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Abstract 

An ultra-high performance liquid chromatography (UHPLC) hybrid quadrupole – time of 

flight (Q-TOF) mass spectrometry (MS) method is described for the simultaneous quantitative 

determination of common ergot alkaloids and the screening, detection and identification of 

unexpected (less studied or novel) members of this class of toxic fungal secondary 

metabolites. The employed analytical strategy involves an untargeted data acquisition 

(consisting of full scan TOF MS survey and information dependent acquisition (IDA) MS/MS 

scans) and the processing of data using both targeted and untargeted approaches. Method 

performance characteristics for the quantitative analysis of 6 common ergot alkaloids i.e. 

ergometrine, ergosine, ergotamine, ergocornine, ergocristine, ergokryptine and their 

corresponding epimers in rye were comparable to those previously reported for triple-

quadrupole (QqQ) MS/MS. The method limits of quantification (LOQ’s) were in the range 

from 3 to 19 µg/kg, and good linearity was observed for the different ergot alkaloids in the 

range from LOQ to 1000 µg/kg. Furthermore, the method demonstrated good precision 

(RSD’s at 50 µg/kg not higher than 14.6% and 16.2% for the intra-day and inter-day 

precision, respectively), and the trueness values at different concentration levels were all 

between 89 and 115 %. The method was applied for the analysis of a set of 17 rye samples 

and demonstrated the presence of these ergot alkaloids in the range from < LOQ to 2811 

µg/kg. Further mining of the same data based on a ‘non-targeted peak finding’ algorithm and 

the use of full MS and MS/MS accurate mass data allowed the detection and identification of 

19 ergot alkaloids that are commonly not included in most analytical methods using QqQ 

instruments. Some of these alkaloids are reported for the first time in naturally contaminated 

samples.     
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1. Introduction 

Ergot alkaloids (Figure 1) represent a class of indole metabolites produced by grain and grass 

pathogens such as Claviceps spp., mainly by Claviceps purpurea (Komarova and Tolkachev, 

2001a; Komarova and Tolkachev, 2001b; Naudè et al., 2005). Among the cereal species, rye 

and triticale are especially susceptible, but wheat, barley, oats are also potential fungal hosts 

(Flieger et al., 1997; Krska and Crews, 2008). The fungus infects the host by replacing the 

developing grain or seed with specialized fungal structures known as sclerotia or ergot, which 

contains poisonous substances (the ergot alkaloids). Generally it is possible to remove up to 

82 % of ergot by mechanical means with conventional grain cleaning equipment such as 

sieves and separators used during the harvesting process. But despite these cleaning 

procedures, different surveys have demonstrated that ergot alkaloids can still be present in 

cereal-based food and feed, sometimes in excessive amounts (Crews et al., 2009; Diana Di 

Mavungu et al., 2011; Malysheva et al., 2014; Lombaert et al., 2003; Müller et al., 2009; 

Reinhold and Reinhardt, 2011).  

More than 40 different ergot alkaloids have been reported. However, survey on the occurrence 

of ergot alkaloids commonly focus on only a few major compounds for which standards are 

available. Evaluation of the exposure and actual risk due to consumption of contaminated 

food and feedstuffs requires suitable analytical strategies. Analytical methods for the 

determination of ergot alkaloids include thin layer chromatography (TLC) (Salvat and Godoy, 

2001), capillary electrophoresis (CE) (Franch and Blaschke, 1998), enzyme linked 

immunosorbent assay (ELISA) (Hill et al., 2001), gas chromatography (GC) with electron 

capture detection (ECD) (Barrow and Quigley, 1975), liquid chromatography (LC) with 

ultraviolet (Veress, 1993), fluorescence (Komarova and Tolkachev, 2001a; Storm et al., 2008) 

or mass spectrometric (MS) (Diana di Mavungu et al., 2012; Burk et al., 2006; Kokkonen and 

Jestoi, 2010; Krska et al., 2008a; Mohamed et al., 2006b) detection. Over the last decade, 

LC–MS has become a dominant tool for mycotoxin determination, and has provided an 

unequivocal identification of ergot alkaloids in various matrices (Diana di Mavungu et al., 

2012; Friedrich et al., 2004; Kokkonen and Jestoi, 2009; Krska et al., 2008; Lehner et al., 

2005; Mohamed et al., 2006a; Mohamed et al., 2006b). Due to its simple operation and low 

cost, ergot alkaloid analysis is currently mainly conducted using a triple-quadrupole (QqQ) 

MS system. The system demonstrates high sensitivity, selectivity, speed and a wide dynamic 



range operating in selected reaction monitoring (SRM) mode. The main limitation of this 

technique is the inability to investigate compounds that have not been previously optimized 

and included in the analytical method. We have previously demonstrated the usefulness of 

high resolution mass spectrometry (HRMS) to enable the detection and identification of less 

studied and novel ergot alkaloids (Arroyo-Manzanares et al., 2014). Although HRMS has 

demonstrated great value for qualitative analysis, this technique is commonly not used for 

quantitative analysis because it is considered to be inferior to QqQ MS/MS in terms of 

sensitivity, robustness and linear dynamic range. In recent years, new and improved HRMS 

instruments together with very powerful data-acquisition and data-mining software have 

become available, offering new possibilities for qualitative and quantitative analysis.         

The aim of this study was therefore to investigate the suitability of a modern hybrid 

quadrupole – time-of-flight (Q-TOF) HRMS instrument based on the TripleTOF
®
 technology 

to provide simultaneously a quantitative analysis of common ergot alkaloids and the 

screening, detection and identification of unexpected and less studied or novel ergot alkaloids. 

