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Abstract—This paper proposes a novel paradigm to generate
a parameterized model of the response of linear circuits with the
inclusion of worst-case bounds. The methodology leverages the
so-called Taylor models and represents parameter-dependent re-
sponses in terms of a multivariate Taylor polynomial, in conjunc-
tion with an interval remainder accounting for the approximation
error. The Taylor model representation is propagated from input
parameters to circuit responses through a suitable re-definition
of the basic operations, such as addition, multiplication or matrix
inversion, that are involved in the circuit solution. Specifically,
the remainder is propagated in a conservative way based on the
theory of interval analysis. While the polynomial part provides
an accurate, analytical and parametric representation of the
response as a function of the selected design parameters, the
complementary information on the remainder error yields a
conservative, yet tight, estimation of the worst-case bounds.
Specific and novel solutions are proposed to implement complex-
valued matrix operations and to overcome well-known issues in
the state-of-the-art Taylor model theory, like the determination
of the upper and lower bound of the multivariate polynomial
part. The proposed framework is applied to the frequency-
domain analysis of linear circuits. An in-depth discussion of the
fundamental theory is complemented by a selection of relevant
examples aimed at illustrating the technique and demonstrating
its feasibility and strength.

Index Terms—Circuit simulation, interval analysis, parameter-
ized modeling, parametric simulation, Taylor models, tolerance
analysis, uncertainty, worst-case analysis.

I. INTRODUCTION

The capability of accounting for the effects of stochastic
and/or parametric variations of design parameters on circuit
responses has become of paramount importance due to the
increasing impact of variability in electronic components.
Manufacturing process, temperature variations, uncontrollable
parameters, and uncertain device characteristics, introduce
possibly large variations of the circuit response that need
to be accurately predicted during the design phase. Sensitiv-
ity/tolerance analysis, design exploration and design optimiza-
tion therefore became crucial steps in the design workflow.
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Additionally, for critical (e.g., transport, industrial or medical)
applications, it is often fundamental to determine the worst-
case (WC) configuration that a possible uncertainty on the
input parameters produces on the system output [1]–[5]. In
order to set robust design margins, this has to be done
in a conservative way, i.e., avoiding as much as possible
underestimation.

In this framework, Monte Carlo (MC) is often used as a ro-
bust technique to explore the design space and assess the WC
bounds, as well as to derive statistical information [6]–[8]. Yet,
MC inherently provides underestimated WC responses, as only
a subset of the possible realizations is actually considered. The
determination of the “true” bounds could in fact be achieved
only with an infinite number of samples. In practice, the
number of simulations required to capture WC responses may
be rather large as they often lie in the regions corresponding
to distribution tails, and have therefore a low probability to
occur. In addition to the aforementioned limitations, MC is
“blind” and any relationship between the input parameters and
the output quantities is unavoidably lost.

Parameterized macromodeling of linear networks was pro-
posed to overcome the computational limitations of MC, while
providing an explicit relationship between output responses
and design variables [9]–[12]. The efficiency of the method
stems from the limited number of simulation samples required
to build the model, which is then re-used as an analytical and
computationally cheap surrogate to perform, e.g., sensitivity
analysis and/or optimization tasks. Statistical information is
possibly obtained by MC sampling (e.g., [13]). However, the
problem of underestimation of the WC bounds still exists, as
the macromodel only provides a faster surrogate for the MC-
based analysis.

More efficient techniques were proposed for stochastic
macromodeling that rely on the theoretical framework of poly-
nomial chaos (PC) and on the expansion of circuit responses
in terms of orthogonal polynomials [14]–[19]. The advantage
of PC lies in an optimal choice of the basis functions, which
are more suitable to retrieve relevant stochastic information
on the circuit response, such as statistical moments and
probability density functions. This technique also yields, in
fact, a parameterized model with respect to the uncertain
variables. Nevertheless, PC provides probabilistic bounds only,
which are not necessarily conservative, but rather given within
a certain probability (e.g., three-sigma or 99%-confidence
bounds). Although WC bounds can be in principle extracted
from the parametric PC representation [20], no information
on the approximation error is available, and hence there is no
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guarantee that underestimation is avoided. It should be noted
that PC is designed to provide better accuracy in the regions
of the parameter space with higher probability density.

As opposed to the former class of probabilistic meth-
ods, inherently WC techniques were proposed to provide a
conservative estimation of the upper and lower bounds of
a system response. Specifically, interval methods are based
on the representation of uncertain input parameters in terms
of a bounded range of values the parameter can assume.
The algebraic operations involved in the calculation of the
system solution are then carried out in a modified manner,
with the aim of providing a conservative bound of the actual
result and eventually producing a guaranteed enclosure of the
output responses. The most simple and basic tool is interval
arithmetic or interval analysis (IA) [21], which is however
a non-parametric tool. The lack of parameterization not only
causes a loss of information on the input parameters, but it can
also lead to large overestimation. Affine arithmetic (AA) is an
enhanced representation with a corresponding, suitable modifi-
cation of the pertinent algebraic operations [22]. It introduces
an independent variable for each input parameter and keeps
track of possible correlation between different quantities, thus
considerably reducing overestimation [23]. Nonetheless, it can
be regarded as a linear approximation with a modest accuracy.
Applications of IA and AA to WC circuit simulation are found
in [24]–[29].

Finally, Taylor models (TM) were proposed as a rigorous
approach combining the strength of IA and of a higher-order
parametric representation of the independent variables [30]–
[32]. TMs represent variables in terms of multivariate Taylor
polynomials, complemented by an interval remainder account-
ing for truncation errors. In the chain of calculations, TMs
are propagated by means of the rules of polynomial addition
and multiplication or, whenever nonlinear operators occur, of
Taylor expansion. The remainder is propagated by using both
Taylor remainder and IA theory instead. Hence, TMs feature a
rigorous and accurate parametric representation, while limiting
the overestimation issue to the interval remainder only. The
combination of the upper and lower bounds of the polynomial
part with the remainder provides a guaranteed enclosure of
the response. Applications of TMs are found in the solution
of ODEs with bounded initial values [33]–[35].

