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Abstract

Objectives:

Motor coordination problems are frequent in chifdreith attention deficit/hyperactivity disorder
(ADHD). We performed the first genome-wide assdoiastudy to identify genes contributing to motor
coordination problems, hypothesizing that the preseof such problems in children with ADHD may
identify a sample of reduced genetic heterogeneity.

Methods:

Children with ADHD from thelnternational Multicentre ADHD Genetic studiIMAGE) study were

evaluated with the Parental Account of ChildrenygnBtoms. Genetic association testing was performed
in PLINK on 890 probands with genome-wide genotgpilata. Bioinformatics enrichment-analysis was
performed on highly ranked findings. Further chggzation of the findings was conducted in 313dbut
IMAGE children using the Developmental Coordinatidisorder Questionnaire (DCD-Q).

Results:

Although none of the findings reached genome-wiidmificance, bioinformatics analysis of the top-
ranked findings revealed enrichment of genes ire@lin motor neuropathy and Amyotrophic Lateral
Sclerosis (ALS). Genes involved in neurite outgfowind basic muscle function were also enriched.
Among the highest ranked genes w&&P2K5 involved in Restless Legs Syndrome, &@@HDS6,
causing motor coordination problems in mice. Furtttearacterization of the top-ranked findings using
DCD-Q subscales found nominal association for 1PSN

Conclusions:

Our findings provide clues about the etiology oftanacoordination problems, but replication studies

independent samples are necessatry.

Key words: motor coordination problems, ADHD, genome-wide agg@mn study (GWAS),

bioinformatics analysis, neurite outgrowth, skdletascle function



Introduction

With a prevalence of 5% at school age, motor coatibhn problems are common in children and are
usually referred to as Developmental CoordinatiosoRler (DCD) (American Psychiatric Association
2000; Kirby and Sugden 2007; Missiuna et al. 2008gam et al. 2009). DCD is a heterogeneous
condition. Motor milestones such as crawling andking may be delayed, while some children show
marked hypotonia and/or clumsiness (Green et &82Wilson and Larkin 2008). The motor problems
lead to difficulties in everyday living and ofteave an effect on academic performance, sports,guidy
self-esteem (Cummins et al. 2005; Polatajko andi€@005; Miyahara and Piek 2006; Piek et al. 2008)
Delay of maturation in the brain as well as funcéibdeviations in basal ganglia, parietal lobe and
cerebellum have been suggested as the dominantesair neuropathology in motor coordination
problems (Zwicker et al. 2009). DCD is consideredwtifactorial disorder in which genetic factonsda
environmental factors such as perinatal advers#ty a role (Pearsall-Jones et al. 2009). Only dndys
has formally examined the heritability of DCD irpapulation-based twin study (Martin et al. 20064l an
estimated it to be 0.69. In our study of sib paire,found a familial component (comprising geneticl
environmental effects) of 0.47 (Fliers et al. 200)e genetic component appears polygenic with many
genes, all of small effect, thought to cause theordier together or in interaction with unfavorable
environmental circumstances.

Children with motor coordination problems usualigwva problems in other areas of development as well,
including dyslexia, autistic spectrum disorders @ttention Deficit/Hyperactivity Disorder (ADHD).
The other way around, we and others found thathdéiren with ADHD, 30 to 50% also suffer from
motor coordination problems (Gillberg et al. 20@4iers et al. 2008). The combination of ADHD and
motor coordination problems has previously been athmeficits of Attention and Motor Perception,
DAMP (Kadesjo and Gillberg 1998; Gillberg et al.02). At present, we can only speculate about the
underlying neurobiological mechanisms for this cdoidity, but a dopamine-induced imbalance of basal

ganglia neurocircuits may play a role (Arnsten 2006



Previous work on the familiality of these two diders identified a possible shared etiological
background. In the Dutch sample of the Internatidvialticenter ADHD Genetics (IMAGE) study, we
found that ADHD and motor coordination problems éna/common basis that may be due to genetic
factors and/or shared environmental factors. Thaili@ correlation between motor performance
measures and ADHD was found to be 0.38 (Fliers. &0@9). These results are in line with a twindstu

of the shared background of ADHD and DCD, in whickhared heritability of between 29% and 51%
was observed (Martin et al. 2006).

Despite a considerable familial component involirechotor coordination problems of 0.47 as measured
by the Developmental Coordination Disorder Questére (DCD-Q) in sib pairs (Fliers et al. 2009),
little is known about the specific genetic factorgolved. Since more knowledge about genetic factor
involved in motor coordination problems may helpbiter understand their etiology, we set out to
perform a hypothesis-generating genome-wide adsutiatudy (GWAS) to search for DNA variation

contributing to the condition. GWA studies are avpdul tool to identify genetic factors of limitexffect

size (McCarthy et al. 2008)n GWAS, hundreds of thousands of single —nucleofidlymorphisms _ - { Met opmaak: Lettertype: 12 pt, Niet
’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’ Cursief

(SNPs) are tested for association with a disealse. Method has revolutionized the search for geneti

influence on complex traits such as ADHD, in whisbth genetic and environmental factors work

together. GWAS build on the mapping of SNPs, tmatteansmitted in blocks over the generations. This

way one particular SNP is able to capture the ritgjof SNP variation in a block. Recent technology

now allows reliable genotyping of up to 1 millioNBs in a single persoWe hypothesized that studying

motor coordination problems in a sample of ADHDeated children might reduce the phenotypic and
genetic heterogeneity of motor problems. In theenirstudy, phenotypic information on motor probéem
and genome-wide genotyping data were availabl836rchildren from the IMAGE study. We performed
bioinformatics analysis on the highest ranked figdito test for enrichment of gene functional geoup
Findings were further characterized in more datsihg a second phenotyping instrument in the Dutch

IMAGE subsample.



