
A core language for fuzzy answer set programming

Jeroen Janssena,1,∗, Steven Schockaertb,2,∗∗, Dirk Vermeira,∗∗, Martine De Cockb,∗∗

aDepartment of Computer Science, Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussels, Belgium

bDepartment of Applied Mathematics and Computer Science, Universiteit Gent
Krijgslaan 281, 9000 Ghent, Belgium

Abstract

A number of different Fuzzy Answer Set Programming (FASP) formalisms have been proposed in the last
years, which all differ in the language extensions they support. In this paper we investigate the expressivity of
these frameworks. Specifically we show how a variety of constructs in these languages can be implemented
using a considerably simpler core language. These simulations are important as a compact and simple
language is easier to implement and to reason about, while an expressive language offers more options when
modeling problems.

Keywords: Fuzzy Logic, Answer Set Programming, Declarative Problem Solving

1. Introduction

Answer Set Programming (ASP) (see e.g. [2]) is a declarative modeling language that is especially suitable
for describing combinatorial problems. In ASP, rules of the form r : a← β are used to denote that a should
hold when the conjunction of literals β holds. An ASP program is a collection of such rules. Typically,
programs are written in the generate-define-test style, which means that certain rules generate potential
solutions, and other rules eliminate solution candidates based on tests (constraints) that depend on certain
concepts from the defining part. For example, the following ASP program Pgc models a 2-color graph
coloring problem:

gen1 : white(X) ← not black(X)
gen2 : black(X) ← not white(X)
sim1 : sim(X,Y) ← white(X),white(Y)
sim2 : sim(X,Y) ← black(X), black(Y)

constr : ← edge(X,Y), sim(X,Y)

In this program, rules gen1 and gen2 form the generate part of the program. They create a potential
coloring of the graph by stating that a node is either white or black. Rules sim1 and sim2 form the defining
part and describe when two nodes are similar in color. The test part consists of the constr rule. This rule
eliminates solution candidates where two adjacent nodes are similarly colored. We can use this program to
solve the graph coloring problem for specific graphs. First, rules of the form facta,b : edge(a, b)← are added
to the program, which encode that there is an edge between node a and b. The resulting rules are grounded,
meaning that a rule such as gen2 is replaced by the set of rules {gen2 a : black(a) ← not white(a) | a ∈

∗Principal corresponding author
∗∗Corresponding author

Email addresses: jeroen.janssen@vub.ac.be (Jeroen Janssen), steven.schockaert@ugent.be (Steven Schockaert),
dvermeir@vub.ac.be (Dirk Vermeir), martine.decock@ugent.be (Martine De Cock)

1Funded by a joint Research Foundation–Flanders (FWO) project
2Postdoctoral fellow of the Research Foundation–Flanders (FWO)

Preprint submitted to International Journal of Approximate Reasoning January 16, 2012

Nodes}, where Nodes is the set of nodes in the graph. The grounded program is then solved using an answer
set solver such as Smodels [58] or DLV [34], which generates answer sets of the program that correspond to
admissible graph colorings.

An important research topic in ASP is determining whether certain language extensions can be simulated
using a simpler core language. Indeed, there has even been a work package by the European Working Group
on Answer Set Programming (WASP) that focused on this question [51]. These simulations are important
as they allow using standard available answer set solvers for solving programs with extensions. Furthermore
they allow us to focus on a small core theory when showing properties, while still retaining generality.

In recent years Fuzzy Answer Set Programming (FASP) has been proposed, which aims to extend ASP
with the capacity to model continuous optimization problems in a similar manner. Many different formalisms
have been proposed (see e.g. [6, 7, 40, 42, 55, 64, 65, 66]), which all differ in the language constructs they
support. For example, some of these approaches feature negation-as-failure, others have classical negation,
and again others allow arbitrary monotonic functions in rule bodies. Unfortunately, in contrast to ASP,
there has been little work focusing on the language extensions of FASP. In this paper we investigate the
expressivity of different constructs. In particular, we analyze how many of the features that appear in FASP
variants can be simulated in a language that is considerably simpler. This creates a bridge between the desire
to have a rich and expressive FASP language on one hand and the wish to have a small core language that
is easy to implement and reason about on the other hand. The advantage of having a rich and expressive
language is that it removes the burden from programmers to write the simulations by hand, making the
language easier to use. The advantage of having a small core language is that (i) this makes it easier to
reason about the language, (ii) it makes it easier to investigate links to other theories and (iii) it facilitates
the implementation of the backend of a FASP solver.

The structure of the paper is as follows. In Section 2, we recall the necessary notions of fuzzy logic used
throughout the paper. After this, in Section 3, we identify a core language for FASP, called CFASP, that is
sufficient to express the following extensions:

1. Constraints. One of the important constructs in ASP are constraint rules such as rule constr in
program Pgc above. Such a rule states that its body (the expression on the right of ←) can never be
true in a valid solution of the problem under consideration. The constraint in the example above helps
to exclude color assignments in which nodes are similarly colored. In Section 4, we extend CFASP with
constraints, resulting in the language CFASP⊥. We reveal the capabilities of these constraints and
furthermore show that a well-known procedure for eliminating constraints in ASP can be generalized
to the fuzzy case.

2. Monotonically decreasing functions. When generalizing ASP to a many-valued setting, various
types of functions may serve as generalizations of logical connectives, ranging from t-norms and t-
conorms to averaging operators, as well as problem-specific hedges. Some authors (e.g. [10]) therefore
allow arbitrary functions whose partial mappings are increasing or decreasing. It is easy to see that
this class covers all commonly used operators from fuzzy logic. In Section 5, we extend CFASP with
decreasing functions, resulting in the language CFASPf . We show that allowing some of the partial
mappings to be decreasing does not actually increase expressivity. In particular, we show that by using
the negation-as-failure primitive, such functions can be simulated using operators that are increasing
in all arguments.

3. Rule aggregation. Some FASP formalisms, referred to as AFASP, feature an aggregator, which
is an expression mapping rule satisfaction values to a single value. In Section 6, we show how this
extension can be simulated using only rules.

4. S-implicators. All the AFASP approaches introduced in the literature limit rules to correspond to
residual implicators. However, there might still be some contexts in which an S-implicator is more
natural than a residual implicator. In Section 7, we extend AFASP with S-implicators, resulting in
the language AFASPs. We motivate the use of S-implicators and show how to simulate rules based on
S-implicators in AFASP.

5. Strong negation. In ASP, two types of negation are used intertwiningly, called negation-as-failure
and strong negation (also known as classical negation). In Section 8, we show how the simulation of

2

strong negation in classical ASP can be generalized to the fuzzy case.

Figure 1 shows how the above extensions of FASP are related. An arrow from language L1 to L2 indicates
that L1 can be simulated in L2.

In Section 9, we discuss the related work and in Section 10 we present some concluding remarks.

CFASP

AFASPs

CFASP⊥

AFASP

CFASPf

Figure 1: Diagram of the relationships between the different CFASP and AFASP languages.

2. Fuzzy Logic

Consider a complete lattice L. We denote the ordering of L as ≤L or as ≤ when there is no cause for
confusion. Furthermore we denote its greatest (resp. least) element as 1L (resp. 0L). When no confusion
is possible, we just write 1 and 0. An L-fuzzy set in a universe X is an X → L mapping. We use
F = {xl11 , . . . , xlnn } to denote an L-fuzzy set F in a universe X, where for i ∈ 1 . . . n we have that xi ∈ X,
li ∈ L and F (xi) = li. For x 6∈ {x1, . . . , xn} we have that F (x) = 0L. Note that any regular set A in a
universe X can be considered as an L-fuzzy set by defining for any x ∈ X that A(x) = 1L if x ∈ A and
A(x) = 0L otherwise. The intersection of two L-fuzzy sets in a universe X is the fuzzy set F1 ∩ F2 defined
for any x ∈ X as (F1 ∩ F2)(x) = inf(F1(x), F2(x)). The inclusion of two L-fuzzy sets in a universe X is
defined as F1 ⊆ F2 iff for all x in X we have F1(x) ≤L F2(x). The set of all L-fuzzy sets over X is denoted
as FL(X) or as F(X) when L = ([0, 1],≤). We call ([0, 1],≤)-fuzzy sets fuzzy sets.

A negator ∼ is a decreasing L → L function satisfying ∼0 = 1 and ∼1 = 0. This operator generalizes
classic negation. If for each x ∈ L it holds that ∼ (∼x) = x, we call the negator involutive. A t-norm
∧ is an increasing, commutative and associative L2 → L function that satisfies x ∧ 1 = x. It generalizes
classic conjunction. A t-conorm ∨ is an increasing, commutative and associative L2 → L function that
satisfies x∨ 0 = x. T-conorms generalize classic disjunction. An implicator → is an L2 → L function that
is decreasing in its first, and increasing in its second argument, satisfies 0→ 0 = 1 and for all x ∈ L satisfies
1→ x = x. T-norms whose partial mappings are sup-morphisms (i.e. supi(xi∧y) = (sup(xi)i∈I)∧y) induce
a residual implicator defined by x → y = sup{λ ∈ [0, 1] | x ∧ λ ≤ y}. Any such t-norm and its residual
implicator satisfy the residuation principle, which states that x ∧ z ≤ y is equivalent to z ≤ x→ y. Any

3

name t-norm t-conorm
minimum/maximum x ∧m y = min(x, y) x ∨m y = max(x, y)
 Lukasiewicz/ Lukasiewicz x ∧l y = max(0, x+ y − 1) x ∨l y = min(x+ y, 1)
product/bounded sum x ∧p y = x · y x ∨p y = x+ y − x · y

Table 1: Common t-norms and t-conorms over ([0, 1],≤)

t-norm residual implicator induced negator

minimum x→m y =

{
y if x > y

1 otherwise
∼m x =

{
0 if x > 0

1 otherwise

 Lukasiewicz x→l y = min(1, 1− x+ y) ∼ l x = 1− x

product x→p y =

{
y/x if x > y

1 otherwise
∼p x =∼m x

Table 2: Common residual pairs and induced negators over ([0, 1],≤)

implicator → furthermore induces a negator ∼ defined by ∼x = x → 0. We summarize common t-norms,
t-conorms, residual implicators and induced negators over the complete lattice ([0, 1],≤) in Tables 1 and 2.
The residual implicator of the minimum and product t-norm are called the Gödel implicator, respectively
Goguen implicator. Next to the residual implicators, there is another common type of implicator called
the S-implicators, which are built from a generalization of the classical logic formula ¬x∨ y. In this paper
we will primarily use the Kleene-Dienes S-implicator, defined as x→kd y = (∼ l x ∨m y).

3. The FASP Core Language

In this section we introduce a core language for FASP, called core FASP, which in the following sections
will be shown to be sufficient to express many of the common extensions to FASP. First we present the
language and afterwards we discuss the simulation techniques that will be used in the succeeding sections.

3.1. Language

Definition 1. Consider a set A of atoms. A literal is either an atom a ∈ A, a value from a lattice L, or
a naf-literal of the form ∼a, where ∼ corresponds to a negator.

Definition 2. Given a set of atoms A, a rule over a complete lattice L is an object of the form

r : a← f(b1, . . . , bn) (1)

where a is an atom called the head, f is an increasing Ln → L function, bi (1 ≤ i ≤ n) are literals, r is the
rule label and ← corresponds to a residual implicator. We often refer to a rule of the form (1) only by its
label r. For a rule r we denote its head as rh, its body as rb and the residual implicator corresponding to ←
as →r. The t-norm of which →r is a residual implicator is denoted by ∧r.

The core programs are sets of rules.

Definition 3. A core FASP program (short: CFASP program) over a complete lattice L is a set of rules
over L. We denote the set of atoms occurring in a core FASP program P as BP and the lattice over which
the program ranges as LP . Given an atom a we define Pa = {r | r ∈ P, rh = a}. A core FASP program is
called simple if it contains no literals of the form ∼ l. An interpretation I of a core FASP program P is
a BP → L mapping. It is extended to constants from L by I(l) = l for l ∈ L, to literals of the form ∼ l by

4

I(∼ l) =∼ I(l), to bodies of rules by I(f(b1, . . . , bn)) = f(I(b1), . . . , I(bn)) and finally to a rule r of the form
(1) by

I(r) = I(rb)→r I(a) (2)

An interpretation I is called a model of P iff for each r in P we have I(r) = 1.

The semantics of these programs are given by a certain subset of the models, called answer sets.

Definition 4. Consider a simple CFASP program P . An interpretation I of P is called an answer set of
P iff I is the minimal model of P .

Equivalently, we can characterize answer sets as the least fixpoints of the following operator.

Definition 5. Consider a simple CFASP program P . The immediate consequence operator Π associ-
ated with P is an operator mapping interpretations to interpretations defined for an interpretation I of P
and a ∈ BP as

ΠP (I)(a) = sup{I(rb) | r ∈ Pa}

We denote the least fixpoint of the immediate consequence operator for a program P as Π∗P . It is well
known that this least fixpoint corresponds to the minimal model of P (see e.g. [7]) and that it can be obtained
by repeatedly applying the immediate consequence operator, starting from the empty set, until a fixpoint is
found. When programs are not simple, a transformation generalizing the Gelfond-Lifschitz transformation
from [18] is used to define the semantics.

Definition 6. Let P be a CFASP program and let I be an interpretation of P . The reduct of a literal l
w.r.t. I is defined as lI = I(l) if l is of the form ∼ l and lI = l otherwise. The reduct of an expression
f(b1, . . . , bn) is defined as (f(b1, . . . , bn))I = f(bI1, . . . , b

I
n). The reduct of a rule r ∈ P of the form (1) is

defined as rI = a← (f(b1, . . . , bn))I . The reduct of a program P is defined as P I = {rI | r ∈ P}.

Definition 7. Consider a CFASP program P . An interpretation I of P is called an answer set of P iff
I is the answer set of P I .

Note that any answer set of a program P is also a minimal model of P . The converse proposition does
not necessarily hold however [25].

Example 1. Consider the following CFASP program P over ([0, 1],≤):

r1 : a ← max(b, c)
r2 : b ← ∼ l c
r3 : c ← 0.3

Consider the interpretation I = {a0.7, b0.7, c0.3} of P . To check whether it is an answer set we construct the
reduct P I :

r1 : a ← max(b, c)
r2 : b ← 0.7
r3 : c ← 0.3

Since I is the minimal model of P I we find that I is indeed an answer set of P .

3.2. Simulation Technique: Value Fixing

In the simulations that we will discuss next it is often needed to “fix” the value of a certain atom in
the body of a rule when the reduct is applied. For atoms in a naf-literal the reduct operation does this
automatically, but for atoms that occur as the argument of an increasing function a special technique is
needed. We call this technique value fixing. As an example, consider the following CFASP program P over
([0, 1],≤):

r1 : a ← max(b, c)
r2 : b ← ∼ l c
r3 : c ← ∼ l b
r4 : b ← 0.4

5

Now suppose that, given an interpretation I of P we want to ensure that in the reduct of P w.r.t. I the body
of rule r1 is equal to the expression max(I(b), c), i.e. that (rI1)b = max(I(b), c). This is for example needed
when the value of a should only be dependent upon the guessed value for b, which will occur frequently in
the simulations occurring in the following sections. We can do this by (i) introducing a “fresh” atom notb;
(ii) adding a rule nb : notb ←∼ l b to P ; and (iii) replacing the b in the body of rule r1 with ∼ l notb. This
results in the following program P ′:

r′1 : a ← max(∼ l notb, c)
r2 : b ← ∼ l c
r3 : c ← ∼ l b
r4 : b ← 0.4
nb : notb ← ∼ l b

One can easily verify that for an interpretation I of P and its corresponding interpretation I ′ = I∪{not∼l I(b)
b }

of P ′ the reduct P ′
I′

consists of the following rules:

r′
I′

1 : a ← max(∼ l I ′(notb), c)
rI

′

2 : b ← ∼ l I ′(c)
rI

′

3 : c ← ∼ l I ′(b)
rI

′

4 : b ← 0.4

nI
′

b : notb ← ∼ l I ′(b)

By definition of I ′ we then have that (r′1)b = max(∼ l I ′(notb), c) = max(∼ l (∼ l I(b)), c) = max(I(b), c).
In general the procedure goes as follows. Given a CFASP program P , a rule r ∈ P and an atom b ∈ rb.