This paper outlines, for the first time, an application of
TMs to the parameterized modeling and WC analysis of linear
circuits. From the uncertain design variables, a multivariate
polynomial surface representing network responses is obtained
and complemented by a conservative estimation of the ap-
proximation error. This representation yields both a parametric
model of the response and the information on its WC bounds.
The paper provides a self-contained description of the TM
theory, together with the necessary extensions for its applica-
tion to circuit simulations. In particular, specific solutions are
proposed to improve the modeling accuracy and to extend the
TM formulation to complex- and matrix-valued calculations,
which are the key building blocks allowing to operate in
the frequency domain. To the authors’ best knowledge, an
application of TMs to circuit analysis, with the aforementioned
necessary extensions, has never been proposed in the literature.

The rest of the paper is organized as follows. The problem
and the goals are stated in Section II. Section III briefly
discusses the state-of-the-art interval methods, including IA
which is used in the TM computations as described in Sec-
tion IV. Section V addresses the extension of TMs to complex-
valued matrix calculations, with specific emphasis on the
matrix inversion. An illustrative as well as other application
examples are provided as validations in Section VI. Sec-
tion VII discusses the accuracy and the computational cost in
comparison with alternative approaches. Finally, conclusions
are drawn in Section VIII.

II. PROBLEM AND GOAL STATEMENT

This section lays the ground for the discussion on the
proposed strategy for the parameterized and WC modeling
of the frequency-domain response of a linear circuit with
uncertain parameters. For the sake of illustration, the circuit of
Fig. 1 is considered, in which the component values R, L and
C are understood to be uncertain and defined within a bounded
interval, rather than deterministically. This uncertainty on the
circuit components produces a corresponding uncertainty on
the voltage and current responses.

iL(t)iR(t)

a(t) R L C

+

v1(t)

−

1

0

Fig. 1. Illustrative RLC circuit.

The frequency-domain solution for the sinusoidal steady-
state response of the circuit of Fig. 1, computed via the
modified nodal analysis (MNA) [36], reads[

V1(ω)
IL(ω)

]
=

[
G+ jωC 1

1 −jωL

]−1 [
A(ω)

0

]
, (1)

with G = 1/R. V1 and IL are the phasors of the node
voltage and inductor current, respectively, whereas A denotes
the phasor of the independent current source a(t).

The first goal is to characterize the uncertainty due to the
RLC components in terms of an upper and lower bound on V1
and IL. The second goal is to provide a parameterized model
of these responses as function of the component values.

The standard approach to achieve the first goal is to perform
a uniform MC sampling of the RLC values, to evaluate the cir-
cuit response (1) for each of these samples, and to calculate the
aforementioned bounds as the minimum and maximum over
the collected samples. This strategy, however, only provides
an underestimation of the bounds, whose accuracy increases
with the number of considered samples. Besides, the second
goal is not achievable by the blind MC analysis.

The first task has been accomplished in a more effective
way by using IA or AA computations [24]–[29], which
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produce conservative bounds for the calculations involved
in (1). However, rather cumbersome solutions are required to
improve the accuracy of the bound estimation, as discussed in
the next section. Moreover, such techniques fail to provide a
parameterized model.

In order to effectively achieve both goals, a specific tool
is required that is capable of accurately propagating the
uncertainty of system parameters in the calculation of (1),
while keeping track of their interdependencies. Specifically,
complex-valued operations like additions, multiplications and
inversions, must be handled in both scalar and matrix forms.
An effective solution is proposed and discussed in this paper
based on the TM framework. In the following, the necessary
theoretical notions are introduced step by step, starting from
the definition of the scalar and real-valued interval calculations
(Section III), then introducing the corresponding TM calcu-
lations (Section IV), and finally extending the framework to
complex- and matrix-valued calculations (Section V).

III. INTERVAL METHODS

Interval methods are numerical techniques that replace
the standard algebraic operations for bounded variables and
produce a guaranteed enclosures of their result, by taking
into account truncation and round-off errors in conservative
way [23].

A. Interval Arithmetic

IA is based on the interval representation of uncertain
parameters. The notation x̄ = [a, b] is introduced to denote
an interval variable that assumes values in the interval [a, b].
Given two IA-variables x̄ = [a, b] and ȳ = [c, d], it follows
that

x̄+ ȳ = [a+ c, b+ d] (2)
x̄− ȳ = [a− d, b− c] (3)
x̄ · ȳ = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)] (4)
x̄

ȳ
=

[
min

(
a

c
,
a

d
,
b

c
,
b

d

)
,max

(
a

c
,
a

d
,
b

c
,
b

d

)]
, (5)

with the division being defined only as long as 0 /∈ [c, d]. The
raise of an IA-variable to an integer power k is

x̄k =


[1, 1] k = 0[
0,max(ak, bk)

]
k even, 0 ∈ [a, b][

min(ak, bk),max(ak, bk)
]

otherwise
(6)

The bounds resulting from the application of a nonlinear
monotonic function f(·) to an IA-variable are readily given
by

f(x̄) = [min(f(a), f(b)),max(f(a), f(b))] . (7)

Despite being very simple to implement, the main limitation
of IA is its inability to track any possible correlation between
parameters, thus possibly leading to serious overestimation.
As a typical example, the execution of the operation x̄ − x̄
would produce [a− b, b− a] 6= [0, 0].

B. Affine Arithmetic and Uncertainty Interval Partitioning

AA is an alternative technique that overcomes the afore-
mentioned limitation by analytically describing an interval
variable in terms of a variation around its central value, i.e.,
x̃ = x0 + x1ε, with x0 = (a + b)/2, x1 = (b − a)/2, and
ε ∈ [−1, 1]. It follows immediately that x̃−x̃ = 0. Independent
parameters are tracked by introducing a separate noise symbol.
The AA form is in fact a linear parametric representation.

