A decomposition of the universal embedding space for the near polygon \mathbb{H}_n

Bart De Bruyn

Ghent University, Department of Mathematics, Krijgslaan 281 (S22), B-9000 Gent, Belgium, E-mail: bdb@cage.ugent.be

Abstract

Let \mathbb{H}_n , $n \geq 1$, be the near 2*n*-gon defined on the 1-factors of the complete graph on $2n + 2$ vertices, and let e denote the absolutely universal embedding of \mathbb{H}_n into PG(W), where W is a $\frac{1}{n+2} {2n+2 \choose n+1}$ dimensional vector space over the field \mathbb{F}_2 with two elements. For every point z of \mathbb{H}_n and every $i \in \mathbb{N}$, let $\Delta_i(z)$ denote the set of points of \mathbb{H}_n at distance *i* from *z*. We show that for every pair $\{x, y\}$ of mutually opposite points of \mathbb{H}_n , W can be written as a direct sum $W_0 \oplus W_1 \oplus \cdots \oplus W_n$ such that the following four properties hold for every $i \in \{0, \ldots, n\}$: (1) $\langle e(\Delta_i(x) \cap \Delta_{n-i}(y)) \rangle = \text{PG}(W_i);$ (2) $\langle e\Big(\bigcup_{j\leq i}\Delta_j(x)\Big)\rangle = \mathrm{PG}(W_0\oplus W_1\oplus\cdots\oplus W_i);$ (3) $\langle e\Big(\bigcup_{j\leq i}\Delta_j(y)\Big)\rangle =$ $PG(W_{n-i} \oplus W_{n-i+1} \oplus \cdots \oplus W_n);$ (4) $\dim(W_i) = |\Delta_i(x) \cap \Delta_{n-i}(y)| =$ $\binom{n}{i}$ $\binom{n}{i}^2$ – $\binom{n}{i-1}$ $\binom{n}{i-1}$ \cdot $\binom{n}{i+1}$.

Keywords: projective embedding, generating set, universal embedding MSC2000: 51A45, 15A75, 51A50

1 Introduction

Let \mathbb{H}_n , $n \geq 1$, be the following point-line geometry:

• The points of \mathbb{H}_n are the partitions of $\{1, 2, \ldots, 2n+2\}$ in $n+1$ subsets of size 2.

• The lines of \mathbb{H}_n are the partitions of $\{1, 2, \ldots, 2n + 2\}$ in $n - 1$ subsets of size 2 and 1 subset of size 4.

• A point is incident with a line if and only if the partition corresponding to the point is a refinement of the partition corresponding to the line.

The point-line geometry \mathbb{H}_n , $n \geq 1$, is a so-called dense near polygon with three points per line. An alternative description of \mathbb{H}_n can be given where the points are the 1-factors of a complete graph on $2n + 2$ vertices. Indeed, there exists a natural bijective correspondence between the partitions of $\{1, 2, \ldots, 2n+2\}$ in $n+1$ subsets of size 2 and the 1-factors of the complete graph with vertex set $\{1, 2, \ldots, 2n + 2\}.$

The near polygon \mathbb{H}_n , $n \geq 1$, is embeddable into a projective space and hence admits the so-called absolutely universal embedding.

For every two points x and y of \mathbb{H}_n (i.e. partitions x and y of $\{1, \ldots, 2n+\}$ 2} in $n + 1$ subsets of size 2), let $\Gamma_{x,y}$ denote the graph with vertex set $\{1, 2, \ldots, 2n + 2\}$ and edge set $x \cup y$. Then the distance $d(x, y)$ between x and y in the collinearity graph of \mathbb{H}_n is equal to $n+1-N$, where N denotes the number of connected components of $\Gamma_{x,y}$. If x is a point of \mathbb{H}_n and $i \in \mathbb{N}$, then $\Delta_i(x)$ denotes the set of points at distance i from x and $\Delta_i^*(x)$ the set of points at distance at most i from x .

A set S of points of \mathbb{H}_n is called a *subspace* if every line of \mathbb{H}_n which has at least two points in S has all its points in S. If the smallest subspace of \mathbb{H}_n which contains a given set X of points coincides with the whole set of points of \mathbb{H}_n , then X is called a *generating set* of \mathbb{H}_n . In Blokhuis and Brouwer [1], it was mentioned that if x and y are two opposite points of \mathbb{H}_n and if $C(x, y)$ denotes the union of all geodesics from x to y, then $C(x, y)$ is a generating set of \mathbb{H}_n whose size is equal to the Catalan number $\frac{1}{n+2} \binom{2n+2}{n+1}$. In the present paper, we refine this result in the following way.

Theorem 1.1 Let x and y be two opposite points of the near polygon \mathbb{H}_n , $n \geq 1$, and put $X_i := \Delta_i(x) \cap \Delta_{n-i}(y)$, $i \in \{0, \ldots, n\}$. Then (1) $|X_i| = {n \choose i}$ $\binom{n}{i}^2$ – $\binom{n}{i-1}$ $\binom{n}{i-1}$ \cdot $\binom{n}{i+1}$;

 (2) $X_0 \cup X_1 \cup \cdots \cup X_n$ is a generating set of \mathbb{H}_n .

In the previous theorem and elsewhere in the paper, we have adopted the convention that $\binom{n}{i}$ $j_j^{(n)} = 0$ for every $n \in \mathbb{N}$ and every $j \in \mathbb{Z} \setminus \{0, \ldots, n\}$. Using Theorem 1.1, we are able to prove a decomposition theorem for the absolutely universal embedding of \mathbb{H}_n .

Theorem 1.2 Let e denote the absolutely universal embedding of \mathbb{H}_n , $n \geq 1$, into PG(W), where W is a $\frac{1}{n+2} {2n+2 \choose n+1}$ -dimensional vector space over the field \mathbb{F}_2 with two elements. Then for every pair $\{x, y\}$ of mutually opposite points of \mathbb{H}_n , W can be written as a direct sum $W_0 \oplus W_1 \oplus \cdots \oplus W_n$ such that the following four properties hold for every $i \in \{0, \ldots, n\}$:

- (1) $\langle e(\Delta_i(x) \cap \Delta_{n-i}(y)) \rangle = \text{PG}(W_i);$
- (2) $\langle e(\Delta_i^*(x)) \rangle = \text{PG}(W_0 \oplus W_1 \oplus \cdots \oplus W_i);$

(3) $\langle e(\Delta_i^*(y)) \rangle = \text{PG}(W_{n-i} \oplus W_{n-i+1} \oplus \cdots \oplus W_n);$ (4) dim $(W_i) = {n \choose i}$ $\binom{n}{i}^2$ – $\binom{n}{i-1}$ $\binom{n}{i-1}$ \cdot $\binom{n}{i+1}$.