The selected workflow involves an untargeted data acquisition (consisting of full TOF-MS 

survey scan and information dependent acquisition (IDA) MS/MS scans) and the subsequent 

processing of data using both targeted and untargeted approaches.  

2. Experimental 

2.1. Standards 

Fine film-dried ergot alkaloid standards ergometrine (Em), ergosine (Es), ergotamine (Et), 

ergocornine (Eco), ergokryptine (Ekr), ergocristine (Ecr), and the corresponding epimers, 

ergometrinine (Emn), ergosinine (Esn), ergotaminine (Etn), ergocorninine (Econ), 

ergokryptinine (Ekrn) and ergocristinine (Ecrn), were purchased from Coring System 

Diagnostix GmbH (Gernsheim, Germany). The film-dried standards were, as indicated by the 

manufacturer, reconstituted in 5 mL of acetonitrile (MeCN), to give concentrations of 100.0 

µg/mL (uncertainty: ± 5.0 µg/mL) for the main ergot alkaloids and of 25.0 µg/mL 

(uncertainty: ± 1.5 µg/mL) for the epimers. Because of the rapid epimerization of ergot 

alkaloids in solution, dried standard residues were made of the freshly prepared standard 

solutions as follows: defined volumes of individual or mixed standard solutions were pipetted 

into dark brown or aluminium covered glass tubes, evaporated to dryness at 40 °C under a 

stream of nitrogen, and deep frozen at -20 °C.  Ergot alkaloids stored under these conditions 



are stable for at least one year (Lauber et al., 2005). Immediately prior to use the deep frozen 

standards were redissolved in the required amount of solvent. Methylergometrine (MeEm, as 

methylergometrine maleate, VWR International, Zaventem, Belgium) was used as internal 

standard (IS) for Em, while the IS for the other compounds was dihydroergotamine (DhEt, as 

dihydroergotamine tartrate, Sigma Aldrich, Bornem, Belgium). From stock solutions at 1 

mg/mL were prepared in methanol (MeOH): MeCN (5:5, v/v) and in MeCN, respectively. 

These fresh solutions were used to prepare deep frozen standard residues as described above. 

The residues were reconstituted in the required amount of solvent immediately before use. 

2.2. Reagents and materials 

MeOH and MeCN (both of LC-MS grade) were supplied by Biosolve (Valkenswaard, the 

Netherlands). Ethyl acetate (EtOAc) was obtained from Acros Organics (Geel, Belgium) and 

ammonium bicarbonate and ammonium formate from Sigma-Aldrich. MeCN and MeOH 

(both of HPLC grade) used for sample treatment, and n-hexane were purchased from VWR 

International. Ammonium sulphate, ammonium acetate, ammonium carbonate and ammonia 

(25%) were supplied by Merck (Darmstadt, Germany). 

The buffers i.e. ammonium formate (0.2 M) pH 9, ammonium acetate (0.2 M) pH 9 and 

ammonium carbonate (0.2 M) pH 10 were prepared by dissolving the necessary amount of 

ammonium formate, ammonium acetate and ammonium bicarbonate, respectively, in milli-Q 

water, and subsequently adjusting to the required pH with ammonia 25 %. 

Mycosep® 150 Ergot SPE clean-up columns used for sample treatment were supplied by 

Romer Labs® (Tulln, Austria). A Milli-Q purification system (Millipore, Brussels, Belgium) 

was used to purify demineralized water. 

2.3.      Samples 

The cereal samples analyzed consisted of 17 rye samples obtained from feed producers in 

France. Method optimization and method validation as well as the calibration curves for the 

quantitative analyses were performed using sample material that was tested free from ergot 

alkaloids. The absence of ergot alkaloids was confirmed as follows: a portion of sample was 

analyzed as such and another portion was spiked with the target analytes prior to analysis. By 

comparing with a solution of standards, no peaks corresponding to the target analytes were 

found in the non-spiked sample, whereas they were found in the spiked sample. The moisture 



content of the samples was determined using a Mettler Toledo LP16 infrared dryer 

(Zaventem, Belgium). 

 

2.4. LC-MS/MS analysis 

The experiments were carried out using a hybrid Q-TOF MS instrument, the AB SCIEX 

TripleTOF
®
 4600 (Concord, Ontario, Canada), equipped with a DuoSpray

TM
 and coupled to 

an Eksigent ekspert™ ultraLC 100-XL system. The DuoSpray
TM

 ion source (consisting of 

both electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) 

probes) was operated in the positive ESI mode (ESI
+
). The atmospheric pressure chemical 

ionization (APCI) probe was used for automated mass calibration using the Calibrant 

Delivery System (CDS). The CDS injects a calibration solution matching polarity of 

ionization and calibrate the mass axis of the TripleTOF
®
 system in all scan functions used 

(MS and/or MS/MS). 

The Q-TOF HRMS method consisted of full scan TOF survey (dwell time 100 ms, 100-1600 

Da) and a maximum number of eight IDA MS/MS scans (dwell time 50 ms). The MS 

parameters were as follows: curtain gas (CUR) 25 psi, nebulizer gas (GS 1) 50 psi, heated gas 

(GS 2) 60 psi, ion spray voltage (ISVF) 5.5 kV, interface heater temperature (TEM) 500 ºC, 

collision energy (CE) 10 V and declustering potential (DP) 70 V. For the IDA MS/MS 

experiments, a CE of 35 V was applied with a collision energy spread (CES) of 15 V.  

