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Abstract Let R be a finite chain ring with |[R| = ¢™, R/RadR = F,, and let Q =

PHG(gR"™). Let t = (71, ..., T,) be an integer sequence satisfyingm =71 > 15 > --- >
7, > 0. We consider the incidence matrix of all shape m* = (m, ..., m) versus all shape t
— —

)
subspaces of Q2 withm*® < v < m"~*. We prove that the rank of M,,s . (2) over Q is equal to
the number of shape m® subspaces. This is a partial analog of Kantor’s result about the rank
of the incidence matrix of all s dimensional versus all # dimensional subspaces of PG(n, q).
We construct an example for shapes o and t for which the rank of M, ;(£2) is not maximal.

Keywords Projective Hjelmslev spaces - Finite chain rings - Modules over finite chain
rings

Mathematics Subject Classification 51CO05 - 51E05 - 51E23

1 Preliminaries

It is known that the rank of an incidence matrix of all s-dimensional versus all -dimensional
subspaces in PG(n, ¢),0 <s <t <n —s — 1, is equal to the number of the s-spaces in the
geometry [6]. In this paper, we prove a similar result for the incidence matrices of shape o
versus shape 7 subspaces in the projective Hjelmslev space PHG(g R"), where R is a chain
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616 1. Landjev, P. Vandendriesche

ring. We put some natural restrictions on the shapes o and . For instance, in order to avoid
trivial matrices, we require that o < t in the partial order of the shapes of all subspaces in
PHG(grR").

We start with some definitions and results about chain rings and modules over finite chain
rings. Let R be a finite chain ring with |R| = ¢™, R/Rad R = F,, where g = p with

p prime. It is known that all non-trivial ideals of R have the form R#? = @R for some
6 € RadR \ (Rad R)? and some i € {1,...,m — 1}. Denote byI' = {yo =0,y =
L, y2,..., vq4—1} asetof elements of R no two of which are congruent modulo Rad R. Every

element » € R can be written uniquely as » = "' ;6%, where r; € T. Throughout

the paper the letters m, p, g, h,0, T, y; will keep the meaning fixed above. For the basic
properties of chain rings we refer to [2,9,10].

The structure of finitely generated modules over the finite chain rings R is well-known. In
this note we shall be confined to left modules. This is no restriction since every left module
can be considered as a right module over the opposite chain ring. For every left finitely
generated module g M over the chain ring R there exists a unique partition of log, |M| into
parts A; < m, denoted A = (Aq, ..., Ax) longMl, such that

RM = R/(Rad R)"' @ --- @ R/(Rad R)*. D

The partition A is called the shape and the integer k is called the rank of g M. The conjugate
partition A" = (A}, 25 ...) - log,|[M| , where 1; is the number of the parts in A greater or
equal to i, is referred to as the conjugate shape of g M.

For a given positive integer n and a non-increasing sequence of non-negative integers

Kk = (k1, ..., k) we denote by G(n, ) the set of all submodules of shape x of g R". In
what follows, we denote the sequence (m, ..., m,0,...,0) by m*. For two sequences A =
——— S——
k n—k
A, .o aand w = (g, ..., ip), we write A < wiff A; < p; foralli =1, ..., n.

We shall need formulae for the number of the submodules of given shape u contained in
a fixed module of shape A over a finite chain ring R. For the special case of R = Z;m they
are known from [1]. The case of a general chain ring R is settled in [8, Chapter 2].

Theorem 1 [8] Let g M be a module of shape ). For every partition | satisfying i < X the
module g M has exactly

)L " / I )\,/ — /J,l
|: ] = qu}“i-%—l()‘i Mi) . |: l/ l/+1i| (2)
Hlq i=1 Hi = Mg q
submodules of shape . By convention, A, | =, . = 0.

