
Hölder norm estimate for a Hilbert transform

in Hermitean Clifford analysis

R. Abreu-Blaya∗, J. Bory-Reyes†, F. Brackx‡, H. De Schepper‡, F. Sommen‡
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Abstract

A Hilbert transform for Hölder continuous circulant (2 × 2) matrix functions, on the d-
summable (or fractal) boundary Γ of a Jordan domain Ω in R2n, has recently been introduced
within the framework of Hermitean Clifford analysis. The main goal of the present paper is to
estimate the Hölder norm of this Hermitean Hilbert transform. The expression for the upper
bound of this norm is given in terms of the Hölder exponents, the diameter of Γ and a specific
d-sum (d > d) of the Whitney decomposition of Ω. The result is shown to include a more
standard Hilbert transform for domains with left Ahlfors-David regular boundary.
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1 Introduction

In signal analysis the Hilbert transform of a real time signal is a fundamental tool. In particular
the related notion of analytic signal is at the basis of various methods. If f(x) ∈ L2(R) and H[f ]
denotes its Hilbert transform given by

H[f ](x) = Pv
∫ +∞

−∞

f(y)
x− y

dy

then the corresponding analytic signal 1
2f + i

2H[f ] belongs to the Hardy space H2(R) and arises
as the L2 nontangential boundary limit of the holomorphic Cauchy integral of f in the upper
half of the complex plane. The multidimensional approach to the Hilbert transform of a suitable
function f usually is tensorial, considering the Riesz transforms in each of the Cartesian variables
separately, i.e.

Rj [f ](x) = lim
ε→0+

2
am+1

∫
Rm\B(x,ε)

xj − yj

|x− y|m+1
f(y)dV (y), j = 1, . . . ,m

where am+1 denotes the area of the unit sphere Sm in Rm+1.
As opposed to this, Clifford analysis allows for a treatment of multidimensional phenomena,

encompassing all dimensions at once. Clifford analysis is a comprehensive function theory offering
a generalization to higher dimension of holomorphic function theory in the complex plane, see e.g.
[12, 21, 26, 17, 25]. It focusses on monogenic functions, i.e. null solutions of the Dirac operator
∂X =

∑m
j=1 ejXj , where (e1, . . . , em) is an orthogonal basis for Rm, underlying the construction of

the real Clifford algebra R0,m. Clifford analysis may also be considered as a refinement of harmonic
analysis, since, as does the Cauchy-Riemann operator in the complex plane, the rotation-invariant
Dirac operator factorizes the Laplacian. The theory of Hardy spaces in Clifford analysis is by now
well established, see [16, 35, 19, 7], and the multidimensional Hilbert transform, as well as more
general singular integral operators have been studied intensively, see [28, 26, 35, 39, 29, 18, 20], in
particular on Lipschitz hypersurfaces, see [32, 31, 34], and on smooth closed hypersurfaces, such
as the unit sphere, see [19, 13].
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In R2n ∼= Cn, Hermitean Clifford analysis has emerged as yet a refinement of the Euclidean
setting. Here, Hermitean monogenic functions are considered, i.e. functions taking values in the
complex Clifford algebra C2n and being simultaneous null solutions of two complex Hermitean Dirac
operators, which are invariant under the action of the unitary group. The study of complex Dirac
operators (also in other settings) was initiated in [37, 36, 38]; however, a systematic development
of the Hermitean function theory is still in full progress, see e.g. [15, 8, 9, 14].

In [10] a Hermitean Hilbert transform is introduced as a part of the non-tangential boundary
limit of the Hermitean Cauchy integral constructed in [11] for domains with C∞ smooth boundaries,
using a matrix approach with circulant (2× 2) matrix functions. More recently, see [3], the above
operators were redefined for Ahlfors-David surfaces and applied to solve boundary value problems
for Hermitean monogenic matrix functions, see [5]. The case of fractal boundaries, however, is not
covered by the method developed there. This is the reason why in [2, 4, 1] the authors introduce
an alternative way of defining the Hermitean matrix Hilbert transform over a fractal surface. As
a consequence, also some results of [3] are extended to this more general context.

