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Abstract

We study ergodicity for upper transition operators: bounded, sub-additive and non-
negatively homogeneous transformations of finite-dimensional linear spaces. Ergodicity
provides a necessary and sufficient condition for Perron-Frobenius-like convergence
behaviour for upper transition operators. It can also be characterised alternatively:
(i) using a coefficient of ergodicity, and (ii) using accessibility relations. The latter
characterisation states that ergodicity is equivalent with there being a single maximal
communication (or top) class that is moreover regular and absorbing. We present an
algorithm for checking these conditions that is linear in the dimension of the state space
for the number of evaluations of the upper transition operator.

Keywords: upper transition operators, imprecise Markov chain, ergodicity,
Perron-Frobenius

1. Introduction

Throughout the paper, X denotes a finite non-empty set of elements that we also
refer to as states, and L (X ) is the set of all real-valued maps on X . We provide
the finite-dimensional linear space L (X ) with the supremum norm ‖·‖

∞
, or with the

topology of uniform convergence, so the result is a Banach space. Uniform and point-
wise convergence coincide on this finite-dimensional space. Given f and g in L (X ), we
write f ≥ g if f (x)≥ g(x) for all x ∈X . We also define min f := min{ f (x) : x ∈X }
and max f := max{ f (x) : x ∈X }.

Definition 1. An upper transition operator on L (X ) is a transformation T: L (X )→
L (X ) that has the following properties:

T1. min f ≤ T f ≤max f T is bounded;

T2. T( f +g)≤ T f +Tg T is sub-additive;

T3. T(λ f ) = λTg T is non-negatively homogeneous;

for arbitrary f , g in L (X ) and real λ ≥ 0.
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Any upper transition operator T automatically also satisfies the following interesting
properties:

T4. T( f +µ) = T f +µ T is constant-additive;

T5. if f ≤ g then T f ≤ Tg T is order-preserving;

T6. if fn→ f then T fn→ T f T is continuous;

T7. T f +T(− f )≥ 0 T is upper–lower consistent;

for arbitrary f , g, fn in L (X ) and real µ . Clearly, for any n in the set of natural
numbers (with zero) N0, Tn is an upper transition operator as well.

Properties T4 and T5 define a topical map [6, Sec. 4]. It is easy to see [6, Prop. 4.1]
that any topical map is also non-expansive under the supremum norm: for all f and g in
L (X ),

T8. ‖T f −Tg‖
∞
≤ ‖ f −g‖

∞
T is non-expansive.

A very useful result for non-expansive maps by Sine [11, Theo. 1] and Nussbaum [8,
9]1 states that for every element f of the finite-dimensional domain of a non-expansive
transformation T, there is some natural number p such that the sequence Tnp f converges.
More importantly, Sine proves that we can find a finite ‘period’ p common to all maps f
in the domain L (X ). This means that, for any f , the set ωT( f ) of limit points of the
set of iterates {Tn f : n ∈ N} has a number of elements |ωT( f )| that divides this p.2 T is
cyclic on ωT( f ), with period |ωT( f )| (and therefore also with period p). Lemmens and
Scheutzow [6, Theo. 5.2] managed to prove that an upper bound for the common periods
of all topical functions T: Rn→Rn is

( n
bn/2c
)
. This upper bound is tight in the sense that

there is always at least one topical function that has this bound as its smallest common
period. However, Akian and Gaubert [1, Cor. 5.6] have shown that for convex maps
that are monotone and non-expansive, this bound is equal to the maximal order of the
permutation group. This is given by Landau’s function g for which lng(n)∼ c1

√
n lnn,

whereas ln
( n

n/2

)
∼ c2n, for some constants c1,c2 > 0, as n→ ∞.

In Sec. 3 we use these ideas to introduce ergodicity for upper transition operators, and
to explain its link with so-called Perron-Frobenius conditions. That there is such a link
has already been established by Akian and Gaubert [1, Theo. 1.1] for a more general
class of operators. The goal of Akian and Gaubert was to determine combinatorial
bounds for the orbit lengths of order preserving, convex and sup-norm non-expansive
maps. These upper bounds involve the notion of a critical graph. It is shown in [1, Theo.
6.6], that these bounds are tight when the map is piecewise affine. Moreover, in this
case, Akian and Gaubert give an algorithm to compute the critical graph. In this paper,
we assume in addition to the general assumptions made by Akian and Gaubert, that the
map is non-negatively homogeneous and we address the case where all periodic orbits
have length one. For this class of maps, we show that the piecewise affine condition can

1Nussbaum found and closed a gap in Sine’s argument.
2|A| denotes the cardinality of a set A and N is the set of natural numbers (without zero).
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be dispensed with for the critical graph bound to be tight. In Sec. 7 we compare our
approach to the critical graph method used by Akian and Gaubert.

In addition, using the alternative characterisation of ergodicity developed in Sec. 3,
we are able in Sec. 5 to avoid the critical—in terms of computational complexity—step
of Akian and Gaubert’s algorithm in [1, Sec. 6.3]: the computation of the subdifferential,
which relies heavily on extreme points. Our newly designed algorithm is linear in the
dimension of the state space, where the evaluation of the transition map is considered as
an oracle.

