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We study the interplay between the 〈A2
μ〉 condensate and instantons in non-Abelian gauge theory.

Therefore we use the formalism of Local Composite Operators, with which the vacuum expectation value
of this condensate can be analytically computed. We first use the dilute gas approximation and partially
solve the infrared problem of instanton physics. In order to find quantitative results, however, we turn to
an instanton liquid model, where we find how the different contributions to the condensate add up.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

The dimension 2 gluon condensate 〈A2
μ〉 in pure Yang–Mills

theory has been proposed in [1,2], and it has been investigated
in different ways since then [3–14].

In [3] an analytical framework for studying this condensate
has been developed, based on work carried out in the Gross–
Neveu model [15]. Different problems had to be overcome. First
of all there is the gauge invariance of this condensate. In or-
der to make the operator A2

μ gauge invariant, one can take the

minimum of its integral over the gauge orbit. Since
∫

ddx AU
μ AU

μ ,
with U ∈ SU(N), is positive, this minimum will always exist. In
a general gauge, however, the minimum is a highly non-local and
thus hard to handle expression of the gauge field. A minimum
is however reached in the Landau gauge (∂μ Aμ = 0), such that
working in this gauge reduces the operator to a local expression.1

Secondly adding a source J , coupled to A2
μ , makes the theory

non-renormalizable at the quantum level. To solve this, a term
quadratic in the source must be added, which in turn spoils the
energy interpretation of the effective action. One way around this
is to perform the Legendre inversion, but this is rather cumber-
some, especially with a general, space–time dependent source. One
can also use a Hubbard–Stratonovich transform, which introduces
an auxiliary field (whose interpretation is just the condensate) and
eliminates the term quadratic in the source. Details can be found
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in [3]. The result was that the Yang–Mills vacuum favors a finite
value for the expectation value of A2

μ . The precise renormalization
details of the procedure proposed in [3] were given in [4]. We re-
view this formalism in Section 2.

Instantons play an important role in the QCD vacuum and have
a large influence in many infrared properties (see [16] for a re-
view). As such it is an interesting question what their connection
with the dimension two condensate is. A first study in this di-
rection has been done on the lattice by Boucaud et al. [17,18],
and a rather large instanton contribution to the condensate has
been found, which shows some agreement with the results from
an OPE approach to the gluon propagator from [8]. However, the
condensate may get separate contributions from other sources, as
for example the non-perturbative high-energy fluctuations leading
to the condensate found in [3]. The opposite viewpoint is just as
interesting: what is the influence of an effective gluon mass on the
instanton ensemble? In ’t Hooft’s seminal paper he found that, in a
Higgs model, a gauge boson mass stabilizes the instanton gas [19].

Some subtle points are to be resolved before a full treatment
can be given. These are discussed in Section 3. Then, Section 4 is
devoted to the computation of the one-loop effective action, for
which we use the strategy developed by Dunne et al. [20,21]. Fi-
nally, Section 5 concludes this Letter.

2. 〈A2
μ〉 and instantons

In this section we will review the LCO formalism as proposed
in [3] and modified to use it with a background field.

As a first step the gauge is fixed using the Landau condition, i.e.
the linear covariant gauge ∂μ Aμ = 0 with ξ → 0. Then, a term
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1

2
J A2

μ (1)

is added to the Lagrangian density. Here J is the source which will
be used to compute 〈A2

μ〉. As it stands, the theory is not renormal-
izable. To correct this, a new term

−1

2
ζ J 2 (2)

has to be added. Here ζ is a new coupling constant which will
have to be determined as a function of the parameters in the orig-
inal theory. This Lagrangian is now multiplicatively renormalizable,
as shown in [22] using a BRST analysis.