Chromatographic separation was achieved using an ACQUITY UPLC BEH C18 column (1.7 

μm, 100 x 2.1 mm i.d) (Waters, Milford, MA, USA) with a pre-column (1.7 μm, 5 x 2.1 mm 

i.d.) of the same material. In the final method, a mobile phase consisting of solvent A 

[H2O:0.2 M ammonium formate buffer pH 9:MeOH (85:5:10, v/v/v)] and solvent B [H2O:0.2 

M ammonium formate buffer pH 9:MeOH (5:5:90, v/v/v)] was used at flow rate of 0.4 

mL/min. The eluent gradient profile was as follows: 0-4 min: 0% B; 4-10 min: 0-75% B; 10-

12 min: 75% B; 12-13 min: 75-0% B; 13-16 min: 0% B. The column temperature was set at 

40 °C and the injection volume was 10 μL. To minimize epimerization during the LC-MS/MS 

analysis, the autosampler temperature was maintained at 4 °C and the sample sequence 

limited to a maximum of 24 hours (Diana Di Mavungu, et al., 2012). Data were acquired 

using Analyst® TF 1.6 Software, while data processing was performed using MultiQuant
TM

 

software version 3.0.1. and PeakView® software version 2.1  with MasterView
TM

 version 1.0. 

For correct quantification, the matrix-matched calibration approach was applied, i.e. the 



calibrants for the standard curves were prepared in an analyte free matrix. Calculations were 

performed using peak areas after applying internal standard corrections. 

2.5. Sample preparation 

2.5.1. Liquid-Liquid extraction 

Samples were prepared following the method described by Diana Di Mavungu et al. (2012). 

Five gram of ground grain sample was extracted with 40 mL EtOAc:MeOH:0.2 M 

ammonium bicarbonate pH 8.5 (62.5:25:12.5, v/v/v) during 30 min on an Agitelec overhead 

shaker  and the sample extract was centrifuged (10 min, 4000 g). After centrifugation, a phase 

separation was induced by adding 5 mL of saturated solution of ammonium sulfate and 5 mL 

of 0.2 M ammonium carbonate buffer pH 10 to 15 mL of the supernatant, previously 

transferred to a falcon tube. Following 5 min of shaking and 10 min of centrifuging (4000 g), 

5 mL of the EtOAc-phase was evaporated to dryness at 40°C under a stream of nitrogen. The 

residue was reconstituted in 200 µL of MeOH:MeCN:H2O (20:40:40, v/v/v); subsequently, 

200 µL of n-hexane were added and the resulting mixture was vortexed and centrifuged in an 

Ultrafree
®
-MC centrifugal device for 10 min at 14000 g. The n-hexane was removed and the 

aqueous phase was analysed by UHPLC-HRMS. 

2.5.2. Solid Phase Extraction (SPE) using MycoSep® 150 Ergot multifunctional columns 

The extraction procedure using Mycosep® 150 Ergot SPE clean-up columns was adapted 

from manufacturer instructions. Five gram of ground grain sample was extracted with 25 mL 

of MeCN: ammonium carbonate (200 mg/mL) (84:16, v/v) during 30 minutes on an Agitelec 

overhead shaker. After centrifugation (10 minutes, 4000 g), 4 mL was transferred to a 

provided test tube. Subsequently, the extract was purified by pushing the Mycosep® column 

through the extract till the bottom of the test tube. Then, 1 mL of the cleaned-up extract was 

evaporated to dryness at 40°C under a stream of nitrogen and reconstituted in 200 µL of 

MeOH:MeCN:H2O (20:40:40, v/v/v) prior to UHPLC-HRMS analysis.   

2.6. Matrix effect 

To investigate the influence of matrix components on the MS signal, ergot alkaloids were 

spiked in analyte-free matrix and in pure solution (i.e. injection solvent). Samples were 

prepared in triplicate at three concentration levels (20, 50 and 200 μg/kg) and analyzed using 

the UHPLC-HRMS method. Matrix effects were expressed as signal 



suppression/enhancement (SSE) and calculated by comparing the linear function of the ergot 

alkaloids spiked in cleaned-up extract to that of the ergot alkaloids spiked in matrix-free 

injection solvent (Eq. 1). An SSE of 100 % indicates no effect of the matrix on the signal, 

while a value above 100 % indicates signal enhancement and a value below 100 % means 

suppression of the signal due to the presence of the matrix. 

SSE (%) = 100 x (slope spiked cleaned-up extract/ slope spiked matrix-free injection solvent) 

(Eq. 1) 

2.6. Validation of the method 

Method linearity, limits of detection (LODs) and limits of quantification (LOQs), system and 

method precision and method trueness in terms of recovery were evaluated by spiking 

experiments using rye samples that were tested free from ergot alkaloids. The LODs and 

LOQs were determined as the minimum concentration of analyte in the spiked blank samples 

inducing an extracted ion chromatogram with a signal-to-noise ratio of 3 and 10, respectively. 

To assess the linearity of the method, the blank samples were spiked with the different ergot 

alkaloids over a concentration range of 1–1000 µg/kg. In total, eight different concentrations 

were included and the analytical procedure was performed in triplicate at each concentration. 

