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Abstract

In this paper, we show that a small minimal k-blocking set in PG(n, q3),
q = ph, h ≥ 1, p prime, p ≥ 7, intersecting every (n−k)-space in 1 (mod q)
points, is linear. As a corollary, this result shows that all small minimal
k-blocking sets in PG(n, p3), p prime, p ≥ 7, are Fp-linear, proving the
linearity conjecture (see [9]) in the case PG(n, p3), p prime, p ≥ 7.

1 Introduction and preliminaries

Throughout this paper, q = ph, p prime, h ≥ 1, and PG(n, q) denotes the n-
dimensional projective space over the finite field Fq of order q. A k-blocking
set B in PG(n, q) is a set of points such that any (n− k)-dimensional subspace
intersects B. A k-blocking set B is called trivial when a k-dimensional subspace
is contained in B. If an (n − k)-dimensional space contains exactly one point
of a k-blocking set B in PG(n, q), it is called a tangent (n − k)-space to B. A
k-blocking set B is called minimal when no proper subset of B is a k-blocking
set. A k-blocking set B is called small when |B| < 3(qk + 1)/2.

Linear blocking sets were first introduced by Lunardon [5] and can be defined
in several equivalent ways.

In this paper, we follow the approach described in [3]. In order to define
a linear k-blocking set in this way, we introduce the notion of a Desarguesian
spread. Suppose q = qt0, with t ≥ 1. By “field reduction”, the points of PG(n, q)
correspond to (t−1)-dimensional subspaces of PG((n+1)t−1, q0), since a point
of PG(n, q) is a 1-dimensional vector space over Fq, and so a t-dimensional
vector space over Fq0 . In this way, we obtain a partition D of the point set of
PG((n+ 1)t− 1, q0) by (t− 1)-dimensional subspaces. In general, a partition of
the point set of a projective space by subspaces of a given dimension d is called
a spread, or a d-spread if we want to specify the dimension. The spread obtained
by field reduction is called a Desarguesian spread. Note that the Desarguesian
spread satisfies the property that each subspace spanned by spread elements is
partitioned by spread elements.

Let D be the Desarguesian (t − 1)-spread of PG((n + 1)t − 1, q0). If U is a
subset of PG((n+1)t−1, q0), then we define B(U) := {R ∈ D||U∩R 6= ∅}, and we
identify the elements of B(U) with the corresponding points of PG(n, qt0). If U is
a subspace of PG((n+1)t−1, q0), then we call B(U) a linear set or an Fq0-linear
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set if we want to specify the underlying field. Note that through every point
in B(U), there is a subspace U ′ such that B(U ′) = B(U) since the elementwise
stabiliser of the Desarguesian spread D acts transitively on the points of a spread
element of D. If U intersects the elements of D in at most a point, i.e. |B(U)|
is maximal, then we say that U is scattered with respect to D; in this case B(U)
is called a scattered linear set. We denote the element of D corresponding to
a point P of PG(n, qt0) by S(P ). If U is a subset of PG(n, q), then we define
S(U) := {S(P )||P ∈ U}. Analogously to the correspondence between the points
of PG(n, qt0), and the elements D, we obtain the correspondence between the
lines of PG(n, q) and the (2t− 1)-dimensional subspaces of PG((n+ 1)t− 1, q0)
spanned by two elements of D, and in general, we obtain the correspondence
between the (n − k)-spaces of PG(n, q) and the ((n − k + 1)t − 1)-dimensional
subspaces of PG((n+ 1)t−1, q0) spanned by n−k+ 1 elements of D. With this
in mind, it is clear that any tk-dimensional subspace U of PG(t(n+ 1)− 1, q0)
defines a k-blocking set B(U) in PG(n, q). A (k-)blocking set constructed in
this way is called a linear (k-)blocking set, or an Fq0-linear (k-)blocking set if
we want to specify the underlying field.

By far the most challenging problem concerning blocking sets is the so-called
linearity conjecture. Since 1998, it has been conjectured by many mathemati-
cians working in the field. The conjecture was explicitly stated in the literature
by Sziklai in [9].

(LC) All small minimal k-blocking sets in PG(n, q) are linear.

Various instances of the conjecture have been proved; for an overview we refer
to [9]. In this paper, we prove the following main theorem:

Theorem 1. A small minimal k-blocking set in PG(n, q3), q = ph, p prime,
h ≥ 1, p ≥ 7, intersecting every (n− k)-space in 1 (mod q) points is linear.

This theorem was proven independently in [1] and [2]. As a corollary, we
prove the linearity conjecture for small minimal k-blocking sets in PG(n, p3),
p ≥ 7.

Corollary 2. A small minimal 1-blocking set in PG(n, p3), p prime, p ≥ 7, is
Fp-linear.

1.1 Known characterisation results

In this section we mention a few results, that we will rely on in the sequel of this
paper. First of all, observe that a subspace intersects a linear set of PG(n, ph)
in 1 (mod p) or zero points. The following result of Szőnyi and Weiner shows
that this property holds for all small minimal blocking sets.

Result 3. [10, Theorem 2.7] If B is a small minimal k-blocking set of PG(n, q),
p > 2, then every subspace intersects B in 1 (mod p) or zero points.

Result 3 answers the linearity conjecture in the affirmative for PG(n, p).
For PG(n, p2), the linearity conjecture was proved by Weiner (see [11]). For 1-
blocking sets in PG(n, q3), we have the following theorem of Polverino (n = 2)
and Storme and Weiner (n ≥ 3).

Result 4. [7, 8] A minimal 1-blocking set in PG(n, q3), q = ph, h ≥ 1, p prime,
p ≥ 7, n ≥ 2, of size at most q3 + q2 + q + 1, is linear.
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Remark 5. From the results of [7], we also get that if a non-trivial minimal
1-blocking set B of size at most q3 + q2 + q + 1 does not contain a (q

√
q + 1)-

secant, every point of B which lies on at least one (q + 1)-secant to B, lies on
at least q2 (q + 1)-secants to B.

