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Quark electric dipole moment induced by magnetic field
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We show numerically that quarks develop an electric dipole moment in the direction of a sufficiently
intense magnetic field due to local fluctuations of topological charge. This anomalous CP-odd effect is a

spin analogue of the chiral magnetic effect in QCD.

DOI: 10.1103/PhysRevD.81.036007

L. INTRODUCTION

Fluctuations of topological charge is an important fea-
ture of the QCD vacuum, which is reflected in the mass
spectrum of hadrons, in the breaking of chiral symmetry,
and other properties. Recently it was suggested that the
topological fluctuations may be directly observed in hot
QCD matter in the presence of a very intense (hadron-
scale) external magnetic field via the so-called ‘“‘chiral
magnetic effect” (CME) [1]. The fluctuations of the topo-
logical charge lead to a local imbalance between the left-
and right-handed light quarks. In the presence of an intense
magnetic field the quarks move along the field, and the
chiral imbalance creates a net electric current along the
direction of the magnetic field. As a result, this CP-odd
effect should lead to a separation of the electric charges
along the field, which potentially may be observed in
experiment.

The strong magnetic fields of the order of QCD scale
may be created in noncentral heavy-ion collisions due to
relative motion of electrically charged ions in an initial
state and the products of the collision in a final state [1,2].
The strong fields are perpendicular to the collision plane,
so that the CME should be realized on an event-by-event
basis in the form of an asymmetry of electrically charged
particles emitted below and above the reaction plane.
There is recent experimental evidence reported by the
STAR Collaboration that this scenario works at RHIC
[3]. Recently, the CME was also found in numerical lattice
simulations [4] (a brief review of lattice QCD simulations
in strong magnetic fields can be found in Ref. [5]).

In this paper we show that the topological fluctuations in
the background of the intense magnetic field lead to ap-
pearance of a quark electric dipole moment. This effect is a
spin analogue of the CME. Indeed, the CME induces an
electric dipole moment due to the spatial (nonlocal) sepa-
ration of the electric charges of quarks while the discussed
spin effect induces the electric dipole moment locally.

In Sec. II, we discuss general features of this spin effect.
Section III is devoted to a numerical demonstration of the
effect in a simple case of an instantonlike configuration. In
Sec. IV, the quenched lattice simulations are used to show
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that the quark electric dipole moment is induced both in
high- and low-temperature phases. Our conclusions are
given in the last section, and the Appendix contains tech-
nical details of our simulations.

II. GENERAL ARGUMENTS

Quarks are the electrically charged spin-1/2 particles
which carry certain magnetic dipole moments. A strong
enough external magnetic field aligns quark spins and leads
to appearance of a net magnetization. A quantitative mea-
sure of the magnetization is given by the expectation value

(6]
(U3,5V) = (PO Y(F)GF o, (1)

where

1
28 = Z[%ﬂ’ﬁ — YgYal ()

is the relativistic spin operator, F,g = d,ag — dga, is the
strength tensor of the external electromagnetic field, and
a, is the Abelian gauge field. For the sake of simplicity we
consider one quark flavor, and omit the flavor and spinor
indices in Eq. (1).

The structure of the right-hand side of Eq. (1) is obvious:
the appearance of the electromagnetic field strength tensor
F,p is dictated by a covariance argument, while the ap-
pearance of the chiral condensate (WW) is the natural
consequence of the dimensionality of the left and right
parts of Eq. (1). Moreover, the left-hand side of (1) violates
the chiral symmetry similarly to the chiral condensate. The
coefficient of proportionality y(F) is called the chiral
magnetic susceptibility [6].

There is another property which was used for the pa-
rametrization of the right hand side of Eq. (1): this equation
is formulated in the CP-symmetric vacuum. If the vacuum
is not CP symmetric, then Eq. (1) should be rewritten in a
more general form:

<\i’2aﬁ\l’>0 = <\P\P>X(F)qFaB + (ir\P)X/(F)qﬁaﬁ’ (3)

where
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Fa,B = %SQB;LI/F}LI/ (4)

is the dual field strength tensor. In Eq. (3) we used the
subscript (- - *)p to stress that the spin expectation value is
evaluated in a CP-odd environment, which can be induced,
say, by a nonzero #-angle. We omit the subscript 6 in the
right-hand side of Eq. (3). The new coefficient y is the
electric susceptibility of the vacuum which in general may
be nonzero if § # 0.