A linear regression was applied. The trueness, referred to as apparent recovery (Thorburn et 

al., 2002), was evaluated by recovery experiments. Since a suitable sample with certified 

concentrations of ergot alkaloids was not available, artificially fortified ergot alkaloid-free 

samples were analysed and the percent analyte recovery assessed. In detail, samples that were 

spiked with the different ergot alkaloids over a concentration range of 50, 200 and 400 µg/kg 

were analysed. The observed signal was plotted against the actual concentration. The 

measured concentration was determined using the obtained calibration curves, and the 

recovery was calculated as follows (Eq. 2): 

% Recovery = 100 × measured concentration/ actual (added) concentration   (Eq. 2) 

The precision of the method was studied by repeated analysis of spiked samples. The 

experiments were carried out at different concentrations of the analyte in the sample on the 

same day (intra-day precision) and on 3 consecutive days (inter-days precision). The precision 

was calculated as relative standard deviation (RSD) of replicate measurements. An estimate of 

the relative standard uncertainty (uc) (Hund et al., 2003) associated with the results was gained 

for each alkaloid by combining the precision under reproducibility conditions (SR) with the 



uncertainty associated with the purity of standards (U(Cref)) as well as the uncertainty 

associated with the mean recovery (Sbias) as follows (Eq. 3): 

            (Eq. 3) 

An estimate of the expanded uncertainty (U) corresponding to a confidence interval of 

approximately 95% was obtained by multiplying the combined uncertainty by a coverage 

factor of 2, i.e. (Eq. 4). 

U = 2 × μc    (Eq. 4) 

3. Results and discussion 

3.1. Optimization and verification of the UHPLC HRMS (TOF-MS – IDA-MS/MS) 

method 

Selection of the LC conditions was based on a previously developed method for ergot alkaloid 

determination in cereals and cereal products using a QqQ LC-MS system  (Diana Di 

Mavungu et al., 2012). This method employed an XBridge C18 stationary phase and a mobile 

phase containing an ammonium carbonate buffer at pH 10. The basic pH ensures good 

chromatography of the ergot alkaloids  (pKa values between 4.8 and 6.2). The use of a basic 

mobile phase also resulted in very good MS signal for the ergot alkaloids in ESI
+
 (Diana Di 

Mavungu et al., 2012). The signal in ESI
+
 was in general 10 times higher than that in negative 

ESI mode. Considering the instability of ammonium carbonate based mobile phase and the 

resulting retention time reproducibility issue, the use of ammonium acetate and ammonium 

formate buffers was considered in this study. The ammonium formate buffer resulted in an 

improved MS signal and was therefore selected for further development. As stationary phase, 

the ACQUITY UPLC BEH C18 column was selected because of its stability over a broad pH 

range (1-12) and its suitability for the analysis of a wide polarity range of analytes (Romero-

González et al., 2011). A generic gradient was applied as described under section 2.4. Though 

not crucial, a good separation of the most commonly analysed ergot alkaloids namely Em, Et, 

Es, Eco, Ecr and Ekr was achieved. Under the selected chromatographic conditions, the 

required separation of the main compounds from their corresponding epimers was 

straightforward.  



Optimization of the MS parameters demonstrated that the manufacturer’s suggested settings 

were sufficient for the intended generic method.  The accumulation time for the TOF MS 

survey scan was set at 100 ms. Investigation of the accumulation time for the IDA MS/MS 

scans indicated that a dwell time of 50 ms was required for high quality fragmentation 

spectra. The actual mass accuracy and mass resolution attainable under ‘real life’ 

experimental conditions were assessed. The accuracy data were satisfactory with mass errors 

below 3 ppm for the different ergot alkaloids, thereby increasing the confidence in the use of 

accurate mass for automatic dereplication of data. The observed low mass errors also offered 

the possibility to use a narrow ion extraction window for analyte detection, resulting in the 

reduction of noise (better signal-to-noise ratio) and consequently, a more accurate 

quantification. Furthermore, mass measurements in MS and MS/MS modes with low mass 

error should simplify the determination of elemental composition of molecular and fragment 

ions, and facilitate their structural elucidation. Overall, the resolution was well above 30000 

full width at half maximum (FWHM), which was considered to be sufficient for the purpose 

of this study. As part of method optimization, the suitability of a clean-up strategy using 

MycoSep® 150 Ergot multifunctional commercial SPE columns was investigated as 

compared to the liquid-liquid extraction (LLE) approach applied in the original QqQ LC-MS 

method  (Diana Di Mavungu et al., 2012). Overall, the use of the LLE procedure favored the 

recovery of the late eluting compounds, while MycoSep® SPE cartridges proved to be more 

effective for early eluting analytes (Supplemental Figure S1).  This was attributed to the 

difference in extraction solvents: a relatively more apolar solvent mixture was required for the 

LLE procedure (62.5:25:12.5 EtOAc:MeOH:0.2 M NH4HCO3) as compared to the solvent 

prescribed for the MycoSep® protocol (MeCN:(NH4)2CO3 84:16). The LLE approach, which 

already demonstrated good performance in previous studies (Diana Di Mavungu et al., 2012; 

Malysheva et al., 2014), was chosen. 

3.2. Validation of the method 

With the prospect of its use in quantitative determination of ergot alkaloids, the generic 

HRMS (TOF MS – IDA MS/MS) method was validated for twelve ergot alkaloids (six major 

compounds and their corresponding epimers) in rye, according to the Commission Regulation 

No. 401/2006. The method validation data are summarized in Table 1. LODs and LOQs 

comparable to those commonly reported using QqQ instruments (Kokkonen and Jestoi, 2009; 

Mohamed, et al., 2006a) were achieved for the different ergot alkaloids examined. Although 

no regulatory limits have been set for the amount of ergot alkaloids in food and feed, these 



results indicate that the proposed method is appropriate for the detection and the 

quantification of ergot alkaloids at low μg/kg level. Compared to the initial method developed 

using a dedicated QqQ-MRM approach (Diana di Mavungu, et al., 2012), the proposed TOF 