The uncertainty interval partitioning (UIP) is a strategy
that subdivides the domain of each uncertain parameter into
subintervals. The response bounds for each subdomain are
computed separately via an interval method, and they are
then combined to obtain the overall bounds. This approach
improves the accuracy of the underlying interval method,
although the number of partitions (and hence, of calculations)
grows exponentially with the dimensionality. In [26], the UIP
has been applied in conjunction with IA for WC circuit
simulation.

AA and UIP may be used to improve the accuracy of
TM-based calculations at the expense of the efficiency, as
mentioned further. Nevertheless, they are not used in this
paper and therefore not discussed in more detail. For additional
information, the interested reader is referred to [23].

IV. TAYLOR MODELS

This section provides a summary of the fundamental back-
ground of TMs, along with the key underlying steps involved
in the basic operations and functional expansions in scalar
form, for both the univariate and the multivariate cases.
The extension to complex- and matrix-valued operations is
discussed in the next section.

A. Definition

A TM is an hybrid representation of a nonlinear function of
a bounded variable x ∈ [a, b] in terms of a Taylor expansion
plus an interval remainder. The nth-order TM of f(x) around
the center of the interval x0 is defined as

Tf = Pf (x− x0) + If , (8)

where

Pf (x− x0) =

n∑
k=0

f (k)(x0)

k!
(x− x0)k (9)

is the nth-order Taylor expansion of f(x) around x0, whereas
If is an interval variable such that f(x) ∈ Pf (x − x0) + If ,
∀x ∈ [a, b]. Hence, the TM provides a parametric repre-
sentation of f(x) in terms of the polynomial Pf , while the
remainder If encloses the model between two curves within
which lies the true value of the function. The bound of f(x) is
estimated as Bf = B(Pf )+If , where B(·) denotes the bound
operator of the argument over its domain, and the addition is
intended in the IA-sense.

The interval remainder If is commonly defined as the bound
of the Lagrange remainder of the Taylor expansion (9), which
reads [38]

Rn(x, ξ) =
f (n+1)(ξ)

(n+ 1)!
(x− x0)n+1, (10)
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where ξ ∈ [x0, x]. By increasing the order n, the remainder
can be made arbitrarily small, thus improving the accuracy
of the TM. Ideally, If = [0, 0] implies that Pf provides
an exact parametric representation of f(x). The bound of
the remainder (10) is estimated by means of IA-operations,
starting from the interval representation of the variables x and
ξ.

It is relevant to point out that the calculation of the TM
bounds requires the bounds of its polynomial part. In the
univariate case, this calculation is trivial, as the bounds of
a polynomial are merely the minimum and maximum over
the values at the domain extrema and at the roots of its first-
order derivative that fall in the domain. Suitable solutions are
required in the multivariate case instead, as discussed later on.

B. Addition and Multiplication

With the definitions provided, the addition and subtraction
of TMs are straightforward, and lead to

Tf ± Tg = Pf (x− x0)± Pg(x− x0) + If ± Ig, (11)

where the operation over the remainders is carried out in the
IA-sense.

The product between TMs yields instead

Tu = Tf · Tg = (Pf (x− x0) + If )(Pg(x− x0) + Ig)

= Pf (x− x0)Pg(x− x0) + Pf (x− x0)Ig

+Pg(x− x0)If + IfIg.
(12)

The first term is expressed as

Pf (x− x0)Pg(x− x0) = Pu(x− x0) + Pe(x− x0), (13)

where Pu(x − x0) is up to order n and corresponds to the
polynomial part of Tu, while Pe(x − x0) is the remaining
higher-order contribution. The remainder of Tu encompasses
all remaining terms and is computed as

Iu = B(Pe) +B(Pf )Ig +B(Pg)If + IfIg, (14)

where the additions and multiplications are in the IA-sense.

C. Functional Expansion

The calculation of a nonlinear function g(·) of a TM Tf is
eased by considering the functional expansion w.r.t. the TM
itself, rather than to the underlying variable x. Such an expan-
sion is computed around the point cf = Pf (x0), corresponding
to the constant part of the TM. The TM T̄ = Tf −cf , without
constant part and defined by P̄f (x− x0) = Pf (x− x0)− cf
and Īf = If , is introduced. With the above definitions, the
functional expansion reads

g(Tf ) = Pg(x− x0) + Ig

=

n∑
k=0

g(k)(cf )

k!
(T̄f )k +

g(n+1)(ς)

(n+ 1)!
(T̄f )n+1,

(15)

where the derivatives of g(·) are computed w.r.t. its argument
Tf and with ς = cf (1 + [0, 1] · T̄f/cf ) ∈ B(Tf ). It is
worth noting that the first term in the r.h.s. of (15) merely

involves sums and products of TMs, which are computed
with the rules outlined in Section IV-B. Furthermore, since T̄f
has no constant part, the second term (Lagrange remainder)
has degree ≥ n+ 1, and therefore does not contribute to the
polynomial part Pg . The bound of the Lagrange remainder is
computed via IA-operations and it is added to the remainder
of the first term to obtain the total remainder Ig . Alternatively,
should g(·) be monotonic, the exact bound of g(Tf ) is deter-
mined from the bound of Tf using (7), and a more accurate
remainder is computed as Ig = B(g(Tf ))−B(Pg).

