple structural model without inertia and
without interaction between the segments of the tube. Thuetstral model that
is presented in this paper (EQ)) with inertia and with interaction between the
segments results in additional contributions to the erropldication which are
all grouped in a new term; such that the complete error amplification factor is
obtained as the product @f; and .. Consequently, the results of the preced-
ing analysis in §] are confirmed and its conclusions remain valid. has been
substituted by

2
;o (70)

u, + Az /AL

in the previous equation becausecannot be altered independently as a parame-
ter.

f2 (18c)

(19)

3.2. Time discretization with the composite scheme

The stability of the Gauss-Seidel coupling iterations lestwthe flow equa-
tions and the structural equations in the first and secongtgbof the composite
time discretization is analyzed in this section in the sarag &s it has been done
for the backward Euler and Newmark time discretization i phevious section.
The variables in Eq.8) and Eqg. 9) for the first sub-step are decomposed as the
sum of a reference, a perturbation and the remaining eressibed in Eq.14)
and subsequently all equations are linearized. The peatioris and the values
from the previous time step cancel out such that only ernongeat time level
n + ¢ remain and consequently the first superscript can be omitteel resulting
equations for the error terms in the first sub-step are

2Ax
OAt

s ~k ~k 2 ~k+1 ~ k1
2ror + 2u,r, (friH/Q — ri,l/Q) + <“¢+1/2 - Ui—1/2)

— o (ﬁ?jll - Qﬁfﬂ +15fj11) =0 (20a)
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2Ax
OAt

Sk 2~k+l 2 [~k K
(2uorori + 1w ™) + 2ulr, (Ti+1/2 - 7’2'—1/2)

2
T
+ ur; (aﬁ_ll/Z + af“ - afjf/z - ﬂﬁll) * 30 (ﬁﬁf - ﬁfjll) =0 (20b)

4psh A ~ ~ R )
0D gt A (P — L 67t )

g (P = o ) R <t (200)

with o/ = «/m. The error terms in the first sub-step are then expanded as the
sum of N Fourier modes using Eq16) and every one of these modes can be
analyzed separately because the previous equations eag. |BBy combining the
equations for the coefficients of the Fourier modes as in tegi@us section,

the amplification factoy, during the coupling iterations in the first sub-step is
obtained.

Pr

Ps
ILL]. - 4 7,,2 1—V2 4A7‘2 171/2 (Zla)
D 2) . s )%(Cos(ﬁ) — 1)
2Bri(1—v
——EZ(MQ )Z—’S’(cos(ﬁ) — 1)+

and

(%AT? + U, (7sin(d) + 1 — exp(—799)))

- (2282 + 2u,)sin(V))

prro(l —1v?) — (2282 u,y sin(v) — 2u2 sin®(4))
M2 = YN : (21b)
Eh (—x + u, (gsin(d) + 1 — exp(—jﬁ)))

.?;%M (cos() — 1)) — sin®(¥)

For the analysis of the coupling iterations in the secondstap, the vari-
ables in Eq. 10) and Eq. 12) are again decomposed as the sum of a reference,
a perturbation and the remaining error, followed by lineation of all equations.
The perturbations, the values from the previous time stepeiscriptn) and the
values from the first sub-step (superscript §) cancel out such that only error
terms at time leveh + 1 remain and consequently the first superscript can again
be omitted. The resulting equations for the error termséstécond sub-step are

Az k! Sk K 2 (k41 ~k/ 41
—a! (B -2 ) =0 (22a)
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A ’ ’

/ / T2 / /
g (), = a2 (P ) =0 (22b)

/ A , / ,
Psh)\:%ff LR Al (ff;;l 47ﬁf+4{1 + 6~k +1 47:?_4{1 + 7;;;_451)
B , /
N (ffﬁl o +1 | +1) L OF = L (220)
T

From the equations above, the amplification fagtaturing the coupling itera-
tions in the second sub-step is derived after substitutioheoerror terms by their
Fourier decomposition.

