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Abstract

Let Hn, n ≥ 1, be the near 2n-gon defined on the 1-factors of the
complete graph on 2n + 2 vertices, and let e denote the absolutely
universal embedding of Hn into PG(W ), where W is a 1

n+2

(
2n+2
n+1

)
-

dimensional vector space over the field F2 with two elements. For
every point z of Hn and every i ∈ N, let ∆i(z) denote the set of points
of Hn at distance i from z. We show that for every pair {x, y} of
mutually opposite points of Hn, W can be written as a direct sum
W0 ⊕ W1 ⊕ · · · ⊕ Wn such that the following four properties hold
for every i ∈ {0, . . . , n}: (1) 〈e(∆i(x) ∩ ∆n−i(y))〉 = PG(Wi); (2)
〈e
(⋃

j≤i ∆j(x)
)
〉 = PG(W0⊕W1⊕ · · · ⊕Wi); (3) 〈e

(⋃
j≤i ∆j(y)

)
〉 =

PG(Wn−i ⊕Wn−i+1 ⊕ · · · ⊕Wn); (4) dim(Wi) = |∆i(x) ∩∆n−i(y)| =(
n
i

)2 − ( n
i−1

)
·
(

n
i+1

)
.
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1 Introduction

Let Hn, n ≥ 1, be the following point-line geometry:
• The points of Hn are the partitions of {1, 2, . . . , 2n+2} in n+1 subsets

of size 2.
• The lines of Hn are the partitions of {1, 2, . . . , 2n+ 2} in n− 1 subsets

of size 2 and 1 subset of size 4.
• A point is incident with a line if and only if the partition corresponding

to the point is a refinement of the partition corresponding to the line.
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The point-line geometry Hn, n ≥ 1, is a so-called dense near polygon with
three points per line. An alternative description of Hn can be given where
the points are the 1-factors of a complete graph on 2n + 2 vertices. In-
deed, there exists a natural bijective correspondence between the partitions
of {1, 2, . . . , 2n+2} in n+1 subsets of size 2 and the 1-factors of the complete
graph with vertex set {1, 2, . . . , 2n+ 2}.

The near polygon Hn, n ≥ 1, is embeddable into a projective space and
hence admits the so-called absolutely universal embedding.

For every two points x and y of Hn (i.e. partitions x and y of {1, . . . , 2n+
2} in n + 1 subsets of size 2), let Γx,y denote the graph with vertex set
{1, 2, . . . , 2n + 2} and edge set x ∪ y. Then the distance d(x, y) between x
and y in the collinearity graph of Hn is equal to n+ 1−N , where N denotes
the number of connected components of Γx,y. If x is a point of Hn and i ∈ N,
then ∆i(x) denotes the set of points at distance i from x and ∆∗i (x) the set
of points at distance at most i from x.

A set S of points of Hn is called a subspace if every line of Hn which has
at least two points in S has all its points in S. If the smallest subspace of Hn

which contains a given set X of points coincides with the whole set of points
of Hn, then X is called a generating set of Hn. In Blokhuis and Brouwer [1],
it was mentioned that if x and y are two opposite points of Hn and if C(x, y)
denotes the union of all geodesics from x to y, then C(x, y) is a generating set
of Hn whose size is equal to the Catalan number 1

n+2

(
2n+2
n+1

)
. In the present

paper, we refine this result in the following way.

Theorem 1.1 Let x and y be two opposite points of the near polygon Hn,
n ≥ 1, and put Xi := ∆i(x) ∩∆n−i(y), i ∈ {0, . . . , n}. Then

(1) |Xi| =
(

n
i

)2 − ( n
i−1

)
·
(

n
i+1

)
;

(2) X0 ∪X1 ∪ · · · ∪Xn is a generating set of Hn.

In the previous theorem and elsewhere in the paper, we have adopted the
convention that

(
n
j

)
= 0 for every n ∈ N and every j ∈ Z \ {0, . . . , n}. Using

Theorem 1.1, we are able to prove a decomposition theorem for the absolutely
universal embedding of Hn.

Theorem 1.2 Let e denote the absolutely universal embedding of Hn, n ≥ 1,
into PG(W ), where W is a 1

n+2

(
2n+2
n+1

)
-dimensional vector space over the field

F2 with two elements. Then for every pair {x, y} of mutually opposite points
of Hn, W can be written as a direct sum W0 ⊕W1 ⊕ · · · ⊕Wn such that the
following four properties hold for every i ∈ {0, . . . , n}:

(1) 〈e(∆i(x) ∩∆n−i(y))〉 = PG(Wi);
(2) 〈e(∆∗i (x))〉 = PG(W0 ⊕W1 ⊕ · · · ⊕Wi);
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(3) 〈e(∆∗i (y))〉 = PG(Wn−i ⊕Wn−i+1 ⊕ · · · ⊕Wn);

(4) dim(Wi) =
(

n
i

)2 − ( n
i−1

)
·
(

n
i+1

)
.

