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Abstract

Background: Rapid evolutions in sequencing technology force read mappers into flexible adaptation to longer
reads, changing error models, memory barriers and novel applications.

Results: ALFALFA achieves a high performance in accurately mapping long single-end and paired-end reads to
gigabase-scale reference genomes, while remaining competitive for mapping shorter reads. Its seed-and-extend
workflow is underpinned by fast retrieval of super-maximal exact matches from an enhanced sparse suffix array, with
flexible parameter tuning to balance performance, memory footprint and accuracy.

Conclusions: ALFALFA is open source and available at http://alfalfa.ugent.be.
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Background

Bioinformatics research is currently dominated by the
(r)evolution in high-throughput sequencing technology.
New sequencing platforms produce biological sequence
fragments faster and cheaper than ever before. The result-
ing growth in access to large amounts of data opens per-
spectives for new applications and prestigious projects,
but simultaneously pushes existing sequence analysis
tools beyond their limits as data storage, computational
analysis and interpretation become true bottlenecks in life
sciences research.

Mapping sequencing reads to reference genomes plays a
key role in many genomics analysis pipelines. The olympic
motto citius, altius, fortius in the context of this compu-
tationally intensive problem drives read mappers into the
algorithmically challenging quest to find an optimal bal-
ance between maximal speed, minimal memory footprint
and maximal accuracy. Read mappers are also expected
to shoot at a moving target, as reads produced by fast
evolving technologies differ in length distribution and
sequencing errors. Read mappers and their underlying
index structures are therefore under constant develop-
ment to handle specific applications or data models and to
further improve implementations [1,2].
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Although design and implementation of existing read
mappers differ in their choice of algorithmic techniques,
optimizations and heuristics, they share many of their
key concepts and follow a common general outline. A
preprocessing step of indexing reference genomes and/or
sequencing reads must guarantee fast substring matching.
The overall search space is pruned to candidate genomic
regions by searching matching segments (called seeds)
between reads and the reference genome. These candidate
regions are then further investigated to look for acceptable
alignments that reach a particular score.

Recent advances in next-generation sequencing tech-
nologies have led to increased read lengths, higher
error rates and error models showing more and longer
indels. This general trend is likely to continue with
third-generation sequencing technologies like Oxford
Nanopore and Pacific Biosciences [3]. Most of the current
read mappers target short reads and allow for no or low
numbers of mismatches and/or indels. This makes them
vulnerable to the ongoing technological advances. It has
inspired a second generation of novel read mappers (GEM
[4]), while authors of short read mappers present new
versions equipped for aligning longer reads with higher
error rates (Bowtie 2 [5], BWA-SW [6], BWA-MEM [7]
and CUSHAW 3 [8]). Recurring strategies include increas-
ing the seed lengths, clustering neighboring seeds into
candidate regions and optimizing the implementations of
global and local alignment algorithms using banded and
bit-parallel versions. However, except for BWA-SW and
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BWA-MEM, none of the existing mappers scales well for
read lengths up to several kilobases.

The read mapper ALFALFA presented in this paper
is extremely fast and accurate at mapping long reads
(> 500 bp), while still being competitive for moderately
sized reads (> 100 bp). Its implementation of the canon-
ical seed-and-extend approach (Figure 1) is empowered
by a novel index structure, combined with several new
optimizations and heuristics. Both end-to-end and local
read alignment are supported, and several strategies for
paired-end mapping can efficiently handle large varia-
tions in insert size. ALFALFA is unique in using enhanced
sparse suffix arrays to index reference genomes. This
data structure facilitates fast calculation of maximal and
super-maximal exact matches [9] and supports the impor-
tant design goal of balancing between processing speed,
memory consumption and mapping accuracy. The speed-
memory trade-off is tuned by setting the sparseness value
of the index. The techniques and heuristics used to fil-
ter and combine seeds and candidate regions are designed
to handle longer reads. Furthermore, ALFALFA uses a
chaining algorithm to speed up dynamic programming
extension of candidate regions.