The symbol [Z]q with £ < n integers and ¢ a prime power, denotes the classical Gaussian
coefficient:

k G=1D...(¢g—1D

By duality, Theorem 1 allows to find the number of shape A submodules of g R” containing

a fixed submodule of shape (. One has to apply Theorem 1 to the dual submodules that have
shapes m" — X and m" — ., respectively. So, this number equals ['r"n:;:’;]q

The (left) projective Hjelmslev geometries PHG(g R") are produced from the finite mod-
ules g R" in the same way one produces the classical projective geometries PG(n — 1, q)

from the vector spaces Fy. The geometry PHG(zR") is defined as an incidence structure

|:n] 3 g"—1)... (qnfk+l -1
q
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(P, L, I) having as points the free rank 1 submodules of g R" and as lines the free rank 2
submodules of g R". Incidence is given by set-theoretical inclusion. The set of points con-
tained in a submodule g M C g R"™ which is of shape A is called a subspace of shape A. The
subspaces defined by free submodules of g R" are called Hjelmslev subspaces.

Two subspaces L and M of the same shape defined by the modules g L and g M, respec-
tively, are called i-neighbors if gL = g M + 0 R". This fact is denoted by L=;M 1t can
be checked that i-neighborhood is an equivalence relation on the set of all subspaces. The
equivalence class of all subspaces that are i-neighbors to L is denoted by [L]®. Set

PO — ((x]D | x e P), £D = L]V | L € £},
and
19 = (0. 11D | 3 e . L e (L] 2 (L L) e ).

Theorem 2 [3-5 ] The incidence structure (P®, L9 [DY s isomorphic to the geometry
PHG (g/pi g(R/0'R)").

Let us note that R/6' R is again a chain ring of size ¢, with residue field F,. In particular,
fori =1 we get (P, £V 1MW)y =PG(n — 1, q).

Another family of substructures PHG(g R") is given by the next theorem. Fix a (k — 1)-
dimensional Hjelmslev subspace M in PHG (g R"), and an integer j with0 < j < m.Denote
by P;(M) (resp. L;(M)) the set of all points (resp. lines) that have an j-th neighbour on
M. Let [x]™D x € P; (M), be the neighbour class of all (m — j)-th neighbors to x, and,
similarly, let [L]™~/), L € £;(M), be the neighbour class of all (m — j)-th neighbors to L,
Define a new point set

T = {LN[LI") | LePy(M),L=M LN [ # o).
and a new set of lines £ as

e={LnN[L)™ | LeL;(M),L=M,LN[L]™ 7 +z}.
The incidence J C B x £ is given by set-theoretical inclusion.

Theorem 3 [3-5] The incidence structure (B, £, J) can be embedded isomorphically into
PHG(R/(Rad ryn—i (R/(Rad R)"™/)"). The missing part consists of the points of an (n — k —
1)-dimensional Hjelmslev subspace H and all the subspaces which have commom points
with H.

Note that R/(Rad R)! is again a chain ring with ¢’ elements. In the special case when
Jj = 1, the structure (3, £, J) is a part of PHG(5S5") where S is a chain ring with g"!
elements. In this case, subspaces of shape o = (o7q, ..., 0;) (we suppress trailing zeros) in
[M] become subspaces of shape (o1 — 1,...,0; — 1) in (B, £, J).

If M is a point, the missing part is a hyperplane. Thus the j-th neighbour classes of points
carry the structure of an affine geometry over R/(Rad R)/. For a more detailed introduction
into projective Hjelmslev geometries we refer to [3-5].

2 Incidence matrices and the main theorem

Let R be a finite chain ring with |R| = ¢, R/Rad R = [, and let 2 = PHG(gR"). Let
furthero = (o1, ...,0,)and T = (7y, ..., T,) be non-increasing sequences of non-negative
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integers,i.e.m > o1 > --- >0, >0,m > 1 > --- > 1, > 0, with 0 < 7. We define a
(0, 1)-matrix M, ; in which the rows are indexed by the elements G(n, o) and columns are
indexed by the elements of G(n, 7). The element m(S, T) which is in the row indexed by
S € G(n, 0) and the column indexed by T € G(n, 7) is defined by

1ifScT,

m(S, T) = ‘o itS ¢ T.

We denote by p(S) the row of M, . (£2) indexed by the shape o subspace S. Our goal is to
prove the following theorem which is an analog of Kantor’s result [6] about the rank of the
incidence matrix of dimension s versus dimension ¢ subspaces in PG(n — 1, ¢). Since our
proof relies on Kantor’s theorem, we state it explicitly below.

