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Convex Order Approximations in the case of

Cash Flows of Mixed Signs

Jan Dhaene∗†, Marc Goovaerts∗, Michèle Vanmaele‡§, Koen Van Weert∗

April 2012

Abstract

In Van Weert et al. (2010), results are obtained showing that, when
allowing some of the cash flows to be negative, convex order lower bound
approximations can still be used to solve general investment problems in
a context of provisioning or terminal wealth. In this paper, a correction
and further clarification of the reasoning of Van Weert et al. (2010) are
given, thereby significantly expanding the scope of problems and cash
flow patterns for which the terminal wealth or initial provision can be
accurately approximated. Also an interval for the probability level is
derived in which the quantiles of the lower bound approximation can be
computed. Finally, it is shown how one can move from a context of
provisioning of future obligations to a saving and terminal wealth problem
by inverting the time axis.
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1 Introduction

In Van Weert et al. (2010), optimal portfolio selection problems for arbitrary
cash flow patterns have been discussed. They allow for liabilities that can be
both positive or negative, as opposed to Dhaene et al. (2005), where all liabilities
have to be of the same sign. They generalize portfolio selection problems to the
case where a minimal return requirement is imposed. The results that they
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propose are an extension of the solution of Vanduffel et al. (2005) to the more
general context of provisioning and saving as described in Dhaene et al. (2005).
However, the proof of the presented results contains an error. For example
Lemma 1 can only be applied to partial sums of the form as in Vanduffel et al.
(2005) constituting the function f(p) in formula (16) of Van Weert et al. (2010).
In this paper we will show how to split f(p) in these building blocks and to
derive the interval for p where f(p) > 0 implies f ′(p) > 0. In a next step, we
will enlarge this interval for p using the theory of zeros of general polynomials.
In addition, we will formulate a sufficient condition for the main result to hold.
This will be a slightly stronger condition on the signs and amounts of the cash
flows but will be satisfied in many practical cases. We will illustrate our results
with numerical examples. The framework of optimal portfolio selection in which
we work is the same as in Dhaene et al. (2005) and Van Weert et al. (2010) and
we refer to those papers for more details, notations and terminology.

2 Problem Description

To a series of future payments αi at time i, i = 0, 1, . . . , n, we attach the random
variable S defined by

S =

n∑
i=0

αie
Zi (1)

where the cash flows αi of mixed signs are deterministic constants and the Zi’s
are linear combinations of the components of the multivariate normal random
vector (Y1, Y2, . . . , Yn):

Zi =

n∑
j=1

λijYj .

It is well-known that the random variables Zi are normally distributed with
mean E[Zi] and variance σ2

Zi
. Depending on the choice of the Zi’s, the random

variable S in (1) can be interpreted as a stochastic present value or stochas-
tic accumulated value of the cash flows, in a model with multivariate normal
logreturns. However, it is impossible to determine the distribution function of
S analytically in closed form, because S is a sum of non-independent lognor-
mal variables. We will use the convex upper and lower bounds for S satisfying
S` ≤cx S ≤cx Sc as introduced in Dhaene et al. (2002b):

Sc =

n∑
i=0

αie
E[Zi]+σZi

Φ−1(U), (2)

S` = E [S | Λ] =

n∑
i=0

αie
E[Zi]+

1
2 (1−r2i )σ2

Zi
+riσZi

Φ−1(U), (3)

with U uniformly distributed on the unit interval, Φ the standard normal cu-
mulative distribution function (cdf), ri the correlations between the random
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variables Zi and the conditioning random variable

Λ =

n∑
j=1

βjYj . (4)

If all the amounts αi have the same sign, the upper bound (2) is a comono-
tonic sum, which implies that distortion risk measures related to these bounds
can be obtained by simply summing the individual terms in the sum. For the
lower bound S` (3) this is not a sufficient condition. In view of the factor ri in
the exponent, all ri’s should also have the same sign (not necessarily the same
as that of the αi’s).
In case of payments αi with changing signs, Sc is not a comonotonic sum. How-
ever, the upper bound approximation (2) can be adapted easily as follows:

Sc =

n∑
i=0

αie
E[Zi]+sign(αi)σZi

Φ−1(U), (5)

with sign(x) = 1 for x > 0 and sign(x) = −1 for x < 0 (see, e.g., Dhaene
et al. (2002a,b)). It holds that (5) is a comonotonic sum. However, the upper
bound does in general not give a very accurate approximation of the distribution
function of S; the accuracy of the lower bound (3) is usually much higher.
For this lower bound, the problem is that there is no general rule to find a
conditioning random variable Λ, leading to an accurate approximation of S,
such that S` is a sum of non-decreasing (or non-increasing) functions of Λ and,
hence, such that S` is a comonotonic sum in case the αi’s have changing signs.
One needs to find a Λ such that the products αiri have the same sign for all
i. S` not being a comonotonic sum would imply that the additivity property
would no longer hold and, hence, that distortion risk measures related to S`

cannot be obtained by simply summing the individual terms in the sum, which
would make the lower bound approximations useless in practice.

In this paper, however, we show that it is possible, under some mild condi-
tions, to allow for more arbitrary cash flow patterns. We show that, although
the lower bound approximations are not comonotonic sums anymore, allowing
some of the cash flows to be negative does not necessarily imply that the convex
order lower bound approximations cannot be used. As a result we significantly
expand the scope of problems and cash flow patterns for which the quantiles
can be accurately approximated.