Remark A. In the literature, decomposition theorems for other projective
embeddings of dense near polygons have been proved:
• the Grassmann embeddings of symplectic dual polar spaces [5, Theorem

1.1], see also [8] for another approach;
• the spin-embeddings of some dual polar spaces and the near polygons

Hn and In [6, Theorem 1.7];
• the Grassmann embeddings of Hermitian dual polar spaces [7, Theorem

1.4].

Remark B. Theorems 1.1 and 1.2 can also be deduced from the decompo-
sition theorem for the Grassmann embedding of the symplectic dual polar
space DW (2n − 1, 2). Such an approach would be highly artificial and not
very elegant. Indeed, a proof of Theorem 1.1 which needs the introduction of
a 2n-dimensional vector space V equipped with a nondegenerate alternating
bilinear form and technical computations in the exterior algebra of V is quite
a detour. The approach discussed in the present paper avoids all this ma-
chinery. Notice that in the proof of Theorem 1.2, we introduce a symplectic
dual polar space DW (2n− 1, 2) but we only need to invoke some elementary
properties of this dual polar space.

2 Preliminaries

2.1 A recursively defined series of numbers

In this section, we define in a recursive way numbers fn(k, l), n ∈ N \ {0, 1}
and k, l ∈ {0, . . . , n}, and give a closed expression for these numbers.

The numbers f2(k, l), k, l ∈ {0, 1, 2}, are defined in the following table.

f2(k, l) l = 0 l = 1 l = 2

k = 0 1 1 0
k = 1 0 1 1
k = 2 0 1 0

For every n ≥ 3 and k, l ∈ {0, . . . , n}, we define

• If k is even and l = n, then we define fn(k, l) := 0.

• If k is odd and l = 0, then we define fn(k, l) := 0.

3



• If k = 0 and l 6= n, then we define fn(k, l) :=
∑n−1

i=0 fn−1(i, l).

• If k 6= 0 is even and l 6= n, then we define fn(k, l) :=
∑n−1

i=k−1 fn−1(i, l).

• If k is odd and l 6= 0, then we define fn(k, l) :=
∑n−1

i=k−1 fn−1(i, l − 1).

It was show in De Bruyn [5, Section 2] that for every n ∈ N \ {0, 1} and all
k, l ∈ {0, 1, . . . , n}, we have

fn(k, l) =

(
n− 1− bk

2
c

l − bk+1
2
c

)
·
(
n− bk+1

2
c

l + (−1)k−1
2

)
−
(
n− 1− bk

2
c

l − 1− bk+1
2
c

)
·
(
n− bk+1

2
c

l + (−1)k+1
2

)
.

2.2 The big maxes of Hn

A near polygon is a partial linear space S = (P ,L, I), I ⊆ P × L, with the
property that for every point x and every line L, there exists a unique point
on L nearest to x. Here, distances are measured in the collinearity graph Γ
of S. If n is the diameter of Γ, then the near polygon is called a near 2n-gon.
A near 0-gon is just a point and a near 2-gon is a line. Near quadrangles are
usually called generalized quadrangles (Payne and Thas [10]).

A near polygon is called dense if every line is incident with at least three
points and if every two points at distance 2 from each other have at least
two common neighbors. By Theorem 4 of Brouwer and Wilbrink [3], every
two points of a dense near 2n-gon at distance δ ∈ {0, . . . , n} from each other
are contained in a unique convex sub-2δ-gon. These sub-2δ-gons are called
quads if δ = 2 and maxes if δ = n−1. The existence of quads in a dense near
polygon was already shown by Shult and Yanushka [12, Proposition 2.5].

A max M of a dense near polygon S is called big in S if every point x
of S not contained in M is collinear with a necessarily unique point πM(x)
of M . If M is big in S and x is a point of S not contained in M , then
d(x, y) = 1 + d(πM(x), y) for every point y of M . If M is big in S and
every line of S is incident with precisely three points, then a reflection RM

about M can be defined which is an automorphism of S (see [4, Theorem
1.11]). If x ∈ M , then we define RM(x) := x. If x 6∈ M , then RM(x)
denotes the unique point of the line xπM(x) different from x and πM(x).
More information on dense near polygons can be found in the book [4].

Let Hn, n ≥ 2, be the dense near 2n-gon defined on the partitions of
{1, 2, . . . , 2n + 2} in n + 1 subsets of size 2 (see Section 1). There exists a
bijective correspondence between the big maxes of Hn and the subsets of size
2 of {1, 2, . . . , 2n+ 2}. If {i, j} is a subset of size 2 of {1, 2, . . . , 2n+ 2}, then
the set of all partitions P of {1, 2, . . . , 2n + 2} for which {i, j} ∈ P is a big
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max M [i, j] of Hn. Conversely, every big max of Hn is obtained in this way.

