A proof of the linearity conjecture for k-blocking sets in $PG(n, p^3)$, p prime

M. Lavrauw *

L. Storme C

G. Van de Voorde *

Abstract

In this paper, we show that a small minimal k-blocking set in $PG(n, q^3)$, $q = p^h, h \ge 1, p$ prime, $p \ge 7$, intersecting every (n-k)-space in 1 (mod q) points, is linear. As a corollary, this result shows that all small minimal k-blocking sets in $PG(n, p^3)$, p prime, $p \ge 7$, are \mathbb{F}_p -linear, proving the linearity conjecture (see [9]) in the case $PG(n, p^3)$, p prime, $p \ge 7$.

1 Introduction and preliminaries

Throughout this paper, $q = p^h$, p prime, $h \ge 1$, and $\operatorname{PG}(n,q)$ denotes the *n*dimensional projective space over the finite field \mathbb{F}_q of order q. A *k*-blocking set B in $\operatorname{PG}(n,q)$ is a set of points such that any (n-k)-dimensional subspace intersects B. A *k*-blocking set B is called *trivial* when a *k*-dimensional subspace is contained in B. If an (n-k)-dimensional space contains exactly one point of a *k*-blocking set B in $\operatorname{PG}(n,q)$, it is called a *tangent* (n-k)-space to B. A *k*-blocking set B is called *minimal* when no proper subset of B is a *k*-blocking set. A *k*-blocking set B is called *small* when $|B| < 3(q^k + 1)/2$.

Linear blocking sets were first introduced by Lunardon [5] and can be defined in several equivalent ways.

In this paper, we follow the approach described in [3]. In order to define a linear k-blocking set in this way, we introduce the notion of a Desarguesian spread. Suppose $q = q_0^t$, with $t \ge 1$. By "field reduction", the points of PG(n,q)correspond to (t-1)-dimensional subspaces of $PG((n+1)t-1,q_0)$, since a point of PG(n,q) is a 1-dimensional vector space over \mathbb{F}_q , and so a t-dimensional vector space over \mathbb{F}_{q_0} . In this way, we obtain a partition \mathcal{D} of the point set of $PG((n+1)t-1,q_0)$ by (t-1)-dimensional subspaces. In general, a partition of the point set of a projective space by subspaces of a given dimension d is called a *spread*, or a d-spread if we want to specify the dimension. The spread obtained by field reduction is called a Desarguesian spread. Note that the Desarguesian spread satisfies the property that each subspace spanned by spread elements is partitioned by spread elements.

Let \mathcal{D} be the Desarguesian (t-1)-spread of $PG((n+1)t-1, q_0)$. If U is a subset of $PG((n+1)t-1, q_0)$, then we define $\mathcal{B}(U) := \{R \in \mathcal{D} | |U \cap R \neq \emptyset\}$, and we identify the elements of $\mathcal{B}(U)$ with the corresponding points of $PG(n, q_0^t)$. If U is a subspace of $PG((n+1)t-1, q_0)$, then we call $\mathcal{B}(U)$ a *linear set* or an \mathbb{F}_{q_0} -linear

^{*}This author's research was supported by the Fund for Scientific Research - Flanders (FWO)

set if we want to specify the underlying field. Note that through every point in $\mathcal{B}(U)$, there is a subspace U' such that $\mathcal{B}(U') = \mathcal{B}(U)$ since the elementwise stabiliser of the Desarguesian spread \mathcal{D} acts transitively on the points of a spread element of \mathcal{D} . If U intersects the elements of \mathcal{D} in at most a point, i.e. $|\mathcal{B}(U)|$ is maximal, then we say that U is *scattered* with respect to \mathcal{D} ; in this case $\mathcal{B}(U)$ is called a *scattered linear set*. We denote the element of \mathcal{D} corresponding to a point P of $PG(n, q_0^t)$ by $\mathcal{S}(P)$. If U is a subset of PG(n, q), then we define $\mathcal{S}(U) := \{\mathcal{S}(P) || P \in U\}$. Analogously to the correspondence between the points of $PG(n, q_0^t)$, and the elements \mathcal{D} , we obtain the correspondence between the lines of PG(n,q) and the (2t-1)-dimensional subspaces of $PG((n+1)t-1,q_0)$ spanned by two elements of \mathcal{D} , and in general, we obtain the correspondence between the (n-k)-spaces of PG(n,q) and the ((n-k+1)t-1)-dimensional subspaces of $PG((n+1)t-1, q_0)$ spanned by n-k+1 elements of \mathcal{D} . With this in mind, it is clear that any tk-dimensional subspace U of $PG(t(n+1)-1, q_0)$ defines a k-blocking set $\mathcal{B}(U)$ in $\mathrm{PG}(n,q)$. A (k-blocking set constructed in this way is called a *linear* (k-)blocking set, or an \mathbb{F}_{q_0} -linear (k-)blocking set if we want to specify the underlying field.

By far the most challenging problem concerning blocking sets is the so-called *linearity conjecture*. Since 1998, it has been conjectured by many mathematicians working in the field. The conjecture was explicitly stated in the literature by Sziklai in [9].

(LC) All small minimal k-blocking sets in PG(n, q) are linear.

Various instances of the conjecture have been proved; for an overview we refer to [9]. In this paper, we prove the following main theorem:

Theorem 1. A small minimal k-blocking set in $PG(n,q^3)$, $q = p^h$, p prime, $h \ge 1$, $p \ge 7$, intersecting every (n - k)-space in 1 (mod q) points is linear.

This theorem was proven independently in [1] and [2]. As a corollary, we prove the linearity conjecture for small minimal k-blocking sets in $PG(n, p^3)$, $p \ge 7$.

Corollary 2. A small minimal 1-blocking set in $PG(n, p^3)$, p prime, $p \ge 7$, is \mathbb{F}_p -linear.

1.1 Known characterisation results

In this section we mention a few results, that we will rely on in the sequel of this paper. First of all, observe that a subspace intersects a linear set of $PG(n, p^h)$ in 1 (mod p) or zero points. The following result of Szőnyi and Weiner shows that this property holds for all small minimal blocking sets.

Result 3. [10, Theorem 2.7] If B is a small minimal k-blocking set of PG(n,q), p > 2, then every subspace intersects B in 1 (mod p) or zero points.

Result 3 answers the linearity conjecture in the affirmative for PG(n, p). For $PG(n, p^2)$, the linearity conjecture was proved by Weiner (see [11]). For 1blocking sets in $PG(n, q^3)$, we have the following theorem of Polverino (n = 2)and Storme and Weiner $(n \ge 3)$.

Result 4. [7, 8] A minimal 1-blocking set in $PG(n, q^3)$, $q = p^h$, $h \ge 1$, p prime, $p \ge 7$, $n \ge 2$, of size at most $q^3 + q^2 + q + 1$, is linear.

Remark 5. From the results of [7], we also get that if a non-trivial minimal 1-blocking set B of size at most $q^3 + q^2 + q + 1$ does not contain a $(q\sqrt{q} + 1)$ -secant, every point of B which lies on at least one (q + 1)-secant to B, lies on at least q^2 (q + 1)-secants to B.

