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Abstract. Textiles are mainly used for decoration and protection. In both cases, original ap-

pearance and its retention are important factors for customers. Therefore, evaluation of ap-

pearance parameters are critical for quality assurance purposes, while and after manufacturing,

to determine lifetime and/or beauty of textile products. Particularly, appearance retention of

textile products is commonly certified with grades, which are currently assigned by human ex-

perts. However, manufacturers would prefer a more objective system. In this paper we present

an objective system for grading appearance retention, particularly, for textile floor coverings.

Changes in appearance are quantified by using linear regression models on texture features ex-

tracted from intensity and range images. Range images are obtained by our own laser scanner,

reconstructing the carpet surface using two methods that have been previously presented. We

extract texture features using a variant of the local binarypattern technique based on detecting

those patterns whose frequencies are related to the appearance retention grades. We test models

for eight types of carpets. Results show that the proposed approach describes the degree of wear

with a precision within the range allowed to human inspectors by international standards. The

methodology followed in this experiment has been designed to be general for evaluating global

deviation of texture in other types of textiles as well as other surface materials.

Keywords: LBP techniques, Image Analysis, Wear Analysis, Texture Analysis, Appearance

Retention
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1 INTRODUCTION

Nowadays, the textile floor cover industry offers a wide range of carpets, of which those that

retain their original appearance for longer periods are preferred by end customers. The Ap-

pearance Retention (AR) in carpets is validated and certified following quality standards based

on simulating traffic exposure [1]. There are several standardized tests to provide Euronorm

(EN) and International Standards Organization (ISO) certification of AR in carpets [2]. Particu-

larly, different levels of traffic exposure are simulated, e.g. by degrading surfaces of new carpet

samples (accelerating the wear) with mechanical devices during different periods of time [3].

After simulating traffic exposure a carpet sample is called afatigued specimen and its degree of

change is expressed by using a single overall AR grade [4]. The overall change is determined

by independently evaluating changes in pattern, thickness, hairiness, color and texture. These

visual characteristics are numerically expressed and thencombined to calculate the overall AR

grade.

The change in appearance of a fatigued specimen is evaluatedby comparing changes with

respect to the original appearance of an unfatigued specimen and certified AR references. AR

references are a set of fatigued specimen samples representing different AR grades. It is ex-

pensive and time consuming to compose an AR quality standardreference. Besides, features of

physical fatigued specimen samples change over time and areexposed to involuntary detriment.

Therefore, some certifications use photographs of the fatigued specimens instead. Particularly,

the AR references in Europe are composed of physical samplesof fatigued specimens while in

America the AR references are composed of photographs.

Currently, the AR retention in carpets is evaluated by at least three certified experts, which

is hampered by human subjectivity. The human assessment results in inconsistencies between

experts with errors up to a half grade in the AR grades [4]. Themain drawbacks for this system

are that it is time consuming, prompt to human errors and it requires at least three experts, who

are not always available, especially within small companies.

Several studies have been performed in search of an objective AR grading assessment using

image analysis techniques [5–12]. Most of the research has been conducted using gray-scale

images, which require less rigorous control of illumination and camera characteristics than

color images. Tested algorithms include gray value histogram analysis, co-ocurrence matrices,

local intensity variation filters, statistical measures and edge detection filters. Results of some
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of these algorithms show successful systems with correct assessment over 95% developed with

specific algorithms for limited carpet types [11,12]. None of these methods succeed considering

diverse carpet types.

Recently, we proposed an algorithm based on the Local BinaryPattern (LBP) technique

to appropriately quantify the degree of wear [13]. We eill briefly explain this algorithm in

Section 2.2. We tested the algorithm using certified photographs for the American standard and

photographs taken under fixed luminance conditions for the European standard. Although the

method correctly distinguished AR grades in certified photographs, we found that non certified

photographs are non-robust enough for describing the appearance changes of carpets [14].

