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Abstract. Textiles are mainly used for decoration and protection. dthirases, original ap-
pearance and its retention are important factors for custemTherefore, evaluation of ap-
pearance parameters are critical for quality assurangmpas, while and after manufacturing,
to determine lifetime and/or beauty of textile productsrtiealarly, appearance retention of
textile products is commonly certified with grades, whictk earrently assigned by human ex-
perts. However, manufacturers would prefer a more objesystem. In this paper we present
an objective system for grading appearance retentionicpbatly, for textile floor coverings.
Changes in appearance are quantified by using linear regmeasdels on texture features ex-
tracted from intensity and range images. Range images #aeeld by our own laser scanner,
reconstructing the carpet surface using two methods thegt been previously presented. We
extract texture features using a variant of the local bietyern technique based on detecting
those patterns whose frequencies are related to the appeartention grades. We test models
for eight types of carpets. Results show that the proposgbaph describes the degree of wear
with a precision within the range allowed to human inspexhyr international standards. The
methodology followed in this experiment has been desigoéddtgeneral for evaluating global

deviation of texture in other types of textiles as well asoturface materials.
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1 INTRODUCTION

Nowadays, the textile floor cover industry offers a wide ®&of carpets, of which those that
retain their original appearance for longer periods aréepred by end customers. The Ap-
pearance Retention (AR) in carpets is validated and cettififowing quality standards based
on simulating traffic exposure [1]. There are several stedided tests to provide Euronorm
(EN) and International Standards Organization (ISO) fieation of AR in carpets [2]. Particu-
larly, different levels of traffic exposure are simulatedy. doy degrading surfaces of new carpet
samples (accelerating the wear) with mechanical deviceasgldifferent periods of time [3].
After simulating traffic exposure a carpet sample is callétigued specimen and its degree of
change is expressed by using a single overall AR grade [4§.oMerall change is determined
by independently evaluating changes in pattern, thickressiness, color and texture. These
visual characteristics are numerically expressed andcberbined to calculate the overall AR
grade.

The change in appearance of a fatigued specimen is evalogtemmparing changes with
respect to the original appearance of an unfatigued specéme certified AR references. AR
references are a set of fatigued specimen samples reprgsdifterent AR grades. It is ex-
pensive and time consuming to compose an AR quality stanmééetence. Besides, features of
physical fatigued specimen samples change over time arekposed to involuntary detriment.
Therefore, some certifications use photographs of theufatigpecimens instead. Particularly,
the AR references in Europe are composed of physical sarapfagued specimens while in
America the AR references are composed of photographs.

Currently, the AR retention in carpets is evaluated by adtlé@ree certified experts, which
is hampered by human subjectivity. The human assessmeiisrgsinconsistencies between
experts with errors up to a half grade in the AR grades [4]. M@ drawbacks for this system
are that it is time consuming, prompt to human errors andjitires at least three experts, who
are not always available, especially within small compsinie

Several studies have been performed in search of an olgedivgrading assessment using
image analysis techniques [5-12]. Most of the research bas bonducted using gray-scale
images, which require less rigorous control of illuminatiand camera characteristics than
color images. Tested algorithms include gray value histoganalysis, co-ocurrence matrices,

local intensity variation filters, statistical measured adge detection filters. Results of some



of these algorithms show successful systems with correessasment over 95% developed with
specific algorithms for limited carpet types [11,12]. Nofieéhese methods succeed considering
diverse carpet types.

Recently, we proposed an algorithm based on the Local BiRatiern (LBP) technique
to appropriately quantify the degree of wear [13]. We eilefly explain this algorithm in
Section 2.2. We tested the algorithm using certified phatplgs for the American standard and
photographs taken under fixed luminance conditions for th®jgean standard. Although the
method correctly distinguished AR grades in certified pgaphs, we found that non certified
photographs are non-robust enough for describing the apeachanges of carpets [14].