In Sec. 6 we prove that ergodicity is equivalent to a contraction property in Hilbert’s
seminorm which is the approach that was previously followed by Škulj and Hable [12].
We explain the advantages and disadvantages of characterisation of ergodicity in terms
of a coefficient of ergodicity.

2. Upper transition operators and imprecise Markov chains

Upper transition operators are introduced by De Cooman [2, Sec. 3] when describing
imprecise Markov chains. These imprecise Markov chains are random processes where
prior and transition beliefs are described in terms of Walley’s [13, Sec. 2.3.3] coherent
upper previsions. In this framework, TkIA(x) can be interpreted as the upper probability
and 1−TkIAc(x) as the lower probability to go from state x in k steps to some state in A.

To see where this interpretation comes from, consider P( f |x) := T f (x) and ob-
serve that P(·|x) is a bounded, sub-additive, non-negatively homogeneous, real-valued
functional. This type of functional is exactly what Walley [13] calls a coherent upper
(conditional) prevision. Because P(·|x) is order-preserving (T5), constant additive (T4),
convex (T2+T3) and non-negatively homogeneous (T3), it follows from Legendre-
Fenchel duality, that P( f |x) can be written as

P( f |x) = max{p · f : p ∈Px} ,

where Px is a compact convex set of stochastic vectors, also known as a credal set.
The upper transition operator T f can now be seen as the Cartesian product of the upper
previsions over all states. If given a prior upper prevision P0 corresponding to a credal
set P0:

P0( f ) = max{p0 · f : p0 ∈P0} ,
then it follows almost immediately that

P0(T f ) = max{p0 ·M · f : p0 ∈P0 and M ∈T } ,

where
T :=

{
M ∈ RX ×X : (∀x ∈X )(Mx,· ∈Px)

}
. (1)

Here, M is a stochastic matrix where the x-th row, Mx,·, is a probability distribution over
the states at a time k+1, conditional on the chain being in state x at time k. Therefore,
we can interpret M as a transition matrix of a finite-state and discrete-time Markov chain.
When considering iterations of the map, then we see that

P0(Tk f ) = max
{

p0 ·M(1) · . . . ·M(k) · f : p0 ∈P0 and M( j) ∈T
}
.
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Generally speaking, therefore, an upper transition operator effects robust inference for a
set of not necessarily stationary Markov chains. For more details, we refer to [2, 4, 12].

3. Perron-Frobenius condition for upper transition operators

In this section we introduce the notion of ergodicity for upper transition operators
and lay bare the link with the Perron-Frobenius theorem. We allow ourselves to be
inspired by corresponding notions for non-stationary Markov chains [10, p. 136] and
Markov set chains [4] to lead us to the following definition of ergodicity.

Definition 2 (Ergodicity). An upper transition operator T on L (X ) is called ergodic
if for all f ∈L (X ), limn→∞ Tn f exists and is a constant function.

This definition of ergodicity is not exactly the one more commonly encountered in
probability or dynamical systems theory, where ergodicity usually refers to the special
properties of an invariant measure. Here, ergodicity corresponds to what is usually called
“ergodic + aperiodic” in the Markov chain setting.

Consider any f ∈L (X ). Ergodicity of an upper transition operator T not only
means that the sequence Tn f converges, so ωT( f ) is a singleton {ξ f }, but also that
this limit ξ f is a constant function. Observe that by T6, ξ f is a fixed point for all Tk:
Tkξ f = ξ f and therefore ξTk f = ξ f for all k ∈ N. If we denote the constant value of ξ f

by ET( f ), then this defines a real functional ET on L (X ). This functional is an upper
expectation: it is bounded, sub-additive and non-negatively homogeneous [compare
with T1–T3]. It is T-invariant in the sense that ET ◦T = ET, and it is the only such upper
expectation. This shows that our definition of ergodicity is nevertheless in line with the
concept used in systems theory.

Definition 3. An upper transition operator T on L (X ) is called Perron–Frobenius-like
if there is some real functional E∞ on L (X ) such that limn→∞ E(Tn f ) = E∞( f ) for all
upper expectations E on L (X ) and all f ∈L (X ), or in other words, if the sequence
of upper expectations E ◦Tn converges to some limit that does not depend on the initial
value E.

As an immediate result, conditions for ergodicity of upper transition operators are
conditions for a Perron–Frobenius-like theorem for such transformations to hold.

Theorem 1 (Perron–Frobenius). An upper transition operator T is Perron–Frobenius-
like if and only if it is ergodic, and in that case E∞ = ET.

PROOF. Sufficiency. Suppose T is ergodic. Then using the notations established above,
Tn f → ξ f and therefore E(Tn f )→E(ξ f ) because any upper expectation E is continuous
[compare with T6]. Observe that, since any upper expectation E is constant-additive
[compare with T4 and T1], E(ξ f ) = ET( f ). Hence E ◦Tn → ET, and therefore T is
Perron–Frobenius-like, with E∞ = ET.