Several researchers have also explored the use of depth images, reflecting 3D structure of

the carpets. This is an important feature evaluated by experts, which is not correctly acquired in

photographs. Recently, we presented a scanner specificallydesigned for scanning carpets using

structured light triangulation [15]. These type of scanners have the advantage of low color sen-

sitivity compared to other 3D imaging methods [16–18]. The depth information is digitized into

a range image, where the pixels of the image represent depth.This type of scanners has previ-

ously been used to characterize the 3D surface roughness of fabrics [19–22]. The performance

of classical scanners has been improved by placing the carpet on a drum, which results in better

capturing of the piles defining the structure of the carpet. We have proposed an automatic grad-

ing system based on image analysis algorithms using images obtained from the scanner based

on a drum together with photographs [23]. Linear models for quantifying changes in appear-

ance of fatigued specimens are computed by combining texture features based on local binary

patterns from both intensity and range images. The method was appropriate for automatically

grading a specific type of, i.e. loop pile carpets.

The current paper presents for the first time an automatic grading system that is already

generic for carpets with low pile construction and without color patterns. Some parts of the

method have been explained in detail in previous papers [13–15, 23–26]. In this paper we

present an optimal combination of the previous findings. This combination significantly im-

proves the performance of the method. The initial method hasbeen improved by including

two new components. The first new component consists of constructing the range images by

applying an edge detection method based on the Gaussian pyramid representation [25]. This

permits a more precisely reconstruction of the carpet surfaces. The second component consists
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of linearly modeling texture features based on local binarypatterns whose probabilities of oc-

currence monotonically change with the AR grades [26]. The linear models computed with the

new method predict the degree of wear better than those computed in previous approaches.

We tested the automatic grading system on AR references fromthe European standard. One

linear model for each reference is computed by combining texture features based on local binary

patterns extracted from both range and intensity images. The AR grade of a fatigued specimen

sample within the evaluated AR references is calculated using the corresponding linear model.

The paper is organized as follows. In Section 2.1, we describe the details of our proposed

scanner and the carpet batch to be analysed. In Section 2.2, we describe the technique for

extracting texture features. In Section 2.3 we explain how to use the texture features to estimate

the AR grades for new carpet samples by using linear regression models. In Section 3, we

describe the experiment, report the results and discuss thefindings. Finally, in Section 4 the

conclusions are drawn.

2 MATERIALS AND METHODS

We propose an automatic grading system in which visual characteristics related to appearance

changes are independently quantified and then combined intoa linear model to assess the AR

grade of the fatigued specimen. We present in this paper the results of a first approach modeling

only texture features extracted from intensity and depth images.

International standards are independently defined for color and appearance degradation,

where appearance retention refers to evaluation of degradation on the carpet texture surfaces

independently from colors. Therefore, we use texture features decoupled from colors quanti-

fying the difference, for both types of images, between the worn and original appearance. The

method is illustrated in Figure 1. The steps are explained indetail in the followings.
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Fig. 1. Proposed method for automatic grading of appearanceretention in carpets.
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2.1 Image Acquisition

The AR references used in our research follows the EN1471 European standard [4]. Each

fatigued specimen sample contains both the appearance changes in the middle and the original

appearance at both sides. The appearance changes are assessed with labels in the range from

1.0 to 5.0, with steps of half a point, where a severe change islabeled with an AR grade of 1 and

original appearance with AR 5.0. The fatigued specimen samples have been collected from the

following carpet types: high/low loop, loop, cut/loop, cutpile, cut design, frisé and two types

of shaggy. With these fatigued specimen samples, a databaseconsisting of both intensity and

range images has been composed [14].

The database of intensity images is composed of photographswith a size of720×576 pixels

corresponding to17.28 × 13.82 cm2 of the surface. Thus, one pixel represents a square with

size of0.24 mm by 0.24 mm. Photographs are acquired in the RGB color space. However,

since we are interested in evaluating texture change independently from color change, images

must be transformed to other color representation space that permits to decouple the intensity

information from the colors [27]. This is possible by using the luminance component from

color representations such as the YUV (component Y ) or the HSV (component V) color spaces.

Previous investigations evaluating the luminance component for texture analysis tasks reported

non-significant difference between both color spaces [28,29]. Therefore, we can chose the YUV

representation space for conducting this investigation.