To fix the value of b in a certain position of the body of r in the reduct operation we proceed as follows:

1. Add a new rule nb : notb ←∼i b to P , where notb is a “fresh” literal and ∼i is an involutive negator.

2. Replace the position of b that needs to be fixed by ∼i notb.

Note that the above procedure works for any program with a truth lattice for which an involutive negator
exists.

4. Constraints

4.1. Uses of Constraints

In classical answer set programming there are special rules called constraints. Constraints differ from
regular rules by the omission of a head literal and are used to specify that in any valid solution, the body
of the rule should not be satisfied. For example, in program Pgc from Section 1 the constraint constr
specifies that two adjacent nodes should be differently colored. This is an important aspect of answer set
programming and a necessary feature to elegantly describe many problem domains. Some FASP formalisms
[25, 64] have a generalization of this feature. For example, in [25] rules of the following form are allowed:

constr : l← f(b1, . . . , bn) (3)

where l is an element of some complete lattice L and f is an increasing Ln → L function. Due to the
fact that ← is interpreted as a residual implicator it follows that any model of a program incorporating a
rule of the form (3), called a constraint, satisfies I(f(b1, . . . , bn)) ≤ l. We denote the language obtained
by extending CFASP with rules of the form (3) above CFASP⊥. The semantics of CFASP⊥ are defined
similarly to CFASP: an interpretation I of a program P is called an answer set iff I is a model of P and it
is the least fixpoint of ΠP I . Note that, in contrast to the CFASP semantics, we additionally require answer
sets to be models. This is needed because in the CFASP case any answer set is a model of program, whereas
this might not be the case if a program has constraints. Hence, the set of answer sets of a CFASP⊥ program

6

P is a subset of the set of answer sets of the CFASP program P \ CP , where CP is the set of all constraints
of P .

Note that a constraint introduces an upper bound on the value of a body function. We can use this to
ensure that the truth degree of certain atoms are constrained to a certain interval. Consider an atom a. If
we wish to constrain a to the interval [0.3, 0.8], we can add the following rules to a CFASP⊥ program:

constr : 0.8← a

constr ′ : 0.7←∼ l a

It is easy to see that any model M of these two rules satisfies 0.8 ≥ M(a) and 0.3 ≤ M(a), hence M(a) ∈
[0.3, 0.8]. In general we can define the following transformation:

Definition 8. Let P be a CFASP⊥ program over ([0, 1],≤), a ∈ BP and assume we wish to constrain the
value of a to the interval [l, u] (with l and u in [0, 1]). The interval-constrained version of P w.r.t. a and
[l, u], called P ′, has the following rule base:

P ′ = P ∪ {lowa : (1− l)←∼ l a} ∪ {uppa : u← a}

The following proposition shows that the interval-constrained version of a program indeed constrains the
value of a literal in the desired way.

Proposition 1. Let P be a CFASP⊥ program over ([0, 1],≤) and a ∈ BP . Then if M ′ is an answer set
of the interval-constrained version of P w.r.t. a and the interval [l, u] (with l and u in [0, 1]), called P ′, it
holds that M ′(a) ∈ [l, u].

4.2. Implementing Constraints

The program C = {c : p ←∼ p} is well-known in answer set programming because it has no classical
answer sets. In fact, any program for which rule c is the only rule with p in its head has no answer sets
[2]. This peculiarity actually turns out to be useful in eliminating answer sets under certain conditions. For
example, consider the following classical program G:

r1 : a ← ∼b
r2 : b ← ∼a

This program has answer sets {a} and {b}. If we would like to eliminate the answer set in which b holds,
we can add b to the body of rule c and add the resulting rule to the program:

r1 : a ← ∼b
r2 : b ← ∼a
cb : p ← ∼p ∧ b

Suppose now that A is an interpretation of G ∪ {cb} such that b ∈ A. If p 6∈ A, then A is not a model of
G ∪ {cb} and thus A is not an answer set. If p ∈ A, then cAb : p ← 0 ∧ b. However, from this we can easily
see that A is not the least fixpoint of Π(G∪{cb})A , hence A is not an answer set. This means {a} is the only
answer set of G ∪ {cb} and the addition of rule cb effectively eliminated answer set {b}.

Program C has fuzzy answer sets, however, meaning that its useful capacity to eliminate undesired
answer sets has not directly been preserved in the fuzzy setting. Using the Gödel implicator together with
the Lukasiewicz negation, for instance, it is not hard to see that {p0 .5} is the unique answer set. Therefore,
an adaptation of program C is needed to eliminate undesirable answer sets in the fuzzy case. To this end,
consider the following program Z:

Z = {r : p←m (∼m p > 0)} (4)

where rule r is defined over ([0, 1],≤). The body ∼ m p > 0 can be thought of as f(∼ m p) with f the
[0, 1]→ {0, 1} function defined as f(x) = 1 if x > 0 and f(0) = 0. This function f is increasing, so rule r is

7

a rule from a CFASP program. One can easily see that the only models of Z are Ml = {pl}, l ∈]0, 1]. None
of these models are answer sets, however, since for l > 0 we get

ZMl = {rMl : p←m (0 > 0)}

and Π∗
ZMl

= {p0} 6= Ml.
In the crisp case, the program C can be used to simulate constraints [2]; it turns out that our program

Z can also be used to simulate constraints in CFASP programs. As an example, consider the CFASP⊥

program P :
r1 : a ←m ∼ l b
r2 : b ←m ∼ l a
c : 0.5 ←m a

The only answer sets of this program are of the form Ml = {al, b1−l}, with l ∈ [0, 0.5], as rule c eliminates
all solutions M where M(a) > 0.5. Now consider the CFASP program P ′:

r1 : a ←m ∼ l b
r2 : b ←m ∼ l a
c′ : c0.5 ←m a

r0.5 : c0.5 ←m 0.5
r′0.5 : ⊥ ←m (∼ l⊥ > 0) ∧m (c0.5 > 0.5)

with c0.5 and ⊥ fresh atoms. Note that P ′ is constraint-free and that, for any l ∈ [0, 0.5], M ′l = Ml∪{c0.50.5,⊥0}
is an answer set of P ′. Note that these are the only answer sets of P ′ as well. Indeed, suppose there is some
fixpoint N of ΠP ′ such that N(a) > 0.5. From rules c′ and r0.5 we obtain that N(c0.5) = N(a) > 0.5, which
implies that N(⊥) needs to satisfy

N(⊥) = ΠP ′(N)(⊥)

= sup{N (rb) | r ∈ P ′⊥}
= N((r′0.5)b)

= N((∼ l⊥ > 0) ∧m (c0.5 > 0.5))

= N(∼ l⊥ > 0)

The equality N(⊥) = N(∼ l⊥ > 0) has no solution, however, as N(∼ l⊥ > 0) takes on a value in {0, 1} but
for N(⊥) = 0 we get N(∼ l⊥ > 0) = 1 and for N(⊥) = 1 we get N(∼ l⊥ > 0) = 0. In general, one can
verify that P and P ′ have corresponding answer sets, i.e. if M is an answer set of P then M ∪ {c0.50.5,⊥0} is
an answer set of P and, conversely, if M ′ is an answer set of P ′, then M ′ ∩ BP is an answer set of P .

We now show that the construction used in the preceding example can be applied in general to CFASP⊥

programs over the lattice ([0, 1],≤). Formally, this transformation is defined as follows:

Definition 9. Let P be a CFASP⊥ program over the lattice ([0, 1],≤) and let KP = {k | (k ← α) ∈ CP}
be the set of constants appearing as the head of rules from CP (the set of constraint rules in P). The
corresponding CFASP program P ′ of P then contains the following rules:

P ′ = {r ′: a ← α | (r : a ← α) ∈ P \ CP}
∪ {r ′: ck ← α | (r : k ← α) ∈ CP}
∪ {rk : ck ← k | k ∈ KP}
∪ {r ′k :⊥ ← (∼⊥ > 0) ∧ (ck > k) | k ∈ KP}

where ∧ is an arbitrary t-norm, ⊥ 6∈ BP and for all k ∈ KP also ck 6∈ BP .

The following propositions show that the answer sets of the CFASP⊥ program P and its corresponding
CFASP program P ′ coincide.

8

Proposition 2. Let P be a CFASP⊥ program and let P ′ be its corresponding CFASP program as defined
by Definition 9. If M is an answer set of P , then M ′ = M ∪ {ckk | k ∈ KP } ∪ {⊥0} is an answer set of P ′,
where KP is defined as in Definition 9.

Proposition 3. Let P be a CFASP⊥ program and let P ′ be its corresponding CFASP program as defined
by Definition 9. If M ′ is an answer set of P ′, then M = M ′ ∩ BP is an answer set of P .

5. Monotonically Decreasing Functions

A number of FASP frameworks not only allow functions that are increasing in rule bodies, but allow
functions whose partial mappings are either monotonically increasing or decreasing (see for example [10, 25]).
Functions with decreasing partial mappings in fact generalize negation-as-failure to functions of more than
one argument: if f(x1, . . . , xn) decreases in its ith argument, the function increases when xi decreases.
Since xi decreases when the maximal value that we can derive for xi decreases, this means f(x1, . . . , xn)
increases when the support for xi decreases. This corresponds to the idea underlying negation-as-failure.
However, it turns out that generalizing negation-as-failure to functions of more than one argument does not
lead to a higher expressiveness, as we show in this section that any program with monotonically decreasing
functions can be translated to a program in which the only decreasing functions are negators, i.e. to core
FASP programs. First we define the syntax and semantics of programs with decreasing functions.

Definition 10. A general FASP rule (short: CFASPf rule) over a complete lattice L is an object of the
form

r : a← f(b1, . . . , bn; c1, . . . , cm) (5)

where a, bi and cj are atoms and f is an Ln+m → L function that is increasing in its n first and decreasing
in its m last arguments. The head, body and label of a rule are defined and denoted similar to CFASP rules.
A general FASP program (short: CFASPf program) over a complete lattice L is a set of CFASPf rules
over L.

Note that we only allow atoms, and not literals in CFASPf programs. This is not a problem, however,
as it is easy to see that literals of the form ∼ s are L → L functions that have no increasing arguments.
Interpretations, the immediate consequence operator and models of CFASPf programs and rules are defined
similar to CFASP programs. Furthermore, a CFASPf program is called simple if all rules are of the form
r : a ← f(b1, . . . , bn;), i.e. if no decreasing functions occur in rule bodies. The semantics of CFASPf

programs depend on a new reduct definition, given as follows:

Definition 11. Let r : a← f(b1, . . . , bn; c1, . . . , cm) be a CFASPf rule over L. The reduct of r w.r.t. some
interpretation I, denoted rI , is defined as

rI : a← f ′(b1, . . . , bn)

where
f ′(b1, . . . , bn) = f(b1, . . . , bn; I(c1), . . . , I(cm))

The reduct of a general FASP program P over L, denoted P I , is the set of rules {rI | r ∈ P}.

Answer sets of CFASPf programs are then defined similar to those of CFASP programs.

Definition 12. Let P be a CFASPf program over L. A model M of P is called an answer set of P iff
M = Π∗P I .

We can now show that any CFASPf program can be simulated using a CFASP program. Intuitively the
procedure works as follows. Given a rule of the form (5) above, we replace the function f in its body with a
new function f ′ defined by f ′(b1, . . . , bn, notc1 , . . . , notcm ;) = f(b1, . . . , bn;∼ notc1 , . . . ,∼ notcm), where notc
is a new atom defined by the rule nc : notc ←∼ c, with ∼an involutive negator. In this way, we have replaced
the decreasing function with an increasing function with literals, i.e. with the functions occurring in core
FASP program rules. Note that we are using the value fixing method from Section 3.2 in this simulation.

Formally, this procedure is defined as follows.

9

Definition 13. Let P be a CFASPf program over a lattice L. Then its corresponding CFASP program P ′

contains the following rules:

P ′ = {r′ : a← f ′(b1, . . . , bn, notc1 , . . . , notcm) | (r : a← f(b1, . . . , bn; c1, . . . , cm)) ∈ P}
∪{nl : notl ←∼l | l ∈ NP }

where ∼ is an involutive negator on L, NP is the set of all atoms a that occur in a decreasing argument
position of a function in the body of some rule in P , and f ′ is defined by f ′(b1, . . . , bn, notc1 , . . . , notcm) =
f(b1, . . . , bn;∼ notc1 , . . . ,∼ notcm). Also for each l ∈ BP it must hold that notl 6∈ BP , i.e. the notl atom is
a “fresh” atom.

As an example, consider a CFASPf program P with the following rules:

r1 : a ←m
1

1 + b · c
r2 : b ←m 0.8
r3 : c ←m 0.5

An answer set of P is M = {a10/14, b0.8, c0.5}. If we apply the transformation of Definition 13 on P we
obtain P ′ with rules:

r′1 : a ←m f ′(notb, notc)
r′2 : b ←m 0.8
r′3 : c ←m 0.5
nb : notb ←m ∼ l b
nc : notc ←m ∼ l c

where f ′(notb, notc) =
1

1 + (∼ l notb) · (∼ l notc)
. We can then show that M ′ = M ∪ {not∼lM(b)

b , not
∼lM(c)
c }

is an answer set of P ′. The reduct P ′
M ′

contains the following rules:

r′
M ′

1 : a ←m f ′(notb, notc)

r′
M ′

2 : b ←m 0.8

r′
M ′

3 : c ←m 0.5

nM
′

b : notb ←m 0.2

nM
′

c : notc ←m 0.5

where f ′ is defined as above. From the reduct we can see that Π∗
P ′M′ (b) = 0.8, Π∗

P ′M′ (c) = 0.5, Π∗
P ′M′ (notb) =

0.2 and Π∗
P ′M′ (notc) = 0.5. This leads to Π∗

P ′M′ (a) = 10/14 and thus M ′ is the least fixpoint of ΠP ′M′ ,
which is what we expected.

The following propositions show that this transformation preserves the answer set semantics.

Proposition 4. Let P be a CFASPf program and let P ′ be its corresponding CFASP program as defined
by Definition 13. If M is an answer set of P , then M ′ = M ∪ {notl∼M(l) | l ∈ NP } is an answer set of P ′.

Proposition 5. Let P be a CFASPf program and let P ′ be its corresponding CFASP program as defined
by Definition 13. If M ′ is an answer set of P ′, then M = M ′ ∩ BP is an answer set of P .

6. Aggregators

6.1. Simulation

In some applications, CFASP, CFASP⊥ and CFASPf can be too rigid because of their insistence to satisfy
all rules completely. For example, consider the following CFASP⊥ program Pfgc modeling a continuous graph
coloring problem:

10

gen1 : white(X) ← ∼ l black(X)
gen2 : black(X) ← ∼ l white(X)
sim1 : sim(X,Y) ← (white(X)↔ white(Y))
sim2 : sim(X,Y) ← (black(X)↔ black(Y))

constr : 0 ← (edge(X,Y) ∧m sim(X,Y))

In this program the function ↔ is defined as x ↔ y = min(x →l y, y →l x). Rules gen1 and gen2

intuitively generate a certain coloring of the graph, which can be rejected by constraint constr if two adjacent
nodes are similarly colored. The two rules sim1 and sim2 define what it means for two nodes to be similar.
For the graph depicted in Figure 2a we find that there are two answer sets, viz. A1 = {edge(a, b)1, edge(b, a)1,
sim(a, a)1, sim(b, b)1, sim(a, b)0, sim(b, a)0,white(a)1, black(a)0, black(b)1,white(b)0} and A2 = {edge(a, b)1,
edge(b, a)1, sim(a, a)1, sim(b, b)1, sim(a, b)0, sim(b, a)0, black(a)1,white(a)0,white(b)1, black(b)0}. The graph
depicted in Figure 2b has no answer sets however. This is not ideal, as in many cases we would like to find
a solution, even if it is not optimal (i.e. satisfies all rules completely). Hence, we might find it tolerable if
some nodes are colored similarly, as long as the similarity is not too high. For the graph in Figure 2b this
could mean that a solution coloring node a completely white, node b completely black and node c white to
degree 0.5 is still acceptable.