The Hilbert transform on the real line is an isometry on the space L2(R), and likewise, the
corresponding m–dimensional Clifford–Hilbert transform has been shown to be an isometry on
L2(Rm). Looking at generalizations of the Hilbert transform, the resulting operators usually still
are bounded on the appropriate classes of functions, see [13, 10]. The main goal of the present
paper is to investigate this property for the Hermitean Hilbert transform for Hölder continuous
circulant (2 × 2) matrix functions defined on the d-summable boundary Γ of a Jordan domain Ω
in R2n. More precisely, an estimate will be established for its Hölder norm, in terms of the Hölder
exponents, the diameter of Γ and a specific d-sum (d > d) of the Whitney decomposition of Ω.

2 Preliminaries

2.1 The Hermitean Clifford analysis setting

Let (e1, . . . , em) be an orthonormal basis of Euclidean space Rm and consider the complex Clifford
algebra Cm constructed over Rm, with a non-commutative multiplication, governed by the rules

e2j = −1 and ejek + ekej = 0, j, k = 1, . . . ,m, j 6= k

and Cm is then generated additively by the elements eA = ej1 . . . ejk
, for A = {j1, . . . , jk} ⊂

{1, . . . ,m} with j1 < · · · < jk, and e∅ = 1, for A = ∅. Any Clifford number λ ∈ Cm may thus be
written as λ =

∑
A λAeA, λA ∈ C, its Hermitean conjugate λ† being defined by λ† =

∑
A λ

c
A eA,

where the bar denotes the real Clifford algebra conjugation, i.e. the main anti-involution for which
ej = −ej , and λc

A stands for the complex conjugate of λA. Euclidean space Rm is embedded
in the Clifford algebra Cm by identifying (x1, . . . , xm) with the real Clifford vector X given by
X =

∑m
j=1 ejxj , for which X2 = − < X,X >= −|X|2. The Fischer dual of X is the vector valued

first order Dirac operator ∂X =
∑m

j=1 ej ∂xj
, factorizing the Laplacian: ∆m = −∂2

X ; it underlies
the notion of monogenicity of a function: a continuously differentiable function g, defined in an
open region Ω of Rm, and taking values in Cm, is called (left) monogenic in Ω iff ∂Xg = 0 in Ω.

The transition to the Hermitean Clifford setting, see e.g. [8, 15], is essentially based on the
introduction of a complex structure J , i.e. an SO(m) element for which J2 = −1m. This forces
the dimension of the vector space to be even, whence we put m = 2n from now on. A possible
realization of the complex structure then is J [e2j−1] = −e2j and J [e2j ] = e2j−1, j = 1, . . . , n. The
real Clifford vector and its corresponding Dirac operator are now denoted as

X =
n∑

j=1

(e2j−1x2j−1 + e2jx2j), ∂X =
n∑

j=1

(e2j−1∂x2j−1 + e2j∂x2j )

while we will also consider their counterparts obtained through the action of J , i.e.

X| = J [X] =
n∑

j=1

(e2j−1x2j − e2jx2j−1), ∂X| = J [∂X ] =
n∑

j=1

(e2j−1∂x2j
− e2j∂x2j−1)

As was the case with ∂X , a notion of monogenicity may be associated to ∂X| as well.
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The Hermitean Clifford variables are then given by Z = 1
2 (X + iX|) and Z† = − 1

2 (X − iX|),
while the Hermitean Dirac operators are defined as ∂Z = − 1

4 (∂X − i ∂X|) and ∂Z† = 1
4 (∂X + i ∂X|).