Remark A. In the literature, decomposition theorems for other projective embeddings of dense near polygons have been proved:

• the Grassmann embeddings of symplectic dual polar spaces [5, Theorem 1.1], see also [8] for another approach;

• the spin-embeddings of some dual polar spaces and the near polygons \mathbb{H}_n and \mathbb{I}_n [6, Theorem 1.7];

• the Grassmann embeddings of Hermitian dual polar spaces [7, Theorem 1.4].

Remark B. Theorems 1.1 and 1.2 can also be deduced from the decomposition theorem for the Grassmann embedding of the symplectic dual polar space $DW(2n-1, 2)$. Such an approach would be highly artificial and not very elegant. Indeed, a proof of Theorem 1.1 which needs the introduction of a 2n-dimensional vector space V equipped with a nondegenerate alternating bilinear form and technical computations in the exterior algebra of V is quite a detour. The approach discussed in the present paper avoids all this machinery. Notice that in the proof of Theorem 1.2, we introduce a symplectic dual polar space $DW(2n-1, 2)$ but we only need to invoke some elementary properties of this dual polar space.

2 Preliminaries

2.1 A recursively defined series of numbers

In this section, we define in a recursive way numbers $f_n(k, l)$, $n \in \mathbb{N} \setminus \{0, 1\}$ and $k, l \in \{0, \ldots, n\}$, and give a closed expression for these numbers.

The numbers $f_2(k, l), k, l \in \{0, 1, 2\}$, are defined in the following table.

For every $n \geq 3$ and $k, l \in \{0, \ldots, n\}$, we define

- If k is even and $l = n$, then we define $f_n(k, l) := 0$.
- If k is odd and $l = 0$, then we define $f_n(k, l) := 0$.
- If $k = 0$ and $l \neq n$, then we define $f_n(k, l) := \sum_{i=0}^{n-1} f_{n-1}(i, l)$.
- If $k \neq 0$ is even and $l \neq n$, then we define $f_n(k, l) := \sum_{i=k-1}^{n-1} f_{n-1}(i, l)$.
- If k is odd and $l \neq 0$, then we define $f_n(k, l) := \sum_{i=k-1}^{n-1} f_{n-1}(i, l-1)$.

It was show in De Bruyn [5, Section 2] that for every $n \in \mathbb{N} \setminus \{0, 1\}$ and all $k, l \in \{0, 1, ..., n\}$, we have

$$
f_n(k,l) = \binom{n-1-\lfloor \frac{k}{2} \rfloor}{l-\lfloor \frac{k+1}{2} \rfloor} \cdot \binom{n-\lfloor \frac{k+1}{2} \rfloor}{l+\frac{(-1)^k-1}{2}} - \binom{n-1-\lfloor \frac{k}{2} \rfloor}{l-1-\lfloor \frac{k+1}{2} \rfloor} \cdot \binom{n-\lfloor \frac{k+1}{2} \rfloor}{l+\frac{(-1)^k+1}{2}}.
$$

2.2 The big maxes of \mathbb{H}_n

A near polygon is a partial linear space $\mathcal{S} = (\mathcal{P}, \mathcal{L}, I), I \subseteq \mathcal{P} \times \mathcal{L}$, with the property that for every point x and every line L , there exists a unique point on L nearest to x. Here, distances are measured in the collinearity graph Γ of S. If n is the diameter of Γ , then the near polygon is called a near 2n-gon. A near 0-gon is just a point and a near 2-gon is a line. Near quadrangles are usually called generalized quadrangles (Payne and Thas [10]).

A near polygon is called dense if every line is incident with at least three points and if every two points at distance 2 from each other have at least two common neighbors. By Theorem 4 of Brouwer and Wilbrink [3], every two points of a dense near $2n$ -gon at distance $\delta \in \{0, \ldots, n\}$ from each other are contained in a unique convex sub- 2δ -gon. These sub- 2δ -gons are called quads if $\delta = 2$ and maxes if $\delta = n-1$. The existence of quads in a dense near polygon was already shown by Shult and Yanushka [12, Proposition 2.5].

A max M of a dense near polygon S is called big in S if every point x of S not contained in M is collinear with a necessarily unique point $\pi_M(x)$ of M. If M is big in S and x is a point of S not contained in M, then $d(x, y) = 1 + d(\pi_M(x), y)$ for every point y of M. If M is big in S and every line of S is incident with precisely three points, then a reflection \mathcal{R}_M about M can be defined which is an automorphism of S (see [4, Theorem 1.11). If $x \in M$, then we define $\mathcal{R}_M(x) := x$. If $x \notin M$, then $\mathcal{R}_M(x)$ denotes the unique point of the line $x\pi_M(x)$ different from x and $\pi_M(x)$. More information on dense near polygons can be found in the book [4].

Let \mathbb{H}_n , $n \geq 2$, be the dense near 2*n*-gon defined on the partitions of $\{1, 2, \ldots, 2n + 2\}$ in $n + 1$ subsets of size 2 (see Section 1). There exists a bijective correspondence between the big maxes of \mathbb{H}_n and the subsets of size 2 of $\{1, 2, \ldots, 2n + 2\}$. If $\{i, j\}$ is a subset of size 2 of $\{1, 2, \ldots, 2n + 2\}$, then the set of all partitions P of $\{1, 2, ..., 2n + 2\}$ for which $\{i, j\} \in P$ is a big

max $M[i, j]$ of \mathbb{H}_n . Conversely, every big max of \mathbb{H}_n is obtained in this way. The point-line geometry M induced on a big max M (by the points and lines which are contained in it) is isomorphic to \mathbb{H}_{n-1} . Suppose now that $\{i_1, j_1\}$ and $\{i_2, j_2\}$ are two distinct subsets of size 2 of $\{1, 2, ..., 2n + 2\}$. If $\{i_1, j_1\} \cap \{i_2, j_2\} = \emptyset$, then the big maxes $M[i_1, j_1]$ and $M[i_2, j_2]$ meet. If $\{i_1, j_1\} \cap \{i_2, j_2\}$ is a singleton, say $\{i_1\} = \{i_2\}$, then the reflection of $M[i_1, j_1]$ about $M[i_2, j_2] = M[i_1, j_2]$ is equal to the big max $M[j_1, j_2]$. More information about the near polygon \mathbb{H}_n can be found in [4, Section 6.2].