D. Multivariate Taylor Models

The definition of a multivariate TM is straightforward.
For the sake of convenience, the independent variables x =
[x1, . . . , xd] are assumed to be normalized in the hyperdomain
D = [−1, 1]d. This can always be achieved by proper shifting
and rescaling. With this definition, retained throughout the rest
of the paper, the center of the domain becomes x0 = 0, and
the Taylor expansions reduce to Maclaurin series. The TM of
a multivariate function f(x) is expressed as Tf = Pf (x) + If
and encloses the true function between two hypersurfaces on
D. The multivariate polynomial Pf (x) collects the terms up
to total degree n (i.e., the monomials with degree n or lower),
while the remaining contributions are included in the interval
remainder.

The definitions of addition and multiplication provided in
Section IV-B also hold for the multivariate case. In the latter,
the polynomial contribution of total degree higher than n
is collected into the extra polynomial Pe, whose bounds
are included in the interval remainder. Moreover, the use of
functional expansions as in Section IV-C eases the calculation
of a nonlinear function of a multivariate TM, without the need
for computing cumbersome partial derivatives.

When operating with multivariate TMs, the major issue
comes from the determination of the bounds of the polynomial
part, as needed for the determination of the WC as well as for
the interval remainder of the multiplication (14) and functional
expansion (15). This point is discussed in the next section.

E. Multivariate Polynomial Bounds

The calculation of the maximum and minimum of a multi-
variate polynomial on a bounded hyperdomain is a fundamen-
tal, yet non-trivial task in TM computations, which is often
overlooked in the literature despite having a strong impact on
the modeling accuracy. Several possible solutions are briefly
reviewed in this section.

An exact solution exists for the bounds of a second-order
polynomial. It is introduced and used in [20] to extract the
bounds of a PC expansion. Nevertheless, the applicability of
this approach is limited to first- and second-order TMs only;
for the latter, a different strategy must still be devised for the
bound of the extra polynomial Pe arising in the multiplication.

The bound of a multivariate polynomial can be alternatively
computed by using the interval definition of each uncertain
design variable and by performing either IA or AA calcu-
lations on the monomials. The problem therefore reduces to
the calculation of sums and products of interval variables. In
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particular, by separately considering the coefficient and the
exponents of each monomial, the calculation for a univariate
polynomial P (x) =

∑n
i=0 pix

i in the normalized range
x = [−1, 1] simplifies to

p0 +

n∑
i=1

mi · |pi| ≤ P (x) ≤ p0 +

n∑
i=1

Mi · |pi|. (16)

According to IA, the coefficients Mi and mi are determined
by the exponent i and the sign of the coefficient pi as

Mi =

{
0 if pi < 0 and i even

1 otherwise
(17)

and

mi =

{
0 if pi > 0 and i even

−1 otherwise.
(18)

The generalization to the multivariate case is straightforward.
In the following, this approach is referred to as the “raw”
method. It is possibly combined with UIP to improve the
accuracy of the estimation. This solution is suggested in [30]
although, as already discussed, the number of operations does
not scale favorably with the number of variables.

A more sophisticated strategy is proposed in this paper
based on Bernstein polynomials. By means of a change of
basis, a standard univariate polynomial P (x) =

∑n
i=0 pix

i is
converted into the Bernstein form

PB(x) =

n∑
i=0

biBi(x), (19)

where the Bernstein basis polynomials are defined as

Bi(x) =

(
n

i

)
xi(1− x)n−i, 0 ≤ i ≤ n (20)

and the corresponding Bernstein coefficients are

bi(x) =

i∑
j=0

(
i
j

)(
n
j

)2j
n∑

k=j

(
k

j

)
(−1)k−jpk. (21)

Thanks to the properties of Bernstein polynomials [40]–
[43], the polynomial PB(x) is contained within the interval
spanned by the minimum and maximum Bernstein coefficients,
i.e.,

min
i
{bi} ≤ P (x) ≤ max

i
{bi}. (22)

Consider now a multivariate polynomial in the form

P (x) =
∑
k

pk

d∏
j=1

x
kj

j , (23)

where k = [k1, . . . , kd] is a multi-index defining the exponents
of each monomial, with 0 ≤ kj ≤ n and

∑d
j=1 kj ≤ n. Under

the assumption that x ∈ [−1, 1]d, the calculation of the vector
of multivariate Bernstein coefficients simplifies to

b =
∑
k

pk ·
(
βk1
⊗ βk2

⊗ · · · ⊗ βkd

)
, (24)

where βk is a vector with entries

βk,i =

min{i,k}∑
j=0

(
i
j

)(
n
j

)2j
(
k

j

)
(−1)k−j , (25)

for i = 0, . . . , n.
It is important to remark that the vectors βk, as needed

for the conversion in (24), do not change and are therefore
computed only once from β0 up to βn. For large variations of
the input parameters, it may be necessary to introduce the UIP
and divide the range into subintervals to avoid a detrimental
loss of accuracy. However, the application examples proposed
in the following show that Bernstein polynomials usually yield
very high accuracy without the need for these subdivisions,
whereas the “raw” method provides an easier and viable
solution with an acceptable accuracy.

V. COMPLEX AND MATRIX OPERATIONS

The notions introduced so far allow to perform scalar and
real-valued calculations. In order to deal with frequency-
domain circuit equations like (1), an extension of the TM
tool to complex-valued matrix computations is necessary. This
fundamental step is discussed in this section, with specific
emphasis on the matrix inversion. It is worth noting that
calculating the inverse of a matrix TM with a guaranteed
conservative bound is a non-trivial task that, to the authors’
best knowledge, has never been documented in the literature
before.

A. Complex Calculus

The extension to complex algebra is relatively straightfor-
ward and is carried out based on the fundamental rules. Specif-
ically, given two scalar and complex variables in rectangular
form:

Tf = Tf,r + jTf,i

Tg = Tg,r + jTg,i
(26)

with their real and imaginary parts defined as TMs like (8),
the sum and subtraction reduce to Tf ± Tg = (Tf,r ± Tg,r) +
j(Tf,i±Tg,i). The multiplication and division become instead

Tf · Tg = (Tf,rTg,r − TfiTg,i) + j(Tg,rTf,i + Tg,iTf,r) (27)

and

Tf/Tg =
Tf,rTg,r + Tf,iTg,i

T 2
g,r + T 2

g,i

+ j
Tf,iTg,r − Tg,iTf,r

T 2
g,r + T 2

g,i

, (28)

respectively. The real and imaginary parts are therefore han-
dled separately by means of the real-valued computations
discussed in Section IV.

