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CHARACTERIZATION OF DISTRIBUTIONS HAVING A

VALUE AT A POINT IN THE SENSE OF ROBINSON

HANS VERNAEVE AND JASSON VINDAS

Abstract. We characterize Schwartz distributions having a value at a
single point in the sense introduced by means of nonstandard analysis by
A. Robinson. They appear to be continuous functions in a neighborhood
of the point. This characterization improves a result by P. Loeb which
assumes the everywhere existence of point values.

1. Introduction

In [10, §5.3], A. Robinson initiated the use of nonstandard analysis in
the theory of Schwartz distributions. Among other things, he introduces
nonstandard representatives of a Schwartz distribution and, by means of an
infinitesimal property of the representatives, he introduces a notion of point
value of a distribution.

A natural question to raise is how Robinson’s notion of point value is
related to the classical definition of point value in the sense of  Lojasiewicz [2,
5, 6]. Through investigation of this question, we arrived at a characterization
which is the main result of this paper: a distribution has a value at x0 ∈ Ω
in the sense of Robinson iff it is a continuous function in a neighborhood of
x0. Our characterization substantially improves an earlier result of P. Loeb
[4] which has to assume the everywhere existence of Robinson point values
(cf. section 3).

Nonstandard analysis has proved useful to study algebras of generalized
functions [7, 8]. Recently, tools inspired by nonstandard analysis have sys-
tematically been introduced in the nonlinear theory of generalized functions
[9, 12]. We hope that the current paper may provide new insights into reg-
ularity theory in these algebras, which is of much relevance to the analysis
of nonlinear PDE within the generalized function approach.

2. Notations

By Ω, we always denote an open subset of Rn. We denote B(a, r) := {x ∈
Rn : |x− a| < r}.
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2 H. VERNAEVE AND J. VINDAS

2.1. Schwartz distributions. We denote by D(Ω) the space of functions
in C∞(Ω) with compact support contained in Ω. Its dual space D′(Ω) is
the space of Schwartz distributions on Ω. We denote the action of a linear
map T : D(Ω)→ C on an element φ ∈ D(Ω) by means of the pairing 〈T, φ〉.
Sometimes it is useful to denote functions and distributions by means of
their action on a dummy variable (e.g., as in [1]); we then denote the action
of T on φ as 〈T (x), φ(x)〉. This allows us to write changes of variables
y = F (x) simply as 〈T (F (x)), φ(x)〉 =

〈
T (y), φ(F−1(y)) ·

∣∣DF−1(y)
∣∣〉. We

refer to [1, 11] for further information about Schwartz distributions.

2.2. Nonstandard analysis. We work in the framework of nonstandard
analysis as introduced by Robinson [10]. We refer to [3] for a more accessible
introduction to nonstandard analysis. As usual, if f : Rn → Rm is a function,
we keep the notation f for its canonical extension ∗f (and similarly for
relations on Rn). Also for the integral

∫
(considered as a map which takes

an integration domain and a function as input), the canonical extension
∗ ∫ will still be denoted by

∫
(it is thus a map which takes an internal

integration domain and an internal function as input). We denote the set of
all finite numbers in ∗C by Fin(∗C) and write x ≈ y if |x− y| is infinitesimal
(x, y ∈ ∗Rn). We write x / y if x ≤ y or x ≈ y (x, y ∈ ∗R). We denote the
standard part (a.k.a. shadow) by st.

3. Known results

Robinson works with real valued distributions on the real line, but the
generalization to complex valued distributions on an open subset Ω of Rn
is in most cases straightforward. We say that a function f ∈ ∗C∞(Ω)
represents (in the sense of Robinson) a (not necessarily continuous) lin-
ear map T : D(Ω) → C if

∫
Ω fφ ≈ 〈T, φ〉 for each φ ∈ D(Ω). In fact,

more general functions than ∗C∞(Ω)-functions are allowed as representatives,
but ∗C∞(Ω)-functions suffice to develop distribution theory by infinitesimal
means. Robinson calls equivalence classes of functions representing the same
map T predistributions. We will identify the predistribution with the map
T . Thus, in general, a predistribution is not necessarily a distribution.

Robinson calls a predistribution standard at x0 ∈ Ω if it has a represen-
tative f that is S-continuous at x0, i.e., such that f(x) ≈ f(x0) for each
x ≈ x0 [10, p. 140]. He shows:

Theorem 3.1 (Robinson). Let T be a linear map D(Ω) → C. If T has
a representative f that is S-continuous at x0 ∈ Ω, then f(x0) ∈ Fin(∗C).
Moreover, the value st f(x0) does not depend on the chosen S-continuous
representative.

The number st f(x0) is called the value (in the sense of Robinson) of the
predistribution at x0.

P. Loeb [4] proves that if T admits a value g(x) at each x ∈ Ω, then
the resulting map g: Ω → C is continuous. In that case, ∗g represents T
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[10, 5.3.15], and hence T is a continuous function (as a regular Schwartz
distribution). Actually, Loeb’s result is a particular case of theorem 4.2,
shown below.

Of crucial importance for our result is the following theorem [6, §6.2]:

Theorem 3.2 ( Lojasiewicz). Let T ∈ D′(Ω) and x0 ∈ Ω. If

lim
ε→0,λ→0

T (x0 + εx+ λ)

exists in the distributional sense, i.e.,

lim
ε→0,λ→0

〈T (x0 + εx+ λ), φ(x)〉 exists ∀φ ∈ D(Ω),

then T is a continuous function in a neighborhood of x0.

4. Main result

We first need to show that Robinson’s notion of point values is a local
property.