Several researchers have also explored the use of deptlesmaglecting 3D structure of
the carpets. This is an important feature evaluated by &xpehich is not correctly acquired in
photographs. Recently, we presented a scanner specifileasigned for scanning carpets using
structured light triangulation [15]. These type of scasreave the advantage of low color sen-
sitivity compared to other 3D imaging methods [16—18]. Thptt information is digitized into
a range image, where the pixels of the image represent dépibitype of scanners has previ-
ously been used to characterize the 3D surface roughneabrids [19—-22]. The performance
of classical scanners has been improved by placing thetoamgedrum, which results in better
capturing of the piles defining the structure of the carpet.nAve proposed an automatic grad-
ing system based on image analysis algorithms using imageased from the scanner based
on a drum together with photographs [23]. Linear models faargifying changes in appear-
ance of fatigued specimens are computed by combining &xéatures based on local binary
patterns from both intensity and range images. The methadawpropriate for automatically
grading a specific type of, i.e. loop pile carpets.

The current paper presents for the first time an automatidilggasystem that is already
generic for carpets with low pile construction and withoator patterns. Some parts of the
method have been explained in detail in previous paperslf,323-26]. In this paper we
present an optimal combination of the previous findings.sTambination significantly im-
proves the performance of the method. The initial methodbees improved by including
two new components. The first new component consists of kastg the range images by
applying an edge detection method based on the Gaussiamigyrepresentation [25]. This

permits a more precisely reconstruction of the carpet sagfaThe second component consists



of linearly modeling texture features based on local bingatterns whose probabilities of oc-
currence monotonically change with the AR grades [26]. Tiear models computed with the
new method predict the degree of wear better than those dehpuprevious approaches.

We tested the automatic grading system on AR referencestfrefauropean standard. One
linear model for each reference is computed by combininigitexXeatures based on local binary
patterns extracted from both range and intensity images.ARhgrade of a fatigued specimen
sample within the evaluated AR references is calculatetusie corresponding linear model.
The paper is organized as follows. In Section 2.1, we desdtie details of our proposed
scanner and the carpet batch to be analysed. In Section 2.2escribe the technique for
extracting texture features. In Section 2.3 we explain fousk the texture features to estimate
the AR grades for new carpet samples by using linear regressbdels. In Section 3, we
describe the experiment, report the results and discusinttiegs. Finally, in Section 4 the

conclusions are drawn.

2 MATERIALS AND METHODS

We propose an automatic grading system in which visual cieriatics related to appearance
changes are independently quantified and then combinedilmear model to assess the AR
grade of the fatigued specimen. We present in this papeethdts of a first approach modeling
only texture features extracted from intensity and deptges.

International standards are independently defined forrcabal appearance degradation,
where appearance retention refers to evaluation of deioadan the carpet texture surfaces
independently from colors. Therefore, we use texture featdecoupled from colors quanti-
fying the difference, for both types of images, between tbevand original appearance. The

method is illustrated in Figure 1. The steps are explainetétail in the followings.
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Fig. 1. Proposed method for automatic grading of appeanaatestion in carpets.



2.1 Image Acquisition

The AR references used in our research follows the EN147bgean standard [4]. Each
fatigued specimen sample contains both the appearancgehanthe middle and the original
appearance at both sides. The appearance changes are@sgdsdabels in the range from
1.0to 5.0, with steps of half a point, where a severe changedted with an AR grade of 1 and
original appearance with AR 5.0. The fatigued specimen $esrifave been collected from the
following carpet types: high/low loop, loop, cut/loop, qite, cut design, frisé and two types
of shaggy. With these fatigued specimen samples, a databasesting of both intensity and
range images has been composed [14].

The database of intensity images is composed of photogveifina size of720 x 576 pixels
corresponding td7.28 x 13.82 em? of the surface. Thus, one pixel represents a square with
size 0f0.24 mm by 0.24 mm. Photographs are acquired in the RGB color space. However,
since we are interested in evaluating texture change inakgpely from color change, images
must be transformed to other color representation spateénmits to decouple the intensity
information from the colors [27]. This is possible by usirge tuminance component from
color representations such as the YUV (component Y ) or the [d8mponent V) color spaces.
Previous investigations evaluating the luminance compbioe texture analysis tasks reported
non-significant difference between both color spaces 18 ,herefore, we can chose the YUV
representation space for conducting this investigation.