The solution proposed in [25, 64] is to allow rules to be partially fulfilled and use an aggregator to
attach a score to answer sets, corresponding to their suitability as a model of the program. Formally an
aggregated FASP (AFASP) program P is a tuple 〈RP ,AP 〉, where RP is a CFASP program and AP
is an increasing3 function mapping RP → L functions, called rule interpretations, to a value in L. The
semantics of AFASP programs are defined using an adapted immediate consequence operator ΠP,ρ , relative
to an AFASP program P and rule interpretation ρ of P , which is defined for an interpretation I of P and
atom a ∈ BP as follows:

ΠP,ρ(I)(a) = sup{Is(r, ρ(r)) | r ∈ (RP)a} (6)

where Is(r, w) = inf{l ∈ LP | (I(rb)→r l) ≥ w} is called the support of a rule of P w.r.t. an interpretation
and a weight w ∈ LP . In [25] we have shown that if rules are interpreted using a residual implicator we
have Is(r, w) = I(rb) ∧r w. An interpretation I is an m-answer set (m ∈ L) of an AFASP program P iff
I = Π∗P I ,ρI

and AP (ρI) ≥ m, where for each r ∈ P we have ρI(r) = I(r) and P I = 〈(RP)I ,AP 〉.
For example, we can combine the CFASP program P ′fgc , which is the constraint-free version of the

CFASP⊥ program Pfgc above, with the aggregator A(ρ) = α(ρ) · β(ρ) where

α(ρ) =
∏
{ρ((gen ′1)a) · ρ((gen ′2)a) · ρ((sim ′1)a,b) · ρ((sim ′2)a,b)

· ρ(r0) · ρ(r′0) | a, b ∈ Nodes} ≥ 1

β(ρ) = 0.3 · ρ(constr ′a,b) + 0.3 · ρ(constr ′b,a)

+ 0.1 · ρ(constr ′a,c) + 0.1 · ρ(constr ′c,a)
+ 0.1 · ρ(constr ′b,c) + 0.1 · ρ(constr ′c,b)

to create the AFASP program Gfgc = 〈P ′fgc ,A〉. Note that with gen ′a we denote the grounding of rule gen ′

with node a. Intuitively, this aggregator denotes that the constraint concerning nodes a and b is most im-
portant, while the constraints concerning nodes a and c and nodes b and c are of equal importance. One can
then easily verify that for graph 2b the following interpretation4 A0.6 = {edge(a, b)1, edge(b, a)1, edge(a, c)1,
edge(c, a)1, edge(b, c)1, edge(c, b)1, sim(a, a)1, sim(b, b)1, sim(c, c)1,white(a)1, black(b)1,white(c)0.5, black(c)0.5,
sim(a, c)0.5, sim(c, a)0.5, sim(b, c)0.5, sim(c, b)0.5} is an 0.6-answer set of Gfgc . Hence, using AFASP we can
find approximate answer sets.

At first sight, one might be tempted to think that a program with an aggregator can be replaced by
a core FASP program P ′ such that P ′ = RP ∪ {r′aggr : aggr ← f((r1)h ←r1 (r1)b, . . . , (rn)h ←rn (rn)b)},

3Where RP → L functions are ordered pointwise, i.e. ρ1 ≤ ρ2 iff for each r ∈ RP we have ρ1(r) ≤ ρ2(r).
4Note that, as remarked in the preliminaries, we do not include atoms with truth value 0 – such as c and ⊥ – in the

enumeration of an interpretation.

11

a b

(a)

a

b

c

(b)

Figure 2: Example instances for the graph coloring problem.

where f corresponds to the function defined by the aggregator of P . The intended meaning is such that M
is an m-answer set of P iff M ∪ {aggrm} is an answer set of P ′.

This trivial translation is not correct, however, as it does not correctly incorporate the notion of partial
rule satisfaction. For example, consider the AFASP program P with rule base RP = {(r1 : a← 1), (r2 : b←
1)} and with aggregator AP (ρ) = inf{ρ(r) | r ∈ RP }. Using the transformation proposed above, we obtain
the core FASP program P ′ = {(r′1 : a ← 1), (r′2 : b ← 1), (r′aggr : aggr ← inf((a ← 1), (b ← 1))}. For the

0.7-answer set M = {a0.7, b1} of P the corresponding interpretation M ′ = M ∪{(r′aggr)
0.7} is not an answer

set of P ′, however, as P ′ only has one answer set, viz. {a1, b1, (r′aggr)
1}. This problem can be solved in the

following way.

Definition 14. Let P be an AFASP program with rule base RP = {r1, . . . , rn} over the lattice L and
suppose an involutive negator ∼ exists over this lattice. Its corresponding CFASPf program, denoted as P ′,
contains the following rules:

P ′ = {r′ : a← (α ∧r r′i) | (r : a← α) ∈ RP }
∪ {na : nota ←∼a | a ∈ BP }
∪ {r′ρ : r′i ← (α′ →r (∼nota)) | (r : a← α) ∈ RP }
∪ {r′aggr : aggr ← f(r′1i, . . . , r

′
ni)}

Furthermore, all literals nota for a ∈ BP , r′i for r ∈ RP and aggr are literals not occurring in BP . Also, the
function f corresponds to AP in the sense that AP (ρ) = f(ρ(r1), . . . , ρ(rn)) and α′ is obtained from α by
replacing each naf-literal ∼a a in α with ∼a(∼nota), where ∼a is the negator associated with the naf-literal.

Note that due to the r′ρ rules in Definition 14, we translate an AFASP program to a CFASPf program,
rather than a CFASP program. This is not a problem however, as we have shown in Section 5 that any
CFASPf program can be translated to a corresponding CFASP program.

Example 2. Consider program P1 with rule base RP1
:

r1 : a ←m ∼ l b
r2 : b ←m 0.7

The aggregator of P1 is AP1
(ρ) = inf{ρ(r) | r ∈ RP1

}. Applying Definition 14, we obtain the CFASPf

program P ′1 with rules:
r′1 : a ←m (∼ l b) ∧m r′1i
r′2 : b ←m 0.7 ∧m r′2i
na : nota ←m ∼ la
nb : notb ←m ∼ lb
r′1ρ : r′1i ←m ((∼ l (∼ l notb))→m (∼nota))

r′2ρ : r′2i ←m (0.7→m (∼notb))
r′aggr : aggr ←m inf(r′1i, r

′
2i)

12

Consider now the 1-answer set M = {a0.3, b0.7} of P1. Our intention is that Definition 14 is constructed in

such a way that M ′ = {a0.3, b0.7, r′1
1
i , r
′
2
1
i , not

0.7
a , not0.3b , r′aggr

1} is an answer set of P ′1. One can verify that
this is indeed the case.

Note that we are using the value fixing method from Section 3.2 in our simulation. This is needed to correctly
preserve the semantics. To see this, consider the following alternative program P ′′1 :

r′1 : a ←m (∼ l b) ∧m r′1i
r′2 : b ←m 0.7 ∧m r′2i
r′1ρ : r′1i ←m ((∼ l b)→m a)

r′2ρ : r′2i ←m (0.7→m b)

r′aggr : aggr ←m inf(r′1i, r
′
2i)

Now consider the 1-answer set M = {a0.3, b0.7} of P1. We wish the aggregator-free version of P1 to be

constructed in such a way that M ′ = M ∪ {r′i
M(r) | r ∈ RP } ∪ {aggrAP (ρM)} is an answer set of P ′′1 . Hence

in the case of P ′′1 , we find that M ′ = M ∪ {r′1
1
i , r
′
2
1
i } ∪ {aggr1} should be an answer set of P ′′1 . However,

there is an M ′′ < M ′ such that M ′′ is a fixpoint of Π
P ′′

1
M′ , which contradicts the fact that M ′ is an answer

set of P ′′1 . Indeed, for M ′′ = {a0.2, b0.7} ∪ {r′1
0.2
i , r′2

1
i } ∪ {aggr0.2} it can be seen that M ′′ is a model of P ′1

and a fixpoint of Π
P ′′

1
M′ as follows. For a we obtain:

Π
P ′′

1
M′ (M ′′)(a) = ∼ lM ′(b) ∧mM ′′(r′1i) = (1− 0.7) ∧m 0.2 = 0.2

Likewise we obtain that Π
P ′′

1
M′ (M ′′)(b) = 0.7. Now for r′1i we obtain

Π
P ′′

1
M′ (M ′′)(r′1i) = M ′′(((∼ l b)→m a)M

′
)

= M ′′(M ′(∼ l b)→m a)

= (∼ lM ′(b))→m M ′′(a)

= 0.3→m 0.2

= 0.2

Similarly we find that Π
P ′′

1
M′ (M ′′)(r′2i) = 1. Lastly, for aggr we obtain

Π
P ′′

1
M′ (M ′′)(aggr) = M ′′(inf(r′1i, r

′
2i)) = inf(0.2, 1) = 0.2

Hence M ′′ is a fixpoint of Π
P ′′

1
M′ , contradicting that M ′ is an answer set of P ′′1 .

The problem the preceding example illustrates is that we must be able to “fix” the value of the literals
r′1i and r′2i when we are taking the reduct relative to M ′. The only way to ensure this is by eliminating all
literals from the body of the r′1ρ and r′2ρ rules by means of the reduct procedure. Hence we must replace
each positively occurring literal in the bodies of r′1ρ and r′2ρ by a negatively occurring literal; this is done by
replacing a positively occurring literal a with ∼ lnota, which preserves the same value, but will be replaced
by the reduct operation.

The following propositions show that our translation preserves the semantics.

Proposition 6. Let P be an AFASP program with RP = {r1, . . . , rn} and let P ′ be its corresponding
CFASPf program as defined by Definition 14. If M is an m-answer set of P , then M ′ = M∪{aggrAP (ρM)}∪
{not∼M(a)

a | a ∈ BP } ∪ {r′i
M(r) | r ∈ RP } is an answer set of P ′.

Proposition 7. Let P be an AFASP program and let P ′ be its corresponding CFASPf program as defined
by Definition 14. If M ′ is an answer set of P ′, with m = M ′(aggr), then M ′ ∩BP is an m-answer set of P .

13

Sometimes it is convenient to extend AFASP programs with constraints or arbitrary functions that are
monotonic in their partial mappings. We can easily translate programs with these extensions to regular
AFASP programs however, as we will now show. First, define the sets AFASP⊥ and AFASPf as the set of
AFASP programs where the rule base is a program in CFASP⊥, respectively CFASPf . Then we can define
the following translations:

Definition 15. Let P be an AFASP⊥ program over the lattice ([0, 1],≤) and let KP = {k | (k ← α) ∈
CP } be the set of constants appearing as the head of rules from CP (the set of constraint rules in RP).
The corresponding AFASP program P ′ of P then consists of the rulebase R′P , i.e. the CFASP program
corresponding to the CFASP⊥ program RP as defined by Definition 9, and the following aggregator:

AP ′(ρ) =

{
AP (ρ) if ∀k ∈ KP : ρ(rk) ≥ 1 ∧ ρ(r′k) ≥ 1

0 otherwise

where rk and r′k are as defined by Definition 9.

Definition 16. Let P be an AFASPf program over a lattice L. The corresponding AFASP program P ′

consists of the rulebase R′P , i.e. the CFASP program corresponding to the CFASPf program RP as defined
by Definition 13, and the following aggregator:

AP ′(ρ) =

{
AP (ρ) if ∀l ∈ NP : ρ(nl) ≥ 1

0 otherwise

where NP and nl are as defined by Definition 13.

The following propositions show that the above definitions preserve the semantics.

Proposition 8. Let P be an AFASP⊥ program and let P ′ be its corresponding AFASP program as defined by
Definition 15. If M is an m-answer set of P for some m ∈]0, 1], it holds that M ′ = M∪{ckk | k ∈ KP }∪{⊥0}
is an m-answer set of P ′, where KP is as defined by Definition 15.

Proposition 9. Let P be an AFASP⊥ program and let P ′ be its corresponding AFASP program as defined
by Definition 15. If M ′ is an m-answer set of P ′ for some m ∈]0, 1], it holds that M = M ′ ∩ BP is an
m-answer set of P .

Proposition 10. Let P be an AFASPf program and let P ′ be its corresponding AFASP program as defined

by Definition 16. If M is an m-answer set of P for some m ∈ LP \ {0}, it holds that M ′ = M ∪ {not∼M(l)
l |

l ∈ NP } is an m-answer set of P ′, where NP is as defined by Definition 16.

Proposition 11. Let P be an AFASPf program and let P ′ be its corresponding AFASP program as defined
by Definition 16. If M ′ is an m-answer set of P for some m ∈ LP \ {0}, it holds that M = M ′ ∩ BP is an
m-answer set of P .

6.2. Simulation Technique: Value Injection

In the simulations that follow in the remainder of this paper it is often necessary to “inject” the value
of an atom in the aggregator. For example, consider the AFASP program P on the lattice ([0, 1],≤) with
the following rule base:

r1 : a ←m ∼ l b
r2 : b ←m ∼ l a

Now, suppose that we want to attach an aggregator that uses the truth value of atom a to P . Aggregators
only have access to the truth values of rules, however, so we need to find a way to propagate the truth

14

value of a to the truth value of a certain rule. In the example we can do this by inserting a new constraint
ia : 0←l∼ l a to P , resulting in the altered program P ′ with the following rule base:

r1 : a ←m ∼ l b
r2 : b ←m ∼ l a
ia : 0 ←l ∼ l a

For any interpretation I of P ′ we have that ρI(ia) = (∼ l I(a)) →l 0 =∼ l (∼ l I(a)) = I(a), since for all
x ∈ [0, 1] it holds that x→l 0 =∼ l x. Hence, we have successfully transferred the value of a into the degree
to which a rule is satisfied.

In general, for an AFASP program P , if we need to use the value of an atom a ∈ BP in the aggregator
of P , we can proceed as follows:

1. Add a new constraint to RP of the form ia : 0 ←i∼ i a, where ←i corresponds to an implicator
over LP for which an involutive negator exists with the property that for any x ∈ LP we have that
x→i 0 =∼i 0.

2. In the aggregator, refer to ia everytime the value of a is needed.

Note that this procedure works for any program that uses a truth lattice for which there exists an involutive
negator ∼ i that is induced by an implicator →i (i.e. for which it holds that for any x ∈ LP we have that
x→i 0 =∼i 0). It is clear that in [0, 1] the Lukasiewicz implication satisfies this criterium. In general every
MV-algebra satisfies this requirement by definition [19].

7. S-implicators

Occasionally, when using aggregators, the ability to use other types of implicators in rules could be useful.
If the Kleene-Dienes implicator were used, for example, then r : a← f(b1, . . . , bn) would only evaluate to 1
if either the body evaluates to 0, or the head evaluates to 1. This means that as soon as I(f(b1, . . . , bn)) > 0,
the rule is triggered and the head is taken to be completely true.

Example 3. Consider the following rules, encoding that we want to have a barbecue, unless the weather is
bad:

r1 : bad weather ←kd rain
r2 : bad weather ←l ∼sunshine
r3 : bbq ←l ∼bad weather

where rain is the degree to which it is raining and sunshine is the expected amount of sunshine. Because
the Kleene–Dienes implicator is used in the first rule, a barbecue is out of the question even if it rains only
a little bit (e.g. drizzle). If it is not raining, our motivation for having a barbecue depends linearly on the
amount of sunshine, hence a Lukasiewicz implicator is used.

However, as the rules in the programs we discussed so far are restricted to residual implicators, we are
not directly able to write a rule as in Example 3 in the AFASP programs introduced in Section 6. Now
consider the language AFASPs, which is AFASP extended with S-implicator rules. To extend the semantics
of AFASP programs with S-implicator rules, we need to determine their support. The following proposition
shows how this support can be computed:

Proposition 12. Let L be a lattice, ∼ an involutive negator over L, ∧ a t-norm over L, →r the residual
implicator of ∧, ∨ the t-conorm defined by x ∨ y =∼(∼ x∧ ∼ y) and let ←s be the S-implicator induced by
∼ and ∨. Then for any interpretation I of a rule r : a←s α and w ∈ L it holds that:

Is(r, w) =∼(∼w ←r I(α))

Using the support calculated above, the semantics of an AFASPs program can be defined similar to
Section 6. We can transform an AFASPs program to an equivalent AFASP program.