MS - IDA MS/MS method is somewhat less sensitive. However, it has the major advantage of 

allowing to obtain additional useful information on non-targeted analytes, while providing 

sufficiently high-quality data for the quantitative analysis of targeted ergot alkaloids. Good 

linearity was observed for all compounds in the range from LOQ to 1000 µg/kg with 

determination coefficients (R
2
)
 

above 0.96. The trueness values (in terms of apparent 

recovery) were within the 80-110 % range for all analytes at the high concentrations (200 and 

400 μg/kg) and were therefore in good agreement with the Commission Regulation 401/2006 

performance criteria for quantitative methods of analysis. At the low concentration (50 

μg/kg), the trueness values were also between 80 and 110 % for most of ergot alkaloids, 

except for Emn (115 %) and Ecr (112 %). According to Commission Regulation 401/2006, 

precision values for the repeated analysis of fortified material, under repeatability (RSDr) and 

reproducibility (RSDR) conditions, shall not exceed the level calculated by the Horwitz 

Equation (5 and 6). Using this equation for the mass fraction of 50 μg/kg resulted in an 

unreasonably high acceptance limit for both RSDr and RSDR. Therefore, in this case, as low 

as possible RSDr and RSDR values were desired. Data in Table 1 demonstrate an overall good 

precision of the HRMS method, except for the RSDr values for Emn and Ecrn at 400 μg/kg, 

which are slightly above the calculated acceptance limit of 12 %. The uncertainty was not 

higher than 35 % for the different ergot alkaloids at all concentration levels studied. 

RSDr = 2⁄3(2
[1–0.5 log C]

)        (Eq. 5) 

RSDR = 2
[1–0.5 log C]

              (Eq. 6) 

where c is the concentration ratio (i.e. 1 = 100g/100g, 0.001 = 1 000 mg/kg) 

As part of the evaluation of the HRMS method for quantitative determination of ergot 

alkaloids, the influence of matrix interferences on method performance was investigated.  

Different level of the matrix effect was observed depending on the ergot alkaloids (Figure 2). 

Considerable signal was observed for compounds such as Ecrn, Etn, Econ and Ekrn. 

Therefore, the matrix-matched calibration approach was chosen to perform correct 

quantitative analysis. Furthermore, by spiking the standards in the matrix prior to the 



extraction and clean-up steps, the resulting data were automatically corrected for losses due to 

the sample preparation. 

 

3.3. Application of the TOF MS – IDA MS/MS for targeted and untargeted analysis of 

ergot alkaloids in cereal samples 

3.3.1. Quantitative analysis of common ergot alkaloids  

Data acquired using the TOF MS – IDA MS/MS method were processed in a targeted way to 

investigate the presence of 6 common ergot alkaloids (i.e. Em, Es, Et, Eco, Ekr, Ecr) and their 

corresponding epimers in rye samples. Multiple points of selectivity were considered for 

analyte identification in samples: accurate mass, retention time, isotope distribution, MS/MS 

spectra library searching and the confirmation of the formula by combining MS and MS/MS 

data. The combination of these criteria and in particular the inclusion of MS/MS spectra 

library searching ensured a more confident compound identification than the use of accurate 

mass alone (non-hybrid HRMS instruments) or the monitoring of a maximum of two MRM 

transitions (QqQ instruments). One or more ergot alkaloids were detected and confirmed in 15 

out of 17 samples analyzed. For quantification, the full scan TOF MS data unbiasedly 

acquired for each analyte were used. Though a maximum of eight IDA MS/MS scan were 

acquired together with the TOF MS survey scan, the instrument scan speed permitted to 

collect sufficient data points, ensuring a good description of peaks and consequently a correct 

and robust quantification. Quantitative data for the 12 target analytes are summarized in Table 

2. The content of individual ergot alkaloids varied from <LOQ to 2811 µg/kg in the samples 

analyzed. Em and its epimer Emn were found to be the most frequently occurring ergot 

alkaloids, while the highest levels of contamination were observed with Et. In general the 

main derivative co-occurred with its corresponding epimer. In positive samples, the total ergot 

alkaloid contents were in the range of 5- 12600 µg/kg.  

3.3.2. Screening and identification of unknown and less studied ergot alkaloids  

In an effort to provide a more comprehensive insight on the occurrence of ergot alkaloids in 

the samples described above, the same data were further investigated for the presence of 

unexpected ergot metabolites (not included in the list of the 12 target compounds and for 

which reference standards were not available). Hence a non-targeted processing of these data 



was performed.  The ‘Non-Targeted Peak Finding’ algorithm of Masterview
TM

 software was 

applied to automatically detect peaks in samples. A ‘sample-control’ comparison was 

performed to eliminate the endogenous components that are the same in both types of 

samples, thereby allowing to retain and focus only on more relevant peaks. Examination of 

the MS/MS spectra of the retained unknown compounds allowed to further narrow down to 

only those peaks that showed the typical ergot alkaloid fragmentation pattern. Indeed, the 

fragmentation pattern of ergot alkaloids was previously studied (Arroyo-Manzanares et al.; 

2014; Mohamed et al., 2006b) and indicated that all derivatives give rise mainly to fragment 

ions with m/z 223 and 208 corresponding to the four-ring system of the lysergic moiety and its 

demethylated counterpart, respectively. In total, 19 different compounds demonstrated a 

fragmentation pattern that pointed to ergot alkaloids. A typical example is given in Figure 3. 