In Theorem 10, we show that Result 4 implies the linearity conjecture for
small minimal 1-blocking sets in PG(n, q3), p ≥ 7, that intersect every hyper-
plane in 1 (mod q) points.

The following result by Szőnyi and Weiner gives a sufficient condition for a
blocking set to be minimal.

Result 6. [10, Lemma 3.1] Let B be a k-blocking set of PG(n, q), and suppose
that |B| ≤ 2qk. If each (n − k)-dimensional subspace of PG(n, q) intersects B
in 1 (mod p) points, then B is minimal.

1.2 The intersection of a subline and an Fq-linear set

The possibilities for an Fq-linear set of PG(1, q3), other than the empty set,
a point, and the set PG(1, q3) itself are the following: a subline PG(1, q) of
PG(1, q3), corresponding to a line of PG(5, q) not contained in an element of
D; a set of q2 + 1 points of PG(1, q3), corresponding to a plane of PG(5, q) that
intersects an element of D in a line; a set of q2 + q + 1 points of PG(1, q3),
corresponding to a plane of PG(5, q) that is scattered w.r.t. D.

The following results describe the possibilities for the intersection of a subline
with an Fq-linear set in PG(1, q3), and will play an important role in this paper.

Result 7. [4] A subline isomorphic to PG(1, q) intersects an Fq-linear set of
PG(1, q3) in 0, 1, 2, 3, or q + 1 points.

Result 8. [6, Lemma 4.4, 4.5, 4.6] Let q be a square. A subline PG(1, q) and
a Baer subline PG(1, q

√
q) of PG(1, q3) share at most a subline PG(1,

√
q). A

Baer subline PG(1, q
√
q) and an Fq-linear set of q2 + 1 or q2 + q + 1 points in

PG(1, q3) share at most q +
√
q + 1 points.

2 Some bounds and the case k = 1

The Gaussian coefficient
[
n
k

]
q

denotes the number of (k − 1)-subspaces in

PG(n− 1, q), i.e.,[
n
k

]
q

=
(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
.

Lemma 9. If B is a subset of PG(n, q3), q ≥ 7, intersecting every (n−k)-space,
k ≥ 1, in 1 (mod q) points, and π is an (n− k + s)-space, s ≤ k, then either

|B ∩ π| < q3s + q3s−1 + q3s−2 + 3q3s−3

or
|B ∩ π| > q3s+1 − q3s−1 − q3s−2 − 3q3s−3.
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Proof. Let π be an (n − k + s)-space of PG(n, q3), and put Bπ := B ∩ π.
Let xi denote the number of (n − k)-spaces of π intersecting Bπ in i points.
Counting the number of (n−k)-spaces, the number of incident pairs (P, σ) with
P ∈ Bπ, P ∈ σ, σ an (n − k)-space, and the number of triples (P1, P2, σ), with
P1, P2 ∈ Bπ, P1 6= P2, P1, P2 ∈ σ, σ an (n− k)-space yields:∑

i

xi =
[
n− k + s+ 1
n− k + 1

]
q3
, (1)

∑
i

ixi = |Bπ|
[
n− k + s
n− k

]
q3
, (2)

∑
i(i− 1)xi = |Bπ|(|Bπ| − 1)

[
n− k + s− 1
n− k − 1

]
q3
. (3)

Since we assume that every (n − k)-space intersects B in 1 (mod q) points, it
follows that every (n − k)-space of π intersects Bπ in 1 (mod q) points, and
hence

∑
i(i− 1)(i− 1− q)xi ≥ 0. Using Equations (1), (2), and (3), this yields

that

|Bπ|(|Bπ|−1)(q3n−3k−1)(q3n−3k+3−1)−(q+1)|Bπ|(q3n−3k+3s−1)(q3n−3k+3−1)

+(q + 1)(q3n−3k+3s+3 − 1)(q3n−3k+3s − 1) ≥ 0.

Putting |Bπ| = q3s + q3s−1 + q3s−2 + 3q3s−3 or |Bπ| = q3s+1 − q3s−1 − q3s−2 −
3q3s−3 in this inequality, with q ≥ 7, gives a contradiction. Hence, the statement
follows.

Theorem 10. A small minimal 1-blocking set in PG(n, q3), q = ph, p prime,
p ≥ 7, intersecting every hyperplane in 1 (mod q) points, is linear.

Proof. Lemma 9 implies that a small minimal 1-blocking set B in PG(n, q3),
intersecting every hyperplane in 1 (mod q) points, has at most q3 + q2 + q + 3
points. Since every hyperplane intersects B in 1 (mod q) points, it is easy to
see that |B| ≡ 1 (mod q). This implies that |B| ≤ q3 + q2 + q + 1. Result 4
shows that B is linear.

Corollary 11. A small minimal 1-blocking set in PG(n, p3), p prime, p ≥ 7, is
Fp-linear.

Proof. This follows from Result 3 and Theorem 10.

For the remainder of this section, we use the following assumption:

(B) B is a small minimal k-blocking set in PG(n, q3), q = ph, p prime, p ≥ 7,
intersecting every (n− k)-space in 1 (mod q) points.

For convenience let us introduce the following terminology. A full line of B
is a line which is contained in B. An (n− k + s)-space S, s < k, is called large
if S contains more than q3s+1 − q3s−1 − q3s−2 − 3q3s−3 points of B, and S is
called small if it contains less than q3s + q3s−1 + q3s−2 + 3q3s−3 points of B.

Lemma 12. Let π be an (n− k)-space of PG(n, q3), k > 1.