The point-line geometry M̃ induced on a big max M (by the points and
lines which are contained in it) is isomorphic to Hn−1. Suppose now that
{i1, j1} and {i2, j2} are two distinct subsets of size 2 of {1, 2, . . . , 2n + 2}.
If {i1, j1} ∩ {i2, j2} = ∅, then the big maxes M [i1, j1] and M [i2, j2] meet.
If {i1, j1} ∩ {i2, j2} is a singleton, say {i1} = {i2}, then the reflection of
M [i1, j1] about M [i2, j2] = M [i1, j2] is equal to the big max M [j1, j2]. More
information about the near polygon Hn can be found in [4, Section 6.2].

2.3 The absolutely universal embedding of Hn

By Ronan [11], every point-line geometry S = (P ,L, I), I ⊆ P×L with three
points per line which is fully embeddable into a projective space admits the
absolutely universal embedding which is obtained in the following way. Let
V be a vector space over the field F2 with a basis B whose vectors are indexed
by the elements of P , say B = {ēp | p ∈ P}. Let W denote the subspace of
V generated by all vectors ēp1 + ēp2 + ēp3 , where {p1, p2, p3} is a line of S.
Then the map p ∈ P 7→ {ēp + W,W} defines a full embedding of S into
the projective space PG(V/W ). This full embedding is isomorphic to the
so-called absolutely universal embedding of S.

The absolutely universal embedding of the near polygon Hn, n ≥ 1, is
described in Blokhuis and Brouwer [1, Section 3]. Let V be a (2n + 2)-
dimensional vector space over F2 with basis {ē1, ē2, . . . , ē2n+2}. For every
point P = {{i1, i2}, {i3, i4}, . . . , {i2n+1, i2n+2}} of Hn, put e(P ) equal to the
point 〈(ēi1 + ēi2) ∧ (ēi3 + ēi4) ∧ · · · ∧ (ēi2n+1 + ēi2n+2)〉 of PG(

∧n+1 V ). Then

e defines a full embedding of Hn into a subspace of PG(
∧n+1 V ) of dimen-

sion 1
n+2

(
2n+2
n+1

)
. This projective embedding is isomorphic to the absolutely

universal embedding of Hn.

3 Proof of Theorem 1.1

3.1 A generating set of points of Hn

Suppose the points of Hn, n ≥ 1, are the 1-factors of the complete graph
K2n+2, and suppose the 2n+ 2 vertices of K2n+2 are drawn as the vertices of
a convex (2n+ 2)-gon P in the plane. Blokhuis and Brouwer [1] proved that
the set Y ∗ of all 1-factors of K2n+2 without crossing edges is a generating
set of Hn. They also mentioned that the cardinality of Y ∗ is equal to the
Catalan number 1

n+2

(
2n+2
n+1

)
, and referred to van Lint [9, Section 3.1] for a

proof of this fact.
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In [1] another more geometric description of the generating set Y ∗ was
given. Suppose x and y are two opposite vertices of the near polygon Hn

such that x and y are alternating edges of P. Then the above generating
set Y ∗ of vertices coincides with the union C(x, y) of all geodesics between
x and y. The proof given in [1] seems however not to be valid. (The claims
c(x ∪ z) + c(y ∪ z) = n + 1 − cr(z) and d(x, z) + d(y, z) = n − 1 + cr(z) on
lines -15, -14 and -13 of page 300 do have counter examples; in fact, there
might exist 1-factors z for which cr(z) > n+ 1.) We will now give a proof of
this claim since we will need it in the present paper.

Proposition 3.1 The generating set Y ∗ is equal to C(x, y).

Proof. We start with the proof of two similar properties.

Claim I. If z ∈ C(x, y), then there exists an edge in z which is also an edge
of x or y.
Proof. Since d(x, z) + d(z, y) = n, we have d(x, z) ≤ n

2
or d(y, z) ≤ n

2
.

Suppose k := d(x, z) ≤ n
2

and let x = z0, z1, . . . , zk = z be a shortest path
between x and z. The 1-factor x has n + 1 edges. Let Ni, i ∈ {0, . . . , k},
denote the number of edges of x which are also edges of zi. Then N0 = n+ 1
and |Ni − Ni+1| ≤ 2 for every i ∈ {0, . . . , k − 1}. Hence, Nk ≥ N0 − 2k ≥
(n+ 1)− 2 · n

2
= 1. So, there is an edge in z which is also an edge of x.

In a similar way, one proves that if d(y, z) ≤ n
2
, then there is an edge in

z which is also an edge of y. (qed)

Claim II. If z ∈ Y ∗, then there is an edge of z which is also an edge of
either x or y.
Proof. We define a distance function dist(·, ·) on the set of vertices of P.
If i1 and i2 are two vertices of P, then dist(i1, i2) is the smallest nonnegative
integer k for which there exist k + 1 vertices j0, j1, . . . , jk of P satisfying
(a) j0 = i1, (b) jk = i2, (c) ji−1, ji are neighboring vertices of P for every
i ∈ {1, . . . , k}.

