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Abstract

In the Clifford analysis context a specific type of solutions for the higher spin Dirac
operators Qk,l (k ≥ l ∈ N) is studied; these higher spin Dirac operators can be seen
as generalizations of the classical Rarita-Schwinger operator. To that end subspaces of
the space of triple monogenic polynomials are introduced and their algebraic structure
is investigated. Also a dimensional analysis is carried out.

1 Introduction

Recently it has become clear that Clifford analysis offers an elegant framework to study
higher spin Dirac operators from a function theoretical point of view. These operators
can be defined as Spin(m)-invariant elliptic differential operators acting between spaces
of functions of several vector variables, taking their values in a polynomial model for an
irreducible Spin(m)-module. They may be seen as far-reaching generalizations of both the
Dirac operator and the Rarita-Schwinger operator. Both these operators were originally
inspired by physics, but in Clifford analysis one studies them from a completely different
point of view. Note that each one of these operators, whose existence is encoded in Fegan’s
celebrated paper [12], can be constructed using the method of generalized gradients, see e.g.
[5, 22, 1]. The Dirac operator has been, until now, the most studied operator in Clifford
analysis: we refer to e.g. [10] for a historical overview and a short introduction and to
e.g. [2, 9, 14, 15] for a detailed account of this research field. For the case of the Rarita-
Schwinger operators we refer to [6, 7]; in these papers techniques from representation theory
and from classical Clifford analysis were successfully applied to construct these operators
explicitly and to describe their polynomial null solutions. In a series of recent papers, see
e.g. [11, 3, 4], further generalizations of these higher spin Dirac operators (HSD operators)
were studied in an attempt to describe properties of HSD operators within an encompassing
framework. Doing so, we have been able to isolate a few related problems which need to be
solved first in order to formulate an adequate theory. This paper deals with one of these
problems: apparently spaces of triple monogenic functions, and certain subspaces thereof,
have to be well-understood in order to describe the space of polynomial solutions for HSD
operators. We will introduce specific (sub)spaces of triple monogenic functions and study
them from an algebraic point of view. This will enable us to obtain an explicit description
of a specific type of polynomial null solutions for the HSD-operators Qk,l, introduced in [3],
and defined in Section 2.
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2 Higher spin operators and their null solutions

Consider the Clifford algebra Rm generated by an orthonormal basis (e1, . . . , em) for the
vector space Rm, and its complexified version Cm = Rm ⊗ C. The scalars and the vectors
are thought of as being embedded in a natural way in the Clifford algebra. The multiplica-
tion in Rm and Cm is governed by the relations eiej + ejei = −2δij , i, j = 1, . . . ,m. Let S
(respectively S±) be the unique spinor space (respectively the space of positive and negative
spinors), which can be realized as a primitive ideal inside the complex Clifford algebra Cm in
case m is odd (respectively m is even). Unless otherwise stated, we will often disregard the
parity of the spinors in even dimension and so in both cases speak about the space of spinors.

The classical Dirac operator ∂x =
∑m
j=1 ej∂xj

on Rm is an elliptic differential operator
acting between spaces of smooth spinor-valued functions. It is invariant w.r.t. to the reg-
ular representation L(s) of Spin(m) on C∞(Rm; S) given by L(s)[f(x)] := sf(s̄xs), s ∈ S,
where the bar denotes the Clifford conjugation. Moreover it factorizes the Laplace operator
∆x on Rm in the sense that ∂2

x = −∆x. Null solutions of the Dirac operator are called mono-
genic functions, and the vector spaceMk(Rm; S) of k-homogeneous monogenic polynomials
defines a polynomial model for the irreducible Spin(m)-module with highest weight

(k)′ :=
(
k +

1
2
,

1
2
, · · · ,±1

2

)
.

Note that the minus sign only applies to the case of even dimension, and will be omitted
unless explicitly needed. Also mind the notation: from now one we will use an accent to
denote a highest weight which can be seen as the Cartan product of an integer weight with
the highest weight for the spinor space. More generally, it is known that arbitrary irreducible
(half-integer) Spin(m)-modules can be described as spinor-valued tensors satisfying certain
symmetry conditions expressed in terms of Young diagrams, see e.g. [13, 17], but they can
also be represented as vector spaces of polynomials. In e.g. [8, 14] it was shown that such
modules of half-integer weight can be realized in terms of monogenic polynomials of several
vector variables. In what follows, N ∈ N and 〈·, ·〉 denotes the Euclidean inner product.

