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Abstract

Contortin was the first intestinal antigen of the sheep parasite Haemonchus contortus which induced significant levels of protection
when used to vaccinate lambs. This antigen is present in the intestine of L4 and adult worms as a helical polymeric structure attached
to the luminal surface of the intestinal cells. However, the nature of the protein itself and its function have never been reported. In the
present study, contortin was isolated and analysed by peptide mass fingerprint and LC/MS–MS. These analyses indicated that contortin
comprises two major proteins, Hc-PCP1 and Hc-PCP2, with homology to prolyl-carboxypeptidases. The two proteins show 64% amino
acid sequence identity to each other and both are comprised of two prolyl-carboxypeptidase S28 type domains organised in a tandem
repeat. The transcripts of both genes are present from the L4 stage onwards, coinciding with the onset of blood-feeding. Addition of
contortin to a fibrinogen solution significantly inhibited blood coagulation in a dose-dependent manner. Mass-spectrometry indicated
that the contortin-enriched fraction degraded the C-terminal end of the fibrinogen alpha-chain, which was shown previously to be essen-
tial for clot formation. The process happens within seconds after addition and can be inhibited by the dipeptidyl-peptidase IV inhibitors
Diprotin A and Bt-PEG-Glu-ProP(OPh)2. These data suggest that the prolyl-carboxypeptidases are intestinal anticoagulants used by H.

contortus to interfere with blood coagulation.
� 2008 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Targeting proteins expressed on the gut surface has
been a particularly successful approach for vaccine devel-
opment in blood-feeding nematodes (Knox et al., 2003)
and ectoparasites such as ticks (Willadsen et al., 1995).
Munn (1977) first described contortin, using electron
microscopy, as a helical polymeric extracellular structure
present in large amounts in the intestine and the pharynx
from the L4 and adult stage of the sheep parasite Hae-

monchus contortus. The polymer is associated with the
luminal surface of the plasma membrane of the intestinal
epithelium and its helical filaments fill the spaces between
the microvilli. It is insoluble and can be enriched from
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PBS extracts of adult parasites by ultracentrifugation
(Munn, 1977). The function of contortin remains unde-
fined, but Munn (1977) suggested that it could be an
immobilised anticoagulant. When a contortin-enriched
preparation (CEP) was used to vaccinate lambs, worm
burdens were reduced by 78% following challenge infec-
tion (Munn et al., 1987). However, it was shown subse-
quently that CEPs contained a 110 kDa major antigenic
contaminant as judged by Western blotting despite only
faint staining being evident in protein gels (Smith and
Munn, 1990). This protein was purified using lectin-affin-
ity chromatography and was subsequently defined as
H11, the most effective immunogen isolated from a par-
asitic nematode to date (Knox et al., 2003). Subsequent
effort focused on H11 and other gut proteins in Haemon-

chus and the exact nature and function of contortin was
not investigated further.
y Elsevier Ltd. All rights reserved.

https://core.ac.uk/display/55713026?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:david.knox@moredun.ac.uk


Table 1
PCR primer sequences used for reverse transcriptase-PCR experiments

Haemonchus contortus

EST cluster (gene name)
Primer sequence

HCC00232 (Hc-pcp1) F RT-PCR 50 aag cag gtt cag cct ttt ca
R RT-PCR 50 ctt gcc cat tgt tcg ttt tt
50 RACE 50 cat aat gac gca cga tcg ac

HCC00298 (Hc-pcp2) F-RT-PCR 50 cgc tga cct gtg tca agt gt
R RT-PCR 50 aag tag ccg gct tcg tat tg
30 RACE 50 agc atc gcc gct ttc aat
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The aim of this study was to characterise contortin at
the molecular level in an effort to elucidate its potential
function.

2. Materials and methods

2.1. Preparation of a contortin-enriched fraction

CEP was prepared as previously described by Munn
(1977). In short, adult H. contortus were homogenised in
PBS (1:10, w/v) and subsequently centrifuged for 5 min at
1000g. The supernatant was collected and the pellet
re-homogenised in PBS followed by centrifugation at
1000g. The supernatants were pooled and centrifuged at
3000g for 10 min. The pellet was washed once with PBS
and the pooled supernatants were centrifuged for 90 min at
10,000g. The pellets, which contain contortin, were resus-
pended in 1 ml of PBS and stored at�80 �C prior to analysis.