Now, let {i1, i2} be an edge of z for which dist(i1, i2) is as small as possi-
ble and suppose that dist(i1, i2) > 1. Let i3 be a vertex of P which lies on a
shortest path γ from i1 to i2 and let i4 be the unique vertex of P such that
{i3, i4} is an edge of z. Since there are no crossing edges of z, also i4 is con-
tained on the path γ. It follows that dist(i3, i4) < dist(i1, i2), contradicting
the minimality of dist(i1, i2). Hence, dist(i1, i2) = 1 and the edge {i1, i2} of
z is also an edge of either x or y. (qed)

We will now prove the proposition by induction on n ≥ 1. Suppose first that
n = 1. Label the vertices of P with the numbers 1, 2, 3 and 4 such that
x = {{1, 2}, {3, 4}} and y = {{2, 3}, {1, 4}}. One has C(x, y) = Y ∗ = {x, y}.
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We will now suppose that n ≥ 2. By Claims I and II, it suffices to prove
that z ∈ Y ∗ ⇔ z ∈ C(x, y) for 1-factors z which contain a given edge {i1, i2}
of either x or y. Without loss of generality, we may suppose that {i1, i2} is
an edge of x. Let i0, i3 denote the unique vertex of P such that {i0, i1} and
{i2, i3} are edges of Y . Let K2n denote the complete graph on the set of
vertices of P distinct from i1 and i2 and let Hn−1 denote the near polygon
defined on the 1-factors of K2n. Let x′ denote the 1-factor of K2n obtained
from x by removing the edge {i1, i2} and let y′ denote the 1-factor of K2n

obtained from y by removing the edges {i0, i1}, {i2, i3} and adding the edge
{i0, i3}. Then x′ and y′ are opposite vertices of Hn−1. For every 1-factor w
of K2n, let θ(w) denote the 1-factor of K2n+2 obtained from w by adding the
edge {i1, i2}. Then θ defines an isomorphism between Hn−1 and a big max M
of Hn. We have θ(x′) = x and θ(y′) is the unique point of M collinear with
y. Moreover, d(y, u) = 1 + d(θ(y′), u) for every point u of M . The following
should now be obvious:

(a) A point u of Hn−1 lies on a shortest path between x′ and y′ if and
only if θ(u′) lies on a shortest path between x and y.

(b) By the induction hypothesis, a point u of Hn−1 lies on a shortest path
between x′ and y′ if and only if u, regarded as 1-factor of K2n, has no crossing
edges.

(c) u, regarded as a 1-factor of K2n has no crossing edges if and only if
the 1-factor θ(u) of K2n+2 has no crossing edges.

By (a), (b), (c) above, the statement z ∈ Y ∗ ⇔ z ∈ C(x, y) holds for all 1-
factors z which contain the edge {i1, i2}. This was precisely what we needed
to prove. 2

As mentioned above, Blokhuis and Brouwer [1] proved that the set Y ∗ is a
generating set of Hn. In view of Proposition 3.1, it is then clear that also the
set C(x, y) is a generating set of points of Hn. This fact can also be shown
in a direct way.

Proposition 3.2 C(x, y) is a generating set of Hn.

Proof. We will prove the proposition by induction on n. Obviously, the
proposition holds if n = 1. So, we will suppose that n ≥ 2. We will regard
the points of Hn as partitions of {1, 2, . . . , 2n+ 2} in n+ 1 subsets of size 2.
Without loss of generality, we may suppose that x = {{1, 2}, {3, 4}, . . . , {2n+
1, 2n+2}} and y = {{2, 3}, {4, 5}, . . . , {2n+2, 1}}. Let S denote the smallest
subspace of Hn containing C(x, y).

We will prove that all big maxes M [i, i + 1], i ∈ {1, . . . , 2n + 1}, are
contained in S. If i is odd, then x ∈ M [i, i + 1] and y 6∈ M [i, i + 1]. In
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this case, we define x′ := x and y′ denotes the unique point of M [i, i + 1]
collinear with y. If i is even, then x 6∈M [i, i+ 1] and y ∈M [i, i+ 1]. In this
case, we define y′ := y and x′ denotes the unique point of M [i, i+1] collinear
with x. Then C(x′, y′) ⊆ C(x, y). Since x′ and y′ are opposite points of

˜M [i, i+ 1] ∼= Hn−1, the smallest subspace of Hn containing C(x′, y′) coincides
with M [i, i+ 1] by the induction hypothesis. Hence, M [i, i+ 1] ⊆ S.