In Theorem 10, we show that Result 4 implies the linearity conjecture for small minimal 1-blocking sets in $PG(n, q^3)$, $p \ge 7$, that intersect every hyperplane in 1 (mod q) points.

The following result by Szőnyi and Weiner gives a sufficient condition for a blocking set to be minimal.

Result 6. [10, Lemma 3.1] Let B be a k-blocking set of PG(n,q), and suppose that $|B| \leq 2q^k$. If each (n-k)-dimensional subspace of PG(n,q) intersects B in 1 (mod p) points, then B is minimal.

1.2 The intersection of a subline and an \mathbb{F}_q -linear set

The possibilities for an \mathbb{F}_q -linear set of $\mathrm{PG}(1,q^3)$, other than the empty set, a point, and the set $\mathrm{PG}(1,q^3)$ itself are the following: a subline $\mathrm{PG}(1,q)$ of $\mathrm{PG}(1,q^3)$, corresponding to a line of $\mathrm{PG}(5,q)$ not contained in an element of \mathcal{D} ; a set of $q^2 + 1$ points of $\mathrm{PG}(1,q^3)$, corresponding to a plane of $\mathrm{PG}(5,q)$ that intersects an element of \mathcal{D} in a line; a set of $q^2 + q + 1$ points of $\mathrm{PG}(1,q^3)$, corresponding to a plane of $\mathrm{PG}(5,q)$ that is scattered w.r.t. \mathcal{D} .

The following results describe the possibilities for the intersection of a subline with an \mathbb{F}_q -linear set in $\mathrm{PG}(1, q^3)$, and will play an important role in this paper.

Result 7. [4] A subline isomorphic to PG(1,q) intersects an \mathbb{F}_q -linear set of $PG(1,q^3)$ in 0, 1, 2, 3, or q + 1 points.

Result 8. [6, Lemma 4.4, 4.5, 4.6] Let q be a square. A subline PG(1,q) and a Baer subline $PG(1,q\sqrt{q})$ of $PG(1,q^3)$ share at most a subline $PG(1,\sqrt{q})$. A Baer subline $PG(1,q\sqrt{q})$ and an \mathbb{F}_q -linear set of $q^2 + 1$ or $q^2 + q + 1$ points in $PG(1,q^3)$ share at most $q + \sqrt{q} + 1$ points.

2 Some bounds and the case k = 1

The Gaussian coefficient $\begin{bmatrix} n \\ k \end{bmatrix}_q$ denotes the number of (k-1)-subspaces in PG(n-1,q), i.e.,

$$\left[\begin{array}{c}n\\k\end{array}\right]_q = \frac{(q^n-1)(q^{n-1}-1)\cdots(q^{n-k+1}-1)}{(q^k-1)(q^{k-1}-1)\cdots(q-1)}.$$

Lemma 9. If B is a subset of $PG(n, q^3)$, $q \ge 7$, intersecting every (n-k)-space, $k \ge 1$, in 1 (mod q) points, and π is an (n-k+s)-space, $s \le k$, then either

$$|B \cap \pi| < q^{3s} + q^{3s-1} + q^{3s-2} + 3q^{3s-3}$$

or

$$|B \cap \pi| > q^{3s+1} - q^{3s-1} - q^{3s-2} - 3q^{3s-3}.$$

Proof. Let π be an (n - k + s)-space of $\mathrm{PG}(n, q^3)$, and put $B_{\pi} := B \cap \pi$. Let x_i denote the number of (n - k)-spaces of π intersecting B_{π} in i points. Counting the number of (n - k)-spaces, the number of incident pairs (P, σ) with $P \in B_{\pi}, P \in \sigma, \sigma$ an (n - k)-space, and the number of triples (P_1, P_2, σ) , with $P_1, P_2 \in B_{\pi}, P_1 \neq P_2, P_1, P_2 \in \sigma, \sigma$ an (n - k)-space yields:

$$\sum_{i} x_{i} = \begin{bmatrix} n-k+s+1\\ n-k+1 \end{bmatrix}_{q^{3}}, \tag{1}$$

$$\sum_{i} i x_{i} = |B_{\pi}| \begin{bmatrix} n-k+s \\ n-k \end{bmatrix}_{q^{3}}, \qquad (2)$$

$$\sum i(i-1)x_i = |B_{\pi}|(|B_{\pi}|-1) \left[\begin{array}{c} n-k+s-1\\ n-k-1 \end{array} \right]_{q^3}.$$
 (3)

Since we assume that every (n-k)-space intersects B in 1 (mod q) points, it follows that every (n-k)-space of π intersects B_{π} in 1 (mod q) points, and hence $\sum_{i}(i-1)(i-1-q)x_i \geq 0$. Using Equations (1), (2), and (3), this yields that

$$\begin{split} |B_{\pi}|(|B_{\pi}|-1)(q^{3n-3k}-1)(q^{3n-3k+3}-1)-(q+1)|B_{\pi}|(q^{3n-3k+3s}-1)(q^{3n-3k+3}-1)(q^{3n-3k+3s}-1)$$

Putting $|B_{\pi}| = q^{3s} + q^{3s-1} + q^{3s-2} + 3q^{3s-3}$ or $|B_{\pi}| = q^{3s+1} - q^{3s-1} - q^{3s-2} - 3q^{3s-3}$ in this inequality, with $q \ge 7$, gives a contradiction. Hence, the statement follows.

Theorem 10. A small minimal 1-blocking set in $PG(n, q^3)$, $q = p^h$, p prime, $p \ge 7$, intersecting every hyperplane in 1 (mod q) points, is linear.

Proof. Lemma 9 implies that a small minimal 1-blocking set B in $PG(n, q^3)$, intersecting every hyperplane in 1 (mod q) points, has at most $q^3 + q^2 + q + 3$ points. Since every hyperplane intersects B in 1 (mod q) points, it is easy to see that $|B| \equiv 1 \pmod{q}$. This implies that $|B| \leq q^3 + q^2 + q + 1$. Result 4 shows that B is linear.

Corollary 11. A small minimal 1-blocking set in $PG(n, p^3)$, p prime, $p \ge 7$, is \mathbb{F}_p -linear.

Proof. This follows from Result 3 and Theorem 10.

For the remainder of this section, we use the following assumption:

(B) B is a small minimal k-blocking set in $PG(n, q^3)$, $q = p^h$, p prime, $p \ge 7$, intersecting every (n - k)-space in 1 (mod q) points.

For convenience let us introduce the following terminology. A *full* line of *B* is a line which is contained in *B*. An (n - k + s)-space *S*, s < k, is called *large* if *S* contains more than $q^{3s+1} - q^{3s-1} - q^{3s-2} - 3q^{3s-3}$ points of *B*, and *S* is called *small* if it contains less than $q^{3s} + q^{3s-1} + q^{3s-2} + 3q^{3s-3}$ points of *B*.

Lemma 12. Let π be an (n-k)-space of $PG(n, q^3)$, k > 1.

(1) If $B \cap \pi$ is a point, then there are at most $q^{3k-5}+4q^{3k-6}-1$ large (n-k+1)-spaces through π .