2.3 The absolutely universal embedding of \mathbb{H}_n

By Ronan [11], every point-line geometry $S = (\mathcal{P}, \mathcal{L}, I)$, $I \subseteq \mathcal{P} \times \mathcal{L}$ with three points per line which is fully embeddable into a projective space admits the absolutely universal embedding which is obtained in the following way. Let V be a vector space over the field \mathbb{F}_2 with a basis B whose vectors are indexed by the elements of P, say $B = {\bar{e}_p | p \in P}$. Let W denote the subspace of V generated by all vectors $\bar{e}_{p_1} + \bar{e}_{p_2} + \bar{e}_{p_3}$, where $\{p_1, p_2, p_3\}$ is a line of S. Then the map $p \in \mathcal{P} \mapsto {\bar{e}_p + W, W}$ defines a full embedding of S into the projective space $PG(V/W)$. This full embedding is isomorphic to the so-called absolutely universal embedding of S .

The absolutely universal embedding of the near polygon \mathbb{H}_n , $n \geq 1$, is described in Blokhuis and Brouwer [1, Section 3]. Let V be a $(2n + 2)$ dimensional vector space over \mathbb{F}_2 with basis $\{\bar{e}_1, \bar{e}_2, \ldots, \bar{e}_{2n+2}\}.$ For every point $P = \{\{i_1, i_2\}, \{i_3, i_4\}, \ldots, \{i_{2n+1}, i_{2n+2}\}\}\$ of \mathbb{H}_n , put $e(P)$ equal to the point $\langle (\bar{e}_{i_1} + \bar{e}_{i_2}) \wedge (\bar{e}_{i_3} + \bar{e}_{i_4}) \wedge \cdots \wedge (\bar{e}_{i_{2n+1}} + \bar{e}_{i_{2n+2}}) \rangle$ of PG($\bigwedge^{n+1} V$). Then e defines a full embedding of \mathbb{H}_n into a subspace of $PG(\Lambda^{n+1}V)$ of dimension $\frac{1}{n+2} \binom{2n+2}{n+1}$. This projective embedding is isomorphic to the absolutely universal embedding of \mathbb{H}_n .

3 Proof of Theorem 1.1

3.1 A generating set of points of \mathbb{H}_n

Suppose the points of \mathbb{H}_n , $n \geq 1$, are the 1-factors of the complete graph K_{2n+2} , and suppose the $2n+2$ vertices of K_{2n+2} are drawn as the vertices of a convex $(2n + 2)$ -gon $\mathbb P$ in the plane. Blokhuis and Brouwer [1] proved that the set Y^* of all 1-factors of K_{2n+2} without crossing edges is a generating set of \mathbb{H}_n . They also mentioned that the cardinality of Y^* is equal to the Catalan number $\frac{1}{n+2} {2n+2 \choose n+1}$, and referred to van Lint [9, Section 3.1] for a proof of this fact.

In [1] another more geometric description of the generating set Y^* was given. Suppose x and y are two opposite vertices of the near polygon \mathbb{H}_n such that x and y are alternating edges of \mathbb{P} . Then the above generating set Y^* of vertices coincides with the union $C(x, y)$ of all geodesics between x and y. The proof given in $[1]$ seems however not to be valid. (The claims $c(x \cup z) + c(y \cup z) = n + 1 - cr(z)$ and $d(x, z) + d(y, z) = n - 1 + cr(z)$ on lines -15, -14 and -13 of page 300 do have counter examples; in fact, there might exist 1-factors z for which $cr(z) > n+1$.) We will now give a proof of this claim since we will need it in the present paper.

Proposition 3.1 The generating set Y^* is equal to $C(x, y)$.

Proof. We start with the proof of two similar properties.

Claim I. If $z \in C(x, y)$, then there exists an edge in z which is also an edge of x or y.

PROOF. Since $d(x, z) + d(z, y) = n$, we have $d(x, z) \leq \frac{n}{2}$ $\frac{n}{2}$ or $d(y, z) \leq \frac{n}{2}$ $\frac{n}{2}$.

Suppose $k := d(x, z) \leq \frac{n}{2}$ $\frac{n}{2}$ and let $x = z_0, z_1, \ldots, z_k = z$ be a shortest path between x and z. The 1-factor x has $n+1$ edges. Let N_i , $i \in \{0, ..., k\}$, denote the number of edges of x which are also edges of z_i . Then $N_0 = n + 1$ and $|N_i - N_{i+1}| \leq 2$ for every $i \in \{0, \ldots, k-1\}$. Hence, $N_k \geq N_0 - 2k \geq$ $(n+1)-2\cdot \frac{n}{2}=1$. So, there is an edge in z which is also an edge of x.

In a similar way, one proves that if $d(y, z) \leq \frac{n}{2}$ $\frac{n}{2}$, then there is an edge in z which is also an edge of y . (qed)

Claim II. If $z \in Y^*$, then there is an edge of z which is also an edge of either x or y.