Notice that if i1, i2 and i3 are three distinct elements of {1, 2, . . . , 2n+ 2}
such that M [i1, i2] ⊆ S and M [i1, i3] ⊆ S, then also M [i2, i3] ⊆ S since
M [i2, i3] is the reflection of M [i1, i3] about M [i1, i2]. By the previous para-
graph it then follows that all big maxes M [i, j], i, j ∈ {1, . . . , 2n + 2} and
i 6= j, are contained in S. Since every point of Hn is contained in a big max,
C(x, y) is a generating set of Hn. 2

The following proposition improves Claim I of Proposition 3.1.

Proposition 3.3 Let z ∈ C(x, y) and let E denote a set of n+1 consecutive
edges of the polygon P. Then there is an edge in z which is contained in E.

Proof. We label the points of P by the numbers 1, 2, . . . , 2n + 2, either
clockwise or counterclockwise. Without loss of generality, we may suppose
that E = {{1, 2}, {2, 3}, . . . , {n+ 1, n+ 2}}. Let {j, ij} denote the edge of z
containing the vertex with label j ∈ {1, . . . , n+ 1}. If ij = j+ 1 for a certain
j ∈ {1, . . . , n+ 1}, then we are done.

In the sequel, we suppose that ij 6= j + 1 for every j ∈ {1, . . . , n+ 1} and
derive a contradiction. We prove by induction on j ∈ {1, . . . , n+ 1} that (a)
ij > j + 1 and (b) ij < ij−1 if j 6= 1. Since i1 6= 2, these claims hold if j = 1.
So, suppose j ∈ {2, . . . , n+1}. Since {j−1, ij−1} and {j, ij} are non-crossing
edges and ij−1 > j, we have that ij ∈ {j + 1, . . . , ij−1 − 1}. Since ij 6= j + 1,
we have ij > j + 1 and ij < ij−1.

In particular, we have in+1 ≤ i1−n ≤ 2n+2−n = n+2 and in+1 > n+2,
clearly a contradiction. 2

3.2 The sizes of the sets ∆i(x) ∩∆n−i(y)

Consider the near polygon Hn, n ≥ 2, whose points are the partitions of
{1, 2, . . . , 2n+2} in n+1 subsets of size 2. Let x and y be two points of Hn at
maximal distance from each other. Since the automorphism group of Hn acts
transitively on the ordered pairs of opposite points of Hn, we may without loss
of generality suppose that x = {{1, 2}, {3, 4}, · · · , {2n+ 1, 2n+ 2}} and y =
{{2, 3}, {4, 5}, . . . , {2n, 2n+1}, {2n+2, 1}}. For every i ∈ {1, 2, . . . , 2n+1},
we define Mi := M [i, i + 1]. We also define M2n+2 := M [1, 2n + 2]. We call
{M1,M2, . . . ,M2n+2} the nice set of big maxes of Hn induced by (x, y).
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The following corollary is an immediate consequence of Proposition 3.3.

Corollary 3.4 We have C(x, y) ⊆M1 ∪M2 ∪ · · · ∪Mn+1.

For all k, l ∈ {0, . . . , n}, let Yn(k, l) denote the set of all points of ∆l(x) ∩
∆n−l(y) which are contained in Mk+1 \ (M1 ∪ · · · ∪Mk) and put gn(k, l) :=
|Yn(k, l)|. Notice that the sets Yn(k, l), k, l ∈ {0, . . . , n}, are mutually dis-
joint. Notice also that since Mk ∩Mk+1 = ∅, we also have Mk+1 \ (M1 ∪
· · · ∪Mk) = Mk+1 \ (M1 ∪ · · · ∪Mk−1). (Here, M1 ∪ · · · ∪Mk = ∅ if k = 0
and M1 ∪ · · · ∪ Mk−1 = ∅ if k ∈ {0, 1}.) The following is an immediate
consequence of Corollary 3.4.

Corollary 3.5 (1) For every l ∈ {0, . . . , n}, we have ∆l(x) ∩ ∆n−l(y) =⋃
0≤k≤n Yn(k, l).

(2) C(x, y) =
⋃

0≤k,l≤n Yn(k, l).

Lemma 3.6 We have g2(0, 0) = 1, g2(0, 1) = 1, g2(0, 2) = 0, g2(1, 0) = 0,
g2(1, 1) = 1, g2(1, 2) = 1, g2(2, 0) = 0, g2(2, 1) = 1 and g2(2, 2) = 0.

Proof. We have x = {{1, 2}, {3, 4}, {5, 6}}, y = {{2, 3}, {4, 5}, {1, 6}},
M1 = M [1, 2], M2 = M [2, 3] and M3 = M [3, 4]. It is straightforward to
verify that

Y2(0, 0) = {{{1, 2}, {3, 4}, {5, 6}}} = {x},

Y2(0, 1) = {{{1, 2}, {4, 5}, {3, 6}}},

Y2(1, 1) = {{{2, 3}, {5, 6}, {1, 4}}},

Y2(1, 2) = {{{2, 3}, {4, 5}, {1, 6}}} = {y},

Y2(2, 1) = {{{3, 4}, {1, 6}, {2, 5}}},

Y2(0, 2) = Y2(1, 0) = Y2(2, 0) = Y2(2, 2) = ∅.