15

Definition 17. Let P be an AFASPs program with rule base RP = RrP ∪ RsP such that RrP is the set
of rules constructed from residual implicators and RsP is the set of rules constructed from S-implicators.
Furthermore assume that LP is such that there is an implicator ←i that induces an involutive negator ∼ i.
Then the rulebase of the AFASPf program P ′ corresponding to P is defined as:

RP ′ = RrP
∪{r′ : a←∼i(notwr′ ←r α) | r : a←s α ∈ RsP }
∪ {r′w : wr′ ← (∼inota ←s α) | r : a←s α ∈ RsP }
∪ {na : nota ←∼ia | r : a←s α ∈ RsP }
∪ {r′nwr′

: notwr′ ←∼iwr′ | r : a←s α ∈ RsP }
∪ {r′c : 0L ←i∼iwr′ | r : a←s α ∈ RsP }

where←r for each r : a←s α ∈ RsP is the residual implicator induced by the same t-norm as←s. The literals
wr′ , nota and notwr′ are fresh literals not contained in BP . Furthermore, ←i is a residual implicator that
induces the involutive negator ∼ i and the implicator ← is an arbitrary residual implicator. The aggregator
of P ′ is defined as:

AP ′(ρ) =

{
(AP)(ρ′) if ρ(r′) ∧ ρ(r′w) ∧ ρ(na) ∧ ρ(r′nwr′

) ≥ 1L

0L otherwise

where ρ′(r) = ρ(r′c) for any r ∈ RsP and ρ′(r) = ρ(r) for any r ∈ RP \ RsP .

The limitation on the lattice states that the lattice must have one negator defined using x →i 0 that
satisfies (x →i 0) →i 0 = x. This constraint is needed to properly define the support of the rule with an
S-implicator, as is also apparent from Proposition 12. Furthermore it is needed to use the value injection
method from Section 6.2 and ensures that we can use the value fixing method from Section 3.2 in this
simulation.

Also note that the program defined above still contains S-implicators. However, they appear in the rule
bodies, and not as the implication associated to a rule. Hence, we have reduced the semantics of a program
with mixed S-implication and residual implication rules to a program solely consisting of the latter. The
occurrence of the S-implicators in the rule bodies is responsible for the program being an AFASPf program.
This is not a problem, as in Section 6 we have shown that such a program can be simulated using an AFASP
program. Furthermore note that for any interpretation I of P and corresponding interpretation I ′ of P ′ we
have ρI(r

′
c) = I(wr′). In this way the aggregator expression obtains the same value for any interpretation

of P ′ as it does for P . Further note that the construction with nota is necessary to be able to fix the value
of nota w.r.t. a certain reduct as in Section 6.

As an example, consider the AFASPs program from Example 3. The corresponding AFASP program
contains the following rule base

r2 : bad weather ←l ∼sunshine
r3 : bbq ←l ∼bad weather
r1
′ : bad weather ←l ∼ l (notwr′1

←m rain)

r1
′
w : wr′1 ←l (∼ l notbad weather ←kd rain)

r1
′
notbad weather

: notbad weather ←l (∼ l bad weather)
r1
′
nwr′1

: notwr′1
←l ∼ l wr′1

r1
′
c : 0 ←l ∼ l wr′1

Suppose we add some facts that tell us that it is raining to a degree of 0.2 and it is sunny to a degree of 0.7.
The 1-answer set we obtain for the program from Example 3 is A = {rain0.2, sunny0.7, bad weather1, bbq0}.
One can verify that the 1-answer set of the S-implicator free version is A′ = A ∪ {w1

r′1
} ∪ {not0bad weather} ∪

{not0wr′1
}.

The following propositions show that the answer sets of the AFASPs program coincide with those of the
corresponding AFASP program. Hence AFASPs programs can be translated to equivalent CFASP programs
using the results from Section 6.

16

Proposition 13. Let P be an AFASPs program and let P ′ be the corresponding AFASP program as defined

by Definition 17. If M is an m-answer set (m ∈ LP and m > 0L) of P , it holds that M ′ = M ∪ {wρM (r)
r′ |

r ∈ RsP } ∪ {not
∼iM(a)
a | a ∈ BP ,∃r ∈ RsP : rh = a} ∪ {not∼iρM (r)

wr′ | r ∈ RsP } is an m-answer set of P ′, where
∼i is as defined by Definition 17.

Proposition 14. Let P be an AFASPs program and let P ′ be the corresponding AFASP program as defined
by Definition 17. If M ′ is an m-answer set (m ∈ LP ′ and m > 0L) of P ′, it holds that M = M ′ ∩ BP is an
m-answer set of P .

8. Strong Negation

In classic ASP, besides negation-as-failure, there is a second form of negation called strong negation5.
This form of negation is used when explicit derivation of negative information is needed. The resulting
semantic difference can be very important. For example, if we wish to state that it is safe to cross the train
tracks when no train is coming we write the following program when using negation-as-failure (from [2]):

cross ← ∼train

This however means that when the information about a train coming is absent, we cross the tracks, which
is not the safest thing to do. With strong negation, the problem is written as:

cross ← ¬train

where ¬train is a special literal that can appear in the head of rules. As the value of ¬train is derived
using the rules of the program and not derived by the absence of information about train, we only cross
the tracks when we can explicitly derive that no train is coming. Of course, when both a and ¬a appear
in the head of rules there is the possibility of inconsistency. The usual semantics for ASP determine that
whenever the standard definition would lead to an answer set of a program P in which both a and ¬a occur,
by definition, the only answer set of P is given by Lit(P) = BP ∪ {¬a | a ∈ BP } (see [2]). A program in
which this occurs is inconsistent and, as in classical propositional logic, anything can be derived from an
inconsistent program.

In [64] the inconsistency problem is solved by attaching to each interpretation I of a program P and
literal a ∈ BP a score of consistency Ic(a) =∼ c(I(a) ∧c I(¬a)), where ∼ c is a negator and ∧c a t-norm.
The interpretation I is then called x-consistent, with x ∈ LP , iff Ac(Ic) ≥ x, where Ac is the consistency
aggregator that maps BP and Ic to a global consistency score for I. This consistency aggregator, which
differs from the regular aggregator, is required to be increasing when the consistencies for literals increase.

It is well-known that ASP programs with strong negation can be translated to equivalent programs
without strong negation by substituting a new literal a′ and adding the constraint ← a, a′ for each ¬a ∈
Lit(P). The resulting program has no consistent answer sets iff program P has the unique answer set Lit(P).

We can generalize the procedure for eliminating strong negation in classical ASP to fuzzy programs and
embed strong negation in AFASP. In particular, to implement the strong negation approach of [64] into
AFASP, we proceed as follows.

Definition 18. Let P be an AFASP program with strong negation, i.e. with ¬a ∈ BP for some literals
a ∈ BP and let ∼c, ∧c and Ac be the negator, t-norm and aggregator expression determining the consistency
score of P w.r.t. some interpretation. Furthermore assume that we can define an implicator →i in LP that
induces an involutive negator ∼i. Then P ′, the strong-negation free version of P is defined as follows:

1. BP ′ = (BP \ {¬a | a ∈ BP }) ∪ {a′ | ¬a ∈ BP }
2. RP ′ = {r : a← α′ | r : a← α ∈ RP , a ∈ BP \ {¬a | a ∈ BP }}

∪ {r : a′ ← α′ | r : ¬a← α ∈ RP , a ∈ BP \ {¬a | a ∈ BP }}
∪ {ca : 0←i (∼i(∼c(a ∧c a′))) | a ∈ BP \ {¬a | a ∈ BP }}

5This negation is often referred to as classical negation as well, not to be confused with negation over {0, 1}.

17

3. AP ′(ρ) = (Ac({aca | a ∈ BP }),AP (ρ))

where for a rule r : a ← α ∈ RP we define α′ as the expression obtained by replacing each ¬a for the
corresponding a′. Last, for each a ∈ BP it must hold that a′ 6∈ BP , i.e. a′ is a “fresh” literal.

Technically, we first replace all classically negated literals with a fresh variable. Then we “inject” the
value of Ic(a) for a literal a into the aggregator of the new program using the method explained in Section 6.2
(this is done in the ca rules). Last, we create the new aggregator as a tuple of the consistency degree and
the old aggregator, allowing us to order answer sets using both measures. Note that for an AFASP program
P this aggregator obtains a value in L2

P , which is a total lattice.

Example 4. Consider an AFASP program P with rule base RP :

r1 : a ←m ¬b
r2 : ¬b ←m 0.2
r3 : ¬a ←m 0.4

The rule aggregator is defined as AP (ρ) = min(1, ρ(r1) + ρ(r2) + ρ(r3)) and the consistency aggregator as
Ac(Ic) = inf{Ic(a) | a ∈ BP }. For all literals the consistency negator ∼c is ∼ l and the consistency t-norm
∧c is ∧m. According to Definition 18, the strong negation free version of P is a program P ′ with rule base
RP ′ :

r1 : a ←m b′

r2 : b′ ←m 0.2
r3 : a′ ←m 0.4
ca : 0 ←l ∼ l(∼ l(a ∧m a′))
cb : 0 ←l ∼ l(∼ l(b ∧m b′)

The aggregator of P ′ is AP ′ = (Ac({aca , bcb}),AP). Now, consider an interpretation I = {a0.2, (¬b)0.2,
(¬a)0.4} of P and the corresponding interpretation I ′ = {a0.2, b′0.2, a′0.4} of P ′. Computing Ic we obtain that
Ic(a) = 1−(I(a)∧mI(¬a)) = 1−(0.2∧m0.4) = 0.8 and likewise Ic(b) = 1−(I(b)∧mI(¬b)) = 1−(0∧m0.2) = 1.
Computing ρI′ we easily obtain ρI′(r1) = ρI′(r2) = ρI′(r3) = 1; for ca and cb we obtain ρI′(ca) =∼ l(∼
l(a ∧m a′) →l 0) = 1 − (Ic(a) →l 0) = 1 − (1 − Ic(a)) = Ic(a) and likewise for cb we get ρI′(cb) = Ic(b).
The evaluation of AP ′ with ρI′ then gives AP ′(ρI′) = (Ac({aIc(a), bIc(b)}),AP (ρI′)) = (Ac(Ic),AP (ρI′)).
Hence, the aggregator indeed maps an interpretation to a tuple containing the consistency degree and the
rule aggregation score.

The following proposition links our definition to the strong negation approach of [64].

Proposition 15. Let P be an AFASP program with strong negation and let P ′ be its strong-negation free
version. Then an interpretation I ′ of P ′ is an (x, y)-answer set of P iff the corresponding interpretation I
of P is an x-consistent y-answer set in the sense of [64].

9. Relationship to Existing Approaches

The study of extensions of ASP has received plenty of attention over the past years, including the
efforts of the European Working Group on Answer Set Programming (WASP) [51]. The main objectives
of such a study are (1) researching the complexity and additional expressivity certain extensions bring; (2)
investigating whether extensions can be compiled to a core language that is easy to implement, or is already
implemented. Certain interesting links have been brought to light in this research. For example, it has been
shown that nested expressions can be translated to disjunctive logic programs [52] and that aggregates can
be translated to normal logic programs [53]. Next to these general extensions to ASP, the translation of
other frameworks to ASP has also been studied. For example DLV supports abduction with penalization
[54] through its frontend by compiling this framework to a logic program with weak constraints [5]. For
preferences in ASP a common implementation method is to use a meta-formalism that can be compiled into

18

a generate program that finds answer sets and a check program that checks whether the generated answer
sets are optimal [3, 4]. Though the preference extensions have a higher complexity, this method ensures
that programs with preferences can still be solved using off the shelf ASP solvers such as Smodels [58] and
DLV [34].

The combination of answer set programming and logic programming with uncertainty theories has
also received a lot of attention. Among others, there have been extensions of logic programming us-
ing probabilistic reasoning [9, 17, 37, 38, 47, 48, 61], possibilistic reasoning [1, 49, 50], fuzzy reason-
ing [6, 20, 39, 40, 41, 42, 43, 55, 61, 64, 65, 66], and more general many-valued or uncertainty reason-
ing [7, 8, 10, 11, 12, 15, 16, 26, 27, 28, 29, 31, 32, 33, 35, 36, 46, 57, 59, 60, 62, 63]. Roughly, one can divide
these approaches in two classes, viz. implication-based (IB) and annotation-based (AB) frameworks [60]. In
the implication-based setting a rule is generally of the form

a
w← α

where a is an atom, α is a body expression6, and w ∈ L, with L the lattice used for truth values. Intuitively,
such a rule denotes that in any model of the program the truth degree of the implication α → a must be
greater than or equal to the weight w. In the annotation-based approaches one considers annotations, which
are either constants from the truth lattice L, variables ranging over this truth lattice, or functions over
elements of this truth lattice applied to annotations. A rule is then of the form

a : µ← b1 : µ1, . . . , bn : µn

where a, a1, . . . , an are atoms and µ, µ1, . . . , µn are annotations. Intuitively, an annotated rule denotes that
if the certainty of each bi is at least µi, then the certainty of a is at least µ. The links between these two
approaches are well-studied in e.g. [12, 27, 32, 33]. In this section, we give an overview of these related
approaches and study their links with CFASP.

9.1. Fuzzy and Many-Valued Logic Programming Without Partial Rule Satisfaction

Many proposals for fuzzy and many-valued logic programming have rules that need to be completely
fulfilled. In this category one finds most annotation-based approaches, e.g. [6, 26, 27, 55, 60, 63] and some
implication-based approaches where the weight of each rule is 1, e.g. [10, 11, 12, 29]. Some of these proposals
only contain monotonic functions in rules (e.g. the AB approach from [6, 27] and the IB approaches from
[11, 12, 29]), while others feature negation (e.g. the AB approaches from [26, 55, 60, 63]) or even arbitrary
decreasing functions (e.g. the IB approach from [10, 59]). Since the semantics of the IB approaches correspond
to the semantics of CFASP the results presented in this paper show that the approaches with arbitrary
decreasing functions can actually be simulated in the approaches with negation. Stronger even, they can
also simulate constraints, AFASP, S-implicators and classical negation.

This furthermore means that CFASP also inherits the modelling power that is already present in some
of these proposals. For example, from the embeddings shown in [9, 12], and using the fact that we can
embed [10] in our approach using the simulation of decreasing functions, we inherit the capacity to translate
Generalized Annotated Logic Programs [27], Probabilistic Deductive Databases [30], Possibilistic Logic
Programming [14], Hybrid Probabilistic Logic Programs [13]7 and Fuzzy Logic Programming [65] to CFASP.

9.2. Weighted Rule Satisfaction Approaches

Some IB approaches to fuzzy and many-valued logic programming feature partial rule fulfillment by
adding “weights” to rules (e.g. [7, 8, 15, 32, 33, 35, 36, 39, 40, 42, 43, 44, 45, 57]). These weights are
specified manually and they reflect the minimum degree of fulfillment required for a rule. Formally, such a
rule takes on the form of

a
w← α

6We define this in more detail further on.
7Note that the translation process in [9] is exponential in the size of the program, but, as the authors point out, this is to

be expected as reasoning in these programs in most cases is exponential.