Potential empirical formulas for each of these unknown analytes were generated using the 

exact mass of the molecular ion and confirmed using fragmentation data (acquired with high 

mass accuracy) and isotopic pattern. To automatically identify putative structures that match a 

given formula, the data were linked to the ChemSpider database. The proposed structures 

were confirmed by comparing their theoretical fragmentation to the actual MS/MS spectra 

acquired for the unknown analyte (illustrated in Figure 4 for an unexpected ergot alkaloid 

with m/z 534.2711). In this manner, empirical formulas could be established for 13 unknown 

compounds that were not present in the control (blank) and which showed a characteristic 

ergot alkaloid fragmentation pattern. Assessing the acquired MS/MS data in light of the 

simulated fragmentation spectra, the structure of these unexpected ergot alkaloids could be 

assigned. These included ergocornam, ergovaline, ergocryptam, ergocryptam isomer, 

ergocristam, ergostine, ergoptine, ergogaline, ergostinine, ergoptinine, ergogalinine, 

ergokryptine isomer and hydroxyergotamine (Table 3).  These compounds have been 

previously reported in grain and grass samples (Cvak et al., 1994; Cvak et al., 2005; Duringer 

et al., 2007; Lehner et al., 2005). 

For 6 other compounds (namely m/z 340.1651 at 7.6 min (M1), 340.1651 at 10.9 min (M2), 

368.1964 at 8.1 (M3), 368.1964 at 10.4 (M4), 382.2118 at 10.6 min (M5) and 382.2118 at 

11.9 min (M6)) that showed a typical ergot alkaloid fragmentation pattern, putative structures 

could not be proposed by searching the ChemSpider database, using initially generated 

empirical formulas. The molecular formula for M1 and M2, M3 and M4, M5 and M6 were 

indeed assigned as C19H22N3O3
+
, C21H26N3O3

+
 and C22H28N3O3

+
, respectively. This pattern of 

identical m/z values for couples of peaks with different retention times pointed to the 

existence of these compounds as epimers. To elucidate the structure of these compounds, a 



detailed fragmentation pattern study was performed in light of the ergot alkaloid identification 

strategy we proposed previously (Arroyo-Manzanares et al. 2014). The mass range of each of 

the 3 compounds and corresponding epimers (m/z of 368, 340 and 382) suggested that they 

could be ergoamides. As previously demonstrated (Arroyo-Manzanares et al. 2014), initially, 

ergoamides undergo a loss of H2O (18 Da) or CH3 by homolytic cleavage (15 Da). In the 

spectrum of compounds M1, M3 and M5 (Figure 5) the loss corresponding to the homolytic 

cleavage of the CH3 moiety could be observed (fragments with m/z 325, 353 and 367 for M1, 

M3 and M5 respectively); however, the initial loss of 18 Da (corresponding to the elimination 

of a water molecule) was not seen. The ergoamides also undergo a cleavage within the 

lysergic D ring, losing 43 Da (-C2H5N); this loss was observed in respective spectra. 

Subsequent to the loss of a C2H5N moiety, the model ergoamide Em undergoes a loss of H2O. 

Such a loss was not observed for compounds M1 and M3. Instead, a loss of 46 Da was seen, 

indicating that the difference between these two unexpected ergot alkaloids and Em was at the 

level of the R2 group, while the difference between M1 and M3 was due to R1 (Figure 6). M5 

underwent a loss of 60 Da instead 46 Da, giving the ion with m/z 279, the same as that 

obtained for M3. This suggested that M3 and M5 share the same R2 but differ at the level of 

R1. Data described above are consistent with the substitution of the alaninol moiety of Em 

with alanine in M1. M3 corresponds to the substitution of alaninol (Em) with valine (M3), 

while M5 would be its methylester derivative. Hence, M1, M3 and M5 were identified as 

lysergyl alanine, lysergyl valine (ergoval) and N-(d-lysergyl)-l-valine methylester, 

respectively. The structures and the proposed fragmentation pathway for these compounds are 

shown in Figure 6. N-(d-lysergyl)-l-valine methylester has been reported to be a degradation 

product of ergocristam by methanolysis (Olsovská et al., 2008). Whether such methanolysis 

occurred under the applied analytical conditions is uncertain. Lysergyl valine has been rarely 

found in food samples (Urga et al., 2002); however there is no evidence that lysergyl alanine 

has been detected in naturally contaminated food samples. To the best of our knowledge, this 

is the first time epimers of lysergyl alanine and lysergyl valine have been reported in food 

samples.  

4. Conclusion 

An integrated qualitative and quantitative UHPLC – HRMS strategy based on TripleTOF MS 

technology is proposed for the analysis of ergot alkaloids in cereals. The usefulness and 

applicability of this methodology was demonstrated by its performance characteristics for 

quantitative analysis of 6 common ergot alkaloids and their corresponding epimers: method 



LODs and LOQs were comparable to those previously achieved with QqQ instruments. 

Furthermore, the method demonstrated good linearity, precision and trueness. The employed 

TOF MS - IDA MS/MS acquisition method allowed quantitative analysis of targeted analytes 

(ie Em, Es, Et, Eco, Ecr, Ekr and epimers) and screening, detection and identification of 

unexpected ergot alkaloids in rye samples in a single UHPLC-HRMS run. This has become 

possible owing to the availability of modern hybrid quadrupole – TOF MS instruments that 

combine the quantitative speed, sensitivity, linear dynamic range and robustness of triple 

quadrupole with the qualitative analysis power through high resolution and accurate mass 

measurement offered by HRMS technology. Also improvements in data processing software 

play and will continue to play an important role in the extraction of the untapped information 

generated by these instruments. Compared to the commonly used QqQ MRM approach, the 

proposed TOF MS - IDA MS/MS methodology is easy to set up (dedicated compound 

optimization is not required) and has the merit of achieving a comprehensive screening of 

ergot alkaloids, including those for which no analytical standards are available. In addition, 

the availability of accurate mass MS and MS/MS data for an unlimited number of analytes 

should allow posterior mining of these data to provide answers to new/emerging research 

questions. 
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Figure 1. General structures of ergoamides (a), ergopeptines (b) and ergopeptams (c) and 

representative ergot alkaloids for each class.  