The samples were additionally scanned with our carpet sganrcompose the database of
range images. To scan, a fatigued specimen sample is fimpelhwith elastic bands upon an
inox-drum. Then, aline laser generator projects a unifémsdn the surface of the sample. The
reflected light, containing the depth information, is captlwith a 3CCD camera, configured
to horizontally cover a similar surface area with the sanxelpiesolution as covered with the
photographs. Afterwards, the drum is rotated at a conttafgeed to capture frames in which
the projected light is spaced @24 mm. In each frame, the reflected light due to the projection
ofthe laser line in the carpet surface is represented wiglpas shown in Figure 2 a). One pixel
per column is used for representing the depth of the surfateone array per frame as shown
in Figure 2 b). Finally, a range image, with the same pixeblg#on as in the photographs, is
constructed by sequentially aligning the arrays. The areag obtained using two approaches:

the RefLightand theEdgeWawnethods [25]. We briefly summarize these methods below.



A) The RefLight method. With this method the array is obtained by detecting the tsghe
position of the highest intensity value on each column offthene [15]. E.g. The brightest
pixelin column 4 of Figure 2 a) is located at row 92. When ttghlesst intensity value is located
in more than one row, the top location is chosen as in columaf Bsgure 2 a, where row 94
is selected. The Reflight method characterizes the texiues dpy a carpet surface without

separating specific details such as distorted fibers frorbdke of the structure.
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Fig. 2. The RefLight method. a) The Figure displays a seatiba frame from row$0 to

95 and columns 1 to 15. The reflection of the laser line is reptesewith pixels there light
colors correspond to bright reflection. b) Array obtainethwhe RefLight method to identify
the relevant depth values in the frame section. Each valtieiarray represents the row where

the highest intensity values are located at a highest pogier column.



B) The EdgeWav method The EdgeWave method has been designed for characterizing
texture due only to the base surface structure. The methiesiste in detecting at different
scales the edges corresponding to tuft tips and then metigamy into one image [30]. Edges
are detected in each scale by using a Sobel operator. Exgraity, edges of tuft tips can be
visually distinguished up to a third resolution level. Thiges in each scale are binarized using
a threshold to separate tuft tips from noise and distorte@dib This threshold is calculated
using the Lipschitz exponent, which expresses the locallagity of a neighbourhood [31].
The Lipschitz exponent is small where only fine texture oisaare present and large where
smoother features or continuous edges are present. THermg$unary edges are merged into
one image by using the logical OR operation. The averagenmstef the locations of the pixels
corresponding to edges is computed to obtain only one vdldepih per column in the merged

image. The method is graphically illustrated in Figure 3.
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Fig. 3. The EdgeWav method. Edges are detected with a SQlog€sator for three consecutive
scales, given by Imagds, I, andls. Tufttips are separated from both noise and distorted fibres
by thresholding (t) the images using the Lipschitz exponBirtary edges are merged into one
image using the or operation, indicated with the symbolThe symboR | refers to Gaussian
downscaling and the symb®f* to upscaling. The average (a) in terms of row positions of the
pixels corresponding to edges is computed to obtain onlyahee of depth per column in the

merged image.

10



The RefLight method implicitly contains information abdatiriness since this method de-
lineates distorted fibers as opposed to the capturing baieeafarpet structure such as the
WavEdge method. Therefore, both methods are complemeittas/combining both leads to
better results as will be shown in Section 3.

We covered the entire surface for each AR grade by capturpairS of images correspond-
ing to worn and original appearance. Therefore, each ARajirathis experiment is associated
with a set of 30 images, (ten images for each method). All esdtpve the same size and res-
olution. Cut-outs of images for the AR references are showkFigure 4, with intensity images
at the top for each type, range images obtained with the Eddlead in the middle and range

image obtained with the RefLight method at the bottom.
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2.2 Texture Feature Extraction

