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Abstract

A stability analysis of Gauss-Seidel coupling iterations for partitioned simulation
of fluid-structure interaction is performed for the flow in a flexible tube. In a pre-
vious study the inertia of the structure and the interactionbetween the segments
of the structure were not taken into account. It is now demonstrated that espe-
cially the structural inertia has a significant effect on thestability of Gauss-Seidel
iterations for a certain range of the time step’s size.
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1. Introduction

The interaction of a fluid with a flexible structure can be simulated in either a
monolithic or a partitioned way. The monolithic approach isto solve the govern-
ing equations of the flow and the structural displacement simultaneously whereas
in a partitioned simulation the flow and the structural deformation are calculated
with two separate solvers. Generally, a Dirichlet-Neumanndecomposition of
the coupled problem is employed which means that the position is imposed as
a boundary condition on the fluid side of the fluid-structure interface and that the
stress is imposed on the solid side.
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For a partitioned simulation of strong interaction betweenthe fluid and the
solid, e.g. blood flow in a flexible artery, a coupling algorithm is required to find
the position of the interface for which the stresses on both sides of the interface are
in equilibrium. One can use Gauss-Seidel iterations between the flow solver and
the structural solver as coupling algorithm but these iterations converge slowly, if
at all. A detailed explanation of this coupling algorithm follows later. The con-
vergence of Gauss-Seidel iterations is improved by Aitken relaxation [1] which
uses a dynamically-adapted relaxation factor. Faster convergence is obtained with
Newton methods [2] or in case of black-box solvers with the Interface Generalized
Minimum Residual method [3] or with quasi-Newton methods like the interface
block quasi-Newton method with approximate Jacobians fromleast-squares mod-
els (IBQN-LS) [4] and the interface quasi-Newton method with inverse Jacobian
from a least-squares model (IQN-ILS) [5]. In case of weak interaction between
the fluid and the solid, e.g. aeroelasticity, an algorithm without coupling itera-
tions between the solvers [6] can be used which means that the equilibrium on the
fluid-structure interface is not enforced strictly.

The convergence of the coupling iterations depends on several parameters,
such as the geometry, the time step, the structural stiffness and the ratio of the
fluid density to the solid density. Förster et al. [7] analyzed the effect of these
parameters on algorithms without coupling iterations. Causin et al. [8] studied al-
gorithms with and without coupling iterations and derived the maximal relaxation
factor that leads to convergence of coupling iterations as afunction of the afore-
mentioned parameters for a simplified model of blood flow in anartery and then
validated the formulas with numerical experiments. Degroote et al. [9] analyzed a
more simplified model for the artery and performed a modal decomposition of the
interface’s displacement during the coupling iterations.This Fourier error analy-
sis demonstrates that especially error modes with a low wavenumber have a high
amplification factor. The modal decomposition gives additional information com-
pared to a single relaxation factor and explains why the quasi-Newton techniques
with Jacobians from a least-squares model like IBQN-LS and IQN-ILS perform
well.

However, the structural model in [9] neglects the mass of the structure and it is
a so-called independent rings model [10] because the interaction between the seg-
ments of the tube is not taken into account. In this work, the model of the tube’s
wall is improved such that the structural mass and the interaction between the seg-
ments is included which leads to important new insights, among others with regard
to the effect of the time step. The analytical findings from the linearized equations
are confirmed by means of simulations with the original nonlinear equations.
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It has been shown in several studies [8, 7, 9] that the instability of the cou-
pling iterations within the time step has a physical cause. Consequently, the time
discretization schemes are not expected to have much influence on the stability of
the coupling iterations although they will influence the final result of the coupling
iterations. To confirm this expectation, the stability analysis is performed with the
backward Euler scheme for the flow equations and the Newmark scheme [11] for
the structural equations but also with the Bathe composite scheme [12, 13, 14] for
both the flow equations and the structural equations.

2. Model

2.1. Analytical description
The flow in an artery is simplified to the unsteady incompressible flow in a

straight, flexible tube with a circular cross section and length L. This problem
is analyzed analytically with a one-dimensional model in which gravity and vis-
cosity are not taken into account. The flow is governed by the continuity and
momentum equation, given by

∂a

∂t
+

∂au

∂x
= 0 (1a)

∂au

∂t
+

∂au2

∂x
+

1

ρf

(

∂ap′

∂x
− p′

∂a

∂x

)

= 0 (1b)

with x the coordinate along the axis of the tube,a = πr2 the cross sectional area
of the tube andr the inner radius.t is the time,u the velocity along the axis of
the tube,p′ the pressure andρf the density of the fluid. The kinematic pressure
p = p′/ρf is referred to as the pressure in the remainder of this text.

The structural deformation in the radial direction is determined by

ρsh
∂2r

∂t2
+ A

∂4r

∂x4
− B

∂2r

∂x2
+ C(r − ro) = ρf (p − po) (2)

with ρs the solid density andh the thickness of the tube’s wall [10]. Axial de-
formations of the structure are neglected. The parametersA andB respectively
account for the inner action of the bending in the tissue and for the tension and
they depend on the properties of the structure. The parameter C is equal to Eh

r2
o(1−ν2)

with E the Young modulus andν the Poisson coefficient.ro is the radius that cor-
responds withpo.