Methods

Participants

Children with ADHD and their siblings were recruitéor the IMAGE study that aims at identifying
genes that increase the risk for ADHD using QTkdige and association strategies (Brookes et a6;200
Kuntsi et al. 2006). Families were identified thgpuADHD probands aged 5-17 years attending
outpatient clinics at the data collection sitesEmrope (Belgium, Germany, Ireland, The Netherlands,
Spain, Switzerland, and the United Kingdom) anddkrFamilies of European Caucasian ancestry were
recruited based on having one child with ICD-10D8M-IV ADHD and at least one other child who

would provide DNA and quantitative trait data. lddéion, both parents had to be available for DNA-

o ‘[ Met opmaak: Lettertype: 12 pt, Niet J
and standardized interviewing. Instruments useteviee SDQ, Conners P and T long version, and [ Cursief

Parental Account of Children’s Symptoms (PACS) it

Exclusion criteria applying to all children inclutian 1Q <70, known genetic syndromes (Down, Turner,

Fragile X), brain disordergor example periventricular hemorrhage, cerebrédypand epilepsyautism, - { Met opmaak: Lettertype: 12 pt, Niet }
7777777777777777777777777777777777777777777777777777 Cursief
seizures current or in the past, as well as all disordeith wymptoms potentially mimicking ADHD. - - {Ve””ijde"" epilepsy J

Additional details about the clinical charactedstiand the diagnostic process of this sample haea b

described earlier (Brookes et al. 2006; Kuntsil.e2@06; Chen et al. 2008; Christiansen et al. 2@b®u

et al. 2008; Mulligan et al. 2009Rriefly, co-occurring disorders were the followinilood disorder://{ Met opmaak: Lettertype: 12 pt, Niet }
77777777777777777777777777777777777777777777 N Cursief
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Anxiety disorder: 53.6%, ODD: 54.5%,
N Conduct disorder : 19.6%

23.5% (n 69), Anxiety disorder: 52.7% (n 155), O[HB.5% (n 166), Conduct disorder : 18.7% (n 55).\1 Verwijderd: Mood disorder : 19.5%,
Mean IQ was 98Children with and without motor problems did noffeli according to age, gender anq\:{Met opmaak: Lettertype: Niet Cursief

Ny

\
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also severity of ADHD symptoms (Fliers, 2008). bse of the use of medication parents were asked t\oi Mot opmaak: Lettertype: Niet Cursief ]
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report on their children’s behavior without medioat




Motor measures
Parental Account of Children’s Symptoms (PACS)rvitawv

The PACS, a semi-structured, standardized, invastichbased interview (Taylor et al. 1986), was

administered to all parents _order to ensure cross-site_consistency in_measemt and coding of the - -| Verwijderd: interviewers were all traine
77777777777777777 T in the United Kingdom and inter-rater

reliability tests were performed regularly

\
PACS all interviewers from each site attended aa$ BACS training course in the UK. The chief. | during the period of data collection in all
\ | participating countries.

\

investigator at each site attended an annual iater- reliability exercise. A mean Kappa coeffitie h";;gfpmaak: Lettertype: 12 pt, Niet

across all sites was 0.88 indicating a substalet@l of interrater agreemerithe PACS covers DSM-IV

symptoms of ADHD, conduct disorder, oppositionalfiate disorder, anxiety, mood, and other
internalizing disorders. Moreover, questions regyanotor development are included. For this specif
study, we analysed the question “does your chilehaotor coordination problems”, with 3 possible

answers: “no”, “maybe”, or “yes definitely” as themary phenotype for genetic analysis.

Developmental Coordination Disorder Questionnd€D-Q)

In the Dutch participants of IMAGE, we collecteddétbnal data on motor performance by means of the
DCD-Q, completed by parents (Fliers et al. 2008 DCD-Q identifies children with motor coordinatio
problems in daily life and is widely used in intational studies (Wilson et al. 2000, 2009; Lohle2@09)
The Dutch DCD-Q has been validated (Schoemakerl.eRGD6). The internal consistency of the
questionnaire is high (alpha = 0.88). The DCD-Qtams 17 items that are rated on a 5-point scate (1
not at all like this child; 5 = extremely like thikild) and 4 subscales: motor control in motione fmotor
control/handwriting, gross motor control/planningdageneral coordination. In this study DCD-Q scores
were tested as secondary phenotypes in the gemetigsis of candidate SNPs. The scores were used on
continuum. We tested five traits: the total scardtee DCD-Q (range from 17 to 85), and the fourssale

scores.

Genetic Analysis



The IMAGE consortium is a part of the Genetic éd@ation Information Network (GAIN), a public-
private partnership of FNIH (Foundation for the idaal Institutes of Health, Inc.) that currentlwaives
NIH, Pfizer, Affymetrix, Perlegen Sciences, Abbathd the Eli and Edythe Broad Institute (of MIT and
Harvard University) (http://www.fnih.org). A totadf 958 affected proband-parent trios from IMAGE

were initially selected for a GWAS. Genotyping wesnducted at Perlegen Sciences using their

genotyping platform, which comprises approximatf,000 taggingingle —nucleotide polymorphisms. - { Met opmaak: Lettertype: 12 pt, Niet }
Cursief

(SNP3 designed to be in high linkage disequilibrium withtyped SNPs for the HapMap populations.- - Met opmaak: Lettertype: 12 pt ]

Quality control of the genotype data was perforrbgdNCBI (The National Center for Biotechnology
Information) using the GAIN QA/QC Software Packdgersion 0.7.4) developed by Gongalo Abecasis
and Shyam Gopalakrishnan at the University of Mijehi Details of the genotyping and data cleaning
process for the ADHD GAIN study (Study Accessiohs@00016.v1.p1) have been reported elsewhere
(Neale et al. 2008). Briefly, we selected only SN minor allele frequency (MAE} 5% and Hardy—
Weinberg equilibrium (HWE)P > 1.00E-06. Genotypes causing Mendelian inconsigeneere
identified by PLINK (http://pngu.mgh.harvard.edwepeill/plink/) and removed (Purcell et al. 2007).