One can rewrite Eq. (3) by introducing the dimension-
less magnetic and electric dipole moments, respectively,

Kap = X(F)GF 4p, €ap = X(F)qF.p (5

so that Eq. (3) is simplified:
<\i,2aﬁqf>0 = (lu‘aﬂ + eaﬁ)<\pq,> (6)

Here, the tensors u,z and €,4 represent two orthogonal
contributions,

Map€ap = 0. @)

Note that Eq. (3) represents the most general tensor
structure for the magnetization in the presence of a nonzero
0-angle. The nonzero #-angle leads to appearance of the
pseudoscalar condensate (WysW¥), the pseudotensor con-
densate <\Py5t“G7w\I’>, where G, is the gluon field
strength tensor and 7¢ are the generators of the gauge
group, and other condensates. The pseudoscalar conden-
sate may give separate contributions to the chiral suscep-
tibilities y and ¥ in Eq. (3), while it cannot mix the two
terms in (3) because of their mutual orthogonality. As for
the pseudotensor condensate, it may be split—in terms of
the Lorentz structures—into two orthogonal terms that are
proportional to the electromagnetic field strength tensor
F,, and its dual (4), respectively. Therefore, the pseudo-
tensor condensate may also contribute to the both terms of
Eq. (3) leaving the general form of the magnetization (3)
unchanged.

It is convenient to rewrite the magnetic and electric
dipole moments (5) via the expectation values (3) in the
vector form, respectively,

_(ysZpW) _ 1 (PE,W)

wi(gB) vy 2 Eijk T 3
(U0 1 (Pys3 W)

€i(qB) = Rz Esijkw: )

where we used the relation ys2,5 = 2,4, and assumed
that the external electric field is absent, F,; = 0. The
interpretation of Eq. (9) as the electric dipole moment is
obvious because this vector quantity is defined by the
electric component of the spin operator, 2;,. Here, spatial
tensor indices are i, j = 1, 2, 3, and the Euclidean time is
labeled by the index 0.
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In the real CP-invariant vacuum the electric dipole mo-
ment (9) should be identically equal to zero. However, the
fluctuations of the electric magnetic dipole moment may
still be very strong. The real vacuum may be subdivided
into topologically nontrivial CP-odd domains in which the
quarks may have possess an anomalous electric dipole
moment along the direction of the magnetic field, éllB.
In these domains the CP-odd electric dipole moment may
be as strong as the magnetic dipole moment. Below we
check this conjecture using numerical simulations.

In order to characterize quantitatively the appearance of
the quark electric dipole moment, we consider the follow-
ing quantities: the local magnetic dipole moment

o} (x) = Jein i ()2 i (x), (10)
the local electric dipole moment
of(x) = P9 (x), (11

and the local chirality
ps(x) = g()ysp () = pL(x) — pplx), (12

which is the operator of the difference of the densities of
left- and right-handed quarks.

II1. INSTANTON

Instanton is a topologically nontrivial solution to the
classical equations of Yang-Mills theory. The topological
charge of the instanton is nonzero, and therefore it can be
considered as a simplest gauge filed configuration, which
may lead to the anomalous electric dipole moment.

While a spectrum of the Dirac operator in the field of a
single instanton is well known [7], the presence of a
uniform magnetic field makes the problem analytically
intractable. Therefore, we constructed an instantonlike
smooth configuration of the lattice gauge field with unit
topological charge and numerically calculated fermionic
propagators in such a configuration (details of our numeri-
cal simulations are given in the Appendix). Next, we added
the uniform magnetic field in the third direction, B; = Bd;3
to this sample configuration. We evaluated the local density
oM of the magnetic dipole moment (10) in the background
of this configuration.

Note that any gauge field configuration—including the
instanton—has, in general, both zero and near-zero Dirac
eigenmodes. These classes of the Dirac modes have differ-
ent physical meaning. For example, the number of the zero
modes is related to the topological charge of the gauge field
configuration according to the Atiyah-Singer theorem.
Consequently, the vacuum expectation value of the number
of zero modes is proportional to the susceptibility of the
topological charge.