(1) If B∩π is a point, then there are at most q3k−5+4q3k−6−1 large (n−k+1)-
spaces through π.
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(2) If π intersects B in q
√
q + 1, q2 + 1 or q2 + q + 1 collinear points, then

there are at most q3k−5 + 5q3k−6 − 1 large (n− k + 1)-spaces through π.

(3) If π intersects B in q+ 1 collinear points, then there are at most 3q3k−6−
q3k−7 − 1 large (n− k + 1)-spaces through π.

Proof. Suppose there are y large (n−k+1)-spaces through π. Then the number
of points in B is at least

y(q4 − q2 − q − 3− |B ∩ π|) + ((q3k − 1)/(q3 − 1)− y)x+ |B ∩ π|, (∗)

where x depends on the intersection B ∩ π.
(1) In this case, x = q3 and |B ∩ π| = 1. If y = q3k−5 + 4q3k−6, then (∗) is

larger than q3k + q3k−1 + q3k−2 + 3q3k−3, a contradiction.
(2) In this case, x = q3 and |B ∩π| ≤ q2 + q+ 1. If y = q3k−5 + 5q3k−6, then

(∗) is larger than q3k + q3k−1 + q3k−2 + 3q3k−3, a contradiction.
(3) By Result 4, we know that an (n− k + 1)-space π′ through π intersects

B in at least q3 + q2 + 1 points, since a (q + 1)-secant in π′ implies that the
intersection of π′ with B is non-trivial and not a Baer subplane, hence x =
q3 + q2 − q, and |B ∩ π| = q + 1. If 3q3k−6 − q3k−7, then (∗) is larger than
q3k + q3k−1 + q3k−2 + 3q3k−3, a contradiction.

Lemma 13. Let L be a line such that 1 < |B ∩ L| < q3 + 1. For all i ∈
{1, . . . , n− k}, there exists an i-space πi on L such that B ∩ πi = B ∩ L.

Proof. It follows from Result 3 that every subspace on L intersects B \L in zero
or at least p points. We proceed by induction on the dimension i. The statement
obviously holds for i = 1. Suppose there exists an i-space πi on L such that
πi ∩ B=L ∩ B, with i ≤ n − k − 1. If there is no (i + 1)-space intersecting B
only on L, then the number of points of B is at least

|B ∩ L|+ p(q3(n−i)−3 + q3(n−i)−6 + . . .+ q3 + 1),

but, by Lemma 9, |B| ≤ q3k + q3k−1 + q3k−2 + 3q3k−3. If i ≤ n − k − 1 and
p ≥ 7, this is a contradiction. We may conclude that there exists an i-space πi
on L such that B ∩ L = B ∩ πi, ∀i ∈ {1, . . . , n− k}.

Theorem 14. A line L intersects B in a linear set.

Proof. Note that it is enough to show that L is contained in a subspace of
PG(n, q3) intersecting B in a linear set. If k = 1, then B is linear by Theorem
10, and the statement follows. Let k > 1, let L be a line, not contained in B,
intersecting B in at least two points. It follows from Lemma 13 that there exists
an (n− k)-space πL such that B ∩L = B ∩ πL. If each of the (q3k − 1)/(q3− 1)
(n−k+ 1)-spaces through πL were large, then the number of points in B would
be at least

q3k − 1
q3 − 1

(q4 − q2 − q − 3− q3) + q3 > q3k + q3k−1 + q3k−2 + 3q3k−3,

a contradiction. Hence, there is a small (n− k+ 1)-space π through L, so B ∩π
is a small 1-blocking set which is linear by Theorem 10. This concludes the
proof.
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3 The proof of Theorem 1

In the proof of the main theorem, we distinguish two cases. In both cases, we
need the following lemmas.

We continue with the following assumption:

(B) B is a small minimal k-blocking set in PG(n, q3), q = ph, p prime, p ≥ 7,
intersecting every (n− k)-space in 1 (mod q) points;

and we consider the following properties:

(H1) ∀s < k: every small minimal s-blocking set that does not contain a (q
√
q+

1)-secant and intersects every (n − s)-space in 1 (mod q) points, is Fq-
linear;

(H2) ∀s < k: every small minimal s-blocking set that contains a (q
√
q+1)-secant

and intersects every (n− s)-space in 1 (mod q) points, is Fq√q-linear.

Lemma 15. If (H1) or (H2), and S is a small (n − k + s)-space, 0 < s < k,
then B ∩ S is a small minimal linear s-blocking set in S, and hence |B ∩ S| ≤
(q3s+1 − 1)/(q − 1).

Proof. Clearly, B ∩ S is an s-blocking set in S. By (B), B ∩ S intersects every
(n − k)-space in 1 (mod q) points, and it follows from Result 6 that B ∩ S is
minimal. Now apply (H1) or (H2).

Lemma 16. Suppose (H1) or (H2). Let k > 2 and let πn−2 be an (n−2)-space
such that B ∩ πn−2 is a non-trivial small linear (k − 2)-blocking set, then there
are at least q3 − q + 6 small hyperplanes through πn−2.

Proof. Applying Lemma 15 with s = k− 2, it follows that B ∩πn−2 contains at
most (q3k−5−1)/(q−1) points. On the other hand, from Lemmas 9 and 15 with
s = k−1, we know that a hyperplane intersects B in at most (q3k−2−1)/(q−1)
points or in more than q3k−2 − q3k−4 − q3k−5 − 3q3k−6 points. In the first case,
a hyperplane H intersects B in at least q3k−3 + 1 + (q3k−3 + q)/(q + 1) points,
using a result of Szőnyi and Weiner [10, Corollary 3.7] for the (k − 1)-blocking
set H ∩ B. If there are at least q − 4 large hyperplanes, then the number of
points in B is at least

(q − 4)(q3k−2 − q3k−4 − q3k−5 − 3q3k−6 − q3k−5 − 1
q − 1

)+

(q3 − q + 5)(q3k−3 + 1 +
q3k−3 + q

q + 1
− q3k−5 − 1

q − 1
) +

q3k−5 − 1
q − 1

,

which is larger than q3k + q3k−1 + q3k−2 + 3q3k−3 if q ≥ 7, a contradiction.
Hence, there are at most q − 5 large hyperplanes through πn−2.