3 Savings and Terminal Wealth

3.1 General results

In this section we consider a terminal wealth problem: we determine how pe-
riodic amounts should be invested in order to reach some target capital at
a predetermined future time n. We consider a set of deterministic amounts
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α0, α1, . . . , αn−1 with n ≥ 1. The conditions under which our main result holds,
require α0 to be positive. However, we do not impose a priori a sign condition
on the other amounts αl with l ∈ {1, . . . , n − 1} which can take positive or
negative values. This series of payments will be interpreted in a first approach
as a combination of series of positive payments (savings) followed by negative
ones (consumptions). Hence this is a generalization of the so-called “saving-
consumption” problem described in Vanduffel et al. (2005) where only one of
such series is taken into account.

We recall some notations and terminology based on Vanduffel et al. (2005)
and Van Weert et al. (2010). We assume that the return on the account is
generated by a Brownian motion process. Let Vk denote the surplus at time k.
By convention, the surplus at time k has to be understood as the surplus just
after saving or withdrawal. Starting from the initial value V0 = α0, the surplus
Vk available at time k is given by the following recursive relation:

Vk = Vk−1e
Yk + αk, k = 1, . . . , n− 1. (6)

The surplus at time n is then equal to Vn = Vn−1e
Yn . Solving recursion (6), we

can rewrite Vk in the form of (1) as

Vk =

k∑
l=0

αle
Zl,k , k = 0, . . . , n− 1, (7)

with Zl,k =
∑k
j=l+1 Yj , for l = 0, . . . , k. By convention

∑k
j=k+1 Yj = 0. The

surplus at time n equals

Vn =

n−1∑
l=0

αle
Zl,n , with Zl,n =

n∑
j=l+1

Yj .

Our goal is to determine the distribution of the final surplus Vn. However this
surplus can become negative, which would imply shortselling of units of the
investment portfolio. To avoid this, we limit our study to the distribution of
the terminal wealth Wn, which is defined as:

Wn = max[Vn, 0]. (8)

As explained in the previous section, we focus on the convex order lower bound
(3), which we denote here as V `n . We approximate the distribution of the ter-
minal wealth Wn by W `

n = max[V `n , 0].
Choosing Λ such that the variance of V `n is maximized and hence as close as

possible to Var(Vn), results in the optimal conditioning random variable Λ of
the form (4), with coefficients βj equal to, see Dhaene et al. (2005):

βj =

j−1∑
l=0

αle
(n−l)µ, (9)
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for j = 1, . . . , n, with µ the drift of the yearly logreturns Yj .
From (3) we find that the random variable V `n with Λ chosen as (4) with

coefficients (9) equals in distribution

V `n
d
=

n−1∑
l=0

αle
(n−l)µ− 1

2 r
2
l (n−l)σ2+rlσ

√
n−lΦ−1(U), (10)

with U ∼ U(0, 1), Φ the standard normal cdf and σ the standard deviation of
the normally distributed random variables Yj . The correlation coefficients rl
are given by

rl =
Cov (Zl,n,Λ)

σZl,n
σΛ

=

∑n
j=l+1 βj

√
n− l

√∑n
j=1 β

2
j

, l = 0, . . . , n− 1. (11)

In the remainder of this section we use the notation f for the following
function:

f(p) =

n−1∑
l=0

αle
(n−l)(µ− 1

2 r
2
l σ

2)+rlσ
√
n−lΦ−1(p), p ∈ (0, 1). (12)

Combining (8) and (10) leads to V `n
d
= f(U) and W `

n
d
= max[f(U), 0].

Further, we assume that there are m > 0 series of negative cash flows:
αk1 < 0, . . . , αk1+j1 < 0 k1 > 0, j1 ≥ 0;
...
αkm < 0, . . . , αkm+jm < 0 km > km−1 + jm−1, jm ≥ 0,

(13)

with km + jm ≤ n− 1. All other cash flows are assumed to be positive. Then,
we can rewrite (12) as the following combination:

f(p) =

m∑
i=1

fi(p) + fm+1(p), (14)

where

fi(p) =

ki−1∑
l=ki−1+ji−1+1

αle
(n−l)(µ− 1

2 r
2
l σ

2)+rlσ
√
n−lΦ−1(p)

−
ki+ji∑
l=ki

|αl|e(n−l)(µ− 1
2 r

2
l σ

2)+rlσ
√
n−lΦ−1(p) (15)

for i = 1, . . . ,m, with k0 + j0 + 1 = 0, and

fm+1(p) =

n−1∑
l=km+jm+1

αle
(n−l)(µ− 1

2 r
2
l σ

2)+rlσ
√
n−lΦ−1(p) ≥ 0, (16)
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being zero when km + jm = n− 1. In other words, we divide (12) into separate
sums fi, where each fi for i = 1, . . . ,m represents a series of positive cash flows,
followed by a series of negative cash flows to which the result of Vanduffel et al.
(2005) can be applied. We will state this result applied to the functions fi and
combine it to arrive at a result for the function f as given by (12) or (14).

Lemma 1 1. Let fi be defined by (15) and βj by (9). If βj > 0 for j =
ki−1 + ji−1 + 2, . . . , n, then there exists a probability level pi ∈ (0, 1) such
that

fi(p) > 0 =⇒ f ′i(p) > 0 for p ∈ (pi, 1). (17)

When km+jm < n−1, we also have that fm+1(p) > 0 implies f ′m+1(p) > 0
for all p ∈ (0, 1).

2. Let f be defined by (14) and βj by (9). If βj > 0 for j = 1, . . . , n,
then f(p) > 0 implies f ′(p) > 0 for p ∈ (maxi∈{1,...,m} pi, 1), with the pi
determined in (17).

Proof.

1. Since βj > 0 for j = ki−1 + ji−1 + 2, . . . , n it follows from (11) that rl > 0
for l = ki−1 + ji−1 + 1, . . . , ki + ji and, hence, that

lim
p→0

fi(p) = 0 and lim
p→1

fi(p) = +∞.