We quantify the difference in texture between images of ward original appearance by ex-
tending a method proposed in a previous approach [13]. Thbadeconsists of assigning
numbers to the pixels on both images (worn and original te}thy using the Local Binary
Pattern (LBP) operator. These numbers represent pattélosad intensity variations. The
numbers of occurrences of the patterns along the imageseuenallated into LBP histograms,
with a single LBP histogram per image. The difference betwe®P histograms corresponding
to worn and original textures is computed using the Kullbaelbler divergence (KLD) [32].
Specific bins are discarded in order to enforce that the Kldbeiases monotonically while the
AR grades decrease [26]. The complete method is graphidiakyrated in Figure 5 and will
be discussed more in detail in the following. We first desthe previous method and then the

new component, the removal of bins.
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A) Texture difference measurement. With the aim of leading to an universal automatic
system, we have previously proposed a methodology to sefghal image based features
for describing AR grades [33]. With this methodology, cludeaistics from the description
between AR grades and the features are quantified and cothpsirey experimental design
theory [33]. To select optimal texture features, we use ig ithvestigation the following two

quantified characteristics:

e The monotonicity, which measures the order between the KalDes and the AR grades.
It is indicated by the symbalb within a range fronD to 1, which measures, using the
Spearman rank correlation, the order of the textures featwith the AR gradesv = 1

means perfect order.

e The discriminance, which measures the separability betwé® values of consecutive
AR grades. It is indicated by the symbgl computed by counting how many times the
difference between the average of features correspondiegrisecutive AR grades is
larger than the threshold for a statistic significance basethe Tukey test [34]. The
value is divided intd7 (the number of consecutive pairs of AR grades) to normatie i

range from) to 1.

Particularly, we have previously compared the performaridbe LBP technique against
two classical techniques namely, the co-ocurrence matdirique and the Laws texture en-
ergy measures [24]. Results showed that the LBP techniggaides more monotonically the
transitional texture changes due to wear=£ 0.84 in average for the LBP technique against
w = 0.61 andw = 0.74 for co-ocurrence and Laws techniques respectively ) asasgedistin-
guishes a bigger number of consecutive AR grades (.28 in average for the LBP technique
againstr = 0.42 andr = 0.61 for co-ocurrence and Laws techniques respectively).

With the LBP technique, we evaluate the neighborhood of aljixequidistant points on a
concentric circle centered around the pixel [35]. A bit wakgual to 1 is assigned to a point on
the circle neighborhood of the pixel if the intensity valdétee point is bigger than the intensity
value of the pixel and a bit value equal to 0 otherwise [36]e ®imary code word representing
the pattern, is assigned to the pixel by reading out the Hiregeon the circle neighborhoodin a
clock wise direction. In this approach, we compute LBP patiéor 8 and 12 circular neighbors

using a radius of 1 an¢/2 respectively. Grouping patterns makes the representadoomes
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more compact and invariant to noise. We group mirror, compl& and rotational versions of
LBP patterns using look up tables [37].

In order to cope with the different types of carpets and tegyit was necessary to iden-
tify the best spatial resolution scale that optimally sessthe surface changes for each AR
reference. We performed this analysis by keeping the LBBmaters fixed while resizing the
images. Images were evaluated at spatial resolution sedtleis the range from 0.6 to 1 with
intervals of 0.1. Scale factors smaller than 0.6 were nosiclemed because the details of the
texture surface vanish at those scales. We automaticéddlgted for each AR reference images
with a scale resolution at which the product betweesmdr was maximum.

The difference between histograms of LBP is computed udiegSymmetric Kullback-
Leibler (SKL) divergence. One SKL value, calledmeasures the difference in texture between
a pair of images of worn original appearance. We obtain foahagpe of image within an AR
grade a set of 2&-values by comparing each other the 5 images of worn agdiess tmages
of original appearance. Some of thevalues from an AR grade can be significantly larger or
smaller than the others because of the presence of factdisasuflecks or speckles that could
not be removed by the vacuum cleaning. These outliers aeetéet for each AR grade using
the Mahalanobis distance between eaelalue and the whole set of 25values. The outliers
are then replaced with the median from th&alues of the corresponding fatigued specimen
to allow statistical comparisons with an equal number ofuexfeatures per fatigued speci-
men [34]. Then, we replace a maximum of five outliers to assalid statistical comparisons
between the:-values of the AR grades. Using a power analysis test, weilzdéd that the min-
imal number of samples required in a set to assure validsstai comparisons is ten, which
means that the5 x-values are more than sufficient [34].

B) Bins Removal.

Detection of most frequently occurring LBPs for particuktures, called dominant LBPs
increases the precision in texture classification tasks [38anges of appearance in carpets due
to degradation produce fine local texture changes whicha@neaetessarily of dominant texture.
Therefore, we are interest in detecting those patternsctietge accordingly with the wear.
Because the texture due to wear is assumed to change waaéitj we propose to detect in
the original LBP histogram the bins of those patterns whielkjdiencies change monotonically.