PROOF. We define a distance function $dist(\cdot, \cdot)$ on the set of vertices of \mathbb{P} . If i_1 and i_2 are two vertices of \mathbb{P} , then $dist(i_1, i_2)$ is the smallest nonnegative integer k for which there exist $k + 1$ vertices j_0, j_1, \ldots, j_k of \mathbb{P} satisfying (a) $j_0 = i_1$, (b) $j_k = i_2$, (c) j_{i-1}, j_i are neighboring vertices of $\mathbb P$ for every $i \in \{1, \ldots, k\}.$

Now, let $\{i_1, i_2\}$ be an edge of z for which $dist(i_1, i_2)$ is as small as possible and suppose that $dist(i_1, i_2) > 1$. Let i_3 be a vertex of P which lies on a shortest path γ from i_1 to i_2 and let i_4 be the unique vertex of $\mathbb P$ such that ${i_3, i_4}$ is an edge of z. Since there are no crossing edges of z, also i_4 is contained on the path γ . It follows that $dist(i_3, i_4) < dist(i_1, i_2)$, contradicting the minimality of $dist(i_1, i_2)$. Hence, $dist(i_1, i_2) = 1$ and the edge $\{i_1, i_2\}$ of z is also an edge of either x or y. (qed)

We will now prove the proposition by induction on $n \geq 1$. Suppose first that $n = 1$. Label the vertices of \mathbb{P} with the numbers 1, 2, 3 and 4 such that $x = \{\{1, 2\}, \{3, 4\}\}\$ and $y = \{\{2, 3\}, \{1, 4\}\}\$. One has $C(x, y) = Y^* = \{x, y\}$.

We will now suppose that $n \geq 2$. By Claims I and II, it suffices to prove that $z \in Y^* \Leftrightarrow z \in C(x, y)$ for 1-factors z which contain a given edge $\{i_1, i_2\}$ of either x or y. Without loss of generality, we may suppose that $\{i_1, i_2\}$ is an edge of x. Let i_0, i_3 denote the unique vertex of $\mathbb P$ such that $\{i_0, i_1\}$ and $\{i_2, i_3\}$ are edges of Y. Let K_{2n} denote the complete graph on the set of vertices of $\mathbb P$ distinct from i_1 and i_2 and let \mathbb{H}_{n-1} denote the near polygon defined on the 1-factors of K_{2n} . Let x' denote the 1-factor of K_{2n} obtained from x by removing the edge $\{i_1, i_2\}$ and let y' denote the 1-factor of K_{2n} obtained from y by removing the edges $\{i_0, i_1\}, \{i_2, i_3\}$ and adding the edge $\{i_0, i_3\}$. Then x' and y' are opposite vertices of \mathbb{H}_{n-1} . For every 1-factor w of K_{2n} , let $\theta(w)$ denote the 1-factor of K_{2n+2} obtained from w by adding the edge $\{i_1, i_2\}$. Then θ defines an isomorphism between \mathbb{H}_{n-1} and a big max M of \mathbb{H}_n . We have $\theta(x') = x$ and $\theta(y')$ is the unique point of M collinear with y. Moreover, $d(y, u) = 1 + d(\theta(y'), u)$ for every point u of M. The following should now be obvious:

(a) A point u of \mathbb{H}_{n-1} lies on a shortest path between x' and y' if and only if $\theta(u')$ lies on a shortest path between x and y.

(b) By the induction hypothesis, a point u of \mathbb{H}_{n-1} lies on a shortest path between x' and y' if and only if u, regarded as 1-factor of K_{2n} , has no crossing edges.

(c) u, regarded as a 1-factor of K_{2n} has no crossing edges if and only if the 1-factor $\theta(u)$ of K_{2n+2} has no crossing edges.

By (a), (b), (c) above, the statement $z \in Y^* \Leftrightarrow z \in C(x, y)$ holds for all 1factors z which contain the edge $\{i_1, i_2\}$. This was precisely what we needed to prove. \Box

As mentioned above, Blokhuis and Brouwer [1] proved that the set Y^* is a generating set of \mathbb{H}_n . In view of Proposition 3.1, it is then clear that also the set $C(x, y)$ is a generating set of points of \mathbb{H}_n . This fact can also be shown in a direct way.

Proposition 3.2 $C(x, y)$ is a generating set of \mathbb{H}_n .

Proof. We will prove the proposition by induction on n. Obviously, the proposition holds if $n = 1$. So, we will suppose that $n \geq 2$. We will regard the points of \mathbb{H}_n as partitions of $\{1, 2, \ldots, 2n + 2\}$ in $n + 1$ subsets of size 2. Without loss of generality, we may suppose that $x = \{ \{1, 2\}, \{3, 4\}, \ldots, \{2n+\}$ $\{1, 2n+2\}\}\$ and $y = \{\{2, 3\}, \{4, 5\}, \ldots, \{2n+2, 1\}\}\$. Let S denote the smallest subspace of \mathbb{H}_n containing $C(x, y)$.

We will prove that all big maxes $M[i, i + 1], i \in \{1, ..., 2n + 1\},\$ contained in S. If i is odd, then $x \in M[i, i + 1]$ and $y \notin M[i, i + 1]$. In this case, we define $x' := x$ and y' denotes the unique point of $M[i, i + 1]$ collinear with y. If i is even, then $x \notin M[i, i + 1]$ and $y \in M[i, i + 1]$. In this case, we define $y' := y$ and x' denotes the unique point of $M[i, i+1]$ collinear with x. Then $C(x', y') \subseteq C(x, y)$. Since x' and y' are opposite points of $\widetilde{M[i, i + 1]} \cong \mathbb{H}_{n-1}$, the smallest subspace of \mathbb{H}_n containing $C(x', y')$ coincides with $M[i, i+1]$ by the induction hypothesis. Hence, $M[i, i+1] \subseteq S$.

Notice that if i_1 , i_2 and i_3 are three distinct elements of $\{1, 2, \ldots, 2n+2\}$ such that $M[i_1, i_2] \subseteq S$ and $M[i_1, i_3] \subseteq S$, then also $M[i_2, i_3] \subseteq S$ since $M[i_2, i_3]$ is the reflection of $M[i_1, i_3]$ about $M[i_1, i_2]$. By the previous paragraph it then follows that all big maxes $M[i, j], i, j \in \{1, ..., 2n + 2\}$ and $i \neq j$, are contained in S. Since every point of \mathbb{H}_n is contained in a big max, $C(x, y)$ is a generating set of \mathbb{H}_n .

The following proposition improves Claim I of Proposition 3.1.

Proposition 3.3 Let $z \in C(x, y)$ and let E denote a set of $n+1$ consecutive edges of the polygon \mathbb{P} . Then there is an edge in z which is contained in E.

Proof. We label the points of \mathbb{P} by the numbers $1, 2, ..., 2n + 2$, either clockwise or counterclockwise. Without loss of generality, we may suppose that $E = \{\{1, 2\}, \{2, 3\}, \ldots, \{n + 1, n + 2\}\}\.$ Let $\{j, i_j\}$ denote the edge of z containing the vertex with label $j \in \{1, ..., n+1\}$. If $i_j = j+1$ for a certain $j \in \{1, \ldots, n+1\}$, then we are done.