19

where a is an atom, α is a body expression (explained further on), ← corresponds to a residual implicator
over [0, 1] that is denoted as →r and w is a value of [0, 1]. For convenience we denote the t-norm of which
→r is the residual implicator as ∧r. Furthermore we will use rh and rb to refer to the head, resp. the body
of a rule r as usual, and rw to refer to the weight w. In the case of [15, 39, 40, 42, 43, 57], the bodies of rules
are of the form b1∧1 . . .∧n−1 bn, where bi (1 ≤ i ≤ n) is an atom and ∧j (1 ≤ j ≤ n−1) is a t-norm. In some
cases these bodies are augmented with negation-as-failure literals, such as in [39, 40, 42, 43, 44, 45]. Other
approaches, such as [7, 8, 32, 33, 35, 36], have rule bodies of the form f(b1, . . . , bn), where bi (1 ≤ i ≤ n) are
atoms and f is a monotonically increasing L → L function. Some of these approaches feature negation-as-
failure under the well-founded semantics [35, 36]. Furthermore, [7] allows a combination of multiple lattices
to be used for rules. This last feature is obtained in CFASP by using the cartesian product of all these
lattices as the lattice for program rules and using the corresponding projections to extend the operators
used to this product lattice.

The semantics of a program consisting of weighted rules without negation-as-failure is defined in two
equivalent ways in the literature. We will take [40] and [7] as examples of these two methods, but the
following discussion equally applies to all the approaches mentioned earlier, barring some minor syntactical
issues. In the case of [40], an interpretation M is called a model of a program P when for all r in P it
holds that M(rh) ≥M(rb ∧r rw). Answer sets of these programs are then defined as minimal models. In
[7], answer sets are defined as the least fixpoints of an immediate consequence operator, defined for a
program P , interpretation I of P and atom l ∈ BP , as:

ΠP (I)(l) = sup{I (rb ∧r rw) | r ∈ Pl}

It can be shown that these two types of semantics coincide (see e.g. [39]). We can simulate programs with
weighted rules in CFASP as well. For example, consider the following program P :

a
0.7←m 0.9

b
0.5←m a

where rules with ←m are associated with the Gödel implicator. The (unique) answer set of P is A =
{a0.7, b0.5}. The corresponding CFASP program is P ′:

r1 : a ← 0.9 ∧m 0.7
r2 : b ← a ∧m 0.5

One can easily verify that the unique answer set of P ′ is also A. In general we can just replace a weighted
rule of the form a

w← α with a CFASP rule r : a← α ∧r w. For a formal proof we refer to [22].
Last, for programs with weighted rules that have negation-as-failure and monotonically increasing func-

tions the semantics are defined using a Gelfond-Lifschitz reduct that is similar to CFASP. Hence, the trans-
lation above also works for programs with negation-as-failure, which moreover means that these languages
have the same expressive power as CFASP.

9.3. Aggregated Fuzzy Answer Set Programming

In [64], an aggregated fuzzy answer set programming framework is introduced. It differs from the
AFASP language in Section 6 by using unfounded sets instead of fixpoints to define the semantics and
by placing more restrictions on the syntax. Syntactically, in [64], a rule over a lattice L is of the form
r : a← b1 ∧ . . .∧ bn∧ ∼ c1 ∧ . . .∧ ∼cm, where a, bi (1 ≤ i ≤ n), cj (1 ≤ j ≤ m) are atoms, ∧ is a t-norm on
L and ∼ is a negator on L. A program is a collection of rules with the same t-norm and negator. Hence, in
a single program only a single t-norm and negator can be used.

Semantically, in [64] an answer set M has a degree k, which, as in Section 6, reflects the value of an
aggregator function that combines the degree of satisfaction of the rules in the program into a value in
the lattice underlying the program. Furthermore, an answer set is defined in [64] as a model that is free
from unfounded sets. Intuitively, the concept of unfounded set provides a direct formalization of “badly
motivated” conclusions.

20

Formally, a set X of atoms is called unfounded w.r.t. an interpretation I of a program P iff for all a ∈ X,
every rule r : a← α ∈ P satisfies either

(i) X ∩ α 6= ∅, or

(ii) Is(a, ρI(r)) < I(a), or

(iii) I(rb) = 0

Intuitively, condition (i) above describes a circular motivation while (ii) asserts that a is overvalued w.r.t. r.
Condition (iii) is needed to ensure that the semantics are a proper generalization of the classical semantics.
Answer sets to a degree k are then defined in [64] as k-models that are free from unfounded sets, i.e.
a k-model M is a k-answer set iff supp(M) ∩ X = ∅ for any unfounded set X, where we recall that
supp(M) = {a | a ∈ BP ,M(a) > 0}. A nice feature is that this single definition covers any program P ,
regardless of whether it is positive, or has constraint rules. The downside is that generalizing this definition
to programs with arbitrary monotonic functions is non-trivial.

In [24] it is shown that, when a total ordering is used in the lattice, the semantics of [64] correspond
to the semantics that we use for AFASP in Section 6. Hence, due to the syntactical differences CFASP
is more expressive than the framework introduced in [64]. When the ordering used is not total, however,
this equivalence is no longer valid. For example, consider the lattice (B × B,≤) such that (1, 1) is the top
element of the lattice, (0, 0) is the bottom element and (0, 0) ≤ (0, 1) ≤ (1, 1) and (0, 0) ≤ (1, 0) ≤ (1, 1).
Now consider an AFASP program P , with AP (ρ) = inf{ρ(r) | r ∈ P}, over this lattice:

r1 : a← (1, 0)

r2 : a← (0, 1)

According to the property of residual implicators that x→ y = 1L iff x ≤ y, any interpretation I of P that
satisfies rule r1 to the degree (1, 1) must obey I(a) ≥ (1, 0). Likewise any interpretation I that satisfies r2 to
the degree (1, 1) must obey I(a) ≥ (0, 1). Hence the only 1-model of P is I = {a(1,1)}. However, according
to rule (ii) above {a} is an unfounded set, which means that under the unfounded semantics I is not an
answer set of P . On the other hand, I = Π∗P I ,ρI

, and thus I is an answer set of P according to the fixpoint
semantics. If we consider rules as constraints that need to be fulfilled, the fixpoint semantics correspond
better to our intuition.

10. Concluding Remarks

In this paper we have introduced a core language for FASP, motivated by the usefulness of the basic core
languages that exist for ASP. Furthermore, we have shown that this core language is sufficiently expressive
to cover many common extensions to FASP that have been suggested in the literature. Specifically we have
proven that constraints, monotonically decreasing functions, aggregators, S-implicators and strong negation
can be expressed by this core language. We have also shown that in the case of constraints and strong
negation these simulations bear a great resemblance to the simulations that exist for classical ASP, which
provides additional insights into the connection between classical ASP and FASP.

Our analysis is important both from a theoretical and practical point of view. From the theoretical
perspective, our core language makes reasoning over FASP simpler, while our simulation results show that
the theoretical results are still strong enough to cover a whole range of FASP programs. From the practical
perspective our results show that to implement a solver we only need to implement one for the core language.
The extensions can then be added in the front end of the solver, rather than needing to cope with it in the
back end. For programs that only have t-norms in rule bodies we can use the results in [21] to implement
this core language. For programs that only have linear functions in rule bodies we can use the results from
[56].

Last, the fact that many extensions of FASP can be compiled to this reduced core does not mean that
these extensions are useless: many of the simulations provided in this paper are cumbersome. To make
FASP an intuitive language that is easy to model in, these extensions are thus of crucial importance.

21

Acknowledgment

We would like to thank the anonymous reviewers for their useful suggestions and remarks. Jeroen Janssen
is funded by a research project from the Flemish Fund for Scientic Research (FWO-Vlaanderen). Steven
Schockaert is a post-doctoral fellow of the Flemish Fund for Scientic Research (FWO-Vlaanderen).

Appendix A. Proofs

Appendix A.1. Proofs of Section 4.1

Proposition 1. Let P be a CFASP⊥ program over ([0, 1],≤) and a ∈ BP . Then if M ′ is an answer set
of the interval-constrained version of P w.r.t. a and the interval [l, u] (with l and u in [0, 1]), called P ′, it
holds that M ′(a) ∈ [l, u].

Proof of Proposition 1. Since M ′ is a model of P ′, we know that M ′(uppa) ≥ 1 and M ′(lowa) ≥ 1. Hence,
M ′(uppa) = 1 and M ′(lowa) = 1. From the residuation principle we then obtain both that u ≥ M ′(a) and
M ′(a) ≥ l, hence M ′(a) ∈ [l, u].

Appendix A.2. Proofs of Section 4.2

First, we introduce a number of technical lemmas for the proof of Proposition 2.

Lemma 1. Let P be a CFASP⊥ program and let P ′ be the corresponding CFASP program as defined by
Definition 9. If M is an answer set of P and M ′ = M ∪ {ckk | k ∈ KP } ∪ {⊥0}, for any interpretation I of
P ′ it holds that

(ΠP ′M′ (I)) ∩ BP = ΠPM (I ∩ BP)

Proof. First, suppose a 6∈ BP . From this assumption we know that ((ΠP ′M′ (I))∩BP)(a) = 0. Furthermore,
by definition of ΠPM we know that (ΠPM (I ∩ BP))(a) = sup{(I ∩ BP)(rb) | r ∈ PMa }. Since PMa = ∅
due to a 6∈ BP we thus must conclude that (ΠPM (I ∩ BP))(a) = 0, and thus ((ΠP ′M′ (I)) ∩ BP)(a) =
(ΠPM (I ∩ BP))(a).

Now, suppose a ∈ BP . By definition of ΠP ′M′ we have

(ΠP ′M′ (I) ∩ BP)(a) = sup{I(r′b) | r′ ∈ P ′
M ′

a }

By definition of the reduct of a program we obtain

(ΠP ′M′ (I) ∩ BP)(a) = sup{I((r′b)
M ′

) | r′ ∈ P ′a} (A.1)

Any r ∈ Pa is by definition a non-constraint rule and thus is mapped to r′ ∈ P ′a such that r = r′. Furthermore
the only rules in P ′a are rules that correspond to some r ∈ Pa, leading to the conclusion that Pa = P ′a. Since
M = M ′ ∩ BP we can see that for an expression α built from the literals in BP we have both αM = αM

′

and M(αM) = M ′(αM
′
). Hence, combining this with the foregoing we can see that for each r ∈ Pa and

corresponding r′ ∈ P ′a we have

I(rMb) = I((r′b)
M ′

) (A.2)

Combining (A.1) with (A.2) we obtain

(ΠP ′M′ (I) ∩ BP)(a) = sup{I(rMb) | r ∈ Pa}

By the definition of the reduct of a program this is equivalent to

(ΠP ′M′ (I) ∩ BP)(a) = sup{I(rb) | r ∈ PMa }

As the atoms occurring in rb of any r ∈ PMa are all atoms of BP this means that

(ΠP ′M′ (I) ∩ BP)(a) = sup{I ∩ BP (rb) | r ∈ PMa }

22

By the definition of ΠPM it then follows that

(ΠP ′M′ (I) ∩ BP)(a) = (ΠPM (I ∩ BP))(a)

Lemma 2. Let P be a CFASP⊥ program. If M is a model of P , for any rule r ∈ Pk (with k ∈ KP and KP
as defined by Definition 9) it holds that

M(rb) ≤ k

Proof. This follows easily by the observation that M(rb)→r k ≥ 1 as M is a model of P and the fact that
M(rb)→r k ≥ 1 can only be the case when M(rb) ≤ k as →r is a residual implicator.

Lemma 3. Let P be a CFASP⊥ program and let P ′ be the corresponding CFASP program as defined by
Definition 9. If M is a model of P and M ′ = M ∪ {ckk | k ∈ KP } ∪ {⊥0}, then for any interpretation I of
P ′ such that I ⊆M ′ for all k ∈ KP it holds that:

ΠP ′M′ (I)(ck) = k

Proof. Suppose k ∈ KP . First we show that for all r′ ∈ (P ′
M ′

ck
) we have I(r′b) ≤ k. By combining this with

the definition of ΠP ′M′ we then obtain the stated. Suppose r′ ∈ (P ′
M ′

ck
). The case for r′b = k is trivial, so

assume r′b 6= k. Since I ⊆M ′ we know from the fact that all functions in P ′
M ′

are monotonic that

I(r′b
M ′

) ≤M ′(r′b
M ′

)

Since M(αM) = M(α) for any rule body α this is equivalent to

I(r′b
M ′

) ≤M ′(r′b)

As r′ ∈ (P ′
M ′

ck
) by definition of P ′ there must be a corresponding r ∈ CP such that rh = k and rb = r′b. As

M = M ′ ∩ BP and all atoms occurring in r′b are atoms in BP we thus obtain

I(r′b
M ′

) ≤M(rb)

Using Lemma 2 on rule r, which is a constraint rule, we obtain

I(r′b
M ′

) ≤ k

Now from the definition of ΠP ′M′ (I)(ck) we obtain

ΠP ′M′ (I)(ck) = sup{I(rb) | r ∈ P ′
M ′

ck
}

From the former and the definition of rk we know that k is the supremum of {I(rb) | r ∈ P ′M
′

ck
} and thus

ΠP ′M′ (I)(ck) = k

Lemma 4. Let P be a CFASP⊥ program and let P ′ be the corresponding CFASP program as defined by
Definition 9. If M is an answer set of P and M ′ = M ∪ {ckk | k ∈ KP } ∪ {⊥0}, then M ′ is a fixpoint of
ΠP ′M′ .

23

Proof. Observe that BP ′ can be partitioned in BP ∪ {ck | k ∈ KP } ∪ {⊥}. We will consider these partitions
separately. First, for a certain k ∈ KP we know by Lemma 3 that ΠP ′M′ (M ′)(ck) = k = M ′(ck). As

M ′(⊥) = 0, it also easily follows by definition of P ′
M ′

that ΠP ′M′ (M ′)(⊥) = 0 = M ′(⊥). For BP , by
definition M = M ′ ∩ BP holds; hence by Lemma 1, the definition of M ′ and the fact that M is a fixpoint
we obtain

ΠP ′M′ (M ′) ∩ BP = ΠPM (M ′ ∩ BP)

= ΠPM (M)

= M

= M ′ ∩ BP

Hence ΠP ′M′ (a) = M ′(a) for all a ∈ BP .

Proposition 2. Let P be a CFASP⊥ program and let P ′ be its corresponding CFASP program as defined
by Definition 9. If M is an answer set of P , then M ′ = M ∪ {ckk | k ∈ KP } ∪ {⊥0} is an answer set of P ′,
where KP is defined as in Definition 9.

Proof of Proposition 2. We have to show that M ′ is the least fixpoint of ΠP ′ . First, suppose that M = ∅,
then it is easy to see that M ′ = M ∪{ckk | k ∈ KP }∪ {⊥0} is the least fixpoint of ΠP ′M′ and thus an answer
set of P ′. Second, for M 6= ∅, let 〈Ji | i an ordinal〉 and 〈J ′i | i an ordinal〉 be the sequence corresponding to
the computation of the least fixpoint of ΠPM , resp. ΠP ′M′ . We show that

J ′i = Ji ∪ {ck
k | k ∈ KP} ∪ {⊥0} (A.3)

for any ordinal i > 0 from which the proposition readily follows by transfinite induction.
First note that for any ordinal i it must hold that J ′i ⊆ M ′ due to Π∗

P ′M′ ⊆ M ′ by Lemma 4 and the

fact that J ′i ⊆ Π∗
P ′M′ . If i is a successor ordinal (including 1), then (A.3) follows from Lemmas 3, 1 and the

observation that I((r′k)b) = 0 for any I with I(ck) = k.
If i is a limit ordinal then, by definition, J ′i =

⋃
j<i J

′
j which, using the induction hypothesis, yields

J ′i =
⋃
j<i Jj ∪ {ck

k | k ∈ KP} ∪ {⊥0} from which (A.3) follows immediately.

To prove Proposition 3, we first introduce the following lemma.

Lemma 5. Let P be a CFASP⊥ program and let P ′ be the corresponding CFASP program as defined by
Definition 9. If M ′ is an answer set of P ′, then

(∀k ∈ KP : M ′(ck) = k) ∧M ′(⊥) = 0

with KP as defined by Definition 9.