2.2. Gel electrophoresis and mass-spectrometry analysis

An aliquot (20 ll) of CEP was fractionated in a 10%
SDS–PAGE gel under reducing conditions. The protein
components were visualised by Coomassie Blue staining.
All visible protein bands were excised from the gel and used
for mass-spectrometry analysis. Protein bands were
digested in-gel using trypsin, the resultant peptides subse-
quently isolated by HPLC using a reversed phase C18 Pep-
Map column and finally analysed by MALDI-TOF mass-
spectrometry and LC/MS–MS analysis. The Mascot search
engine was used to statistically analyse the mass-spectrom-
etry and LC/MS–MS data and to identify the proteins.

2.3. Isolation and cloning of cDNAs

The LC/MS–MS analyses identified the prominent com-
ponent of CEP as prolyl-carboxypeptidases encoded by
two expressed sequence tag (EST) clusters, HCC00232
and HCC00298 (www.nema.cap.ed.ac.uk/nematodeESTs/
nembase.html). Full length cDNA sequences of the pro-
lyl-carboxypeptidases (PCPs; from hereon named Hc-

pcp1 and Hc-pcp2) were isolated from a cDNA library
made from 11-day-old H. contortus worms. Based on the
consensus sequences of EST clusters, specific primers were
designed to isolate the 50 and 30 ends of each cDNA. The
primer sequences are shown in Table 1. The gene-specific
primers were used in combination with the T3 cDNA
library vector primer to amplify both full-length cDNA
sequences. PCR products were cloned in pGEM-T (Pro-
mega) and sequenced. Sequence analyses and alignments
were performed using DNAstar software (DNAstar Inc.).

2.4. Bioinformatics

The EST datasets of H. contortus and other nematodes
were analysed using the Partigene bioinformatics pipeline
(Parkinson et al., 2004) which is available on the NEMBASE
website (www.nematodes.org/nematodeESTs/nembase.
html). Further analyses of sequences and the deduced amino
acid sequences were performed using DNAstar software
(DNAstar Inc.). Database searches were performed on the
NCBI server (www.ncbi.nlm.nih.gov/blast). Amino
acid sequences were analysed for signal peptides and glyco-
sylation sites using Signal P-(www.cbs.dtu.dk/services/
SignalP) and NetNGlyc-programs (www.cbs.dtu.dk/services/
NetNGlyc).

2.5. Reverse transcriptase PCR

Reverse transcriptase PCR (RT-PCR) was used to
determine the stage-specific transcription of Hc-pcp1 and
Hc-pcp2. Total RNA was extracted from exsheathed L3,
L4 and adult parasites using Total RNA Isolation Reagent
(Advanced Biotechnologies Ltd.). The RT-PCRs were car-
ried out using the Superscript One-Step RT-PCR System
(Invitrogen). The specific primers used for detection of
the Hc-pcp1 of the Hc-pcp2 transcripts are shown in Table
1. After 35 cycles of amplification, the RT-PCR products
were separated on 1% agarose gels. A cytoplasmic superox-
ide dismutase gene (SODc; acc. Z69621; Liddell and Knox,
1998) was used to control for the efficiency of the RNA
purifications.

2.6. S28 peptidase activity assays

Dipeptidyl peptidase (DPP) activity was measured using
the chromogenic substrates H-Ala-Pro-pNitroanilide (DPP
IV, 1.0 M in methanol; Bachem) and H-Lys-Ala-pNitroani-
lide (DPP II, 1.0 M in methanol; Bachem). Different quanti-
ties of CEP (10–30 lg) were mixed with the substrates (final
conc. 1 mM) in 100 ll of buffer ranging from pH 3 to 8 (pH
3–5: 0.1 M sodium acetate buffer, pH 6–7: 0.1 M phosphate
buffer, pH 8: 0.1 M Tris buffer). Samples were incubated for
45 min at 37 �C when the optical density was measured at
405 nm. The effect of DPP IV inhibitors, Diprotin A and
Diprotin B (Bachem), on activity was determined by adding
different concentrations of the individual inhibitors (10, 100,
500 and 1 mM) to the reaction mixture described above. All
experiments were performed in duplicate.