Boundary conditions are not discussed here as they are not taken into account
in a Fourier error analysis.
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2.2. Gauss-Seidel coupling algorithm

As in [9], Gauss-Seidel iterations between the flow problem and the structural
problem are analyzed. This scheme to find the coupled solution of the time step
is described below, with a superscriptk or k + 1 to indicate the coupling iteration
within the time step.

1. Solve Eq. (1) for the new velocityuk+1(x) and pressurepk+1(x) with a given
geometryrk(x).

2. Solve Eq. (2) for the new geometryrk+1(x) with the pressurepk+1(x) from
the preceding step.

3. Increasek and return to step1 if the iterations have not yet converged.

2.3. Spatial discretization

The tube is discretized inN cells of length∆x as depicted in Fig.1. Central
discretization is used for all terms in the flow equations (Eq. (1)), except for the
convective term in the momentum equation which is discretized with a first-order
upwind scheme. The conservation of mass and momentum in the control volume
around cell centeri (with i = 1, . . . , N ) is given by

∆x
∂ai

∂t
+ ui+1/2ai+1/2 − ui−1/2ai−1/2 − α(pi+1 − 2pi + pi−1) = 0 (3a)

∆x
∂uiai

∂t
+ uiui+1/2ai+1/2 − ui−1ui−1/2ai−1/2

+
1

2

(

ai+1/2 (pi+1 − pi) + ai−1/2 (pi − pi−1)
)

= 0 (3b)

for ui ≥ 0. The subscriptsi ± 1/2 denote the value at the cell interfaces,
ui−1/2 = (ui−1 + ui)/2 andui+1/2 = (ui + ui+1)/2. The pressure stabilization
term with coefficientα = ao/(uo + ∆x/∆t) is added in the continuity equation
to inhibit pressure wiggles due to the central discretization of the pressure in the
momentum equation, withuo the reference flow velocity. This stabilization term
can be written as

ao

uo + ∆x/∆t

(

∆x2 ∂2p

∂x2

∣

∣

∣

∣

i

+ O
(

∆x4
)

)

(4)

on Cartesian grids. For large∆t, the stabilization term scales withO(∆x) with re-
spect to the other terms in Eq. (3a) and for small∆t, the stabilization term scales
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with O(∆t) with respect to the other terms. Thus, the stabilization term does
not affect the accuracy of the scheme because the other termsare also first-order
accurate. In [15], the suppression of pressure wiggles by this term is investi-
gated with Fourier analysis and its implementation with higher-order accuracy on
non-Cartesian grids using a finite volume discretization is described. In the fi-
nite element context, the inf-sup condition can be used to ensure the stability and
optimality of a discretization scheme [16].

Eq. (2) for the structure is discretized in space with the central difference
method, giving

ρsh
∂2ri

∂t2
+

A

∆x4
(ri+2 − 4ri+1 + 6ri − 4ri−1 + ri−2)

− B

∆x2
(ri+1 − 2ri + ri−1) + C (ri − ro) = ρf (pi − po) . (5)

2.4. Time discretization with the backward Euler and Newmark scheme

The spatially discrete equations are subsequently discretized in time. In this
section, the backward Euler scheme is used for the time discretization of the flow
equations. The first superscriptn denotes the time step and the second superscript
k indicates the coupling iteration within time stepn + 1. The time discretization
of Eq. (3) is thus given by

∆x

∆t
(an+1,k

i − an
i ) + un+1,k+1

i+1/2 an+1,k
i+1/2 − un+1,k+1

i−1/2 an+1,k
i−1/2

− α
(

pn+1,k+1
i+1 − 2pn+1,k+1

i + pn+1,k+1
i−1

)

= 0 (6a)

∆x

∆t
(un+1,k+1

i an+1,k
i −un

i an
i )+un+1,k+1

i un+1,k+1
i+1/2 an+1,k

i+1/2 −un+1,k+1
i−1 un+1,k+1

i−1/2 an+1,k
i−1/2

+
1

2

(

an+1,k
i+1/2

(

pn+1,k+1
i+1 − pn+1,k+1

i

)

+ an+1,k
i−1/2

(

pn+1,k+1
i − pn+1,k+1

i−1

))

= 0 (6b)

for ui ≥ 0 with ∆t the time step.
Eq. (5) for the structure is discretized in time with the Newmark method [11],
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giving

ρsh

β∆t2
rn+1,k+1
i +

A

∆x4

(

rn+1,k+1
i+2 − 4rn+1,k+1

i+1 + 6rn+1,k+1
i − 4rn+1,k+1

i−1 + rn+1,k+1
i−2

)

− B

∆x2

(

rn+1,k+1
i+1 − 2rn+1,k+1

i + rn+1,k+1
i−1

)

+ C
(

rn+1,k+1
i − ro

)

= ρf

(

pn+1,k+1
i − po

)

+ ρsh

(

1

β∆t2
rn
i +

1

β∆t
ṙn
i +

(

1

2β
− 1

)

r̈n
i

)

(7a)

in which an over-dot signifies a time derivative. Once the coupling iterations
within time stepn+1 have converged, the corresponding acceleration and velocity
are calculated as

r̈n+1
i =

1

β∆t2
(

rn+1
i − rn

i

)

− 1

β∆t
ṙn
i −

(

1

2β
− 1

)

r̈n
i (7b)

ṙn+1
i = ṙn

i + ∆t (1 − γ) r̈n
i + ∆tγr̈n+1

i . (7c)

The Newmark parametersβ andγ are chosen such thatγ ≥ 1
2

andβ ≥ 1
4

(

1
2

+ γ
)2

which results in an unconditionally stable integration scheme.