- (2) If π intersects B in $q\sqrt{q} + 1$, $q^2 + 1$ or $q^2 + q + 1$ collinear points, then there are at most $q^{3k-5} + 5q^{3k-6} 1$ large (n-k+1)-spaces through π .
- (3) If π intersects B in q+1 collinear points, then there are at most $3q^{3k-6}$ $q^{3k-7}-1$ large (n-k+1)-spaces through π .

Proof. Suppose there are y large (n-k+1)-spaces through π . Then the number of points in B is at least

$$y(q^4 - q^2 - q - 3 - |B \cap \pi|) + ((q^{3k} - 1)/(q^3 - 1) - y)x + |B \cap \pi|, \ (*)$$

where x depends on the intersection $B \cap \pi$.

(1) In this case, $x = q^3$ and $|B \cap \pi| = 1$. If $y = q^{3k-5} + 4q^{3k-6}$, then (*) is larger than $q^{3k} + q^{3k-1} + q^{3k-2} + 3q^{3k-3}$, a contradiction. (2) In this case, $x = q^3$ and $|B \cap \pi| \le q^2 + q + 1$. If $y = q^{3k-5} + 5q^{3k-6}$, then (*) is larger than $q^{3k} + q^{3k-1} + q^{3k-2} + 3q^{3k-3}$, a contradiction.

(3) By Result 4, we know that an (n - k + 1)-space π' through π intersects B in at least $q^3 + q^2 + 1$ points, since a (q + 1)-secant in π' implies that the intersection of π' with B is non-trivial and not a Baer subplane, hence $x = q^3 + q^2 - q$, and $|B \cap \pi| = q + 1$. If $3q^{3k-6} - q^{3k-7}$, then (*) is larger than $q^{3k} + q^{3k-1} + q^{3k-2} + 3q^{3k-3}$, a contradiction.

Lemma 13. Let L be a line such that $1 < |B \cap L| < q^3 + 1$. For all $i \in$ $\{1, \ldots, n-k\}$, there exists an *i*-space π_i on L such that $B \cap \pi_i = B \cap L$.

Proof. It follows from Result 3 that every subspace on L intersects $B \setminus L$ in zero or at least p points. We proceed by induction on the dimension i. The statement obviously holds for i = 1. Suppose there exists an *i*-space π_i on L such that $\pi_i \cap B = L \cap B$, with $i \leq n - k - 1$. If there is no (i + 1)-space intersecting B only on L, then the number of points of B is at least

$$|B \cap L| + p(q^{3(n-i)-3} + q^{3(n-i)-6} + \ldots + q^3 + 1),$$

but, by Lemma 9, $|B| \le q^{3k} + q^{3k-1} + q^{3k-2} + 3q^{3k-3}$. If $i \le n-k-1$ and $p \geq 7$, this is a contradiction. We may conclude that there exists an *i*-space π_i on L such that $B \cap L = B \cap \pi_i, \forall i \in \{1, \dots, n-k\}.$

Theorem 14. A line L intersects B in a linear set.

Proof. Note that it is enough to show that L is contained in a subspace of $PG(n, q^3)$ intersecting B in a linear set. If k = 1, then B is linear by Theorem 10, and the statement follows. Let k > 1, let L be a line, not contained in B, intersecting B in at least two points. It follows from Lemma 13 that there exists an (n-k)-space π_L such that $B \cap L = B \cap \pi_L$. If each of the $(q^{3k}-1)/(q^3-1)$ (n-k+1)-spaces through π_L were large, then the number of points in B would be at least

$$\frac{q^{3k}-1}{q^3-1}(q^4-q^2-q-3-q^3)+q^3>q^{3k}+q^{3k-1}+q^{3k-2}+3q^{3k-3},$$

a contradiction. Hence, there is a small (n-k+1)-space π through L, so $B \cap \pi$ is a small 1-blocking set which is linear by Theorem 10. This concludes the proof. \square

3 The proof of Theorem 1

In the proof of the main theorem, we distinguish two cases. In both cases, we need the following lemmas.

We continue with the following assumption:

(B) B is a small minimal k-blocking set in $PG(n, q^3)$, $q = p^h$, p prime, $p \ge 7$, intersecting every (n - k)-space in 1 (mod q) points;

and we consider the following properties:

- (H₁) $\forall s < k$: every small minimal s-blocking set that does not contain a $(q\sqrt{q} + 1)$ -secant and intersects every (n s)-space in 1 (mod q) points, is \mathbb{F}_q -linear;
- (H_2) $\forall s < k$: every small minimal s-blocking set that contains a $(q\sqrt{q}+1)$ -secant and intersects every (n-s)-space in 1 (mod q) points, is $\mathbb{F}_{q\sqrt{q}}$ -linear.

Lemma 15. If (H_1) or (H_2) , and S is a small (n - k + s)-space, 0 < s < k, then $B \cap S$ is a small minimal linear s-blocking set in S, and hence $|B \cap S| \leq (q^{3s+1}-1)/(q-1)$.

Proof. Clearly, $B \cap S$ is an s-blocking set in S. By (B), $B \cap S$ intersects every (n-k)-space in 1 (mod q) points, and it follows from Result 6 that $B \cap S$ is minimal. Now apply (H_1) or (H_2) .

Lemma 16. Suppose (H_1) or (H_2) . Let k > 2 and let π_{n-2} be an (n-2)-space such that $B \cap \pi_{n-2}$ is a non-trivial small linear (k-2)-blocking set, then there are at least $q^3 - q + 6$ small hyperplanes through π_{n-2} .

Proof. Applying Lemma 15 with s = k - 2, it follows that $B \cap \pi_{n-2}$ contains at most $(q^{3k-5}-1)/(q-1)$ points. On the other hand, from Lemmas 9 and 15 with s = k - 1, we know that a hyperplane intersects B in at most $(q^{3k-2}-1)/(q-1)$ points or in more than $q^{3k-2} - q^{3k-4} - q^{3k-5} - 3q^{3k-6}$ points. In the first case, a hyperplane H intersects B in at least $q^{3k-3} + 1 + (q^{3k-3} + q)/(q+1)$ points, using a result of Szőnyi and Weiner [10, Corollary 3.7] for the (k-1)-blocking set $H \cap B$. If there are at least q - 4 large hyperplanes, then the number of points in B is at least

$$(q-4)(q^{3k-2}-q^{3k-4}-q^{3k-5}-3q^{3k-6}-\frac{q^{3k-5}-1}{q-1})+$$

$$(q^3-q+5)(q^{3k-3}+1+\frac{q^{3k-3}+q}{q+1}-\frac{q^{3k-5}-1}{q-1})+\frac{q^{3k-5}-1}{q-1}$$

which is larger than $q^{3k} + q^{3k-1} + q^{3k-2} + 3q^{3k-3}$ if $q \ge 7$, a contradiction. Hence, there are at most q - 5 large hyperplanes through π_{n-2} .

Lemma 17. Suppose (H_1) or (H_2) . Let k > 2 and let L be a secant line to B, not contained in B. Let N be a line of $PG(n, q^3)$ skew to L. For all $i \in \{1, \ldots, k-2\}$, there exists an (n-k+i)-space π_i through L, skew to N, such that $\pi_i \cap B$ is a small minimal *i*-blocking set of π_i .