2.7. Fibrin clotting/re-aggregation assay

A bovine fibrin solution (concentration 15 mg/ml)
(Sigma) was clotted by the addition of 1 ll of a thrombin
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Fig. 1. Ten percent SDS–PAGE profile of the contortin-enriched protein
fraction (CEP) under reducing conditions. Lane 1: marker, lane 2: CEP.
The numbered zones and the prominent band around 55 kDa (arrow)
were excised and analysed by tryptic digest, peptide mass fingerprint
analysis and LC–MS/MS analysis.
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stock solution (10 mg/ml) (Sigma) and incubated at 37 �C
for 15 min. The fibrin clot was collected and resuspended
in 8 ml of 1 M NaBr/0.05 Na acetate buffer pH 5.3. The
resultant fibrin monomer solution was subsequently con-
centrated to 750 ll and stored at 4 �C prior to use.

Re-aggregation of the fibrin solution was carried out by
mixing 5 ll of the fibrin monomer solution with 95 ll of
PBS. The re-aggregation was monitored in a fluorimeter
by measuring the scattered light at a 90� angle at 350 nm.
Results are shown as the change in scattered light over a
10 min period. The effect of CEP on the fibrin re-aggrega-
tion was assessed by incubating 5 ll of the fibrin monomer
solution with different quantities of CEP for 30 min at
37 �C prior to the fluorimetric analysis. The effect of the
DPP IV inhibitor Diprotin A was determined by adding
0.4 ll of a 0.5 M inhibitor stock solution to the reaction
mixture described above. All incubations were done in
the presence of the inhibitors (all from Sigma), Amin-
oethylbenzenesulfonyl fluoride hydrochloride (AEBSF,
1 mM), Pepstatin (0.1 mM), trans-epoxysucciny-L-leucyl-
amido (4-guanidino) butane (E64, 0.1 mM) and 1.10 Phe-
nanthroline (1, 10 Phe, 50 mM) to block the activity of ser-
ine, aspartyl, cysteine and metallo-proteases, respectively.

2.8. Fibrin degradation assay

Twenty-five micrograms of fibrin monomers, prepared
as described above, were mixed with different amounts of
CEP and incubated at 37 �C for different lengths of time,
ranging from 15 s to 30 min. The protease inhibitors
AEBSF, Pepstatin, E64 and 1.10 Phe were included in
the reaction mixtures at final concentrations described
above. Samples were subsequently analysed on 10%
SDS–PAGE gels under reducing conditions and visualised
by Coomassie Blue staining. The effects of the DPP IV-spe-
cific inhibitors Diprotin A and Bt-PEG-Glu-ProP(OPh)2

(Gilmore et al., 2006) were investigated by adding the
inhibitors to the reaction mixture described above at a final
concentration of 0.1 M and 50 lM, respectively. The inhib-
itors were preincubated with contortin for 30 min prior to
addition of fibrin monomers.

2.9. Labelling of CEP with Bt-PEG-Glu-ProP(OPh)2

Ten micrograms of CEP was mixed with 50 lM of the
DPP IV-specific biotinylated inhibitor Bt-PEG-Glu-Pro-
P(OPh)2 (Gilmore et al., 2006) and incubated for 15 min
at 37 �C. Samples were subsequently run onto a 10%
SDS–PAGE under reducing conditions and then blot
transferred onto a polyvinylidene fluoride (PVDF) mem-
brane. Membranes were blocked in 10% horse serum in
PBS containing 0.05% Tween 20 (PBST) for 1 h and then
incubated with conjugated streptavidin (Sigma) diluted
1:5000 in PBST for 1 h. Bands were visualised by adding
0.05% 3,3 diaminobenzidine tetrachloride in PBS contain-
ing 0.01% H2O2. CEP incubated without the addition of
the inhibitor served as the negative control.
3. Results

3.1. Characterisation of the contortin-enriched fraction

(CEP)