The calculation of the magnitude in linear scale

|Tf | =
√
T 2
f,r + T 2

f,i (29)

or in dB

|Tf |dB = 10 log(T 2
f,r + T 2

f,i) (30)

is performed by applying the rules of function expansion (15)
to the square-root and logarithmic functions.
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B. Matrix Taylor Models and Matrix Inversion

A matrix TM is denoted as T f = P f (x) + If , where each
quantity is understood to be a matrix with entries consistent
with the standard TM representation (8). The basic scalar
operations introduced so far, i.e., addition, subtraction and
multiplication, are readily generalized to the corresponding
matrix calculations by operating element-wise. In particular,
the product of two matrix TMs merely involves additions and
multiplications of scalar TMs.

The matrix inversion requires a suitable algorithm instead.
An effective approach based on the Sherman-Morrison (SM)
formula [39] is proposed in the following. The SM formula
provides a clever and exact solution for the computation of
the inversion (A + B)−1 when B has unitary rank. In this
case, the resulting inverse matrix is

(A+B)−1 = A−1 − 1

1 + α
(A−1BA−1), (31)

where α = tr(A−1B). Hence, the inversion of the sole matrix
A is actually required.

Consider now a matrix TM T f , which is conveniently split
into the sum of a constant matrix and a shifted TM, as was
done in Section IV-C for the scalar case:

T f = cf + [P̄ f (x) + If ] = cf + T̄ f , (32)

where cf = P f (0) and P̄ f (x) = P f (x) − cf . If the non-
constant part T̄ f has unitary rank, then (33) is applied directly
and the inverse TM is

T g = T−1f =
(
cf + T̄ f

)−1
= c−1f −

1

1 + α
(c−1f T̄ fc

−1
f ),

(33)

with α = trace(c−1f T̄ f ). It is relevant to remark that the SM
formula allows to reduce the inversion of a matrix TM to
standard and already available calculations, namely additions
and multiplications of TMs, the inversion of the constant
matrix cf , and the inversion of the scalar TM of 1 + α. In
practical situations, the matrix cf has always full rank, as it
corresponds to the matrix for the nominal design. Moreover,
the trace operation merely involves a sum of TMs.

The generalization of (33) to the case of full-rank matrices
requires an iterative application of the rule, by splitting the
matrix T̄ f into the sum of rank-one matrices:

T̄ f = T̄ f,1 + T̄ f,2 + T̄ f,3 + . . . , (34)

where the notation T̄ f,i denotes a matrix TM with null entries
except for the ith column, which coincides with the ith column
of the original TM T̄ f . Hence, (31) is first used to compute the
inversion (cf +T̄ f,1)−1, by assuming A = cf and B = T̄ f,1.
In the second step, the inversion (cf + T̄ f,1 + T̄ f,2)−1 is
calculated by letting A = cf + T̄ f,1 and B = T̄ f,2. The
inverse of A, as needed in (31), is available from the previous
step. The procedure is iterated until all terms in (34) are
accounted for, thus yielding the end result.

VI. APPLICATION EXAMPLES

The proposed technique has been implemented in MATLAB
on an Apple MacBook Pro with an Intel(R) i5, CPU running
at 2.4 GHz and 4 GB of RAM. In the following, it is applied
to the frequency-domain parametric and WC simulation of
several circuits with bounded uncertain parameters.

A. Illustrative Example (RLC Circuit)
As an illustrative example, the RLC circuit of Fig. 1 is

considered first, with focus on the network function H(ω) =
IL(ω)/A(ω) and on the effects of the parameters G and L on
the behavior. The above quantities have bounded uncertainties
with 10% and 25% maximum relative variations around their
nominal values, i.e., G = [0.9, 1.1] S and L = [1.5, 2.5] H,
whereas the capacitance has a fixed value of C = 1 F.
The uncertain design parameters are represented by the zero-
centered TMs

TG(x) = 1 + 0.1x1 + [0, 0] (35)
TL(x) = 2 + 0.5x2 + [0, 0] (36)

with x = [x1, x2] ∈ [−1, 1] × [−1, 1]. The above TMs
replace the conductance and inductance in (1), thus yielding
the following TM of the MNA matrix

M(x) =

[
1 + jω 1

1 −j2ω

]
+

[
0.1x1 0

0 −j0.5ωx2

]
(37)

with null interval remainders. From (1), the corresponding TM
of the transfer function H(ω,G,L), let us denote it as TH =
PH(ω,G,L)+IH(ω), is provided by the element [M−1]21 of
the inverse of matrix (37), which is calculated by applying the
algebraic rules outlined in Sections IV and V. The Appendix
provides the interest reader with the step-by-step calculation
of this inversion.
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Fig. 2. Transfer function H(jω) = IL(ω)/A(ω) in the lumped circuit of
Fig. 1. The spread of the response is provided by the superposition of many
MC samples (gray area). The WC bounds are obtained with first- and third-
order TMs and the “raw” calculation of the polynomial bounds (dashed lines),
or with a third-order TM and Bernstein polynomials (solid lines).