The Hermitean vector variables and Dirac operators are isotropic, i.e. (Z)2 = (Z†)2 = 0 and
(∂Z)2 = (∂Z†)2 = 0, whence the Laplacian allows for the decomposition ∆2n = 4 (∂Z∂Z†+∂Z†∂Z).
These objects lie at the core of the Hermitean function theory by means of the following definition.

Definition 1 A continuously differentiable function g in Ω ⊂ R2n with values in C2n is called left
Hermitean monogenic (or left h-monogenic) in Ω, iff it satisfies the system ∂Zg = 0 = ∂Z†g or the
equivalent system ∂Xg = 0 = ∂X|g.

Right h-monogenicity is defined similarly. Functions which are both left and right h-monogenic
are called two-sided h-monogenic. The above definition constitutes a refinement of monogenicity,
since h-monogenic functions (left or right) are monogenic w.r.t. both Dirac operators ∂X and ∂X|.

2.2 The transition to a circulant matrix approach

The fundamental solutions of the Dirac operators ∂X and ∂X| are respectively given by

E(X) = − 1
a2n

X

|X|2n
, E|(X) = − 1

a2n

X|
|X|2n

, X ∈ R2n \ {0}

where a2n denotes the surface area of the unit sphere in R2n. Introducing the functions

E(Z) = − (E + i E|) =
2
a2n

Z

|Z|2n and E†(Z) = (E − i E|) =
2
a2n

Z†

|Z|2n

as well as the particular circulant (2× 2) matrices

D(Z,Z†) =
(
∂Z ∂Z†

∂Z† ∂Z

)
, E =

(
E E†
E† E

)
and δ =

(
δ 0
0 δ

)
,

where δ is the Dirac delta distribution, one obtains that D(Z,Z†)E(Z) = δ(Z), so that E may
be considered as a fundamental solution of D(Z,Z†) in a matricial context, see e.g. [10, 11, 36].
Moreover, the Dirac matrix D(Z,Z†) in some sense factorizes the Laplacian, since

4 D(Z,Z†)

(
D(Z,Z†)

)† =
(

∆2n 0
0 ∆2n

)
≡ ∆

This observation inspired the following definition.

Definition 2 Let g1, g2 be continuously differentiable functions defined in Ω and taking values in
C2n, and consider the matrix function

G1
2 =

(
g1 g2
g2 g1

)
Then G1

2 is called left (respectively right) H-monogenic in Ω iff it satisfies in Ω the system
D(Z,Z†) G1

2 = O (respectively G1
2 D(Z,Z†) = O). Here O denotes the matrix with zero entries.

Notions of continuity, differentiability and integrability of G1
2 are introduced entry–wise. In

particular, we consider the classes C0,α(E) and Lp(E) of, respectively, Hölder continuous and p-
integrable circulant matrix functions over some suitable subset E of R2n. However, introducing
the non–negative function ‖G1

2(X)‖ = max{|g1(X)|, |g2(X)|}, these function classes may also be
defined by means of the traditional conditions

|G1
2|α,E := sup

X,Y ∈E; X 6=Y

‖G1
2(X)−G1

2(Y )‖
|X − Y |α

< +∞

and

‖G1
2‖Lp

:=
(∫

E

‖G1
2(X)‖p

) 1
p

< +∞

respectively. The non–negative numbers ‖G1
2‖α,E := maxX∈E ‖G1

2(X)‖+ |G1
2|α,E and ‖G1

2‖Lp
are

then said to be the norms of an element G1
2 in C0,α(E) or Lp(E), respectively.

From now on we denote by c, c1, c2, cΓ, . . . generic positive constants, which only depend on the
parameters which are explicitly indicated and can take different values.
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2.3 Box dimension and d-summable sets in R2n

Let E be an arbitrary bounded subset of R2n, whose diameter will be denoted by |E|. Then for
any s ≥ 0 its Hausdorff measure Hs(E) may be defined by

Hs(E) = lim
δ→0

inf

{ ∞∑
k=1

|Bk|s : E ⊂
∞⋃

k=1

Bk, |Bk| < δ

}

the infimum being taken over all countable δ-coverings {Bk} of E with open or closed balls. For
s = 2n, the Hausdorff measure H2n coincides, up to a positive multiplicative constant, with the
Lebesgue measure L2n in R2n.