On the contrary, the Banks-Casher relation [8] states that
the vacuum expectation value of the density of the near-
zero modes is proportional to a different quantity, the chiral
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condensate. Therefore, the near-zero modes carry informa-
tion about the chiral properties of the system, while the
exact zero mode, in general, does not. In Ref. [9] we have
analytically related the chiral magnetization to the spin
structure of the near-zero modes in the external magnetic
field (we discuss this relation in the Appendix, and refer an
interested reader to Ref. [9] for more details). Thus, only
near-zero modes were taken into account in our calcula-
tions of the chiral magnetization.

We would like to make a remark that in various instanton
gas and instanton liquid models the individual zero modes
of instantons and antiinstantons do play an important role
in the chiral properties of the system because in this
interacting system the zero-mode degeneracy is lifted out
and the zero modes become eventually near-zero modes. In
our illustrative example we consider the single instanton-
like configuration so that zero mode does not contribute to
the chiral magnetization.

The density of the longitudinal (i = 3) and the trans-
verse (i = 1) components of the magnetic dipole moment
in the 34-plane of the background instantonlike configura-
tion are plotted in Fig. 1. The distribution in the 12-plane is
similar to the one plotted in Fig. 1. As one can expect, the
magnetic dipole moment is predominantly directed along
the magnetic field: |o (x)| > |o}’,(x)| so that 5 ||B with
a good accuracy. Notice that the spatial distribution of the
density of the magnetic dipole moment is uniform simi-
larly to the magnetic field.

The density of the electric dipole moment is shown in
Fig. 2. Similarly to the magnetic moment, the electric
dipole moment (11) is directed along the magnetic field:
lo§(x)] > [of,(x)| so that GE||B with a good accuracy.
The magnitude of the electric dipole moment is smaller
and, in contrast to the magnetic dipole moment, its distri-
bution is peaked near the position of the instanton.

Summarizing this section, we observed the generation of
the electric dipole moment in the background of the topo-
logically nontrivial configuration of the smooth gauge
fields. In the next section we study the same effect in a
real ground state of non-Abelian gauge theory.

3 Magnetic dipole

FIG. 1 (color online). The local density of the magnetic dipole
moment of quarks (10) in the instanton background exposed to a
strong magnetic field. The upper (blue) and lower (green)
surfaces represent, respectively, the longitudinal, o-é"’ (x), and a
transverse, 0"1"1 (x), components of the dipole moment in a 34-
plane.
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FIG. 2 (color online). The same as in Fig. 1 but for the local
density of the electric dipole moment (11).

IV. QUENCHED QCD

A. Fluctuations of electric dipole moment

The vacuum expectation value of the magnetic dipole
moment of the quark (10) is given by (1):

(FMWy = (IW¥) x(B)gB. (13)

The chiral magnetic susceptibility y was calculated nu-
merically in Ref. [9].
The average of the electric dipole moment (11) is zero,

(PGFEWY) = 0, (14)

since the density of topological charge changes its sign in
different space-time domains, thus supporting the global
CP-invariance of the vacuum. However, locally the electric
dipole moment ¢* may be nonzero, as we have seen in the
previous section for the instanton case.

In order to measure the strength of the local fluctuations
of the dipole moments we study the connected expectation
values

(o = (o] = (@DPhsr = ((of = (eD)mr-o
(15)

where there is no summation over the indices i and €. In
Eq. (15) o is the i-th component of the magnetic (€ = M)
or electric (¢ = E) dipole moment, and (. . .)g 7 denotes the
expectation value with respect to the thermal state at
temperature 7 in the background magnetic field B. The
subtraction of the expectation value at B =0, T = 0 re-
moves ultraviolet divergences and yields physical results
which are practically independent of the UV cutoff (this
question was discussed in Refs. [4,9] using the same set of
the gauge field configurations). The subscript IR Eq. (15)
reflects the fact that the subtraction provides us with the
nonperturbative infrared (IR) value.