Necessity. Suppose that T is Perron–Frobenius-like, with limit upper expectation
E∞. Fix any x ∈X , and consider the upper expectation Ex defined by Ex( f ) := f (x)
for all f ∈L (X ). Then by assumption Tn f (x) = Ex(Tn f )→ E∞( f ). Since this holds
for all x ∈X , we see that T is ergodic with ET = E∞.
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It follows from the discussion in Sec. 1 that
⋃

f∈L (X ) ωT( f ) is the set of all periodic
points of T—a periodic point being an element f ∈L (X ) for which there is some
n ∈ N for which Tn f = f . Because of T4, this set contains all constant maps. We now
see that for T to be ergodic, this set cannot contain any other maps.

Proposition 2. An upper transition operator T is ergodic if and only if all of its periodic
points are constant maps.

4. Characterisation of ergodicity

We now turn to the issue of determining in practise whether an upper transition
operator is ergodic. In the case of finite-state, discrete-time Markov chains, a nice
approach to deciding upon ergodicity was given by Kemeny and Snell [5, Sec. 1.4]. It is
based on the notion of an accessibility relation. This is a binary (weak order) relation
on a set of states X that captures whether it is possible to go from one state to another
in a finite number of steps. We now intend to show that it is possible to associate an
accessibility relation with an upper transition operator, and that this relation provides us
with an intuitive interpretation of the notion of ergodicity in terms of accessibility. We
refer to [2] for a detailed discussion of accessibility relations and their connections with
upper transition operators.

Definition 4. Consider an upper transition operator T on L (X ), and two states x and
y in X . We say that y is accessible3 from x in n steps (notation: x n→ y) if TnI{y}(x)> 0.
We say that state y is accessible from state x (notation: x→ y) if TnI{y}(x)> 0 for some
n ∈ N0. We say that x and y communicate (notation: x↔ y) if both x→ y and y→ x.

The relation → is a weak order (reflexive and transitive), and consequently ↔ is an
equivalence relation. The equivalence classes for this relation are called communication
classes: maximal subsets of X for which every element has access to any other element.
The accessibility relation induces a partial order on these communication classes.

In the case of finite-state, discrete-time Markov chains, this partial order gives us
clues about the ergodicity of the Markov chain. For such a Markov chain to be ergodic,
it is necessary and sufficient that [2] it is top class regular, meaning that: (i) there
is only one maximal or undominated communication class—elements of a maximal
communication class have no access to states not in that class—, in which case we call
this unique maximal class R the top class; and (ii) the top class R should be regular,
meaning that after some time k, all elements of this class become accessible to each
other in any number of steps: for all x and y in R and for all n≥ k, x n→ y.

For upper transition operators, it turns out that top class regularity is a necessary
condition for ergodicity. However, top class regularity is by itself not a sufficient
condition: we need some guarantee that the top class will eventually be reached—a
requirement that is automatically fulfilled in finite-state discrete-time Markov chains.

3If the upper transition operator is interpreted in terms of upper previsions (see also [2]), then the term
accessible might be a tad presumptuous. A more accurate term would be possibly accessible or not excluded
from being accessible.
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Proposition 3. An upper transition operator T is ergodic if and only if it is regularly
absorbing, meaning that it satisfies the following properties:

(TCR) it is top class regular:

R :=
{

x ∈X : (∃n ∈ N)(∀k ≥ n)minTkI{x} > 0
}
6= /0,

(TCA) it is top class absorbing: with Rc := X \R,

(∀y ∈Rc)(∃n ∈ N)TnIRc(y)< 1.

For a proof that (TCR) is equivalent to R 6= /0, we refer to [2, Prop. 4.3]. (TCA) means
that for every element y not in the top class, there is some finite number of steps
n after which the top class can be reached with a strictly positive lower probability
1−TnIRc(y).

PROOF. (TCR)∧ (TCA)⇒ (ER). Consider any fixed point ξ of Tk, where k ∈N and ob-
serve, by T5 and T4, that minξ ≤minTξ ≤minT2ξ ≤ . . .≤minTkξ = minξ whence
for any p ∈ N,

minξ = minTp
ξ and similarly maxξ = maxTp

ξ . (2)

We infer from Prop. 2 that we have to show that ξ is constant. Using T5, T4, T3 and
Eq. 2 we construct from Tpξ ≥minTpξ +[Tpξ (x)−minTpξ ]I{x}=minξ +[Tpξ (x)−
minξ ]I{x} the following inequality, which holds for all n, p ∈ N0 and all x ∈X :

Tn
ξ ≥minξ +[Tp

ξ (x)−minξ ]TnI{x}.

Hence, by taking the minimum on both sides of this inequality and using Eq.(2), we find
that

0≥ [Tp
ξ (x)−minξ ]minTnI{x}.