Definition 1 An S-valued function f : RNm → S : (u1, . . . , uN ) 7→ f(u1, . . . , uN ) is simpli-
cial monogenic if the following conditions are satisfied:

∂ui
f = 0 (i = 1, . . . , N) and 〈ui, ∂uj

〉f = 0 (1 ≤ i < j ≤ N).

The vector space of S-valued simplicial monogenic polynomials which, for each i = 1, . . . , N ,
are λi-homogeneous in the variable ui, will be denoted Sλ1,...,λN

(with λ1 ≥ . . . ≥ λN from
now on, i.e. satisfying the dominant weight condition).

It was shown in [8] that the space Sλ1,...,λN
is characterized by the highest weight

(λ1, . . . , λN )′ with respect to the regular representation on polynomials in several vector
variables. Note that the case where the last entry of the highest weight is a non-trivial
number (i.e. 2N = n), is always somewhat special: one then needs an extra condition to
characterize the modules. This is related to the so-called massless field operator and their
generalizations, see e.g. [18].

Taking N = 2, for every k ≥ l ∈ N the HSD operator Qk,l is uniquely defined, up to a
multiplicative constant, as the invariant differential operator acting as

Qk,l : C∞(Rm;Sk,l)→ C∞(Rm;Sk,l) : f(x;u, v) 7→ Qk,lf(x;u, v).
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An explicit expression for this operator was found in [3], using techniques from representation
theory.

Definition 2 For every k ≥ l, the operator Qk,l is defined by

Qk,lf =
(

1 +
u ∂u

m+ 2k − 2
+

v ∂v
m+ 2l − 4

− 2
u〈v, ∂u〉∂v

(m+ 2k − 2)(m+ 2l − 4)

)
∂xf.

Note that in case l = 0, Qk,0 reduces to the Rarita-Schwinger operator Rk, see [6]:

Qk,0f = Rkf =
(

1 +
u ∂u

m+ 2k − 2

)
∂xf.

Closely related to the operators Qk,l are the so-called twistor operators

T k,lk,l−1 : C∞(Rm,Sk,l)→ C∞(Rm,Sk,l−1)

and (in case k > l)
T k,lk−1,l : C∞(Rm,Sk,l)→ C∞(Rm,Sk−1,l).

These Spin(m)-invariant operators, whose existence is also described by a result by Fegan,
are no longer elliptic, but they play a crucial role in obtaining null solutions of the HSD
operators by means of an inductive argument. In the case of the classical Rarita-Schwinger
operator Rk it was shown in e.g. [6], that it has two types of (homogeneous) polynomial
null solutions: a first type consisting of double monogenic functions, and a second type
consisting of solutions which can be seen as images under the inverse of the twistor operator
of null solutions of the operator Rk−1. The HSD operator Qk,l shows a similar behaviour.
First, there are null solutions of the operator Qk,l which can be obtained through the inverse
of the twistor operators mentioned above. However note that this is not a straightforward
generalization of the case l = 0; one needs a careful analysis to know precisely which sum-
mands in the kernels of the operators Qk,l−1 and Qk−1,l can actually be inverted. We refer
to [4] for more details on this first type of solutions. A second type of null solutions of the
operator Qk,l is obtained in terms of so-called triple monogenic polynomials.

Definition 3 For each 3-tuple (p, q, r) of positive integers, the space Mp,q,r(R3m; S) of so-
called triple monogenics, consists of S-valued polynomials in three vector variables (x, u, v),
homogeneous of degree (p, q, r) in (x, u, v) respectively, satisfying ∂xP = ∂uP = ∂vP = 0.

In this paper, we will also need a related function space, which is obtained by intersecting
Mp,q,r(R3m; S) with the kernel of the skew Euler operator 〈u, ∂v〉. This extra condition is
needed to ensure that we are dealing with polynomials which, for each x take their values
in Sk,l. Hence the following definition.

Definition 4 For each 3-tuple (p, q, r) of positive integers, with p ≥ q ≥ r, we define the
space Ms

p,q,r(R3m; S) of so-called skew triple monogenic polynomials, by

Ms
p,q,r(R3m; S) :=

{
P (x;u, v) ∈Mp,q,r(R3m; S) : 〈u, ∂v〉P = 0

}
.