The protein profile of the CEP is shown in Fig. 1. The
prominent band (arrowed in Fig. 1) and the remaining vis-
ible bands were excised from a Coomassie-stained gel, ana-
lysed by LC/MS–MS after a tryptic digest and then used to
generate a peptide mass fingerprint which was screened
against all the H. contortus EST datasets available on the
Nembase website. The prominent band yielded three
peptide sequences which showed a 100% match with clus-
ters HCC00232 and HCC00298 (Table 2). Clusters
HCC00232 and HCC00298, respectively, contain 421 and
37 individual EST sequences. The consensus sequence of
cluster HCC00232 was 2579 bp long. An additional
884 bp at the 50 end was isolated from a cDNA library
by a PCR approach using gene-specific primers in combi-
nation with the T3 vector primer. This resulted in a full-
length coding sequence which encodes a 122 kDa protein.



Table 2
Peptide sequences from the LC–MS/MS analysis of the 55 kDa band

Peptides EST cluster

LDYHEYYQVVEASIR DFDEEGWASVDR HCC00232
FDFWEGTQFAEDIYR DFDEEGWASVDR HCC00298
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Cluster HCC00298 has a consensus sequence of 3037 bp.
Together with an additional 562 bp at the 30 end, which
was isolated in a similar approach as described above, it
codes for a 129 kDa protein. Both proteins show homology
to PCP-like proteins in Caenorhabditis elegans (PCP-2 acc.
NP_501599 and PCP-3 acc. NP_501598.1). The shared
identity between the H. contortus and C. elegans proteins
was approximately 38%. The two H. contortus proteins
are herein named Hc-PCP1 (cluster HCC00232) and Hc-
PCP2 (cluster HCC00298). An alignment of Hc-PCP1
and Hc-PCP2 is shown in Fig. 2A. The two proteins show
64% identity and 77% similarity to each other in amino
acid sequence. Both contain a predicted signal peptide,
albeit at a different location. Both proteins also contain
multiple putative glycosylation sites, marked in Fig. 2A.
Both Hc-PCP1 and Hc-PCP2 are comprised of two serine
peptidase S28 type domains (pfam05577) organised in a
tandem repeat. This feature seems to be nematode-specific;
only the C. elegans PCPs show a similar structure. Each of
the S28 domains encode a 51 kDa peptidase, which
approximately matches the size of the prominent band on
SDS–PAGE gels (arrowed in Fig. 1). Therefore, it is likely
that the two tandem structured PCPs are post-translation-
ally processed into the four individual prolyl-carboxypep-
tidases, from hereon termed PCP1A, PCP1B, PCP2A and
PCP2B. Interestingly, Hc-PCP2 has a unique C-terminal
extension which is proline-rich and hydrophobic. The exact
function of this part of the protein is unknown, but it might
be involved in anchoring the protein to a cell membrane.

Fig. 2B shows a partial sequence alignment of the region
around the active sites of the different H. contortus PCPs
and human PCP. Catalysis by this type of peptidase is
dependent on three active site residues, namely serine, his-
tidine and aspartic acid which, although being dispersed
throughout the primary protein sequence, come together
in close proximity to form the active site when the enzyme
is folded correctly. The catalytic residues in the Haemon-

chus PCP sequences here are ordered serine, aspartic acid
and histidine and this feature, alongside the homology to
PCPs place these enzymes in the clan SC, family S28
(Underwood et al., 1999). The region around the putative
active site serine is highly conserved with 6/10 residues
identical in all the comparators, this number diminishing
to 3/10 and 1/8 around the putative active site aspartic acid
and histidine, respectively. Of the PCP domains, PCP 1A
showed closest homology to PCP2B – 69.4% identity with
81.8% similarity. Comparisons between other domain com-
binations all resulted in �30% identity, 50% similarity. All
domains showed around 19% identity and 30% similarity
to DPP IV of human origin and 25% identity, 40% similar-
ity to the PCP of human origin.
Peptide mass fingerprint and LC/MS–MS analysis of
additional protein bands (numbered in Fig. 1) resulted in
the identification of a further eight proteins present in
CEP (Table 3). These include a myosin, the aminopepti-
dase H11, glutamate dehydrogenase, apical gut membrane
protein, metallo-peptidase 3, galectin and cysteine
proteinases.