In the sequel, we suppose that $i_j \neq j + 1$ for every $j \in \{1, \ldots, n + 1\}$ and derive a contradiction. We prove by induction on $j \in \{1, \ldots, n+1\}$ that (a) $i_j > j+1$ and (b) $i_j < i_{j-1}$ if $j \neq 1$. Since $i_1 \neq 2$, these claims hold if $j = 1$. So, suppose $j \in \{2, \ldots, n+1\}$. Since $\{j-1, i_{j-1}\}$ and $\{j, i_j\}$ are non-crossing edges and $i_{j-1} > j$, we have that $i_j \in \{j+1, \ldots, i_{j-1}-1\}$. Since $i_j \neq j+1$, we have $i_j > j + 1$ and $i_j < i_{j-1}$.

In particular, we have $i_{n+1} \leq i_1 - n \leq 2n+2-n = n+2$ and $i_{n+1} > n+2$, clearly a contradiction. \Box

3.2 The sizes of the sets $\Delta_i(x) \cap \Delta_{n-i}(y)$

Consider the near polygon \mathbb{H}_n , $n \geq 2$, whose points are the partitions of $\{1, 2, \ldots, 2n+2\}$ in $n+1$ subsets of size 2. Let x and y be two points of \mathbb{H}_n at maximal distance from each other. Since the automorphism group of \mathbb{H}_n acts transitively on the ordered pairs of opposite points of \mathbb{H}_n , we may without loss of generality suppose that $x = \{\{1, 2\}, \{3, 4\}, \dots, \{2n + 1, 2n + 2\}\}\$ and $y =$ $\{\{2,3\},\{4,5\},\ldots,\{2n,2n+1\},\{2n+2,1\}\}\.$ For every $i \in \{1,2,\ldots,2n+1\},\$ we define $M_i := M[i, i + 1]$. We also define $M_{2n+2} := M[1, 2n + 2]$. We call ${M_1, M_2, \ldots, M_{2n+2}}$ the nice set of big maxes of \mathbb{H}_n induced by (x, y) .

The following corollary is an immediate consequence of Proposition 3.3.

Corollary 3.4 We have $C(x, y) \subseteq M_1 \cup M_2 \cup \cdots \cup M_{n+1}$.

For all $k, l \in \{0, \ldots, n\}$, let $Y_n(k, l)$ denote the set of all points of $\Delta_l(x) \cap$ $\Delta_{n-l}(y)$ which are contained in $M_{k+1} \setminus (M_1 \cup \cdots \cup M_k)$ and put $g_n(k, l) :=$ $|Y_n(k, l)|$. Notice that the sets $Y_n(k, l)$, $k, l \in \{0, ..., n\}$, are mutually disjoint. Notice also that since $M_k \cap M_{k+1} = \emptyset$, we also have $M_{k+1} \setminus (M_1 \cup$ $\cdots \cup M_k = M_{k+1} \setminus (M_1 \cup \cdots \cup M_{k-1}).$ (Here, $M_1 \cup \cdots \cup M_k = \emptyset$ if $k = 0$) and $M_1 \cup \cdots \cup M_{k-1} = \emptyset$ if $k \in \{0,1\}$.) The following is an immediate consequence of Corollary 3.4.

Corollary 3.5 (1) For every $l \in \{0, \ldots, n\}$, we have $\Delta_l(x) \cap \Delta_{n-l}(y) =$ $\bigcup_{0\leq k\leq n} Y_n(k,l).$ (2) $C(x, y) = \bigcup_{0 \leq k, l \leq n} Y_n(k, l).$

Lemma 3.6 We have $g_2(0,0) = 1$, $g_2(0,1) = 1$, $g_2(0,2) = 0$, $g_2(1,0) = 0$, $g_2(1, 1) = 1, g_2(1, 2) = 1, g_2(2, 0) = 0, g_2(2, 1) = 1$ and $g_2(2, 2) = 0$.

Proof. We have $x = \{\{1, 2\}, \{3, 4\}, \{5, 6\}\}\$, $y = \{\{2, 3\}, \{4, 5\}, \{1, 6\}\}\$ $M_1 = M[1, 2], M_2 = M[2, 3]$ and $M_3 = M[3, 4]$. It is straightforward to verify that

$$
Y_2(0,0) = \{\{\{1,2\}, \{3,4\}, \{5,6\}\}\} = \{x\},
$$

\n
$$
Y_2(0,1) = \{\{\{1,2\}, \{4,5\}, \{3,6\}\}\},
$$

\n
$$
Y_2(1,1) = \{\{\{2,3\}, \{5,6\}, \{1,4\}\}\},
$$

\n
$$
Y_2(1,2) = \{\{\{2,3\}, \{4,5\}, \{1,6\}\}\} = \{y\},
$$

\n
$$
Y_2(2,1) = \{\{\{3,4\}, \{1,6\}, \{2,5\}\}\},
$$

\n
$$
Y_2(0,2) = Y_2(1,0) = Y_2(2,0) = Y_2(2,2) = \emptyset.
$$

The values of $g_2(k, l)$, $k, l \in \{0, 1, 2\}$, follow.

In Lemmas 3.7, 3.8, 3.9 and 3.10 below, we suppose that $n \geq 3$ and that k and l are elements of the set $\{0, \ldots, n\}$.

Lemma 3.7 (1) If k is even and $l = n$, then $g_n(k, l) = 0$. (2) If k is odd and $l = 0$, then $g_n(k, l) = 0$.

Proof. (1) If k is even, then the max M_{k+1} does not contain y. Hence, $g_n(k, l) = 0$ if k is even and $l = n$.

(2) If k is odd, then the max M_{k+1} does not contain x. Hence, $g_n(k, l) = 0$ if k is odd and $l = 0$. **Lemma 3.8** If $k = 0$ and $l \neq n$, then $g_n(k, l) = \sum_{i=0}^{n-1} g_{n-1}(i, l)$.