Now, let E be compact. The Hausdorff dimension αH(E) of E is defined as the infimum of all
s ≥ 0 such that Hs(E) < +∞. For more details concerning the Hausdorff measure and dimension
we refer to [22, 23]. Frequently however, see [30], the so-called box dimension is used, defined as

α(E) = lim
ε→0

sup
logNE(ε)
− log ε

where NE(ε) stands for the minimal number of ε-balls needed to cover E. Note that the limit above
remains unchanged if NE(ε) is replaced by the number of k-cubes intersecting E, with 2−k ≤ ε <
2−k+1. A cube is called a k-cube if it is of the form [l12−k, (l1 +1)2−k]×· · ·× [l2n2−k, (l2n +1)2−k],
where k and l1, . . . , l2n are integers. The box dimension and the Hausdorff dimension of a given
compact set E can be equal, which is for instance the case for the so-called (2n − 1)-rectifiable
sets, see [24], but in general we have that αH(E) ≤ α(E). The following geometric notion was
introduced in [27], and is essential in their method of integrating a form over a fractal boundary.

Definition 3 The compact set E is said to be d-summable iff the improper integral
∫ 1

0
NE(τ) τd−1 dτ

converges.

Lemma 1 It holds that

(i) any d-summable set E has box dimension α(E) ≤ d;
(ii) if α(E) < d, then E is d-summable;
(iii) if E is d-summable, then it is also (d+ ε)-summable for every ε > 0.

In what follows, we will take Ω ⊂ R2n to be a Jordan domain, i.e. a bounded oriented connected
open subset of R2n, the boundary Γ of which is a compact topological surface. For our purpose, we
will assume that the Hausdorff and box dimensions of Γ satisfy 2n−1 ≤ αH(Γ) ≤ α(Γ) < 2n. Note
that this includes the case when Γ is fractal in the sense of Mandelbrot, i.e. when 2n− 1 < αH(Γ).
Under these conditions, there will always exist d ∈ [2n − 1, 2n[ such that Γ is d-summable, on
account of Lemma 1.

We will also need the so-called Whitney decomposition of Ω, which we will only recall briefly;
for details we refer to [40]. Consider the lattice Z2n in R2n and the collection of closed unit cubes
defined by it; let M1 be the mesh consisting of those unit cubes having a non-empty intersection
with Ω. We then recursively define the meshes Mk, k = 2, 3, . . ., each time bisecting the sides
of the cubes of the previous one. The cubes in Mk thus have side length 2−k+1 and diameter
|Q| =

√
2n2−k+1. We then define, for k = 2, 3, . . .,

W1 = {Q ∈M1 | all neighbour cubes of Q belong to Ω}
Wk =

{
Q ∈Mk | all neighbour cubes of Q belong to Ω, and 6 ∃Q∗ ∈ Wk−1 : Q ⊂ Q∗

}
for which it can be proven that Ω =

⋃+∞
k=1Wk =

⋃+∞
k=1

⋃
Q∈Wk Q ≡

⋃
Q∈W Q, all cubes Q in the

Whitney decomposition W of Ω having disjoint interiors. We then have the following relation
between the d-summability of the boundary Γ and the Whitney decomposition of Ω, see [27].

Lemma 2 If Ω is a Jordan domain of R2n and its boundary Γ is d-summable, then the expression
s(d) =

∑
Q∈W |Q|d, called the d-sum of the Whitney decomposition W of Ω, is finite.