The samples were additionally scanned with our carpet scanner to compose the database of

range images. To scan, a fatigued specimen sample is first clamped with elastic bands upon an

inox-drum. Then, a line laser generator projects a uniform line on the surface of the sample. The

reflected light, containing the depth information, is captured with a 3CCD camera, configured

to horizontally cover a similar surface area with the same pixel resolution as covered with the

photographs. Afterwards, the drum is rotated at a controlled speed to capture frames in which

the projected light is spaced at0.24mm. In each frame, the reflected light due to the projection

of the laser line in the carpet surface is represented with pixels as shown in Figure 2 a). One pixel

per column is used for representing the depth of the surface with one array per frame as shown

in Figure 2 b). Finally, a range image, with the same pixel resolution as in the photographs, is

constructed by sequentially aligning the arrays. The arrays are obtained using two approaches:

theRefLightand theEdgeWavmethods [25]. We briefly summarize these methods below.
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A) The RefLight method. With this method the array is obtained by detecting the highest

position of the highest intensity value on each column of theframe [15]. E.g. The brightest

pixel in column 4 of Figure 2 a) is located at row 92. When the highest intensity value is located

in more than one row, the top location is chosen as in column 15of Figure 2 a, where row 94

is selected. The Reflight method characterizes the texture given by a carpet surface without

separating specific details such as distorted fibers from thebase of the structure.
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Fig. 2. The RefLight method. a) The Figure displays a sectionof a frame from rows90 to

95 and columns 1 to 15. The reflection of the laser line is represented with pixels there light

colors correspond to bright reflection. b) Array obtained with the RefLight method to identify

the relevant depth values in the frame section. Each value inthe array represents the row where

the highest intensity values are located at a highest position per column.
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B) The EdgeWav method. The EdgeWave method has been designed for characterizing

texture due only to the base surface structure. The method consists in detecting at different

scales the edges corresponding to tuft tips and then mergingthem into one image [30]. Edges

are detected in each scale by using a Sobel operator. Experimentally, edges of tuft tips can be

visually distinguished up to a third resolution level. The edges in each scale are binarized using

a threshold to separate tuft tips from noise and distorted fibres. This threshold is calculated

using the Lipschitz exponent, which expresses the local regularity of a neighbourhood [31].

The Lipschitz exponent is small where only fine texture or noise are present and large where

smoother features or continuous edges are present. The resulting binary edges are merged into

one image by using the logical OR operation. The average in terms of the locations of the pixels

corresponding to edges is computed to obtain only one value of depth per column in the merged

image. The method is graphically illustrated in Figure 3.

9



2

I1

I2

I3

+

2

s

s

s

2

2 2

t

t

t

a

Sobel Threshold

  Row
Average

Array

Image 
Scales

Fig. 3. The EdgeWav method. Edges are detected with a Sobel (s) operator for three consecutive

scales, given by ImagesI1, I2 andI3. Tuft tips are separated from both noise and distorted fibres

by thresholding (t) the images using the Lipschitz exponent. Binary edges are merged into one

image using the or operation, indicated with the symbol+. The symbol2↓ refers to Gaussian

downscaling and the symbol2↑ to upscaling. The average (a) in terms of row positions of the

pixels corresponding to edges is computed to obtain only onevalue of depth per column in the

merged image.
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The RefLight method implicitly contains information abouthairiness since this method de-

lineates distorted fibers as opposed to the capturing base ofthe carpet structure such as the

WavEdge method. Therefore, both methods are complementary, thus combining both leads to

better results as will be shown in Section 3.

We covered the entire surface for each AR grade by capturing 5pairs of images correspond-

ing to worn and original appearance. Therefore, each AR grade in this experiment is associated

with a set of 30 images, (ten images for each method). All images have the same size and res-

olution. Cut-outs of images for the AR references are shown in Figure 4, with intensity images

at the top for each type, range images obtained with the Edge method in the middle and range

image obtained with the RefLight method at the bottom.
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2.2 Texture Feature Extraction

We quantify the difference in texture between images of wornand original appearance by ex-

tending a method proposed in a previous approach [13]. The method consists of assigning

numbers to the pixels on both images (worn and original texture) by using the Local Binary

Pattern (LBP) operator. These numbers represent patterns of local intensity variations. The

numbers of occurrences of the patterns along the images are accumulated into LBP histograms,

with a single LBP histogram per image. The difference between LBP histograms corresponding

to worn and original textures is computed using the Kullback-Leibler divergence (KLD) [32].

Specific bins are discarded in order to enforce that the KLD increases monotonically while the

AR grades decrease [26]. The complete method is graphicallyillustrated in Figure 5 and will

be discussed more in detail in the following. We first describe the previous method and then the

new component, the removal of bins.
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Fig. 5. Computation of texture difference in images of worn and original appearance.
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A) Texture difference measurement.With the aim of leading to an universal automatic

system, we have previously proposed a methodology to selectoptimal image based features

for describing AR grades [33]. With this methodology, characteristics from the description

between AR grades and the features are quantified and compared using experimental design

theory [33]. To select optimal texture features, we use in this investigation the following two

quantified characteristics:

• The monotonicity, which measures the order between the KLD values and the AR grades.