PLINK is the name of a tool that offers a powerfider-friendly performance of many common analyses

with whole-genome data.

We additionally removed SNPs that failed the gquatintrol metrics for the other two GAIN Perlegen
studies (for Major Depression Disorder (dbGAP Stullscession phs000020.v1.pl) and Psoriasis
(dbGAP Study Accession phs000019.v1.pl)). With fittiering, 384,401 autosomal SNPs were retained
in the final dataset. To increase coverage indhgeted genomic areas, we used the imputation appro
implemented in PLINK (v1.04), which imputes genagpf SNPs that are not directly genotyped in the
dataset, but that are present on a reference pEmelPLINK algorithm is an extension of multimarker
tagging. The reference panel used consisted 08288 polymorphic autosomal SNPs genotyped on the
60 HapMap CEU founders which are publicly availalibe download from the HapMap website

(Caucasian sample included in the HapMap r23 buitth://www.hapmap.org). A threshold of 0.95



confidence level was set for a hard genotype @albe included in association testing. Most likely

genotypes for imputed SNPs were then used in aggwtianalyses.

Statistical Analysis

For statistical analysis, the PACS motor answers rfrotor problems” and “possible motor problems”

were combined into an “unaffected” category creptinbinary outcome variable. We chose this rather
strict way of analysis because standard deviatddrmaotor scores were overlapping for the groups “no
motor problems” and “possible motor problems” whilse definitely affected category formed a truly

different group (not shown). An ANOVA was performetth the binary PACS trait as independent and
DCD-Q total scores as dependent variables to ualittee motor question in a sample of 313 Dutch
IMAGE participants for whom scores from both PAC&IaDCD-Q were availableA total of 296

children out of these 313 had complete data forcalariates and were included in the analysis.

Verwijderd: Due to missing covariate
’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’ S data we analyzed 296 of these 313 children.

implemented in PLINK with the motor variable fronrAES as a binary outcome. The analysis Wasn'ﬁgig;’maak: Lettertype: 12 pt, Niet }

adjusted for age, gender, Conners’ hyperactive/isin score, Conners’ inattentive score and the
country in which the motor variable was measured.

SNPs showing associatiétivalues < 10.00E-05 in the GWAS were tested foir thgsociation with the
four subscales (fine and gross motor scores, geoeoadination and control during movement) of the
DCD-Q. This association analysis was conducted 18 ®utch ADHD probands using the linear
procedure implemented in PLINK. Each DCD-Q varialées a continuous outcome and the models were
adjusted for age, gender, Conners’ hyperactive/isigeiscore and Conners’ inattentive score. In iotole
control for multiple testing, an extra permutat&iep was added to the linear test by applying thr(iv)
permutation approach implemented in PLINK. A tafll0000 permutations were done for the subset of

SNPs passing the-value threshold to determine empirical (EMRYalues for association.

Bioinformatics analysis
10



In order to detect significantly enriched gene fior@al groups in 97 genes from the GWAS contairdhg
least one SNP showing association with the PACSomeariable atP < 10.00E-04, we performed
functional analyses using the Ingenuity Pathwaylysis software package (http://www.ingenuity.com).
In the presentation of the results of these ang)ysely gene categories with significant enrichm@st
False Discovery Rate correct®d< 0.05) and containing more than one gene werentaktio account.
The Ingenuity software package uses informatiomftbe published literature as well as many other
sources, including gene expression and GO (ger®ogy) terms databases, to assign genes to ditferen
groups and categories of functionally related geBesadly speaking, ‘Ingenuity genes’ are assigteed
one or more of three groups of gene functional gmaies, i.e. ‘diseases and disorders’, ‘canonical
pathways’ and ‘physiological systems development famnction’. Each of these categories can be furthe
divided into many subcategories (http://www.ingéyueiom). In this study, we specifically looked het

5 top-ranked ‘diseases and disorders’ gene furattioategories and subsequently at the 5 top-ranked
subcategories within the ‘neurological disease’egiemctional category. In addition, we looked &t thp

5 ‘canonical pathways’ and ‘physiological systeragselopment and function’ gene functional categories
The NCBI databases (http://www.ncbi.nlm.nih.goeslentrez/), the UCSC Genome Browser
(http://genome.ucsc.edu), the HapMap project web@ittp://www.hapmap.org) and the website of the
Sullivan Lab Evidence Project (http://slep.unc.edgye used to find information on gene function and

prior association of the genes of interest withcpgatric disorders.