4



An important special case is when Γ is assumed to be left Ahlfors-David regular, or (`) AD-
regular for short, meaning that H2n−1(Γ) <∞, and there exists a constant cΓ such that

cΓ r
2n−1 ≤ H2n−1(Γ ∩B(U, r)) for all U ∈ Γ and 0 < r ≤ |Γ| (1)

where B(U, r) denotes the closed ball with center U and radius r. A nice link between this
geometric notion, introduced in [6], and the one of d-summability is given in the following lemma.

Lemma 3 If Γ is (`) AD-regular, then Γ is (2n− 1 + ε)-summable for all ε > 0. Moreover,

s(d) ≤ c
H2n−1(Γ)

ε

Proof.
The (2n − 1 + ε)-summability of Γ is obtained by observing that NΓ(τ) ≤ PΓ( τ

2 ), where PΓ( τ
2 )

is the packing number of Γ, i.e. the biggest number of disjoint τ
2 balls with center in Γ, see [33].

Then, as Γ is (`) AD-regular, we have

cΓ
τ2n−1

22n−1
PΓ(

τ

2
) ≤ H2n−1(Γ)

and hence NΓ(τ) ≤ c H2n−1(Γ) τ1−2n, where the constant c depends on n and cΓ. The proof now
proceeds similarly to the one of [27, Lemma 2]. �

3 A Hermitean Hilbert transform on d-summable surfaces

For further use, we introduce the notations Ω+ ≡ Ω, and Ω− ≡ R2n \ Ω. From now on we reserve
the notations Y and Y |, respectively U and U | for Clifford vectors associated to points in R2n \Γ,
while their Hermitean counterparts are denoted by V = 1

2 (Y + i Y |) and V † = − 1
2 (Y − i Y |).

Similarly, the notations U and U | mean Clifford vectors associated to points in Γ, while their
Hermitean counterparts are denoted by W = 1

2 (U + i U |) and W † = − 1
2 (U − i U |).

Assuming that H2n−1(Γ) < ∞, the Hermitean Cauchy integral of a matrix function G1
2 ∈

C0,α(Γ) is defined by

CΓG1
2(Y ) =

∫
Γ

E(Z − V )N(Z,Z†)G
1
2(X) dH2n−1, Y ∈ Ω±

where the circulant matrix

N(Z,Z†) =
(

N −N†

−N† N

)
contains (up to a constant factor) the Hermitean projections N and N† of the unit normal vector
n(U) at U ∈ Γ.

In [2], an alternative approach for defining the Hermitean Cauchy integral is presented, in the
case of domains with d-summable boundary, by means of the following definition.

Definition 4 Let Ω be a Jordan domain in R2n with d-summable boundary Γ, d ∈ [2n − 1, 2n[.
Moreover, let d−2n+1 < α ≤ 1 and consider G1

2 ∈ C0,α(Γ). Then, for Y ∈ R2n \Γ the Hermitean
Cauchy integral of G1

2 is defined by

(C∗ΓG1
2)(Y ) = (−1)

n(n+1)
2 (2i)nχΩ(Y )G̃

1

2(Y )− T ΩD(Z,Z†)G̃
1

2(Y ) (2)

χΩ being the diagonal matrix version of the standard characteristic function χΩ of Ω. Furthermore,
T Ω denotes the Hermitean Téodorescu transform, given for F 1

2 ∈ C1(Ω) by

T ΩF 1
2(Y ) = −

∫
Ω

E(Z − V )F 1
2(X) dW (Z,Z†)

where dW (Z,Z†) is the associated volume element, given by

dV (X) = (−1)
n(n−1)

2

(
i

2

)n

dW (Z,Z†)
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reflecting integration in the respective underlying complex planes. Finally, G̃
1