We infer from (TCR) that by taking n large enough, we can ensure that minTnI{x} > 0
whence for any p ∈ N0 and x ∈R

0 = [Tp
ξ (x)−minξ ] ,

so we already find that Tpξ (x) = minξ for all p ∈ N0 and x ∈R.
If there is some p∈N0 such that Tpξ reaches its maximum on R, then we infer from

Eq. (2) that maxTpξ = maxξ which has to be equal to minξ to satisfy the inequality,
so ξ is indeed constant. Let us therefore assume that the maximum of Tpξ is not
reached in R. Using T5, T4, T3 and Eq. (2), we construct from ξ ≤maxξ − [maxξ −
maxx∈R ξ (x)]IR and−IR = IRc−1 the following inequality, which holds for all n ∈N:

Tn
ξ ≤maxξ +

[
maxξ −max

x∈R
ξ (x)

]
(TnIRc −1).
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By taking the maximum over Rc on both sides of this inequality and under the made
assumption that the maximum is never reached on R, we get

0 = max
y∈Rc

Tn
ξ (y)−maxξ ≤

[
maxξ −max

x∈R
ξ (x)

](
max
y∈Rc

TnIRc(y)−1
)
.

For each y∈Rc, consider some ny ∈N such that TnyIRc(y)< 1, and let n :=maxy∈Rc ny.
Then we see that for every y ∈Rc:

TnIRc(y) = Tny [(IR + IRc)Tn−nyIRc ](y) = Tny [IRcTn−nyIRc ](y)≤ TnyIRc(y)< 1.

The second equality follows from the fact that IRTn−nyIRc = 0: an element in the top
class R has no access to any element outside of it; and the first inequality follows
from IRc ≤ 1 and T5. But this means that maxy∈Rc TnIRc(y)−1 < 0 and consequently
maxξ = maxx∈R ξ (x) = minξ .

(ER)⇒ (TCR)∧ (TCA). We will use contraposition and show first that ¬(TCR)⇒
¬(ER). Then we will show that ¬(TCA)∧ (TCR)⇒¬(ER).
¬(TCR)⇒¬(ER). Not being top class regular means that R = /0, which is equivalent

to
(∀x ∈X )(∀n ∈ N)(∃k ≥ n)(∃z ∈X )TkI{x}(z) = 0.

Since we infer from I{x} ≥ 0 and T1 that TkI{x} ≥ 0, this leads us to conclude that
liminfn→∞ minTnI{x} = 0. But for any n∈N, Tn+1I{x} = T(TnI{x})≥minTnI{x} by T1,
and therefore also minTn+1I{x} ≥minTnI{x}. This implies that the sequence minTnI{x}
is non-decreasing, and bounded above [by 1], and therefore convergent. This shows that

(∀x ∈X ) lim
n→∞

minTnI{x} = 0. (3)

We also infer from T1 and T2 that 1 = TkIX ≤ ∑x∈X TkI{x}. Since the cardinality |X |
of the state space is finite, this means that for all z ∈X and all n ∈ N there is some
x ∈X such that TnI{x}(z)≥ 1/|X |. This tells us that maxTnI{x} ≥ 1/|X |. Since we can
infer from a similar argument as before that the sequence maxTnI{x} converges, this
tells us that

(∀x ∈X ) lim
n→∞

maxTnI{x} ≥
1
|X |

. (4)

Combining Eqs. (3) and (4) tells us that limn→∞(maxTnI{x}−minTnI{x}) > 0, so T
cannot be ergodic.
¬(TCA)∧ (TCR)⇒¬(ER). Since T is not top class absorbing, we know that there

is some y ∈Rc such that TnIRc(y) = 1 for all n ∈ N. As the top class R is non-empty,
we know that there is some x ∈R, and this x has no access to any state outside the
maximal communication class R: TnIRc(x) = 0 for all n ∈ N. Consequently

lim
n→∞

(maxTnIRc −minTnIRc) = 1−0 > 0,

so T cannot be ergodic.
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5. Ergodicity checking in practise

5.1. Checking for top class regularity
Checking for top class regularity directly using the definition would involve calcu-

lating for every state x the maps TI{x}, T2I{x}, . . . , TnI{x} until a first number n = nx is
found for which minTnxI{x} > 0. Unfortunately, it is not clear whether this procedure
is guaranteed to terminate after a certain number of iterations, or whether we can stop
checking after a fixed number of iterations. In this section, we want to take a closer look
at this problem.

The next proposition shows that all the information we need in order to check top
class regularity is incorporated in a single application of T to the atoms of X .

Proposition 4. Let T be an upper transition operator on L (X ), n ∈ N and x,y ∈X .
Then TnI{y}(x)> 0 if and only if there is some sequence x0, x1, x2, . . . , xn−1, xn in X
with x0 = x and xn = y such that TI{xk+1}(xk)> 0 for all k ∈ {0,1, . . . ,n−1}.

PROOF. Sufficiency. Fix k, ` in N, and u,v in X . Since T`I{y} = ∑z∈X I{z}T`I{y}(z)≥
I{v}T`I{y}(v), it follows from T5 and T3 that Tk+`I{y} ≥ TkI{v}T`I{y}(v) and therefore
Tk+`I{y}(x)≥ TkI{v}(x)T`I{y}(v). Applying this inequality repeatedly, we get:

TnI{y}(x)≥
n−1

∏
k=0

TI{xk+1}(xk)

for any sequence x0, x1, x2, . . . , xn−1, xn in X with x0 = x and xn = y. It follows that
the left-hand side is positive as soon as all factors on the right-hand side are.