Furthermore, we may apply Lemma 1 of Vanduffel et al. (2005) to fi which
implies that for those p ∈ (0, 1) for which fi(p) ≥ 0, also f ′i(p) > 0. It is
clear that once the continuous function fi becomes positive in a p ∈ (0, 1)
it is increasing and will not drop below zero again. We may therefore
conclude that there exists a value pi ∈ (0, 1) such that the implication
(17) holds.

2. From (14) it is clear that when all terms fi(p) and fm+1(p) are positive
and increasing then also the sum f(p) will be. In view of (17) this will be
satisfied for p in the stated interval.

In what follows we will enlarge the interval for p by lowering the lower bound
maxi∈{1,...,m} pi. Hereto we make the change of variables:

x = eσΦ−1(p) with x ∈ (0,+∞) (18)

in the function f(p) (14):

f(p) = h(x) =

m∑
i=1

hi(x) + hm+1(x) (19)
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with according to (15) and (16)

hi(x) =

ki−1∑
l=`i

αi,lx
rl
√
n−l −

ui∑
l=ki

|αi,l|xrl
√
n−l (20)

hm+1(x) =

n−1∑
l=`m

αm+1,lx
rl
√
n−l, (21)

where we introduced the short hand notations:

`i = ki−1 + ji−1 + 1, ui = ki + ji, αi,l = αle
(n−l)(µ− 1

2 r
2
l σ

2).

Lemma 2 1. Let hi be defined by (20) and βj by (9). If βj > 0 for j =
ki−1+ji−1+2, . . . , n, then there exist an xi ∈ [0,+∞) and an x′i ∈ [0,+∞)
with x′i ≤ xi such that

hi(x) > 0 =⇒ h′i(x) > 0 for x ∈ (xi,+∞) (22)

h′i(x) > 0 =⇒ h′′i (x) > 0 for x ∈ (x′i,+∞). (23)

When km+jm < n−1, we also have that hm+1(x) > 0 implies h′m+1(x) > 0
and h′′m+1(x) > 0 for all x ∈ (0,+∞).

2. Let h be defined by (19) and βj by (9). If βj > 0 for j = 1, . . . n, then
h(x) > 0 and h′(x) > 0 for x ∈ (x?,+∞) with x? = max(xmax, x

′
max) ≤

maxi=1,...,m xi where xmax corresponds to the largest zero of h, and x′max

to the largest zero of h′, and where the xi are determined in (22).

3. Let f be defined by (12) and βj by (9). If βj > 0 for j = 1, . . . , n, then
there exists a p? = Φ

(
1
σ log x?

)
, with x? determined in assertion 2, such

that f(p) > 0 and f ′(p) > 0 for p ∈ (p?,+∞).

Proof.

1. We note that the coefficients αi,l in (20) have the same sign pattern as
the original coefficients αl. Also, we note that the first order derivative
functions h′i are of the same form as hi:

h′i(x) =

ki−1∑
l=`i

αi,lrl
√
n− lxrl

√
n−l−1

−
ui∑
l=ki

|αi,l|rl
√
n− lxrl

√
n−l−1.

The coefficients αi,lrl
√
n− l still have the same sign pattern when all

rl are positive which is satisfied by the assumption that βj > 0 for all
j ∈ {1, . . . , n}. Hence, a reasoning as in the proof of Lemma 1 of Vanduffel
et al. (2005) and of Lemma 1 above applied to hi as well as to h′i leads
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to (22) and (23). Thus the functions hi are strictly increasing and convex
from x′i on, but positive only from xi ≥ x′i on.
The result for hm+1 is clear from the relation of (16) and (21) through
(18).

2. From (19), it is clear that h(x) > 0 implies h′(x) > 0 for x ∈ [maxi=1,...,m xi,+∞).
To determine x? ≤ maxi=1,...,m xi we note that h(x) and h′(x) are gen-
eralized polynomials to which Descartes’ rule of signs applies, see Jame-
son (2006) and references therein, when the exponents rl

√
n− l are listed

in descending order. This is satisfied when the sequence (rl
√
n− l)l is

decreasing in l or equivalently, in view of (11), when βj > 0 for all
j ∈ {1, . . . , n} (in particular, β1 = α0e

nµ > 0 requires α0 > 0 as men-
tioned at the beginning of this section). Further we find that r0

√
n > 1

since
(∑n

j=1 βj

)2

>
∑n
j=1 β

2
j under the assumption for the βj ’s. Hence

we obtain limx→+∞ h(x) = limx→+∞ h′(x) = sign(α0)∞ = +∞. Both h
and h′ cannot have more zeros than the number of sign changes of the se-
quence α0, . . . , αn−1, and the number of zeros of h in the interval (0,+∞)
is less than or equal to the number of zeros of h′ on (0,+∞) plus one (tak-
ing the order of the zeros into account), see Jameson (2006). Therefore,
it is clear that beyond the largest zero xmax of h, the function h is strictly
positive but can still decrease and increase again before going to infinity.
Similarly for h′, beyond its largest zero x′max, h′ is strictly positive. Thus,
both h and h′ are strictly positive for x ∈ (max(xmax, x

′
max),+∞). Is

x? = max(xmax, x
′
max) ≤ maxi=1,...,m xi? Adding h1 and h2 produces a

zero in the interval (min(x1, x2), max(x1, x2)) and by induction we arrive
at xmax ≤ maxi=1,...,m xi. Analogously, we obtain for the zeros of h′ and
h′i that x′max ≤ maxi=1,...,m x

′
i and x′max ≤ maxi=1,...,m xi since x′i ≤ xi

for all i.