2 denotes a Whitney

type extension of G1
2, see [40], satisfying G̃

1

2 ∈ C∞(R2n \E), G̃
1

2|E = G1
2 and

‖D(Z,Z†) G̃
1

2(Y )‖ ≤ cdist(Y ,E)α−1, for all Y ∈ R2n \E

Direct verification shows that C∗ΓG1
2 is Hermitean monogenic in R2n \ Γ and vanishes at infinity,

while, in cases where Γ is sufficiently regular, e.g. Ahlfors-David regular, the Hermitean Cauchy
integral (2) reduces to the one considered in [3]. Furthermore, Definition 4 is legitimate, since the
right hand side of (2) exists for any Y ∈ R2n \ Γ and does not depend on the particular choice of

the Whitney type extension G̃
1

2. A proof of this last assertion can be found in [2].
A natural question is whether C∗ΓG1

2 admits a continuous extension to Ω = Ω∪Γ, in which case
a ”fractal” Hermitean Hilbert transform could be introduced, respecting the traditional structure
of the Plemelj-Sokhotski formulae:

H∗
ΓG1

2(U) = 2
(−1)

n(n+1)
2

(2i)n
(C∗ΓG1

2)
+(U) − G1

2(U), U ∈ Γ (3)

where (C∗ΓG1
2)

+ denotes the trace on Γ of the continuous extension of C∗ΓG1
2 to Ω. Definition (3)

would then provide an alternative for the matricial Hermitean Hilbert transform H introduced in
[10] for domains with C∞ smooth boundaries. Under an additional condition on the regularity of
the considered matrix function G1

2, this question indeed has been answered affirmatively, as stated
in the following theorem proven in [1].

Theorem 1 Let Ω be a Jordan domain in R2n with d-summable boundary Γ, d ∈ [2n − 1, 2n[.
Furthermore, let d− 2n+ 1 < α ≤ 1 and consider G1

2 ∈ C0,α(Γ). If moreover

α >
d

2n
(4)

then C∗ΓG1
2(Y ) admits a continuous extension to Ω. Moreover, it then holds that the Hilbert trans-

form H∗
ΓG1

2, defined by (3), belongs to C0,β(Γ), whenever β < 2nα−d
2n−d < 1.

For the convenience of the reader we repeat the main ideas of the proof, thus making our exposition
self-contained. Since α > d

2n implies that 2n < 2n−d
1−α , we may choose p such that 2n < p < 2n−d

1−α .

For any such p, we have that D(Z,Z†)G̃
1

2 ∈ Lp(Ω), so that the integral term T ΩD(Z,Z†)G̃
1

2(Y ) in
(2) represents a continuous function in R2n. This clearly forces C∗ΓG1

2(Y ) to admit a continuous

extension to Ω, whence H∗
ΓG1

2 is well–defined. Moreover, T ΩD(Z,Z†)G̃
1

2(Y ) ∈ C0, p−2n
p (R2n), which

implies that H∗
ΓG1

2 ∈ C0,β(Γ) for any β satisfying β < 2nα−d
2n−d .

Remark 1 Observe that, still under condition (4), H∗
ΓG1

2 may be rewritten as

H∗
ΓG1

2(U) = G1
2(U)− 2

(−1)
n(n+1)

2

(2i)n
T ΩD(Z,Z†)G̃

1

2(U),

which is a natural generalization of the more conventional Hermitean Hilbert transform given by

(HΓG1
2)(U) := G1

2(U)− 2
∫
Γ

E(Z −W )N(Z,Z†)(G
1
2(U)−G1

2(X) dH2n−1, U ∈ Γ.

4 Hölder norm estimate for H∗
Γ

4.1 The case of a d-summable boundary

From Theorem 1 we learn that the Hilbert transform H∗
Γ acts from C0,α(Γ) into C0,β(Γ) whenever

0 < β <
2nα− d

2n− d
< 1. (5)

We will now show that H∗
Γ is a bounded operator between these spaces and present an upper

bound for its Hölder norm.
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Theorem 2 Let Γ be d-summable and suppose that condition (5) holds. Then H∗
Γ is bounded from

C0,α(Γ) into C0,β(Γ) and for its norm there holds that

‖H∗
Γ‖ ≤ 1 + |Γ|α−β + c1(s(d))

1−β
2n + c2(s(d))

1−β
2n |Γ|β (6)

where d = 2n
α− β

1− β
and c1, c2 only depend on α, β and n.