As we want to work with an instanton as a background field,
it is more appropriate to use the Landau background gauge [23]
Dμ[ Â]Aμ = 0 instead of the usual Landau gauge prescription
∂μ Aμ = 0. Here Âμ is the background field. In order to do so,
some alterations are in order. A BRST analysis (for BRST in the
background gauge, see for example [24]) shows that, in order for
the LCO formalism to stay renormalizable, the condensate A2

μ must
be replaced by

(Aμ − Âμ)2 = A2
μ (3)

with Aμ the total gauge field and Aμ the quantum fluctuations,
Aμ = Aμ + Âμ .

In order for this formalism to work, some creases have to be
ironed out. As a first point, we have introduced a new parame-
ter, ζ , creating a problem of uniqueness. However, it is possible to
choose ζ to be a unique meromorphic function of g2 based on the
renormalization group equations. In [3] there was found, using the
ΛMS scheme in d = 4 − ε dimensions and without any background
field (up to one-loop order and with Nc the number of colors):

ζ = 9

13

N2
c − 1

Nc

1

g2
+ N2

c − 1

16π2

161

52
+ O

(
g2), (4a)

Zζ = 1 − g2Nc

16π2

13

3ε
+ O

(
g2), (4b)

Z2 = 1 − Nc g2

16π2

3

2ε
+ O

(
g2), (4c)

where Zζ and Z2 are the constants renormalizating ζ J 2 and J A2
μ

respectively. For dimensional reasons, working in the background
gauge will change nothing to the expressions for ζ and the renor-
malization constants.

Secondly the presence of the J 2 term spoils an energy interpre-
tation for the effective potential. One way around this is to perform
the Legendre inversion, but this is rather cumbersome, especially
so with a general, space–time dependent source. A more elegant
way out applies a Hubbard–Stratonovich transformation by insert-
ing unity into the path integral:

1 = N
∫

[Dσ ]exp − 1

2ζ

∫ (
σ

g
+ 1

2
A2

μ − ζ J

)2

d4x (5)

with N an irrelevant constant. This eliminates the 1
2 J A2

μ and ζ J 2

terms from the Lagrangian and introduces a new field σ . The result
is:

e−W ( J ) =
∫

[D Aμ][Dσ ]exp

−
∫ (

LYM[Aμ, Âμ, c, c̄]

+ LLCO[Aμ, Âμ,σ ] − σ
J

)
d4x. (6)
g

Here LYM is the well-known Yang–Mills Lagrangian with Faddeev–
Popov ghosts, fixed in the Landau background gauge, and

LLCO[Aμ,σ ] = σ 2

2g2ζ
+ σ A2

μ

2gζ
+ (A2

μ)2

8ζ
. (7)

Now J acts as a linear source for the σ field, so that we can
straightforwardly compute the effective action Γ (σ ) using the
above expressions.

If we compare our new Lagrangian to the original expression,
we find that the expectation value of σ corresponds to the expec-
tation value of the composite operator

〈σ 〉 = −g

〈
1

2
A2

μ − ζ J

〉
. (8)

In the limit J → 0 this operator corresponds (up to a multiplicative
factor) to A2

μ . We can also read off the effective gluon mass in the
lowest order:

m2 = σ

gζ
= Nc

N2
c − 1

13

9
gσ . (9)

3. Instantons and 〈A2
μ〉

Let us first look into whether the condensate 〈A2
μ〉 can stabilize

the instanton ensemble in the LCO formalism, as, if successful, it
would minimize the amount of hand-waving necessary to compute
the action. First we have the question of which gauge to choose. All
instanton calculations are done in background gauges, as analytic
computations in non-background gauges are quite impossible. The
LCO formalism does not give classical fields a mass in the Landau
background gauge, however. In the electroweak theory considered
by ’t Hooft in [19] it is exactly this classical mass which suppresses
large instantons by the simple fact that large instantons are no
solutions to the massive field equations anymore, while small in-
stantons can still be considered approximate solutions.

If we want to have a mass already at the classical level, it is
necessary to work in the non-background Landau gauge. Although
the computations cannot be carried through in this gauge, it still
possible to find the qualitative form of the result. In order to cir-
cumvent the question of which background to take for the σ field2

it is more opportune to start before the point where the Hubbard–
Stratonovich transformation is introduced.