In the next section, we will study these spaces from an algebraic point of view. In the
meantime, we can already mention the following crucial fact: for any h ≥ k ≥ l, we have
that Ms

h,k,l ⊂ KerhQk,l, where from now on we reserve the notation KerhD for the space
of h-homogeneous polynomial null solutions of the operator D. This is the second type of
solutions of the operator Qk,l and the aim of this paper is to determine the structure of this
space and to calculate its dimension.
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3 Skew triple monogenic polynomials

We consider the classical Lie algebra gl3, spanned by the basis elements Eij , 1 ≤ i, j ≤ 3,
satisfying the following commutator relations:

[Eij , Ekl] = δkjEil − δilEkj .

As is well-known, finite-dimensional irreducible representations for this Lie algebra are in a
one-to-one correspondence with 3-tuples (λ1, λ2, λ3) of non-negative integers numbers sat-
isfying λ1 ≥ λ2 ≥ λ3 ≥ 0. This 3-tuple is called the highest weight λ of the representation,
and we will denote by V(λ) the irreducible representation corresponding to λ. This mod-
ule contains a unique (up to a multiplicative constant) highest weight vector vλ such that
Eiivλ = λivλ and Eijvλ = 0 for i < j. As we will see further on, there is a nice polynomial
model for these modules within the setting of Clifford analysis. This is possible because there
is a model for gl3 in terms of specific differential operators in several vector variables. It can
indeed be verified that the following isomorphism, compactly denoted in matrix notation by E11 E12 E13

E21 E22 E23

E31 E32 E33

 ↔

 Ex + m
2 〈x, ∂u〉 〈x, ∂v〉

〈u, ∂x〉 Eu + m
2 〈u, ∂v〉

〈v, ∂x〉 〈v, ∂u〉 Ev + m
2

 , (1)

where Ey denotes the Euler operator with respect to the variable y = x, u or v, gives an
alternative realization for the algebra gl3. From now on, we will sometimes use Eij to denote
the operator corresponding to this element under the isomorphism above.

Recall that a triple monogenic polynomial P is called simplicial monogenic if moreover
the conditions EijP = 0, for all i < j, are satisfied. The following lemma can then be
proved:

Lemma 1 Each element Eij of the Lie algebra gl3 acts as an endomorphism on the space
of triple monogenic polynomials.

The fact that the operators defining simplicial monogenic polynomials are the positive
root vectors in gl3, suggests considering the whole vector space Sλ1,λ2,λ3 as a highest weight
vector for the Lie algebra gl3 (where we assume that, after a possible reordering of the vector
variables, λ1 ≥ λ2 ≥ λ3). In view of Lemma 1, we thus have:

Proposition 1 For each 3-tuple of positive integers (λ1, λ2, λ3) satisfying λ1 ≥ λ2 ≥ λ3,
the vector space Sλ1,λ2,λ3 of simplicial monogenics in three vector variables, generates a
finite-dimensional irreducible module for the Lie algebra gl3.

We will label this module by

V(Sλ1,λ2,λ3) = V
(
λ1 +

m

2
, λ2 +

m

2
, λ3 +

m

2

)
.

It is clear that for any 3-tuple of positive integers (λ1, λ2, λ3) satisfying λ1 ≥ λ2 ≥ λ3, we
have that V(Sλ1,λ2,λ3) ⊂ M(R3m,S), the latter denoting the space of all triple monogenic
polynomials. This space is an invariant (and highly reducible) module under the spin group
Spin(m) and a natural problem consists in decomposing this module into irreducible mod-
ules for the spin group (i.e. basic building blocks).
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Let us first illustrate this for the case of two vector variables: in [6, 7] it was shown that
the space Mk,l(R2m; S) of (k, l)-homogeneous double monogenic polynomials in two vector
variables (x, u) ∈ R2m decomposes as

Mk,l(R2m; S) =
l⊕

j=0

〈u, ∂x〉jSk+j,l−j , (2)

which is precisely the type of result we are looking for. As the spaces of simplicial monogenics
define a model for irreducible Spin(m)-modules with half-integer highest weight, see e.g.
[8, 14], it will therefore be sufficient to decompose the space Mp,q,r(R3m; S) into spaces of
simplicial monogenics. To that end we need to find all Spin(m)-invariant mappings from
spaces of simplicial monogenics into the space of triple monogenics. From the theory on
Howe dual pairs we know that the only candidates for this are combinations of the basic
invariants underlying Clifford analysis in three vector variables. These basic invariants are
the operators generating the Lie superalgebra osp(1|6) = g0 ⊕ g1, with even subalgebra
g0 = sp(6) spanned by the 21 elements{

Eij : 1 ≤ i, j ≤ 3
}
⊕
{
|x|2, |u|2, |v|2,∆x,∆u,∆v

}
⊕
{
〈x, u〉, 〈x, v〉, 〈u, v〉, 〈∂x, ∂u〉, 〈∂x, ∂v〉, 〈∂u, ∂v〉

}
and the odd subspace

g1 =
{
x, u, v, ∂x, ∂u, ∂v

}
.