The full-length H. contortus PCP1 and PCP2 sequences
were also used to search EST databases of other parasitic
nematodes. EST clusters encoding PCPs were identified
in Ancylostoma caninum (cluster ACC04826, two ESTs),
Ascaris suum (cluster ASC18950, one EST), Onchocerca

volvulus (cluster OVC01220, one EST), Strongyloides ratti

(cluster SRC00324, six ESTs) and Parastrongyloides tricho-
suri (cluster PTC00674, one EST). Sequence homology var-
ied between 32% and 42% over a maximum of 205 amino
acids.
3.2. Transcription profile of the Hc-pcp’s

Hc-pcp1 and Hc-pcp2-specific primers were used in
RT-PCR on total RNA samples from exsheathed L3,
L4, 11- and 22-day-old parasites (Fig. 3). Transcripts
of the two genes were present from the L4 stage
onwards whilst SODc was transcribed by all the parasite
stages.
3.3. S28 peptidase activity assays

At pH 7.5, CEP hydrolysed the DPP IV-specific sub-
strate in a dose-dependent manner (Fig. 4A). The opti-
mal activity was at pH 6 (Fig. 4B) and this was
partially inhibited by Diprotin A (H-Ile-Pro-Leu; Fig.
4C) in a dose-dependent manner but unaffected by
Diprotin B. (H-Val-Pro-Leu-OH). No activity could be
detected against the DPP II substrate (results not
shown).
3.4. Coagulation assays

Mentlein and Heymann (1982) reported previously
that DPP IV inhibited the polymerisation of fibrin
monomers. Therefore, a coagulation assay with purified
fibrinogen was used to analyse if CEP showed anti-clot-
ting activity and if it was targeted against fibrinogen.
The results of this fibrin re-aggregation assay are shown
in Fig. 5A. The addition of CEP to a fibrin monomer
solution significantly inhibited the re-aggregation in a
dose-dependent manner, a 55% and 75% reduction with
2.5 and 5 ll, respectively, as measured by the change in
scattered light over a 10 min period. This effect was sub-
stantially overcome by the addition of the DPP IV inhib-
itor Diprotin A (Fig. 5B). Addition of specific inhibitors
for all four classes of proteinases (serine, cysteine, metal-
lo and aspartyl proteases) did not inhibit the anti-clotting
activity.



Fig. 2. The figure shows a pairwise alignment of the derived amino acid sequences from the two Haemonchus prolyl-carboxypeptidase (PCP)-encoding
transcripts (A) and a comparison of the active site regions of the individual PCP domains they encode (B). Predicted cleavage sites of the N-terminal signal
sequences in both proteins are marked with an arrow. Putative glycosylation sites are marked with an * (A). Both proteins contain two prolyl-
carboxypeptidase S28 type domains which are marked with []. A partial sequence alignment of the region around the active sites of the different
H. contortus PCPs and human PCP is shown in (B). The residues around the active site serine are shown in bold, the residues around the aspartic acid site
by single underline and the histidine site in double underline. The order of these active site residues places the PCPs in the peptidase clan SC, family S28.
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Fig. 3. Presence of Hc-pcp1 and Hc-pcp2 transcripts as revealed by reverse
transcriptase (RT)-PCR. The lanes are independent RT-PCR reactions
using target RNA from exsheathed L3, L4, 11- and 22-day-old adult
parasites. RT-PCR for a cytoplasmic superoxide dismutase (SODc) was
used as a control to check the uniformity of the RNA purifications.
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Fig. 4. Peptidase activity assays. (A) Dose-dependent degradation of the
dipeptidyl peptidase IV-specific substrate by the CEP at pH 7.5. (B)
Activity against the DPP IV-specific substrate by 20 lg of the CEP
incubated at different pH. (C) Testing the effect of two DPP IV-specific
inhibitors on the DPP IV type activity of the CEP.