2.5. Time discretization with the composite scheme

The time discretization schemes employed in the previous section are incom-
patible because identical displacements on the fluid and solid side of the interface
do not result in identical velocities and accelerations on both sides of the inter-
face. To verify that the outcome of the stability analysis isnot influenced signifi-
cantly by this incompatibility, the flow equations and the structural equations are
also discretized in time with a compatible time discretization scheme, namely the
composite scheme [12, 13, 14]. The composite scheme divides the time step∆t
in two sub-steps by means of an intermediate point atδ∆t (0 < δ < 1) and uses
the trapezoidal rule in the first sub-step and the 3-point backward Euler scheme in
the second sub-step.

For the composite scheme, values at the beginning of the timestep are indi-
cated with a superscriptn, values at the intermediate point with a superscriptn+δ
and values at the end of the time step with a superscriptn + 1. Because the time
step is divided in two sub-steps, the Gauss-Seidel couplingalgorithm has to be
applied twice and coupling iterations have to be performed in the first sub-step
(superscriptk) and in the second sub-step (superscriptk′). The stability of the
coupling iterations in both sub-steps will be analyzed.
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The first sub-step of the composite scheme for the time discretization of Eq. (3)
is given by

∆x

δ∆t
(an+δ,k

i − an
i ) + u

n+δ/2,k+1
i+1/2 a

n+δ/2,k
i+1/2 − u

n+δ/2,k+1
i−1/2 a

n+δ/2,k
i−1/2

− α
(

p
n+δ/2,k+1
i+1 − 2p

n+δ/2,k+1
i + p

n+δ/2,k+1
i−1

)

= 0 (8a)

∆x

δ∆t
(un+δ,k+1

i an+δ,k
i −un

i an
i )+u

n+δ/2,k+1
i u

n+δ/2,k+1
i+1/2 a

n+δ/2,k
i+1/2 −u

n+δ/2,k+1
i−1 u

n+δ/2,k+1
i−1/2 a

n+δ/2,k
i−1/2

+
1

2

(

a
n+δ/2,k
i+1/2

(

p
n+δ/2,k+1
i+1 − p

n+δ/2,k+1
i

)

+ a
n+δ/2,k
i−1/2

(

p
n+δ/2,k+1
i − p

n+δ/2,k+1
i−1

))

= 0

(8b)

for ui ≥ 0 with un+δ/2,k+1 =
(

un + un+δ,k+1
)

/2 and analogously foran+δ/2,k

andpn+δ/2,k+1.
For the structure, the first sub-step in the composite time discretization of

Eq. (5) results in

4ρsh

δ2∆t2
rn+δ,k+1
i +

A

∆x4

(

rn+δ,k+1
i+2 − 4rn+δ,k+1

i+1 + 6rn+δ,k+1
i − 4rn+δ,k+1

i−1 + rn+δ,k+1
i−2

)

− B

∆x2

(

rn+δ,k+1
i+1 − 2rn+δ,k+1

i + rn+δ,k+1
i−1

)

+ C
(

rn+δ,k+1
i − ro

)

= ρf

(

pn+δ,k+1
i − po

)

+ ρsh

(

4

δ2∆t2
rn
i +

4

δ∆t
ṙn
i + r̈n

i

)

(9a)

in which an over-dot again signifies a time derivative. Gauss-Seidel coupling
iterations between Eq. (8) and Eq. (9a) are performed and once these coupling
iterations within the first sub-step have converged, the corresponding velocity and
acceleration are calculated as

ṙn+δ
i =

2

δ∆t

(

rn+δ
i − rn

i

)

− ṙn
i . (9b)

r̈n+δ
i =

4

δ2∆t2
(

rn+δ
i − rn

i

)

− 4

δ∆t
ṙn
i − r̈n

i (9c)

In the second sub-step, all values from the previous time step (superscriptn)
and the end of the first sub-step (superscriptn+δ) are known. The flow equations
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(Eq. (3)) are discretized in time as

∆x

(1 − η1)∆t
(an+1,k′

i −(1−η2)a
n
i −η2a

n+δ
i )+un+1,k′+1

i+1/2 an+1,k′

i+1/2 −un+1,k′+1
i−1/2 an+1,k′

i−1/2

− α
(

pn+1,k′+1
i+1 − 2pn+1,k′+1

i + pn+1,k′+1
i−1

)

= 0 (10a)

∆x

(1 − η1)∆t
(un+1,k′+1

i an+1,k′

i − (1 − η2)u
n
i a

n
i − η2u

n+δ
i an+δ

i )

+ un+1,k′+1
i un+1,k′+1

i+1/2 an+1,k′

i+1/2 − un+1,k′+1
i−1 un+1,k′+1

i−1/2 an+1,k′

i−1/2

+
1

2

(

an+1,k′

i+1/2

(

pn+1,k′+1
i+1 − pn+1,k′+1

i

)

+ an+1,k′

i−1/2

(

pn+1,k′+1
i − pn+1,k′+1

i−1

))