Proof. Lemma 13 shows that there is an (n-k)-space π_{n-k} through L, such that $B \cap L = B \cap \pi_{n-k}$; so we certainly find an (n-k-2)-space π_{n-k-2} through L, skew to N, such that $B \cap L = B \cap \pi_{n-k-2}$. Since the number of (n-k-1)spaces through π_{n-k-2} that do not meet N, exceeds the number of points that can lie in B, there is an (n-k-1)-space π_{n-k-1} through π_{n-k-2} such that $B \cap L = B \cap \pi_{n-k-1}$. If an (n-k)-space through π_{n-k-1} contains an extra element of B, it contains at least q^2 extra elements of B, since a line containing 2 points of B contains at least q + 1 points of B. This implies that there is an (n-k)-space π_{n-k} through π_{n-k-1} with no extra points of B, and skew to N.

We proceed by induction on the dimension *i*. Lemma 12 (2) and (3) show that there are at least $(q^{3k} - 1)/(q^3 - 1) - q^{3k-5} - 5q^{3k-6} + 1 > q^3 + 1$ small (n-k+1)-spaces through π_{n-k} which proves the statement for i=1.

Suppose that there exists an (n - k + t)-space π_{n-k+t} through L, skew to

N, such that $B \cap \pi_{n-k+t}$ is a small minimal t-blocking set of π_{n-k+t} . An (n-k+t+1)-space through π_{n-k+t} contains at most $(q^{3t+4}-1)/(q-1)$ or more than $q^{3t+4} - q^{3t+2} - q^{3t+1} - 3q^{3t}$ points of B (see Lemmas 9 and 15). Suppose all $(q^{3k-3t}-1)/(q^3-1) - q^3 - 1$ (n-k+t+1)-spaces through π_{n-k+t} , skew to N, contain more than $q^{3t+4} - q^{3t+2} - q^{3t+1} - 3q^{3t}$ points of B. Then the number of points in B is larger than $q^{3k} + q^{3k-1} + q^{3k-2} + 3q^{3k-3}$ if $t \leq k - 3$, a contradiction.

We may conclude that there exists an (n - k + i)-space π_i on L such that $B \cap \pi_i$ is a small minimal *i*-blocking set, skew to $N, \forall i \in \{1, \ldots, k-2\}$.

Case 1: there are no $(q\sqrt{q}+1)$ -secants 3.1

In this subsection, we will use induction on k to prove that small minimal kblocking sets in $PG(n, q^3)$, intersecting every (n - k)-space in 1 (mod q) points and not containing a $(q\sqrt{q}+1)$ -secant, are \mathbb{F}_q -linear. The induction basis is Theorem 10. Now we continue with the assumption that (H_1) holds, i.e.,

 (H_1) $\forall s < k$: every small minimal s-blocking set that does not contain a $(q\sqrt{q} +$ 1)-secant and intersects every (n-s)-space in 1 (mod q) points, is \mathbb{F}_{q} linear;

and that

(B₁) B is a small minimal k-blocking set in $PG(n, q^3)$, $q = p^h$, p prime, $p \ge 7$, intersecting every (n-k)-space in 1 (mod q) points, not containing a $(q\sqrt{q}+1)$ -secant.

Lemma 18. If B is non-trivial, there exist a point $P \in B$, a tangent (n - k)space π at the point P and small (n - k + 1)-spaces H_i , through π , such that there is a (q + 1)-secant through P in H_i , $i = 1, \ldots, q^{3k-3} - 2q^{3k-4}$.

Proof. Since B is non-trivial, there is at least one line N with $1 < |N \cap B| < N$ $q^3 + 1$. Lemma 13 shows that there is an (n-k)-space π_N through N such that $B \cap N = B \cap \pi_N$. It follows from Lemma 12 and Theorem 14 that there is at least one (n-k+1)-space H through π_N such that $H \cap B$ is a small minimal linear 1-blocking set of H. In this non-trivial small minimal linear 1-blocking set, there are (q + 1)-secants (see Remark 5). Let M be one of those (q + 1)secants of B. Again using Lemma 13, we find an (n-k)-space π_M through M such that $B \cap M = B \cap \pi_M$.

Lemma 12 (3) shows that through π_M , there are at least $\frac{q^{3k}-1}{q^3-1} - 3q^{3k-6} + q^{3k-7} + 1$ small (n-k+1)-spaces. Let P be a point of M. Since in each of these intersections, P lies on at least $q^2 - 1$ other (q+1)-secants, a point P of M lies in total on at least $(q^2 - 1)(\frac{q^{3k}-1}{q^3-1} - 3q^{3k-6} + q^{3k-7} + 1)$ other (q+1)-secants. Since each of the $\frac{q^{3k}-1}{q^3-1} - 3q^{3k-6} + q^{3k-7} + 1$ small (n-k+1)-spaces contains at least $q^3 + q^2 - q$ points of B not on M, and $|B| < q^{3k} + q^{3k-1} + q^{3k-2} + 3q^{3k-3}$ (see Lemma 9), there are less than $2q^{3k-2} + 6q^{3k-3}$ points of B left in the large (n-k+1)-spaces. Hence, P lies on less than $2q^{3k-5} + 6q^{3k-6}$ full lines.

Since B is minimal, P lies on a tangent (n-k)-space π . There are at most $q^{3k-5}+4q^{3k-6}-1$ large (n-k+1)-spaces through π (Lemma 12 (1)). Moreover, since at least $\frac{q^{3k}-1}{q^3-1}-(q^{3k-5}+4q^{3k-6}-1)-(2q^{3k-5}+6q^{3k-6})$ (n-k+1)-spaces through π contain at least q^3+q^2 points of B, and at most $2q^{3k-5}+6q^{3k-6}$ of the small (n-k+1)-spaces through π contain exactly q^3+1 points of B, there are at most $2q^{3k-2}+23q^{3k-3}$ points of B left. Hence, P lies on at most $2q^{3k-3}+23q^{3k-4}$ (q+1)-secants of the large (n-k+1)-spaces through π . This implies that there are at least $(q^2-1)(\frac{q^{3k}-1}{q^3-1}-3q^{3k-6}+q^{3k-7}+1)-(2q^{3k-3}+23q^{3k-4})$ distinct (q+1)-secants through P left in small (n-k+1)-spaces through π . Since in a small (n-k+1)-space through π , there can lie at most q^2+q+1 (q+1)-secants through P left in small (n-k+1)-spaces through π . Since in a small (n-k+1)-space through π , there can lie at most q^2+q+1 (n-k+1)-spaces H_i through π such that P lies on a (q+1)-secant in H_i .

Lemma 19. Let π be an (n-k)-dimensional tangent space of B at the point P. Let H_1 and H_2 be two (n-k+1)-spaces through π for which $B \cap H_i = \mathcal{B}(\pi_i)$, for some 3-space π_i through $x \in \mathcal{S}(P)$, $\mathcal{B}(x) \cap \pi_i = \{x\}$ (i = 1, 2) and $\mathcal{B}(\pi_i)$ not contained in a line of $PG(n, q^3)$. Then $\mathcal{B}(\langle \pi_1, \pi_2 \rangle) \subseteq B$.