Fig. 2 shows the WC bounds of the real and imaginary parts
of H(ω) over 100 frequency points, computed by means of
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the proposed technique as B(PH)(ω) + IH(ω) and compared
with the spread given by the superposition of 10000 MC
responses (gray area). The TM results are produced by con-
sidering different expansion orders and/or different approaches
to evaluate the upper and lower bounds of the polynomial
part. Specifically, the dashed lines refer to a first- or third-
order expansion with the “raw” calculation of the polynomial
bounds. The solid line refers to a third-order expansion with
Bernstein polynomials instead. The calculation via Bernstein
polynomials yields a substantial improvement in the estimation
of the WC, without resorting to the UIP. This example also
shows that the accuracy in the determination of the polynomial
bounds (which is, in general, an open issue for the multivariate
case) plays a crucial role.
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Fig. 3. Real part of the transfer function H(ω) at ω = 0.61 rad/s plotted as
a function of G and L. The gray surface is the exact solution. The colored
surfaces are the upper and lower bounds given by the first- (top panel) and
third-order (bottom panel) TMs.

To further highlight the features of the TM approach,
Fig. 3 plots the real part of the complete two-dimensional TM
PH(ω0, G, L) + IH(ω0) (colored surfaces) as a function of G
and L at the angular frequency ω0 = 0.61 rad/s. The actual
response (gray surface) is guaranteed to lie within these two
bounds and, as shown, this is indeed the case. The results are

provided for first- and third-order TMs (top and bottom panels,
respectively). As expected, the first-order TM defines two
planes, with a rough estimation of the maximum and minimum
of the circuit response within the given domain. The third-
order TM defines a cubic surface instead, with an improved
accuracy established by the tighter bounding provided by the
colored surfaces. These results highlight the capability of the
TM to provide a tight bound for the response variation as
the order is increased. Moreover, the truncation of the Taylor
expansion is suitably accounted for by the interval remainder,
leading to a conservative upper and lower bounding surfaces.
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Fig. 4. Imaginary part of H(ω) for varying values of the conductance
G. The reference responses (thin black curves) are compared against the
parameterized model provided by a third-order TM (thick colored curves).

Finally, Fig. 4 shows the parametric response of the imag-
inary part of H(ω,G,L0), as a function of the conductance
G and with the inductance value fixed to the nominal value
L0 = 2 H. The reference responses (thin black curves),
obtained by sweeping the value of G from 0.9 S to 1.1 S,
are compared with the parametric model provided by the
polynomial part PH(ω,G,L0) of the third-order TM (colored
thick lines), showing excellent agreement.

B. Active Low-Pass Filter
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In Out

R1 = 5.4779kΩ
R6 = 4.44kΩ
R15 = 5.62599kΩ
C1 = 12nF

R2 = 2.0076kΩ
R7 = 5.9999kΩ
R16 = 3.63678kΩ
C3 = 6.8nF

R3,4,8,9,13,14,18,19 = 3.3kΩ
R10 = 4.2573kΩ
R17 = 1.0301kΩ
C5 = 4.7nF

R11 = 3.2201kΩ
R20 = 5.808498kΩ
C7 = 6.8nF

R5 = 4.5898kΩ
R12 = 5.88327kΩ
R21 = 1.2201kΩ
C2,4,6,8,9 = 10nF

Fig. 5. Schematic of the active low-pass filter (reproduced from [19]).
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The proposed technique is now applied to the analysis of
a more complex network, i.e., the active low-pass filter [19]
shown in Fig. 5. The operational amplifiers are considered
to be ideal. The nominal values of all circuit parameters
are provided in Fig. 5. Additionally, five parameters, namely
C2, C4, C6, C8, and C9, exhibit a variation within ±5%
around their nominal values. The variations of pairs C2-C4

and C6-C8 are correlated and described by means of one
independent variable each. Together with C9, the total number
of independent variables amounts to three.
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Fig. 6. Passband ripple (top panel) and stopband attenuation (bottom panel)
of the active filter of Fig. 5. The upper and lower WC bounds obtained with a
fifth-order TM and the raw (dashed lines) or Bernstein (solid lines) approaches
are compared against the spread of the MC samples (gray area).

The magnitude of the transfer function H(ω) =
Vout(ω)/Vin(ω) is provided in Fig. 6 for both the passband
(top panel), extending from 0 to 3000 Hz, and the stopband
(bottom panel), starting at 4000 Hz and exhibiting a nominal
minimum attenuation of 50 dB. The WC bounds provided by a
fifth-order TM and computed with both the raw (dashed line)
and Bernstein (solid line) approaches are compared against the
spread of 10000 MC samples. The comparison confirms once
again the superior accuracy of the Bernstein approach, but
also the reasonably good estimation achieved with the much
simpler raw method.

Furthermore, Fig. 7 compares a small subset of MC re-
sponses (thin black lines) against the parametric model pro-
vided by the TM (thick colored lines). An excellent agreement
is established, in spite of the large variation of the responses.
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Fig. 7. Passband (top panel) and stopband (bottom panel) responses for
different values of the uncertain design parameters. The reference responses
(thin black curves) are compared against the TM prediction (thick colored
lines).

C. RF Filter

L1

C1

L2

C2

L3

C3

C1

L2

L1

Fig. 8. Schematic of the band- and high-pass Chebyshev filter.

The last example refers to the two-port RF filter shown
in Fig. 8. The filter is of Chebyshev type and it is designed
to exhibit both a band- and high-pass behavior. The nominal
values of the circuit components are: L1 = 146 nH, L2 =
312.5 nH, L3 = 92 nH, C1 = 73.6 pF, C2 = 116.6 pF, C3 =
250 pF. The inductances L1, L2 and L3 are considered as 3
independent parameters that exhibit a maximum variation of
±5% around their nominal values. The ports have a reference
impedance of 50 Ω.
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Fig. 9. Magnitude of S21 in the filter of Fig. 8. The response variation (gray
area) is compared against the upper and lower WC bounds estimated via a
third-order TM in conjunction with the Bernstein approach (solid thick lines).