It is indicated by the symbolω within a range from0 to 1, which measures, using the

Spearman rank correlation, the order of the textures features with the AR grades.ω = 1

means perfect order.

• The discriminance, which measures the separability between KLD values of consecutive

AR grades. It is indicated by the symbolτ , computed by counting how many times the

difference between the average of features corresponding to consecutive AR grades is

larger than the threshold for a statistic significance basedon the Tukey test [34]. Theτ

value is divided into7 (the number of consecutive pairs of AR grades) to normalize its

range from0 to 1.

Particularly, we have previously compared the performanceof the LBP technique against

two classical techniques namely, the co-ocurrence matrix technique and the Laws texture en-

ergy measures [24]. Results showed that the LBP technique describes more monotonically the

transitional texture changes due to wear (ω = 0.84 in average for the LBP technique against

ω = 0.61 andω = 0.74 for co-ocurrence and Laws techniques respectively ) as wellas distin-

guishes a bigger number of consecutive AR grades (τ = 0.28 in average for the LBP technique

againstτ = 0.42 andτ = 0.61 for co-ocurrence and Laws techniques respectively).

With the LBP technique, we evaluate the neighborhood of a pixel in equidistant points on a

concentric circle centered around the pixel [35]. A bit value equal to 1 is assigned to a point on

the circle neighborhood of the pixel if the intensity value of the point is bigger than the intensity

value of the pixel and a bit value equal to 0 otherwise [36]. One binary code word representing

the pattern, is assigned to the pixel by reading out the bin values on the circle neighborhood in a

clock wise direction. In this approach, we compute LBP patterns for 8 and 12 circular neighbors

using a radius of 1 and
√
2 respectively. Grouping patterns makes the representationbecomes
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more compact and invariant to noise. We group mirror, complement and rotational versions of

LBP patterns using look up tables [37].

In order to cope with the different types of carpets and textures, it was necessary to iden-

tify the best spatial resolution scale that optimally stresses the surface changes for each AR

reference. We performed this analysis by keeping the LBP parameters fixed while resizing the

images. Images were evaluated at spatial resolution scaleswithin the range from 0.6 to 1 with

intervals of 0.1. Scale factors smaller than 0.6 were not considered because the details of the

texture surface vanish at those scales. We automatically selected for each AR reference images

with a scale resolution at which the product betweenω andτ was maximum.

The difference between histograms of LBP is computed using the Symmetric Kullback-

Leibler (SKL) divergence. One SKL value, calledκ, measures the difference in texture between

a pair of images of worn original appearance. We obtain for each type of image within an AR

grade a set of 25κ-values by comparing each other the 5 images of worn against the 5 images

of original appearance. Some of theκ-values from an AR grade can be significantly larger or

smaller than the others because of the presence of factors such as flecks or speckles that could

not be removed by the vacuum cleaning. These outliers are detected for each AR grade using

the Mahalanobis distance between eachκ-value and the whole set of 25κ-values. The outliers

are then replaced with the median from theκ-values of the corresponding fatigued specimen

to allow statistical comparisons with an equal number of texture features per fatigued speci-

men [34]. Then, we replace a maximum of five outliers to assurevalid statistical comparisons

between theκ-values of the AR grades. Using a power analysis test, we calculated that the min-

imal number of samples required in a set to assure valid statistical comparisons is ten, which

means that the25 κ-values are more than sufficient [34].

B) Bins Removal.

Detection of most frequently occurring LBPs for particulartextures, called dominant LBPs

increases the precision in texture classification tasks [38]. Changes of appearance in carpets due

to degradation produce fine local texture changes which are not necessarily of dominant texture.

Therefore, we are interest in detecting those patterns thatchange accordingly with the wear.

Because the texture due to wear is assumed to change transitionally, we propose to detect in

the original LBP histogram the bins of those patterns which frequencies change monotonically.

This increases the distinguish ofκ-values corresponding to consecutive AR grades. We called
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this, the Monotonic Local Binary Pattern (MLBP) detection.The bins corresponding to non

monotonic LBPs are discarded from the histograms of LBP reducing the histogram dimension

[26]. Note that these relevant bins have to be selected for each AR reference.