We start from

−1

2

〈
A2

μ

〉 = δ

δ J
ln

∫
[dAμ]e−S− 1

2 J A2
μ+ ζ

2 J 2
∣∣∣∣

J=0
. (10)

As the source is small, instantons will be approximate solu-
tions. Eventually, we can correct the instanton using the valley
method [25], but this turns out not to give more insight. At the
classical level, the action of the instanton is now

S + 1

2
J A2

μ = 8π2

g2
+ 6π2

g2
Jρ2 + · · · , (11)

where the dots stand for contributions from corrections to the in-
stanton solution. From renormalization group arguments, we can
now write down the general form of the one-loop result:

W [ J ] = W 0I [ J ] −
∞∫

0

dρ

ρ5
exp

(
−8π2

g2
− 6π2

g2
Jρ2

2 Allowing σ to obey its own classical field equations does not lead to non-trivial
results.
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+ 11

3
ln

(
μ2ρ2) + f1

(
Jρ2) + · · ·

)
, (12)

where the dilute instanton gas approximation has been used, giv-
ing an exponential of the instanton contribution. Here, W 0I stands
for the zero-instanton result, and f1 is an unknown function which
gives the quantum corrections. A factor of the space–time volume
has been left out. For finite J , the integral over the instanton size
ρ is now convergent and can be done:

W [ J ] = W 0I [ J ] − g10/3μ22/3 J−5/3e
− 8π2

g2 f2
(

g2), (13)

where f2 is a new unknown function. Mark that the limit J → 0
gives ’t Hooft’s divergent result again. Doing the Legendre inversion
yields

Γ [σ ] = Γ 0I [σ ] − g10/3μ22/3σ−5/3e
− 8π2

g2 f3
(

g2), (14)

where f3 is yet another unknown function, and Γ 0I is the zero-
instanton result. If the coupling is sufficiently small, the instanton
correction can be ignored and the zero-instanton result is recov-
ered. The instanton term can then be considered as a small per-
turbation, slightly shifting the value of the condensate. However,
no matter how small the coupling, the second term will always di-
verge for sufficiently small σ , and so the effective action will be
unbounded from below.3 This is of course related to the infrared
divergence found in the case without condensate.

The conclusion is that two problems can be identified. First
there is the resilience of the infrared divergence. One could say
this is due to the strength of the LCO formalism—the gluon mass
is left free in order to determine it by the gap equation, which al-
lows the possibility for the mass to be zero, which again allows
instantons to proliferate and to so destabilize the action. This can
be solved invoking only a little hand-waving: when σ is small the
dilute instanton gas approximation is not valid, and so this part of
the result must be thrown away. The final conclusion is that in-
stantons slightly shift the value of 〈A2

μ〉.
This leaves a second problem: one would expect each instan-

ton to give a contribution of 12π2ρ2/g2 to the condensate already
at the classical level. This does not happen, which is due to the
way the problem has been approached. The dilute instanton gas
approximation starts from the one-instanton contribution and ex-
ponentiates it to give a gas. The contribution of one instanton to
the condensate is negligible—it is finite, while the total condensate
is proportional to the space–time volume—and so it drops out.

In the background gauge this last problem is readily solved: the
classical and quantum mechanical contributions are neatly sepa-
rated from the start. Furthermore it turns out that the computa-
tions can all be done, which allows for a quantitative result to be
given as well. Only the infrared divergence still remains as a prob-
lem, but, as some hand-waving is necessary anyway, one of the
many instanton liquid models can be used to cure this. This is the
subject of the following section.

4. Computing the one-loop determinant

In the background gauge, LLCO[Aμ, Âμ,σ ] does not change the
classical field equations for Aμ , as at the classical level we have
that Aμ ≡ Âμ , making LLCO vanish. This means that the instan-
ton will not be modified as in the non-background gauge in the
previous section or as in electroweak theory—in our case a vac-
uum expectation value for σ will only give a mass to the quantum
fluctuations, not to the classical part of Aμ .