Proof. Since $\langle \mathcal{B}(\pi_i) \rangle$ is not contained in a line of $\mathrm{PG}(n, q^3)$, there is at most one element Q of $\mathcal{B}(\pi_i)$ such that $\langle \mathcal{S}(P), Q \rangle$ intersects π_i in a plane. If there is such a plane, then we denote its point set by μ_i , otherwise we put $\mu_i = \emptyset$.

Let *M* be a line through x in $\pi_1 \setminus \mu_1$, let $s \neq x$ be a point of $\pi_2 \setminus \mu_2$, and note that $\mathcal{B}(s) \cap \pi_2 = \{s\}$.

We claim that there is a line T through s in π_2 and an (n-2)-space π_M through $\langle \mathcal{B}(M) \rangle$ such that there are at least 4 points $t_i \in T, t_i \notin \mu_2$, such that $\langle \pi_M, \mathcal{B}(t_i) \rangle$ is small and hence has a linear intersection with B, with $B \cap \pi_M = M$ if k = 2 and $B \cap \pi_M$ is a small minimal (k-2)-blocking set if k > 2.

If k = 2, the existence of π_M follows from Lemma 13, and we know from Lemma 12 (1) that there are at most q + 3 large hyperplanes through π_M . Denote the set of points of $\mathcal{B}(\pi_2)$, contained in one of those hyperplanes by F. Hence, if Q is a point of $\mathcal{B}(\pi_2) \setminus F$, $\langle Q, \pi_M \rangle$ is a small hyperplane.

Let T_1 be a line through s in $\pi_2 \setminus \mu_2$ and not through x, and suppose that $\mathcal{B}(T_1)$ contains at least q-3 points of F.

Let T_2 be a line in $\pi_2 \setminus \mu_2$, through s, not in $\langle x, T_1 \rangle$, not through x. There are at most q + 3 - (q - 3) reguli through x of $\mathcal{S}(F)$, not in $\langle x, T_1 \rangle$, and if $\mu \neq \emptyset$ one element of $\mathcal{B}(\mu_2)$ is contained in $\mathcal{B}(T_2)$. Since it is possible that $\mathcal{B}(s)$ is an element of F, this gives in total at most 8 points of $\mathcal{B}(T_2)$ that are contained in F. This implies, if q > 11, that at least 5 of the hyperplanes $\{\langle \pi_M, \mathcal{B}(t) \rangle || t \in T_2\}$ are small.

If q = 11, it is possible that $\mathcal{B}(T_2)$ contains at least 8 points of F. If T_3 is a line in $\pi_2 \setminus \mu_2$, through s, $\langle x, T_1 \rangle$, $\langle x, T_2 \rangle$ and not through x, then there are at

least 5 points t of T_3 such that $\langle \pi_M, \mathcal{B}(t) \rangle$ is a small hyperplane.

If q = 7 and if $\mathcal{B}(s) \in \mathcal{B}(F)$, it is possible that $\mathcal{B}(T_2)$, $\mathcal{B}(T_3)$, and $\mathcal{B}(T_4)$, with T_i a line through s in $\pi_2 \setminus \mu_2$, not in $\langle x, T_j \rangle$, j < i, not through x, contain 4 points of F. A fifth line T_5 through s in $\pi_2 \setminus \mu_2$, not in $\langle x, T_j \rangle$, j < i, not through x, contains at least 5 points t such that $\langle \pi_M, \mathcal{B}(t) \rangle$ is a small hyperplane.

If k > 2, let T be a line through s in $\pi_2 \setminus \mu_2$, not through x. It follows from Lemma 17 that there is an (n-2)-space π_M through $\langle \mathcal{B}(M) \rangle$ such that $B \cap \pi_M$ is a small minimal (k-2)-blocking set of $\mathrm{PG}(n, q^3)$, skew to $\mathcal{B}(T)$. Lemma 16 shows that at most q-5 of the hyperplanes through π_M are large. This implies that at least 5 of the hyperplanes $\{\langle \pi_M, \mathcal{B}(t) \rangle | | t \in \mathcal{B}(T)\}$ are small. This proves our claim.

Since $B \cap \langle \mathcal{B}(t_i), \pi_M \rangle$ is linear, also the intersection of $\langle \mathcal{B}(t_i), \mathcal{B}(M) \rangle$ with B is linear, i.e., there exist subspaces $\tau_i, \tau_i \cap \mathcal{S}(P) = \{x\}$, such that $\mathcal{B}(\tau_i) = \langle \mathcal{B}(t_i), \mathcal{B}(M) \rangle \cap B$. Since $\tau_i \cap \langle \mathcal{B}(M) \rangle$ and M are both transversals through x to the same regulus $\mathcal{B}(M)$, they coincide, hence $M \subseteq \tau_i$. The same holds for $\tau_i \cap \langle \mathcal{B}(t_i), \mathcal{S}(P) \rangle$, implying $t_i \in \tau_i$. We conclude that $\mathcal{B}(\langle M, t_i \rangle) \subseteq \mathcal{B}(\tau_i) \subseteq B$.

We show that $\mathcal{B}(\langle M, T \rangle) \subseteq B$. Let L' be a line of $\langle M, T \rangle$, not intersecting M. The line L' intersects the planes $\langle M, t_i \rangle$ in points p_i such that $\mathcal{B}(p_i) \in B$. Since $\mathcal{B}(L')$ is a subline intersecting B in at least 4 points, Result 7 shows that $\mathcal{B}(L') \subset B$. Since every point of the space $\langle M, T \rangle$ lies on such a line L', $\mathcal{B}(\langle M, T \rangle) \subseteq B$.

Hence, $\mathcal{B}(\langle M, s \rangle) \subseteq B$ for all lines M through x, M in $\pi_1 \setminus \mu_1$, and all points $s \neq x \in \pi_2 \setminus \mu_2$, so $\mathcal{B}(\langle \pi_1, \pi_2 \rangle \setminus (\langle \mu_1, \pi_2 \rangle \cup \langle \mu_2, \pi_1 \rangle)) \subseteq B$. Since every point of $\langle \mu_1, \pi_2 \rangle \cup \langle \mu_2, \pi_1 \rangle$ lies on a line N with q-1 points of $\langle \pi_1, \pi_2 \rangle \setminus (\langle \mu_1, \pi_2 \rangle \cup \langle \mu_2, \pi_1 \rangle)$, Result 7 shows that $\mathcal{B}(N) \subset B$. We conclude that $\mathcal{B}(\langle \pi_1, \pi_2 \rangle) \subseteq B$. \Box

Theorem 20. The set B is \mathbb{F}_q -linear.

Proof. If B is a k-space, then B is \mathbb{F}_q -linear. If B is a non-trivial small minimal k-blocking set, Lemma 18 shows that there exists a point P of B, a tangent (n-k)-space π at the point P and at least $q^{3k-3} - 2q^{3k-4}$ (n-k+1)-spaces H_i through π for which $B \cap H_i$ is small and linear, where P lies on at least one (q+1)-secant of $B \cap H_i$, $i = 1, \ldots, s$, $s \geq q^{3k-3} - 2q^{3k-4}$. Let $B \cap H_i = \mathcal{B}(\pi_i), i = 1, \ldots, s$, with π_i a 3-dimensional space.