The values of g2(k, l), k, l ∈ {0, 1, 2}, follow. 2

In Lemmas 3.7, 3.8, 3.9 and 3.10 below, we suppose that n ≥ 3 and that k
and l are elements of the set {0, . . . , n}.

Lemma 3.7 (1) If k is even and l = n, then gn(k, l) = 0.
(2) If k is odd and l = 0, then gn(k, l) = 0.

Proof. (1) If k is even, then the max Mk+1 does not contain y. Hence,
gn(k, l) = 0 if k is even and l = n.

(2) If k is odd, then the max Mk+1 does not contain x. Hence, gn(k, l) = 0
if k is odd and l = 0. 2
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Lemma 3.8 If k = 0 and l 6= n, then gn(k, l) =
∑n−1

i=0 gn−1(i, l).

Proof. The max M1 contains the point x, but not the point y. Let y′ denote
the unique point of M1 collinear with y. Then x and y′ are opposite points
of M̃1 and ∆l(x) ∩ ∆n−l(y) ∩M1 = ∆l(x) ∩ ∆n−1−l(y

′) ∩M1. By Corollary
3.5(1), the size of ∆l(x) ∩∆n−1−l(y

′) ∩M1 is equal to
∑n−1

i=0 gn−1(i, l). This
equals the size gn(0, l) of ∆l(x) ∩∆n−l(y) ∩M1. 2

Lemma 3.9 If k 6= 0 is even and l 6= n, then gn(k, l) =
∑n−1

i=k−1 gn−1(i, l).

Proof. The max Mk+1 contains the point x, but not the point y. Let
y′ denote the unique point of Mk+1 collinear with y. Then x and y′ are

opposite points of M̃k+1 and ∆l(x)∩∆n−l(y)∩Mk+1 = ∆l(x)∩∆n−1−l(y
′)∩

Mk+1. Suppose the points of the near polygon Hn−1 are the partitions of
{1, 2, . . . , 2n + 2} \ {k + 1, k + 2} in n subsets of size 2. For every point u
of Hn−1, let θ(u) denote the partition of {1, 2, . . . , 2n + 2} obtained from u
by adding the subset {k+ 1, k+ 2}. Then θ defines an isomorphism between

Hn−1 and M̃k+1. We have

θ−1(x) = {{1, 2}, . . . , {k − 1, k}, {k + 3, k + 4}, . . . , {2n+ 1, 2n+ 2}},

θ−1(y′) = {{2, 3}, . . . , {k−2, k−1}, {k, k+3}, {k+4, k+5}, . . . , {2n+2, 1}}.

Now, define the following maxes:

M ′
i := M [i, i+ 1] ∩Mk+1, i ∈ {1, . . . , k − 1};

M ′
k := M [k, k + 3] ∩Mk+1;

M ′
i := M [i+ 2, i+ 3] ∩Mk+1, i ∈ {k + 1, . . . , 2n− 1};

M ′
2n := M [1, 2n+ 2] ∩Mk+1.

Then it is clear that {M ′
1,M

′
2, . . . ,M

′
2n} is the nice set of maxes of M̃k+1

∼=
Hn−1 induced by (x, y′). The gn(k, l) points of ∆l(x)∩∆n−l(y)∩Mk+1 which
are not contained in M1 ∪M2 ∪ · · · ∪Mk are precisely the points of ∆l(x) ∩
∆n−1−l(y

′) ∩Mk+1, which are not contained in M ′
1 ∪M ′

2 ∪ · · · ∪M ′
k−1. By

Corollary 3.5(1), there are
∑n−1

i=k−1 gn−1(i, l) such points. 2

Lemma 3.10 If k is odd and l 6= 0, then gn(k, l) =
∑n−1

i=k−1 gn−1(i, l − 1).

Proof. The max Mk+1 contains the point y, but not the point x. Let
x′ denote the unique point of Mk+1 collinear with x. Then x′ and y are

opposite points of M̃k+1 and ∆l(x)∩∆n−l(y)∩Mk+1 = ∆l−1(x
′)∩∆n−l(y)∩

Mk+1. Suppose the points of the near polygon Hn−1 are the partitions of
{1, 2, . . . , 2n + 2} \ {k + 1, k + 2} in n subsets of size 2. For every point u
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of Hn−1, let θ(u) denote the partition of {1, 2, . . . , 2n + 2} obtained from u
by adding the subset {k+ 1, k+ 2}. Then θ defines an isomorphism between

Hn−1 and M̃k+1. We have

θ−1(x′) = {{1, 2}, . . . , {k−2, k−1}, {k, k+3}, {k+4, k+5}, . . . , {2n+1, 2n+2}},

θ−1(y) = {{2, 3}, . . . , {k − 1, k}, {k + 3, k + 4}, . . . , {2n+ 2, 1}}.