3 It is easy to see that f3(g2) must be positive, at least for small g2.
The computation of the one-loop quantum corrections to the
action of massive fields in an instanton background is a non-trivial
feat. Recently, Dunne et al. have developed a strategy leading to an
exact albeit numerical result [20,21]. We give a short overview of
the necessary steps as applied to spin and isospin 1 fields. More
details can be found in [21].

We expand around a constant value for σ and around a one-
instanton configuration for Aa

μ . The quantum fluctuation in σ can
be immediately integrated out, and we find that up to one-loop
order:

V eff = 8π2

g2
+ V

σ 2

2g2ζ
− log det

(−D2)
+ 1

2
log det

(
−gμν D2

ab +
(

1 − 1

ξ

)
(DμDν)ab

+ 2gεabc F c
μν + σ

gζ
gμνδab

)
(15)

where all covariant derivatives contain only the instanton back-
ground, where the limit ξ → 0 for the Landau gauge is implied,
and with V the volume of space–time.

The log det of the gluon propagator can be simplified as in
’t Hooft’s original paper [19].4 The presence of a mass combined
with the Landau gauge instead of the Feynman gauge complicate
matters slightly, however. First, suppose we have a function obey-
ing

−D2ψa = λψa (16)

then one can show that

�ab
μν Dνψb =

(
λ

ξ
+ σ

gζ

)
Dμψa (17)

where �ab
μν is the gluon propagator in a one-instanton background.

In order to find this result, one has to make use of the classi-
cal field equations for Aμ . We see that, in the limit ξ → 0, the
functions Dμψa will become massless and they will give a con-
tribution of 1

2 log det(−D2) + 1
2 tr ln ξ to the effective action, and

they will cancel half of the ghost contribution. A second contri-
bution comes from the functions η̄i

μν Dνψa with i = 1,2,3. Using
the properties of the ’t Hooft symbols and the explicit form of the
instanton, it is straightforward to show that these functions obey
Dμ Aa

μ = 0. For these functions, we get

�ab
μνη̄

i
νλDλψ

a =
(

λ + σ

gζ

)
η̄i

μν Dνψa, (18)

meaning they will contribute 3
2 log det(−D2 + σ/gζ ) to the effec-

tive action. This leaves us with

V eff = 8π2

g2
+ V

σ 2

2g2ζ
− 1

2
log det

(−D2)
+ 3

2
log det

(
−D2 + σ

gζ

)
. (19)

In the above arguments we have ignored the existence of zero
modes, which cannot be written as covariant derivatives of some
Lorentz-scalar function. So they have to be considered separately.
Due to the classical action being the unmodified Yang–Mills ac-
tion, one would naively expect these modes to remain zero modes.
However, going through the computations uncovers that they get

4 ’t Hooft does not mention spin elimination for gluons, only for fermions, but
the procedure is essentially the same.
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a mass σ/gζ . This is due to the perturbative approximation. Prop-
erly including all the interactions between σ and the gluon field to
all orders will make the zero modes massless again, and we will
treat them as such here. Using the action without the Hubbard–
Stratonovich transformation and with a source directly coupled to
A2

μ shows that this is indeed the right course.
In order to compute the functional determinants, it is conve-

nient to split off the zero-instanton contributions:

V eff = V V 0I
eff + 8π2

g2
− 1

2
log det

(−D2

−∂2

)

+ 3

2
log det

(−D2 + σ
gζ

−∂2 + σ
gζ

)
. (20)

In the above equation,

V V 0I
eff = V

σ 2

2g2ζ
− 1

2
log det

(−∂2)
+ 3

2
log det

(
−∂2 + σ

gζ

)
(21)

is the zero-instanton action and V is the space–time volume.
’t Hooft already computed the first functional determinant in (20),
finding

log det

(−D2

−∂2

)
= 1

3

(
2

ε
+ lnρ2μ̄2

)

− 8ζ ′(−1) − 10

9
+ 1

3
ln 2 (22)

where ε = 4 − d with d the number of dimensions in dimensional
regularization and μ̄ is the scale set by going to the ΛMS scheme.
For the second functional determinant, the work by Dunne and
collaborators is to be followed.