Lemma 17. Suppose (H1) or (H2). Let k > 2 and let L be a secant line
to B, not contained in B. Let N be a line of PG(n, q3) skew to L. For all
i ∈ {1, . . . , k − 2}, there exists an (n − k + i)-space πi through L, skew to N ,
such that πi ∩B is a small minimal i-blocking set of πi.
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Proof. Lemma 13 shows that there is an (n − k)-space πn−k through L, such
that B∩L = B∩πn−k; so we certainly find an (n−k−2)-space πn−k−2 through
L, skew to N , such that B ∩L = B ∩ πn−k−2. Since the number of (n− k− 1)-
spaces through πn−k−2 that do not meet N , exceeds the number of points that
can lie in B, there is an (n − k − 1)-space πn−k−1 through πn−k−2 such that
B ∩ L = B ∩ πn−k−1. If an (n − k)-space through πn−k−1 contains an extra
element of B, it contains at least q2 extra elements of B, since a line containing
2 points of B contains at least q + 1 points of B. This implies that there is an
(n− k)-space πn−k through πn−k−1 with no extra points of B, and skew to N .

We proceed by induction on the dimension i. Lemma 12 (2) and (3) show
that there are at least (q3k − 1)/(q3 − 1) − q3k−5 − 5q3k−6 + 1 > q3 + 1 small
(n− k + 1)-spaces through πn−k which proves the statement for i = 1.

Suppose that there exists an (n − k + t)-space πn−k+t through L, skew to
N , such that B ∩ πn−k+t is a small minimal t-blocking set of πn−k+t. An
(n − k + t + 1)-space through πn−k+t contains at most (q3t+4 − 1)/(q − 1) or
more than q3t+4 − q3t+2 − q3t+1 − 3q3t points of B (see Lemmas 9 and 15).

Suppose all (q3k−3t − 1)/(q3 − 1) − q3 − 1 (n − k + t + 1)-spaces through
πn−k+t, skew to N , contain more than q3t+4 − q3t+2 − q3t+1 − 3q3t points of B.
Then the number of points in B is larger than q3k + q3k−1 + q3k−2 + 3q3k−3 if
t ≤ k − 3, a contradiction.

We may conclude that there exists an (n − k + i)-space πi on L such that
B ∩ πi is a small minimal i-blocking set, skew to N , ∀i ∈ {1, . . . , k − 2}.

3.1 Case 1: there are no (q
√

q + 1)-secants

In this subsection, we will use induction on k to prove that small minimal k-
blocking sets in PG(n, q3), intersecting every (n− k)-space in 1 (mod q) points
and not containing a (q

√
q + 1)-secant, are Fq-linear. The induction basis is

Theorem 10. Now we continue with the assumption that (H1) holds, i.e.,

(H1) ∀s < k: every small minimal s-blocking set that does not contain a (q
√
q+

1)-secant and intersects every (n − s)-space in 1 (mod q) points, is Fq-
linear;

and that

(B1) B is a small minimal k-blocking set in PG(n, q3), q = ph, p prime, p ≥ 7,
intersecting every (n − k)-space in 1 (mod q) points, not containing a
(q
√
q + 1)-secant.

Lemma 18. If B is non-trivial, there exist a point P ∈ B, a tangent (n− k)-
space π at the point P and small (n − k + 1)-spaces Hi, through π, such that
there is a (q + 1)-secant through P in Hi, i = 1, . . . , q3k−3 − 2q3k−4.

Proof. Since B is non-trivial, there is at least one line N with 1 < |N ∩ B| <
q3 + 1. Lemma 13 shows that there is an (n−k)-space πN through N such that
B ∩ N = B ∩ πN . It follows from Lemma 12 and Theorem 14 that there is at
least one (n− k + 1)-space H through πN such that H ∩ B is a small minimal
linear 1-blocking set of H. In this non-trivial small minimal linear 1-blocking
set, there are (q + 1)-secants (see Remark 5). Let M be one of those (q + 1)-
secants of B. Again using Lemma 13, we find an (n− k)-space πM through M
such that B ∩M = B ∩ πM .

7



Lemma 12 (3) shows that through πM , there are at least q3k−1
q3−1 − 3q3k−6 +

q3k−7 +1 small (n−k+1)-spaces. Let P be a point of M . Since in each of these
intersections, P lies on at least q2− 1 other (q+ 1)-secants, a point P of M lies
in total on at least (q2 − 1)( q

3k−1
q3−1 − 3q3k−6 + q3k−7 + 1) other (q + 1)-secants.

Since each of the q3k−1
q3−1 −3q3k−6 + q3k−7 + 1 small (n−k+ 1)-spaces contains at

least q3 + q2 − q points of B not on M , and |B| < q3k + q3k−1 + q3k−2 + 3q3k−3

(see Lemma 9), there are less than 2q3k−2 + 6q3k−3 points of B left in the large
(n− k + 1)-spaces. Hence, P lies on less than 2q3k−5 + 6q3k−6 full lines.