Results

A sample of 890 children with ADHD combined typedheomplete data for the PACS interview

including information on motor development and katid genotyping data. The mean age of the sample
11



was 10.8 years (SD 2.8, age range 5 to 17 years)88r8% was male (see Table 1). A total of 199
children (22.4%) were reported by their parenthage definite motor problems, and 225 (25.3%) were
noted with possible motor problems. Scores for B@D-Q were available for 313 Dutch IMAGE
individuals (Table 1). Groups based on PACS motores showed a significant difference in DCD-Q
motor scores, both in total score (F=36.B9% 0.001) and in scores of the subscales (motoralomt
motion F=16.45,P < 0.001, fine motor control/handwriting F=13.98, < 0.001, gross motor
control/planning F=14.2'R < 0.001, general coordination F=8.407 0.004). Of those children showing
definite motor problems in PACS (n=92), 66 child(@2%) also scored clinically on the DCD-Q total
score (in the lowest i5percentile of the normal population), see Tabléf®e Spearman correlation
between the scores on the motor coordination itetheoPACS and the DCD-Q total score was -0.320 (

< 0.001).

A total of 580 SNPs showed association with the BA@btor scores @-values < 10.00E-04. The most
significant association was observed for a SNP ninirdron of SLC7A2 (P-value = 1.90E-06), 58
additional SNPs showed associatfwvalues < 10.00E-05 (Table 3)f the 580 PACS-associated SNPs,
174 were located in 97 genes (Supplementary Tapldibinformatics analysis using the Ingenuity
pathway program revealed that 45 of the 97 pringgyes from the GWAS fell into tHeeurological
disease’'gene categoryR(= 6.57E-06; Table 4). These 45 genes were mosifisamtly enriched in five
subcategories of thmeurological diseasecategory: heurodegenerative disorde(22/97 genespP =
6.57E-06), progressive motor neuropath{23/97 genesP = 2.10E-05),amyotrophic lateral sclerosis’
(15/97 genes? = 5.42E-05) and two psychiatric disordetsipolar affective disorder(19/97 genes? =
7.40E-04) andschizophrenia’(10/97 genes? = 1.01E-02) (Table 5).

Other gene functional subcategories found signitigaenriched in the 97 top candidate genes were
‘synaptic long term depressiof6/97 genes;P = 1.54E-02) andnervous system development and

function’ (6/97 genes? = 4.00E-02) (Table 6).

12



Further characterization of the 59 SNPs shovitagalues < 10.00E-05 for association with the PACS
motor score using a more elaborate measure of ngotmdination, the DCD-Q, revealed 15 SNPs with
P-values < 0.05 that were associated with diffeseriiscales (Table 3). Permutation testing showed tha
two SNPs had significant empiridaivalues: rs11002745 for the gross motor scale (EMP0.045) and
rs2839083 for the fine motor scale (ENP= 0.014). While most DCD-Q subscale-associated SNPs
influenced only one of the subscales, one SNP mlearCOL6A1 gene influenced control during

movement and fine motor control (Table 3).

Of the 59 SNPs (Table 3), 17 were located withiongs, intronic or untranslated regions of nine eliént
genes (see Supplementary Table 2 for informatiganding gene function and published associatioh wit
psychiatric disorders). A comprehensive searchhefliterature and databases indicated that eigttieof
nine encoded proteins function in a signalling reekwthat operates in functional processes linked to
neurite outgrowth, as recently also implicated iDHD etiology (Poelmans et al., submitted).
Interestingly, the same eight proteins are exptessskeletal muscle, where they play importanésah

basic muscle function (see Figure 1 and SupplemehRike 1).

Discussion

This report describes the first GWAS of motor caoation problems. Although none of the associations
reached genome-wide significance, i.eP&alue < 7.20E-08 (Dudbridge and Gusnanto 2008), the
findings are intriguing and can give input to fattnypothesis-driven follow-up studies.

The finding that eight of the nine proteins encobtigdhe top-ranked findings from our GWAS (wih
values < 10.00E-05) function in a signalling netwaperating in neurite outgrowth is in line with
another recent study of our group finding that #4he 85 top-ranked ADHD candidate genes from the

five reported GWAS for ADHD are involved in neurtatgrowth (Poelmans et al., submitted).

13



The finding that the same eight genes/proteinsase involved in muscle function is particularly
intriguing. Motor coordination problems should r viewed merely as a neuronal problem. They are
related to the whole range of functional procedseated in the cerebrum, cerebellum, motor neurons,
neuromuscular junctions, muscle sensors and musdls. Motor skills are also the result of many
different processes such as perceptual, feedbatleaming processes, motor preparation and movemen
execution processes. These processes rely onghal \@ystem, memory, attention, the balance system,
the kinaesthetic system (“feeling one's body”) #rel motor effector system (Raynor 2001; Schoemaker
et al. 2001; Visser 2003; Geuze 2005; Smits-Engeafset al. 2008). Any defect in one of these pragess
or systems may lead to motor coordination problérhsis, our findings of motor coordination assodate
genes that are expressed in both nerve tissue asdlenmay provide a rationale for further studiés o
basic muscle function in DCD.

The bioinformatics analysis revealed that 45 of Qieprimary genes from the GWA® & 10.00E-04)

fell into the ‘neurological diseasefunctional gene category. Among the most signifigaenriched
subcategories wergrogressive motor neuropathghd ‘amyotrophic lateral sclerosis’Interestingly, a
relationship between ADHD and Amyotrophic LateraleBosis (ALS), an adult onset, polygenic disease
of motor neuron degeneration (Ravits and La Sp&d®;2Valdmanis et al. 2009; Van der Graaff et al.
2009), has recently been hypothesized (Lule &C4l8). The authors argue that many patients devejop
ALS fulfilled clinical characteristics of ADHD inaglier years of their lives. At the neurobiologidevel,
there is evidence for hyperactivity of the glutaengic system and a dopaminergic hypoactivity irhbot
ADHD and ALS (Lule et al. 2008). Therefore, Luleat hypothesized that clinical features of ADHD
may be a risk factor for the development of ALSd aur finding from the Ingenuity pathway analysis
may provide further input to this hypothesis.