A crucial result in the general theory of Lie superalgebras is the PBW-theorem, which states
that any combination of these invariants, i.e. any element in the universal enveloping algebra
U(osp(1|6)), can always be reordered (using the algebraic relations) so that we obtain (a
sum of) elements of the form

Xa1
1 Xa2

2 · · ·X
a26
26 Xa27

27 ∈ U
(
osp(1|6)

)
,

with Xj the generators for osp(1|6) and aj ∈ Z+. If we now choose an ordering on the
generators in such a way that

(i) we first list all combinations involving only the vector variables (type A)

(ii) we then list all the elements in gl3 (type B)

(iii) we finally list the combinations involving only the Dirac operators (type C),

it becomes clear that the only elements in U(osp(1|6)) which can be used, are elements in
U(gl3). Indeed, combinations involving type C operators will act trivially on the space of
simplicial monogenics, whereas combinations involving type A operators will always belong
to the Fischer complement of the space of triple monogenics. This latter statement is based
on the fact that

Pp,q,r =Mp,q,r ⊕
(
xPp−1,q,r + uPp,q−1,r + vPp,q,r−1

)
, (3)

the sum between brackets obviously not being a direct sum. We are then led to the following
important conclusion, which will be dimensionally verified in the next section.
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Proposition 2 In order to decompose the spaceMp,q,r(R3m; S) into irreducible modules for
the spin group Spin(m), it suffices to select all the weight spaces having the correct degree of
homogeneity inside each of the gl3-modules V(Sλ1,λ2,λ3) generated by the spaces of simplicial
monogenics.

Next, we are interested in the spaces of skew triple monogenic polynomials; recall that for
each 3-tuple (p, q, r) of positive integers with p ≥ q ≥ r, the space of skew triple monogenics
is given by

Ms
p,q,r :=Mp,q,r ∩Ker〈u, ∂v〉.

In order to describe this space algebraically, we will use branching rules from gl3 to gl2,
see e.g. [20]. Let us first define the subspace V(λ)+ containing gl2-highest weight vectors in
V(λ):

V(λ)+ = {η ∈ V(λ) : E23η = 0} .

Given a weight µ(µ2, µ3) for the smaller algebra gl2, we then introduce the set containing
the weight spaces in V(λ) realizing a copy of the module for the algebra gl2 with highest
weight µ:

V(λ)+µ =
{
η ∈ V(λ)+ : Eiiη = µiη , i = 2, 3

}
.

A classical result then tells us that V(λ)+µ is either trivial or one-dimensional, and that

dim
(
V(λ)+µ

)
= 1 ⇔ (λa−1 − µa, µa − λa) ∈ Z2

+,

for a = 2, 3. In its turn this tells us, given a space V(Sλ1,λ2,λ3), how many of the weight
spaces can actually be selected. Indeed, applying this result shows that

V(Sλ1,λ2,λ3)
∣∣∣∣gl3

gl2

=
⊕
µ

V(Sµ2,µ3) =
⊕
i,j

V(Sλ2+i,λ3+j),

where 0 ≤ i ≤ λ1 − λ2 and 0 ≤ j ≤ λ2 − λ3, and in each of these gl2-modules we then only
need to pick up the highest weight vector. This element, which is of course a polynomial in
V(Sλ1,λ2,λ3), will belong to the space Ms

λ1,λ2,λ3
.

Finally, we would like to describe how these highest weight vectors for the gl2-modules
are embedded into the space V(Sλ1,λ2,λ3). This will enable us to explicitly decompose the
space of skew triple monogenics. This can be done using the so-called raising and lowering
operators, for which we again refer to e.g. [20].