Since B is minimal, P lies on a tangent (n− k)-space π. There are at most
q3k−5 +4q3k−6−1 large (n−k+1)-spaces through π (Lemma 12 (1)). Moreover,
since at least q3k−1

q3−1 − (q3k−5 +4q3k−6−1)− (2q3k−5 +6q3k−6) (n−k+1)-spaces
through π contain at least q3+q2 points of B, and at most 2q3k−5+6q3k−6 of the
small (n−k+1)-spaces through π contain exactly q3+1 points of B, there are at
most 2q3k−2+23q3k−3 points of B left. Hence, P lies on at most 2q3k−3+23q3k−4

(q+1)-secants of the large (n−k+1)-spaces through π. This implies that there
are at least (q2 − 1)( q

3k−1
q3−1 − 3q3k−6 + q3k−7 + 1)− (2q3k−3 + 23q3k−4) distinct

(q+ 1)-secants through P left in small (n− k+ 1)-spaces through π. Since in a
small (n−k+1)-space through π, there can lie at most q2 +q+1 (q+1)-secants
through P , this implies that there are at least q3k−3− 2q3k−4 (n−k+ 1)-spaces
Hi through π such that P lies on a (q + 1)-secant in Hi.

Lemma 19. Let π be an (n−k)-dimensional tangent space of B at the point P .
Let H1 and H2 be two (n− k + 1)-spaces through π for which B ∩Hi = B(πi),
for some 3-space πi through x ∈ S(P ), B(x)∩ πi = {x} (i = 1, 2) and B(πi) not
contained in a line of PG(n, q3). Then B(〈π1, π2〉) ⊆ B.

Proof. Since 〈B(πi)〉 is not contained in a line of PG(n, q3), there is at most one
element Q of B(πi) such that 〈S(P ), Q〉 intersects πi in a plane. If there is such
a plane, then we denote its point set by µi, otherwise we put µi = ∅.

Let M be a line through x in π1 \ µ1, let s 6= x be a point of π2 \ µ2, and
note that B(s) ∩ π2 = {s}.

We claim that there is a line T through s in π2 and an (n − 2)-space πM
through 〈B(M)〉 such that there are at least 4 points ti ∈ T, ti /∈ µ2, such that
〈πM ,B(ti)〉 is small and hence has a linear intersection with B, with B∩πM = M
if k = 2 and B ∩ πM is a small minimal (k − 2)-blocking set if k > 2.

If k = 2, the existence of πM follows from Lemma 13, and we know from
Lemma 12 (1) that there are at most q + 3 large hyperplanes through πM .
Denote the set of points of B(π2), contained in one of those hyperplanes by F .
Hence, if Q is a point of B(π2) \ F , 〈Q, πM 〉 is a small hyperplane.

Let T1 be a line through s in π2 \ µ2 and not through x, and suppose that
B(T1) contains at least q − 3 points of F .

Let T2 be a line in π2 \ µ2, through s, not in 〈x, T1〉, not through x. There
are at most q+ 3− (q− 3) reguli through x of S(F ), not in 〈x, T1〉, and if µ 6= ∅
one element of B(µ2) is contained in B(T2). Since it is possible that B(s) is an
element of F , this gives in total at most 8 points of B(T2) that are contained in
F . This implies, if q > 11, that at least 5 of the hyperplanes {〈πM ,B(t)〉||t ∈ T2}
are small.

If q = 11, it is possible that B(T2) contains at least 8 points of F . If T3 is a
line in π2 \ µ2, through s, 〈x, T1〉, 〈x, T2〉 and not through x, then there are at
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least 5 points t of T3 such that 〈πM ,B(t)〉 is a small hyperplane.
If q = 7 and if B(s) ∈ B(F ), it is possible that B(T2), B(T3), and B(T4), with

Ti a line through s in π2 \ µ2, not in 〈x, Tj〉, j < i, not through x, contain 4
points of F . A fifth line T5 through s in π2\µ2, not in 〈x, Tj〉, j < i, not through
x, contains at least 5 points t such that 〈πM ,B(t)〉 is a small hyperplane.

If k > 2, let T be a line through s in π2 \ µ2, not through x. It follows from
Lemma 17 that there is an (n− 2)-space πM through 〈B(M)〉 such that B ∩πM
is a small minimal (k − 2)-blocking set of PG(n, q3), skew to B(T ). Lemma 16
shows that at most q− 5 of the hyperplanes through πM are large. This implies
that at least 5 of the hyperplanes {〈πM ,B(t)〉||t ∈ B(T )} are small. This proves
our claim.

Since B ∩ 〈B(ti), πM 〉 is linear, also the intersection of 〈B(ti),B(M)〉 with
B is linear, i.e., there exist subspaces τi, τi ∩ S(P ) = {x}, such that B(τi) =
〈B(ti),B(M)〉 ∩ B. Since τi ∩ 〈B(M)〉 and M are both transversals through x
to the same regulus B(M), they coincide, hence M ⊆ τi. The same holds for
τi ∩ 〈B(ti),S(P )〉, implying ti ∈ τi. We conclude that B(〈M, ti〉) ⊆ B(τi) ⊆ B.

We show that B(〈M,T 〉) ⊆ B. Let L′ be a line of 〈M,T 〉, not intersecting
M . The line L′ intersects the planes 〈M, ti〉 in points pi such that B(pi) ∈ B.
Since B(L′) is a subline intersecting B in at least 4 points, Result 7 shows
that B(L′) ⊂ B. Since every point of the space 〈M,T 〉 lies on such a line L′,
B(〈M,T 〉) ⊆ B.

Hence, B(〈M, s〉) ⊆ B for all lines M through x, M in π1 \µ1, and all points
s 6= x ∈ π2 \ µ2, so B(〈π1, π2〉 \ (〈µ1, π2〉 ∪ 〈µ2, π1〉)) ⊆ B. Since every point of
〈µ1, π2〉∪〈µ2, π1〉 lies on a line N with q−1 points of 〈π1, π2〉\(〈µ1, π2〉∪〈µ2, π1〉),
Result 7 shows that B(N) ⊂ B. We conclude that B(〈π1, π2〉) ⊆ B.