We calculated the fluctuations (15) numerically in SU(2)
lattice gauge theory with quenched massless chirally in-
variant quarks (details of simulations can be found in the
Appendix). In Fig. 3 we show the fluctuations (15) of the
longitudinal components of the electric dipole moment
(O = o-f, Eq. (11)) both in the confinement phase, at 7 =
0, and in the deconfinement phase, at 7 = 1.127... Here,
T. =310 MeV is the critical temperature of the
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FIG. 3 (color online). The fluctuations (15) of the longitudinal
(i.e., directed along the magnetic field) components of the
magnetic (10) and electric (11) dipole densities vs the strength
of the magnetic field in the confinement (7 = 0) and in the
deconfinement (7 = 1.127T,.) phases.

confinement-deconfinement phase transition in the SU(2)
gauge theory. For comparison, we also plotted the longi-
tudinal component of the magnetic dipole moment [0 =
o, Eq. (10)]. One can see that the average squares of the
magnetic moment and of the electric dipole moment are
equal with a good precision. Both of them grow signifi-
cantly with magnetic field. Taking into account the fact that
the average electric dipole moment is zero, one can con-
clude that there are space-time domains within which the
magnetic dipole moment and the electric dipole moment
are either parallel or antiparallel, and are equally strong. It
is interesting that the fluctuations of both magnetic and
electric dipole moments are almost independent of the
temperature even near the phase transition (the small mu-
tual deviations in Fig. 3 are of the order of the error bars).

We also found that the fluctuations of the transverse
components of the electric afz and magnetic a’l‘f’z dipole
moments are almost independent of the magnetic field. For
these components the expectation value (15) is compatible
with zero.

Summarizing this subsection, we conclude that in the
external magnetic field the quark develops the electric
dipole moment, which is directed along the magnetic field.
The fluctuations of the electric dipole moment are of the
same order as the magnetic ones.

B. Electric dipole moment and chirality

In order to demonstrate that the electric dipole moment
is closely related with the local chirality we calculate the
correlator of the electric dipole moment with the chiral
density (12):

(ps U'f'M>

Joa 2y

In this formula no summation over the index i is implied.

E,M) —

c(ps, o; (16)
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1.4 Correlation: chirality and EDM of quark

c(ps, 05

FIG. 4 (color online). The correlation (16) of the longitudinal
component of the electric dipole moment (11) of quark (EDM)
with the chiral density (12) vs the strength of the magnetic field
in the confinement and deconfinement phases. The horizontal
dotted line indicates the 100% correlation.

We plot the correlator (16) of the longitudinal electric
dipole moment, o4, in Fig. 4 both in the confinement phase
and in the deconfinement phase. At zero temperature the
correlator grows quickly, and we observe almost the full
(100%) correlation of the quark electric dipole moment
and the chirality even at weakest nonzero magnetic field.
The strength of the effect is somewhat smaller in the
deconfinement phase at weak magnetic fields due to ther-
mal fluctuations. However, at strong magnetic fields, gB ~
1 GeV?, the correlation function (16) reaches the highest
possible value, c(ps, of) = 1.

The transverse components U‘EZ of the electric dipole
moment (11) are not locally correlated with the chirality
(12). The same is true both for transverse a”l‘ffz and longi-
tudinal o}/ components of the magnetic dipole moment of
quark. Note that no correlation is observed in the absence
of the external magnetic field.

Summarizing, at zero temperature the electric dipole
moment is strongly correlated with the chiral density in
the presence of the external magnetic field. The thermal
fluctuations reduce this correlation, which is restored again
as the strength of the magnetic field increases.

V. CONCLUSION

We demonstrated that the quark develops the anomalous
electric dipole moment in the presence of a sufficiently
strong external magnetic field. The anomalous moment is
parallel to the direction of the magnetic field. The observed
effect is a reflection of a topological structure of the QCD
vacuum: the induced electric dipole moment is strongly
correlated with the chiral density of quarks which, in turn,
is correlated with the topological charge density. The sign
of the electric dipole moment of the quark is a fluctuating
quantity so that the electric dipole moment of the quark is
zero on average, and no global CP violation occurs.
However, the local fluctuations of the longitudinal (i.e.,
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parallel to the magnetic field) component of the quark
electric dipole moment are as strong as the fluctuations
of the conventional magnetic dipole moment.