Theorem 4 [6]Let0 < s <t < n—s—1andlet M be anincidence matrix of all s-spaces
vs. all t-spaces of PG(n, q) or AG(n, q). Then the rank of My ; is the number of s-spaces in
the geometry.

The goal of this paper is to prove the following analog of Kantor’s result.

Theorem 5 (Main Theorem) Let R be a finite chain ring with |R| = ¢™, R/Rad R = F,,
and let @ = PHG(gR") Let t = (11, ..., Ty) be an integer sequence with

m=1>10>->17 >0

and withm® < v < m"~°. Then the rank of Mps (2) is equal to the number of the (s — 1)-

dimensional Hjelmslev subspaces of <2, i.e. [':;:]q

This theorem covers the case where the rows of M . (€2) are indexed by free submodules.
In the last section, we construct an example of an incidence matrix M, (2) with o # m*
(i.e. the subspaces of shape o are not Hjelmslev subspaces) which is not of full rank over Q.

3 A special case

Before we start with the proof of Theorem 5, we mention briefly the case of incidence matrices
with rows indexed by the points and columns indexed by the subspaces of shape t. This is
a special case of Theorem 5. The proof of Theorem 5 does not rely on this special case, but
we include it because it uses the calculation of a special determinant which does not seem to
be that well-known.

Let t = (71, ..., T,) be a non-increasing sequence of non-negative integers, i.e.

m=1t >-->1 >0,

with T < m"~!. Given a linear order on the points and on the subspaces of shape 7, we define
M) = My, = (mjj).

The size of M(t) is [%]q x [";"]q. We shall fix a particular ordering on the points of
PHG(grR"). First we order linearly the 1-neighbour classes of points, i.e. the elements of
PO further we order linearly the 2-neighbour classes of points within each 1-neighbour
class. We go on in the same way until we reach a linear order of the elements of P (which
are single points) within each (rm — 1)-neighbour class of points. If our indices start from 0,

i.e. our points are xo, X1, . . ., then the points x; and x; are k-th neighbours iff
i J
Lqm—k)(n—l)J = Lq<m—k><n—l>J' 3)
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Set
A= M() - M'(7).

The matrix A = (a;;) is a symmetric matrix of order [z}:]q and has in position (i, j) the
number of shape t subspaces containing the points x; and x;.

Letx and y be two points in PHG(g R™) with =%Y. Denote by N the number of subspaces
of PHG(g R™) of shape t = (ty, ..., 7,) containing x and y. Since the module (x, y) has
shape (m,m — k), we have Ny = 0if i <m —kand Ny > 0if o0 > m — k. So, if k is
the maximal integer for which (3) is satisfied then a;; = Ni. Note that N,, 7# 0 and that
Ny > Ny_1 >-+->Ny>00rN, >Ny_1 >---> N =---= Ny = 0 for some
k € {0, ..., m — 1}. The inequalities above are obtained using the remark after Theorem 2.

We need the following lemma which can be found in [7].

Lemma 1 Let n be a positive integer; let ko, ki, ..., k, be positive integers with ko = 1,
kilka, ..., kn—1lky. Let by, by, ..., b, be arbitrary elements of a field F and let C be the
kn X ky matrix over F given by c;j = bmi“{“LLJ:L%J}, where the rows and columns are

ke
labeled from O up to k,, — 1. Then

kn _ _kn
n i ki kign
det(©) =[] [ D_kibj —bjy) :
i=0 \ j=0
where by convention b, 11 = 0 and k,4+1 = +00.
Theorem 6 Lett = (ty, ..., Ty) be a non-increasing sequence of non-negative integer with

m' <t <m""'. Then the matrix M(t) is of full rank over R.

Proof For the matrix A = M(t) - M(t)' onehask; = g’ fori =0,...,m —1,k, = [%]q
and b; = Nj,_;. Now, by Lemma 1,

det A = det M(7)M' (1) # 0.
This implies that A is of rank [%]q which in turn gives that M () is non-singular and its

. . . n
rank is equal to the number of its rows, i.e. [Z:l]q' O

4 The proof of Theorem 5

We start with the case when the rows and the columns of M, ; are indexed by Hjelmslev

subspaces, i.e.c =m® and T = m'.

Theorem 7 Let R be a chain ring with |R| = g™, R/Rad R = F,, and let @ = PHG(g R").