= 0

(10b)

for ui ≥ 0. The parametersη in the previous equations are calculated as

η1 =
1

2 − δ
(11a)

η2 =
η2

1

2η1 − 1
. (11b)

The time discretization of the structural equations (Eq. (5)) in the second sub-
step of the composite scheme is given by

ρshλ2
3r

n+1,k′+1
i +

A

∆x4

(

rn+1,k′+1
i+2 − 4rn+1,k′+1

i+1 + 6rn+1,k′+1
i − 4rn+1,k′+1

i−1 + rn+1,k′+1
i−2

)

− B

∆x2

(

rn+1,k′+1
i+1 − 2rn+1,k′+1

i + rn+1,k′+1
i−1

)

+ C
(

rn+1,k′+1
i − ro

)

= ρf

(

pn+1,k′+1
i − po

)

+ ρsh
(

−λ1ṙ
n
i − λ2ṙ

n+δ
i − λ3λ1r

n
i − λ3λ2r

n+δ
i

)

. (12a)

Gauss-Seidel coupling iterations are also performed between Eq. (10) and Eq. (12a).
When the coupling iterations within the second sub-step haveconverged, the cor-
responding velocity and acceleration are calculated as

ṙn+1
i = λ1r

n
i + λ2r

n+δ
i + λ3r

n+1
i (12b)

r̈n+1
i = λ1ṙ

n
i + λ2ṙ

n+δ
i + λ3ṙ

n+1
i . (12c)
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The parametersλ used in the second sub-step of the composite time discretization
of the structural equations are defined as

λ1 =
1 − δ

δ∆t
(13a)

λ2 =
−1

(1 − δ)δ∆t
(13b)

λ3 =
2 − δ

(1 − δ)∆t
. (13c)

3. Linear error analysis

3.1. Time discretization with the backward Euler and Newmark scheme
The stability of the Gauss-Seidel coupling algorithm is nowdetermined with

Fourier error analysis on the flow equations with backward Euler time discretiza-
tion and on the structural equations with Newmark time discretization. Therefore,
the velocity, pressure and inner radius of the tube in Eq. (6) and Eq. (7) are substi-
tuted by the sum of the coupled solution and the remaining error in the coupling
iteration (indicated with a tilde). The coupled solution isin turn linearized as the
sum of the reference value (subscripto) and a perturbation (indicated with a hat).
For the velocity, this gives

uk
i = uo + ûi + ũk

i (14)

and analogously for the pressure and radius.
Subsequently,a is replaced byπr2 and all equations are linearized by neglect-

ing the non-linear combinations of the error terms and the perturbations. Because
the equations linearized arounduo, po andro are satisfied by the coupled solu-
tion, all perturbations and the values from the previous time step cancel out which
results in the following equations for the error terms

∆x

∆t
2ror̃

k
i + 2uoro

(

r̃k
i+1/2 − r̃k

i−1/2

)

+ r2
o

(

ũk+1
i+1/2 − ũk+1

i−1/2

)

− α′
(

p̃k+1
i+1 − 2p̃k+1

i + p̃k+1
i−1

)

= 0 (15a)

∆x

∆t

(

2uoror̃
k
i + r2

oũ
k+1
i

)

+ 2u2
oro

(

r̃k
i+1/2 − r̃k

i−1/2

)

+ uor
2
o

(

ũk+1
i+1/2 + ũk+1

i − ũk+1
i−1/2 − ũk+1

i−1

)

+
r2
o

2

(

p̃k+1
i+1 − p̃k+1

i−1

)

= 0 (15b)
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ρsh

β∆t2
r̃k+1
i +

A

∆x4

(

r̃k+1
i+2 − 4r̃k+1

i+1 + 6r̃k+1
i − 4r̃k+1

i−1 + r̃k+1
i−2

)

− B

∆x2

(

r̃k+1
i+1 − 2r̃k+1

i + r̃k+1
i−1

)

+ Cr̃k+1
i = ρf p̃

k+1
i (15c)

with α′ = α/π. All variables in the previous equations are at time leveln+1 and
therefore the first superscript has been omitted. Eq. (7b) and Eq. (7c) are only used
at the end of the time step and hence they are of no importance for the stability of
the coupling iterations within the time step, so thatγ is not a parameter therein.

The error terms are expanded as the sum ofN Fourier modes, resulting in

ũk
i =

1

N

N−1
∑

ℓ=0

ūk
ℓ exp(ωℓi∆x) (16)

for the error on the velocity with =
√
−1 andωℓ = 2πℓ/L the angular wave

number. The amplification of every wave number can be studiedseparately as
Eq. (15) is linear in ũ, r̃ and p̃. Therefore,̃uk

i is substituted bȳuk
ℓ exp(ωℓi∆x)

and analogously for the error on the pressure and the radius.The productωℓ∆x is
further denoted asϑℓ and for clarity the bar and the subscriptℓ are omitted.