Implementation
Due to huge differences in size between sequencing reads
and reference genomes, most read mappers share a high-
level strategy of i) finding matching segments that are
used to ii) prune the search space to genomic regions
in which iii) alignments are found that meet a particular
scoring threshold. These steps are usually preceded by a
step in which either the reference genome or read data
set is indexed. Notwithstanding this common search strat-
egy, read mappers differ in many of their design choices
(from seed type, over index structure to scoring func-
tion used for accepting alignments) and in a multitude
of optimizations and heuristics used during all search
phases. These algorithmic choices do not only govern
the trade-off between performance, memory usage and
mapping accuracy, but are also geared towards particular
sequencing technologies or specific types of applications.
Best-mappers such as Bowtie [10] and BWA [11] search
for a single optimal alignment according to a particular
scoring function, whereas all-mappers such as RazerS3
[12] and GEM focus on finding all alignments within a
given Hamming or Levenshtein distance.
Next-generation and third-generation sequencing tech-
nologies produce ever longer reads with varying degrees
and types of sequencing errors. This evolution has a seri-
ous impact on the design of read mappers, as can be seen
from the wide range of software packages that have been
proposed over the last years. Longer reads feature the pos-
sibility of more and/or longer seeds. This opens perspec-
tives for reducing the number of candidate regions along
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the reference genome that need further investigation, but
at the same time increases their size.

The ALFALFA algorithm is outlined in Figure 1.
ALFALFA takes advantage of the technological evolution
towards longer reads by using maximal exact matches
[MEMs] [13,14] and super-maximal exact matches
[SMEMs] [7] as seeds (Figure 1 step b). These seeds are
then extensively filtered and triaged to allow for more
accurate prioritization of candidate regions (Figure 1 step
¢). To further limit the number of expensive dynamic pro-
gramming computations needed, ALFALFA chains seeds
together to form a gapped alignment. As a result, the
extension phase is limited to filling gaps in between
chains while evaluating alignment quality (Figure 1 step
d). The following sections discuss the ALFALFA workflow
in more detail.

Enhanced sparse suffix arrays

To boost seed-finding, read mappers rely on fast and
low memory-footprint index structures such as k-mer
lookup tables and FM-indexes [1]. ALFALFA is the first
read mapper that makes use of an enhanced sparse suffix
array [ESSA] index structure (Figure 1 step a). Instead of
indexing all suffixes of the reference genome into a suffix
array, sparse suffix arrays reduce memory consumption
by sparsely sampling the list of suffixes, this in contrast to
compressed suffix arrays and FM-indexes, which instead
store a sparse sample of suffix array values. Sparse suffix
arrays can be further enhanced with auxiliary data struc-
tures to provide fast string matching [9], similar to the
way Burrows-Wheeler transformed texts are enhanced
with auxiliary data structures to form FM-indexes. The
sparseness value s of sparse suffix arrays (controlled by
the option -s) provides an easily tunable trade-off to
balance performance and memory footprint. In theory,
sparse suffix arrays take up 9/s + 1 bytes of memory
per indexed base. A sparse suffix array with sparseness
factor 12 thus indexes the entire human genome with
a memory footprint of 5.8 GB. This is similar in size
to the memory consumed by some of the FM-indexes
used by other read mappers (Table 1). Earlier results have
shown that enhanced sparse suffix arrays are competi-
tive in MEM-finding when compared to implementations
using an FM-index [9]. They especially perform extremely
well in cases where the number of seeds is high, a likely
scenario when mapping long reads.

Seed-finding

Seed-finding is the first major phase in the mapping pro-
cess. Depending on the data and parameter settings, it
usually takes about a quarter to half of the total run-
time. Ideally, seed-finding produces a limited number
of long seeds that cover as much of the mapping loca-
tion as possible. Finding too many seeds results in an
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Figure 1 Algorithmic workflow of ALFALFA. ALFALFA follows a canonical seed-and-extend workflow for mapping reads onto a reference genome.
The reference genome is indexed by an enhanced sparse suffix array (a) to enable quick retrieval of variable-length seeds called super-maximal
exact matches between a read and the reference genome (b). Seeds are then grouped into non-overlapping clusters that mark candidate genomic
regions for read alignment (c). Handling of candidate regions is prioritized by agglomerate base pair coverage of the seeds. The final extend phase
samples seeds from candidate regions to form collinear chains that are bridged using banded dynamic programming (d). All of these steps strive to
make optimal reuse of seeds in order to avoid superfluous computations. Background image used with permission from Walter Obermayer.

exponential increase of candidate mapping locations and  exact matches. The intervals [i.i + ¢ — 1] and [j.j +
usually favors highly repetitive regions in the genome. £ — 1] correspond to a maximal exact match between a
As a result, mapping locations may be missed. Finding read and a reference genome if there is a perfect match
too few seeds results in a possible loss of good mapping  between both subsequences of length ¢ starting at posi-
locations and shorter chains. The latter may increase the  tion i in the read and at position j in the reference genome,
computational cost of the extension phase. with mismatches occurring at positions (i — 1,/ — 1) and