Pr

Ps
M1 = "2 50,2 r2 (23&)
A3py (}5(»1 2) + 4AEh(Aac4 )pf (cos(ﬁ) 1)2
— BB 2 (cos(9) — 1) +
and
(225 + o (rsin(9) + 1 — exp(—0)))
<2( A) +2uojsm(19)>
} piro(l = 12) - (2mu03 sin(d) — 2u? sinz(ﬁ)> 230)
y = :
Eh (225 + o (rsin(9) + 1 = exp(—0)))

. (ﬁx/& (cos() — 1)) — sin® (V)

Because the velocity and acceleration at time level § (resp. n + 1) are
only calculated when the Gauss-Seidel coupling iteratiomisin the first (resp.
second) sub-step have converged, Bip) @nd Eq. 9¢) (resp. Eq. {2b) and
Eq. (120) are of no importance for the stability of the coupling @gons.

3.3. Discussion

It can be observed that the error amplification fagtdor the time discretiza-
tion with the backward Euler and Newmark scheme (E))(is almost the same
as for the first (Eq.41)) and second (Eq2@)) sub-step in the composite time
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discretization. The error amplification factor is consetglyedetermined by the
following expressions.

Pr

Ps
H1 = 2 2 (24a)
prra(1—-v7) 4Ar2(1-12) p 2
fcrlEAt2 L BhAgT p_i(cos(ﬁ) —1)
2Br5(1—v
— 2B L (cos(9) — 1) + &

and

(2% + o (sin(@) + 1= exp(—3)))
. <20§§t + 2u,) Sin(ﬁ))

— (20§Xtuoj sin(1) — 2u? sin® (V)

psro(1 —1v?) .
Eh <% + u, (ysin(d) + 1 — exp(—Jﬁ»)
(o (cos(0) = 1)) = sin?(9)

The parameters in the equation above are

12 (24b)

o =0 (253)
gy =1 (25b)

for the backward Euler and Newmark time discretization.hiafirst sub-step of
the composite time discretization, these parameters are

o1 = (g) (263)

)
02 =35 (26b)
and in the second sub-step they are
1—06\?
1—90
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Becausgcos(1)) — 1) is always positive andcos(9) — 1) always negative,
the second and third term in the denominator.p&lways reduce the error ampli-
fication. The error amplification will thus always be mitigdtby increasing the
parametersd and B which account for the interaction between segments of the
tube. Taking the interaction between the segments intowtdn the structural
model should thus facilitate the convergence of the cogpterations compared
to a simulation with an independent-rings model. Bdtand B appear only once
in the expression for which makes it easy to understand their effect and conse-
guently they can be set to zero in the remainder of the asalyéth A = B = 0,

11 is the same for all wave numbers.
Increasing the Newmark parametémcreases the error amplification but the

change is only significant #L < ”f;é—m; The parametey of the Newmark
scheme has no effect on the stability of the coupling itersti The parameter
of the composite time integration has a more complex inflaesrcu. However,
the parameters of the time integration are usually not darner a wide range so
their effect is of minor importance.

The effect of the time step on the stability is frequently ortant and it is

more complex. The factqr, is proportional toA¢? if Zf < M and if the
relative contribution of the terms due to the mteractlotv\lwn the segments of
the structure is small. lf, < AI £ thenu, becomes proportional tg; other-
wise At only influencesu, for the lowest and highest wave numbefis<£ 0 or
7). Consequently, there are three situations for the effetetime step on the

stability of the coupling iterations for this particular ded, withv, = %
o o~ APIF AL < 2 andAt > 22,
e u ~ constant: if both At < = andAt < ﬁ—f or if both At > = and
At > 8L,
o ji~ zif AL e andAt < £,

If At is varied over a wide range, the effectAt on y might change throughout
that variation ag\t determines which of the above situations is appropriate Th
time stepAt will have no significant influence on the error amplificati@actor .

if the former is sufficiently far outside the range

A A
{mln (TO, :13) , max (E, m)] ) (28)
Vo Uy Vo U
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If e << * theny is proportional toz; when At lies in the range given above.
On the contrary, it > ﬁ—j theny is proportional taA#? for At in that range.