Lemma 19 shows that $\mathcal{B}(\langle \pi_i, \pi_j \rangle) \subseteq B, \ 0 \leq i \neq j \leq s$.

If k = 2, the set $\mathcal{B}(\langle \pi_1, \pi_2 \rangle)$ corresponds to a linear 2-blocking set B' in $PG(n, q^3)$. Since B is minimal, B = B', and the Theorem is proven.

Let k > 2. Denote the (n-k+1)-spaces through π , different from H_i , by $K_j, j = 1, \ldots, z$. It follows from Lemma 18 that $z \le 2q^{3k-4} + (q^{3k-3}-1)/(q^3-1)$. There are at least $(q^{3k-3}-2q^{3k-4}-1)/q^3$ different (n-k+2)-spaces $\langle H_1, H_j \rangle$, $1 < j \le s$. If all (n-k+2)-spaces $\langle H_1, H_j \rangle$, contain at least $5q^2 - 49$ of the spaces K_i , then $z \ge (5q^2-49)(q^{3k-3}-2q^{3k-4}-1)/q^3$, a contradiction if $q \ge 7$. Let $\langle H_1, H_2 \rangle$ be an (n-k+2)-space containing less than $5q^2 - 49$ spaces K_i .

Suppose by induction that for any 1 < i < k, there is an (n - k + i)-space $\langle H_1, H_2, \ldots, H_i \rangle$ containing at most $5q^{3i-4} - 49q^{3i-6}$ of the spaces K_i such that $\mathcal{B}(\langle \pi_1, \ldots, \pi_i \rangle) \subseteq B$.

There are at least $\frac{q^{3k-3}-2q^{3k-4}-(q^{3i}-1)/(q^3-1)}{q^{3i}}$ different (n-k+i+1)-spaces $\langle H_1, H_2, \ldots, H_i, H \rangle$, $H \not\subseteq \langle H_1, H_2, \ldots, H_i \rangle$. If all of these contain at least

 $5q^{3i-1} - 49q^{3i-3}$ of the spaces K_i , then

$$z \ge (5q^{3i-1} - 49q^{3i-3} - 5q^{3i-4} + 49q^{3i-6}) \frac{q^{3i-3} - 2q^{3i-4} - (q^{3i}-1)/(q^3-1)}{q^{3i}} + 5q^{3i-4} - 49q^{3i-6},$$

a contradiction if $q \ge 7$. Let $\langle H_1, \ldots, H_{i+1} \rangle$ be an (n - k + i + 1)-space containing less than $5q^{3i-1} - 49q^{3i-3}$ spaces K_i . We still need to prove that $\mathcal{B}(\langle \pi_1, \ldots, \pi_{i+1} \rangle) \subseteq B$. Since $\mathcal{B}(\langle \pi_{i+1}, \pi \rangle) \subseteq B$, with π a 3-space in $\langle \pi_1, \ldots, \pi_i \rangle$ for which $\mathcal{B}(\pi)$ is not contained in one of the spaces K_i , there are at most $5q^{3i-4} - 49q^{3i-6}$ distinct 6-dimensional spaces $\langle \pi_{i+1}, \mu \rangle$ for which $\mathcal{B}(\langle \pi_{i+1}, \mu \rangle)$ is not necessarily contained in B, giving rise to at most $(5q^{3i-4} - 49q^{3i-6})(q^6 +$ $q^5 + q^4$) points t for which $\mathcal{B}(t)$ is not necessarily contained in B. Let u be a point of such a space $\langle \pi_{i+1}, \mu \rangle$. Suppose that each of the $(q^{3i+3}-1)/(q-1)$ lines through u in $\langle \pi_1, \ldots, \pi_{i+1} \rangle$ contains at least q-2 of the points t for which $\mathcal{B}(t)$ is not in B. Then there are at least $(q-3)(q^{3i+3}-1)/(q-1)+1 > (5q^{3i-4}-49q^{3i-6})(q^6+q^5+q^4)$ such points t, if $q \ge 7$, a contradiction. Hence, there is a line N through t for which for at least 4 points $v \in N$, $\mathcal{B}(v) \in B$. Result 7 yields that $\mathcal{B}(t) \in B$. This implies that $\mathcal{B}(\langle \pi_1, \ldots, \pi_{i+1} \rangle) \subseteq B$.

Hence, the space $\langle H_1, H_2, \ldots, H_k \rangle$, which spans the space $PG(n, q^3)$, is such that $\mathcal{B}(\langle \pi_1, \ldots, \pi_k \rangle) \subseteq B$. But $\mathcal{B}(\langle \pi_1, \ldots, \pi_k \rangle)$ corresponds to a linear k-blocking set B' in $PG(n, q^3)$. Since B is minimal, B = B'.

Corollary 21. A small minimal k-blocking set in $PG(n, p^3)$, p prime, $p \ge 7$, is \mathbb{F}_p -linear.

Proof. This follows from Result 3 and Theorem 20.

3.2Case 2: there are $(q\sqrt{q}+1)$ -secants to B

In this subsection, we will use induction on k to prove that small minimal k-blocking sets in PG(n, q^3), containing a $(q\sqrt{q}+1)$ -secant and intersecting every (n-k)-space in 1 (mod q) points, are $\mathbb{F}_{q\sqrt{q}}$ -linear. The induction basis is Theorem 10. We continue with the assumption that (H_2) holds, i.e.,

 (H_2) $\forall s < k$: every small minimal s-blocking set that contains a $(q\sqrt{q}+1)$ -secant and intersects every (n - s)-space in 1 (mod q) points, is $\mathbb{F}_{q\sqrt{q}}$ -linear.

and that

 (B_2) B is small minimal k-blocking set in PG (n, q^3) , containing a $(q\sqrt{q}+1)$ secant and intersecting every (n-k)-space in 1 (mod q) points.

In this case, S maps $PG(n, q^3)$ onto $PG(2n + 1, q\sqrt{q})$ and the Desarguesian spread consists of lines.

Lemma 22. If B is non-trivial, there exist a point $P \in B$, a tangent (n - k)space π at P and small (n - k + 1)-spaces H_i through π , such that there is a $(q\sqrt{q} + 1)$ -secant through P in H_i , $i = 1, \ldots, q^{3k-3} - q^{3k-4} - 2\sqrt{q}q^{3k-5}$.

Proof. There is a $(q\sqrt{q}+1)$ -secant M. Lemma 13 shows that there is an (n-k)-

space π_M through M such that $B \cap M = B \cap \pi_M$. Lemma 12 (3) shows that there are at least $\frac{q^{3k}-1}{q^{3}-1} - q^{3k-5} - 5q^{3k-6} + 1$ small (n-k+1)-spaces through π_M . Moreover, the intersections of these small (n-k+1)-spaces with B are Baer subplanes $\operatorname{PG}(2, q\sqrt{q})$, since there is a $(q\sqrt{q}+1)$ -secant M. Let P be a point of $M \cap B$.