∆x

∆t
2ror

k +2uoro sin(ϑ)rk +r2
o sin(ϑ)uk+1−2α′ (cos(ϑ) − 1) pk+1 = 0 (17a)

∆x

∆t
(2uoror

k + r2
ou

k+1) + 2u2
oro sin(ϑ)rk

+ uor
2
o (1 +  sin(ϑ) − exp(−ϑ)) uk+1 + r2

o sin(ϑ)pk+1 = 0 (17b)
(

ρsh

β∆t2
+

4A

∆x4
(cos(ϑ) − 1)2 − 2B

∆x2
(cos(ϑ) − 1) + C

)

rk+1 = ρfp
k+1

(17c)
By combining these equations, the amplification factorµ of every mode in the

error on the radius is calculated as
∣

∣

∣

∣

rk+1

rk

∣

∣

∣

∣

= µ = |µ1µ2| (18a)

with

µ1 =

ρf

ρs

ρf r2
o(1−ν2)

Eβ∆t2
+ 4Ar2

o(1−ν2)
Eh∆x4

ρf

ρs
(cos(ϑ) − 1)2

−2Br2
o(1−ν2)

Eh∆x2

ρf

ρs
(cos(ϑ) − 1) +

ρf

ρs

(18b)
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and

µ2 =
ρfro(1 − ν2)

Eh
·

(

∆x
∆t

+ uo ( sin(ϑ) + 1 − exp(−ϑ))
)

·
(

2∆x
∆t

+ 2uo sin(ϑ)
)

−
(

2∆x
∆t

uo sin(ϑ) − 2u2
o sin2(ϑ)

)

(

∆x
∆t

+ uo ( sin(ϑ) + 1 − exp(−ϑ))
)

·
(

2
uo+∆x/∆t

(cos(ϑ) − 1)
)

− sin2(ϑ)

(18c)

The termµ2 in the above equation is identical to the error amplificationfactor
that has been derived in [9] using a simple structural model without inertia and
without interaction between the segments of the tube. The structural model that
is presented in this paper (Eq. (2)) with inertia and with interaction between the
segments results in additional contributions to the error amplification which are
all grouped in a new termµ1 such that the complete error amplification factor is
obtained as the product ofµ1 andµ2. Consequently, the results of the preced-
ing analysis in [9] are confirmed and its conclusions remain valid.α′ has been
substituted by

α′ =
(ro)

2

uo + ∆x/∆t
(19)

in the previous equation becauseα′ cannot be altered independently as a parame-
ter.

3.2. Time discretization with the composite scheme

The stability of the Gauss-Seidel coupling iterations between the flow equa-
tions and the structural equations in the first and second sub-step of the composite
time discretization is analyzed in this section in the same way as it has been done
for the backward Euler and Newmark time discretization in the previous section.
The variables in Eq. (8) and Eq. (9) for the first sub-step are decomposed as the
sum of a reference, a perturbation and the remaining error asdescribed in Eq. (14)
and subsequently all equations are linearized. The perturbations and the values
from the previous time step cancel out such that only error terms at time level
n + δ remain and consequently the first superscript can be omitted. The resulting
equations for the error terms in the first sub-step are

2∆x

δ∆t
2ror̃

k
i + 2uoro

(

r̃k
i+1/2 − r̃k

i−1/2

)

+ r2
o

(

ũk+1
i+1/2 − ũk+1

i−1/2

)

− α′
(

p̃k+1
i+1 − 2p̃k+1

i + p̃k+1
i−1

)

= 0 (20a)
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2∆x

δ∆t

(

2uoror̃
k
i + r2

oũ
k+1
i

)

+ 2u2
oro

(

r̃k
i+1/2 − r̃k

i−1/2

)

+ uor
2
o

(

ũk+1
i+1/2 + ũk+1

i − ũk+1
i−1/2 − ũk+1

i−1

)

+
r2
o

2

(

p̃k+1
i+1 − p̃k+1

i−1

)

= 0 (20b)

4ρsh

δ2∆t2
r̃k+1
i +

A

∆x4

(

r̃k+1
i+2 − 4r̃k+1

i+1 + 6r̃k+1
i − 4r̃k+1

i−1 + r̃k+1
i−2

)

− B

∆x2

(

r̃k+1
i+1 − 2r̃k+1

i + r̃k+1
i−1

)

+ Cr̃k+1
i = ρf p̃

k+1
i (20c)

with α′ = α/π. The error terms in the first sub-step are then expanded as the
sum ofN Fourier modes using Eq. (16) and every one of these modes can be
analyzed separately because the previous equations are linear. By combining the
equations for the coefficients of the Fourier modes as in the previous section,
the amplification factorµ during the coupling iterations in the first sub-step is
obtained.

µ1 =

ρf

ρs

4ρf r2
o(1−ν2)

Eδ2∆t2
+ 4Ar2

o(1−ν2)
Eh∆x4

ρf

ρs
(cos(ϑ) − 1)2

−2Br2
o(1−ν2)

Eh∆x2

ρf

ρs
(cos(ϑ) − 1) +

ρf

ρs

(21a)

and

µ2 =
ρfro(1 − ν2)

Eh
·

(

2∆x
δ∆t

+ uo ( sin(ϑ) + 1 − exp(−ϑ))
)

·
(

22∆x
δ∆t

+ 2uo sin(ϑ)
)

−
(

22∆x
δ∆t

uo sin(ϑ) − 2u2
o sin2(ϑ)

)

(

2∆x
δ∆t

+ uo ( sin(ϑ) + 1 − exp(−ϑ))
)

·
(

2
uo+∆x/∆t

(cos(ϑ) − 1)
)