We identify four types of change in bin behaviors within the original LBP histograms

namelyA) bins monotonically decreasing with AR grades,B) bins with no changes with AR

gradesC) bins monotonically increasing with AR grades andD) bins randomly changing with

AR grades. These four types of bin behaviors are illustratedin Figure 6 a). The bins of all AR

grades within an AR reference are drawn together to visualize the changes in frequencies of the

bins related to the AR grades for each type of carpet.
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Fig. 6. Detection of LBPs that monotonically change with AR grades. Bins of grades1.0 to 5.0

are drawn together to visualize the changes in frequencies of the bins related to the AR grades.

Types of bin behaviours are shown in Figure a). Figure b) shows an example of the eight first

bins out of a total of 125 in images of intensity using patterns with 12 equally spaced circular

neighbours in a circle of radius
√
2. Bins 3 and8 are identified as binsC andD respectively

comparingε = 0.9 to their respectiveρ-values.

18



Patterns that monotonically change with the AR grades (TypesA andC) are separated from

the others (typesB andD). For this, we compute the Spearman rank correlation, termed ρ,

between the bin frequencies and the AR grades. the Spearman rank correlation is a measure of

statistical dependence between two variables. The absolute value ofρ for each bin is compared

to a threshold, termedε, to remove the non-monotonic patterns (B andD are those with|ρ| < ε)

from the LBP histograms. One example of the differentiationof types of bin behaviours (C and

D) is shown in Figure 6 b).

19



0.50

0.72

1.00

1 0.38

ω
Monotonicity

Discriminance

Threshold ( )

Value

0.90

τ

0.52 0.015

Number of grouped LBP patterns
0 80 10 120

εε

Fig. 7. Example of automatically selectingε for carpet type Frisé. In the vertical axis the word
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be in the range given by0.52± 0.015, grouping between70 and90 LBPs. The rank correlation

betweenκ-values and AR grades as well as the efficiency discriminating consecutive AR grades

are maximum in this range.
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An optimal threshold (ε) for each AR reference can be obtained by iteratively evaluating,

usingω andτ , the representation o f all its AR grades while decreasingε from 1 to 0. Figure 7

illustrates with one particular example for carpet type Frisé, the common behavior ofω andτ

when varyingε in steps of−0.005. It can be seen that there is a region in which the product

of ω andτ reaches a maximum value. Therefore, the optimalε value can be chosen within this

region.

2.3 Features Combination

Although the relationship between AR grades andκ-values is nonlinear, both for depth and

intensity images, a linear approximation can be obtained bylinearly combining them. This

linear description has the benefit that it gives the same probability to each AR grade. We propose

to optimally combine theκ-values using regression models for linearly representingthe AR

grades [23]. One linear regression model is built for each ARreference. Optimal models are

constructed by excludingκ-values that do not contribute to the variation of the AR grades. In

the following we discuss the two steps of the method in detail.

A) Quantification of AR grades using Linear Regression Models. The AR references

represent eight different carpet types, which are identified using the indexc = 1, . . . , 8. The

κ-values are sub grouped according to image type, and the number of circular neighbours. We

usem = 1 for intensity images,m = 2 for range images using the RefLight method,m = 3

for range images using the EdgeWav method,n = 1 for 8 circular neighbors andn = 2

for 12 circular neighbors. Each of the combinations of image type and number of circular

neighbors for an AR reference is called a predictor, denotedby κc

mn
. Subscriptmn refers to

a combination of image type and number of circular neighborsand superscriptc refers to an

AR reference. With this notations, the AR grades within an ARreference are linearly modeled

using Equation 1.

Ŵ c = βc

0
+

3∑

m=1

2∑

n=1

βc

mn
κc

mn
(1)

The corresponding predictors are used together with a set ofβ parameters to estimate the

degree of wear of an AR reference, denoted byŴ c. Each predictor is associated to oneβ

parameter. One extra parameter, termedβ0, is used to correct the bias. Theβ-parameters can

be trained applying least square methods using the predictors and the AR grades previously
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assessed by human experts. The AR grade for a new fatigued specimen of carpet typec, is then

automatically computed using Equation 1.