Necessity. We infer using T2 and T3 that

TnI{y}(x) = T
(

∑
x1∈X

I{x1}T
n−1I{y}(x1)

)
(x)≤ ∑

x1∈X
Tn−1I{y}(x1)TI{x1}(x),

and repeating the same argument recursively leads to

TnI{y}(x)≤ ∑
x0,x1,...,xn−1,xn∈X

x0=x,xn=y

n−1

∏
k=0

TI{xk+1}(xk).

Since all the factors (and therefore all the terms) on the right-hand side are non-negative
by T1 and T5, the positivity of the left-hand side implies that there must be at least one
positive term on the right-hand side, all of whose factors must therefore be positive.

This proposition not only implies that the set
{

TI{x} : x ∈X
}

completely determines
the accessibility relation →, but also that it determines the ‘accessibility in n steps’
relation n→. In other words, not only the communication and maximal classes can be
determined from

{
TI{x} : x ∈X

}
, but also their regularity.

Let us first recall some notions of graph theory before continuing; see for instance [1]
for more details. For two vertices x and y of a graph G we say that x has access to y
if there exists a path from x to y or if x = y, and we denote this by x ∗→ y. A strongly
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connected component C of the graph G |C is the restriction of the G to the set of nodes
C, where C is an equivalence class of the equivalence relation ‘x ∗→ y and y ∗→ x’. Any
such equivalence class C (resulting in a strongly connected component) is said to be
final if no vertex in C has access to any vertex outside C. Finally, the period of a strongly
connected component C is defined as the greatest common divisor of the lengths of the
circuits of G |C where a circuit is a closed path where no node has been visited more
than once.

Definition 5. The upper accessibility graph G (T) corresponding to an upper transition
operator T is the directed graph with set of edges

{
(x,y) ∈X 2 : TIy(x)> 0

}
and set of

vertices X .

The upper accessibility graph we define here, is a special case of the syntactic digraph
considered in Gaubert and Gunawardena [3, Prop. 2]; in that graph, there is an arc from
x to y if and only if the coordinate y of T depends logically on the x-coordinate in the
argument.

It is clear from Prop. 4 that the accessibility relation ∗→ of the graph G (T) is exactly
the accessibility relation→ belonging to the upper transition operator T. This means that
checking for the existence of a single top class of T corresponds to asserting whether
there is only one final class R in G (T). Once we have found the top class R, we focus
on the subgraph G (T)

∣∣
R

which is the upper accessibility graph G (T) restricted to R.
Prop. 4.2 in [2] tells us that checking for regularity of the top class means that we have
to check whether the cyclicity of G (T) is equal to 1.

The relation between T and its graph G (T) is a purely qualitative one: the exact
quantitative value of the upper transition probabilities between two states x and y is not
important at all. What is important is whether there is a possible transition between two
states. This means that appropriately replacing the upper transition operator T with a
classical, linear transition operator, or its associated transition matrix M, will still lead
to the same results.

Definition 6. A stochastic matrix M ∈ RX ×X represents an upper transition operator
T on L (X ) if Mx,y > 0⇔ TI{y}(x)> 0 for all x and y in X .

It is clear that any stochastic matrix M that represents T will result into the same graph
G (T) and will therefore lead to the same conclusions with respect to top class regularity.
For stochastic matrices however, a final class corresponds to a stochastic submatrix and
aperiodicity corresponds to the absence of eigenvalues with modulus 1 apart from 1
itself.

Proposition 5 (Top class regularity). Consider an upper transition operator T. Then
the following statements are equivalent: (i) T is top class regular; (ii) M represents T
and is regular; (iii) M represents T and M has exactly one eigenvalue with modulus 1;
and (iv) G (T) has exactly one final class R and G (T)

∣∣
R

has cyclicity 1.

Example 1. Let X := {x,y} and T f := f (x)I{x}+max{ f (x), f (y)}I{y} for all f ∈
L (X ). Then TI{x} = IX whence x 1→ x and y 1→ x and TI{y} = I{y} whence y 1→ y.
The graph G (T) is then given by
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x y

Clearly {x} is the unique final strongly connected component of G (T) and as it is a
singleton, it has cyclicity one. We conclude that T is top class regular.

In the next example we focus on a simple upper transition operator that is not
piecewise affine. It does not therefore fall within the scope of Akian and Gaubert’s
algorithm.

Example 2. Consider the map

T: R3→ R3 : f → f +
‖ f − f‖2√

3

αx
αy
αz


where f := ( fx + fy + fz)/3 for f =

(
fx fy fz

)T and the parameters αx, αy and αz
are any real numbers in [0,1/

√
2]. It is not difficult to check that this T is indeed an upper

transition operator, but it is obviously not piecewise affine. Independently of the value
of αx, αy and αz, the upper accessibility graph of this map is given by:

x

y

z

The entire graph is strongly connected, and it has cyclicity one. This implies that T is
not only top class regular, but also ergodic, according to Prop. 3.