Table 3
Additional proteins identified in the contortin-enriched protein fraction by
LC/MS–MS

Zone on SDS–PAGE
gel (Fig. 1)

Protein ID

1 Myosin (DQ310759)
2 Integral membrane protein H11 (X94187)
3 Glutamate dehydrogenase (Hc-gldh1,

AF000967)
4 Apical gut membrane protein (GA1, U55864)

and metallo-peptidase (MEP III, AF080172)
5 Cysteine proteinase (HaeCytPro2 – M80386)
6 Galectin (Hco-gal-1, AF077944)
7 Cysteine proteinase (GCP7, AF046229)
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3.5. Fibrin degradation assay

SDS–PAGE gel analysis of the fibrin monomer solution
under reducing conditions (Fig. 6A lane 1) revealed three
protein bands of approximately 63, 56 and 47 kDa, the
a-, b- and c-chains, respectively. The addition of CEP
resulted in the proteolytic degradation of both the a- and
b-chain after 15 s of incubation at 37 �C (lane 2). The addi-
tion of specific inhibitors for all four classes of proteinases
(serine, cysteine, metallo and aspartyl proteases) stopped
the degradation of the b-chain, but not the a-chain (lane
3). However, preincubating CEP with the DPP IV-specific
inhibitors Diprotin A (lane 4) and Bt-PEG-Glu-Pro-
P(OPh)2 (lane 5) completely abolished the degradation of
the fibrinogen a-chain.

The specific degradation of the a-chain coincided with
an intensification of the c-chain, as shown in lane 3
(arrow), suggesting the presence of proteolytic degradation
products of the a-chain. Mass-spectrometric fingerprint
and LC–MS/MS analysis on this protein band revealed
the presence of both the c- and a-chain, whereas in the c-
band of an untreated sample no peptides of the a-chain
were present. Fig. 6B shows the location of the identified
peptides in the complete a-chain protein sequence. No pep-
tides could be identified in the C-terminal part of the pro-
tein, which suggested that the C-terminal end of the a-
chain was degraded. As a control, the a-chain of an
untreated sample was analysed and this analysis confirmed
that C-terminal peptides covering the full a-chain sequence
could normally be generated.
3.6. Bt-PEG-Glu-ProP(OPh)2 affinity labelling

The labelling of CEP with the DPP IV-specific inhibitor
Bt-PEG-Glu-ProP(OPh)2 is shown in Fig. 7A. A strong
band is visible around 55 kDa, (lane 3), coinciding with
the size of the Hc-PCP1 and Hc-PCP2 on a Coomassie-
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stained gel (lane 1). Other fainter bands were visible, partic-
ularly around 38 kDa. No bands were recognised in the
negative control sample, which consisted of CEP without
the addition of Bt-PEG-Glu-ProP(OPh)2 (lane 2).
4. Discussion

The intestinal surface of H. contortus is lined by a helical
polymeric structure, termed contortin, which fills the
spaces between the microvilli (Munn, 1977). In the present
study, we have identified the major protein component of
the structure as prolyl-carboxypeptidase-like enzymes
encoded by two mRNA transcripts, each of which, in turn,
encodes two related but distinct PCPs. Consistent with
these findings, we show that a protein fraction highly
enriched for these enzymes has DPP IV activity, impairs
fibrin clot formation and we provide compelling evidence
that this property is mediated by DPP IV-dependent cleav-
age of the alpha-fibrinogen chain. The latter was unaffected
by the addition of a cocktail of inhibitors against serine,
cysteine, metallo and aspartyl proteases but completely
abolished by the addition of DPP IV-specific inhibitors.

The genes (hc-pcp1 and hc-pcp2) encoding these proteins
are both transcribed from the L4 stage onwards. The level
of transcript, based on EST levels, is, for Hc-pcp1, extre-
mely high. The Haemonchus EST dataset contains 421
ESTs for Hc-pcp1 of which 362 were identified in an intes-
tinal cDNA library. This makes it the third biggest cluster
in the total Haemonchus EST dataset (Geldhof et al., 2005)
and by far the most abundant EST in the intestinal EST
dataset. This is consistent with the observations by Munn
(1977) who showed that contortin was a major protein in
the intestine of H. contortus, present from the L4 stage
onwards. The Hc-pcp2 transcript on the other hand seems
to be present at a much lower level. Only 37 ESTs are pres-
ent in the EST dataset of which two were identified in the
intestinal cDNA library. This suggests that the contortin
structure is likely to be mainly composed of the two PCPs
coded by Hc-PCP1. Nevertheless, a peptide specific for
PCP2A was also identified in the mass spectrometric anal-
ysis of the contortin structure.