Now, define the following maxes:

M ′
i := M [i, i+ 1] ∩Mk+1, i ∈ {1, . . . , k − 1};

M ′
k := M [k, k + 3] ∩Mk+1;

M ′
i := M [i+ 2, i+ 3] ∩Mk+1, i ∈ {k + 1, . . . , 2n− 1};

M ′
2n := M [1, 2n+ 2] ∩Mk+1.

Then it is clear that {M ′
1,M

′
2, . . . ,M

′
2n} is the nice set of maxes of M̃k+1

∼=
Hn−1 induced by (x′, y). The gn(k, l) points of ∆l(x)∩∆n−l(y)∩Mk+1 which
are not contained in M1∪M2∪· · ·∪Mk are precisely the points of ∆l−1(x

′)∩
∆n−l(y)∩Mk+1 which are not contained in M ′

1∪M ′
2∪· · ·∪M ′

k−1. By Corollary

3.5(1), there are gn(k, l) =
∑n−1

i=k−1 gn−1(i, l − 1) such points. 2

By Lemmas 3.6, 3.7, 3.8, 3.9, 3.10 and Section 2.1, we have:

Corollary 3.11 For all k, l ∈ {0, 1, . . . , n}, we have

gn(k, l) =

(
n− 1− bk

2
c

l − bk+1
2
c

)
·
(
n− bk+1

2
c

l + (−1)k−1
2

)
−
(
n− 1− bk

2
c

l − 1− bk+1
2
c

)
·
(
n− bk+1

2
c

l + (−1)k+1
2

)
.

Proposition 3.12 For every l ∈ {0, . . . , n}, we have |∆l(x) ∩ ∆n−l(y)| =(
n
l

)2 − ( n
l−1

)
·
(

n
l+1

)
.

Proof. By Corollary 3.5(1), Lemma 3.8 and Corollary 3.11, we have

|∆l(x) ∩∆n−l(y)| =
n∑

i=0

gn(i, l) = gn+1(0, l)

=

(
n

l

)
·
(
n+ 1

l

)
−
(

n

l − 1

)
·
(
n+ 1

l + 1

)
=

(
n

l

)
·
[(n+ 1

l

)
−
(

n

l − 1

)]
−
(

n

l − 1

)
·
[(n+ 1

l + 1

)
−
(
n

l

)]
=

(
n

l

)2

−
(

n

l − 1

)
·
(

n

l + 1

)
.
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2

Remarks. (1) We have |C(x, y)| =
∑n

l=0

(
n
l

)2 − ( n
l−1

)
·
(

n
l+1

)
=
∑n

l=0

(
n
l

)
·(

n
n−l

)
−
∑n

l=0

(
n

l−1

)
·
(

n
n−l−1

)
=
(
2n
n

)
−
(

2n
n−2

)
= 1

n+2

(
2n+2
n+1

)
. It was already

mentioned above that Y ∗ = C(x, y) and |Y ∗| = 1
n+2

(
2n+2
n+1

)
.

(2) Notice that the conclusion of Proposition 3.12 is also valid for the
near polygon H1 (which is a line with three points).

4 Proof of Theorem 1.2

Theorem 1.2 trivially holds if n = 1. So, we will suppose that n ≥ 2.

Lemma 4.1 Suppose e is the absolutely universal embedding of Hn into
PG(W ) and that x and y are two opposite points of Hn. If Wi, i ∈ {0, . . . , n},
is the subspace of W for which PG(Wi) = 〈e(∆i(x) ∩∆n−i(y))〉, then

(1) W = W0 ⊕W1 ⊕ · · · ⊕Wn,

(2) dim(Wi) =
(

n
i

)2 − ( n
i−1

)
·
(

n
i+1

)
for every i ∈ {0, . . . , n}.

Proof. In Blokhuis and Brouwer [1], it as shown that e(C(x, y)) is an
independent generating set of points of the projective space PG(W ). The
lemma then follows from Proposition 3.12. 2

Let V be a (2n+ 2)-dimensional vector space over F2 with basis {ē1, ē2, . . . ,
ē2n+2}. Put ē = ē1 + ē2 + · · · + ē2n+2. Let V ′ denote the subspace of V
consisting of all vectors of the form

∑2n+2
i=1 λiēi where λ1+λ2+· · ·+λ2n+2 = 0.

If x̄ =
∑2n+2

i=1 λiēi and ȳ =
∑2n+2

i=1 µiēi are two vectors of V ′, then we define
(x̄, ȳ) =

∑2n+2
i=1 λiµi. Then (·, ·) is an alternating bilinear form on V ′ whose

radical is equal to 〈ē〉. Let DW (2n − 1, 2) denote the point-line geometry
whose points, respectively lines, are the (n + 1)-dimensional, respectively
n-dimensional, subspaces of V ′ which are totally isotropic with respect to
(·, ·), with incidence being reverse containment. Then DW (2n − 1, 2) is a
symplectic dual polar space of rank n. Let A and B denote the following
mutually opposite points of DW (2n− 1, 2):

A = 〈ē, ē1 + ē2, ē3 + ē4, . . . , ē2n−1 + ē2n〉,
B = 〈ē, ē2 + ē3, ē4 + ē5, . . . , ē2n + ē2n+1〉.