3. Applying the chain rule when taking the first order derivative of f in (19),
making use of (18), we find

f ′(p) = h′(x)x
σ

ϕ(p)
,

with ϕ the density function of a standard normal random variable, which
implies that also f ′(p) and h′(x) have the same sign for x and p related
by (18).

Remark The functions hi (20) are also generalized polynomials with one sign
change in the coefficients and thus by Descartes’ sign rule have at most one zero
xi > 0 (besides zero itself). Indeed, since the functions hi are strictly convex
increasing, once they crossed the x-axis, they cannot return to zero again.

We recall that V `n is not a comonotonic sum: Lemma 2 only states that the

total sum V `n
d
= f(U) is a non-decreasing function of one random variable U (for
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realizations of U at least equal to p?); the separate terms in the sum are not all
non-decreasing functions of U . However, Lemma 2 implies that the lower bound
approximation can still be used, as the quantiles of V `n can easily be determined.
This result, which is the main result of this section, is stated in the following
theorem:

Theorem 1 If the conditioning random variable Λ is chosen as in (4) with
coefficients βj given by (9), and if the surplus Vl in (6) satisfies

E[Vl] > 0, l = 0, . . . , n− 1, (24)

then the quantiles of W `
n are given by

Qp[W
`
n] = max[f(p), 0] = f(p), p? < p < 1, (25)

where p? is determined in Lemma 2 and f(p) is defined by (12). The distribution
function of W `

n follows from

f(FW `
n
(x)) = x, x ≥ Qp? [W `

n]. (26)

Proof. Define the (left-continuous) function g on the interval (0, 1) as

g(p) =

{
f(p) p? ≤ p < 1,
f (p?) 0 < p < p?.

We recall from Van Weert et al. (2010) that for l = 0,. . . , n− 1

E[Vl] = e−(n−l)µβl+1. (27)

Hence, by condition (24) we can apply Lemma 2 which implies that the function
g is non-decreasing. As stated in Vanduffel et al. (2005), the quantiles of W `

n,
for p ≥ p?, can easily be determined analytically by (25) and the distribution
function of W `

n from (26), where, in the present case, x has to be at least equal
to Qp? [W `

n] according to Lemma 2.

Remarks Combining (27) and (9), we can rewrite the average surplus as a
polynomial in x with x = eµ > 0:

E[Vl] =

l∑
k=0

αke
(l−k)µ =

l∑
k=0

αkx
l−k. (28)

From Descartes’ rule of signs it is known that the number of positive roots of
this polynomial in x is either equal to the number of sign variations in the
coefficients or is less than this number by an even integer. Thus for given cash
flows αl, l = 0, . . . , n− 1 it is not possible to rewrite the conditions (24) as the
single condition (23) on µ in Van Weert et al. (2010).
However, it is possible to find a lower bound µ? for µ such that for µ > µ? we
are sure that conditions (24) are satisfied. Since α0 > 0 the polynomial (28)
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in x will go to +∞ when x tends to infinity. Denoting the largest zero of the
polynomial (28) by xl,max, this polynomial will be increasing for x > xl,max.
Since x = eµ we obtain that for µ larger than

µ? = max
l=0,...,n−1

(
max

{
µ | µ > 0 and

l∑
k=0

αke
(l−k)µ = 0

})
(29)

conditions (24) will be satisfied. This is a sufficient condition.
Further, we note that from the recursion

E[Vl] = xE[Vl−1] + αl, l = 1, . . . , n− 1, with E[V0] = α0

it follows that we only have to impose conditions (24) when adding a negative co-
efficient αl, thus from the set (13) or for l ∈ {0, k1, . . . , k1 + j1, . . . , km, . . . , km+
jm} as was also noted in section 2.2.2 from Van Weert et al. (2010).

3.2 Sufficient condition

We derive a sufficient condition imposed on the cash flows so that the βj > 0
for all j under the realistic assumption that µ > 0 and hence Theorem 1 holds.
It is not a necessary condition, since there exist sequences of cash flows that
will not satisfy that condition while all the βj ’s are strictly positive, as we will
see in the numerical examples. In a first lemma we prove the following general
result.

Lemma 3 Suppose we have deterministic cash flows α0,. . . , αn−1 such that

l∑
k=0

αk ≥ 0

for l = 0, . . . , n − 1. Suppose {γl}l=0,...,n−1 is a sequence of positive numbers,
which is strictly decreasing in l. Then

l∑
k=0

αkγk > 0 (30)

for l = 0, . . . , n− 1.

Proof. Consider the series of negative cash flows (13). All other cash flows
are assumed to be positive. For l = 0, . . . , k1 − 1 it is straightforward that∑l
k=0 αkγk > 0. Next, we look at the first series of negative cash flows,

αk1 , . . . , αk1+j1 . We know that

k1−1∑
k=0

αk ≥ −
k1+j1∑
k=k1

αk.