Fig. 2 depicts the evolution ofi as function ofAt with parameters that ap-
proximate the flow in an artery (see Tdh. One can see thatis proportional to
~z for At € [5x 107%,5 x 107%] and constant foA¢ outside that range. Fig.
showsy as a function of the wave number for four different time steph again
the increase of: for decreasing\t as long asAt € [5 x 107*,5 x 1073] and
no further significant change outside that range. Thesed®joave been created
with the parameter values listed in Tdbwhich approximate the flow in a large
artery for backward Euler time discretization of the flow atjons and Newmark
time discretization of the structural equations. RBaand Fig.5 depict the error
amplification in the first and second sub-step of the comeadisite discretization
and they are nearly identical to the figures for the backwanéEand Newmark
time discretization. The randgx 10~*,5 x 10~?] is indicated with vertical dotted
lines in Fig.2 and Fig.3. The stability limit (« = 1) is marked with a horizontal
dotted line in Fig2, Fig. 3, Fig. 4 and Fig.5.

The error amplification factor for the low wave numbers stédpends on the
time step’s size when\t € [5 x 1073,107!] in Fig. 2. For the highest wave
number () = ), the influence of the time step’s size remains present wken
goes to infinity. As mentioned abovg; is still influenced byAt for the lowest
and highest wave numbers & 0 or 7) whenAt > ﬁ—j

The foregoing explains the conclusion 8] fhat ;« ~ < if the inertia of the
structure is neglecteg( = 0) andAt < . The latter inequality is also the limit
for which the discretization of the flow equatlons can be umed consequently
no larger time steps were used in our previous sti@}ysfich that the relation
1~ 5= was always satisfied.

3.4. Limitations

The Fourier error analysis employs linearized equatiomkitadoes not take
into account the boundary conditions. The result of the ieo@nalysis also de-
pends on the numerical schemes that are used for the destieti in space of the
flow equations and structural equations.

4. Nonlinear numerical experiments

Nonlinear simulations of the flow in a flexible tube are usedenfy the con-
clusions of the linear analysis, especially with regarchtéffect of the time step
as this effect is the most important one. All simulationsehbgen performed with
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the backward Euler time discretization for the flow equatiand the Newmark
scheme for the structural equations. The difference inracgwf the result with
respect to the composite time discretization and the #gtabfla sequence of time
steps fall outside the scope of this work.

A fluid velocity of u, + {i sin (27t) has been applied at the inlet of the tube
and zero pressure is imposed at the outlet of the tube. Thetste is initially
at rest and bottd and B have been set to zero. The tube is discretized in 100
segments with the same length. The values from Tddave been used again for
the geometry and for the properties of the materials. F®ethvalues, the error
analysis predicts that the error amplification fagtavill increase for a decreasing
time step in the rang® x 10~*,5 x 10~%] and that: will be constant outside this
range (see FiR).

Simulations with 100 time steps have been performed foewdfit values of
At and with different coupling algorithms. The number of congliterations
per time step (averaged over the 100 time steps in the siiowjas a measure
for the error amplification facto. A high error amplification factor means that
the number of coupling iterations will be high and the GaBsegdel iterations
will diverge if © > 1 for some wave numbers. Thig-norm of the residual is
reduced with 3 orders of magnitude with respect to its ihiteue in the time
step. In Fig6, the average number of coupling iterations per time steppsotied
for different sizes of the time step and the range< 107*,5 x 107?] is again
indicated with vertical dotted lines.

Gauss-Seidel (GS) iterations converge quickly for a lange tstep (071 s)
because the error amplification is smaller than one for allenaumbers in this
region as shown in Fig2. When the time step decreases, the convergence of the
Gauss-Seidel iterations becomes slow, e.g. on average @8&&eidel coupling
iterations per time step were required for a time steplof s. The Gauss-Seidel
iterations diverged in the first time step whan was less than0—2s.