We can write

ē ∧
n∧
V ′ = U0 ⊕ U1 ⊕ · · · ⊕ Un, (1)
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where Ui, i ∈ {0, . . . , n}, is the subspace of
∧n+1 V ′ generated by all vectors

of the form ē ∧ ā1 ∧ · · · ān−i ∧ b̄n−i+1 ∧ · · · ∧ b̄n, where ā1, . . . , ān−i ∈ A and
b̄n−i+1, . . . , b̄n ∈ B. For every point p = 〈v̄1, v̄2, . . . , v̄n+1〉 of DW (2n − 1, 2),
let f(p) denote the vector v̄1 ∧ v̄2 ∧ · · · ∧ v̄n+1 of

∧n+1 V ′. The point f(p) is
independent from the generating set {v̄1, v̄2, . . . , v̄n+1} of p.

Suppose p1 = 〈v̄1, v̄2, . . . , v̄n+1〉 is a point of DW (2n− 1, 2) at distance i
from A and distance n− i from B. Then 〈v̄1, v̄2, . . . , v̄n+1〉 intersects A in an
(n+1− i)-dimensional subspace containing ē and B in an (i+1)-dimensional
subspace containing ē. So, without loss of generality, we may suppose that
v̄1 = ē, 〈v̄2, . . . , v̄n+1−i〉 ⊆ A and 〈v̄n+2−i, . . . , v̄n+1〉 ⊆ B. It is then clear that

f(p1) ∈ Ui. (2)

Suppose p2 = 〈v̄1, v̄2, . . . , v̄n+1〉 is a point of DW (2n− 1, 2) at distance at
most i from A. Then 〈v̄1, v̄2, . . . , v̄n+1〉 intersects A in a subspace of dimension
at least n + 1 − i which contains ē. So, without loss of generality, we may
suppose that v̄1 = ē and 〈v̄2, . . . , v̄n+1−i〉 ⊆ A. It is then clear that

f(p2) ∈ U0 ⊕ U1 ⊕ · · · ⊕ Ui. (3)

Similarly, as in the previous paragraph, one shows that if p3 = 〈v̄1, v̄2, . . . ,
v̄n+1〉 is a point of DW (2n− 1, 2) at distance at most i from B, then

f(p3) ∈ Un−i ⊕ Un+1−i ⊕ · · · ⊕ Un. (4)

Now, suppose the points of Hn are the partitions of {1, 2, . . . , 2n+2} in n+1
subsets of size 2. Let x and y be two opposite points of Hn. Without loss
of generality, we may suppose that x = {{1, 2}, {3, 4}, . . . , {2n+ 1, 2n+ 2}}
and y = {{2, 3}, {4, 5}, . . . , {2n+2, 1}}. For every point {{i1, i2}, {i3, i4}, . . . ,
{i2n+1, i2n+2}} of Hn, we define ε(p) = 〈ēi1 + ēi2 , ēi3 + ēi4 , . . . , ēi2n+1 + ēi2n+2〉.
Then by Brouwer et al. [2, p. 356], ε is a full isometric embedding of Hn into
DW (2n − 1, 2), i.e. ε is a map from the point set of Hn to the point set of
DW (2n−1, 2) which maps lines to lines and preserves the distances between
points. Notice that f ◦ ε is isomorphic to the absolutely universal embedding
of Hn. Also, ε(x) = A and ε(y) = B. Theorem 1.2 is now a consequence of
Lemma 4.1 and equations (1), (2), (3), (4).
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lag, Basel, 2006.

[5] B. De Bruyn. A decomposition of the natural embedding spaces for the
symplectic dual polar spaces. Linear Algebra Appl. 426 (2007), 462–477.

[6] B. De Bruyn. The structure of the spin-embeddings of dual polar spaces
and related geometries. European J. Combin. 29 (2008), 1242–1256.

[7] B. De Bruyn. On the Grassmann-embeddings of the hermitian dual polar
spaces. Linear Multilinear Algebra 56 (2008), 665–677.

[8] B. De Bruyn. Some subspaces of the k-th exterior power of a symplectic
vector space. Linear Algebra Appl. 430 (2009), 3095–3104.

[9] J. H. van Lint. Combinatorial Theory Seminar, Eindhoven University of
Technology. Lecture Notes in Mathematics 382. Springer-Verlag, Berlin-
New York, 1974.

[10] S. E. Payne and J. A. Thas. Finite generalized quadrangles. Second edi-
tion. EMS Series of Lectures in Mathematics. European Mathematical
Society (EMS), Zürich, 2009.
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