10



This implies we can choose α
(1)
k such that 0 ≤ α

(1)
k ≤ αk for k = 0, . . . , k1 − 1

and
k1−1∑
k=0

α
(1)
k = −

k1+j1∑
k=k1

αk. (31)

Since the terms γk are strictly decreasing in k, we find that

k1−1∑
k=0

α
(1)
k γk >

(
k1−1∑
k=0

α
(1)
k

)
γk1

=

(
−
k1+j1∑
k=k1

αk

)
γk1 > −

k1+j1∑
k=k1

αkγk,

which means, taking into account that γk > 0 for all k:

k1+j1∑
k=0

αkγk ≥
k1−1∑
k=0

α
(1)
k γk +

k1+j1∑
k=k1

αkγk > 0. (32)

Note that, following a similar reasoning, we obtain that
∑l
k=0 αkγk > 0 for all

l ∈ {k1, . . . , k1 + j1}.
Now consider the second series of negative cash flows, αk2 , . . . , αk2+j2 . Using

(31) and the fact that
∑k2+j2
k=0 αk ≥ 0, we know that we can choose α

(2)
k such

that 0 ≤ α
(2)
k ≤ αk − α

(1)
k for k = 0, . . . , k1 − 1, 0 ≤ α

(2)
k ≤ αk for k =

k1 + j1 + 1, . . . , k2 − 1 and

k1−1∑
k=0

α
(2)
k +

k2−1∑
k=k1+j1+1

α
(2)
k = −

k2+j2∑
k=k2

αk.

Since the terms γk are decreasing in k, we find that

k1−1∑
k=0

α
(2)
k γk +

k2−1∑
k=k1+j1+1

α
(2)
k γk

>

k1−1∑
k=0

α
(2)
k +

k2−1∑
k=k1+j1+1

α
(2)
k

 γk2

=

(
−
k2+j2∑
k=k2

αk

)
γk2 > −

k2+j2∑
k=k2

αkγk,

which means

k1−1∑
k=0

α
(2)
k γk +

k2−1∑
k=k1+j1+1

α
(2)
k γk +

k2+j2∑
k=k2

αkγk > 0. (33)

11



Adding (32) and (33) and taking the ranges for α
(1)
l and α

(2)
l into account, we

have

k2+j2∑
k=0

αkγk ≥
k1−1∑
k=0

(α
(1)
k + α

(2)
k )γk +

k1+j1∑
k=k1

αkγk

+

k2−1∑
k=k1+j1+1

α
(2)
k γk +

k2+j2∑
k=k2

αkγk > 0.

Following a similar reasoning, it is clear that
∑l
k=0 αkγk > 0 for all l ∈

{k2, . . . , k2 + j2}.
Repeating this reasoning for the remaining negative cash flows, we find the

stated result (30).
In the following theorem we use Lemma 3 to show that requiring the total

amount of savings to be positive at any time is a sufficient condition for the
coefficients βj to be strictly positive when the drift µ of the yearly logreturns is
positive (which is a realistic assumption):

Theorem 2 Suppose we have deterministic cash flows α0, . . . , αn−1 such that

l∑
k=0

αk ≥ 0 (34)

for l = 0, . . . , n − 1. Then βj > 0 or equivalently E[Vj−1] > 0 for j = 1, . . . , n,
with βj defined by (9) with positive µ and E[Vj−1] related to βj according to
(27).

Proof. Recall that

βj =

j−1∑
l=0

αle
(n−l)µ

for j = 1, . . . , n. The exponential terms e(n−l)µ are clearly strictly decreasing in
l for positive µ. Therefore, applying Lemma 3, we immediately find that βj > 0
for j = 1, . . . , n. The result for E[Vj−1] then follows from (27).

Next, we show that when requiring the total amount of savings to be positive
at any time, it is possible to construct an analytical expression for the probability
level pmin such that the function f (12) is positive and increasing in p for p ∈
(pmin, 1).

Theorem 3 Suppose we have deterministic cash flows α0, . . . , αn−1 such that

l∑
k=0

αk ≥ 0, (35)

12



for l = 0, . . . , n − 1 and let µ be positive. Then it follows that f(p) > 0 and
f ′(p) > 0 for pmin < p < 1, with f(p) defined by (12) and

pmin

= max
l=0,...,n−1

{
Φ

(
1
2σ

2
(
(n− l)r2

l − (n− l − 1)r2
l+1

)
− µ

σ
(
rl
√
n− l − rl+1

√
n− l − 1

) )}
.

(36)

Proof. As seen in Vanduffel et al. (2005), by application of the chain rule, we
find for p ∈ (0, 1) that

f ′(p) =
1

ϕ(Φ−1(p))

n−1∑
l=0

αlrlσ
√
n− l

× e(n−l)µ− 1
2 r

2
l (n−l)σ2+rlσ

√
n−l Φ−1(p),

(37)

with rl given by (11). First of all note that 1
ϕ(Φ−1(p)) is a positive constant.

Theorem 2 implies that rl > 0 for all l, and that the sequence {rlσ
√
n− l} is

strictly decreasing in l. Now look at the exponential terms in (12) and (37).
Two consecutive terms are strictly decreasing if:

e(n−l)µ− 1
2 r

2
l (n−l)σ2+rlσ

√
n−lΦ−1(p)

> e(n−l−1)µ− 1
2 r

2
l+1(n−l−1)σ2+rl+1σ

√
n−l−1Φ−1(p)

⇔(n− l)µ− 1

2
r2
l (n− l)σ2 + rlσ

√
n− lΦ−1(p)

> (n− l − 1)µ− 1

2
r2
l+1(n− l − 1)σ2

+ rl+1σ
√
n− l − 1Φ−1(p)

⇔µ− 1

2
σ2
(
(n− l)r2

l − (n− l − 1)r2
l+1

)
+ σ

(
rl
√
n− l − rl+1

√
n− l − 1

)
Φ−1(p) > 0

⇔p > Φ

(
1
2σ

2
(
(n− l)r2

l − (n− l − 1)r2
l+1

)
− µ

σ
(
rl
√
n− l − rl+1

√
n− l − 1

) )
.

From this last expression we see that if p > pmin, the exponential factors in (12)
and (37) are strictly decreasing in l, for all l. As a consequence, using Lemma
3, we see that, if (35) is satisfied, both f(p) and its derivative f ′(p) are strictly
positive for all p > pmin.