Proof. For any ck, with k ∈ KP , it must hold that M ′(ck) ≥ k as M ′(rk) = 1 due to M ′ being a model of
P ′. Likewise M ′(r′k) = 1. However, M ′(ck) > k for such a k is impossible since the definition of P ′ would
imply that

M ′(⊥) = ΠP ′M′ (M ′)(⊥)

= sup{M ′((r′k′)b) | k′ ∈ KP }

Now for any k′ ∈ KP such that ¬(M ′(ck′) > k′) we have by definition of r′k′ that M ′((r′k′)b) = 0. For the
earlier chosen k we obtain that M ′((r′k)b) = (∼M ′(⊥) > 0). It is easy to see that M ′(⊥) = (∼M ′(⊥) > 0)
has no solution however, contradicting that M ′ is an answer set if such a k exists. This means M ′(ck) = k
for any k ∈ KP and thus also

M ′(⊥) = M ′((∼⊥ > 0) ∧ (ck > k)) = 0

completing the proof.

24

Proposition 3. Let P be a CFASP⊥ program and let P ′ be its corresponding CFASP program as defined
by Definition 9. If M ′ is an answer set of P ′, then M = M ′ ∩ BP is an answer set of P .

Proof of Proposition 3. Using Definition 9 and Lemma 5 it is easy to verify that P ′
M ′

contains the following
rules, where M = M ′ ∩ BP :

P ′
M ′

= {r′ : a← α | (r : a← α) ∈ (P \ CP)M}
∪ {r′ : ck ← α | (r : k ← α) ∈ CPM}
∪ {rk : ck ← k | k ∈ KP }
∪ {r′k : ⊥ ← (1 > 0) ∧ (ck > k) | k ∈ KP }

By construction of P ′ and M we know that for each r ∈ P we have M(r) = M ′(r′). Thus M is a model of
P .

Second, M is clearly a fixpoint of ΠPM as only the rules from {r′ : a ← α | (r : a ← α) ∈ (P \ CP)M},
which are identical to those in (P \ CP)M , are used in computing ΠP ′M′ (M) = M . Hence Π∗PM ⊆ M .
Suppose now that Π∗PM ⊂M , then for M ′′ = Π∗PM ∪ {ckk | k ∈ KP } ∪ {⊥0} it must hold that M ′′ ⊂M ′ due
to Lemma 5. Using Lemma 3 we know that ΠP ′M′ (M ′′)(ck) = k = M ′′(ck); furthermore we can easily see
that ΠP ′M′ (M ′′)(⊥) = 0 = M ′′(⊥) and for a ∈ BP that ΠP ′M′ (M ′′)(a) = M ′′(a) from the definition of P ′

and M ′′. This means that M ′′ is a fixpoint of ΠP ′M′ , which contradicts the fact that M ′ is the least fixpoint
of ΠP ′M′ . Thus M = Π∗PM , meaning M is an answer set of P .

Appendix A.3. Proofs of Section 5

Proposition 4. Let P be a CFASPf program and let P ′ be its corresponding CFASP program as defined
by Definition 13. If M is an answer set of P , then M ′ = M ∪ {notl∼M(l) | l ∈ NP } is an answer set of P ′.

Proof of Proposition 4. We have to show that M ′ is the least fixpoint of ΠP ′M′ . First, note that for any
l ∈ NP by definition of P ′ and M ′

ΠP ′M′ (M ′)(notl) =∼M ′(l) =∼M(l) = M ′(notl) (A.4)

Now, for a ∈ BP each rule r : a← f(b1, . . . , bn; c1, . . . , cm) in P is replaced by r : a← f ′(b1, . . . , bn, notc1 ,
. . . , notcm), with f ′ as in Definition 13. Hence since M ′(notl) =∼M(l) we obtain that

M(f(b1, . . . , bn; c1, . . . , cm)M) = M ′(f ′(b1, . . . , bn, notc1 , . . . , notcm)
M ′

) (A.5)

and also
M(r) = M ′(r′) (A.6)

since ∼ is involutive, M = M ′ ∩BP and the atoms occurring in P are all atoms of BP . As M is a fixpoint of
ΠPM , it then follows from (A.4), (A.5), (A.6) and by definition of M ′ that M ′ must be a fixpoint of ΠP ′M′

(one only has to work out the definition of ΠP ′M′ together with the formerly mentioned equations to see
this).

Suppose now there is some M ′′ ⊂ M ′ that is also a fixpoint of ΠP ′M′ . By definition of P ′ it is easy to
see that for each l ∈ NP it then must hold that M ′′(notl) =∼M ′(l) =∼M(l). From this it follows that for
each r ∈ P we obtain (M ′′ ∩ BP)((rb)

M) = M ′′(r′b) by definition of P ′ and thus we obtain for each a ∈ BP :

ΠPM (M ′′ ∩ BP)(a) = sup{M ′′ ∩ BP (αM) | r : a← α ∈ P}

= sup{M ′′(α′) | r′ : a← α′ ∈ P ′M
′

}
= ΠP ′M′ (M ′′)(a)

= M ′′(a)

Hence M ′′ ∩BP is a fixpoint of ΠPM . However, since for each l ∈ NP we have M ′′(notl) = M ′(notl) and as
M ′′ ⊂ M ′, it holds that M ′′ ∩ BP ⊂ M . This however contradicts the fact that M is the least fixpoint of
ΠPM , showing no such M ′′ can exist and thus M ′ is the least fixpoint of ΠP ′M′ .

25

Proposition 5. Let P be a CFASPf program and let P ′ be its corresponding CFASP program as defined
by Definition 13. If M ′ is an answer set of P ′, then M = M ′ ∩ BP is an answer set of P .

Proof of Proposition 5. By definition of P ′ it is not hard to see that for each rule r ∈ P we have

M((rb)
M) = M ′(r′b) (A.7)

We show that M is the least fixpoint of ΠPM . From (A.7) we can easily see that M must be a fixpoint
of ΠPM . Now suppose some M ′′ (with M ′′ ⊂ M) is also a fixpoint of ΠPM . Then we can construct

M ′′′ = M ′′ ∪ {not∼M(l)
l | l ∈ NP }. It is not hard to see that for each rule r ∈ P :

M ′′((rb)
M) = M ′′′(r′b)

Hence, as M ′′ is a fixpoint of ΠPM , we obtain that M ′′′ is also a fixpoint of ΠP ′M′ , contradicting the fact
that M ′ is an answer set of P ′.

Appendix A.4. Proofs of Section 6

We first include some general propositions on the AFASP framework that will be useful below.

Proposition 16. Let I be an interpretation of a rule r : a ← α (over the lattice L). Then Is(r, w) =
I(α) ∧r w, with w ∈ L.

Proof. See [23].

Proposition 17. Let I1 and I2 be interpretations of a rule r : a← α with α a positive expression (over the
lattice L) such that I1 ⊆ I2. Then (I1)s(r, w) ≤ (I2)s(r, w).

Proof. Using Proposition 16 and the monotonicity of t-norms we can easily see that:

(I1)s(r, w) = I1(α) ∧r w ≤ I2(α) ∧r w = (I2)s(r, w)

Proposition 18. Let P be a simple AFASP program and ρ a rule interpretation of this program. The
immediate consequence operator ΠP,ρ is monotonically increasing, i.e. for every two interpretations I1 and
I2 it holds that

I1 ⊆ I2 ⇒ ΠP,ρ(I1) ⊆ ΠP,ρ(I2)

Proof. Can be easily seen by the definition of the immediate consequence operator, Proposition 16 and the
monotonicity of t-norms.

Proposition 19. Let M be an m-answer set (m ∈ LP) of an AFASP program P . Then M is a fixpoint of
ΠP,ρM .

Proof. Suppose a ∈ BP , then using the definition of ΠP,ρM , Proposition 16, the definition of the reduct, and
since M is a fixpoint of ΠPM ,ρM (by the definition of answer set), we obtain:

ΠP,ρM (M)(a) = sup{Ms(r, ρM (r)) | r ∈ (RP)a}
= sup{M(rb) ∧r ρM (r) | r ∈ (RP)a}
= sup{M(rMb) ∧r ρM (rM) | r ∈ (RP)a}
= sup{Ms(r, ρM (r)) | r ∈ (RP)Ma }
= M(a)

Using the above propositions we can prove the results of this section.

26

Proposition 6. Let P be an AFASP program with RP = {r1, . . . , rn} and let P ′ be its corresponding
CFASPf program as defined by Definition 14. If M is an m-answer set of P , then M ′ = M∪{aggrAP (ρM)}∪
{not∼M(a)

a | a ∈ BP } ∪ {r′i
M(r) | r ∈ RP } is an answer set of P ′.

Proof of Proposition 6. We show that M ′ is the least fixpoint of ΠP ′M′ . First we show that it is a fixpoint
of ΠP ′M′ . We consider four cases:

1. For aggr ∈ BP ′ we obtain by definition of P ′ and M ′ that

ΠP ′M′ (M ′)(aggr) = M ′(f(r′1i, . . . , r
′
ni)) = AP (ρM) = M ′(aggr)

2. For a ∈ BP and corresponding nota ∈ BP ′ we obtain using the definition of M ′ that

ΠP ′M′ (M ′)(nota) = M ′((∼a)M
′
) = M ′(∼M ′(a)) = M ′(∼M(a)) = M ′(nota)

3. For r : a← α ∈ RP and corresponding r′i ∈ BP ′ we obtain using the definition of M ′ and the definition
of P ′ that

ΠP ′M′ (M ′)(r′i) = M ′((α′ →r (∼nota))M
′
)

= M ′(α′)→r M
′(∼nota)

= M(α)→r∼(∼M(a))

= M(α)→r M(a)

= M(r)

= M ′(r′i)

4. For a ∈ BP we obtain, using the definition of P ′, the fact that for any expression α and interpretation
of α we have I(αI) = I(α), the definition of the reduct of a program and the fact that M is a fixpoint
of ΠPM ,ρM that

ΠP ′M′ (M ′)(a) = sup{M ′((α)M
′
) ∧r M ′(r′i) | (r : a← α) ∈ Pa}

= sup{M(αM) ∧r ρM (r) | (r : a← α) ∈ Pa}
= sup{M(αM) ∧r ρM (rM) | (r : a← α) ∈ Pa}
= sup{M(α) ∧r ρM (r) | (r : a← α) ∈ PMa }
= sup{Ms(r, ρM (r)) | (r : a← α) ∈ PMa }
= M(a)

= M ′(a)

Hence we can conclude that M ′ is a fixpoint of ΠP ′M′ . Now suppose there is an interpretation M ′′ ⊂M ′ of
P ′ such that M ′′ is also a fixpoint of ΠP ′M′ . For a ∈ BP we then obtain by definition of P ′ that

ΠP ′M′ (M ′′)(nota) = M ′′((∼a)M
′
) = M ′′(∼M ′(a)) =∼M ′(a)

Hence M ′′(nota) = M ′(nota) for each a ∈ BP . For (r : a ← α) ∈ RP we obtain by definition of P ′, the
fact that in (α′)M

′
there are no naf-literals and the fact that implicators are increasing in their first and

decreasing in their second argument that

ΠP ′M′ (M ′′)(r′i) = M ′′((α′ →r (∼nota))M
′
)

= M ′′(M ′(α′)→r (∼M ′(nota)))

= M ′′(M(α)→r (∼(∼(M(a)))))

= M ′′(M(α)→r M(a))

= M(r) = M ′(r′i)

27

From this and the definition of P ′ it then also easily follows that M ′′(aggr) = M ′(aggr). Hence as M ′′ ⊂M ′,
from the foregoing it follows that M ′′ ∩ BP ⊂M . Now for each a ∈ BP we can show that

ΠPM ,ρM (M ′′)(a) = sup{M ′′(αM) ∧r ρM (r) | (r : a← α) ∈ RP }

= sup{M ′′(αM
′
) ∧r ρM (r) | (r : a← α) ∈ RP }

= sup{M ′′(αM
′
) ∧r M ′′(r′i) | (r : a← α) ∈ RP }

= sup{(M ′′(αM
′
) ∧r M ′′(r′i)) ∧r′ ρM ′(r′) | (r : a← α) ∈ RP }

= sup{M ′′s (r′, ρM ′(r′)) | (r : a← α) ∈ RP }
= ΠP ′M′ (M ′′)(a)

= M ′′(a)

meaning M ′′ ∩ BP is a fixpoint of ΠPM , contradicting the fact that M is the least fixpoint of ΠPM . Hence
such an M ′′ cannot exist and M ′ is the least fixpoint of ΠP ′M′ .

Proposition 7. Let P be an AFASP program and let P ′ be its corresponding CFASPf program as defined
by Definition 14. If M ′ is an answer set of P ′, with m = M ′(aggr), then M ′ ∩BP is an m-answer set of P .

Proof of Proposition 7. We have to show that for M = M ′∩BP we have AP (ρM) ≥ m for any m ≤M ′(aggr)
and that M is the least fixpoint of ΠPM ,ρM . First we show that AP (ρM) ≥ m for any m ≤ M ′(aggr).
Suppose m ∈ LP such that m ≤ M ′(aggr). Since M ′ is a fixpoint of ΠP ′M′ from the definition of P ′ we
can easily see that for any a ∈ BP we must have M ′(nota) =∼M ′(a) =∼M(a) as there is only one rule
with nota in the head and likewise that for any (r : a← α) ∈ RP and corresponding r′i ∈ BP ′ we must have
M ′(r′i) = M ′(α →r∼nota) = ρM (r). Furthermore it follows that M ′(aggr) = M ′(f(r′1i, . . . , r

′
ni)) as again

there is only one rule with aggr in the head and thus as M ′(f(r′1i, . . . , r
′
ni)) = AP (ρM) by construction of

P ′ that AP (ρM) ≥ m as M ′(aggr) ≥ m.
Second we show that M is the least fixpoint of ΠPM ,ρM . First we show that M is a fixpoint of ΠPM ,ρM .

Suppose a ∈ BP , then from the fact that M ′ is a fixpoint of ΠP ′M′ , the definition of M , the fact that for
any expression α we have M(αM) = M(α) and the foregoing part of the proof we know that:

M ′(a) = ΠP ′M′ (M ′)(a)

= sup{M ′((α ∧r r′i)M
′
) | (r : a← α) ∈ RP }

= sup{M ′(αM
′
) ∧r M ′(r′i) | (r : a← α) ∈ RP }

= sup{M(αM) ∧r ρM (r) | (r : a← α) ∈ RP }
= sup{M(αM) ∧r ρM (rM) | (r : a← α) ∈ RP }
= sup{Ms(r, ρM (r)) | (r : a← α) ∈ (RP)M}
= ΠPM ,ρM (M)(a)

Hence M is a fixpoint of ΠPM ,ρM . Now suppose there is some M ′′ ⊂ M such that M ′′ is also a fixpoint

of ΠPM ,ρM . Consider then M ′′′ = M ′′ ∪ {aggrM ′(aggr)} ∪ {not∼M(a)
a | a ∈ BP } ∪ {r′i

ρM (r) | (r : a ← α) ∈
RP }. Obviously M ′′′ ⊂ M ′ by construction. We show that M ′′′ is a fixpoint of ΠP ′M′ contradicting the
assumption that M ′ is an answer set of P ′. Since BP ′ can be partitioned in the four sets {nota | a ∈ BP },
{r′i | (r : a← α) ∈ RP }, {aggr} and BP we consider the elements in these four partitions separately:

1. For a ∈ BP and the corresponding nota ∈ BP ′ we obtain

ΠP ′M′ (M ′′′)(nota) = M ′′′((∼a)M
′
) = M ′′′(∼M ′(a)) =∼M ′(a) = M ′′′(nota)

28

2. For (r : a← α) ∈ RP and the corresponding r′i we obtain

ΠP ′M′ (M ′′′)(r′i) = M ′′′((α′ →r (∼nota))M
′
)

= M ′′′((M ′(α′)→r (∼(∼(M ′(a)))))

= M ′(α′)→r M
′(a)

= M ′(α)→r M
′(a)

= M(α)→r M(a)

= ρM (r)

= M ′′′(r′i)

3. For aggr we obtain

ΠP ′M′ (M ′′′)(aggr) = M ′′′(f(r′1i, . . . , r
′
ni))

= f(ρM (r1), . . . , ρM (rn))

= AP (ρM)

= M ′(aggr)

= M ′′′(aggr)

4. Suppose a ∈ BP . Since M ′′ is a fixpoint of ΠPM ,ρM and M ′′ = M ′′′ ∩ BP it follows that M ′′′ ∩ BP is
a fixpoint of ΠPM ,ρM . From this we obtain:

ΠP ′M′ (M ′′′)(a) = sup{M ′′′((α ∧r r′i)M
′
) | r : a← α ∈ RP }

= sup{M ′′′(αM
′
) ∧r M ′′′(r′i) | r : a← α ∈ RP }

= sup{M ′′′(αM) ∧r ρM (r) | r : a← α ∈ RP }
= sup{M ′′′s (rM , ρM (r)) | r : a← α ∈ RP }
= ΠPM ,ρM (M ′′′)(a)

= M ′′′(a)

Hence M ′′′ is a fixpoint of ΠP ′M′ . This is however impossible as M ′ is an answer set of P ′ and thus the
least fixpoint of ΠP ′M′ . Thus no such M ′′ can exist and M is the least fixpoint of ΠPM .