Proof. The max M_1 contains the point x, but not the point y. Let y' denote the unique point of M_1 collinear with y. Then x and y' are opposite points of \overline{M}_1 and $\Delta_l(x) \cap \Delta_{n-l}(y) \cap M_1 = \Delta_l(x) \cap \Delta_{n-1-l}(y') \cap M_1$. By Corollary 3.5(1), the size of $\Delta_l(x) \cap \Delta_{n-1-l}(y') \cap M_1$ is equal to $\sum_{i=0}^{n-1} g_{n-1}(i,l)$. This equals the size $g_n(0, l)$ of $\Delta_l(x) \cap \Delta_{n-l}(y) \cap M_1$.

Lemma 3.9 If $k \neq 0$ is even and $l \neq n$, then $g_n(k, l) = \sum_{i=k-1}^{n-1} g_{n-1}(i, l)$.

Proof. The max M_{k+1} contains the point x, but not the point y. Let y' denote the unique point of M_{k+1} collinear with y. Then x and y' are opposite points of $\widetilde{M_{k+1}}$ and $\Delta_l(x) \cap \Delta_{n-l}(y) \cap M_{k+1} = \Delta_l(x) \cap \Delta_{n-1-l}(y') \cap$ M_{k+1} . Suppose the points of the near polygon \mathbb{H}_{n-1} are the partitions of $\{1, 2, \ldots, 2n + 2\} \setminus \{k + 1, k + 2\}$ in *n* subsets of size 2. For every point u of \mathbb{H}_{n-1} , let $\theta(u)$ denote the partition of $\{1, 2, \ldots, 2n+2\}$ obtained from u by adding the subset $\{k+1, k+2\}$. Then θ defines an isomorphism between \mathbb{H}_{n-1} and $\widetilde{M_{k+1}}$. We have

$$
\theta^{-1}(x) = \{ \{1, 2\}, \ldots, \{k - 1, k\}, \{k + 3, k + 4\}, \ldots, \{2n + 1, 2n + 2\} \},\
$$

$$
\theta^{-1}(y') = \{ \{2, 3\}, \dots, \{k-2, k-1\}, \{k, k+3\}, \{k+4, k+5\}, \dots, \{2n+2, 1\} \}.
$$

Now, define the following maxes:

$$
M'_{i} := M[i, i+1] \cap M_{k+1}, \quad i \in \{1, ..., k-1\};
$$

\n
$$
M'_{k} := M[k, k+3] \cap M_{k+1};
$$

\n
$$
M'_{i} := M[i+2, i+3] \cap M_{k+1}, \quad i \in \{k+1, ..., 2n-1\};
$$

\n
$$
M'_{2n} := M[1, 2n+2] \cap M_{k+1}.
$$

Then it is clear that $\{M'_1, M'_2, \ldots, M'_{2n}\}$ is the nice set of maxes of $\widetilde{M_{k+1}} \cong$ \mathbb{H}_{n-1} induced by (x, y') . The $g_n(k, l)$ points of $\Delta_l(x) \cap \Delta_{n-l}(y) \cap M_{k+1}$ which are not contained in $M_1 \cup M_2 \cup \cdots \cup M_k$ are precisely the points of $\Delta_l(x) \cap$ $\Delta_{n-1-l}(y') \cap M_{k+1}$, which are not contained in $M'_1 \cup M'_2 \cup \cdots \cup M'_{k-1}$. By Corollary 3.5(1), there are $\sum_{i=k-1}^{n-1} g_{n-1}(i, l)$ such points. \Box

Lemma 3.10 If k is odd and $l \neq 0$, then $g_n(k, l) = \sum_{i=k-1}^{n-1} g_{n-1}(i, l-1)$.

Proof. The max M_{k+1} contains the point y, but not the point x. Let x' denote the unique point of M_{k+1} collinear with x. Then x' and y are opposite points of $\widetilde{M_{k+1}}$ and $\Delta_l(x) \cap \Delta_{n-l}(y) \cap M_{k+1} = \Delta_{l-1}(x') \cap \Delta_{n-l}(y) \cap$ M_{k+1} . Suppose the points of the near polygon \mathbb{H}_{n-1} are the partitions of $\{1, 2, \ldots, 2n+2\} \setminus \{k+1, k+2\}$ in *n* subsets of size 2. For every point u

of \mathbb{H}_{n-1} , let $\theta(u)$ denote the partition of $\{1, 2, \ldots, 2n+2\}$ obtained from u by adding the subset $\{k+1, k+2\}$. Then θ defines an isomorphism between \mathbb{H}_{n-1} and $\widetilde{M_{k+1}}$. We have

$$
\theta^{-1}(x') = \{\{1, 2\}, \dots, \{k-2, k-1\}, \{k, k+3\}, \{k+4, k+5\}, \dots, \{2n+1, 2n+2\}\},\
$$

$$
\theta^{-1}(y) = \{\{2, 3\}, \dots, \{k-1, k\}, \{k+3, k+4\}, \dots, \{2n+2, 1\}\}.
$$

Now, define the following maxes:

$$
M'_{i} := M[i, i+1] \cap M_{k+1}, \quad i \in \{1, ..., k-1\};
$$

\n
$$
M'_{k} := M[k, k+3] \cap M_{k+1};
$$

\n
$$
M'_{i} := M[i+2, i+3] \cap M_{k+1}, \quad i \in \{k+1, ..., 2n-1\};
$$

\n
$$
M'_{2n} := M[1, 2n+2] \cap M_{k+1}.
$$

Then it is clear that $\{M'_1, M'_2, \ldots, M'_{2n}\}$ is the nice set of maxes of $\widetilde{M_{k+1}} \cong$ \mathbb{H}_{n-1} induced by (x', y) . The $g_n(k, l)$ points of $\Delta_l(x) \cap \Delta_{n-l}(y) \cap M_{k+1}$ which are not contained in $M_1 \cup M_2 \cup \cdots \cup M_k$ are precisely the points of $\Delta_{l-1}(x') \cap$ $\Delta_{n-l}(y) \cap M_{k+1}$ which are not contained in $M'_1 \cup M'_2 \cup \cdots \cup M'_{k-1}$. By Corollary 3.5(1), there are $g_n(k, l) = \sum_{i=k-1}^{n-1} g_{n-1}(i, l-1)$ such points. \Box

By Lemmas 3.6, 3.7, 3.8, 3.9, 3.10 and Section 2.1, we have:

Corollary 3.11 For all $k, l \in \{0, 1, \ldots, n\}$, we have

$$
g_n(k,l) = \binom{n-1-\lfloor \frac{k}{2} \rfloor}{l-\lfloor \frac{k+1}{2} \rfloor} \cdot \binom{n-\lfloor \frac{k+1}{2} \rfloor}{l+\frac{(-1)^k-1}{2}} - \binom{n-1-\lfloor \frac{k}{2} \rfloor}{l-1-\lfloor \frac{k+1}{2} \rfloor} \cdot \binom{n-\lfloor \frac{k+1}{2} \rfloor}{l+\frac{(-1)^k+1}{2}}.
$$

Proposition 3.12 For every $l \in \{0, ..., n\}$, we have $|\Delta_l(x) \cap \Delta_{n-l}(y)| =$ $\binom{n}{1}$ $\binom{n}{l}^2$ – $\binom{n}{l-1}$ $\binom{n}{l+1}$ · $\binom{n}{l+1}$.

Proof. By Corollary 3.5(1), Lemma 3.8 and Corollary 3.11, we have

$$
|\Delta_l(x) \cap \Delta_{n-l}(y)| = \sum_{i=0}^n g_n(i,l) = g_{n+1}(0,l)
$$

=
$$
{n \choose l} \cdot {n+1 \choose l} - {n \choose l-1} \cdot {n+1 \choose l+1}
$$

=
$$
{n \choose l} \cdot \left[{n+1 \choose l} - {n \choose l-1} \right] - {n \choose l-1} \cdot \left[{n+1 \choose l+1} - {n \choose l} \right]
$$

=
$$
{n \choose l}^2 - {n \choose l-1} \cdot {n \choose l+1}.
$$

Remarks. (1) We have $|C(x, y)| = \sum_{l=0}^{n} {n \choose l}$ $\binom{n}{l}^2$ – $\binom{n}{l-1}$ $\binom{n}{l-1} \cdot \binom{n}{l+1} = \sum_{l=0}^{n} \binom{n}{l}$ $\binom{n}{l}$. $\binom{n}{n}$ $\binom{n}{n-l} - \sum_{l=0}^{n} \binom{n}{l-1}$ $\binom{n}{l-1}$ · $\binom{n}{n-l}$ $\binom{n}{n-l-1}$ = $\binom{2n}{n}$ $\binom{2n}{n}$ - $\binom{2n}{n-1}$ $\binom{2n}{n-2} = \frac{1}{n+2} \binom{2n+2}{n+1}$. It was already mentioned above that $Y^* = C(x, y)$ and $|Y^*| = \frac{1}{n+2} {2n+2 \choose n+1}$.

(2) Notice that the conclusion of Proposition 3.12 is also valid for the near polygon \mathbb{H}_1 (which is a line with three points).

4 Proof of Theorem 1.2

Theorem 1.2 trivially holds if $n = 1$. So, we will suppose that $n \geq 2$.

Lemma 4.1 Suppose e is the absolutely universal embedding of \mathbb{H}_n into $PG(W)$ and that x and y are two opposite points of \mathbb{H}_n . If W_i , $i \in \{0, \ldots, n\}$, is the subspace of W for which $PG(W_i) = \langle e(\Delta_i(x) \cap \Delta_{n-i}(y)) \rangle$, then

- (1) $W = W_0 \oplus W_1 \oplus \cdots \oplus W_n$,
- (2) dim $(W_i) = {n \choose i}$ $\binom{n}{i}^2$ - $\binom{n}{i-1}$ $\binom{n}{i+1} \cdot \binom{n}{i+1}$ for every $i \in \{0, \ldots, n\}.$

Proof. In Blokhuis and Brouwer [1], it as shown that $e(C(x, y))$ is an independent generating set of points of the projective space $PG(W)$. The lemma then follows from Proposition 3.12. \Box

Let V be a $(2n + 2)$ -dimensional vector space over \mathbb{F}_2 with basis $\{\bar{e}_1, \bar{e}_2, \ldots, \bar{e}_n\}$ \bar{e}_{2n+2} . Put $\bar{e} = \bar{e}_1 + \bar{e}_2 + \cdots + \bar{e}_{2n+2}$. Let V' denote the subspace of V consisting of all vectors of the form $\sum_{i=1}^{2n+2} \lambda_i \bar{e}_i$ where $\lambda_1 + \lambda_2 + \cdots + \lambda_{2n+2} = 0$. If $\bar{x} = \sum_{i=1}^{2n+2} \lambda_i \bar{e}_i$ and $\bar{y} = \sum_{i=1}^{2n+2} \mu_i \bar{e}_i$ are two vectors of V', then we define $(\bar{x}, \bar{y}) = \sum_{i=1}^{n} \lambda_i \mu_i$. Then (\cdot, \cdot) is an alternating bilinear form on V' whose radical is equal to $\langle \bar{e} \rangle$. Let $DW(2n - 1, 2)$ denote the point-line geometry whose points, respectively lines, are the $(n + 1)$ -dimensional, respectively n -dimensional, subspaces of V' which are totally isotropic with respect to (\cdot, \cdot) , with incidence being reverse containment. Then $DW(2n-1, 2)$ is a symplectic dual polar space of rank n. Let A and B denote the following mutually opposite points of $DW(2n - 1, 2)$:

$$
A = \langle \bar{e}, \bar{e}_1 + \bar{e}_2, \bar{e}_3 + \bar{e}_4, \dots, \bar{e}_{2n-1} + \bar{e}_{2n} \rangle, B = \langle \bar{e}, \bar{e}_2 + \bar{e}_3, \bar{e}_4 + \bar{e}_5, \dots, \bar{e}_{2n} + \bar{e}_{2n+1} \rangle.
$$

We can write

$$
\bar{e} \wedge \bigwedge^{n} V' = U_0 \oplus U_1 \oplus \cdots \oplus U_n, \qquad (1)
$$

where $U_i, i \in \{0, \ldots, n\}$, is the subspace of $\bigwedge^{n+1} V'$ generated by all vectors of the form $\bar{e} \wedge \bar{a}_1 \wedge \cdots \bar{a}_{n-i} \wedge \bar{b}_{n-i+1} \wedge \cdots \wedge \bar{b}_n$, where $\bar{a}_1, \ldots, \bar{a}_{n-i} \in A$ and $\bar{b}_{n-i+1}, \ldots, \bar{b}_n \in B$. For every point $p = \langle \bar{v}_1, \bar{v}_2, \ldots, \bar{v}_{n+1} \rangle$ of $DW(2n-1, 2)$, let $f(p)$ denote the vector $\bar{v}_1 \wedge \bar{v}_2 \wedge \cdots \wedge \bar{v}_{n+1}$ of $\bigwedge^{n+1} V'$. The point $f(p)$ is independent from the generating set $\{\bar{v}_1, \bar{v}_2, \ldots, \bar{v}_{n+1}\}\$ of p.