This increases the distinguish efvalues corresponding to consecutive AR grades. We called

16



this, the Monotonic Local Binary Pattern (MLBP) detectiofhe bins corresponding to non
monotonic LBPs are discarded from the histograms of LBP ¢iedpthe histogram dimension
[26]. Note that these relevant bins have to be selected fir AR reference.

We identify four types of change in bin behaviors within thegmal LBP histograms
namely A) bins monotonically decreasing with AR gradéy, bins with no changes with AR
graded”) bins monotonically increasing with AR grades abyibins randomly changing with
AR grades. These four types of bin behaviors are illustratétigure 6 a). The bins of all AR
grades within an AR reference are drawn together to visaitiie changes in frequencies of the

bins related to the AR grades for each type of carpet.
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Fig. 6. Detection of LBPs that monotonically change with Afades. Bins of gradeis0 to 5.0
are drawn together to visualize the changes in frequent€itbe dins related to the AR grades.
Types of bin behaviours are shown in Figure a). Figure b) shamvexample of the eight first
bins out of a total of 125 in images of intensity using patsanith 12 equally spaced circular
neighbours in a circle of radiug2. Bins3 ands are identified as bin€’ and D respectively

comparing = 0.9 to their respective-values.
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Patterns that monotonically change with the AR grades (ypand(C) are separated from
the others (type#3 and D). For this, we compute the Spearman rank correlation, témme
between the bin frequencies and the AR grades. the Speaemkicorrelation is a measure of
statistical dependence between two variables. The alesedliie ofp for each bin is compared
to a threshold, termed to remove the non-monotonic patterfisdndD are those withp| < )
from the LBP histograms. One example of the differentiatibtypes of bin behaviours{and

D) is shown in Figure 6 b).
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An optimal threshold<) for each AR reference can be obtained by iteratively evalga
usingw andr, the representation o f all its AR grades while decreasifigm 1 to 0. Figure 7
illustrates with one particular example for carpet typesé&rithe common behavior afandr
when varyinge in steps of—0.005. It can be seen that there is a region in which the product
of w andr reaches a maximum value. Therefore, the optimadlue can be chosen within this

region.

2.3 Features Combination

Although the relationship between AR grades andalues is nonlinear, both for depth and
intensity images, a linear approximation can be obtainedin®arly combining them. This
linear description has the benefit that it gives the sameglnitity to each AR grade. We propose
to optimally combine the:-values using regression models for linearly represeritiegAR
grades [23]. One linear regression model is built for eachréference. Optimal models are
constructed by excluding-values that do not contribute to the variation of the AR gadn
the following we discuss the two steps of the method in detail

A) Quantification of AR grades using Linear Regression Moded. The AR references
represent eight different carpet types, which are idedtifising the index = 1,...,8. The
k-values are sub grouped according to image type, and the ewwfibircular neighbours. We
usem = 1 for intensity imagesi; = 2 for range images using the RefLight methed,= 3
for range images using the EdgeWav methad= 1 for 8 circular neighbors and = 2
for 12 circular neighbors. Each of the combinations of image typé aumber of circular
neighbors for an AR reference is called a predictor, denbied’,,,. Subscriptnn refers to
a combination of image type and number of circular neighlaoid superscript refers to an
AR reference. With this notations, the AR grades within an&ference are linearly modeled

using Equation 1.

3 2
Wc = B(c) + Z Z Brcnnlifnn (1)

m=1n=1

The corresponding predictors are used together with a sétpairameters to estimate the
degree of wear of an AR reference, denotedity. Each predictor is associated to ofie
parameter. One extra parameter, termgdis used to correct the bias. Tl¥eparameters can

be trained applying least square methods using the pregliatad the AR grades previously
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assessed by human experts. The AR grade for a new fatigueidrsgreof carpet type, is then
automatically computed using Equation 1.

B) Detecting predictors that contribute to AR grading. To identify predictors that do not
significantly contribute to the variation of AR grades we tise stepwise regression method
[34]. The method computes two statistical measures, nathelgdjusted R-squared, denoted
by R2, and the Variance Inflation Factor denotedibyF. Both measures, based on the statis-
tical coefficient of determination{?) between the: andWW ¢-values.