ALFALFA tries to balance the number and the quality of (i + ¢,j + €) just before and after the location of the
seeds using a combination of maximal and super-maximal ~ matching subsequence. Since MEMs between a read and
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Table 1 Comparison of the used index structures and memory requirements of evaluated mappers

Mapper Index type Adjustable Size on disk Peak memory Construction time
(GB) (GB) (h:mm)
ALFALFA (s = 4) ESSA yes 10.7 11.0 0:19
ALFALFA (s = 12) ESSA yes 56 5.7 0:10
Bowtie 2 FM-index yes 39 53 1:58
BWA FM-index no 52 54 118
CUSHAW3 FM-index no 37 35 0:36
GEM FM-index yes 48 50 NAS

The ALFALFA index is evaluated for two different sparseness values. The read mappers BWA-SW and BWA-MEM both use the same index structure, jointly reported as
BWA. The third column indicates whether memory footprint can be tuned via user-specified options. The fourth column reports the memory footprint of the index
structure when stored on disk. The fifth column provides peak memory of the read mapper observed during alignment of Tkbp reads. The time needed to construct
the index structure is given in the last column. S A pre-built GEM index was downloaded from the GEM website as the indexer of this mapper ran into a fatal error in our

test environment.

a reference genome may overlap, super-maximal exact
matches are defined as MEMs that are not contained in
another MEM in the read [15]. The difference between
MEMs and SMEMs is shown in Figure 2. MEMs were
introduced in one of our earlier proof-of-concept imple-
mentations [14] and CUSHAW?2 [13], whereas SMEMs
were introduced in BWA-MEM [7]. In comparison to
fixed length seeds, MEMs and SMEMs have the advantage
of potentially covering larger parts of a read. As such, they
bear more information about the relevance of a region in
which the seed is found. This information can be used to
filter out candidate regions with low probability of finding
good alignments.

One of the strongholds of ALFALFA is its use of
the essaMEM algorithm [9] as a way to identify candi-
date regions for mapping reads to the reference genome.
essaMEM locates MEMs and SMEMs using exact string
matching between an enhanced sparse suffix array index
structure and a subset of suffixes sampled from the read.
ALFALFA automatically selects the sampling value based
on the sparseness of the index and the minimum seed
length (Supplementary Methods in Additional file 1). In

addition, ALFALFA imposes a minimum seed length,
which is automatically tuned using the read length and the
expected number of differences in an alignment. Although
the algorithm does not guarantee to find all SMEMs, the
produced set of MEMs and SMEMs works well in prac-
tice. In case no seeds are found using using the initial
parameter settings, a rescue procedure is initiated that
gradually lowers restrictions until seeds are found. This
procedure helps the algorithm to find suitable candidate
regions for rare reads that contain excessive amounts of
errors compared to the average of the read set.

Candidate regions

A combination of neighboring seeds increases the evi-
dence that some region in the reference genome holds
potential to serve as a mapping location [5]. ALFALFA
therefore sorts seeds according to their starting position in
the reference genome and bins them into non-overlapping
clusters using the locally longest seeds as anchors around
which regions are built. This results in a list of candidate
regions along the reference genome. To limit the number
of candidate regions requiring further examination, only
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Figure 2 Example illustrating the difference between maximal and super-maximal exact matches. All maximal exact matches with minimal length
four between a sequencing read (bottom) and a reference genome (top). Dark green lines represent pairs of intervals that are super-maximal exact
matches. Light green lines represent pairs of intervals that are maximal exact matches but are not super-maximal.
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SMEMs and rare MEMs are used for candidate region
identification (more details are provided in the candi-
date region identification section of the Supplementary
Methods). Afterwards, MEMs overlapping with candi-
date regions are also taken into consideration to increase
the number of read bases covered by seeds. This new
optimization introduced by ALFALFA positively affects
accuracy without a major performance overhead.

A successful candidate region extension results in one
or more feasible alignments that show sufficient similar-
ity between the read and the reference genome. Candi-
date regions are then ranked by their coverage of read
bases, calculated from the seeds that make up the clus-
ters. Sequential processing of these prioritized candidate
regions halts when either a high number of feasible align-
ments has been found, a series of consecutive candidate
regions failed to produce an acceptable alignment or read
coverage drops below a certain threshold. An exception is
made for regions containing seeds that are unique in the
read. If no feasible alignments could be found, ALFALFA
may invoke several rescue procedures that decrease the
restrictions imposed on candidate regions and, if neces-
sary, find a larger set of seeds.