B) Detecting predictors that contribute to AR grading. To identify predictors that do not

significantly contribute to the variation of AR grades we usethe stepwise regression method

[34]. The method computes two statistical measures, namelythe adjusted R-squared, denoted

by R2

a
, and the Variance Inflation Factor denoted byV IF . Both measures, based on the statis-

tical coefficient of determination (R2) between theκ andW c-values.

TheR2

a
-value measures the proportion of the variation inW c accounted for by the predictors

within a range from0 to 1. R2

a
= 1 means that the AR grades are perfectly described by the

linear model. In contrast with the coefficient of determination, theR2

a
-value is independent

from the number of predictors.

TheV IF -value measures the correlations, called multicollinearity, between two subgroups

of predictors. IfP is the subgroup of predictors evaluated into a linear model andP ′ a subgroup

of predictors excluded from the model, the correlation between both subgroups of predictors is

denoted byV IF (P : P ′). A multicollinearity problem is detected when the average in terms

of theV IF -value, over all possibleP ′s, is higher than5.

The stepwise regression method iteratively adds the predictor which maximizesR2

a
without

causing a multicollinearity problem.

3 EXPERIMENT, RESULTS AND DISCUSSIONS

We have built linear regression models for the eight types ofcarpets given by the AR references

from the EN1471 standard. We captured 30 images from each fatigued specimen representing

an AR grade divide into 15 pairs (worn-original) of images. Each of those composed of three

subsets of 5 pairs of images (5 from photographs, 5 from the RefLight method and 5 from the

EdgeWav method). 25κ-values are computed for each subset of images. We use 15 of the

κ-values per AR grade to construct the models and the other to for validation. In the validation,

the AR grades were correctly distinguished and ranked for six of the eight evaluated types of

carpets (shaggy 1, loop, cut/loop, high/low loop and frisé). These results are obtained from the

following procedure:

We are mainly interested in comparing the performance ofκ-values obtained by combining

the LBP and MLBP techniques with the RefLight and EdgeWav methods. To evaluate if features
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extracted using both the RefLight and the EdgeWav methods are complementary estimating the

AR grades, we build an additional model evaluating all subgroups ofκ-values. Therefore, we

evaluate the following five models, defined as (M-):

1. M-1 κ-values obtained from LBPs on intensity images and range images using the Re-

fLight method.

2. M-2κ-values obtained from LBPs on intensity images and range images using the Edge-

Wav method.

3. M-3 κ-values obtained from MLBPs on intensity images and range images using the

RefLight method.

4. M-4 κ-values obtained from MLBPs on intensity images and range images using the

EdgeWav method.

5. M-5κ-values from all subgroups.

The finalR2

a
-values obtained from the stepwise regression method (selecting the bestR2

a
-

values withV IF average less than5) are listed in columns one to four in Table 1 for each carpet.

It can be seen from the table thatR2

a
-values obtained when using MLBP technique computed

on range images of the EdgeWav method perform best among the four models. TheR2

a
-values

obtained from M-5, are listed in column five of Table 1 for eachAR reference. Results show

that features extracted using the RefLight method increasetheR2

a
-values for some types of AR

references. Range images using the RefLight method includeinformation of distorted fibers,

which represent the hairiness appearance. Therefore, thisresult indicates that features quanti-

fying such appearance are complementary for linearity describing the AR changes.
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Table 1. R2

a
-values obtained from the stepwise regression method. The values are listed for

each type of AR reference
Carpet Type M-1 M-2 M-3 M-4 M-5

Shaggy 1 0.850 0.877 0.911 0.913 0.918

Cut/loop 0.292 0.857 0.493 0.864 0.916

Shaggy 2 0.760 0.867 0.825 0.867 0.872

High/Low loop 0.983 0.980 0.982 0.980 0.984

Frisé 0.909 0.930 0.933 0.943 0.954

Cut 0.961 0.961 0.961 0.961 0.961

Loop 0.934 0.939 0.905 0.939 0.939

Cut Design 0.705 0.898 0.748 0.898 0.946
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The five models have been validated using theκ-values from the set of validation containing

data from two intensity and two range images per fatigued specimen. To validate, we compute

κ-values combining pairs of range and intensity images from those images resulting in four AR

grades per fatigued specimen. The final AR grade of a fatiguedspecimen is assessed by the

average of the four grades.