− sin2(ϑ)

(21b)

For the analysis of the coupling iterations in the second sub-step, the vari-
ables in Eq. (10) and Eq. (12) are again decomposed as the sum of a reference,
a perturbation and the remaining error, followed by linearization of all equations.
The perturbations, the values from the previous time step (superscriptn) and the
values from the first sub-step (superscriptn + δ) cancel out such that only error
terms at time leveln + 1 remain and consequently the first superscript can again
be omitted. The resulting equations for the error terms in the second sub-step are

∆x

(1 − η1)∆t
2ror̃

k′

i + 2uoro

(

r̃k′

i+1/2 − r̃k′

i−1/2

)

+ r2
o

(

ũk′+1
i+1/2 − ũk′+1

i−1/2

)

− α′

(

p̃k′+1
i+1 − 2p̃k′+1

i + p̃k′+1
i−1

)

= 0 (22a)

12



∆x

(1 − η1)∆t

(

2uoror̃
k′

i + r2
oũ

k′+1
i

)

+ 2u2
oro

(

r̃k′

i+1/2 − r̃k′

i−1/2

)

+ uor
2
o

(

ũk′+1
i+1/2 + ũk′+1

i − ũk′+1
i−1/2 − ũk′+1

i−1

)

+
r2
o

2

(

p̃k′+1
i+1 − p̃k′+1

i−1

)

= 0 (22b)

ρshλ2
3r̃

k′+1
i +

A

∆x4

(

r̃k′+1
i+2 − 4r̃k′+1

i+1 + 6r̃k′+1
i − 4r̃k′+1

i−1 + r̃k′+1
i−2

)

− B

∆x2

(

r̃k′+1
i+1 − 2r̃k′+1

i + r̃k′+1
i−1

)

+ Cr̃k′+1
i = ρf p̃

k′+1
i . (22c)

From the equations above, the amplification factorµ during the coupling itera-
tions in the second sub-step is derived after substitution of the error terms by their
Fourier decomposition.

µ1 =

ρf

ρs

λ2

3
ρf r2

o(1−ν2)

E
+ 4Ar2

o(1−ν2)
Eh∆x4

ρf

ρs
(cos(ϑ) − 1)2

−2Br2
o(1−ν2)

Eh∆x2

ρf

ρs
(cos(ϑ) − 1) +

ρf

ρs

(23a)

and

µ2 =
ρfro(1 − ν2)

Eh
·

(

∆x
(1−η1)∆t

+ uo ( sin(ϑ) + 1 − exp(−ϑ))
)

·
(

2 ∆x
(1−η1)∆t

+ 2uo sin(ϑ)
)

−
(

2 ∆x
(1−η1)∆t

uo sin(ϑ) − 2u2
o sin2(ϑ)

)

(

∆x
(1−η1)∆t

+ uo ( sin(ϑ) + 1 − exp(−ϑ))
)

·
(

2
uo+∆x/∆t

(cos(ϑ) − 1)
)

− sin2(ϑ)

(23b)

Because the velocity and acceleration at time leveln + δ (resp. n + 1) are
only calculated when the Gauss-Seidel coupling iterationswithin the first (resp.
second) sub-step have converged, Eq. (9b) and Eq. (9c) (resp. Eq. (12b) and
Eq. (12c)) are of no importance for the stability of the coupling iterations.

3.3. Discussion

It can be observed that the error amplification factorµ for the time discretiza-
tion with the backward Euler and Newmark scheme (Eq. (18)) is almost the same
as for the first (Eq. (21)) and second (Eq. (23)) sub-step in the composite time
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discretization. The error amplification factor is consequently determined by the
following expressions.

µ1 =

ρf

ρs

ρf r2
o(1−ν2)

σ1E∆t2
+ 4Ar2

o(1−ν2)
Eh∆x4

ρf

ρs
(cos(ϑ) − 1)2

−2Br2
o(1−ν2)

Eh∆x2

ρf

ρs
(cos(ϑ) − 1) +

ρf

ρs

(24a)

and

µ2 =
ρfro(1 − ν2)

Eh
·

(

∆x
σ2∆t

+ uo ( sin(ϑ) + 1 − exp(−ϑ))
)

·
(

2 ∆x
σ2∆t

+ 2uo sin(ϑ)
)

−
(

2 ∆x
σ2∆t

uo sin(ϑ) − 2u2
o sin2(ϑ)

)

(

∆x
σ2∆t

+ uo ( sin(ϑ) + 1 − exp(−ϑ))
)

·
(

2
uo+∆x/∆t

(cos(ϑ) − 1)
)

− sin2(ϑ)

(24b)

The parametersσ in the equation above are

σ1 = β (25a)

σ2 = 1 (25b)

for the backward Euler and Newmark time discretization. In the first sub-step of
the composite time discretization, these parameters are

σ1 =

(

δ

2

)2

(26a)

σ2 =
δ

2
(26b)

and in the second sub-step they are

σ1 =

(

1 − δ

2 − δ

)2

(27a)

σ2 =
1 − δ

2 − δ
. (27b)
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Because(cos(ϑ) − 1)2 is always positive and(cos(ϑ) − 1) always negative,
the second and third term in the denominator ofµ1 always reduce the error ampli-
fication. The error amplification will thus always be mitigated by increasing the
parametersA andB which account for the interaction between segments of the
tube. Taking the interaction between the segments into account in the structural
model should thus facilitate the convergence of the coupling iterations compared
to a simulation with an independent-rings model. BothA andB appear only once
in the expression forµ which makes it easy to understand their effect and conse-
quently they can be set to zero in the remainder of the analysis. WithA = B = 0,
µ1 is the same for all wave numbers.