Chaining and alignment

Read mappers employ optimized dynamic programming
algorithms to verify that candidate regions contain accept-
able alignments. Such optimizations are needed since this
is one of the most time-consuming steps in the read map-
ping process. The dimensions of a dynamic programming
matrix correspond to the bounds of a candidate region,
but computations are often restricted to a band around
the main diagonal of the matrix. The width of this band
depends on the minimal alignment score required.

ALFALFA further reduces the dimensions of the matrix
by forming a collinear chain of a subset of the seeds that
make up a candidate region. Dynamic programming can
then be restricted to fill the gaps in between consecu-
tive non-overlapping seeds. This technique has proven
its value in whole genome alignment [16] and read map-
ping [14,17]. An example of the computational reduc-
tion achieved by chain-guided alignment can be seen in
Figure 3.

The chaining algorithm starts from an anchor seed and
greedily adds new seeds that do not exhibit a high skew
to the chain. The skew is defined as the difference of
the distances between two seeds on the read sequence
and the reference genome. The amount of skew allowed
is automatically decided based on the gap between the
seeds and the parameters that influence the feasibility of
an alignment. ALFALFA allows multiple chains per candi-
date region, based on the available anchor seeds. Anchor
selection is based on seed length and seeds contained in

Page 5 of 11

reference

read

Figure 3 Example illustrating the cost of various dynamic
programming algorithms. A typical alignment matrix to illustrating
the magnitude of possible savings in computational cost by using a
chain-guided alignment in comparison to standard banded dynamic
programming. The figure shows the dynamic programming matrix
for the semi-global alignment of a reference genome (rows) against a
read (columns). The piecewise linear line represents the trace of an
optimal alignment. Black parts of this line indicate locations of the
seeds forming the chain. Red dots indicate mismatches in the
alignment and green lines were not covered by seeds. The band size
for banded dynamic programming is indicated in green and the areas
in grey indicate the areas in which dynamic programming is
performed for a chain-guided alignment. For this example, if banded
alignment saves 86% of the matrix, chain-guided alignment saves
88% of the banded matrix.

chains can no longer be used as anchors in successive
chain construction.

In evaluating candidate regions, ALFALFA supports
both end-to-end and local alignment. Each of these align-
ment procedures starts with calculating a collinear chain
of seeds and uses the same banded dynamic programming
algorithm with a configurable scoring function that may
take into account affine gap penalties. Insertions, dele-
tions and single nucleotide polymorphisms in between
consecutive non-overlapping seeds are handled without
invoking the dynamic programming routine to avoid
superfluous computations.

The final alignment and the mapping qualities are gen-
erated in a post-processing phase. By default, ALFALFA
performs chain-guided alignment to obtain the CIGAR
string, but an option can be enabled to use a banded
dynamic programming routine over the full length of
the read instead. Doing so increases the quality of
the alignment, at the cost of a slightly reduced per-
formance. We have found that the chain-guided align-
ment in this phase of the algorithm is on average 1.7
times faster than the banded dynamic programming
approach.
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Paired-end reads

ALFALFA supports multiple strategies for mapping
paired-end reads. The default strategy is commonly
employed by read mappers: both ends are mapped inde-
pendently of one another and alignments having cor-
responding orientations and locations with respect to
certain insert size restrictions are subsequently paired. We
have also implemented and tested several other strate-
gies that concurrently map paired-end reads. One of these
strategies has been used by Bowtie 2, among others, and
maps one of the reads and then performs full dynamic
programming to obtain the bridging alignment for the
mate. The other strategies first identify candidate regions
for both mates and then either prioritize extension based
on the best regions of both mates or filter the list using the
paired-end criteria. Similar to the single-end alignment
algorithm, the paired-end algorithms can invoke rescue
procedures if no concordant pair was found. In this case,
the rescue procedures call upon one of the other strategies
rather than decreasing the restrictiveness of some heuris-
tics. Tests have shown that the best overall approach is the
one that independently maps paired-end reads.

Results and discussion

Execution speed, memory footprint and accuracy of
ALFALFA have been scrutinized in a benchmark study
that includes five other state-of-the-art long read map-
pers. All tests were run on a cluster with dual-socket
quad-core Intel Xeon Nehalem (L5520) processors at
clock speed 2.27 GHz and 12 GB RAM/node running Sci-
entific Linux 6.5. Executables for ALFALFA v0.8, Bowtie
v2 — 2.2.3, BWA v0.7.9a and CUSHAW v3.0.3 were built
from source using gcc v4.4.7. Build 1.376 (beta) of GEM
was obtained from its website, as source code was not
available at the time of writing.