However, whether children with ADHD and motor cdaetion problems might be at a particularly high
risk for developing ALS in later life needs to bepred in further studies.

The Ingenuity analysis further showed that the fiomal categoriessynaptic long term depressicand

‘nervous system development and functigete significantly enriched in the 97 top-rankede® It has
14



been shown that long-term depression of neurotressson leads to physical changes in neuronal dscui
(Johnston 2009). Moreover, it is this neuronal gidétg that allows reorganization of neuronal netis
and learning. Given that motor learning disturbansech as difficulties in mastering new motor skill
like swimming and riding a bicycle are a hallmafknmotor coordination problems in children (Sugden
2007), our results are particularly interesting.

In addition to the enrichment of motor neuropathg &LS genes in the top-ranked findings from the
GWAS, more evidence of genes involved in motor aysfion is present in our dat@OL6A1codes for

a collagen found in most connective tissues anditapt in organizing extracellular matrix comporsent
Mutations in this gene are known to cause motoblpras in Bethlem myopathy and Ullrich scleroatonic
muscular dystrophy (Lampe and Bushby 2005; Bakexl.e2007; Nadeau et al. 2009). Several patients
with autosomal recessive myosclerosis have alsaishoutations in this gene (Merlini et al. 2008).
Another interesting finding was the associatiomaftor coordination problems with théAP2K5gene, a
member of the mitogen-activated protein kinase fan®reviously, this gene has been consistently
associated withRestless Legs Syndrome (RLS) in GWAS (Winkelman082Xemlink et al. 2009;
Trenkwalder et al. 2009). RLS is a neurologic disorcharacterized by uncomfortable and unpleasant
sensations in the legs that occur at rest, usaalyght, and induce an irresistible desire to mitneelegs.

A large population-based study has recently repdogeprevalence of RLS of 2% in children and
adolescents without ADHD (Picchietti and Picchi@@i08), whereas up to 44% of children with ADHD
have symptoms of RLS (Cortese et al. 2005). Sewerthiors have suggested that RLS and ADHD share
common risk genes (Schimmelmann et al. 2009; R&l0? In this light, our finding of tht1AP2K5
gene being associated with motor coordination gmislin children with ADHD is interesting.

A recent finding also links th€HD6 gene, one of our other main findings, to motorawebur, as a
deletion of exon 12 of this gene leads to motordimation problems in a mouse model (Lathrop et al.
2010).

The association analysis of the candidate gends thvé DCD-Q subscales (i.e. fine and gross motor

scores, general coordination and control during entent) provided insight into the sources of motor
15



impairment at an additional level. In that way, were able to characterize the movement ‘domairt’ tha
was influenced by the genetic variants identifiedr 15 out of 59 tested SNPs, we found DCD-Q
associations withP-values <0.05. The intergenic SNP rs11002745, ldcatechromosome 10, and SNP
rs2839083, located 18.7 kb downstream of @@L6AL1 gene on chromosome 21, survived multiple
testing correction. The former SNP showed assatiatiith gross motor problems, the latter SNP was
associated with fine motor problems as well as robrduring movement. As children with motor
coordination problems show a heterogeneous pheaoijihh some of them being mainly disturbed in
fine and others in gross motor performance (Pdataind Cantin 2005; Green et al. 2008), it is not
surprising that we find these different association

Since this is the first GWAS of motor coordinatiproblems, it is only a first step in identifyingrgeic
factors contributing to these problems. Our studswalso underpowered, even though we collected a
large sample of children with motor coordinatiorolgems in which we tried to increase genetic
homogeneity of the motor coordination problem byusing on children with ADHD only.

Another potential limitation of our study is theaspeness of the motor assessment in the interahtion
IMAGE sample, with only one question pertainingitotor problems in the PACS. Recognizing this, we
chose a conservative approach in pooling the uctgifleand possibly affected individuals together as
non-affected, which has probably reduced the pafeamur study. Still, the affected group might show
different types of motor problems, as is also sstggeby the fact that 28% of people scoring pasitor

motor problems on PACS scored negative on the extensive DCD-Q.

The overall correlation of the PACS item with tiéat DCD-Q score was thus modest, which on the one
hand supports the validity of the PACS item buttlo& other hand also indicates that this item aed th
DCD-Q measure somewhat different movement problémaddition, it would have been preferable to
use objective motor tests in our study. Howevees¢htests are time-consuming, expensive and less

compatible with testing large samples of childr@mwas done in our study. Nevertheless, the sufzgtan
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evidence of the involvement of the genes from tgerainks of this GWAS in other movement disorders
strongly validates our approach.

Taken together, our findings raise the intriguingsgbility that motor coordination problems are
associated with genes expressed in both nerveetissul skeletal muscle. Replication studies in
independent samples are necessary to confirm oteréie presented results. However, despite extensi
efforts from our side to find such samples, atdhegent time, they do not seem to be availablehe t

international research community.
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Table 1. Descriptives of the study population meased with the PACS (n=890) and the DCD-Q (n=313)

Sample of children with ADHD and PACS (n)
Age (years mean (SD))
Gender (% male)
Conners score (mean (SD)) hyperactivity/impulsivity
Conners score (mean (SD)) inattentiveness
Sample of children with DCD-Q scores (n)
DCD-Q total score (SD)
DCD-Q control during movement (SD)
DCD-Q fine motor (SD)
DCD-Q gross motor (SD)

DCD-Q general coordination (SD)