The R2-value measures the proportion of the variatioWifi accounted for by the predictors
within a range fron) to 1. B2 = 1 means that the AR grades are perfectly described by the
linear model. In contrast with the coefficient of determioat the R2-value is independent
from the number of predictors.

TheV I F-value measures the correlations, called multicollirtgabetween two subgroups
of predictors. IfP is the subgroup of predictors evaluated into a linear moadielZ a subgroup
of predictors excluded from the model, the correlation leetwboth subgroups of predictors is
denoted byW IF(P : P’). A multicollinearity problem is detected when the averagéerms
of the VI F-value, over all possibl€”’s, is higher thar®.

The stepwise regression method iteratively adds the gredidich maximizes?2 without

causing a multicollinearity problem.

3 EXPERIMENT, RESULTS AND DISCUSSIONS

We have built linear regression models for the eight typesmqgbets given by the AR references
from the EN1471 standard. We captured 30 images from eaicjuéat specimen representing
an AR grade divide into 15 pairs (worn-original) of imagesck of those composed of three
subsets of 5 pairs of images (5 from photographs, 5 from ttieigte method and 5 from the
EdgeWav method). 25-values are computed for each subset of images. We use 1% of th
r-values per AR grade to construct the models and the other t@fidation. In the validation,
the AR grades were correctly distinguished and ranked fookthe eight evaluated types of
carpets (shaggy 1, loop, cut/loop, high/low loop and jrid&ese results are obtained from the
following procedure:

We are mainly interested in comparing the performanceeélues obtained by combining

the LBP and MLBP techniques with the RefLight and EdgeWavhoés$. To evaluate if features
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extracted using both the RefLight and the EdgeWav methadsa@nplementary estimating the
AR grades, we build an additional model evaluating all sobgs ofx-values. Therefore, we

evaluate the following five models, defined as (M-):

1. M-1 k-values obtained from LBPs on intensity images and ranggésasing the Re-

fLight method.

2. M-2 k-values obtained from LBPs on intensity images and ranggésasing the Edge-

Wav method.

3. M-3 k-values obtained from MLBPs on intensity images and rangegas using the

RefLight method.

4. M-4 k-values obtained from MLBPs on intensity images and rangages using the

EdgeWav method.

5. M-5k-values from all subgroups.

The final R2-values obtained from the stepwise regression methodctsedethe bestz?-
values withV I F' average less thé¥) are listed in columns one to four in Table 1 for each carpet.
It can be seen from the table th&f-values obtained when using MLBP technique computed
on range images of the EdgeWav method perform best amonguhetodels. Thez2-values
obtained from M-5, are listed in column five of Table 1 for e#dR reference. Results show
that features extracted using the RefLight method incréesB2-values for some types of AR
references. Range images using the RefLight method inéhfdemation of distorted fibers,
which represent the hairiness appearance. Thereforaethidt indicates that features quanti-

fying such appearance are complementary for linearityril@ag the AR changes.
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Table 1. R?-values obtained from the stepwise regression method. &hms are listed for

each type of AR reference
Carpet Type M-1 M-2 M-3 M-4 M-5

Shaggyl | 0.850 | 0.877 | 0.911 | 0.913 | 0.918
Cut/loop 0.292 | 0.857 | 0.493 | 0.864 | 0.916
Shaggy2 | 0.760 | 0.867 | 0.825 | 0.867 | 0.872

High/Low loop | 0.983 | 0.980 | 0.982 | 0.980 | 0.984

Frisé 0.909 | 0.930 | 0.933 | 0.943 | 0.954
Cut 0.961 | 0.961 | 0.961 | 0.961 | 0.961
Loop 0.934 | 0.939 | 0.905 | 0.939 | 0.939

Cut Design 0.705 | 0.898 | 0.748 | 0.898 | 0.946
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The five models have been validated usingthe&lues from the set of validation containing
data from two intensity and two range images per fatiguedispen. To validate, we compute
k-values combining pairs of range and intensity images flomsé images resulting in four AR
grades per fatigued specimen. The final AR grade of a fatigpedimen is assessed by the
average of the four grades.