5.2. Checking for top class absorption
We now present a computationally cheap procedure to check for top class absorption.

Proposition 6 (Top class absorption). Let T be an upper transition operator with reg-
ular top class R. Consider the nested sequence of subsets of Rc defined by the iterative
scheme:

A0 := Rc

An+1 := {a ∈ An : TIAn(a) = 1} , n≥ 0.

After k≤ |Rc| iterations, we reach Ak = Ak+1. Then T is top class absorbing if and only
if Ak = /0.

PROOF. We start by showing inductively that under the given assumptions, the statement

Hn : IAnTnIRc = IAn and (∀a ∈ Ac
n+1)TIAn(a)< 1 and (∀a ∈ Ac

n)T
nIRc(a)< 1

holds for all n≥ 0. We first prove that the statement Hn holds for n = 0. The first and
third statements of H0 hold trivially. For the second statement, we have to prove that
TIA0(a)< 1 for all a ∈ Ac

1 = Ac
0∪ (A0 \A1). On A0 \A1, the desired inequality holds by

10



definition. On Ac
0 = R it holds because there TIA0 is zero: no state in the top class R

has access to any state outside it.
Next, we prove that Hn⇒ Hn+1. First of all,

Tn+1IA0 = T(TnIA0) = T[IAnTnIA0 + IAc
nTnIA0 ] = T[IAn + IAc

nTnIA0 ], (5)

where the last equality follows from the induction hypothesis Hn. It follows from the
definition of An+1 that IAn+1TIAn = IAn+1 , and therefore

IAn+1 = IAn+1T[IAn + IAc
nTnIA0 − IAc

nTnIA0 ]≤ IAn+1T[IAn + IAc
nTnIA0 ]+ IAn+1T[−IAc

nTnIA0 ]

= IAn+1Tn+1IA0 + IAn+1T[−IAc
nTnIA0 ]

≤ IAn+1Tn+1IA0 ≤ IAn+1 ,

where the first inequality follows from T2, the second from the fact that −IAc
nTnIA0 ≤ 0

and therefore IAn+1T[−IAc
nTnIA0 ]≤ 0 [use T1 and T5], and the third from Tn+1IA0 ≤ 1

[use T5]. The second equality follows from Eq. (5). Hence indeed IAn+1 = IAn+1Tn+1IA0 .
Next, observe that Ac

n+2 = Ac
n+1∪(An+1 \An+2). By definition, TIAn+1(a)< 1 for all

a ∈ An+1 \An+2. It also follows from the induction hypothesis Hn that TIAn(a)< 1 for
all a ∈ Ac

n+1. But since An+1 ⊆ An, it follows from T5 that TIAn+1 ≤ TIAn , and therefore
also TIAn+1(a)< 1 for all a ∈ Ac

n+1. Hence indeed TIAn+1(a)< 1 for all a ∈ Ac
n+2.

To finish the induction proof, let β :=maxa∈Ac
n TnIRc(a), then β < 1 by the induction

hypothesis Hn. We then infer from Eq. (5) that

Tn+1IA0 = T[IAn + IAc
nTnIA0 ]≤ T[IAn +β IAc

n ] = T[β +(1−β )IAn ] = β +(1−β )TIAn .

Consider any a ∈ Ac
n+1, then TIAn(a)< 1 by the induction hypothesis Hn, and therefore

Tn+1IA0(a)≤ β +(1−β )TIAn(a)< 1 since also β < 1. We conclude that Hn+1 holds
too.

To continue the proof, we observe that A0, A1, . . . , An, . . . is a non-increasing
sequence, and that A0 is finite. This implies that there must be some first k ∈N such that
Ak+1 = Ak. Clearly, k ≤ |A0|. We now prove by induction that Gn : IAk Tn+kIA0 = IAk
for all n≥ 0. The statement Gn clearly holds for n = 0: it follows directly from Hk. We
show that Gn⇒ Gn+1. First of all,

Tn+k+1IA0 = T(Tn+kIA0) = T[IAk Tn+kIA0 + IAc
k
Tn+kIA0 ] = T[IAk + IAc

k
Tn+kIA0 ],

where the last equality follows from the induction hypothesis Gn. As before, it follows
from the definition of Ak+1 that IAk+1TIAk = IAk+1 , and therefore IAk TIAk = IAk , so

IAk = IAk T[IAk + IAc
k
Tn+kIA0 − IAc

k
Tn+kIA0 ]

≤ IAk T[IAnk + IAc
k
Tn+kIA0 ]+ IAk T[−IAc

k
Tn+kIA0 ]

= IAk Tn+k+1IA0 + IAk T[−IAc
k
Tn+kIA0 ]≤ IAk Tn+k+1IA0 ≤ IAk ,

where the first inequality follows from T2, the second from the fact that−IAc
k
Tn+kIA0 ≤

0 and therefore IAk T[−IAc
k
Tn+kIA0 ]≤ 0 [use T1 and T5], and the third from Tn+k+1IA0 ≤

1 [use T5]. Hence indeed IAk = IAk Tn+k+1IA0 .