Although the minimal probability level pmin given by (36) does not have
an interpretation, its value can easily be determined numerically. Following a
similar reasoning as in the proof of Theorem 3, it can be seen that f( 1

2 ) ≥ 0 and
f ′(p) > 0 for all 1

2 ≤ p < 1, which implies that pmin is in general lower than 1
2 .

Indeed, for p ≥ 1
2 , we have that Φ−1(p) > 0. As a consequence, the exponential

13



terms in (12) and (37) can in this case easily be seen to be strictly decreasing
in l for all reasonable combinations of µ and σ1.

In practical situations, pmin turns out to be significantly lower than 1
2 , and

often even close to zero. In general, we can conclude that the fewer negative
cash flows there are, and, moreover, the later they occur in time, the lower pmin

will be. Also, higher values of µ, and lower values of σ lead to lower values of
pmin, see (36). We refer to the following section for some numerical illustrations
where we compare p?, pmin and maxi=1,...,m pi.
It is clear that in practical situations, when working in a saving environment,
conditions (34), which state that the total amount of cash saved to the account
should be non-negative at any time, will often be satisfied. Practical situations
where sporadic negative payments occur, exist. For instance, when determining
the liabilities of a pension fund, outgoing and incoming cash flows are typically
compared. It may happen that in some years the incoming cash flows are larger
than the outgoing ones, leading to negative liabilities in those years.

Theorem 1 and 3 are generalizations of the main result of Vanduffel et al.
(2005), as in our case the sign of the cash flows is allowed to change several times,
and an addition to the results in Van Weert et al. (2010). Note that in the case
of a “saving-consumption” plan, Theorem 1 reduces to the result of Vanduffel
et al. (2005), since only the average final surplus has to be non-negative for (25)
to hold.

3.3 Numerical illustration

The accuracy and speed of the lower bound approximation was confirmed by
numerical illustrations in section 2.2.2 of Van Weert et al. (2010), by comparing
with results obtained through simulation. We recall that compared to simula-
tion, the analytical approximations are significantly less time-consuming. As
a consequence, the analytical approach allows us for example to optimize over
the whole spectrum of investment portfolios, whereas when using simulation
the analysis is typically restricted to a subset of the admissible portfolios. Also,
the analytical approach allows us to consider a high number of assets or asset
classes without significantly increasing the computational complexity. Here, we
will focus on the interval of the probability level in which the approximation is
valid. We will compare the lower bounds p?, pmin and maxi=1,...,m pi.

We consider the constant savings and consumptions setting of section 2.2.2
and example 1 in Van Weert et al. (2010). Suppose we have a fixed yearly
income α(> 0) but also a fixed liability of one every five years over a period of

1For the terms (n− l)µ− 1
2
r2l (n− l)σ2 to be positive for all l, it is sufficient to require that

µ− 1
2
σ2 ≥ 0. For these terms to be decreasing in l, a further restriction has to be made, which

unfortunately is hard to quantify. However, it can be seen numerically that µ − 1
2
σ2ε ≥ 0

must hold, for an ε sufficiently small such that the condition is satisfied for realistic choices
of µ and σ.
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25 years. Then, the deterministic cash flow stream equals

αl =

{
α− 1 if l = 5k, k = 1, . . . , 5

α otherwise, 0 ≤ l < 26.

with the cash flows α5k being negative, when α < 1. As shown in Van Weert et
al. (2010) conditions (24) will be satisfied when the yearly income α satisfies

α > α? =
1− e25µ

1− e26µ

1− eµ

1− e5µ
. (38)

As for conditions (24), conditions (34) will be fulfilled when
∑5k
l=0 αl ≥ 0 for

k = 1, . . . , 5 as these are the only years in which negative cash flows are involved.
These latter conditions are equivalent to

(5k + 1)α− k ≥ 0, k = 1, . . . , 5

⇔ α ≥ αmax = max
k=1,...,5

k

5k + 1
=

5

26
≈ 0.1923.

A simple calculation shows that αmax > α? for µ > 0.
For different combinations of µ and σ, and for different values of α we will
compare p?, maxi=1,...,5 pi and pmin. We will report also the values of p′max,
pmax and maxi=1,...,5 p

′
i. Note that it has only sense to report the value of pmin

when α > 5
26 ≈ 0.1923. Further, the value of α? for µ = 0.07 and µ = 0.10 is

according to (38) 0.1591 and 0.1455 respectively. For values of α less than α?

the entries in the table are also empty. From the numerical results in Table 1
we can conclude that when α increases p? decreases to become nearly zero for
values of α larger then 0.30. This means that in such case the convex lower
bound can be used for all relevant probability levels. We observe that pmin

decreases when µ increases or σ decreases, as could be seen from the expression
(36). In this example, p′max is smaller than pmax such that p? equals pmax. As
proven in Lemma 2 we find that p? ≤ maxi=1,...,5 pi. We also observe that pmin

is too high compared to p?.
In view of our comment that a lower bound µ? given by (29) on the drift

µ is a sufficient condition for the conditions (24) to hold, relation (35) in the
application to optimal portfolio selection in Van Weert et al. (2010) should be
replaced by

{π | µ(π) > µ?} ⊂ Θ = {π | E[Vi(π)] > 0; i = 0, . . . , n− 1}.

Similarly, relation (45) in Van Weert et al. (2010) should be adapted in the
numerical illustration, however without any consequences for the validity of the
reported results. The value 0.0242 of µ? in this example coincides precisely with
the one obtained by (29).