M: molecular weight. 

 



 

Figure2. Matrix effects calculated for the different ergot alkaloids. 

The bars depict the mean values of signal suppression/enhancement (SSE), while the error 

lines represent the standard deviations for 3 measurements. 
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Figure 3. Ergovaline TOF MS
2 

spectrum revealing characteristic ergot alkaloid fragmentation 



 

 

Figure 4. Identification of the unexpected ergot alkaloid with m/z 534.3 by linking MS and 

MS/MS data to ChemSpider database. 

The upper left pane lists putative compounds for the empirical formula C29H35N5O5 generated 

using MS and MS/MS accurate mass data. The structure for the selected hit (ergovaline) is 

displayed in the lower left pane. In the upper right pane a perfect match can be seen between 

the acquired MS/MS spectrum for m/z 534.3 (spectrum in blue) and the one that was 

simulated for the selected structure (spectrum in red displayed as inverted overlay). By 

selecting a fragment (eg m/z 223.1223) on the MS/MS spectrum, the corresponding part of 

the structure is highlighted (in bold) in lower left pane. The lower right pane gives the 

fragmentation details. 



 

  

Figure 5. TOF MS/MS
 
spectra acquired for (a) Em, (b) M1, (c) M3 and (d) M5



 

 

Figure 6. Proposed structures for M1, M3 and M5 and fragmentation pathway 



 

 

Figure S1. Comparison of LLE and SPE using MycoSep® multifunctional columns 



Tables 

 

Table 1. Method validation data for ergot alkaloid determination in rye matrix 

Ergot  

alkaloid 
Equation Linear range (μg/kg) 

Linearity 

R
2
 

Em Y = 0.00491 x + 0.01033 5 – 1000 0.9913 

Emn Y = 0.00472 x + 0.00943 3 – 1000 0.9885 

Ecr Y = 0.00054 x + 0.00049 19 – 1000 0.9861 

Ecrn Y = 0.00240 x – 0.00102 6 – 1000 0.9914 

Et Y = 0.00055 x – 0.00082
 

19 – 1000
 

0.9766 

Etn Y = 0.00150 x – 0.00124 4 – 1000 0.9863 

Eco Y = 0.00080 x + 0.00101 17 – 1000 0.9903 

Econ Y = 0.00233 x + 0.00111 9 – 1000 0.9829 

Ekr Y = 0.00074 x + 0.00210 19 – 1000 0.9841 

Ekrn Y = 0.00294 x – 0.00107 10 – 1000 0.9907 

Es Y = 0.00060 x + 0.00183 15 – 1000 0.9682 

Esn Y = 0.00141 x – 0.00012
 

10 – 1000
 

0.9873 

Ergot  

alkaloid 

LOD LOQ Intra-day precision, RSDr (%)  Inter-day precision, RSDR (%) 

(μg/kg)
 

(μg/kg) 50 μg/kg 200 μg/kg 400 μg/kg 50 μg/kg 200 μg/kg 400 μg/kg 

Em 1.5 5.1 10.4 10.0 10.9 12.4 10.0 10.9 

Emn 1.0 3.4 12.6 10.0 12.7 12.9 10.0 12.6 

Ecr 5.6 18.6 13.2 6.1 7.0 13.2 6.9 8.8 

Ecrn 1.8 6.0 8.3 10.3 14.3 9.6 10.5 14.3 

Et 5.8 19.4 14.6 4.7 3.6 16.2 6.9 5.0 

Etn 1.3 4.4 8.4 6.4 8.0 9.8 9.9 10.7 

Eco 5.1 17.0 9.3 4.8 5.6 9.3 5.0 5.6 

Econ 2.6 8.7 9.9 8.0 5.7 11.6 10.9 5.7 

Ekr 5.9 19.7 12.9 6.4 8.6 12.9 6.4 10.7 

Ekrn 3.0 10.1 12.2 10.6 10.5 12.2 13.3 10.4 

Es 4.6 15.4 12.6 5.8 4.4 15.1 5.9 9.4 

Esn 3.1 10.4 5.1 5.8 4.4 6.0 5.9 9.3 

Ergot  

alkaloid 

Trueness % Expanded measurement uncertainty % 

50 μg/kg 200 μg/kg 400 μg/kg 50 μg/kg 200 μg/kg 400 μg/kg 

Em 109 104 90 27 21 23 

Emn 115 102 89 23 21 27 

Ecr 112 98 101 28 15 19 

Ecrn 105 104 105 21 22 30 

Et 110 99 101 35 15 11 

Etn 109 105 105 21 22 24 

Eco 106 99 99 19 11 12 

Econ 106 103 103 25 24 12 

Ekr 104 98 105 27 13 23 

Ekrn 110 106 103 26 29 22 

Es 109 99 102 33 12 21 

Esn 104 101 98 13 12 21 



Table 2. Occurrence data for 6 common ergot alkaloids and their epimers 

Ergot 

alkaloid 
Formula m/z 

Concentration (µg/kg)* 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

10.3%**
 

11.4% 10.2% 8.6% 9.1% 10.1% 9.2% 8.9% 8.2% 9.3% 10% 8.7% 11.1% 9.5% 9.7% 9.3% 11.7% 