11



There are now two possibilities. The first is that Ak 6= /0. It follows from the arguments
above that for any element a of Ak, T`IRc(a) = 1 for all ` ∈ N, which implies that T
cannot be top class absorbing. The second possibility is that Ak = /0. It follows from the
argument above that TkIRc(a)< 1 for all a ∈ Ac

k = X which implies that T is top class
absorbing.

Example 3. Define T f = max{M f : L≤M ≤U and M stochastic} where L and U are
given by

L =


1 0 0 0 0
0 1/4 1/4 0 0

1/2 1/4 0 0 0
0 0 0 0 0
0 1/2 0 0 1/4

 and U =


1 0 0 0 0

1/2 3/4 1/2 0 0
3/4 1/2 0 0 0
1 0 0 1 1

1/4 3/4 0 0 1/4

 .

The corresponding upper accessibility graph G (T) is given by

1

2

3

45

where {x} is corresponds to the unique strongly connected component that is final. As it
is a singleton, it has cyclicity one, so there is a regular top class R = {x}.

To check for top class absorption, we start iterating:

step 1: TIRc =
(
0 1 1/2 1 1

)T whence IA1 =
(
0 1 0 1 1

)T ,

step 2: TIA1 =
(
0 3/4 1/2 1 1

)T whence IA2 =
(
0 0 0 1 1

)T ,

step 3: TIA2 =
(
0 0 0 1 1/4

)T whence IA3 =
(
0 0 0 1 0

)T ,

step 4: TIA3 =
(
0 0 0 1 0

)T whence IA4 =
(
0 0 0 1 0

)T .

Because A4 = A3 6= /0 we conclude that T is not top class absorbing and therefore not
ergodic.

6. Coefficient of ergodicity

It is clear that ergodicity would follow immediately from Banach’s fixed point
theorem if T were contractive instead of non-expansive. With this in mind, one might
think that conditions for ergodicity might coincide with contractiveness of T. This is not
true. Take, for example, the particular upper transition operator T = IX max, which is
not contractive, but, by Proposition 2, clearly ergodic.

12



In addition to requiring the sequence {Tk f} to converge, ergodicity also requires
that maxTn f −minTn f → 0 when n→∞. It seems therefore to be more natural to focus
on the so-called variation pseudo-norm defined by:

‖ f‖v := max f −min f .

Under this pseudo-norm, upper transition operators will again be non-expansive. The
extra condition that makes the map T contractive is expressed by Škulj and Hable
[12] in terms of the coefficient of ergodicity. It is a standard trick, see of Nussbaum’s
monograph [7], to use Hilbert’s projective metric to show contraction. The variation
norm we define now can be seen as additive version of Hilbert’s projective metric.

Proposition 7. If we define the coefficient of ergodicity of an upper transition operator
T as

ρ(T) := max{‖Th‖v : 0≤ h≤ 1} , (6)

then T is ergodic if ρ(Tm)< 1 for some m ∈ N.

PROOF. Consider any f ∈L (X ). It follows by repeatedly applying T5, T3 and T4
that for all k ∈ N:

min f ≤minTk f ≤minTk+1 f ≤maxTk+1 f ≤maxTk f ≤max f . (7)

This tells us that the sequence minTk f is non-decreasing and bounded above. It therefore
converges to some real number m. Similarly, the sequence maxTk f is non-increasing
and bounded below, and therefore converges to some real number M. It is also clear
from Eq. (7) that m≤M. Suppose that there is some p ∈ N such that ρ(Tp)< 1. Then
we have to prove that m = M, which is what we now set out to do.

Since 0≤ ( f −min f )/‖ f‖v ≤ 1, we infer from Eq. (6), T3 and T4 that

‖T f‖v

‖ f‖v
= ‖T f −min f

‖ f‖v
‖v ≤ ρ(T),

and therefore also
‖Tk f‖v ≤ ρ(Tk)‖ f‖v for all k ∈ N. (8)

Then applying Eq. (8) repeatedly tells us that for the upper transition operator Λ := Tp:

‖Λn f‖v ≤ ρ(Tp)n‖ f‖v for all n ∈ N.

But this implies that maxΛn f −minΛn f = ‖Λn f‖v → 0. Since we know from the
arguments above that maxΛn f →M and minΛn f →m, this implies that indeed m = M.

Not only does the coefficient of ergodicity allow us to decide in favour of ergodicity,
by Eq.(8) it also gives a numerical bound on the speed of convergence. The main
problem however is that, in the worst case, in order to check for ergodicity in this
manner, we need to calculate the coefficient of ergodicity of Tk for powers k up to
g(|X |), where g is Landau’s function. This renders this approach impractical from a
computational point of view, making our approach preferable.
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7. The critical graph versus the upper accessibility graph

The aim of Akian and Gaubert’s paper [1]is to determine, for convex, monotone and
non-expansive maps Φ, combinatorial bounds on orbit lengths of the described maps.
Although the scope of Akian and Gaubert’s paper is different, it essentially overlaps
with this work. Akian and Gaubert try to describe the entire (additive) eigenspace of the
map Φ. Their tool of choice for doing that is what they call the critical graph G c(Φ) of
the map Φ. It is defined as the final graph G f (∂Φ(v)) of the subdifferential ∂Φ of Φ

evaluated in an (additive) eigenvector v. Akian and Gaubert define the subdifferential of
a the operator Φ evaluated in any vector v as

∂Φ(v) :=
{

M ∈ R|X |×|X | : (∀ f ∈ R|X |)Φ f −Φv≥M( f − v)
}
.