Theorem 20. The set B is Fq-linear.

Proof. If B is a k-space, then B is Fq-linear. If B is a non-trivial small minimal
k-blocking set, Lemma 18 shows that there exists a point P of B, a tangent
(n − k)-space π at the point P and at least q3k−3 − 2q3k−4 (n − k + 1)-spaces
Hi through π for which B ∩ Hi is small and linear, where P lies on at least
one (q + 1)-secant of B ∩ Hi, i = 1, . . . , s, s ≥ q3k−3 − 2q3k−4. Let B ∩ Hi =
B(πi), i = 1, . . . , s, with πi a 3-dimensional space.

Lemma 19 shows that B(〈πi, πj〉) ⊆ B, 0 ≤ i 6= j ≤ s.
If k = 2, the set B(〈π1, π2〉) corresponds to a linear 2-blocking set B′ in

PG(n, q3). Since B is minimal, B = B′, and the Theorem is proven.
Let k > 2. Denote the (n − k + 1)-spaces through π, different from Hi, by

Kj , j = 1, . . . , z. It follows from Lemma 18 that z ≤ 2q3k−4+(q3k−3−1)/(q3−1).
There are at least (q3k−3− 2q3k−4− 1)/q3 different (n− k+ 2)-spaces 〈H1, Hj〉,
1 < j ≤ s. If all (n − k + 2)-spaces 〈H1, Hj〉, contain at least 5q2 − 49 of the
spaces Ki, then z ≥ (5q2− 49)(q3k−3− 2q3k−4− 1)/q3, a contradiction if q ≥ 7.
Let 〈H1, H2〉 be an (n− k + 2)-space containing less than 5q2 − 49 spaces Ki.

Suppose by induction that for any 1 < i < k, there is an (n − k + i)-space
〈H1, H2, . . . ,Hi〉 containing at most 5q3i−4−49q3i−6 of the spaces Ki such that
B(〈π1, . . . , πi〉) ⊆ B.

There are at least q3k−3−2q3k−4−(q3i−1)/(q3−1)
q3i different (n− k+ i+ 1)-spaces

〈H1, H2, . . . ,Hi, H〉, H 6⊆ 〈H1, H2, . . . ,Hi〉. If all of these contain at least
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5q3i−1 − 49q3i−3 of the spaces Ki, then

z ≥ (5q3i−1 − 49q3i−3 − 5q3i−4 + 49q3i−6) q
3k−3−2q3k−4−(q3i−1)/(q3−1)

q3i

+5q3i−4 − 49q3i−6,

a contradiction if q ≥ 7. Let 〈H1, . . . ,Hi+1〉 be an (n − k + i + 1)-space
containing less than 5q3i−1 − 49q3i−3 spaces Ki. We still need to prove that
B(〈π1, . . . , πi+1〉) ⊆ B. Since B(〈πi+1, π〉) ⊆ B, with π a 3-space in 〈π1, . . . , πi〉
for which B(π) is not contained in one of the spaces Ki, there are at most
5q3i−4 − 49q3i−6 distinct 6-dimensional spaces 〈πi+1, µ〉 for which B(〈πi+1, µ〉)
is not necessarily contained in B, giving rise to at most (5q3i−4− 49q3i−6)(q6 +
q5 + q4) points t for which B(t) is not necessarily contained in B. Let u be a
point of such a space 〈πi+1, µ〉. Suppose that each of the (q3i+3 − 1)/(q − 1)
lines through u in 〈π1, . . . , πi+1〉 contains at least q− 2 of the points t for which
B(t) is not in B. Then there are at least (q − 3)(q3i+3 − 1)/(q − 1) + 1 >
(5q3i−4 − 49q3i−6)(q6 + q5 + q4) such points t, if q ≥ 7, a contradiction. Hence,
there is a line N through t for which for at least 4 points v ∈ N , B(v) ∈ B.
Result 7 yields that B(t) ∈ B. This implies that B(〈π1, . . . , πi+1〉) ⊆ B.

Hence, the space 〈H1, H2, . . . ,Hk〉, which spans the space PG(n, q3), is such
that B(〈π1, . . . , πk〉) ⊆ B. But B(〈π1, . . . , πk〉) corresponds to a linear k-blocking
set B′ in PG(n, q3). Since B is minimal, B = B′.

Corollary 21. A small minimal k-blocking set in PG(n, p3), p prime, p ≥ 7,
is Fp-linear.

Proof. This follows from Result 3 and Theorem 20.

3.2 Case 2: there are (q
√

q + 1)-secants to B

In this subsection, we will use induction on k to prove that small minimal
k-blocking sets in PG(n, q3), containing a (q

√
q + 1)-secant and intersecting

every (n − k)-space in 1 (mod q) points, are Fq√q-linear. The induction basis
is Theorem 10. We continue with the assumption that (H2) holds, i.e.,

(H2) ∀s < k: every small minimal s-blocking set that contains a (q
√
q+1)-secant

and intersects every (n− s)-space in 1 (mod q) points, is Fq√q-linear.

and that

(B2) B is small minimal k-blocking set in PG(n, q3), containing a (q
√
q + 1)-

secant and intersecting every (n− k)-space in 1 (mod q) points.

In this case, S maps PG(n, q3) onto PG(2n+ 1, q
√
q) and the Desarguesian

spread consists of lines.

Lemma 22. If B is non-trivial, there exist a point P ∈ B, a tangent (n− k)-
space π at P and small (n − k + 1)-spaces Hi through π, such that there is a
(q
√
q + 1)-secant through P in Hi, i = 1, . . . , q3k−3 − q3k−4 − 2

√
qq3k−5.