890
10.8 (2.8)
85.3
78.8 (10.3)
71.3(9.0)
313
53.7 (9.5)
19.9 (5.4)
11.2 (3.2)
13.1 (2.9)

9.6 (2.8)
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Table 2. Comparison PACS and DCD-Q motor affectiorin 296 children participating in the Dutch part of IMAGE

N children DCD-Q unaffected DCD-Q affected
PACS motordnaffected 121 83
PACS motot-affected 26 66

_ - { Verwijderd: un
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Table 3.Top single SNPs witP < 10.00E-05 from the GWAS for motor coordinatipnoblems in children with ADHD and DCD-Q result$€r24

SNPs showing a significaftvalue for one of the DCD-Q results are indicatetald.

chr SNP

rs6687919
rs6687898
rs6690536
rs17762507
rs6733332
rs6550788
rs12643829
rs7442317
rs16882428
rs7690092
rs953797
rs10023178
rs1503966
rs6837917
rs12511112
rs3098928
rs6858666
rs6531775
rs6835046
rs2046402
rs2869216
rs11097028
rs6820517
rs12502559
rs10012888
rs10462643
rs747243

O ADMDADDADADDARADADADADDARADRDNWNNRER

Position
(base pair)

111198699
111198839
111198974
85247495
231346384
23734941
16989235
29512150
29512172
29516307
29523996
29526536
29538600
29558689
85895123
85898827
85948960
85949938
85973968
85981409
85984565
86088807
86089649
86094664
182392020
7720153
7736784

P-values  position ~ gene

9.29E-05 < 20 kb upstream
9.29E-05 < 20 kb upstream
9.29E-05 < 20 kb upstream
1.98E-05 intron
8.99E-05 intron
3.43E-05 <100 kb upstream
5.26E-05 <100 kb upstream
3.62E-06 intergenic
3.62E-06 intergenic
3.62E-06 intergenic
3.62E-06 intergenic
3.62E-06 intergenic
1.93E-05 intergenic
7.87E-05 intergenic
9.16E-05 intron
9.16E-05 intron
9.16E-05 intron
9.16E-05 intron
9.16E-05 intron
9.16E-05 intron
9.16E-05 intron
5.61E-05 intron
5.61E-05 intron
5.61E-05 intron
7.21E-05 intergenic
8.40E-05 intron
8.40E-05 intron

gene

CD53
CD53
CD53
TCF7L1
CAB39
UBE2E1
CLRN2

P-values
DCD-Q
control

7.24E-01
7.24E-01
7.24E-01
1.09E-01
9.42E-01
3.78E-01
3.81E-01
3.83E-01
3.83E-01
3.83E-01
3.83E-01
3.83E-01
3.81E-01
8.80E-01
2.28E-01
2.28E-01
2.28E-01
2.28E-01
2.28E-01
2.28E-01
2.28E-01
8.57E-01
8.57E-01
8.57E-01
5.09E-02
4.90E-01
4.90E-01

P-values
DCD-Q
fine motor

9.47E-01
9.47E-01
9.47E-01
5.72E-02
5.41E-01
2.52E-01
3.21E-01
7.65E-01
7.65E-01
7.65E-01
7.65E-01
7.65E-01
1.84E-01
1.40E-01
1.09E-01
1.09E-01
1.09E-01
1.09E-01
1.09E-01
1.09E-01
1.09E-01
3.08E-01
3.08E-01
3.08E-01
2.98E-01
1.16E-01
1.16E-01

P-values
DCD-Q
gross
motor
3.29E-02
3.29E-02
3.30E-02
4.66E-01
9.56E-01
2.22E-01
5.92E-01
7.69E-01
7.69E-01
7.69E-01
7.69E-01
7.69E-01
7.49E-01
1.07E-01
7.59E-02
7.59E-02
7.59E-02
7.59E-02
7.59E-02
7.60E-02
7.60E-02
4.72E-03
4.72E-03
4.72E-03
3.74E-01
3.45E-01
3.45E-01

P-values
DCD-Q
general
coord
6.02E-01
6.02E-01
6.02E-01
4.44E-Q
5.40E-Q
2.29E-0
4.20E-Q
6.94E-Q
6.94E-Q
6.94E-Q
6.94E-Q
6.94E-Q
7.42E-Q
9.44E-Q
8.23E-0
8.23E-0
8.23E-0
8.23E-0
8.23E-0
8.23E-0
8.23E-Q
9.10E-01
9.10E-01
9.10E-01
4.94E-Q
1.92E-02

1.92E-02
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rs1366414
rs6895553
rs4413658
rs7449538
rs9503158
rs1883587
rs1883588
rs4507577
rs2075000
rs12534366
rs11766792
rs7819754
rs10090333
rs2248010
rs13283363
rs12726
rs11002745
rs6480913
rs7092666
rs1393878
rs16951001
rs11638507
rs17241403
rs1878699
rs17811219
rs14003
rs9894565
rs1736217
rs4800802
rs4812506
rs761024
rs2839083

7743296
114849566
2313641
2314638
2315074
2319820
2319887
19564453
150764725
150769315
152862485
16125110
16131941
17460770
34832242
35394840
80370924
80379260
125267555
13869322
65641295
65661099
65662816
65687937
85564053
17045439
17047909
17068881
23179814
39487624
39490051
46268084