They show that the matrices M that belong to ∂T(v) are necessarily stochastic matrices.
Let us now consider what happens in the special case that Φ is an upper transition

operator T, in order to better understand the relationship between their approach and ours.
Given the constant additivity of T we can choose any constant vector as an (additive)
eigenvector to calculate the critical graph. To make things as simple as possible, we opt
for the zero gamble. The subdifferential of T evaluated in this eigenvector then becomes

∂T(0) =
{

M ∈ R|X |×|X | : (∀ f ∈ R|X |)T f ≥M( f )
}
= T ,

which is the closed convex set of transition matrices that corresponds with the upper
transition operator T, as defined by Eq. (1). The critical graph G c(T) = G f (∂T(0)) =
G f (T ) is then (defined as) the union of all the final graphs of the stochastic matrices
belonging to T . A final graph of a stochastic matrix can be found by interpreting this
stochastic matrix as an adjacency matrix and restricting the corresponding graph to its
final classes (see also the discussion in Sec. 5.1).

By comparing the definitions of the upper accessibility graph G (T) and the critical
graph G c(T) for an upper transition operator T, we see that the strongly connected
components of G (T) have to be unions of strongly connected components of G c(T). It
is also not too difficult to see that the final classes of G (T) and the final classes of G c(T)
are the same. This is exactly what allows us to check for top class regularity using the
(usually much) cruder upper accessibility graph.

If the convex closed set of transition matrices T corresponding with T is given
explicitly in terms of a finite set of extreme points, then the calculation of the critical
graph might be preferred over the calculation of the accessibility graph. However, if no
finite set of extreme points is given, a vertex enumeration step is required (assuming
that, unlike in Ex. 2, T has a finite number of extreme points). As it is provable that any
algorithm based on vertex enumeration cannot have polynomial time complexity, the
algorithm given by Akian and Gaubert becomes in this case computationally intractable.
This is where our algorithm stands out. The reason it does, is because it works directly
with the upper transition operator, and drops extra eigenspace information that is not
needed when checking for ergodicity.
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8. Conclusion

In this paper we have given different equivalent conditions under which an upper
transition operator—which corresponds to a set of non-stationary Markov chains—is
ergodic. We have shown that ergodicity is completely determined by the eigenvalues
and functions of the transition operator as is the case in classical Markov chains. This
opens the door to a spectral theorem for upper transition operators. Unfortunately, it is
at this point not known how to calculate these eigenvalues in general. This is why we
developed an alternative test for ergodicity, which needs at most 2|X |−1 evaluations
of the upper transition operator. Any algorithm that implements this test consists of two
steps: the first checks for top class regularity by building the upper accessibility graph
and checking for final strongly connected components and their cyclicity. In some cases
a second step is needed, to check for top class absorption.

Another approach that has been documented in the literature [12], calculates the
coefficient of ergodicity and checks whether there is some power of the transition
operator such that the corresponding coefficient becomes strictly smaller than one. If
this is the case, then the non-expansive map that every upper transition operator is,
becomes a contractive map and ergodicity is a fact. Interesting about the coefficient of
ergodicity is that it moreover provides an upper bound on the speed of convergence.
What makes this approach difficult to use outside the theoretical context, is that there is
at present no efficient algorithm to calculate the coefficient of ergodicity. It is moreover
likely that very high powers of the upper transition operator need to be calculated.

A paper with a different background is the very general work of Akian and Gauber [1],
who describe an algorithm for checking ergodicity of upper transition operators that
are piecewise affine. In practise, their algorithm relies heavily on extreme points to
calculate the subdifferential. If the set of extreme points is given, then their critical
graph approach is the shortest way to get to all qualitative information available on
the eigenspace of the upper transition operator. If these extreme points are not given
explicitly, than a vertex enumeration step is involved which is computationally very
hard as any algorithm based on vertex enumeration cannot be polynomial time.

Our algorithm avoids the vertex enumeration step by using the upper transition oper-
ator directly. It also allows checking for ergodicity for upper transition operators whose
‘credal set’ has an infinite amount of extreme points. Of course, extra information about
the eigenspace available through the critical graph approach, not necessary for deciding
upon ergodicity, may be lost by using our simpler approach based on accessibility alone.

In a number of stochastic control applications that provide a motivation for Akian
and Gaubert’s work [1], the extreme points of the polytopes of transition probability
measures cannot be enumerated (only separation or minimisation oracles are available),
and hence, dealing with such situations as we explain here, is also quite relevant in that
application context.
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