Proposition 8. Let P be an AFASP⊥ program and let P ′ be its corresponding AFASP program as defined by
Definition 15. If M is an m-answer set of P for some m ∈]0, 1], it holds that M ′ = M∪{ckk | k ∈ KP }∪{⊥0}
is an m-answer set of P ′, where KP is as defined by Definition 15.

Proof of Proposition 8. Suppose M is an m-answer set of P for some m ∈]0, 1]. Then by definition of answer
sets we know that M = Π∗PM ,ρM

and AP (ρM) ≥ m. By construction of M ′ we immediately obtain that

AP ′(ρM ′) = AP (ρM) ≥ m. Hence, if we show that M ′ = Π∗
P ′M′ ,ρM′

the stated follows.

Since AP ′(ρM ′) > 0 and by construction of P ′ we know that

ρM ′(rk) = ρM ′(r′k) = 1 (A.8)

Now, consider program C defined as C = {r : a ← α ∧ ρM (r) | r : a ← α ∈ RP }, with ∧ an arbitrary
t-norm. By definition of the immediate consequence operator it is easy to see that

ΠPM ,ρM = ΠCM (A.9)

Now consider C ′, the constraint free version of C obtained using the procedure outlined in Section 4. By
construction of C, C ′ and P ′ and from (A.8) it is easy to see that

ΠP ′M′ ,ρM′ = ΠC′M′ (A.10)

29

From Proposition 2 we know that if M is an answer set of C, it follows that M ′ is an answer set of C ′. Since
M is an answer set of P , it follows that M = Π∗PM ,ρM

and thus by (A.9) that M = Π∗CM . From this it also
follows that M is a model of C, and thus that M is an answer set of C. By Proposition 2 we thus obtain
that M ′ is an answer set of C ′. Using (A.10) and the fact that the former implies M ′ = Π∗

C′M′ we obtain
that M ′ = Π∗

P ′M′ ,ρM′
, from which the stated follows.

Proposition 9. Let P be an AFASP⊥ program and let P ′ be its corresponding AFASP program as defined
by Definition 15. If M ′ is an m-answer set of P ′ for some m ∈]0, 1], it holds that M = M ′ ∩ BP is an
m-answer set of P .

Proof of Proposition 9. Is similar to Proposition 8.

Proposition 10. Let P be an AFASPf program and let P ′ be its corresponding AFASP program as defined

by Definition 16. If M is an m-answer set of P for some m ∈ LP \ {0}, it holds that M ′ = M ∪ {not∼M(l)
l |

l ∈ NP } is an m-answer set of P ′, where NP is as defined by Definition 16.

Proof of Proposition 10. Is similar to Proposition 8.

Proposition 11. Let P be an AFASPf program and let P ′ be its corresponding AFASP program as defined
by Definition 16. If M ′ is an m-answer set of P for some m ∈ LP \ {0}, it holds that M = M ′ ∩ BP is an
m-answer set of P .

Proof of Proposition 11. Is similar to Proposition 8.

Appendix A.5. Proofs of Section 7

Lemma 6. Let L be a lattice, ∼an involutive negator over L, ∧ a t-norm over L, →r the residual implicator
of ∧, ∨ the t-conorm defined by x ∨ y =∼ (∼ x∧ ∼ y) and let ←s be the S-implicator induced by ∼ and ∨.
Then for any interpretation I of a rule r : a←s α and w ∈ L it holds that:

I(a←s α) ≥ w ≡ I(a←r ∼(∼w ←r α)) ≥ 1

Proof. Using the definition of←s, the residuation principle and the relationships between ∼, ∧ and ∨ stated
in Lemma 6, we obtain:

(I(a←s α)) ≥ w ≡ (I(a)←s I(α)) ≥ w
≡ (I(a)∨ ∼I(α)) ≥ w
≡ (∼(∼I(a) ∧ I(α))) ≥ w
≡ (∼I(a) ∧ I(α)) ≤ (∼w)

≡ (∼I(a)) ≤ (∼w ←r I(α))

≡ (I(a)) ≥ (∼(∼w ←r I(α)))

≡ (I(a)←r∼(∼w ←r I(α))) ≥ 1

≡ (I(a←r∼(∼w ←r α))) ≥ 1

Proposition 12. Let L be a lattice, ∼ an involutive negator over L, ∧ a t-norm over L, ∨ the t-conorm
defined by x ∨ y =∼ (∼ x∧ ∼ y) and let ←s be the S-implicator induced by ∼ and ∨. Then for any
interpretation I of a rule r : a←s α and w ∈ L it holds that:

Is(r, w) =∼(∼w ←r I(α))

30

Proof of Proposition 12. Using the definition of ←s, the definition of Is(r, w), the residuation principle, the
relationships between ∼, ∧ and ∨ stated in Proposition 12 and using Lemma 6, we obtain:

Is(r, w) = inf{y ∈ L | I(y ←s α) ≥ w}
= inf{y ∈ L | I(y ←r∼(∼w ←r α)) ≥ 1}
= inf{y ∈ L | (y ←r∼(∼w ←r I(α))) ≥ 1}
= inf{y ∈ L | y ≥∼(∼w ←r I(α)) ∧ 1}
= inf{y ∈ L | y ≥∼(∼w ←r I(α))}
=∼(∼w ←r I(α))

To show Proposition 13, we introduce a few technical lemmas.

Lemma 7. Let P be an AFASPs program and let P ′ be its corresponding AFASP program as defined by

Definition 17. Then if M is a fixpoint of ΠPM ,ρM of P , it holds for the interpretation M ′ = M ∪ {wρM (r)
r′ |

r ∈ RsP } ∪ {not
∼M(a)
a | a ∈ BP ,∃r ∈ RsP : rh = a} ∪ {not∼ρM (r)

wr′ | r ∈ RsP } of P ′ that

1. ∀r ∈ RrP : ρM ′(r) = ρM (r)

2. ∀r ∈ RsP : ρM ′(r′) = 1L
3. ∀r ∈ RsP : ρM ′(r′w) = 1L
4. ∀r ∈ RsP : ρM ′(na) = 1L
5. ∀r ∈ RsP : ρM ′(r′nwr′

) = 1L
6. ∀r ∈ RsP : ρM ′(r′c) = ρM (r)

where r′, r′w, na, and r′c are defined as in Definition 17.

Proof. We consider these cases separately:

1. Trivial from the definition of P ′ and M ′.

2. When r : a←s α ∈ RsP , from Proposition 12 we have for the corresponding r′ ∈ RP ′ by definition of
M ′ that

ρM ′(r′) = M ′(a)←M ′(∼i(notwr′ ←r α))

= M(a)←M ′(∼i(∼i ρM (r)←r α))

= M(a)←∼i(∼i ρM (r)←r M
′(α))

= M(a)←∼i(∼i ρM (r)←r M(α))

= M(a)←Ms(r, ρM (r))

= 1L

The last step follows from the fact that x ≤ y ≡ x → y = 1 for any residual implicator → and from
the fact that M is a fixpoint of ΠPM ,ρM .

3. When r : a←s α ∈ RsP , using the definition of M ′ we have for the corresponding r′w ∈ RP ′ that

ρM ′(r′w) = M ′(wr′ ← (∼inota ←s α))

= M ′(wr′)← (∼iM ′(nota)←s M
′(α))

= ρM (r)← (∼i(∼iM(a))←s M(α))

= ρM (r)← (M(a)←s M(α))

= 1L

31

4. When r ∈ RsP with rh = a, we have for the corresponding na ∈ RP ′ that

ρM ′(na) = M ′(nota ←∼i a)

= M ′(nota)←∼iM ′(a)

=∼iM(a)←∼iM(a)

= 1L

5. When r : a←s α ∈ RsP we obtain for the corresponding r′nwr′
∈ RP ′ that

ρM ′(r′nwr′
) = M ′(notwr′ ←∼iwr′) =∼i ρM (r)←∼i ρM (r) = 1L

6. When r ∈ RsP we obtain for the corresponding r′c ∈ RP ′ that

ρM ′(r′c) = M ′(0L ←i∼iwr′) =∼i(∼iM ′(wr′)) = ρM (r)

Lemma 8. Let P be an AFASPs program with M a fixpoint of ΠPM ,ρM and let M ′ = M ∪ {wρM (r)
r′ |

r ∈ RsP } ∪ {not
∼M(a)
a | a ∈ BP ,∃r ∈ RsP : rh = a} ∪ {not∼ρM (r)

wr′ | r ∈ RsP } be an interpretation of its
corresponding AFASP program P ′, as defined by Definition 17. Then any interpretation I of P and I ′ of
P ′ such that I(a) = I ′(a) for all a ∈ BP satisfies

ΠP ′M′
,ρM′

(I ′) = ΠPM ,ρM (I) ∪ {wρM (r)
r′ | r ∈ RsP } ∪ {not∼i M(a)

a | a ∈ BP ,∃r ∈ RsP : rh = a}

∪ {not∼i ρM (r)
wr′

| r ∈ RsP }

with ∼i as in Definition 17.

Proof. Note that by Definition 17 one can immediately see that BP ′ consists of four partitions, i.e. BP ′ =
BP ∪ {wr′ | r ∈ RsP } ∪ {nota | a ∈ BP ,∃r ∈ RsP : rh = a} ∪ {notwr′ | r ∈ R

s
P }. We consider the elements of

these partitions separately.

1. Suppose r : a ←s α ∈ RsP and consider the corresponding wr′ ∈ BP ′ , then by definition of ΠP ′M′
,ρM′

and Proposition 16 we have

ΠP ′M′
,ρM′

(I ′)(wr′) = sup{I ′(r′b) ∧r′ ρM ′(r′) | r′ ∈ P ′M
′

wr′
}

By Definition 17 we know that P ′
M ′

wr′
= {(r′w)M

′}. Furthermore, by Lemma 7 we know ρM ′(r′w) = 1L,
which, together with Definition 17, leads to

ΠP ′M′
,ρM′

(I ′)(wr′) = I ′(((∼nota)←s α)M
′
)

Now by definition of the reduct and M ′, combined with the fact that ∼i is involutive, this leads to

ΠP ′M′
,ρM′

(I ′)(wr′) = I ′(M ′(a)←s M
′(α)) = ρM ′(r)

Now by the construction of M ′ we obtain

ΠP ′M′
,ρM′

(I ′)(wr′) = ρM ′(r) = ρM (r)

2. Suppose r : a ←s α ∈ RsP and consider the corresponding nota ∈ BP ′ . As P ′
M ′

nota = {(na)M
′}, we

obtain by the definition of ΠP ′M′
,ρM′

and Proposition 16 that

ΠP ′M′
,ρM′

(I ′)(nota) = I ′((r′
M ′

nota)b) ∧na
ρM ′(na)

32

By Lemma 7 we know that ρM ′(na) = 1L, hence by definition of na we get

ΠP ′M′
,ρM′

(I ′)(nota) = I ′((∼a)M
′
)

By the definition of the reduct and the fact that M(a) = M ′(a) for a ∈ BP this means

ΠP ′M′
,ρM′

(I ′)(nota) =∼M(a) = M ′(nota)

3. Suppose r : a←s α ∈ RsP and consider the corresponding notwr′ ∈ BP ′ . This case is entirely analogous
to the case for nota.

4. Finally, for a ∈ BP we consider two cases:

(a) Suppose r : a← α ∈ RrP , then it is easy to see by definition of P ′, Proposition 16 and Lemma 7
that

Is(r
M , ρM (r)) = I ′s(r

M ′
, ρM ′(r)) (A.11)

(b) Suppose r : a ←s α ∈ RsP with corresponding r′ : a ←∼(notwr′ ←r α) in RP ′ . By definition of

reduct, we obtain that r′M
′

: a ←∼(M ′(notwr′) ←r α
M ′

). Hence by definition of M ′ we obtain

r′M
′

: a ←∼ (∼ρM (r) ←r α
M ′

). Combining this with Proposition 16, Proposition 12, Lemma 7
and the fact that for a ∈ BP ∩ BP ′ it holds that I(a) = I ′(a), we obtain:

I ′s(r
′M ′

, ρM ′(r′)) = ρM ′(r′) ∧r′ I ′(∼(∼ρM (r)←r α
M ′

))

=∼(∼ρM (r)←r I
′(αM

′
))

=∼(∼ρM (rM)←r I
′(αM

′
))

= Is(r
M , ρM (rM))

Combining 4a and 4b we easily obtain that

ΠPM ,ρM (I) = ΠP ′M′
,ρM′

(I ′) ∩ BP

Hence, by combining these cases the stated follows.

Proposition 13. Let P be an AFASPs program and let P ′ be the corresponding AFASP program as defined

by Definition 17. If M is an m-answer set (m ∈ LP and m > 0L) of P , it holds that M ′ = M ∪ {wρM (r)
r′ |

r ∈ RsP } ∪ {not
∼iM(a)
a | a ∈ BP ,∃r ∈ RsP : rh = a} ∪ {not∼iρM (r)

wr′ | r ∈ RsP } is an m-answer set of P ′, where
∼i is as defined by Definition 17.

Proof of Proposition 13. First, by Lemma 7 and Definition 17 it is easy to see that AP ′(ρM ′) ≥ m.
Second, we show that M ′ is an answer set of P ′, i.e. that it is the least fixpoint of ΠP ′M′

,ρM′
. From

Lemma 8 we can readily see that M ′ is a fixpoint of ΠP ′M′
,ρM′

. Suppose now there is an M ′′ ⊂ M ′ such

that M ′′ is also a fixpoint of ΠP ′M′
,ρM′

. We show by contradiction that such an M ′′ cannot exist. First,

note that due to Lemma 8 and the fact that both M ′ and M ′′ are fixpoints of ΠP ′M′
,ρM′

it must hold that

for all l ∈ BP ′ \ BP we have M ′′(l) = M ′(l). Hence by Lemma 8 this means M ′′ ∩ BP ⊂ M ′ ∩ BP and
thus M ′′ ∩ BP ⊂ M . However, by Lemma 8 and the fact that M ′′ is a fixpoint of ΠP ′M′

,ρM′
we have that

M ′′ ∩ BP must be a fixpoint of ΠPM ,ρM , contradicting the fact that M is the least fixpoint ΠPM ,ρM due to
M being an answer set of P .

To show Proposition 14, we introduce the following Lemma.

Lemma 9. Suppose P is an AFASPs program and let P ′ be its corresponding AFASP program as defined
by Definition 17. Then for any m-answer set M ′ of P ′, with 0L < m, m ∈ LP and M = M ′ ∩ BP , it holds
for all r : a←s α ∈ RsP that

33

1. M ′(nota) =∼M ′(a)

2. M ′(notwr′) =∼M ′(wr′)
3. M ′(wr′) = ρM (r)

Proof. Since M ′ is a fixpoint of ΠP ′M′
,ρM′

these cases follow easily from the definition of ΠP ′M′
,ρM′

,

Proposition 16, the definition of P ′ and the fact that P ′
M ′

nota = {(na)M
′}, P ′M

′

notw
r′

= {(r′nwr′
)M

′} and

P ′
M ′

wr′
= {(r′w)M

′}.

Proposition 14. Let P be an AFASPs program and let P ′ be the corresponding AFASP program as defined
by Definition 17. If M ′ is an m-answer set (m ∈ LP ′ and m > 0L) of P ′, it holds that M = M ′ ∩ BP is an
m-answer set of P .