Two configurations of all read mappers were tested.
First, read mappers were configured to produce a maxi-
mum of 4 alignments per read, if possible. Second, read
mappers were configured to produce a single best align-
ment per read. Other parameters were kept to their
default settings, unless the authors suggested specific set-
tings for certain types of data (Supplementary Protocol in
Additional file 1).

The human genome is used as reference genome to
map a large array of moderately sized reads generated
by current sequencing platforms and artificial reads gen-
erated by two simulators covering lengths expected to
become commonplace in the near future. These simulated
data sets are also crucial in evaluating mapping accu-
racy, which otherwise could not be evaluated objectively
on true data. Care was taken to cover a broad range of
error models observed in read sets generated by current
sequencing technologies.
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The wgsim simulator v0.3.1-r13 [18] — developed for
SAMtools, but now a standalone project — was used to
generate a series of single-end reads with lengths of one,
five and ten thousand base pairs. Errors were introduced
at rates between 2% and 10% of the total read length, with
varying indel/mutation frequencies. Reads ranging from
100 bp to 10 kbp and abiding to specific error models
induced by Illumina and 454 technologies were generated
using the Mason simulator v0.1.1 [19]. Default parameter
settings were used to generate reads of length 100 bp and
200 bp and parameter settings from the literature [5,12]
were used for longer read data sets.

Memory footprint

An index of the human genome assembly GRCh37 was
constructed by all read mappers using their default
parameter settings, except for GEM. A pre-built GEM
index was downloaded from the GEM website as the
indexer of this mapper ran into a fatal error on our test
environment. Memory requirements of read mappers are
mainly dependent on the memory footprint of the index
structures they use. An overview of the index structure
memory requirements can be found in Table 1. In this
table, BWA-SW and BWA-MEM are reported as BWA, as
they both use the same index structure. From the table, it
can be seen that most tools require 3 — 5 GB of memory,
both for storing the index on disk and for the peak mem-
ory during mapping a data set of 1kbp reads. Among the
tested read mappers, CUSHAW3 seems to be the most
memory efficient one. In contrast, ALFALFA requires
twice as much memory as the other tools when config-
ured with lower sparseness setting. The default setting
(sparseness value 12) is competitive in terms of mem-
ory requirements with the other tools. The last column
of Table 1 also shows index construction time, which is
lowest for ALFALFA.

Performance

Wall times of test runs were measured using the
GNU/Linux time command. Performance results for
most simulated and real data sets can be found in the
upper barcharts in Figure 4, expressed in milliseconds per
read. Runtime results for the complete benchmark can be
found in Additional file 1.

ALFALFA is the fastest read mapper. It is only out-
performed by GEM and BWA-MEM for the shortest
reads and by GEM for a single data set of 1kbp reads.
The lower performance of ALFALFA for shorter reads
might be explained by an increased number of shorter
MEM seeds and failure of one or more filtering heuristics
when using the default parameters. The difference in run-
time between ALFALFA and the other mappers increases
with read length. For reads longer than 1kbp, ALFALFA,
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hundred times smaller than the original data set (see Additional file 1).

within 10bp of the simulated origin. Some results for mappers with a very low performance were gained from a data set that was ten or one

BWA-MEM and BWA-SW become orders of magnitude
faster than the other mappers. Even compared to BWA-
MEM, the second fastest mapper, ALFALFA is on average
three times faster and up to five times faster for reads of
at least 1kbp long. This can partially be explained by our
automatic tuning of the minimum seed length, candidate

region filtering heuristics and chain-guided alignment
strategy. If memory is abundant, the runtime of ALFALFA
can be further improved by lowering the sparseness of the
index. ALFALFA is up to twice as fast when the sparse-
ness is lowered from the default value of 12 to 4, the lowest
setting tested.
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The performance of GEM is mostly affected by the user-
set error rate. For Illumina reads with low error rates and
low error reads simulated with wgsim, GEM is among
the fastest algorithms. For high error rate data sets, how-
ever, GEM becomes much slower. The performance of
CUSHAW3 could be higher on hardware that supports
SSE4 operations, which CUSHAW 3 uses by default. How-
ever, CUSHAW 3 is known to focus more on accuracy than
speed [8]. For longer reads, the performance of Bowtie 2
is hampered by its dynamic programming alignment sub-
routine, whose runtime has a quadratic dependency on
the read length. In addition, runtimes of CUSHAW 3 dra-
matically increase when multiple alignments per read are
requested (see Additional file 1). The performance of
Bowtie 2 and BWA-MEM is also influenced by the num-
ber of alignments per read requested, but the increase in
runtime is less significant.