Increasing the Newmark parameterβ increases the error amplification but the
change is only significant ifρf

ρs
≪ ρf r2

o(1−ν2)

Eβ∆t2
. The parameterγ of the Newmark

scheme has no effect on the stability of the coupling iterations. The parameterδ
of the composite time integration has a more complex influence onµ. However,
the parameters of the time integration are usually not varied over a wide range so
their effect is of minor importance.

The effect of the time step on the stability is frequently important and it is
more complex. The factorµ1 is proportional to∆t2 if ρf

ρs
≪ ρf r2

o(1−ν2)

Eσ1

and if the
relative contribution of the terms due to the interaction between the segments of
the structure is small. Ifuo ≪ ∆x

∆t
thenµ2 becomes proportional to1

∆t2
; other-

wise∆t only influencesµ2 for the lowest and highest wave numbers (ϑ ≈ 0 or
π). Consequently, there are three situations for the effect ofthe time step on the

stability of the coupling iterations for this particular model, withvo =
√

Eσ1

ρs(1−ν2)
:

• µ ∼ ∆t2: if ∆t ≪ ro

vo
and∆t ≫ ∆x

uo
;

• µ ≈ constant: if both ∆t ≪ ro

vo
and∆t ≪ ∆x

uo
or if both ∆t ≫ ro

vo
and

∆t ≫ ∆x
uo

;

• µ ∼ 1
∆t2

: if ∆t ≫ ro

vo
and∆t ≪ ∆x

uo
.

If ∆t is varied over a wide range, the effect of∆t on µ might change throughout
that variation as∆t determines which of the above situations is appropriate. The
time step∆t will have no significant influence on the error amplification factorµ
if the former is sufficiently far outside the range

[

min

(

ro

vo

,
∆x

uo

)

, max

(

ro

vo

,
∆x

uo

)]

. (28)
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If ro

vo
≪ ∆x

uo
thenµ is proportional to 1

∆t2
when∆t lies in the range given above.

On the contrary, ifr
vo

≫ ∆x
uo

thenµ is proportional to∆t2 for ∆t in that range.
Fig. 2 depicts the evolution ofµ as function of∆t with parameters that ap-

proximate the flow in an artery (see Tab.1). One can see thatµ is proportional to
1

∆t2
for ∆t ∈ [5 × 10−4, 5 × 10−3] and constant for∆t outside that range. Fig.4

showsµ as a function of the wave number for four different time stepswith again
the increase ofµ for decreasing∆t as long as∆t ∈ [5 × 10−4, 5 × 10−3] and
no further significant change outside that range. These figures have been created
with the parameter values listed in Tab.1 which approximate the flow in a large
artery for backward Euler time discretization of the flow equations and Newmark
time discretization of the structural equations. Fig.3 and Fig.5 depict the error
amplification in the first and second sub-step of the composite time discretization
and they are nearly identical to the figures for the backward Euler and Newmark
time discretization. The range[5×10−4, 5×10−3] is indicated with vertical dotted
lines in Fig.2 and Fig.3. The stability limit (µ = 1) is marked with a horizontal
dotted line in Fig.2, Fig. 3, Fig. 4 and Fig.5.

The error amplification factor for the low wave numbers stilldepends on the
time step’s size when∆t ∈ [5 × 10−3, 10−1] in Fig. 2. For the highest wave
number (ϑ = π), the influence of the time step’s size remains present when∆t
goes to infinity. As mentioned above,µ2 is still influenced by∆t for the lowest
and highest wave numbers (ϑ ≈ 0 or π) when∆t > ∆x

uo
.

The foregoing explains the conclusion in [9] that µ ∼ 1
∆t2

if the inertia of the
structure is neglected (ρs = 0) and∆t ≪ x

uo
. The latter inequality is also the limit

for which the discretization of the flow equations can be usedand consequently
no larger time steps were used in our previous study [9] such that the relation
µ ∼ 1

∆t2
was always satisfied.

3.4. Limitations

The Fourier error analysis employs linearized equations and it does not take
into account the boundary conditions. The result of the Fourier analysis also de-
pends on the numerical schemes that are used for the discretization in space of the
flow equations and structural equations.

4. Nonlinear numerical experiments

Nonlinear simulations of the flow in a flexible tube are used toverify the con-
clusions of the linear analysis, especially with regard to the effect of the time step
as this effect is the most important one. All simulations have been performed with
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the backward Euler time discretization for the flow equations and the Newmark
scheme for the structural equations. The difference in accuracy of the result with
respect to the composite time discretization and the stability of a sequence of time
steps fall outside the scope of this work.

A fluid velocity of uo + uo

100
sin (2πt) has been applied at the inlet of the tube

and zero pressure is imposed at the outlet of the tube. The structure is initially
at rest and bothA andB have been set to zero. The tube is discretized in 100
segments with the same length. The values from Tab.1 have been used again for
the geometry and for the properties of the materials. For these values, the error
analysis predicts that the error amplification factorµ will increase for a decreasing
time step in the range[5× 10−4, 5× 10−3] and thatµ will be constant outside this
range (see Fig.2).