8.40E-05
8.63E-05
3.37E-05
3.37E-05
3.37E-05
3.37E-05
3.37E-05
3.38E-05
4.99E-05
5.27E-05
1.20E-05
6.75E-05
6.37E-05
1.90E-06
2.66E-05
9.45E-05
1.98E-05
7.26E-05
1.01E-05
7.27E-05
6.78E-05
6.72E-05
6.72E-05
6.72E-05
2.35E-05
5.37E-05
6.74E-05
6.74E-05
6.49E-05
1.80E-05
1.98E-05
8.87E-05

intron
<30 kb downstream
100 kb upstream
100 kb upstream
100 kb upstream
100 kb upstream
100 kb upstream
intergenic
intron
intron
intergenic
< 50 kb upstream
< 50 kb upstream
intron
< 10 kb upstream
exon
intergenic
intergenic
intergenic
<100 kb upstream
intron
intron
intron
intron
intergenic
exon
exon
intron
intergenic
intron
intron
< 20 kb downstream

ADCY2
FEM1C
GMDS
GMDS
GMDS
GMDS
GMDS

CRYGN
CRYGN
MSR1
MSR1
SLC7A2
CI90RF144
UNC13B

SPON1
MAP2K5

MAP2K5
MAP2K5
MAP2KS

PLD6
PLD6
FLCN

CHD6
CHD6
COL6A1

4.90E-01
9.30E-01
3.19E-02
3.20E-02

3.20E-02
3.20E-02
3.19E-02
2.76E-01
2.90E-02
3.43E-02
9.08E-01
3.06E-01
1.07E-01
7.00E-02
7.86E-01
2.78E-01
6.53E-01
5.13E-01
1.16E-01
2.03E-01
9.61E-02
1.42E-01
1.42E-01
1.42E-01
6.14E-01
5.08E-02
3.13E-02
3.13E-02
8.48E-01
3.25E-01
3.26E-01
2.39E-03

1.16E-01
2.27E-02
2.79E-01
2.79E-01
2.79E-01
2.79E-01
2.79E-01
5.78E-01
1.55E-01
1.95E-01
2.16E-01
3.96E-01
3.21E-01
6.55E-01
1.29E-01
1.42E-01
4.89E-01
4.87E-01
4.38E-01
3.23E-01
9.53E-01
9.96E-01
9.96E-01
9.96E-01
2.01E-01
2.59E-01
1.43E-01
1.43E-01
7.81E-01
2.06E-01
2.30E-01
4.79E-04

3.45E-01
2.21E-01
4.69E-01
4.69E-01
4.69E-01
4.69E-01
4.69E-01
3.46E-01
3.32E-01
2.53E-01
9.24E-02
3.12E-01
3.94E-01
2.71E-01
7.67E-01
2.37E-01
4.49E-03
4.93E-02
2.49E-01
8.02E-01
9.42E-01
7.65E-01
7.65E-01
7.65E-01
3.40E-01
7.66E-01
4.20E-01
4.20E-01
4.72E-01
9.95E-01
8.60E-01
3.00E-01

1.92E-02
9.16E-01
2.58E-01
2.58E-01
2.58E-01
2.58E-01
2.58E-01
4.19E-Q
5.02E-01
5.62E-01
4.33E-03
6.64E-Q
2.39E-Q
4.29E-Q
2.48E-0
8.92E-Q
1.86E-01
3.14E-01
7.95E-0
8.25E-0
3.01E-0
3.24E-0
3.24E-Q
3.24E-0
3.06E-Q
6.93E-Q
9.84E-01
9.84E-01
6.69E-Q
1.51E-0
2.02E-Q
5.64E-01
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Table 4. Top 5 ‘diseases and disorders’ gene functiona&gmates that are significantly enriched in the @@pADHD candidate genes from the GWAS for moto

coordination problems in children with ADHD (seepplementary Table 1) using Ingenuity pathway anslyEhe 6 genes containing at least one SNP that
yielded aP- value < 10.00E-05 (see Table 3) are indicatedld.b

Category

Cardiovascular disease
(35/97 genes)

Neurological disease
(45/97 genes)

Endocrine system disorders
(31/97 genes)

Gastrointestinal disease
(21/97 genes)

Inflammatory disease
(32/97 genes)

Genes

ACPP, AKAP6, BMPER, BRUNOL4, C30RF31, CDH13, CNTMSTNAP2, 5.96E-09
DAB1, ENPP1, EPB41L4A, FAM130A2, GMDS, MAMMAP2KS, MEF2B,

MICAL2, NR3C1, PKD1L2, PKP2, PNPLA7, RBMS3, RELMRR RYRS3,

SASH1, SCAPERSLC7A2, SORCS3, SOX5, SPAG16, THRB, TMEM132D,
TRIO, UNC13B

ACPP,ADCY2, ANXAG6, ATP6VOA4, BRUNOL4, CAB39, CDH13, CNTNAPZ.84E-08
DAB1, GAD2, GMDS, GPR88, GRM4, MAML2, MICAL2, MLLNB1,

NGFB, NR3C1, PIP4K2A, PKD1L2, PLA2G4A, PTPRG, RAREBIVS?2,

RBMS3, RELN, RYR2, RYR3, SCN11A, SLC1A3, SLC35CAASESLC7A2,

SNX27, SORCS3, SOX5, SPAGKE:7L1, THRB, TMEM132D, TRIO,

TRIP12, TUFT1IWDFY3

ADCY2, AKAP6, CDH13, CNTN3, CNTNAP2, DAB1, ENPP1, EPBAIL 5.36E-06
FARP2,FLCN, GMDS, MAML2, ME3, MICAL2, NR3C1, PIP4K2A, PTPRG,