Suppose $p_1 = \langle \bar{v}_1, \bar{v}_2, \dots, \bar{v}_{n+1} \rangle$ is a point of $DW(2n - 1, 2)$ at distance i from A and distance $n - i$ from B. Then $\langle \bar{v}_1, \bar{v}_2, \ldots, \bar{v}_{n+1} \rangle$ intersects A in an $(n+1-i)$ -dimensional subspace containing \bar{e} and B in an $(i+1)$ -dimensional subspace containing \bar{e} . So, without loss of generality, we may suppose that $\bar{v}_1 = \bar{e}, \langle \bar{v}_2, \ldots, \bar{v}_{n+1-i} \rangle \subseteq A$ and $\langle \bar{v}_{n+2-i}, \ldots, \bar{v}_{n+1} \rangle \subseteq B$. It is then clear that

$$
f(p_1) \in U_i. \tag{2}
$$

Suppose $p_2 = \langle \bar{v}_1, \bar{v}_2, \ldots, \bar{v}_{n+1} \rangle$ is a point of $DW(2n - 1, 2)$ at distance at most *i* from A. Then $\langle \bar{v}_1, \bar{v}_2, \ldots, \bar{v}_{n+1} \rangle$ intersects A in a subspace of dimension at least $n + 1 - i$ which contains \bar{e} . So, without loss of generality, we may suppose that $\bar{v}_1 = \bar{e}$ and $\langle \bar{v}_2, \ldots, \bar{v}_{n+1-i} \rangle \subseteq A$. It is then clear that

$$
f(p_2) \in U_0 \oplus U_1 \oplus \cdots \oplus U_i. \tag{3}
$$

Similarly, as in the previous paragraph, one shows that if $p_3 = \langle \bar{v}_1, \bar{v}_2, \ldots, \rangle$ \overline{v}_{n+1} is a point of $DW(2n-1, 2)$ at distance at most i from B, then

$$
f(p_3) \in U_{n-i} \oplus U_{n+1-i} \oplus \cdots \oplus U_n.
$$
 (4)

Now, suppose the points of \mathbb{H}_n are the partitions of $\{1, 2, \ldots, 2n+2\}$ in $n+1$ subsets of size 2. Let x and y be two opposite points of \mathbb{H}_n . Without loss of generality, we may suppose that $x = \{\{1, 2\}, \{3, 4\}, \ldots, \{2n + 1, 2n + 2\}\}\$ and $y = \{\{2,3\}, \{4,5\}, \ldots, \{2n+2,1\}\}\.$ For every point $\{\{i_1, i_2\}, \{i_3, i_4\}, \ldots,$ $\{i_{2n+1}, i_{2n+2}\}\$ of \mathbb{H}_n , we define $\epsilon(p) = \langle \bar{e}_{i_1} + \bar{e}_{i_2}, \bar{e}_{i_3} + \bar{e}_{i_4}, \dots, \bar{e}_{i_{2n+1}} + \bar{e}_{i_{2n+2}}\rangle.$ Then by Brouwer et al. [2, p. 356], ϵ is a full isometric embedding of \mathbb{H}_n into $DW(2n-1,2)$, i.e. ϵ is a map from the point set of \mathbb{H}_n to the point set of $DW(2n-1, 2)$ which maps lines to lines and preserves the distances between points. Notice that $f \circ \epsilon$ is isomorphic to the absolutely universal embedding of \mathbb{H}_n . Also, $\epsilon(x) = A$ and $\epsilon(y) = B$. Theorem 1.2 is now a consequence of Lemma 4.1 and equations $(1), (2), (3), (4)$.

Acknowledgment

At the moment of the writing of this paper, the author was a Postdoctoral Fellow of the Research Foundation - Flanders (Belgium).

References

- [1] A. Blokhuis and A. E. Brouwer. The universal embedding dimension of the near polygon on the 1-factors of a complete graph. Des. Codes Cryptogr. 17 (1999), 299–303.
- [2] A. E. Brouwer, A. M. Cohen, J. I. Hall and H. A. Wilbrink. Near polygons and Fischer spaces. Geom. Dedicata 49 (1994), 349–368.
- [3] A. E. Brouwer and H. A. Wilbrink. The structure of near polygons with quads. Geom. Dedicata 14 (1983), 145–176.
- [4] B. De Bruyn. *Near polygons*. Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2006.
- [5] B. De Bruyn. A decomposition of the natural embedding spaces for the symplectic dual polar spaces. Linear Algebra Appl. 426 (2007), 462–477.
- [6] B. De Bruyn. The structure of the spin-embeddings of dual polar spaces and related geometries. European J. Combin. 29 (2008), 1242–1256.
- [7] B. De Bruyn. On the Grassmann-embeddings of the hermitian dual polar spaces. Linear Multilinear Algebra 56 (2008), 665–677.
- [8] B. De Bruyn. Some subspaces of the k-th exterior power of a symplectic vector space. Linear Algebra Appl. 430 (2009), 3095–3104.
- [9] J. H. van Lint. Combinatorial Theory Seminar, Eindhoven University of Technology. Lecture Notes in Mathematics 382. Springer-Verlag, Berlin-New York, 1974.
- [10] S. E. Payne and J. A. Thas. Finite generalized quadrangles. Second edition. EMS Series of Lectures in Mathematics. European Mathematical Society (EMS), Zürich, 2009.
- [11] M. A. Ronan. Embeddings and hyperplanes of discrete geometries. European J. Combin. 8 (1987), 179–185.
- [12] E. E. Shult and A. Yanushka. Near n-gons and line systems. Geom. Dedicata 9 (1980), 1–72.