Fig. 9 shows the magnitude of the scattering parameter S21.
The spread due to the parameter variations and computed via
the superposition of 10000 MC samples (gray area) is com-
pared against the WC bounds estimated via a third-order TM
(solid lines). The Bernstein approach is used for the bounds of
the polynomial part. For a more accurate calculation, the phys-
ical constraints |S21| ≤ 1 and −1 ≤ Re{S21}, Im{S21} ≤ 1
on the scattering parameters are taken into account. The results
once again confirm the accuracy of the proposed TM method
in predicting the WC bounds.

VII. PERFORMANCE AND COMPUTATIONAL COST

This section discusses the performance of the proposed sim-
ulation framework in estimating WC responses in comparison
with classical techniques, and the corresponding computational
cost.

A. Convergence of MC Analysis and TM Accuracy

The numerical analysis of the accuracy is focused on a
selection of frequencies from the results in Fig. 6 and Fig. 9.
Table I collects the WC bounds of the response of the active
and RF filters obtained with MC, the proposed TM approach in
conjunction with Bernstein polynomials, and a PC expansion
with exact bound calculation [20].

The first four rows of Table I provide the results obtained
with different sample sizes in the MC analysis and disclose
a rather slow convergence rate. The difference between the
results for 105 and 106 samples is, in some cases, still rela-
tively large. This is explained by the fact that WC responses
may lie in a region with lower probability density and have
therefore a low chance to be approached. As for the TM
result (fifth row), it always provides a conservative estimation,
which is normally very close to the MC result with the largest
number of samples. On the other hand, the table also shows
that the PC expansion often underestimates the MC result.
This is because the approximation error introduced by the PC
expansion is defined in statistical terms and does not prevent
an underestimation of the response.

It is relevant to point out that the “true” WC bounds
lie between the results from MC (inherently underestimated)
and TM (guaranteed conservative) analyses, which can be
therefore regarded as complementary tools, in analogy with
the combined use of MC and AA in [27]. As for PC, it
is impossible to predict a priori whether overestimation or
underestimation is provided.

B. Computational Cost

TABLE II
COMPUTATIONAL COST PER FREQUENCY POINT FOR THE PROPOSED TM

APPROACH IN THE DIFFERENT APPLICATION EXAMPLES.

example TM (raw) TM (Bernstein) equivalent MC runs

RLC circuit (d = 1) 0.11 s 0.12 s 1100

RLC circuit (d = 2) 0.11 s 0.13 s 1200

active filter (d = 1) 8.31 s 8.96 s 74700

active filter (d = 2) 12.55 s 14.41 s 120100

active filter (d = 3) 14.05 s 22.40 s 186700

RF filter (d = 1) 2.29 s 2.45 s 30700

RF filter (d = 2) 2.74 s 3.01 s 37700

RF filter (d = 3) 3.46 s 4.45 s 55700

Table II collects the simulation times of the TM calculations
for the three application examples included in this paper. In
order to quantify the overhead of using Bernstein polynomials
in place of the raw bound estimation, both cases are reported
in the table. The impact of the problem dimensionality is also
assessed by varying the dimension d of the design parameter
space. The table shows that the method scales relatively
well with the dimension of the parameter space and that the
overhead in the use of Bernstein polynomials is generally
limited, except for larger problems in terms of network size
and number of design parameters. Moreover, the last column
indicates the number of samples that can be obtained in the
same amount of time with a classical MC analysis. In most of
the cases, the value is well below 105, which may result in an
inaccurate estimation of the WC bounds, as shown in Table I,
and without the additional insight provided by the parametric
model. It should be noted that the margin for improvement
by mere implementational optimization of the TM operations
is rather large, whereas the primary goal of this paper is
to provide a proof of concept of the method’s validity and
applicability.

VIII. CONCLUSIONS

This paper presents a TM-based approach to jointly obtain
a parameterized frequency-domain response of a circuit with
bounded uncertain parameters and the corresponding WC
bounds. A TM consists of a Taylor polynomial expansion,
which represents the parametric model, and of an interval
reminder, which accounts for approximation errors in a con-
servative way. The combination of the upper and lower bounds
of the polynomial part with the interval remainder provides a
conservative estimation of the WC response.
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TABLE I
COMPARISON ON THE ACCURACY BETWEEN MC, TM AND PC IN THE ESTIMATION OF THE WC BOUNDS OF THE ACTIVE AND RF FILTER RESPONSES.

active low-pass filter RF filter

↓ method / frequency → 4200 Hz 5000 Hz 8200 Hz 23 MHz 52 MHz 53 MHz

MC (103 samples) [−60.2162,−48.4460] [−65.5689,−53.8135] [−77.2765,−63.7759] [0.9014, 0.9524] [0.9408, 0.9893] [0.9725, 0.9980]

MC (104 samples) [−60.7493,−48.4265] [−65.7580,−53.7080] [−77.3687,−63.7759] [0.8994, 0.9526] [0.9349, 0.9903] [0.9688, 0.9984]

MC (105 samples) [−60.7607,−48.3115] [−65.8212,−53.6614] [−77.4607,−63.7334] [0.8992, 0.9528] [0.9329, 0.9908] [0.9675, 0.9986]

MC (106 samples) [−60.8430,−48.2923] [−65.8212,−53.6495] [−77.5000,−63.7205] [0.8990, 0.9532] [0.9326, 0.9908] [0.9673, 0.9986]

TM [−61.0168,−48.2455] [−65.8552,−53.6385] [−77.5119,−63.7104] [0.8974, 0.9548] [0.9304, 0.9924] [0.9657, 0.9999]

PC [−60.1618,−48.5002] [−65.2900,−53.8358] [−76.5687,−63.9950] [0.8992, 0.9531] [0.9330, 0.9900] [0.9679, 0.9977]

The technique is applied to the frequency-domain circuit
analysis through a suitable re-definition of the algebraic oper-
ations involved in the calculation of the output responses from
the (possibly uncertain) circuit parameters. Original and novel
solutions are proposed to extend the TM framework to matrix
and complex-valued calculations, and to improve the estima-
tion of the WC bounds. Specifically, an iterative approach
based on the SM formula is put forward to invert a matrix
TM. Moreover, the conversion of the Taylor expansion into
Bernstein polynomials is proposed to improve the estimation
of the upper and lower bounds.