Let further s and t be integers with 1 < s <t < n —s. Then the rank of Mys jt (2) is equal

to the number of free Hjelmslev subspaces of Q2 of dimension s — 1 i.e. the rank is equal to
m'l

m* lq
Proof We use induction on m. The case m = 1 is Kantor’s Theorem. Let us assume that the
result is proved for all incidence matrices M,y,s py (') where Q' is an (n — 1)-dimensional
projective Hjelmslev geometry over a chain ring of nilpotency index at most m — 1.

Now let R be a chain ring with |R| = ¢, ¢ = p", R/RadR = 4, and denote 2 =
PHG(gR™). Consider two (m — 1)-neighbor classes of Hjelmslev subspaces of shape m*
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and m’, say [S]""~D = {Sy,...,S,} and [T]""~D = (T}, ..., T,}, respectively. If some
subspace from [S1¢=D contains a point which is not incident with a subspace from [T1m=b
then S; ¢ T, foranyi € {1,...,u}andany j € {1,..., v}. Hence the u x v submatrix of

Mys e (R2) defined by the rows indexed by Sy, .. ., S, and the columnsindexed by 77, ..., T,
is the all-zero matrix. Otherwise, each subspace of [S1%=D is contained in the same number
of subspaces from [T1%=1D and each subspace from [T1%=D contains the same number
of subspaces from S~ Hence the submatrix of Myps e (82) with rows indexed by the
subspaces from [S]? 1 and the columns indexed by the subspaces from [T']"*~D isa (0, 1)-
matrix, B say, with constant row and column sums. For a suitable ordering of all Hjelmslev
subspaces of dimension s — 1, resp. t — 1, the matrix Mp,s ,(2) can be represented in the
following block form:

My m () = (A ),

wherei =1,...,x,j=1,...,y.Here x and y are the numbers of the (m — 1)-st neighbor
classes of subspaces of dimension s — 1, resp.  — 1. By Theorem 2, we get

(1 _ n _ _ n
x = qs(n s)(m 2)|: ] .y = qt(n t)(m 2)|:ti| )
S q q

If the i-th (m — 1)-neighbor class of s — 1 dimensional Hjelmslev subspaces is contained
in the j-th (m — 1)-neighbor class of (r — 1)-dimensional Hjelmslev subspaces in the factor
geometry then A; ; is a u x v matrix of zeros and ones which has the form P B Q for some
suitable permutation matrices P and Q of orders u and v, respectively. Otherwise A; ; is the
zero matrix. Moreover, the matrix A = (a;, ;) of size x x y defined by

@ ;= 1 ifAi,j?éOuxv,
S () ifA,',j:Ouxv,

is equivalent to the incidence matrix of free (s — 1)-dimensional versus free (r — 1)-
dimensional Hjelmslev suspaces in the factor geometry PHG(g/ro(R/R6)"). Since R/R0
has nilpotency index m — 1, the rank of A is equal to the number of its rows, by the induction
hypothesis.

Assume there exists a non-trivial linear combination of the rows of the matrix My,s p,r (2).

Da®p® = > D> all)pL)=0, )
S [S](m—l) LE[s](m—])
where a (L) are rational numbers not all zero. Define
G ={I +CH™ | Cisann x n matrix over I" with 0’s on the main diagonal}.

G is a commutative group under matrix multiplication. G fixes all (m — 1)-neighbor classes
of points setwise and acts transitively on the points within these classes. Hence the orbits of
G on the set of all Hjelmslev subspaces are the (m — 1)-neighbor classes of Hjelmslev spaces
themselves. In particular, this is true for all (s — 1)-dimensional Hjelmslev subspaces. Thus
for every (s — 1)-dimensional Hjelmslev subspace S we have

1Gs|- 1S9 = |GI.

Since all orbits SC have the same size, the stabilizers G s have also the same size. For an
arbitrary g € G, we get from (4):

2. D apLd)=0.

[S](m—l) Le[s](m—])

@ Springer



Incidence matrices in PH spaces 621

Let g run over all elements of G. This implies

2.2 2, apdH= D > > all)pLd)=0.