4 Dimensional analysis

4.1 Dimension of Mp,q,r

Our aim is to find a decomposition of the space of triple monogenics Mp,q,r, similar to the
decomposition (2) forMk,l. This requires information on the weights in a representation of
the Lie algebra sl3 for which it may be proved that

sl3 ∼= span{〈x, ∂u〉, 〈u, ∂x〉, 〈x, ∂v〉, 〈v, ∂x〉, 〈u, ∂v〉, 〈v, ∂u〉,Ex − Eu,Ex − Ev}. (4)

First, we summarize some basic results of representations of sl3; for details we refer to e.g.
[13, 16]. Let L1, L2, L3 be linear functionals on C such that L1 + L2 + L3 = 0. In order to
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visualize the action of sl3, it is convenient to identify these linear functionals with elements
of C. This determines a triangular grid.

The Weyl group is a symmetry group of the weights of any (finite-dimensional) represen-
tation. In case of sl3, it consists of six elements: the identity, clockwise and counterclockwise
rotations by 120◦ and three reflections. If µ is a weight for a representation, then the action
of the Weyl group on µ is also a weight for this representation with the same multiplicity.
Any weight λ of a representation of sl3 can be denoted by λ = aL1 − bL3 =: [a, b] with
a, b ∈ Z. The set aL1 − bL3 with a ≥ 0 and b ≥ 0 is called the (closed) Weyl chamber
(relative to L1, L2, L3). Every highest weight lies in the Weyl chamber.

The last two operators in (4) are elements of the Cartan subalgebra of sl3. The action
of the other operators on a weight λ, is visualized in Figure 1. Note that [〈v, ∂u〉, 〈u, ∂x〉] =
〈v, ∂x〉, [〈u, ∂x〉, 〈v, ∂x〉] = 0 and [〈v, ∂u〉, 〈v, ∂x〉] = 0.

L1

L2

L3

λ+ L1 − L2

λ+ L1 − L3

λ+ L2 − L3

λ+ L3 − L2

λ+ L3 − L1

λ+ L2 − L1

λ

0
〈x, ∂u〉

〈x, ∂v〉
〈v, ∂u〉

〈u, ∂v〉

〈v, ∂x〉

〈u, ∂x〉

Figure 1: Action of sl3 on the weight λ

As opposed to the case of sl2, not every weight in a representation of sl3 appears with
multiplicity 1. It can be shown that in a representation of sl3 the multiplicities of the weights
obey the following simple pattern: they occur in ”rings” where the rings towards the outside
are hexagons and the rings towards the inside are triangles. The weights in the outermost
ring have multiplicity 1. The multiplicities then increase by 1 each time one moves one ring
inwards , until the rings become triangles, at which point the multiplicities stabilise. As an
example, Figure 2 shows one hexagon of weights of multiplicity 1 and a triangle of weights
of multiplicity 2.

It has been mentioned before that the space Sp,q,r of simplicial monogenics is an irre-
ducible Spin(m)-module with highest weight (p, q, r)′. As a corollary of Proposition 1,
Sp,q,r is a highest weight vector for sl3. It can be shown, see e.g. [21], that this highest
weight vector corresponds to a unique irreducible representation of sl3 with highest weight
λ = (p−q)L1−(q−r)L3 = [p−q, q−r]. We denote this irreducible sl3-module also by V(λ).

By now, we can answer the following questions: which irreducibles modules Sλ1,λ2,λ3 with
λ1 ≥ λ2 ≥ λ3 can be embedded in Mp,q,r and what are their multiplicities? We will show
that the following irreducible Spin(m)-modules appear with multiplicity 1 in the decompo-
sition of Mp,q,r:

• Sp+i,q−i,r for every i = 0, . . . , q − r,
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L1

L2

L3

λ

Figure 2: Weights of a representation of sl3 with highest weight λ

• Sp,q+i,r−i for every i = 1, . . . ,min (r, p− q),

• Sp+q+r−2i,i,i for every i = 0, . . . , r − 1,

• Sp+i,p+i,r+q−p−2i for every i = 1, . . . , b(r + q − p)/2c.

Each of these irreducible Spin(m)-modules corresponds to a unique sl3-module with respec-
tive highest weight

• [p− q + 2i, q − r − i] for every i = 0, . . . , q − r,

• [p− q − i, q − r + 2i] for every i = 1, . . . ,min (r, p− q),

• [p+ q + r − 3i, 0] for every i = 0, . . . , r − 1,

• [0, 2p− q − r + 3i] for every i = 1, . . . , b(r + q − p)/2c.