Figure 8 shows the AR grades results of the linear model gfetaype cut/loop for the
combination ofx-values from one intensity image and one range image. Figulisplays in
the horizontal axis the AR grades assigned by human expettsidhe vertical axis the average
of the results of the AR grades obtained with the linear madékan be seen that in this case,

M-5 correctly describes seven of the eight AR grades.
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Fig. 8. Validation example for carpet type cut/loop. Modate denoted by M and the corre-

spondingR?-values are shown after ‘:'. The mean values are connecttdliwes to visualize

the linearity of the models.
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The trend results of the validations for the eight AR refesmnare shown in Figure 9.

The figure shows that for six of the eight AR references, theleteadequately describe
the estimated degree of wear compared to the human asséssiitleigrade errors within the
0.5 grade (ldentified by points within gray light squaregidgar errors are those points within
dark gray squares) that are allowed to human inspectorstesnitional standards. This result
is an important step towards the development of an autorgediding system, complying with
international standardizations, for evaluating appeagaatention in textile floor coverings.

The 3D information captured while scanning the fatiguectspens can be used to quan-
tify several features related to appearance charactaristich as texture, hairiness, structure
and thickness. The range images used in this approach asgwcted using all information
in the surface together to describe the overall texturethBaiimprovement can be expected
by independently computing image features representipgrated appearance characteristics.
This may be particularly helpful for improving the AR gradsresentation of AR references,
like those in Figure 9 c) and h), with errors bigger than 0.5gxRde.

Considering that information related to colors and patteran be obtained from intensity
images, a complete description of the AR of carpets may bieaeth by selecting the optimal
features using the linear regression method followed mithiestigation. Therefore, including
the resulting features within the stepwise regression atethay lead to a model that more
approximately represent the AR grades of the carpets.

The current scanner is a prototype version. Thereforerteffuould be strengthened in
improving resolution and speed on the scanning process/teedan industrial grading system.
The current approach has been performed using limited sanfipi each AR reference type.
Therefore, more robust inferences can be obtained by caongpstiatistics on larger datasets.
Particularly, one database for each AR reference type ceathof samples better representing
the texture diversity present in the market.

We believe that the presented methodology can also be usefidentifying correspon-
dences between appearance and construction charactgeofthe AR reference types. This is
considering that the carpet types of the AR references dieetieby a combination of charac-
teristics in the carpet construction such as pile/surfées,ftype of manufacturer and secondary
backing among others. The characterization combined Wwiétkhowledge of the human spe-

cialists into a more advanced modeling techniques may bielluee designing an universal
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grading system.

The findings of this approach could be useful for other apittms where quality inspection
of transitional changes is required such as of smoothnessughness; assessment of fabric
wrinkle recovery, piling propensity and smoothness afégreated laundering; assessment of
seam appearance; assessment of crease retention andnasgessappearance retention of

finished garments.
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Fig. 9. Validation of the models usingvalues from two samples of intensity images and two
samples of range images. The trends show the results of thgréd®e averages obtained with

the linear models using two intensity and two range image&igued specimen.
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4 CONCLUSIONS

In this paper, we have presented an automatic AR grade assessystem for carpets with
low pile construction without color patterns, with gradeoes within the 0.5 grade allowed by
international standards to human inspectors. Therefoeepmsent a method that is already
generic for those types of carpets. This result is a sigmifistep forward for developing an
automated assessment system suitable for the requireofethis carpet industry. In carpets
with high pile construction the changes were not detectddbyeur automatic system. These
can be attributed to the fact that those changes are relatethér surface features such as
thickness and hairiness.

With the current system, AR grades are automatically asdesg quantifying the degree
of wear in carpets using linear regression models on texaatires extracted from intensity
and range images obtained with our own carpet scanner. Weuag the performance of the
automatic system by including range images obtained byctieteedges on the reflected light
using the wavelet representation space. Additionally,dineension of LBP histograms has
been optimally reduced by identifying patterns that monaally change with the AR grades
Kullback-Leibler divergences extracted using adjustatbigirams offering more relevant infor-
mation for the linear models. We believe that further stadirploring other kind of features
quantifying characteristics such as thickness, hairiaessscolor patterns, may lead to the de-

velopment of an automatic AR grading assessment for alktgpearpets.
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