Lemma 4.1. Let ω be an open subset of Ω and let x0 ∈ ω. Then a linear
map T : D(Ω) → C admits the value c at x0 (in the sense of Robinson) iff
T|ω: D(ω)→ C admits the value c at x0 (in the sense of Robinson).

Proof. ⇒: immediate.
⇐: Let f ∈ ∗C∞(ω) be a representative of T|ω, i.e.,

∫
∗ω fφ ≈ 〈T, φ〉, ∀φ ∈

D(ω), and suppose that f is S-continuous in x0. Let g ∈ ∗C∞(Ω) be any
representative of T . Then f − g|ω is a representative of the 0-distribution
on ω. Let χ ∈ D(ω) with χ = 1 on some (standard) neighborhood V of x0.
Then

∫
∗Ω(f − g)χφ ≈ 0, ∀φ ∈ D(Ω), since χφ ∈ D(ω). So (f − g)χ is a

representative of 0 on Ω, and fχ + g(1 − χ) is a representative of T on Ω
which is equal to f in a (standard) neighborhood of x0. �

We are now in the position to state and prove our main result.

Theorem 4.2. Let T be a predistribution and x0 ∈ Ω. Then T is standard
at x0 iff T is a continuous function in a neighborhood of x0.

Proof. ⇒: Let f ∈ ∗C∞(Ω) be a representative of T that is S-continuous
at x0. Let ε ∈ R, ε > 0. Since f is internal and S-continuous, we find by
overspill (see e.g. [3, 11.9.1]) on the set

{r ∈ ∗R, r > 0 : (∀x ∈ ∗Ω) |x− x0| ≤ r =⇒ |f(x)− f(x0)| ≤ ε}
that there exists r ∈ R, r > 0 such that |f(x)− f(x0)| ≤ ε for each x ∈
∗B(x0, r) ⊆ ∗Ω. Now let φ ∈ D(B(x0, r)). As f represents T ,∣∣∣∣〈T, φ〉 − f(x0)

∫
Ω
φ

∣∣∣∣ ≈
∣∣∣∣∣
∫
∗B(x0,r)

(f(x)− f(x0))φ(x) dx

∣∣∣∣∣ ≤ ε
∫

Ω
|φ| .

By Robinson’s theorem 3.1, c := st f(x0) ∈ C. Taking standard parts,

(1)

∣∣∣∣〈T, φ〉 − c ∫
Ω
φ

∣∣∣∣ ≤ ε ∫
Ω
|φ| , ∀φ ∈ D(B(x0, r)).
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Hence |〈T, φ〉| ≤ C supΩ |φ| for some C ∈ R, and T|B(x0,r) is a distribution.
By transfer on (1), we obtain∣∣∣∣〈∗T , φ〉 − c ∫∗Ω φ

∣∣∣∣ ≤ ε∫∗Ω |φ| , ∀φ ∈ ∗D(B(x0, r)).

Now let φ ∈ D(Ω), let ε ∈ ∗R, ε ≈ 0 and λ ∈ ∗Rn, λ ≈ 0. Then

ψ(x) :=
1

εn
φ
(x− x0 − λ

ε

)
∈ ∗D(B(x0, r)), ∀r ∈ R, r > 0

and
∫
∗Ω |ψ| =

∫
Ω |φ| ∈ R. By (1),〈∗T (x0 + εx+ λ), φ(x)

〉
= 〈∗T , ψ〉 ≈ c

∫
Ω
φ.

As ε and λ are arbitrary, by a nonstandard characterization of limits (see
e.g. [3, §7.3])

lim
λ→0,ε→0

〈
T (x0 + εx+ λ), φ(x)

〉
= c

∫
Ω
φ.

By  Lojasiewicz’s theorem 3.2, T is a continuous function in a neighborhood
of x0.
⇐: Let ω be an open neighborhood of x0 and f ∈ C(ω) such that T = f

on ω. Let φ0 ∈ D(Rn) with
∫
φ0 = 1. Let ε ∈ ∗R, ε ≈ 0 and ψ(x) :=

ε−nφ0(x/ε). Let g := f ? ψ (where ? denotes convolution). Let ω′ be a
neighborhood of x0 whose closure is contained in ω. Then g ∈ ∗C∞(ω′). Let
x ∈ ∗ω′. Since f is S-continuous at x (see e.g. [3, §7.1]),

|f(x)− g(x)| =
∣∣∣∣∫

suppψ

(
f(x)− f(x− y)

)
ψ(y) dy

∣∣∣∣
≤ sup

x∈∗ω′
|f(x)− f(x− y)|

∫
|φ0| ≈ 0.

Then for any φ ∈ D(ω′),∣∣∣∣∫∗ω′ gφ− 〈T, φ〉
∣∣∣∣ =

∣∣∣∣∫∗ω′ gφ−
∫
∗ω′

fφ

∣∣∣∣ ≤ sup
∗ω′
|g − f |

∫
ω′
|φ| ≈ 0,

so g represents T on ω′. By lemma 4.1, T admits the value st g(x0) = f(x0)
at x0. �

Remark. Theorem 4.2 implies that  Lojasiewicz’s notion of point value is
much more general than that of Robinson: the existence of the point value of
a distribution T at a point x0 in the classical sense of  Lojasiewicz [5, 6] does
not imply that T is continuous in a neighborhood of x0, as shown by the

function T (x) = |x|−
1
2 ei/x, which is unbounded at the origin but it admits

the  Lojasiewicz value 0 at x0 = 0. More generally, any function of the form

|x|−β ei/|x|
α

, where α, β > 0, uniquely determines a distribution that has
 Lojasiewicz value 0 at the origin [2, 5].
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