For most mappers, there is no loss in performance when
mapping single and paired-end reads. The exceptions are
CUSHAW3 and Bowtie 2, whose performance is much
lower when mapping paired-end reads due to the high
read length and large insert size window and the fact that
these mappers perform full dynamic programming to find
an alignment for the mate of a mapped read.

Figure 4 also shows that the performance of ALFALFA,
BWA-MEM and GEM decreases for reads containing
more errors, whereas the performance of Bowtie 2, BWA-
SW and CUSHAW 3 increases. This could be explained by
the fact that the latter mappers stop the alignment proce-
dure more rapidly for reads that are more difficult to map,
whereas the former increase the effort in finding an align-
ment for these reads. The type of errors, i.e. mutations
versus indels, does not seem to have an effect on runtime.

We also assessed the scalability of ALFALFA with
respect to the number of threads. To do so, we compared
the speedup of ALFALFA to that of other read mappers
for both single and paired-end read data sets. For 16
threads, the speedup of ALFALFA is on average 14.35,
which is slightly lower than that of BWA-MEM (14.86)
and CUSHAW3 (14.44), but higher than the speedup
gained by BWA-SW (13.02), GEM (10.37) and Bowtie 2
(8.96). More details are shown in Additional file 1: Figure
S8.

Accuracy on simulated data

On simulated reads, accuracy was measured using the
recall rate and our own definition of accuracy. Recall rate
is defined as the number of reads for which an alignment
is found within 10bp of the simulated origin. Our accu-
racy measure is less stringent and considers a read to be
mapped correctly if an alignment either fulfills the recall
rate requirements or has an edit distance that is not higher
than the number of simulated differences to the refer-
ence genome. The lower bars in Figure 4 represent the
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recall rate in case each mapper reported a single align-
ment per read. When returning multiple alignments per
read, a read is considered to be mapped correctly if at least
one of the returned alignments fulfills the requirements
imposed by our own accuracy measure. These additional
results, together with the results using our own definition
of accuracy, can be found in Additional file 1.

In contrast to the performance results, the difference
in accuracy between the evaluated read mappers is small.
All tested mappers exhibit both a high recall rate and
accuracy when reporting either a single or up to four
alignments per read. We will therefore refer to accu-
racy for both measures, unless we want to stress the
difference between the two accuracy measures used. In
general, CUSHAW?3, BWA-MEM and ALFALFA are the
most accurate mappers, with BWA-SW and Bowtie 2 hav-
ing a somewhat lower accuracy. In most cases, either
CUSHAW3, BWA-MEM or GEM is the most accurate
mapper, by a small margin.

The accuracy of GEM is highly dependent on the
command line parameter settings. We have tried several
parameter settings to optimize the time-accuracy trade-
off, but it is possible that GEM reaches a more optimal
trade-off for untested parameter settings. As a result, the
accuracy of GEM can vary greatly, being the highest for
some data sets, but the lowest for other data sets. For
example, on the 1kbp data sets with 2% errors, setting the
parameters to this maximum error value results in a very
low accuracy. In contrast, on 5% and 10% error rates, GEM
has the highest recall rate for the data sets with low num-
bers of indel errors. The effect of the sparseness of the
ESSA index on the accuracy of ALFALFA is depicted in
Additional file 1: Figure S10, but is rather small in general.

From the results of the wgsim data sets in Figure 4,
it can be seen that the accuracy of all mappers drops
with increasing error rate. A noticable exception is GEM,
whose accuracy depends on the chosen parameter set-
tings. The effect of increasing error rate seems smallest
for BWA-MEM, whereas CUSHAW3 does not perform
well for reads with 10% errors. It is, however, possible
to increase the accuracy of CUSHAWS3 using command
line parameters, as by default CUSHAW 3 allows only 10%
errors.

In addition to the raw error rate, an increase in the num-
ber of indel type errors has also a detrimental effect on
accuracy. This effect seems smallest for Bowtie 2, whereas
it has the highest effect on GEM.