Several application examples are provided to demonstrate
the accuracy and the feasibility of the technique. It is also high-
lighted that the accuracy of the WC bounds strongly depends
on the accurate calculation of the maximum and minimum of
the polynomial part of the TM. However, the use of Bernstein
polynomials allows to achieve a substantial improvement with
respect to traditional solutions based, e.g., on IA calculations,
while avoiding the use of the UIP. The methodology offers
promising accuracy and competitive computational efficiency
in comparison with standard techniques.
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APPENDIX A
INVERSION OF MATRIX TMS

This appendix outlines the step-by-step inversion of the
matrix TM (37) via the SM algorithm. To begin with, the
TM is rewritten as M(x) = cM + T̄M,1 + T̄M,2, with

cM =

[
1 + jω 1

1 −j2ω

]
(A.1a)

T̄M,1 =

[
0.1x1 0

0 0

]
(A.1b)

T̄M,2 =

[
0 0
0 −j0.5ωx2

]
(A.1c)

The application of the SM algorithm requires the preliminary
calculation of the inverse of cM . By focusing on the angular

frequency ω = 0.61 rad/s, as for the results in Fig. 3, the
inverse reads

c−1M =

[
0.958 + j0.201 0.165− j0.785
0.165− j0.785 −0.644 + j0.685

]
(A.2)

The first step is then the calculation of (cM + T̄M,1)−1 as

(cM + T̄M,1)−1 = c−1M −
1

1 + tr(c−1M T̄M,1)
(c−1M T̄M,1c

−1
M )

(A.3)
The partial calculations involved are as follows:

c−1M T̄M,1 =

[
0.096x1 0
0.016x1 0

]
+ j

[
0.020x1 0
−0.079x1 0

]
(A.4)

tr(c−1M T̄M,1) = 0.096x1 + j0.020x1 (A.5)

c−1M T̄M,1c
−1
M =[

0.088 0.032
0.032 −0.059

]
x1 + j

[
0.038 −0.072
−0.072 −0.026

]
x1

(A.6)

So far, the operations did not introduce any approximation,
and the interval remainders are therefore still null and have
been omitted. The first approximation occurs in the operation
involving the scalar inversion. For the sake of compactness, a
first-order representation and the raw estimation of polynomial
bounds is used in the following. The aforementioned operation
is calculated with the rules of functional expansion outlined
in Section IV-C, leading to

1

1 + tr(c−1M T̄M,1)
= (1− 0.096x1 + [0.807, 0.960]× 10−2)

+j(−0.020x1 + [0.336, 0.447]× 10−2)
(A.7)

By combining the above results, the first step of the SM
algorithm eventually yields the result given in (A.8) at the top
of the next page. The application of the second (and in this
case last) step of the SM formula involves the calculations in
(A.9)–(A.12) and ultimately yields the inverse of M(x) given
by (A.13). The element [M−1]21 of this matrix is the TM of
the transfer function TH at ω = 0.61 rad/s. The WC bounds,
computed with the raw approach, are [−0.055, 0.385] +
[−0.151, 0.151] = [−0.206, 0.536] for the real part, and
[−0.989,−0.581] + [−0.087, 0.087] = [−1.076,−0.494] for
the imaginary part.
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(cM + T̄M,1)−1 =

([
0.958− 0.088x1 0.165− 0.032x1
0.165− 0.032x1 −0.644 + 0.059x1

]
+

[
±[0.872] ±[0.512]
±[0.512] ±[0.586]

]
× 10−2

)
+j

([
0.201− 0.038x1 −0.785 + 0.072x1
−0.785 + 0.072x1 0.685 + 0.026x1

]
+

[
±[0.624] ±[0.715]
±[0.715] ±[0.420]

]
× 10−2

) (A.8)

(cM +T̄M,1)−1T̄M,2 =

([
0 −0.239x2
0 0.209x2

]
+

[
[0, 0] ±[0.241]
[0, 0] ±[0.092]

]
× 10−1

)
+j

([
0 −0.050x2
0 0.196x2

]
+

[
[0, 0] ±[0.112]
[0, 0] ±[0.198]

]
× 10−1

)
(A.9)

tr((cM + T̄M,1)−1T̄M,2) = (0.209x2 ± [0.092]× 10−1) + j(0.196x2 ± [0.198]× 10−1) (A.10)

(cM + T̄M,1)−1T̄M,2(cM + T̄M,1)−1 =

([
−0.079x2 0.188x2

0.188x2 −0.269x2

]
+

[
±[0.273] ±[0.395]
±[0.421] ±[0.299]

]
× 10−1

)
+j

([
0.180x2 −0.132x2
−0.132x2 0.017x2

]
+

[
±[0.407] ±[0.356]
±[0.232] ±[0.395]

]
× 10−1

) (A.11)

1

1 + tr((cM + T̄M,1)−1T̄M,2)
= (1− 0.209x2 + [−0.021, 0.005]) + j(0.196x2 + [0.055, 0.132]) (A.12)

M−1 =

([
0.958− 0.088x1 + 0.079x2 0.165− 0.032x1 − 0.188x2
0.165− 0.032x1 − 0.188x2 −0.644 + 0.059x1 + 0.269x2

]
+

[
±[0.133] ±[0.152]
±[0.151] ±[0.123]

])
+j

([
0.201− 0.038x1 − 0.180x2 −0.785 + 0.072x1 + 0.132x2
−0.785 + 0.072x1 + 0.132x2 0.685 + 0.026x1 − 0.017x2

]
+

[
±[0.101] ±[0.101]
±[0.087] ±[0.148]

]) (A.13)
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