The effect is observed at a single instanton gauge field
configuration, as well as in a true vacuum state of a
quenched non-Abelian gauge theory. The effect is strong
both in the confinement and deconfinement phases. The
thermal fluctuations decrease the correlation of the longi-
tudinal electric dipole moment with the chiral density at
moderate magnetic fields. As the strength of the field
increases, these two quantities become fully correlated.
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APPENDIX: DETAILS OF SIMULATIONS

The setup of our numerical simulations is the same as
the one used in Refs. [4,9,10]. We utilize lattice QCD with
the simplest SU(2) gauge group because the generation of
the electric dipole moment originates in the chiral sector of
QCD and therefore the number of colors is not crucial. In
our simulations only valence quarks interact with the elec-
tromagnetic field. The effects of the virtual quarks on
gluons are neglected because the inclusion of dynamical
(sea) quarks makes the simulations computationally diffi-
cult, while the essential features of the studied effect
remains intact in the quenched limit.

In Table I we present the parameters of our lattice
simulations: the lattice geometry, L3L,, the coupling con-
stants (3, the lattice spacings a, the spatial lattice extension
L = L,a, and the minimal value of the magnetic fields
VaBin-

In order to implement chirally symmetric massless fer-
mions on the lattice, we use Neuberger’s overlap Dirac
operator [11]. Ultraviolet lattice artifacts are reduced with
the help of the tadpole-improved Symanzik action for the
gluon fields (see, e.g., Eq. (1) in [12]). The uniform mag-
netic field B in the direction u = 3 is introduced into the

TABLE 1. Parameters of simulations.
T/T. L, L B  afm L fm gB,, MeV
0 14 14 3281 0.103 1.44 343
1.12 16 6 3325 0.095 1.33 371
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Dirac operator by substituting su(2)-valued vector poten-
tial A, with u(2)-valued field: Ajl — A}l + C, 86", where
C, = B/2(x,6,; — x16,,). Notice that both su(2) and
u(1) are algebra-valued functions.

This expression is valid in the infinite volume. In order
to make it consistent with the periodic boundary conditions
in the spatial directions, we have introduced an additional
x-dependent boundary twist for fermions on the lattice
[13]. The finiteness of the volume leads to the quantization
of the total magnetic flux, so that

gB = 2mk/L?, keZ (A1)

where ¢ = 1/3e is the smallest (absolute value of) electric
charge of the quark, and L is the length of the lattice in the
spatial direction.

In order to calculate the chiral expectation values (1),
(15), and (16) we use the basis of the eigenmodes i, of the
Dirac operator D = y*(9,, — iA,),

Dy =t p0)=(T50- ). a2)

where A, are the eigenvalues of the Dirac operator.
The chiral condensate is calculated using the Banks-
Casher formula [8],

(A3)

where V is the total four-volume of Euclidean space-time,
and p()) is the density of the Dirac eigenvalues. In the
quenched approximation the averaging is performed over
the gauge fields A, with the weight exp(—Sym[A,]),
where Syy[A,] is Yang-Mills action. In the Euclidean
space the spinor conjugation is given by the complex
conjugation ¢, = W;.

In [9] we derived a magnetization analogue of the
Banks-Casher formula (A3):

<7TT(A) f d“WI(x)EaM(x)),

which is used for evaluation of the expectation values
containing the spin operator. The expectation values in-
volving four fermionic fields are evaluated using the fol-
lowing formula:

(FS,5W) = ~lim

(YOO ) = Tr(ﬁol)TraD%oz)

m
1 1
- T
r(D-i—mOlD-i-mOz)’

where O, and O, are some spinor operators. The result is
then averaged over all configurations of the gauge fields.
The Dirac propagator is evaluated by inverting the massive
Dirac operator in the subspace spanned by M Dirac eigen-
vectors which correspond to M nonzero Dirac eigenvalues
with smallest absolute values:
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1 (x,y) = Z l_ﬂk(x)lﬂk(}’)‘

A4

k<M

The value of M is limited by the numerical procedure used

(1]

(4]
(5]
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to find the eigensystem of the Dirac operator (ARPACK in
our case). We have used M = 10 and M = 12 (after the
subtraction of ultraviolet divergences the expectation val-
ues are almost independent of M for M = 10, Ref. [4]).
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