The PCPs described in this paper show homology to the
peptidase S28 family. This is a family of serine peptidases
which include both amino- and carboxy-exopeptidases,
examples of which are lysosomal Pro-Xaa carboxypepti-
dase, dipeptidyl peptidase II and DPP IV. Enzyme activity
analyses indicated that DPP IV activity predominated with
a pH optimum at pH 6, activity being substantially inhib-
ited by the competitive DPP IV inhibitor Diprotin A.

Munn (1977) previously proposed that contortin was an
immobilised anticoagulant. To investigate this hypothesis
we have analysed the anti-clotting activity of CEP against
purified fibrin monomers. CEP significantly interfered with
fibrin clot formation within seconds after addition. The
high rate of this enzymatic reaction might be important
for the parasite to immediately prevent blockage of the
intestine by the blood meal. The reduced clotting is a result
of the degradation of the C-terminal end of the fibrinogen
alpha-chain (aC-domain). Cysteine proteinases have previ-
ously been implicated in fibrinogen degradation by extracts
of adult H. contortus (Boisvenue et al., 1992). Here, addi-
tion of specific inhibitors for all four classes of proteinases
(serine, cysteine, metallo and aspartyl proteases) to CEP
did not inhibit the anti-clotting activity, nor did it have
an effect on the carboxypeptidase type degradation of the
fibrinogen alpha-chain. Degradation of the alpha-chain
was only inhibited when the DPP IV inhibitors Diprotin
A and Bt-PEG-Glu-ProP(OPh)2 were included in the reac-
tion mixture, results which suggest that the PCPs are
responsible for the degradation of the fibrinogen alpha-
chain. However, apart from the PCPs, the use of the biotin-
ylated DPP IV inhibitor also resulted in the labelling of
some fainter bands around 38 kDa. At this stage it is
unclear if this is background recognition or if it is actually
caused by the presence of additional DPP IV like enzymes
in the CEP fraction. If this is the case, we cannot exclude
their involvement in the fibrinolytic activity.

Blood-feeding parasites have developed an array of spe-
cific inhibitors to interfere with mammalian blood coagula-
tion (Ledizet et al., 2005). Most of these inhibitors target
the serine proteases involved in the early steps of the clot-
ting cascade. To date, a number of anticoagulants have
been identified in both hookworms and ticks which inhibit
the coagulation factor Xa, the prothrombinase complex
and the fVIIa/tissue factor complex (Mans and Neitz,
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Fig. 6. Proteolytic degradation of the fibrin a-chain by CEP and the inhibition of this activity by dipeptidyl IV-specific inhibitors Diprotin A and Bt-PEG-
Glu-ProP(OPh)2. (A) 10% reducing SDS–PAGE gel of a control fibrin solution (10 lg) (lane 1), fibrin (10 lg) incubated with CEP for 15 s (lane 2), fibrin
(10 lg) incubated for 15 s with CEP in the presence of E64, 1,10 Phe, AEBSF and Pepstatin (lane 3), fibrin (10 lg) incubated for 15 s with CEP
preincubated with the DPP IV-specific inhibitors Diprotin A (lane 4) and Bt-PEG-Glu-ProP(OPh)2 (lane 5). (B) Complete peptide sequence of the bovine
fibrinogen a-chain (P02672). The peptides highlighted were identified by mass-spectrometry analysis or LC/MS–MS in the fibrinogen c-band after
incubation with CEP. The peptides identified in the C-terminal end of a control fibrinogen c-band (without incubation with the PCP-enriched protein
fraction) are highlighted separately. The results suggest that the C-terminal end of the a-chain was degraded by the PCP activity.
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2004; Mieszczanek et al., 2004). The anticoagulant activity
in CEP, most likely due to the PCPs, targets the key struc-
tural component of the blood clot itself, fibrinogen. The
structure of fibrinogen and fibrin has recently been
reviewed by Mosesson (2005). In short, fibrinogen has a
dimeric structure of with each monomer composed of a-,
b- and c-chain. The N-terminal domains of the six chains
in a fibrinogen molecule are linked together by disulphide
bonds to form the E-domain. When clotting occurs, throm-
bin cleaves off the fibrinopeptides at the N-terminal ends of
the a- and b-chain. The newly exposed N-terminal ends of
these chains will respectively bind to the terminal cC-and
bC-domain of an adjacent fibrinogen molecule and form
fibrin. Multiple fibrin molecules will align to form fibrils
and these will undergo lateral associations with other fibrils
to create multi-stranded fibres and eventually the clot.
Here, degradation specifically targets the aC-domain. As
far as we know, it is the first time this type of anti-throm-
botic activity has been identified in any organism. Some
serine and metallo-proteases have been identified in snake
venom with a substrate preference for the fibrinogen a-
chain (Matsui et al., 2000) and a dipeptidyl peptidase IV
has been identified in human placenta which cleaved the
glycylproline residues from the N-terminal end of the fibrin
a-chain (Mentlein and Heymann, 1982). However, the
specificity for the aC-domain seems to be unique. This part
of the a-domain has shown to be important for both intra-
and intermolecular interactions in fibrin and fibrils (Moses-
son, 2005). Fibrinogen molecules lacking this domain dis-
play a slower rate of assembly, a reduced turbidity and
generate thinner fibres (Mosesson, 2005). The aC-domains
are normally non-covalently associated with the central E-
domain. When thrombin cleaves the fibrinopeptide B’s, the
aC-domains dissociates from this E-domain and become
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Fig. 7. Affinity labelling of contortin-enriched preparation (CEP) with the
dipeptidyl peptidase IV (DPP IV)-specific inhibitor Bt-PEG-Glu-Pro-
P(OPh)2. Coomassie and Western blot analysis of CEP. Lane 1: 10 lg CEP
on Coomassie-stained SDS–PAGE. Lanes 2 and 3: 10 lg CEP on Western
blot developed with streptavidin conjugate, respectively, with and without
the addition of Bt-PEG-Glu-. The PCP band is marked with an arrow.
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available for interaction with other aC-domains (Moses-
son, 2005). This increased sterical accessibility of the aC-
domain might be the reason why it is targeted by the PCPs.