Proof.

Choose p =
2n

1− β
. The proof of Theorem 1, see [1], then reveals that∫

Ω

‖D(Z,Z†)G̃
1

2(Y )‖p ≤ c |G1
2|

p
α,Γ

∑
Q∈W

|Q|2n−p(1−α) = c |G1
2|

p
α,Γ

∑
Q∈W

|Q|p(α−β) = c |G1
2|

p
α,Γ s(d)

where we have put d = 2n
α− β

1− β
. Since d > d and Γ is d-summable, s(d) is finite and we have

obtained
‖D(Z,Z†)G̃

1

2‖Lp
≤ c1/p |G1

2|α,Γ (s(d))1/p

At this stage we invoke [25, Proposition 8.1] to deduce that

|T ΩD(Z,Z†)G̃
1

2(Y )| ≤ c ‖D(Z,Z†)G̃
1

2‖Lp
|Γ|

p−2n
p = c ‖D(Z,Z†)G̃

1

2‖Lp
|Γ|β ≤ c1 |G1

2|α,Γ (s(d))1/p |Γ|β

whence
|T ΩD(Z,Z†)G̃

1

2|β,R2n ≤ c ‖D(Z,Z†)G̃
1

2‖Lp
≤ c2 |G1

2|α,Γ (s(d))1/p

Consequently, for any U ∈ Γ, it holds that

|H∗
ΓG1

2(U)| ≤ |G1
2(U)|+ 2 |T ΩD(Z,Z†)G̃

1

2(U)|

≤ |G1
2(U)|+ c1 |G1

2|α,Γ(s(d))1/p |Γ|β ≤
(
1 + c1 (s(d))1/p |Γ|β

)
‖G1

2‖α,Γ

whence

|H∗
ΓG1

2|β,Γ ≤ |G1
2|β,Γ + 2 |T ΩD(Z,Z†)G̃

1

2|β,R2n ≤
(
|Γ|α−β + c2 (s(d))1/p

)
|G1

2|α,Γ

This finally yields

‖H∗
ΓG1

2‖β,Γ ≤
(
1 + |Γ|α−β + c1 (s(d))

1−β
2n + c2 (s(d))

1−β
2n |Γ|β

)
‖G1

2‖α,Γ

which completes the proof. �

Remark 2 Note that in the proof of both Theorems 1 and 2 we have used the d-summability of
Γ only to ensure the finiteness of some (d + ε)-sum. In the following section we will exploit this
argument when the surface is assumed to be (`) AD-regular.

4.2 The case of an (`) AD-regular boundary

Theorem 3 Let Γ be (`) AD-regular. Then the Hilbert transform HΓ is bounded from C0,α(Γ)
into C0,β(Γ), whenever 0 < β < 2nα+ 1− 2n < 1. Moreover,

‖HΓ‖ ≤ 1 + c1 [H2n−1(Γ)]
α−β
2n−1 + c2 [H2n−1(Γ)]

1−β
2n + c3 [H2n−1(Γ)]

2n−1+β
2n(2n−1)

where c1, c2 and c3 only depend on α, β, n and on the constant cΓ, introduced in (1).

Proof.

Take p =
2n

1− β
, then, by assumption, 1 − p(1 − α) > 0, whence Lemma 3 implies that the

corresponding (2n− p(1−α))-sum is finite. According to Remark 2, the estimate (6) then follows
similarly as in the proof of Theorem 2. The proof is further completed by the following observations:

(i) from (1), it follows that |Γ| ≤ c
− 1

2n−1
Γ [H2n−1(Γ)]

1
2n−1 ;

(ii) from Remark 1, taking ε = 1− p(1− α), it follows that s(p(α− β)) ≤ c
H2n−1(Γ)

1− p(1− α)
.

�
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