8€G [§]m=1 Le[§)m—1) [S]0n=D LeS geG

If (L]~ = [M]“~D the number of elements g € G for which L& = M is equal to the
size of the stabilizer of L, i.e. |Gz| = |G|/|L®|, and is hence constant for all Hjelmslev
subspaces of the same dimension. Hence there exist coefficients bS]y such that

> obasi ™| D ey | =0.

[S](m—l) LE[S]('"’])

Let the rows of the incidence matrix of (s — 1)-dimensional vs. (# — 1)-dimensional subspaces
of PHG(g/re(R/RO)") be ry, ..., ry. For a suitable ordering of the (s — 1)-dimensional
Hjelmslev subspaces of €2 and of the (s — 1)-dimensional subspaces of PG(g,rs(R/R6O)")
we get

Z p(L)=k(r;®(,...,1).
LE[SI.](m—I) M

Here k denotes the number of ones in any column of the block B defined above. This implies
that

X
ST bas1y > py =D b k(i ®@(1,.... 1) =0,
[S]en=D) Le[S]m=1) i=l1 v

where b; = b([S;1"~D)k. Hence

i b,‘ri = O,
i=0

a contradiction since by the induction hypothesis the rows r; are linearly independent. O
Now the proof of Theorem 5 is almost immediate.

Proof (Theorem 5) Let ¢ be the rank of the smallest free submodule of R” that contains a
submodule of shape . By m* <7 <m" ™%, we gets <t <n —s. Now we have

Mm.v,mt = O{MmJerr’mr,

where « is the number of submodules U of shape t with S C U C T, where S and T are
fixed free submodules of ranks s and ¢, respectively (hence « is a constant). Since M,y,s py is
of full rank (by Theorem 7) then M,,s . is also of full rank by Sylvester’s inequality. O

5 A counterexample and concluding remarks

It might be tempting to conjecture that the matrix M, . (€2) is always of full rank, i.e. its
rank is the smaller of the numbers [':’:]q and [";"]q. Below we construct an example which
demonstrates that this is not always true.

For the sake of simplicity we construct our example over the ring Z4, but it can be
generalized to any chain ring. Take R = Z4 and consider the 3-dimensional Hjelmslev
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geometry 2 = PHG(gR%). Seto = (2,1,0,0)and T = (2,2, 0, 0). The shape o subspaces
are line segments consisting of two points each; the shape T subspaces are the lines of €.
Using Theorem 2 we find that the number of shape o subspaces is 420 while the number of
shape t subspaces is 560 (Theorem 2).

Let S be a subspace of shape o in 2 and 77, 7,—Hjelmslev subspaces of shape 7 in Q
with S C Ty, S C T». Clearly T} and T» are Hjelmslev subspaces of minimal rank containing
S. This implies that 77 and 7> are neighbors; otherwise the Hjelmslev subspace 71 N T,
would contain § which is a contradiction to the minimality of 77 and 7». This implies that
there exists such ordering of the shape o and shape t subspaces that M,, . has diagonal block
form with zero-blocks off the main diagonal. Each block has size 12 x 16 and there are
35 such blocks that correspond to the 35 lines in the factor geometry which happens to be
PG(3,2).

Now the matrix M, ; is of full rank if and only if each block is of full rank. Consider
a single block B. It corresponds to a neighbor class of lines in 2. By Theorem 3, a block
is isomorphic to a part of the point versus lines incidence matrix of PG(3, 2). The rows are
indexed by the twelve points not incident with a fixed line £ and the columns are indexed by
the 16 lines skew to £. Now this matrix is not of full rank. To see this, let g, 1, 2 be the
planes through ¢ and let the points in 77; off £ be Pl('), o, P4('), i =0, 1,2. Denote by p(P)
the row in B indexed by the point P. Now it is easily checked that

4 4 4
p(P) =" p(P{)y =" p(PP)=(1,1,.... ).

This means that B is not of full rank and hence M, . (£2) is also not of full rank.

It is clear that the same shapes considered in a higher dimensional space over the same
ring will give again a matrix which is not of full rank.

By duality, Theorem 5 implies that in the case of shapes o and T withm® <o <m" ™% =1,
the matrix M, ;(€2) is of full column rank. At present there is no reasonable conjecture about
the shapes 0 < m® < v < m"~*, for which the rank of M, ;(2) is maximal.
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