Figure 8 shows the AR grades results of the linear model of carpet type cut/loop for the

combination ofκ-values from one intensity image and one range image. Figure8 displays in

the horizontal axis the AR grades assigned by human experts and in the vertical axis the average

of the results of the AR grades obtained with the linear models. It can be seen that in this case,

M-5 correctly describes seven of the eight AR grades.

25



1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

M1:0.29

M2:0.85

M3:0.49

M4:0.86

M5:0.92

1.5

1.0

2.0

2.5

3.0

3.5

4.0

4.5

Human Assessment

 Automatic 
Assessment

W

Fig. 8. Validation example for carpet type cut/loop. Modelsare denoted by M and the corre-

spondingR2

a
-values are shown after ‘:’. The mean values are connected with lines to visualize

the linearity of the models.
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The trend results of the validations for the eight AR references are shown in Figure 9.

The figure shows that for six of the eight AR references, the models adequately describe

the estimated degree of wear compared to the human assessment, with grade errors within the

0.5 grade (Identified by points within gray light squares, bigger errors are those points within

dark gray squares) that are allowed to human inspectors by international standards. This result

is an important step towards the development of an automaticgrading system, complying with

international standardizations, for evaluating appearance retention in textile floor coverings.

The 3D information captured while scanning the fatigued specimens can be used to quan-

tify several features related to appearance characteristics such as texture, hairiness, structure

and thickness. The range images used in this approach are constructed using all information

in the surface together to describe the overall texture. Further improvement can be expected

by independently computing image features representing separated appearance characteristics.

This may be particularly helpful for improving the AR grade representation of AR references,

like those in Figure 9 c) and h), with errors bigger than 0.5 ARgrade.

Considering that information related to colors and patterns can be obtained from intensity

images, a complete description of the AR of carpets may be achieved by selecting the optimal

features using the linear regression method followed in this investigation. Therefore, including

the resulting features within the stepwise regression method may lead to a model that more

approximately represent the AR grades of the carpets.

The current scanner is a prototype version. Therefore, effort should be strengthened in

improving resolution and speed on the scanning process to devise an industrial grading system.

The current approach has been performed using limited samples for each AR reference type.

Therefore, more robust inferences can be obtained by computing statistics on larger datasets.

Particularly, one database for each AR reference type composed of samples better representing

the texture diversity present in the market.

We believe that the presented methodology can also be usefulfor identifying correspon-

dences between appearance and construction characteristics of the AR reference types. This is

considering that the carpet types of the AR references are defined by a combination of charac-

teristics in the carpet construction such as pile/surface fiber, type of manufacturer and secondary

backing among others. The characterization combined with the knowledge of the human spe-

cialists into a more advanced modeling techniques may be useful for designing an universal
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grading system.

The findings of this approach could be useful for other applications where quality inspection

of transitional changes is required such as of smoothness orroughness; assessment of fabric

wrinkle recovery, piling propensity and smoothness after repeated laundering; assessment of

seam appearance; assessment of crease retention and assessment of appearance retention of

finished garments.
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Ŵ

Fig. 9. Validation of the models usingκ-values from two samples of intensity images and two

samples of range images. The trends show the results of the ARgrade averages obtained with

the linear models using two intensity and two range images per fatigued specimen.
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4 CONCLUSIONS

In this paper, we have presented an automatic AR grade assessment system for carpets with

low pile construction without color patterns, with grade errors within the 0.5 grade allowed by

international standards to human inspectors. Therefore, we present a method that is already

generic for those types of carpets. This result is a significant step forward for developing an

automated assessment system suitable for the requirementsof the carpet industry. In carpets

with high pile construction the changes were not detected well by our automatic system. These

can be attributed to the fact that those changes are related to other surface features such as

thickness and hairiness.

With the current system, AR grades are automatically assessed by quantifying the degree

of wear in carpets using linear regression models on texturefeatures extracted from intensity

and range images obtained with our own carpet scanner. We improved the performance of the

automatic system by including range images obtained by detecting edges on the reflected light

using the wavelet representation space. Additionally, thedimension of LBP histograms has

been optimally reduced by identifying patterns that monotonically change with the AR grades

Kullback-Leibler divergences extracted using adjusted histograms offering more relevant infor-

mation for the linear models. We believe that further studies exploring other kind of features

quantifying characteristics such as thickness, hairinessand color patterns, may lead to the de-

velopment of an automatic AR grading assessment for all types of carpets.
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