It is thus impossible to verify the conclusions of the sti@p@hnalysis over a
wide range of time steps by performing simulations with treu&s-Seidel cou-
pling algorithm because the error amplification factor foe tow wave numbers
would be larger than one in the simulations with a small tireg svhich would
cause divergence of the Gauss-Seidel coupling iterati@tker coupling algo-
rithms, such as IQN-ILS, have to be used for a partitionediktion with small
time steps. The IQN-ILS algorithm uses information from ginevious coupling
iterations in the current time step to approximate the sweaf the Jacobian of
the coupled problem written as a root-finding equation. TON-ILS algorithm
constructs a vector space that grows during the couplimgtites and it behaves
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like a Newton algorithm for the part of the error in this vactpace and like
Gauss-Seidel iterations for the other part. More infororatin this technique can
be found in p].

Fig. 6 shows that the number of IQN-ILS coupling iterations peretistep is
almost the same foAt = 3-10"'sto3 - 107?s. BetweenAt = 107%s and
3 - 10~*s, the number of IQN-ILS iterations increases steadily wigicreasing
time step. The number of coupling iterations per time stegnsost the same for
At = 107*s 1010 s. Consequently, the number of coupling iterations per time
step (Fig.6) and the error amplification factor (Fig) have the same behavior.

The increase of the number of IQN-ILS coupling iterationwé decreasing
time step can be mitigated by using information from the ¢iogpiterations in
the previous time steps instead of only information from ¢herent time step.
Fig. 6 illustrates that the number of coupling iterations per tistep is reduced
significantly if the information from the four previous tinrséeps, denoted as IQN-
ILS(4), is also used.

5. Conclusions

Fourier error analysis on Gauss-Seidel iterations betwleeiflow solver and
structural solver for the flow in a flexible tube has been pented. The error
amplification factor is reduced compared to the independegs model by in-
cluding the interaction between the segments of the tublearstructural model.
For parameter values that approximate the flow in a largeyaites error ampli-
fication factor of Gauss-Seidel coupling iterations inse=aif the size of the time
step decreases within a certain range of the time step’s@iziside that range, the
time step has little effect on the error amplification fact®ackward Euler time
discretization for the flow equations combined with Newmtarie discretization
of the structural equations has been compared with congogie discretization
of both the flow and the structural equations and it has beewrsithat the time
discretization has almost no effect on the stability of theping iterations within
the time step. The stability analysis of the Gauss-Seidriions is confirmed by
the variation of the number of IQN-ILS coupling iterations @ function of the
size of the time step in nonlinear simulations.
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6. Figuresand tables

i+1/2 i+l
X

Figure 1: The geometry of the flexible tube with details of¢hess sectiom and a control volume
used in the discretization of the flow equations.
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Figure 2: The error amplification factaras a function of the size of the time st&p if backward
Euler and Newmark time discretization is used.
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Figure 3: The error amplification factpras a function of the size of the time st&p if composite
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time discretization is useda) First sub-step anfb) second sub-step.
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Figure 4: The error amplification factaras a function of the wave numberif backward Euler
and Newmark time discretization is used. Low wave numbeve laahigher error amplification
factor than high wave numbers.
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Figure 5: The error amplification factpras a function of the wave numbeérif composite time
discretization is useda) First sub-step anfb) second sub-step.
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Figure 6: The number of coupling iterations per time steg(aged over 100 time steps) for dif-
ferent sizes of the time step. The Gauss-Seidel (GS) iteratnly converge for a large time step
whereas the iterations of the interface quasi-Newton #lgorwith approximate inverse Jacobian
from a least-squares model (IQN-ILS) converge for much Em&ine steps.
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E | 300000 N/m
v 0.4

L 0.05 m

h 0.001 m

Ty 0.005 m
Uy 0.1 m/s
Py 1000 kg/nt
Ps 1200 kg/nt
15} 1/4

vy 1/2

0 1/2

Table 1: Parameters that are used as approximate valudgeftowv in an artery.
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