If we denote each of these weights by λ, then the weight [p− q, q − r] corresponding to the
highest weight vector Sp,q,r has multiplicity 1 in V(λ). Indeed, if λ = [p− q+ 2i, q− r− i] or
λ = [p− q − i, q − r+ 2i], the weight [p− q, q − r] lies on the outermost hexagon or triangle
and thus has multiplicity 1. In the other cases [p − q, q − r] lies on inner triangles and has
multiplicity 1 since the multiplicities do not change on triangles. In Figure 3 these highest
weights are visualized together in the Weyl chamber, denoted by their highest weight as a
Spin(m)-module. Note that weights of the form [p+ q+ r− 3i, 0] and [0, 2p− q− r+ 3i] lie
on the boundaries of the Weyl chamber.

The fact that these Spin(m)-modules have multiplicity 1 in the decomposition of Mp,q,r is
also clear from the Clifford analysis side. As [〈u, ∂x〉, 〈v, ∂x〉] = 0 and [〈v, ∂u〉, 〈v, ∂x〉] = 0,
the only possible embeddings are:

• 〈u, ∂x〉iSp+i,q−i,r for every i = 0, . . . , q − r,

• 〈v, ∂u〉iSp,q+i,r−i for every i = 1, . . . ,min (r, p− q),

• 〈v, ∂x〉r−i〈u, ∂x〉q−iSp+q+r−2i,i,i for every i = 0, . . . , r − 1,

• 〈v, ∂x〉i〈v, ∂u〉i〈v, ∂u〉p−qSp+i,p+i,r+q−p−2i for every i = 1, . . . , b(r + q − p)/2c.
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Note that each space is a subspace of Mp,q,r: they have the correct degree of homogeneity
and they are null solutions of the Dirac operators. We will explicitly prove that

〈v, ∂x〉i〈v, ∂u〉p−q+iSp+i,p+i,r+q−p−2i ⊂Mp,q,r.

This follows from the definition of simplicial monogenics together with the identities

[∂x, 〈v, ∂x〉i〈v, ∂u〉p−q+i] = 0
[∂u, 〈v, ∂x〉i〈v, ∂u〉p−q+i] = 0
[∂v, 〈v, ∂x〉i] = i〈v, ∂x〉i−1∂x

[∂v, 〈v, ∂u〉p−q+i] = (p− q + i)〈v, ∂u〉p−q+i−1∂u.

(p+ i, q − i, r)′

(p+ q + r − 2i, i, i)′

(p, q, r)′

(p, q + i, r − i)′

(p+ i, p+ i, r + q − p− 2i)′

Figure 3: Multiplicity 1

Next we deal with the multiplicities higher than 1. The following irreducible Spin(m)-
modules have multiplicity (j + 1) in the decomposition of Mp,q,r:

• Sp+i+j,q−i,r−j for every i = 0, . . . , q − r (if j ≤ r),

• Sp+j,q+i,r−i−j for every i = 1, . . . ,min (r, p− q) (if j ≤ r − i),

• Sp+q+r−2i+j,i,i−j for every i = 0, . . . , r − 1 (if j ≤ i),

• Sp+i+j,p+i,r+q−p−2i−j for every i = 1, . . . , b(r + q − p)/2c (if j ≤ r + q − p− 2i).

Each of these irreducible Spin(m)-modules corresponds to a unique sl3-module with respec-
tive highest weight

• [p− q + 2i+ j, q − r − i+ j] for every i = 0, . . . , q − r (if j ≤ r),

• [p− q − i+ j, q − r + 2i+ j] for every i = 1, . . . ,min (r, p− q) (if j ≤ r − i),

• [p+ q + r − 3i+ j, j] for every i = 0, . . . , r − 1 (if j ≤ i),

• [j, 2p− q − r + 3i+ j] for every i = 1, . . . , b(r + q − p)/2c (if j ≤ r + q − p− 2i).
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If we denote each of these weights by λ, then the weight [p− q, q − r] corresponding to the
highest weight vector Sp,q,r, has multiplicity (j + 1) in V(λ). This follows from the pattern
of multiplicities.

For example, the irreducible Spin(m)-module Sp+2,q,r−2 has multiplicity 3 in the decomposi-
tion ofMp,q,r: 〈v, ∂x〉2Sp+2,q,r−2, 〈v, ∂x〉〈u, ∂x〉〈v, ∂u〉Sp+2,q,r−2, and

[
〈u, ∂x〉〈v, ∂u〉

]2Sp+2,q,r−2

are subspaces of Mp,q,r and the respective embedding maps are linear independent. In
general, to find modules of multiplicity (j + 1) with j ≥ 1, we act with the operators
〈v, ∂x〉k

[
〈u, ∂x〉〈v, ∂u〉

]j−k, 0 ≤ k ≤ j, on each space of multiplicity 1 described above. This
corresponds with (j + 1) different ”paths”, see Figure 4.