Simulations with 100 time steps have been performed for different values of
∆t and with different coupling algorithms. The number of coupling iterations
per time step (averaged over the 100 time steps in the simulation) is a measure
for the error amplification factorµ. A high error amplification factor means that
the number of coupling iterations will be high and the Gauss-Seidel iterations
will diverge if µ > 1 for some wave numbers. TheL2-norm of the residual is
reduced with 3 orders of magnitude with respect to its initial value in the time
step. In Fig.6, the average number of coupling iterations per time step is depicted
for different sizes of the time step and the range[5 × 10−4, 5 × 10−3] is again
indicated with vertical dotted lines.

Gauss-Seidel (GS) iterations converge quickly for a large time step (10−1 s)
because the error amplification is smaller than one for all wave numbers in this
region as shown in Fig.2. When the time step decreases, the convergence of the
Gauss-Seidel iterations becomes slow, e.g. on average 28 Gauss-Seidel coupling
iterations per time step were required for a time step of10−2 s. The Gauss-Seidel
iterations diverged in the first time step when∆t was less than10−2 s.

It is thus impossible to verify the conclusions of the stability analysis over a
wide range of time steps by performing simulations with the Gauss-Seidel cou-
pling algorithm because the error amplification factor for the low wave numbers
would be larger than one in the simulations with a small time step which would
cause divergence of the Gauss-Seidel coupling iterations.Other coupling algo-
rithms, such as IQN-ILS, have to be used for a partitioned simulation with small
time steps. The IQN-ILS algorithm uses information from theprevious coupling
iterations in the current time step to approximate the inverse of the Jacobian of
the coupled problem written as a root-finding equation. The IQN-ILS algorithm
constructs a vector space that grows during the coupling iterations and it behaves
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like a Newton algorithm for the part of the error in this vector space and like
Gauss-Seidel iterations for the other part. More information on this technique can
be found in [5].

Fig. 6 shows that the number of IQN-ILS coupling iterations per time step is
almost the same for∆t = 3 · 10−1 s to 3 · 10−2 s. Between∆t = 10−2 s and
3 · 10−4 s, the number of IQN-ILS iterations increases steadily withdecreasing
time step. The number of coupling iterations per time step isalmost the same for
∆t = 10−4 s to10−5 s. Consequently, the number of coupling iterations per time
step (Fig.6) and the error amplification factor (Fig.2) have the same behavior.

The increase of the number of IQN-ILS coupling iterations with a decreasing
time step can be mitigated by using information from the coupling iterations in
the previous time steps instead of only information from thecurrent time step.
Fig. 6 illustrates that the number of coupling iterations per timestep is reduced
significantly if the information from the four previous timesteps, denoted as IQN-
ILS(4), is also used.

5. Conclusions

Fourier error analysis on Gauss-Seidel iterations betweenthe flow solver and
structural solver for the flow in a flexible tube has been performed. The error
amplification factor is reduced compared to the independent-rings model by in-
cluding the interaction between the segments of the tube in the structural model.
For parameter values that approximate the flow in a large artery, the error ampli-
fication factor of Gauss-Seidel coupling iterations increases if the size of the time
step decreases within a certain range of the time step’s size. Outside that range, the
time step has little effect on the error amplification factor. Backward Euler time
discretization for the flow equations combined with Newmarktime discretization
of the structural equations has been compared with composite time discretization
of both the flow and the structural equations and it has been shown that the time
discretization has almost no effect on the stability of the coupling iterations within
the time step. The stability analysis of the Gauss-Seidel iterations is confirmed by
the variation of the number of IQN-ILS coupling iterations as a function of the
size of the time step in nonlinear simulations.
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6. Figures and tables
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Figure 1: The geometry of the flexible tube with details of thecross sectiona and a control volume
used in the discretization of the flow equations.
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Figure 2: The error amplification factorµ as a function of the size of the time step∆t if backward
Euler and Newmark time discretization is used.
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Figure 3: The error amplification factorµ as a function of the size of the time step∆t if composite
time discretization is used.(a)First sub-step and(b) second sub-step.
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Figure 4: The error amplification factorµ as a function of the wave numberϑ if backward Euler
and Newmark time discretization is used. Low wave numbers have a higher error amplification
factor than high wave numbers.
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Figure 5: The error amplification factorµ as a function of the wave numberϑ if composite time
discretization is used.(a)First sub-step and(b) second sub-step.
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Figure 6: The number of coupling iterations per time step (averaged over 100 time steps) for dif-
ferent sizes of the time step. The Gauss-Seidel (GS) iterations only converge for a large time step
whereas the iterations of the interface quasi-Newton algorithm with approximate inverse Jacobian
from a least-squares model (IQN-ILS) converge for much smaller time steps.
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E 300000 N/m2

ν 0.4
L 0.05 m
h 0.001 m
ro 0.005 m
uo 0.1 m/s
ρf 1000 kg/m3

ρs 1200 kg/m3

β 1/4
γ 1/2
δ 1/2

Table 1: Parameters that are used as approximate values for the flow in an artery.
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