RBMS3, RYR2, RYR3, SASH1, SCN11A, SLC6A1, SORCS3 SPAG16,

TCF7L1, THRB, TMEM132D, TRIQVDFY3

ACPP, AKAPG6, CDH13, CNTNAP2, DAB1, EPB41L4A, GMDSML2, 1.74E-05

MAP2ZKS5, MICAL2, NR3C1, PKD1L2, PTPRG, RBMS3, RYR2, SLC6A1

SORCS3, SOX5, TMEM132D, TUFTNIDFY3

ACPP,ADCY2, AKAP6, BRUNOL4, CDH13, CNTNAP2, DAB1, ELMOD2, 1.74E-05
ENPP1, EPB41L4A, FARP2, GAD2, GMDS, MAMMZP2KS, MICAL2,

MLLTS3, NGFB, NR3C1, PKD1L2, PTPRG, RBMS3, RYR23RSEBGN11A,

SLC1A3, SLC6A1, SORCS3, SOX5, SPAG16, TMEM1BRB)Y3

Significance

Adjusted significanc8

2.68E-06

6.57E-06

2.19E-04

5.60E-04

5.60E-04

Abbreviations : GWAS, genome-wide association stédyHD, attention-deficit hyperactivity disorderN®, single nucleotide polymorphism
2 Single tesP-values
P Multiple test-correctedP-values using the Benjamini-Hochberg correction
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Table 5. Top 5 gene functional subcategories of the ‘nexgichl disease’ category that are significantlyigred in the top 97 candidate genes from the GWA
for motor coordination problems in children with AID using Ingenuity pathway analysis. The 4 genesaining at least one SNP that yieldeH galue <
10.00E-05 are indicated in bold.

)

Subcategory Genes Significance€  Adjusted significanc
Neurodegenerative disorder ADCY2, ATP6VOA4, CDH13, CNTNAP2, DAB1, GAD2, GMDS, GRMI84E-08 6.57E-06
(22/97 genes) MICAL2, NR3C1, PLA2G4A, RELN, RYR2, RYR3, SCN1XX A3, SLC6AL,

SLC7A2, SORCS3, TMEM132D, TRIO, TUFT1
Progressive motor neuropathy ADCY2, BRUNOL4, CDH13, DAB1, GAD2, GMDS, MAML2, MLLTEIN 3.73E-07 2.10E-05
(23/97 genes) NR3C1, PKD1L2, RBMS2, SCN11A, SLC1A3, SLC35C1,AL&OX5,

SPAG16, THRB, TMEM132D, TRIP12, TUFWDFY3
Amyotrophic lateral sclerosis  ADCY2, BRUNOL4, CDH13, DAB1, GAD2, GMDS, RBMS2, SCN11A, 1.09E-06 5.42E-05
(15/97 genes) SLC1A3, SLC35C1, SLC6A1, SPAG16, TMEM132D, TUWDE Y3
Bipolar affective disorder ACPP, CDH13, CNTNAP2, DAB1, GAD2, GMDS, GRM4, NRBIR4K2A, 2.64E-05 7.40E-04
(19/97 genes) PTPRG, RBMS3, RELN, SCN11A, SLC1A3, SNX27, SICk5L 1, THRB,

TMEM132D
Schizophrenia CNTNAP2, DAB1, GAD2, GRM4, NR3C1, PIP4K2A, PLA2GUA,N, 5.78E-04 1.01E-02
(10/97 genes) SLC6A1, SNX27

Abbreviations : GWAS, genome-wide association stydyHD, attention-deficit hyperactivity disorderN®, single nucleotide polymorphism
2 Single tesP-values
P Multiple test-correctedP-values using the Benjamini-Hochberg correction
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Table 6. Top 5 ‘canonical pathways’ (1) and ‘physiologisgstem development and function’ (2) gene funeti@ategories that are significantly enriched i th
top 97 candidate genes from the GWAS for motor dioation problems in children with ADHD using Ingsty pathway analysis. The ADCY2 gene is indicat|

in bold because it contains 3 SNPs that yieldPevalue < 10.00E-05.

Category

Synaptic long term depression (1)

(6/97 genes)

Genes Significancé  Adjusted significanc®

ADCY2, ADCY6, GRM4, PLA2G4A, RYR2, RYR3 1.29E-04

Behaviour (2) GAD2, NGFB 5.79E-03
(2/97 genes)
Embryonic development (2) EZR, FARP2, SCN11A 5.79E-03
(3/97 genes)
Hematological system development and function (2) GAD2, NGFB 5.79E-03
(2/97 genes)
Nervous system development and function (2) FARP2, GAD2, GRM4, NGFB, SLC1A3, SLC6A1 5.79E-03

(6/97 genes)

1.54E-02

4.00E-02

4.00E-02

4.00E-02

4.00E-02

Abbreviations : GWAS, genome-wide association st#dyHD, attention-deficit hyperactivity disorder D, developmental coordination disorder, SNP,
single nucleotide polymorphism

2 Single tesP-values
® Multiple test-corrected®-values using the Benjamini-Hochberg correction
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Figure legends

Figure 1. Schematic representation of a gene/protein netvpatientially contributing to
motor coordination problems in children with ADHDY linfluencing skeletal muscle cell
(SMC) function. The eight proteins encoded by geswgaining at least one SNP yielding a
P value < 10.00E-05 in the GWAS for motor coordioatproblems in children with ADHD
are indicated in yellow. The proteins that are elecbbyAKAPG MEF2B - two genes that
contain at least one SNP associatel at10.00E-04 (Supplementary Table 1) - &@S1- a
gene found associated with ADHD in the GWAS by baSki et al. (Lasky-Su et al. 2008) -
are indicated in orange. A more elaborate desoriptif the network can be found in

Supplementary File 1.

a : cell membrane b : cytoplasm ;c : nucleus ;d : mitochondrion ;e : extracellular

matrix/compartment
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