(p, q, r)′

(p+ i, q, r − i)′

Figure 4: Multiplicities higher than 1

This leads to the decomposition

Mp,q,r =
q−r⊕
i=0

r⊕
j=0

j⊕
k=0

〈v, ∂x〉k
[
〈u, ∂x〉〈v, ∂u〉

]j−k〈u, ∂x〉iSp+i+j,q−i,r−j
⊕

r−1⊕
i=0

i⊕
j=0

j⊕
k=0

〈v, ∂x〉k
[
〈u, ∂x〉〈v, ∂u〉

]j−k〈v, ∂x〉r−i〈u, ∂x〉q−iSp+q+r+j−2i,i,i−j

⊕
min(r,p−q)⊕

i=1

r−i⊕
j=0

j⊕
k=0

〈v, ∂x〉k
[
〈u, ∂x〉〈v, ∂u〉

]j−k〈v, ∂u〉iSp+j,q+i,r−i−j
⊕

b(p+q−r)/2c⊕
i=1

p+q−r−2i⊕
j=0

j⊕
k=0

〈v, ∂x〉k
[
〈u, ∂x〉〈v, ∂u〉

]j−k〈v, ∂x〉i
· 〈v, ∂u〉p−q+iSp+i+j,p+i,r+q−p−2i−j .
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In this way the following dimension formula for the triple monogenics is obtained:

dimCMp,q,r =
q−r∑
i=0

r∑
j=0

(j + 1) dimC Sp+i+j,q−i,r−j

+
r−1∑
i=0

i∑
j=0

(j + 1) dimC Sp+q+r+j−2i,i,i−j

+
min(r,p−q)∑

i=1

r−i∑
j=0

(j + 1) dimC Sp+j,q+i,r−i−j

+
b(r+q−p)/2c∑

i=1

r+q−p−2i∑
j=0

(j + 1) dimC Sp+i+j,p+i,r+q−p−2i−j

where the Weyl dimension formula (see e.g. [13]) can be used to calculate

dimC Sp,q,r = 2n
(
p+ 2n− 3
p+ 2

)(
q + 2n− 4
q + 1

)(
r + 2n− 5

r

)
· (2n+ p+ q − 1)(2n+ p+ r − 2)(2n+ q + r − 3)

· (p− q + 1)(p− r + 2)(q − r + 1)
(2n− 5)!
(2n− 1)!

(2n− 5)!
(2n− 3)!

.

Starting from the relation (3) and making use of Grassmann’s theorem, we have obtained
via quite involved computations another expression for dimCMp,q,r in terms of dimensions
of spaces of homogeneous polynomials. By means of Maple, see [19], we were able to verify
that both fomulas yield the same result for a number of (p, q, r).

4.2 Dimension of Ms
p,q,r

Recall that in [3] we constructed the unique (up to a multiplicative constant) elliptic,
Spin(m)-invariant, first-order differential operator Qk,l, acting between functions taking
values in Sk,l:

Qk,l : C∞(Rm;Sk,l) → C∞(Rm;Sk,l).

This operator can be seen as a generalization of the Dirac operator ∂x and is often referred
to as a higher spin Dirac operator. An obvious problem is then to describe the kernel
space of this operator. We denote by KerhQk,l the vector space of the h-homogeneous
polynomial null solutions of Qk,l. For calculating the dimension of this vector space, we
use a generalized version of the classical Cauchy-Kowalewskaia (CK) extension principle in
Clifford analysis: considering Rm−1 as the hyperplane xm = 0 in Rm, a real-analytic func-
tion f∗(x∗), x∗ = Σm−1

j=1 eixi, in Rm−1 can be uniquely extended to a monogenic function
f(x∗, xm) in an open neighbourhood in Rm of Rm−1, this so-called CK-extension of f∗(x∗)
being given by f(x∗, xm) = exp(−xm ∂∗x)f∗(x∗) with ∂∗x =

∑m−1
i=1 ei∂xi

.

Referring to [4] for details, we mention only the result of the generalized CK extension:

dimC KerhQk,l = dimC Ph(Rm−1,Sk,l) = dimC Ph(Rm−1) dimC Sk,l.
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The dimension of the irreducible Spin(m)-modules Sk,l can be calculated using the Weyl
dimension formula (see e.g. [13]) resulting into

dimC Sk,l = 2n
(
k + 2n− 2
k + 1

)(
l + 2n− 3

l

)
(2n+ k + l − 1)(k − l + 1)

(2n− 1)(2n− 2)
.