Since in any of these intersections, P lies on $q\sqrt{q}$ other $(q\sqrt{q}+1)$ -secants, a point P of $M \cap B$ lies in total on at least $q\sqrt{q}(\frac{q^{3k}-1}{q^3-1}-q^{3k-5}-5q^{3k-6}+1)$ other $(q\sqrt{q}+1)$ -secants. Since any of the $\frac{q^{3k}-1}{q^3-1}-q^{3k-5}-5q^{3k-6}+1$ small (n-k+1)-spaces through π_M contains q^3 points of B not in π_M , and $|B| < q^{3k}+q^{3k-1}+q^{3k-2}+3q^{3k-3}$ (see Lemma 9), there are less than $q^{3k-1}+4q^{3k-2}$ points of B left in the other (n-k+1)-spaces through π_M . Hence, P lies on less than $q^{3k-4}+4q^{3k-5}$ full lines.

Since B is minimal, there is a tangent (n-k)-space π through P. There are at most $q^{3k-5} + 4q^{3k-6} - 1$ large (n-k+1)-spaces through π (Lemma 12 (1)). Moreover, since at least $\frac{q^{3k}-1}{q^{3}-1} - (q^{3k-5} + 4q^{3k-6} - 1) - (q^{3k-4} + 4q^{3k-5})$ small (n-k+1)-spaces through π contain $q^3 + q\sqrt{q} + 1$ points of B, and at most $q^{3k-4} + 4q^{3k-5}$ of the small (n-k+1)-spaces through π contain exactly $q^3 + 1$ points of B, there are at most $q^{3k-1} - q^{3k-2}\sqrt{q} + 4q^{3k-2}$ points of B left. Hence, P lies on at most $(q^{3k-1}-q^{3k-2}\sqrt{q}+4q^{3k-2})/(q\sqrt{q}+1)$ different $(q\sqrt{q}+1)$ -secants of the large (n-k+1)-spaces through π . This implies that there are at least $q\sqrt{q}(\frac{q^{3k}-1}{q^{3}-1}-q^{3k-5}-5q^{3k-6}+1)-(q^{3k-1}-q^{3k-2}\sqrt{q}+4q^{3k-2})/(q\sqrt{q}+1)$ different $(q\sqrt{q}+1)$ -secants left through P in small (n-k+1)-spaces through π . Since in a small (n-k+1)-space through π , there lie $q\sqrt{q}+1$ different $(q\sqrt{q}+1)$ -secants through P, this implies that there are certainly at least $q^{3k-3}-q^{3k-4}-2\sqrt{q}q^{3k-5}$ small (n-k+1)-spaces H_i through π such that P lies on a $(q\sqrt{q}+1)$ -secant in H_i .

Lemma 23. Let π be an (n-k)-dimensional tangent space of B at the point P. Let H_1 and H_2 be two (n-k+1)-spaces through π for which $B \cap H_i = \mathcal{B}(\pi_i)$, for some plane π_i through $x \in \mathcal{S}(P)$, $\mathcal{B}(x) \cap \pi_i = \{x\}$ (i = 1, 2) and $\mathcal{B}(\pi_i)$ not contained in a line of $PG(n, q^3)$. Then $\mathcal{B}(\langle \pi_1, \pi_2 \rangle) \subseteq B$.

Proof. Let M be a line through x in π_1 , let $s \neq x$ be a point of π_2 .

We claim that there is a line T through s, not through x, in π_2 and an (n-2)-space π_M through $\langle \mathcal{B}(M) \rangle$ such that there are at least $q\sqrt{q}-q-2$ points $t_i \in T$, such that $\langle \pi_M, \mathcal{B}(t_i) \rangle$ is small and hence has a linear intersection with B, with $B \cap \pi_M = M$ if k = 2 and $B \cap \pi_M$ is a small minimal (k-2)-blocking set if k > 2. From Lemma 12 (1), we know that there are at most q + 3 large hyperplanes through π_M if k = 2, and at most q - 5 if k > 2 (see Lemma 16).

Let T be a line through s in π_2 , not through x. The existence of π_M follows from Lemma 13 if k = 2, and Lemma 17 if k > 2. Since $\mathcal{B}(T)$ contains $q\sqrt{q} + 1$ spread elements, there are at least $q\sqrt{q}-q-2$ points $t_i \in T$ such that $\langle \pi_M, \mathcal{B}(t_i) \rangle$ is small. This proves our claim.

Since $B \cap \langle \mathcal{B}(t_i), \pi_M \rangle$ is linear, also the intersection of $\langle \mathcal{B}(t_i), \mathcal{B}(M) \rangle$ with B is linear, i.e., there exist subspaces $\tau_i, \tau_i \cap \mathcal{S}(P) = \{x\}$, such that $\mathcal{B}(\tau_i) = \langle \mathcal{B}(t_i), \mathcal{B}(M) \rangle \cap B$. Since $\tau_i \cap \langle \mathcal{B}(M) \rangle$ and M are both transversals through x to the same regulus $\mathcal{B}(M)$, they coincide, hence $M \subseteq \tau_i$. The same holds for $\tau_i \cap \langle \mathcal{B}(t_i), \mathcal{S}(P) \rangle$, implying $t_i \in \tau_i$. We conclude that $\mathcal{B}(\langle M, t_i \rangle) \subseteq \mathcal{B}(\tau_i) \subseteq B$.

We show that $\mathcal{B}(\langle M, T \rangle) \subseteq B$. Let L' be a line of $\langle M, T \rangle$, not intersecting M. The line L' intersects the planes $\langle M, t_i \rangle$ in points p_i such that $\mathcal{B}(p_i) \subseteq B$. Since $\mathcal{B}(L')$ is a subline intersecting B in at least $q\sqrt{q} - q - 2$ points, Result 8 shows that $\mathcal{B}(L') \subseteq B$. Since every point of the space $\langle M, T \rangle$ lies on such a line $L', \mathcal{B}(\langle M, T \rangle) \subseteq B.$

Hence, $\mathcal{B}(\langle M, s \rangle) \subseteq B$ for all lines M through x in π_2 , and all points $s \neq d$ $x \in \pi_2$. We conclude that $\mathcal{B}(\langle \pi_1, \pi_2 \rangle) \subseteq B$.

Theorem 24. The set B is $\mathbb{F}_{q\sqrt{q}}$ -linear.

Proof. Lemma 22 shows that there exists a point P of B, a tangent (n-k)-space π at the point P and at least $q^{3k-3} - q^{3k-4} - 2\sqrt{q}q^{3k-5}$ distinct (n-k+1)spaces H_i through π for which $B \cap H_i$ is a Baer subplane, $i = 1, \ldots, s, s \ge 1$ $q^{3k-3} - q^{3k-4} - 2\sqrt{q}q^{3k-5}$. Let $B \cap H_i = \mathcal{B}(\pi_i), i = 1, \dots, s$, with π_i a plane.

Lemma 23 shows that $\mathcal{B}(\langle \pi_i, \pi_j \rangle) \subseteq B, 0 \leq i \neq j \leq s$.

If k = 2, the set $\mathcal{B}(\langle \pi_1, \pi_2 \rangle)$ corresponds to a linear 2-blocking set B' in $PG(n,q^3)$. Since B is minimal, B = B', and the Theorem is proven.