Proof. There is a (q
√
q+1)-secant M . Lemma 13 shows that there is an (n−k)-

space πM through M such that B ∩M = B ∩ πM .
Lemma 12 (3) shows that there are at least q3k−1

q3−1 − q3k−5 − 5q3k−6 + 1
small (n− k+ 1)-spaces through πM . Moreover, the intersections of these small
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(n − k + 1)-spaces with B are Baer subplanes PG(2, q
√
q), since there is a

(q
√
q + 1)-secant M . Let P be a point of M ∩B.
Since in any of these intersections, P lies on q

√
q other (q

√
q + 1)-secants,

a point P of M ∩ B lies in total on at least q
√
q( q

3k−1
q3−1 − q

3k−5 − 5q3k−6 + 1)

other (q
√
q + 1)-secants. Since any of the q3k−1

q3−1 − q3k−5 − 5q3k−6 + 1 small
(n − k + 1)-spaces through πM contains q3 points of B not in πM , and |B| <
q3k + q3k−1 + q3k−2 + 3q3k−3 (see Lemma 9), there are less than q3k−1 + 4q3k−2

points of B left in the other (n − k + 1)-spaces through πM . Hence, P lies on
less than q3k−4 + 4q3k−5 full lines.

Since B is minimal, there is a tangent (n−k)-space π through P . There are
at most q3k−5 + 4q3k−6 − 1 large (n− k+ 1)-spaces through π (Lemma 12 (1)).
Moreover, since at least q3k−1

q3−1 − (q3k−5 + 4q3k−6 − 1)− (q3k−4 + 4q3k−5) small
(n − k + 1)-spaces through π contain q3 + q

√
q + 1 points of B, and at most

q3k−4 + 4q3k−5 of the small (n− k+ 1)-spaces through π contain exactly q3 + 1
points of B, there are at most q3k−1−q3k−2√q+4q3k−2 points of B left. Hence,
P lies on at most (q3k−1−q3k−2√q+4q3k−2)/(q

√
q+1) different (q

√
q+1)-secants

of the large (n − k + 1)-spaces through π. This implies that there are at least
q
√
q( q

3k−1
q3−1 −q

3k−5−5q3k−6+1)−(q3k−1−q3k−2√q+4q3k−2)/(q
√
q+1) different

(q
√
q+ 1)-secants left through P in small (n−k+ 1)-spaces through π. Since in

a small (n−k+1)-space through π, there lie q
√
q+1 different (q

√
q+1)-secants

through P , this implies that there are certainly at least q3k−3−q3k−4−2
√
qq3k−5

small (n− k+ 1)-spaces Hi through π such that P lies on a (q
√
q+ 1)-secant in

Hi.

Lemma 23. Let π be an (n−k)-dimensional tangent space of B at the point P .
Let H1 and H2 be two (n− k + 1)-spaces through π for which B ∩Hi = B(πi),
for some plane πi through x ∈ S(P ), B(x) ∩ πi = {x} (i = 1, 2) and B(πi) not
contained in a line of PG(n, q3). Then B(〈π1, π2〉) ⊆ B.

Proof. Let M be a line through x in π1, let s 6= x be a point of π2.
We claim that there is a line T through s, not through x, in π2 and an

(n−2)-space πM through 〈B(M)〉 such that there are at least q
√
q−q−2 points

ti ∈ T , such that 〈πM ,B(ti)〉 is small and hence has a linear intersection with
B, with B ∩ πM = M if k = 2 and B ∩ πM is a small minimal (k − 2)-blocking
set if k > 2. From Lemma 12 (1), we know that there are at most q + 3 large
hyperplanes through πM if k = 2, and at most q − 5 if k > 2 (see Lemma 16).

Let T be a line through s in π2, not through x. The existence of πM follows
from Lemma 13 if k = 2, and Lemma 17 if k > 2. Since B(T ) contains q

√
q + 1

spread elements, there are at least q
√
q−q−2 points ti ∈ T such that 〈πM ,B(ti)〉

is small. This proves our claim.
Since B ∩ 〈B(ti), πM 〉 is linear, also the intersection of 〈B(ti),B(M)〉 with

B is linear, i.e., there exist subspaces τi, τi ∩ S(P ) = {x}, such that B(τi) =
〈B(ti),B(M)〉 ∩ B. Since τi ∩ 〈B(M)〉 and M are both transversals through x
to the same regulus B(M), they coincide, hence M ⊆ τi. The same holds for
τi ∩ 〈B(ti),S(P )〉, implying ti ∈ τi. We conclude that B(〈M, ti〉) ⊆ B(τi) ⊆ B.

We show that B(〈M,T 〉) ⊆ B. Let L′ be a line of 〈M,T 〉, not intersecting
M . The line L′ intersects the planes 〈M, ti〉 in points pi such that B(pi) ⊆ B.
Since B(L′) is a subline intersecting B in at least q

√
q − q − 2 points, Result 8
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shows that B(L′) ⊆ B. Since every point of the space 〈M,T 〉 lies on such a line
L′, B(〈M,T 〉) ⊆ B.

Hence, B(〈M, s〉) ⊆ B for all lines M through x in π2, and all points s 6=
x ∈ π2. We conclude that B(〈π1, π2〉) ⊆ B.

Theorem 24. The set B is Fq√q-linear.

Proof. Lemma 22 shows that there exists a point P of B, a tangent (n−k)-space
π at the point P and at least q3k−3 − q3k−4 − 2

√
qq3k−5 distinct (n − k + 1)-

spaces Hi through π for which B ∩ Hi is a Baer subplane, i = 1, . . . , s, s ≥
q3k−3 − q3k−4 − 2

√
qq3k−5. Let B ∩Hi = B(πi), i = 1, . . . , s, with πi a plane.