The high intestinal transcription levels of the PCPs seem
to be very specific for H. contortus. Using the Haemonchus

PCP sequences as search queries, we identified EST clusters
from A. caninum, A. suum, O. volvulus, S. ratti and P.

trichosuri that encode for putative PCPs. However, each
of these clusters contained a small number of ESTs, rang-
ing from one to six ESTs, indicating an overall low tran-
scription level. In addition, no PCPs have been identified
in the intestinal EST libraries from the two hookworm spe-
cies Necator americanus and A. caninum (Ranjit et al.,
2006) and no new sequence homologues were identified in
a recent search of the databases. Munn (1977) previously
suggested, based on microscopic observations, the presence
of a contortin-like structure in the intestine of the sheep
parasite Teladorsagia circumcincta. However, analysis of
a T. circumcincta protein extract, purified according to
the methods described by Munn (1977), showed a totally
different protein profile and did not contain any detectable
levels of DPP IV activity (P. Geldhof and D. Knox, unpub-
lished data).

The data here indicate that PCPs potentially play a cru-
cial role in the survival of H. contortus. Despite a successful
vaccination trial with the CEP fraction (Munn et al., 1987),
it is unclear what the protective capacity is of the PCPs
themselves. The analysis of CEP here showed the presence
of several other protective antigens, such as H11, an apical
gut membrane protein, cysteine proteinases and metallo-
protease III, all of which could have been implicated in
vaccine-induced protection against Haemonchus challenge.
Further purification is required to fully analyse the protec-
tive capacity of the PCPs.
Given their apparently novel mode of action, PCPs
might have a potential as drug targets. In recent years,
much attention has been given in the medical research field
to the development of inhibitors for this type of enzyme, in
particular for DPP IV (Rosenblum and Kozarich, 2003).
Such inhibitors, when available, could easily be tested in
the coagulation assays for their inhibitory activity of the
H. contortus PCPs. Moreover, the H. contortus PCPs might
also have medical applications. A number of anti-throm-
botics from haematophagous invertebrates have been eval-
uated in vivo for the treatment of a variety of conditions
associated with blood clotting. Some of these are already
in varying stages of preclinical and clinical development,
for example the nematode anticoagulant protein-2 (Ledizet
et al., 2005).
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