Em C19H23N3O2 326.1863 ND*** 68 46 ND 29 249 8 73 76 692 76 71 308 325 12 < LOQ 89 

Emn C19H23N3O2 326.1863 ND 24 18 ND 16 167 5 44 51 434 51 46 197 232 8 < LOQ 67 

Ecr C35H39N5O5 610.3024 ND 298 285 ND 67 587 < LOQ 162 168 1671 168 188 1363 852 25 < LOQ ND 

Ecrn C35H39N5O5 610.3024 ND 80 66 ND 22 187 8 62 42 558 42 52 272 247 7 < LOQ ND 

Et C33H35N5O5 582.2711 ND < LOQ < LOQ ND < LOQ 94 < LOQ 101 333 2811 333 423 1762 1797 87 < LOQ ND 

Etn C33H35N5O5 582.2711 ND < LOQ ND ND 9 56 < LOQ 55 154 1342 154 197 844 847 40 5 ND 

Eco C31H39N5O5 562.3024 ND 40 30 ND 28 225 < LOQ 62 54 654 54 83 365 323 < LOQ < LOQ ND 

Econ C31H39N5O5 562.3024 ND 19 15 ND 19 158 10 54 37 543 37 46 225 233 < LOQ < LOQ ND 

Ekr C32H41N5O5 576.3181 ND 113 84 ND 43 429 < LOQ 125 97 1362 97 138 919 583 < LOQ < LOQ ND 

Ekrn C32H41N5O5 576.3181 ND 12 < LOQ ND < LOQ 40 < LOQ 14 < LOQ 146 < LOQ 11 52 52 < LOQ ND ND 

Es C30H37N5O5 548.2868 ND 282 177 ND 51 430 36 136 151 1276 151 203 717 689 21 < LOQ ND 

Esn C30H37N5O5 548.2868 ND < LOQ ND ND 47 294 40 101 112 1112 112 163 786 648 18 < LOQ ND 

Total ergot alkaloid content (µg/kg) ND 936 721 ND 332 2918 107 989 1274 12600 1274 1623 7809 6828 218 5 157 



* Quantitative data are of undried material, the moisture content is given; ** moisture content (%); *** ND: Not Detected. 



 

Table 3. Occurrence data for unexpected ergot alkaloids 

Metabolite Formula m/z 

Sample 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

10.3%*
 

11.4% 10.2% 8.6% 9.1% 10.1% 9.2% 8.9% 8.2% 9.3% 10% 8.7% 11.1% 9.5% 9.7% 9.3% 11.7% 

Ergocornam C31H39N5O4 546.3075 +  + + ND + ++ ND + + +++ + + ++ ++ ND ND ND 

Ergovaline C29H35N5O5 534.2711 ND ** + + ND + ++ ND + + ++ + + ++ ++ ND ND ND 

Ergocryptam C32H41N5O4 560.3231 + + + ND + + ND + + ++ + + ++ + ND ND ND 

Ergocryptamisomer C32H41N5O4 560.3231 ND + + ND + ++ ND + + ++ + + ++ ++ ND ND ND 

Ergocristam C35H39N5O4 594.3075 ND + + ND + ++ ND + + +++ + + +++ ++ ND ND ND 

Ergostine C34H37N5O5 596.2868 ND + + ND + + ND + + ++ + + ++ ++ ND ND ND 

Ergoptine C31H39N5O5 562.3024 ND ++ ++ ++ ++ ++++ + ++ ++ +++++ ++ +++ +++++ ++++ + ND ND 

Ergoptinine C31H39N5O5 562.3024 ND ++ + ++ ++ ++++ + ++ ++ +++++ ++ ++ +++++ ++++ + ND ND 

Ergogaline C33H43N5O5 590.3337 ND + + ND + ++ ND + + ++ + + ++ ++ + ND ND 

Ergostinine C34H37N5O5 596.2868 ND + + ND + + ND + + ++ + + + + + ND ND 

Ergogalinine C33H43N5O5 590.3337 ND ND ND ND ND + ND ND ND ++ ND ND ND ND ND ND ND 

Ergokryptine isomer C32H41N5O5 576.3181 ND ++ + ND + +++ ND ++ ++ ++++ ++ ++ +++++ +++ + ND ND 

Hydroxyergotamine C33H35N5O6 598.2668 ND + + ++ ++ ++++ + ++ ++ +++++ ++ ++ +++++ +++++ + ND ND 



Lysergyl alanine C19H21N3O3 340.1651 ND ND ND ND ND ++ ND + ND +++ ND + ++ ++ ND ND ND 

Lysergyl alanine isomer C19H21N3O3 340.1651 ND ND ND ND ND + ND ND ND ++ ND ND + + ND ND ND 

Lysergylvaline C21H25N3O3 368.1964 ND + + ND ND ++ ND + + +++ + + ++ +++ ND ND ND 

Lysergylvalineisomer C21H25N3O3 368.1964 ND + + + + ++ ND ++ + ++++ + ++ ++ ++ ND ND ND 

N-(d-lysergyl)-l-

valinemethyester 
C22H27N3O3 382.2119 ND ++ + ND ND ++ ND + + ++ + + +++ ++ ND ND ND 

N-(d-lysergyl)-l-

valinemethyesterisomer 
C22H27N3O3 382.2119 ND ND ND ND ND + ND ND ND ++ ND ND + + ND ND ND 

'+': area ≤ 10*3; '++': 10*3 < area ≤ 5∙10*3; '+++': 5∙10*3 < area ≤ 10*4; '++++': 10*4 < area ≤ 2∙10*4; '+++++': area > 2∙10*4; 
* moisture content (%); ** ND: Not Detected.

 

 

 