In contrast to the above, an increase in read length
has a predominantly positive effect on accuracy. For the
longest reads, accuracy is almost 100% for most mappers.
Note, however, that several of the results for Bowtie 2,
CUSHAW 3 and GEM were obtained on a smaller data set
due to a forced timeout in our testing environment of 72
hours. Nonetheless, a few samples on a different machine
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indicated that these mappers indeed have a high accuracy
at the cost of performance.

The type of errors also has an impact on accuracy.
Wgsim simulated reads have a uniformly distributed error
model, which differs from the Illumina and 454 error
models. For equal read length, the accuracy on simulated
reads with an Illumina error profile is lower than the
accuracy on reads with a 454 error profile. For Illumina
reads, CUSHAW?3 is more accurate than BWA-MEM and
ALFALFA, whereas the reverse in true on 454 reads.

The effect of paired-end read mapping on accuracy
can be seen for the Mason simulated reads. As expected,
paired-end read data sets exhibit a higher accuracy than
single end read data sets. GEM hugely benefits from Illu-
mina type paired-end reads. The only exception is BWA-
SW, which performs worse for paired-end reads. This
might be explained by the fact that BWA-SW automati-
cally tries to estimate insert size, whereas other mappers
trust on users to present insert size boundaries.

From the Additional tables in Additional file 1, we have
found that the difference between the accuracy and recall
rate measures is noticable for most mappers. The biggest
effect was present in BWA-SW, Bowtie 2 and CUSHAW3,
whereas the lowest effect was measured for GEM.

If multiple alignments per read are reported (see
Additional file 1), the accuracy of several mappers
increases significantly. The effect is the greatest for
CUSHAW?3 and ALFALFA, whereas it is lower for BWA-
MEM and GEM. As a result, ALFALFA becomes the most
accurate mapper for some data sets in this setting. In con-
trast, the accuracy of Bowtie 2 drops frequently, as the -k
mode that is required to return multiple alignments works
differently from the regular mode. Finally, BWA-SW does
not offer an option to return multiple alignments per read.

Mapping quality

In addition to accuracy and recall rate, we compared
the sensitivity and specitivity of ALFALFA against that
of other mappers. These evaluated measures are repre-
sented in receiver operating characteristic [ROC] curves
in which the true positive rate is plotted against the false
positive rate in terms of mapping quality values (MAPQ
field in SAM files). For these plots, we limited ourselves
to the wgsim simulated reads and used the evaluation
script in the wgsim package to generate the data points.
In addition to the wgsim simulated read data sets pre-
sented in Figure 4, we used a data set of single-end reads
of length 600 bp with a small (1%) error rate.

Overall, Bowtie 2 has the highest sensitivity, which
reaches 100%. However, Bowtie 2 is also less able to dis-
tinguish between good and bad alignments. CUSHAW?3,
BWA-MEM and ALFALFA exhibit the best trade-off
between true positives and false positives. Figures 5 and 6
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display the results for respectively the 600bp data set and
a data set of 1 kbp reads with a 5% error rate.

For the 600 bp data set, CUSHAW3 is most sen-
sitive for high mapping quality, whereas BWA-MEM
becomes more sensitive for lower mapping quality values.
ALFALFA obtains a trade-off that fluctuates between that
of CUSHAW3 and BWA-MEM. For the 1 kbp data set
with higher error rate, BWA-MEM is best able to distin-
guish between true and false positive hits, with ALFALFA
a close second.

Performance and accuracy on real data

To validate our findings on simulated data, we also com-
pared the performance of ALFALFA on one real Illumina
read data set and one real 454 data set. The results can be
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Figure 6 ROC curve for a data set of 1kbp single-end reads with 5%
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found in Table 2. Because the real origin of the reads can-
not be indisputably determined, we use the sensitivity, i.e.
the number of mapped reads as an accuracy measure.

As our focus was on long reads, the Illumina read data
set that consists of 2 x 100 bp paired-end reads falls
out of the scope of ALFALFA (both in design choice
and default parameter settings). As a result, it is outper-
formed by BWA-MEM and GEM in terms of mapping
time and BWA-MEM, BWA-SW and CUSHAW 3 in terms
of sensitivity.

The single-end 454 reads have an average length of 574,
which is well within the scope of our mapper. For this data
set, ALFALFA is by far the fastest mapper. In addition, it
also has the highest sensitivity. This is consistent with the
good accuracy of ALFALFA for the simulated 454 reads.

Conclusions

In this paper, we presented a novel long read map-
per, called ALFALFA. The name is an acronym for “A
Long Fragment Aligner/A Long Fragment Aligner". It is
repeated twice as a pun on repetitive and overlapping frag-
ments observed in genome sequences that heavily distort
read mapping and genome assembly.