Proof of Proposition 14. First we show that AP (ρM) ≥ m. For a rule r ∈ RrP , by definition of P ′ it holds
trivially that ρM (r) = ρM ′(r). Further, for each rule r ∈ RsP there is a corresponding rule r′c : 0L ←i∼i(wr′)
in P ′. From Lemma 9 we know that M ′(wr′) = ρM (r) and thus, as ∼ ix = x→i 0L and ∼ i(∼ ix) = x that
ρM ′(r′c) = ρM (r). Hence, as AP ′(ρM ′) ≥ m and m > min(P), this means AP (ρM) ≥ m by definition of
AP ′ .

Second we show that M is the least fixpoint of ΠPM ,ρM . First we show that it is a fixpoint. From the
definition of ΠPM ,ρM and Proposition 16 we obtain for a ∈ BP that

ΠPM ,ρM (M)(a) = sup{Ms(r
M , ρM) | (r : a← α) ∈ RP }

We consider two cases: (r : a← α) ∈ RrP and (r : a← α ∈ RsP).

1. If (r : a←r α) ∈ RrP , then in P ′ we have an equivalent rule and thus combining this with the former
remark that ρM (r) = ρM ′(r) for such rules we obtain

Ms(r
M , ρM (r)) = M ′s(r

M , ρM ′(r))

2. If (r : a←s α) ∈ RsP , then we have a corresponding rule r′ : a←∼(notwr′ ←r α) in RP ′ . We can show

that Ms(r
M , ρM (r)) = M ′s(r

′M ′
, ρM ′(r)) for this rule using Proposition 16, the fact that ρM ′(r′) ≥ 1L

since AP ′(ρM ′) > 0L, the fact that I(βI) = I(β) for any interpretation I, Lemma 9, Proposition 12
and the definition of the reduct:

M ′s(r
′M ′

, ρM ′(r)) = M ′((∼(notwr′ ←r α))M
′
) ∧r′ ρM ′(r′)

= M ′(∼(notwr′ ←r α)) ∧r′ 1L

=∼(∼(M ′(wr′))←r M
′(α))

=∼(∼(ρM (r))←r M
′(α))

=∼(∼(ρM (r))←r M(α))

=∼(∼(ρM (r))←r M(αM))

= Ms(r
M , ρM (r))

From 1 and 2 we thus obtain for a ∈ BP that

ΠPM ,ρM (M)(a) = sup{Ms(r
M , ρM (r)) | r ∈ Pa}

= sup{M ′s(rM
′
, ρM ′(r)) | r ∈ P ′a}

= ΠP ′M′
,ρM′

(M ′)(a)

= M ′(a)

= M(a)

34

Hence, M is a fixpoint of ΠPM ,ρM . Now, suppose that M is not the least fixpoint of ΠPM ,ρM , then some
M ′′ = Π∗PM ,ρM

⊂M must exist. Consider then

M ′′′ = M ′′ ∪ {wρM (r)
r′ | r ∈ RsP } ∪ {not∼M(a)

a | a ∈ BP ,∃r ∈ RsP : rh = a} ∪ {not∼ρM (r)
wr′

| r ∈ RsP }

It is clear from the construction of M ′′′ that M ′′′ ⊂M ′. Now, using Lemma 9 we know from the construction
of M ′′ and M ′′′ that

ΠP ′M′
,ρM′

(M ′′′) = M ′′′

Hence, M ′′′ is a fixpoint of ΠP ′M′
,ρM′

, which contradicts the fact that M ′ is the least fixpoint of ΠP ′M′
,ρM′

.

Appendix A.6. Proofs of Section 8

Proposition 15. Let P be an AFASP program with strong negation and let P ′ be its strong-negation free
version. Then an interpretation I ′ of P ′ is an (x, y)-answer set of P iff the corresponding interpretation I
of P is x-consistent in the sense of [64].

Proof of Proposition 15. Obvious from the construction of P ′.

References

[1] T. Alsinet, L. Godo, and S. Sandri. Two formalisms of extended possibilistic logic programming with context-dependent
fuzzy unification: A comparative description. Electronic Notes in Theoretical Computer Science, 66(5):1 – 21, 2002.

[2] C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, 2003.
[3] G. Brewka. Complex preferences for answer set optimization. In Proceedings of the Ninth International Conference on

the Principles of Knowledge Representation and Reasoning (KR2004), pages 213–223, 2004.
[4] G. Brewka, I. Niemelä, and M. Truszczyński. Answer set optimization. In Proceedings of the 18th International Joint

Conference on Artificial Intelligence, pages 867–872, 2003.
[5] F. Buccafurri, N. Leone, and P. Rullo. Enhancing disjunctive datalog by constraints. IEEE Transactions on Knowledge

and Data Engineering, 12(5):845–860, 2000.
[6] T. H. Cao. Annotated fuzzy logic programs. Fuzzy Sets & Systems, 113(2):277–298, 2000.
[7] C. V. Damásio, J. Medina, and M. Ojeda-Aciego. Sorted multi-adjoint logic programs: termination results and applications.

In Proceedings of the 9th European Conference on Logics in Artificial Intelligence (JELIA’04), pages 260–273, 2004.
[8] C. V. Damásio, J. Medina, and M. Ojeda-Aciego. Termination of logic programs with imperfect information: applications

and query procedure. Journal of Applied Logic, 5(3):435–458, 2007.
[9] C. V. Damásio and L. M. Pereira. Hybrid probabilistic logic programs as residuated logic programs. In Proceedings of the

7th European Workshop on Logics in Artificial Intelligence (JELIA’00), pages 57–72, 2000.
[10] C. V. Damásio and L. M. Pereira. Antitonic logic programs. In Proceedings of the 6th International Conference on Logic

Programming and Nonmonotonic Reasoning (LPNMR’01), pages 379–392, 2001.
[11] C. V. Damásio and L. M. Pereira. Monotonic and residuated logic programs. In Proceedings of the 6th European Conference

on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’01), pages 748–759, 2001.
[12] C. V. Damásio and L. M. Pereira. Sorted monotonic logic programs and their embeddings. In Proceedings of Information

Processing and Management of Uncertainty (IPMU04), pages 807–814, 2004.
[13] A. Dekhtyar and V. S. Subrahmanian. Hybrid probabilistic programs. In Proceedings of the Fourteenth International

Conference on Logic Programming (ICLP’97), pages 391–405, 1997.
[14] D. Dubois, J. Lang, and H. Prade. Towards possibilistic logic programming. In Proceedings of the Eigth International

Conference on Logic Programming (ICLP’91), pages 581–595, 1991.
[15] M. H. v. Emden. Quantitative deduction and its fixpoint theory. Journal of Logic Programming, 30(1):37–53, 1986.
[16] M. Fitting. Bilattices and the semantics of logic programming. Journal of Logic Programming, 11(2):91–116, 1991.
[17] N. Fuhr. Probabilistic datalog: implementing logical information retrieval for advanced applications. Journal of the

American Society for Information Science, 51(2):95–110, 2000.
[18] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Proceedings of the Fifth International

Conference and Symposium on Logic Programming (ICLP/SLP’88), pages 1081–1086, 1988.
[19] P. Hájek. Metamathematics of Fuzzy Logic (Trends in Logic). 2001.
[20] M. Ishizuka and N. Kanai. Prolog-elf incorporating fuzzy logic. In Proceedings of the 9th international joint conference

on Artificial intelligence (IJCAI’85), pages 701–703, 1985.
[21] J. Janssen, S. Heymans, D. Vermeir, and M. De Cock. Compiling fuzzy answer set programs to fuzzy propositional

theories. In Proceedings of the 24th International Conference on Logic Programming (ICLP08), 2008.
[22] J. Janssen, S. Schockaert, D. Vermeir, and M. De Cock. Aggregated fuzzy answer set programming. To appear in Annals

of Mathematics and Artificial Intelligence.

35

[23] J. Janssen, S. Schockaert, D. Vermeir, and M. De Cock. Aggregated fuzzy answer set programming. Submitted.
[24] J. Janssen, S. Schockaert, D. Vermeir, and M. De Cock. Reducing fuzzy answer set programming to model finding in

fuzzy logics. Submitted.
[25] J. Janssen, S. Schockaert, D. Vermeir, and M. De Cock. General fuzzy answer set programs. In Proceedings of the 8th

International Workshop on Fuzzy Logic and Applications (WILF 2009), pages 352–359, 2009.
[26] M. Kifer and A. Li. On the semantics of rule-based expert systems with uncertainty. In Proceedings of the 2nd International

Conference on Database Theory (ICDT’88), pages 102–117, 1988.
[27] M. Kifer and V. S. Subrahmanian. Theory of generalized annotated logic programming and its applications. Journal of

Logic Programming, 12(3&4):335–367, 1992.
[28] L. V. S. Lakshmanan. An epistemic foundation for logic programming with uncertainty. In Proceedings of the 14th

Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS’94), pages 89–100,
1994.

[29] L. V. S. Lakshmanan and F. Sadri. Modeling uncertainty in deductive databases. In Proceedings of the 5th International
Conference on Database and Expert Systems Applications (DEXA’94), pages 724–733, 1994.

[30] L. V. S. Lakshmanan and F. Sadri. Probabilistic deductive databases. In Proceedings of the 1994 International Symposium
on Logic programming (ILPS’94), pages 254–268, Cambridge, MA, USA, 1994. MIT Press.

[31] L. V. S. Lakshmanan and F. Sadri. Uncertain deductive databases: a hybrid approach. Information Systems, 22(9):483–
508, 1997.

[32] L. V. S. Lakshmanan and N. Shiri. A parametric approach to deductive databases with uncertainty. IEEE Transactions
on Knowledge and Data Engineering, 13(4):554–570, 2001.

[33] V. S. Lakshmanan. Towards a generalized theory of deductive databases with uncertainty. PhD thesis, Concordia Univer-
sity, 1997.

[34] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The dlv system for knowledge representation
and reasoning. ACM Transactions on Computational Logic, 7(3):499–562, 2006.

[35] Y. Loyer and U. Straccia. The well-founded semantics in normal logic programs with uncertainty. In Proceedings of the
6th International Symposium on Functional and Logic Programming (FLOPS’02), pages 152–166, 2002.

[36] Y. Loyer and U. Straccia. The approximate well-founded semantics for logic programs with uncertainty. In Proceedings of
the 28th International Symposium on Mathematical Foundations of Computer Science (MFCS’03), pages 541–550, 2003.

[37] T. Lukasiewicz. Probabilistic logic programming. In Proceedings of the 13th European Conference on Artificial Intelligence
(ECAI’98), pages 388–392, 1998.

[38] T. Lukasiewicz. Many-valued disjunctive logic programs with probabilistic semantics. In Proceedings of the 5th Interna-
tional Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’99), pages 277–289, 1999.

[39] T. Lukasiewicz. Fuzzy description logic programs under the answer set semantics for the semantic web. In Proceedings of
the Second International Conference on Rules and Rule Markup Languages for the Semantic Web (RuleML’06), pages
89–96, 2006.

[40] T. Lukasiewicz and U. Straccia. Tightly integrated fuzzy description logic programs under the answer set semantics for
the semantic web. In Proceedings of the First International Conference on Web Reasoning and Rule Systems (RR’07),
pages 289–298, 2007.

[41] T. Lukasiewicz and U. Straccia. Top-k retrieval in description logic programs under vagueness for the semantic web. In
Proceedings of the 1st international conference on Scalable Uncertainty Management (SUM’07), pages 16–30, 2007.

[42] N. Madrid and M. Ojeda-Aciego. Towards a fuzzy answer set semantics for residuated logic programs. In Proceedings of
the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT’08),
pages 260–264, 2008.

[43] N. Madrid and M. Ojeda-Aciego. On coherence and consistence in fuzzy answer set semantics for residuated logic programs.
In Proceedings of the 8th International Workshop on Fuzzy Logic and Applications (WILF’09), pages 60–67, 2009.

[44] N. Madrid and M. Ojeda-Aciego. Measuring instability in normal residuated logic programs: discarding information.
Communications in Computer and Information Science, 80:128–137, 2010.

[45] N. Madrid and M. Ojeda-Aciego. On the measure of instability in normal residuated logic programs. In Proceedings of
FUZZ-IEEE’10, 2010.

[46] A. Nerode, J. B. Remmel, and V. S. Subrahmanian. Annotated nonmonotonic rule systems. Theoretical Computer Science,
171(1-2):111–146, 1997.

[47] R. Ng and V. S. Subrahmanian. A semantical framework for supporting subjective and conditional probabilities in
deductive databases. Journal of Automated Reasoning, 10(2):191–235, 1993.

[48] R. Ng and V. S. Subrahmanian. Stable semantics for probabilistic deductive databases. Information and Computation,
110(1):42–83, 1994.

[49] P. Nicolas, L. Garcia, and I. Stéphan. Possibilistic stable models. In Nonmonotonic Reasoning, Answer Set Programming
and Constraints, Dagstuhl Seminar Proceedings, 2005.

[50] P. Nicolas, L. Garcia, I. Stéphan, and C. Lefèvre. Possibilistic uncertainty handling for answer set programming. Annals
of Mathematics and Artificial Intelligence, 47(1-2):139–181, 2006.

[51] I. Niemelä. WASP WP3 report: Language extensions and software engineering for ASP.
[52] D. Pearce, V. Sarsakov, T. Schaub, H. Tompits, and S. Woltran. A polynomial translation of logic programs with nested

expressions into disjunctive logic programs: Preliminary report. In Proceedings of the 18th International Conference on
Logic Programming (ICLP’02), pages 405–420, 2002.

[53] N. Pelov, M. Denecker, and M. Bruynooghe. Translation of aggregate programs to normal logic programs. In Answer Set
Programming: Advances in Theory and Implementation, CEUR Workshop Proceedings, pages 29–42, 2003.

36

[54] S. Perri, F. Scarcello, and N. Leone. Abductive logic programs with penalization: semantics, complexity and implemen-
tation. Theory and Practic of Logic Programming, 5(1-2):123–159, 2005.

[55] E. Saad. Extended fuzzy logic programs with fuzzy answer set semantics. In Proceedings of the 3rd International
Conference on Scalable Uncertainty Management (SUM’09), pages 223–239, 2009.

[56] S. Schockaert, J. Janssen, D. Vermeir, and M. De Cock. Answer sets in a fuzzy equilibrium logic. In Proceedings of Rule
Reasoning 2009 (RR2009), pages 135–149, 2009.

[57] E. Y. Shapiro. Logic programs with uncertainties: a tool for implementing rule-based systems. In Proceedings of the
Eighth international joint conference on Artificial intelligence (IJCAI’83), pages 529–532, 1983.

[58] P. Simons. Extending and Implementing the Stable Model Semantics. PhD thesis, Helsinki University of Technology, 2000.
[59] U. Straccia. Query answering in normal logic programs under uncertainty. In In 8th European Conferences on Symbolic

and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU-05), pages 687–700, 2005.
[60] U. Straccia. Annotated answer set programming. In Proceedings of the 11th International Conference on Information

Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU’06), 2006.
[61] U. Straccia. Managing uncertainty and vagueness in description logics, logic programs and description logic programs. In

Reasoning Web: 4th International Summer School 2008, pages 54–103, 2008.
[62] U. Straccia, M. Ojeda-Aciego, and C. V. Damásio. On fixed-points of multivalued functions on complete lattices and their

application to generalized logic programs. SIAM Journal on Computing, 38(5):1881–1911, 2009.
[63] V. S. Subrahmanian. Amalgamating knowledge bases. ACM Transactions on Database Systems, 19(2):291–331, 1994.
[64] D. Van Nieuwenborgh, M. De Cock, and D. Vermeir. An introduction to fuzzy answer set programming. Annals of

Mathematics and Artificial Intelligence, 50(3-4):363–388, 2007.
[65] P. Vojtás. Fuzzy logic programming. Fuzzy Sets and Systems, 124(3):361–370, 2001.
[66] G. Wagner. Negation in fuzzy and possibilistic logic programs. In Uncertainty Theory in Artificial Intelligence Series,

pages 113–128, 1998.

37