As a first step, the operators under consideration are separated
in a radial part and an angular and isospin part. The angular and
isospin quantum numbers couple according to the usual spin–orbit
coupling mechanism, and we can write:

log det

(−D2 + σ
gζ

−∂2 + σ
gζ

)
=

+∞∑
j=0, 1

2 ,1,...

j+1∑
l=| j−1|

(2l + 1)(2 j + 1)

× log det

(−D2
l, j + σ

gζ

−∂2
l + σ

gζ

)
(23)

where the subscripts l, j indicate that we take the part of the op-
erators working in the sector with rotational quantum numbers l
and j. (The operator −∂2 does not have a j dependence, so that
we can leave out this index.) Now the operators in both numerator
and denominator are one-dimensional and an old trick relating the
functional determinant of an operator Ô to the asymptotic value of
a function obeying Ô f = 0 can be used. In our case we define(

−D2
l, j + σ

gζ

)
ψl, j(r) = 0, ψl, j(r) =

r→0
r2l, (24a)(

−∂2
l + σ

gζ

)
ψ0

l (r) = 0, ψ0
l (r) =

r→0
r2l. (24b)

Then we have that:

log det

(−D2
l, j + σ

gζ

−∂2
l + σ

gζ

)
= lim

r→∞ log
ψl, j(r)

ψ0
l (r)

. (25)

The functions ψl, j(r) and ψ0
l (r) can be found numerically. In [20,

21] there is explained how to find a differential equation for the
Fig. 1. The function α(mρ) found from the computations in Eq. (27).

logarithm of the determinant itself, which is numerically more
stable, and also how the convergence of the integration can be
increased.

Now it remains to regularize the sum over the quantum num-
bers l and j. This sum is, of course, divergent. A first step to control
this is to write the sum as:

+∞∑
j=0, 1

2 ,1,...

j+1∑
l=| j−1|

fl, j =
+∞∑

l=0, 1
2 ,1,...

( fl,l+1 + fl+ 1
2 ,l+ 1

2
+ fl+1,l) (26)

with fl, j our summand. This sum is now much less divergent than
the original one, albeit still not finite. In order to find a finite re-
sult, the theory has to be renormalized. Therefore we introduce a
Pauli–Villars regulator. If we take a certain cut-off l = L in our sum,
we can separate it into two parts: one with l � L, where the Pauli–
Villars regulator can be taken to infinity and which can be com-
puted numerically to give a finite result, and one part with l > L,
which has to be computed analytically and which we will use sub-
tract the divergences from the numerically determined sum.

This analytic computation can be done in a WKB expansion. In
the limit of high L, only the first two orders in the WKB expan-
sion contribute. This computation has been done by Dunne et al.
for particles in the fundamental representation of the gauge group,
and the procedure can be straightforwardly applied to adjoint par-
ticles. Finally we find in dimensional regularization:

log det

(−D2 + σ
gζ

−∂2 + σ
gζ

)

= 1

3

(
2

ε
+ lnρ2μ̄2

)
+ lim

L→∞

(
L∑

l=0, 1
2 ,1,...

Γ S
l

(
ρ2σ/gζ

)

+ 8L2 + 20L − ln L

(
2

3
+ 2ρ2σ

gζ

)
+ 83

9
− 4

3
ln 2

+ ρ2σ

gζ

(
2 − 4 ln 2 + ln

ρ2σ

gζ

))
(27)

where Γl(ρ
2σ/gζ ) is the result from the numerical computation

with quantum number l. Practically, taking L ≈ 50 gives accept-
able results. The function defined by the limit of the expression
between brackets is plotted in Fig. 1.