At a high level, ALFALFA is similar to other read map-
pers, as it implements the widely used seed-and-extend
approach. However, ALFALFA featurs a novel index struc-
ture used for simultaneously finding MEMs and SMEMs,
whose minimum length is automatically tuned to the read
length and the number of errors. The seeds are used
for identifying and selecting candidate alignment regions,
taking into account the frequency of occurrence of the
seeds in the reference sequence. In addition, the seeds
are reused in a chain-guided alignment between the read
and candidate alginment region. A more detailed algo-
rithmic comparison between ALFALFA, BWA-MEM and
CUSHAW?3 is given in Additional file 1: Table S2.

Evaluation of read mapping algorithms requires a joint
assessment of their accuracy, performance and memory

Table 2 Benchmark comparison of long read mappers on
two real data sets

lllumina reads 454 reads
Runtime Sensitivity Runtime Sensitivity
ALFALFA 5:48 99.09 0:33 99.75
BWA-MEM 5:19 99.71 1:04 99.60
BWA-SW 12:18 99.34 2:20 97.54
Bowtie 2 11:04 97.98 433 99.02
CUSHAW3 64:30 99.67 5:10 91.31
GEM 3:09 97.65 5:02 93.29

The lllumina paired-end read data set [SRA:ERR024139] consists of 2 x 100 bp
reads and the reads of the 454 single-end data set [SRA:SRR003161] are on
average 574 bp long. Performance measures are runtime in h:mm and
percentage of mapped reads (sensitivity).
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footprint. Depending on specific properties of the test
data, read mappers will often present different trade-offs
between these evaluation criteria.

The benchmark results demonstrate that ALFALFA is
extremely fast at mapping long reads, while still being
competitive for moderately sized reads. Together with
BWA-SW and BWA-MEM,, it is one of a few mappers that
scale well for read lengths up to several kilobases.

Measuring mapping accuracy can only be done objec-
tively based on simulated reads whose original location
on the reference genome is known. As mapping of long
sequencing reads has not yet been benchmarked and
sequencing platforms show various rates and types of
errors, we examined a broad range of different read
lengths and error models using two existing read simu-
lators. These benchmark results show that in general all
tested mappers have a high mapping accuracy for many of
the tested data sets. In most of the test cases, ALFALFA is
among the top most accurate mappers, with BWA-MEM,
CUSHAW 3 and GEM being slightly more accurate.

Memory requirements of ALFALFA are only slightly
higher than most other long read mappers. In addi-
tion, ALFALFA features an interesting and easily tunable
speed-memory trade-off by allowing users to specify the
sparseness factor of the index.

Although the read lengths examined here are consid-
ered long at this moment, it would be interesting to
evaluate the performance of ALFALFA and other read
mappers for even longer reads, such as 100 kbp or 1 Mbp
reads. As the alignment of such reads would approach
the global alignment problem, other problems should be
taken into account. For example, the presence of genomic
rearrangements would require a more complex chaining
algorithm.

In addition, a high number of errors, such as present
in reads produced by Pacific Biosciences and Oxford
Nanopore sequencers, remains a challenge to read map-
ping algorithms. Currently, ALFALFA relies on finding a
few long exact seeds, and constructing chains of seeds
with a small skew. To accomodate for these high error
rates, we will investigate the use of inexact matches as
seeds, and experiment with less restrictive chaining algo-
rithms. Furthermore, additional information, such as base
qualities and information on expected gap length could
be incorporated to prioritize candidate region extension
and to improve the dynamic programming subroutine and
scoring system.

Availability and requirements
® Project name: ALFALFA
e Project home page: http://alfalfa.ugent.be
¢ Operating systems: tested on Linux operating
systems
¢ Programming Language: C++
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e Other requirements: GCC v4.1.2 or higher
e License: New BSD License
® Any restrictions to use by non-academics: none

Additional file

Additional file 1: Document containing supplementary results,
methods, protocol and program usage information. This document
contains several additional sections, tables, and figures. The tables contain
full benchmark results. The Supplementary Methods section contains
in-depth information on the ALFALFA mapping algorithm. The
Supplementary Protocol section lists the details of the benchmark study,
including a description of the read simulation process and parameters
settings used for tuning the read mappers. The Supplementary Data
section provides details on the command line options that can be used to
tweak ALFALFA, their default settings and general usage tips.
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