In the next section we will have a closer look at the reserving problem dis-
cussed in section 2.3 of Van Weert et al. (2010).
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α (µ, σ) p′max max
i=1,...,5

p′i p? = pmax max
i=1,...,5

pi pmin

0.15 (0.07, 0.15) – – – – –
(0.10, 0.15) 9.9189E-4 0.0077 0.5487 0.9844 –
(0.10, 0.20) 0.0188 0.0491 0.6235 0.9875 –

0.16 (0.07, 0.15) 3.2287E-4 0.0090 0.6199 0.9976 –
(0.10, 0.15) 6.3914E-4 0.0165 0.3341 0.7040 –
(0.10, 0.20) 0.0164 0.0840 0.4743 0.7332 –

0.18 (0.07, 0.15) 1.0018E-5 0.0107 0.1896 0.4802 –
(0.10, 0.15) 3.7136E-7 0.0012 0.0361 0.1846 –
(0.10, 0.20) 3.2536E-4 0.0231 0.1384 0.3454 –

0.20 (0.07, 0.15) 5.0928E-15 2.2757E-4 0.0113 0.0635 0.1721
(0.10, 0.15) 3.5659E-18 4.6831E-6 5.2586E-4 0.0067 0.0477
(0.10, 0.20) 2.7000E-10 0.0012 0.0129 0.0599 0.1883

0.25 (0.07, 0.15) 1.3768E-64 3.2973E-14 1.9944E-8 8.2588E-4 0.0642
(0.10, 0.15) 2.4859E-76 2.0219E-17 2.4694E-11 1.3823E-10 0.0093
(0.10, 0.20) 1.5218E-43 1.0606E-9 8.6283E-7 2.8758E-6 0.0835

0.30 (0.07, 0.15) 3.0374E-95 3.4301E-29 1.2646E-16 1.1496E-15 0.0516
(0.10, 0.15) 1.0147E-112 2.2990E-34 2.6483E-21 1.4794E-20 0.0052
(0.10, 0.20) 0.0 3.2296E-19 1.8026E-12 3.2804E-12 0.0510

Table 1: Minimal probability level

4 Provisions for future obligations

In this section we will correct the reasoning of Van Weert et al. (2010) leading
to the main result. Further we show how this provisioning problem can be
transformed into a saving and consumption problem by inverting the time axis.

4.1 General results

We shortly recall the problem description and some notations from Dhaene
et al. (2005) and Van Weert et al. (2010). For the provisioning problem we
consider a sequence of deterministic obligations α1, . . . , αn due at time 1, . . . ,
n respectively. In order to be able to meet these obligations a provision has to
be set up at time zero. The obligations can take positive or negative values,
except for αn which has to be positive in view of the imposed conditions in the
main result.

We consider the stochastically discounted value Rk at time k of all future
obligations from time k on:

Rl =

n∑
k=l+1

αke
Zl,k , l = 0, . . . , n− 1, (39)

with Zl,k = −
∑k
j=l+1 Yj , for k = l + 1, . . . , n. The goal is to approximate the

distribution function of R0 which, however, can become negative. Therefore,
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we consider the stochastic provision S0 available at time zero defined as:

S0 = max[R0, 0]. (40)

We note that (39) is of the general form (1). Again, we will focus on the
lower bound approximation, denoted as R`0 and S`0 respectively, and obtained
by conditioning on a random variable Λ of the form (4) with coefficients βj equal
to, see Dhaene et al. (2005):

βj = −
n∑
k=j

αke
k(−µ+σ2), (41)

for j = 1, . . . , n with µ the drift and σ the standard deviation of the yearly
logreturns Yj . This leads to the lower bound approximation R`0:

R`0
d
=

n∑
j=1

αje
−jµ+(1− 1

2 r
2
j )jσ2+rj

√
jσΦ−1(U), (42)

with U ∼ U(0, 1) and Φ the standard normal cdf. The correlation coefficients
rj are given by

rj =
−
∑j
k=1 βk√

j
√∑n

k=1 β
2
k

, j = 1, . . . , n. (43)

In view of (40) and (42) we study the function

f(p) =

n∑
j=1

αje
−jµ+(1− 1

2 r
2
j )lσ2+rj

√
jσΦ−1(p), p ∈ (0, 1). (44)

so that S`0
d
= max[f(U), 0]. Therefore, we change from the variable p to x, (18),

and introduce the function

h(x) =

n−1∑
l=0

an−lx
rn−l

√
n−l, x ∈ (0,+∞), (45)

with an−l = αn−le
−(n−l)µ+(1− 1

2 r
2
n−l)(n−l)σ

2

having the same sign pattern as
αn−l for l = 0, . . . , n− 1. Note that we changed the running variable j to n− l
going from f to h such that the function h takes the form of a generalized poly-
nomial with exponents rn−l

√
n− l listed in descending order when the sequence

(rn−l
√
n− l)l is decreasing. We state the analogue of Lemma 2.

Lemma 4 1. Let h be defined by (45) and βj by (41). If βj < 0 for
j = 1, . . . , n, then h(x) > 0 and h′(x) > 0 for x ∈ (x?,+∞) with
x? = max(xmax, x

′
max), where xmax stands for the largest zero of h and

x′max for the largest zero of h′.

2. Let f be defined by (44) and βj by (41). If βj < 0 for j = 1, . . . , n, then
there exists a p? = Φ

(
1
σ log x?