Let k > 2. Denote the (n - k + 1)-spaces through π different from H_i by $K_j, j = 1, ..., z$. There are at least $(q^{3k-3} - q^{3k-4} - 2\sqrt{q}q^{3k-5} - 1)/q^3$ different (n-k+2)-spaces $\langle H_1, H_j \rangle$, $1 < j \leq s$. If all (n-k+2)-spaces $\langle H_1, H_j \rangle$ contain at least $2q^2$ of the spaces K_i , then $z \geq 2q^2(q^{3k-3} - q^{3k-4} - 2\sqrt{q}q^{3k-5} - 1)/q^3$, a contradiction if $q \geq 49$. Let $\langle H_1, H_2 \rangle$ be an (n-k+2)-space containing less than $2q^2$ spaces K_i .

Suppose, by induction, that for any 1 < i < k, there is an (n - k + i)space $\langle H_1, H_2, \ldots, H_i \rangle$ containing at most $2q^{3i-4}$ of the spaces K_i , such that $\mathcal{B}(\langle \pi_1,\ldots,\pi_i\rangle)\subseteq B.$

 $\begin{array}{l} \mathcal{B}(\langle \pi_1, \ldots, \pi_i \rangle) \subseteq B. \\ \text{There are at least } \frac{q^{3k-3} - q^{3k-4} - 2\sqrt{q}q^{3k-5} - (q^{3i}-1)/(q^3-1)}{q^{3i}} \text{ different } (n-k+i+1) - \\ \text{spaces } \langle H_1, H_2, \ldots, H_i, H \rangle, \ H \not\subseteq \langle H_1, H_2, \ldots, H_i \rangle. \\ \text{ If all of these contain at least } 2q^{3i-1} \text{ of the spaces } K_i, \text{ then} \end{array}$

$$z \ge (2q^{3i-1} - 2q^{3i-4})\frac{q^{3k-3} - q^{3k-4} - 2\sqrt{q}q^{3k-5} - (q^{3i} - 1)/(q^3 - 1)}{q^{3i}} + 2q^{3i-4},$$

a contradiction if $q \ge 49$. Let $\langle H_1, \ldots, H_{i+1} \rangle$ be an (n-k+i+1)-space containing less than $2q^{3i-1}$ spaces K_i . We still need to prove that $\mathcal{B}(\pi_1,\ldots,\pi_{i+1}) \subseteq B$.

Since $\mathcal{B}(\langle \pi_{i+1}, \pi \rangle) \subseteq B$, with π a plane in $\langle \pi_1, \ldots, \pi_i \rangle$ for which $\mathcal{B}(\pi)$ is not contained in one of the spaces K_i , there are at most $2q^{3i-4}$ 4-dimensional spaces $\langle \pi_{i+1}, \mu \rangle$ for which $\mathcal{B}(\langle \pi_{i+1}, \mu \rangle)$ is not necessarily contained in B, giving rise to at most $2q^{3i-4}(q^6 + q^4\sqrt{q})$ points Q_i for which $\mathcal{B}(Q_i)$ is not necessarily in B. Let Q be a point of such a space $\langle \pi_{i+1}, \mu \rangle$.

There are $((q\sqrt{q})^{2i+2}-1)/(q\sqrt{q}-1)$ lines through Q in $\langle \pi_1, \ldots, \pi_{i+1} \rangle \cong$ PG $(2i+2, q\sqrt{q})$, and there are at most $2q^{3i-4}(q^6+q^4\sqrt{q})$ points Q_i for which $\mathcal{B}(Q_i)$ is not necessarily in B. Suppose all lines through Q in $\langle \pi_1, \ldots, \pi_{i+1} \rangle \cong$ $PG(2i+2, q\sqrt{q})$ contain at least $q\sqrt{q} - q - \sqrt{q}$ points Q_i for which $\mathcal{B}(Q_i)$ is not necessarily in B, then there are at least $(q\sqrt{q}-q-\sqrt{q}-1)((q\sqrt{q})^{2i+2}-1)/(q\sqrt{q}-1)$ 1) +1 > $2q^{3i-4}(q^6 + q^4\sqrt{q})$ points Q_i for which $\mathcal{B}(Q_i)$ is not necessarily in B, a contradiction.

Hence, there is a line N through Q in $\langle \pi_1, \ldots, \pi_{i+1} \rangle$ with at most $q\sqrt{q} - q - q$ $\sqrt{q} - 1$ points Q_i for which $\mathcal{B}(Q_i)$ is not necessarily contained in B, hence, for at least $q + \sqrt{q} + 2$ points $R \in N$, $\mathcal{B}(R) \in B$. Result 8 yields that $\mathcal{B}(Q) \in B$. This implies that $\mathcal{B}(\langle \pi_1, \ldots, \pi_{i+1} \rangle) \subseteq B$.

Hence, the space $\mathcal{B}(\langle H_1, H_2, \ldots, H_k \rangle)$ is such that $\mathcal{B}(\langle \pi_1, \ldots, \pi_k \rangle) \subseteq B$. But $\mathcal{B}(\langle \pi_1, \ldots, \pi_k \rangle)$ corresponds to a linear k-blocking set B' in $\mathrm{PG}(n, q^3)$. Since B is minimal, B = B'.

References

- [1] N.V. Harrach, K. Metsch, T. Szőnyi, and Zs. Weiner. Small point sets of $PG(n, p^{3h})$ intersecting each line in 1 mod p^h points. J. Geom., submitted.
- [2] N.V. Harrach and K. Metsch. Small point sets of $PG(n, q^3)$ intersecting each k-subspace in 1 mod q points. Des. Codes Cryptogr. 56 (2010), 235– 248.
- [3] M. Lavrauw. Scattered spaces with respect to spreads, and eggs in finite projective spaces. PhD Dissertation, Eindhoven University of Technology, Eindhoven, 2001. viii+115 pp.
- [4] M. Lavrauw and G. Van de Voorde. On linear sets on a projective line. Des. Codes Cryptogr. 56 (2010), 89–104.
- [5] G. Lunardon. Normal spreads. *Geom. Dedicata* **75** (1999), 245–261.
- [6] K. Metsch and L. Storme. Partial *t*-spreads in PG(2*t* + 1, *q*). Des. Codes Cryptogr. 18 (1999), 199–216.
- [7] O. Polverino and L. Storme. Small minimal blocking sets in PG(2, q³). European J. Combin. 23 (2002), no. 1, 83–92.
- [8] L. Storme and Zs. Weiner. On 1-blocking sets in PG(n,q), $n \ge 3$. Des. Codes Cryptogr. **21** (2000), no. 1-3, 235–251.
- [9] P. Sziklai. On small blocking sets and their linearity. J. Combin. Theory, Ser. A 115 (2008), no. 7, 1167–1182.
- [10] T. Szőnyi and Zs. Weiner. Small blocking sets in higher dimensions. J. Combin. Theory, Ser. A 95 (2001), no. 1, 88–101.
- [11] Zs. Weiner. Small point sets of PG(n,q) intersecting each k-space in 1 modulo \sqrt{q} points. Innov. Incidence Geom. 1 (2005), 171–180.