Lemma 23 shows that B(〈πi, πj〉) ⊆ B, 0 ≤ i 6= j ≤ s.
If k = 2, the set B(〈π1, π2〉) corresponds to a linear 2-blocking set B′ in

PG(n, q3). Since B is minimal, B = B′, and the Theorem is proven.
Let k > 2. Denote the (n − k + 1)-spaces through π different from Hi by

Kj , j = 1, . . . , z. There are at least (q3k−3− q3k−4− 2
√
qq3k−5− 1)/q3 different

(n−k+ 2)-spaces 〈H1, Hj〉, 1 < j ≤ s. If all (n−k+ 2)-spaces 〈H1, Hj〉 contain
at least 2q2 of the spaces Ki, then z ≥ 2q2(q3k−3 − q3k−4 − 2

√
qq3k−5 − 1)/q3,

a contradiction if q ≥ 49. Let 〈H1, H2〉 be an (n− k + 2)-space containing less
than 2q2 spaces Ki.

Suppose, by induction, that for any 1 < i < k, there is an (n − k + i)-
space 〈H1, H2, . . . ,Hi〉 containing at most 2q3i−4 of the spaces Ki, such that
B(〈π1, . . . , πi〉) ⊆ B.

There are at least q3k−3−q3k−4−2
√
qq3k−5−(q3i−1)/(q3−1)

q3i different (n−k+i+1)-
spaces 〈H1, H2, . . . ,Hi, H〉, H 6⊆ 〈H1, H2, . . . ,Hi〉.

If all of these contain at least 2q3i−1 of the spaces Ki, then

z ≥ (2q3i−1 − 2q3i−4)
q3k−3 − q3k−4 − 2

√
qq3k−5 − (q3i − 1)/(q3 − 1)
q3i

+ 2q3i−4,

a contradiction if q ≥ 49. Let 〈H1, . . . ,Hi+1〉 be an (n−k+i+1)-space containing
less than 2q3i−1 spaces Ki. We still need to prove that B(π1, . . . , πi+1) ⊆ B.

Since B(〈πi+1, π〉) ⊆ B, with π a plane in 〈π1, . . . , πi〉 for which B(π) is not
contained in one of the spaces Ki, there are at most 2q3i−4 4-dimensional spaces
〈πi+1, µ〉 for which B(〈πi+1, µ〉) is not necessarily contained in B, giving rise to
at most 2q3i−4(q6 + q4

√
q) points Qi for which B(Qi) is not necessarily in B.

Let Q be a point of such a space 〈πi+1, µ〉.
There are ((q

√
q)2i+2 − 1)/(q

√
q − 1) lines through Q in 〈π1, . . . , πi+1〉 ∼=

PG(2i + 2, q
√
q), and there are at most 2q3i−4(q6 + q4

√
q) points Qi for which

B(Qi) is not necessarily in B. Suppose all lines through Q in 〈π1, . . . , πi+1〉 ∼=
PG(2i+ 2, q

√
q) contain at least q

√
q− q−√q points Qi for which B(Qi) is not

necessarily in B, then there are at least (q
√
q−q−√q−1)((q

√
q)2i+2−1)/(q

√
q−

1) + 1 > 2q3i−4(q6 + q4
√
q) points Qi for which B(Qi) is not necessarily in B, a

contradiction.
Hence, there is a line N through Q in 〈π1, . . . , πi+1〉 with at most q

√
q− q−√

q − 1 points Qi for which B(Qi) is not necessarily contained in B, hence, for
at least q +

√
q + 2 points R ∈ N , B(R) ∈ B. Result 8 yields that B(Q) ∈ B.

This implies that B(〈π1, . . . , πi+1〉) ⊆ B.
Hence, the space B(〈H1, H2, . . . ,Hk〉) is such that B(〈π1, . . . , πk〉) ⊆ B. But

B(〈π1, . . . , πk〉) corresponds to a linear k-blocking set B′ in PG(n, q3). Since B
is minimal, B = B′.
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[1] N.V. Harrach, K. Metsch, T. Szőnyi, and Zs. Weiner. Small point sets of
PG(n, p3h) intersecting each line in 1 mod ph points. J. Geom., submitted.

[2] N.V. Harrach and K. Metsch. Small point sets of PG(n, q3) intersecting
each k-subspace in 1 mod q points. Des. Codes Cryptogr. 56 (2010), 235–
248.

[3] M. Lavrauw. Scattered spaces with respect to spreads, and eggs in finite
projective spaces. PhD Dissertation, Eindhoven University of Technology,
Eindhoven, 2001. viii+115 pp.

[4] M. Lavrauw and G. Van de Voorde. On linear sets on a projective line.
Des. Codes Cryptogr. 56 (2010), 89–104.

[5] G. Lunardon. Normal spreads. Geom. Dedicata 75 (1999), 245–261.

[6] K. Metsch and L. Storme. Partial t-spreads in PG(2t + 1, q). Des. Codes
Cryptogr. 18 (1999), 199–216.

[7] O. Polverino and L. Storme. Small minimal blocking sets in PG(2, q3).
European J. Combin. 23 (2002), no. 1, 83–92.

[8] L. Storme and Zs. Weiner. On 1-blocking sets in PG(n, q), n ≥ 3. Des.
Codes Cryptogr. 21 (2000), no. 1-3, 235–251.

[9] P. Sziklai. On small blocking sets and their linearity. J. Combin. Theory,
Ser. A 115 (2008), no. 7, 1167–1182.

[10] T. Szőnyi and Zs. Weiner. Small blocking sets in higher dimensions. J.
Combin. Theory, Ser. A 95 (2001), no. 1, 88–101.

[11] Zs. Weiner. Small point sets of PG(n, q) intersecting each k-space in 1
modulo

√
q points. Innov. Incidence Geom. 1 (2005), 171–180.

13