Also in [4] we proved the following decomposition:

Proposition 3 For every h > k ≥ l, the kernel space KerhQk,l for the invariant first-order
operator Qk,l decomposes as

KerhQk,l =
k−l⊕
i=0

l⊕
j=0

Ms
h−i−j,k−i,l−j .

In order to obtain a compact formula for dimCMs
h,k,l, we follow a pragmatic approach

and we apply Proposition 3 on KerhQk,l, Kerh−1Qk−1,l, Kerh−1Qk,l−1 and Kerh−2Qk−1,l−1

consecutively:

KerhQk,l = Ms
h,k,l ⊕

l⊕
i=1

Ms
h−i,k,l−i ⊕

k−l⊕
i=1

Ms
h−i,k−i,l ⊕

k−l⊕
i=1

l⊕
j=1

Ms
h−i−j,k−i,l−j ,

Kerh−1Qk−1,l =
k−1−l⊕
i=0

l⊕
j=0

Ms
h−1−i−j,k−1−i,l−j

=
k−l⊕
i=1

Ms
h−i,k−i,l ⊕

k−l⊕
i=1

l⊕
j=1

Ms
h−i−j,k−i,l−j ,

Kerh−1Qk,l−1 =
k−l+1⊕
i=0

l−1⊕
j=0

Ms
h−1−i−j,k−i,l−1−j

=
l⊕

j=1

Ms
h−j,k,l−j ⊕

k−l+1⊕
i=1

l⊕
j=1

Ms
h−i−j,k−i,l−j

and

Kerh−2Qk−1,l−1 =
k−l+1⊕
i=1

l⊕
j=1

Ms
h−i−j,k−i,l−j .

This leads to
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Proposition 4 The dimension of Ms
h,k,l is given by

k(l − 1)
(k − l + 1)(2n− 1)(2n− 2)

dimCMs
h,k,l

=
(
h+ 2n− 1

h

)(
k + 2n− 2
k − 1

)(
l + 2n− 3
l − 2

)
(2n+ k + l − 1)

(k + 1)l

−
(
h+ 2n− 2
h− 1

)(
k + 2n− 3
k − 2

)(
l + 2n− 4
l − 3

)
· (2n+ k + l − 2)

(k − 1)(k + 1)(l − 2)l
(2kl + 2nk + 2nl − l − 3k)

+
(
h+ 2n− 3
h− 2

)(
k + 2n− 3
k − 2

)(
l + 2n− 4
l − 3

)
(2n+ k + l − 3)
(k − 1)(l − 2)

.

Proof. The reasoning above together with the generalized CK-extension (5) leads to

dimCMs
h,k,l = dimC KerhQk,l − dimC Kerh−1Qk−1,l

− dimC Kerh−1Qk,l−1 + dimC Kerh−2Qk−1,l−1

=
(
h+ 2n− 1

h

)(
k + 2n− 2
k − 1

)(
l + 2n− 3
l − 2

)
· (2n+ k + l − 1)(k − l + 1)(2n− 1)(2n− 2)

(k + 1)k(l − 1)l

−
(
h+ 2n− 2
h− 1

)(
k + 2n− 3
k − 2

)(
l + 2n− 3
l − 2

)
· (2n+ k + l − 2)(k − l)(2n− 1)(2n− 2)

(k − 1)k(l − 1)l

−
(
h+ 2n− 2
h− 1

)(
k + 2n− 2
k − 1

)(
l + 2n− 4
l − 3

)
· (2n+ k + l − 2)(k − l + 2)(2n− 1)(2n− 2)

(k + 1)k(l − 2)(l − 1)

+
(
h+ 2n− 3
h− 2

)(
k + 2n− 3
k − 2

)(
l + 2n− 4
l − 3

)
· (2n+ k + l − 3)(k − l + 1)(2n− 1)(2n− 2)

(k − 1)k(l − 2)(l − 1)
. (5)

This is then simplified by combining the second and third term, leading to the desired result.
Note that we also have

dimCMs
h,k,l =

k−l∑
i=0

l∑
j=0

dimC Sh+i+j,k−i,l−j . (6)

We used Maple (see [19]) to verify that these two expressions for dimCMs
h,k,l are indeed

equal. �
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