Putting everything together and working in the dilute gas ap-
proximation, which sums all contributions from all numbers of
instantons into an exponential, we find for the action density:

1
V eff

(
m2) = 27 m4

2
+ 9 m4

2

(
−5 − 161 + ln

m2

2

)

V 26 2g 4 (4π) 6 78 μ̄
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+ 210π6

g8

∞∫
0

dρ

ρ5
exp

(
−8π2

g2
+ 11

3
ln μ̄2ρ2

− 3

2
α(mρ) + 1

2
α(0)

)
, (28)

where m is the effective gluon mass defined in (9), α(mρ) is the
function computed numerically and shown in Fig. 1, and α(0) =
−8ζ ′(−1)− 10/9 + 1/3 ln 2. The integration over the instanton size
ρ is divergent, as in the massless case. One might naively expect
a gluon mass to cure this divergence, as happens in electroweak
theory, but here the mass only enters in the quantum correction
and does not operate at the classical level. Therefore, the integral
is still divergent, and the contribution from α(mρ) makes this even
worse than when m = 0.

In order to extract meaningful results from the effective ac-
tion (28), the integral has to be given a finite value in some
way. The easiest way out is to add an infrared cut-off ρc as the
upper bound of the integral, but this violates the scaling Ward
identities [26]. Several improvements have been suggested, usu-
ally involving interactions between the instantons. For our purpose,
however, it suffices to take a phenomenological approach: we sup-
pose the infrared divergence is somehow cured, and we work in an
instanton liquid with certain values for the density n and average
radius ρ . This modifies the effective action to

1

V
V eff

(
m2,n,ρ

)
= 27

26

m4

2g2
+ 9

4

m4

(4π)2

(
−5

6
− 161

78
+ ln

m2

μ̄2

)

− n exp

(
−8π2

g2
+ 11

3
ln μ̄2ρ2 − 3

2
α(mρ) + 1

2
α(0)

)
. (29)

Phenomenological values for n and ρ found on the lattice are [16]

n ≈ 1 fm−4 ≈ (0.6ΛMS)
4, ρ ≈ 1

3
fm ≈ (1.8ΛMS)

−1, (30)

where ΛMS = 330 MeV in SU(2).
Taking the scale μ̄2 at the value of m2 in the global minimum

of the action, we find that the instantons are much suppressed
by the relative smallness of the coupling g2. The non-perturbative
minimum is still at m ≈ 2.05ΛMS, as in the case without instan-
tons. Now, however, we cannot say that 〈 1

2 g2 A2
μ〉 = − 27

26 m2 =
−4.36Λ2

MS
in SU(2), since the instanton contribution to the con-

densate has to be included. As in [17,18]5 each instanton gives a
contribution of 12π2ρ2, resulting in〈
g2 A2

μ

〉
tot = −(2.0ΛMS)

2 = −0.42 GeV2. (31)

This value depends strongly on the instanton liquid parameters
plugged into the model. It is negative but close to zero because
the instanton and quantum contributions are similar in magnitude
but opposite in sign, and the quantum corrections have slightly
larger absolute value.

5 Mark that the authors of [17,18] used a different convention for the gauge fields,
and their A2

μ corresponds to g2 A2
μ here.
5. Conclusions

A first conclusion arrived at in this Letter is that we have not
been able to solve the infrared problem plaguing instanton physics
by adding an effective gluon mass coming from the dimension two
condensate. As the gluon mass must be determined from its gap
equations, this leaves open the possibility of it being zero, which
gives instantons the possibility to cause the infrared divergence.
The amount of hand-waving necessary to stabilize the vacuum
is less than without the condensate (one only has to state that
the mass will be sufficiently high and the divergence is swept
under the rug), but the state of affairs is not yet very satisfy-
ing.

The second main conclusion of this Letter is that, when working
in the Landau background gauge, the LCO formalism gives a sepa-
rate contribution to 〈A2

μ〉, which lowers the contributions coming
from the instantons themselves.
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