)
, with x? determined in assertion 1, such

that f(p) > 0 and f ′(p) > 0 for p ∈ (p?,+∞).
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Proof. The reasoning is similar to the proof of Lemma 2 and based on an
application of Descartes’ rule of sign to the generalized polynomials h(x) and
h′(x) with

h′(x) =

n−1∑
l=0

an−lx
rn−l

√
n−l−1rn−l

√
n− l, x ∈ (0,+∞),

where in view of (43) the sequence (rn−l
√
n− l)l is decreasing in l when βj < 0

for all j ∈ {1, . . . , n}, which in turn implies that rn−l > 0 for all l ∈ {0, . . . , n−
1}. In particular βn = −αnen(−µ+σ2) < 0 requires αn > 0. Further, since(
−
∑n
j=1 βj

)2

>
∑n
j=1 β

2
j , it holds that rn

√
n > 1 under the assumption for

the βj ’s.
The main result of this section is stated in the following theorem.

Theorem 4 If the conditioning random variable Λ is chosen as in (4) with
coefficients βj given by (41), and if the functions Rl (39) satisfy

E[Rl] > 0, l = 0, . . . , n− 1, (46)

then the quantiles of S`0 are given by

Qp[S
`
0] = max[f(p), 0] = f(p), p? < p < 1, (47)

where p? is determined in Lemma 4 and f(p) is defined by (44). The distribution
function of S`0 follows from

f(FS`
0
(x)) = x, x ≥ Qp? [S`0]. (48)

Proof. Recalling from Van Weert et al. (2010) that for l = 0, . . . , n− 1

E[Rl] = −el(−µ+σ2)βl+1, (49)

requiring (46) is equivalent to the condition on the βl’s in Lemma 4 which can
be applied along the similar lines as in the proof of Theorem 1, leading to the
stated result.

To conclude, we show how the reserving problem can be translated to a
terminal wealth setting by inverting the time axis such that the results of section
3.1 (all symbols of that section are here denoted by a tilde) can be applied
instead of those stated here. We carry out the following substitutions for l =
0, . . . , n− 1:

α̃l = αn−l

µ̃ = −µ+ σ2

Ỹl = −Yn−l+1 ∼ N (µ̃− 1

2
σ2, σ2).
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Next, we can derive the following relations for l = 0, . . . , n− 1:

β̃l+1 = −βn−l
r̃l = rn−l

Z̃l,k = Zn−k,n−l, l ≤ k
Ṽn = R0

E[Ṽl] = αn−l + E[Rn−l]

f̃(U)
d
= Ṽ `n = R`0

d
= f(U).

Since in general µ̃ will be negative, Theorem 2 will not hold. Thus
∑l
k=0 α̃k =∑n

i=n−l αi ≥ 0 for all l = 0, . . . , n − 1 or, equivalently,
∑n
k=j αk ≥ 0 for all

j = 1, . . . , n does not imply that E[Ṽj−1] > 0. In fact, it is the converse. Con-
ditions (46) will imply a condition on the obligations.

Theorem 5 Suppose we have deterministic obligations α1, . . . , αn such that
conditions (46) hold. If µ− σ2 > 0, it holds that

n∑
k=j

αk ≥ 0 (50)

for j = 1, . . . , n.

Proof. Combining (49) with (41) and changing the running variable we obtain:

E[Rl] =

n−l−1∑
t=0

αn−te
−(n−l−t)(µ−σ2).

Denote αn−te
−(n−l−t)(µ−σ2) = at. Since

∑n−l−1
t=0 at ≥ 0 we can apply Theorem

2 with γt = e(n−l−t)(µ−σ2) which is positive and strictly decreasing in t for
positive µ− σ2. This leads for all l = 0, . . . , n− 1 to

n−l−1∑
t=0

αn−t ≥ 0 ⇔
n∑

k=l+1

αk ≥ 0.

Note, however, that when conditions (46) hold the reasoning of the proof
of Theorem 3 can be applied when µ − σ2 is positive. Thus we can state the
following result.

Theorem 6 Suppose we have deterministic obligations α1, . . . , αn such that
conditions (46) hold and let µ − σ2 be positive. Then, f(p) > 0 and f ′(p) > 0
for pmin < p < 1, with f(p) defined by (44) and

pmin

= max
l=0,...,n−1

{
Φ

(
1
2σ

2
(
(n− l)r2

n−l − (n− l − 1)r2
n−l−1

)
+ µ− σ2

σ
(
rn−l
√
n− l − rn−l−1

√
n− l − 1

) )}
.
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Proof. Since the conditions (46) hold, relation (49) implies that all βj < 0,

which is equivalent to β̃j > 0 for all j = 1, . . . , n. Hence r̃l
√
n− l > 0 is strictly

decreasing in l. On the other hand by Theorem 5 we have that
∑n−l−1
t=0 α̃t ≥ 0

holds for all l = 0, . . . , n − 1. In this way all elements of the proof of Theorem
3 are available so that a similar reasoning leads to

pmin

= max
l=0,...,n−1

{
Φ

(
1
2σ

2
(
(n− l)r̃2

l − (n− l − 1)r̃2
l+1

)
− µ̃

σ
(
r̃l
√
n− l − r̃l+1

√
n− l − 1

) )}
.

Carrying out the substitution mentioned above gives the stated expression for
pmin.

5 Conclusion

We corrected the reasoning that led to the results in Van Weert et al. (2010)
which show that when allowing some of the cash flows to be negative, convex
order lower bound approximations can still be used. In particular we showed
these results for the choice (4) of the conditioning random variable Λ when
the cash flows are such that all expected surpluses after saving or withdrawal
are strictly positive. Further we proved that imposing the stronger condition
(34) on the cash flows is a sufficient condition for these expected surpluses to
be strictly positive. These results significantly expand the scope of problems
and cash flow patterns for which the quantiles of the terminal wealth can be
accurately approximated. In addition, we derived an interval for the probability
level in which the quantiles of the lower bound approximation can be computed.
Further, we showed how by an inversion of the time axis the provisioning of
future obligations can be transformed into the savings and terminal wealth
problem.
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