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Abstract 

In this work we propose a proof of principle that dynamic causal modelling can identify 

plausible mechanisms at the synaptic level underlying brain state changes over a timescale 

of seconds. As a benchmark example for validation we used intracranial 

electroencephalographic signals in a human subject. These data were used to infer the 

(effective connectivity) architecture of synaptic connections among neural populations 

assumed to generate seizure activity. Dynamic causal modelling allowed us to quantify 

empirical changes in spectral activity in terms of a trajectory in parameter space – identifying 

key synaptic parameters or connections that cause observed signals. Using recordings from 

three seizures in one patient, we considered a network of two sources (within and just 

outside the putative ictal zone). Bayesian model selection was used to identify the intrinsic 

(within-source) and extrinsic (between-source) connectivity. Having established the 

underlying architecture, we were able to track the evolution of key connectivity parameters 

(e.g., inhibitory connections to superficial pyramidal cells) and test specific hypotheses about 

the synaptic mechanisms involved in ictogenesis. Our key finding was that intrinsic synaptic 

changes were sufficient to explain seizure onset, where these changes showed dissociable 

time courses over several seconds. Crucially, these changes spoke to an increase in the 

sensitivity of principal cells to intrinsic inhibitory afferents and a transient loss of excitatory-

inhibitory balance. 
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Introduction 

In this paper we test the hypothesis that systematic changes in observed cross spectral 

density of electroencephalographic signals can be explained in terms of fluctuations in key 

model parameters (such as the strength of recurrent inhibitory connections to specific 

neuronal populations) – and that slow fluctuations in one or more of these parameters can 

explain changes in brain activity. The methodological advance included here is the use of 

dynamic causal modelling (DCM) to provide biophysically informed characterisations of 

electrophysiological responses in terms of slow changes in synaptic efficacy.  DCM is a 

Bayesian framework for comparing different hypotheses or network models of observed 

(neurophysiological) time series. 

Although DCM has been validated in the context of event related responses (Garrido et al., 

2009) and steady-state or induced responses (Moran et al., 2011a), it has not been used to 

track short-term fluctuations in synaptic efficacy. Our focus is therefore on the validity of 

DCM in recovering slow (pathophysiological) changes in synaptic connectivity from 

electrophysiological time series. We first establish face validity using physiologically realistic 

simulations (using the same model used to characterise our empirical data) and then apply 

the same procedure to real data, intracranial electroencephalography signals from an 

epileptic subject. This shows that DCM provides veridical estimates of how the data were 

generated and establishes the identifiability of the model used for subsequent empirical 

analyses. The empirical application provides a proof of principle that changes in synaptic 

efficacy can be measured at single subject level – and shows that pathophysiological 

changes beyond the seizure onset zone is necessary to explain seizure activity.  

We chose epileptic seizure onset as a validation of this framework given the nature of the 

brain dynamics in this pathological condition. In patients affected by drug-resistant epilepsy 

and for which surgical treatment is thus sought, intracranial EEG is considered the gold 

standard for delineating the seizure onset zone (SOZ). Intracranial recordings allow one to 
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characterise seizure activity with a high temporal resolution and track its temporal evolution. 

It should be noted that the onset of seizure activity may not be limited to the seizure onset 

zone but may be modulated – or be mediated by – distributed dynamics in brain networks.  

The need to accurately track and quantify seizure dynamics has led to the development of 

multivariate time series analyses of signals recorded simultaneously (Pereda et al., n.d.; 

Lehnertz, 1999). The fact that brain function involves distributed neuronal activity – and that 

this functional integration is modulated by cognitive or pathophysiological factors – motivates 

a focus on dynamical interactions not limited to the seizure onset zone but involving distal 

regions. Consequently, methods grounded in information theory and dynamical systems 

represent promising candidates, given their potential to describe the intricate pattern of 

dependencies in multivariate time series.  
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Materials and Methods 

This report introduces the concepts and procedures that allow one to estimate slow changes 

in synaptic parameters that may underlie changes of brain states. Its focus is on describing 

the approach and providing some face validation (showing it does what it says it does). This 

validation uses data from a single patient to provide plausible model architectures and 

parameters – that were used to create synthetic data. We then invert models of those data – 

to ensure we can recover the (known) parameters. In subsequent publications we will apply 

this analysis to examine its reproducibility and predictive validity in patient cohorts. 

We used data recorded from a patient (female, 50 years old) with refractory epilepsy who 

had a total of three epileptic seizures during video-EEG monitoring. The patient was 

implanted at Ghent’s University Hospital with 52 intracranial contacts monitoring eight 

regions of interest according to the following configuration: bilateral occipito-hippocampal 

depth electrodes with 12 contacts each (Left: LH1-LH12, Right: RH1-RH12); four subdural 

strips with four contacts each, monitoring the anterior temporo-basal and the posterior 

temporo-basal region (Left:  anterior LTA 1-LTA4  and posterior  LTM1-LTM4, Right: anterior 

RTA1-RTA4  and posterior RTM1-RTM4) and two subdural strips of six contacts each, 

monitoring the temporo-lateral region (Left: LTP1-LTP6,  Right: RTP1-RTP6). Based on the 

invasive video-EEG monitoring the ictal onset zone was localized to the left hippocampus, 

primarily involving LH2-4. The patient underwent a selective amygdalo-hippocampectomy in 

2007 and has been seizure free since that time. 

The data were epoched to a segment starting 20 seconds before electroencephalographic 

seizure onset (pre-ictal). The segment included the whole duration of seizure activity, which 

varied over the three seizures from 229 to 262 seconds. The beginning and the end of the 

seizure were marked by epileptologists. The sampling frequency of the EEG recordings was 

256 Hz and a band pass filter was applied to the data (0.5Hz - 48Hz). The intracranial data 
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were re-referenced by applying a bipolar montage corresponding to a series of overlapping 

bipolar derivations (acting as spatial filter). 

Our analysis focused on two sources of activity: a primary source within the subsequently 

resected area, whose activity was confirmed to be part of the seizure onset zone after 

postsurgical follow-up (LH4-LH5) and a second source (LH6-LH7) lying just outside the area 

of resection (Figure 1). 10 seconds of activity before and after seizure onset were modelled, 

where each segment was partitioned into nine contiguous windows with 50% (1 sec) 

overlap, for a total of 18 time windows. 

 

Dynamic causal modelling   

Dynamic causal modelling (DCM) is an established procedure in the analysis of functional 

magnetic resonance imaging in brain mapping (Daunizeau et al., 2011; Friston et al., 2012) 

and is now being used increasingly for the characterisation of electrophysiological time 

series. DCM is used to identify the connectivity architectures and connection strengths in 

distributed networks using (observable) measurements of (hidden) neuronal activity. It is 

essentially a Bayesian model comparison scheme that allows one to evaluate competing 

hypotheses (or architectures) in terms of their Bayesian model evidence or marginal 

likelihood. Having established the best model architecture, Bayesian estimates of the model 

parameters provide a quantitative characterisation of effective connectivity and other 

(synaptic) parameters. There is an extensive literature on the validation of DCM ranging from 

face validation studies (David et al., 2006) to validation in terms of multimodal 

measurements (David et al., 2008a), pharmacological manipulations (Moran et al., 2011a, 

2011b) and psychophysical constructs (Brown and Friston, 2012). Its predictive validity has 

been established in a number of studies in terms of pathophysiology (Boly et al., 2011). 
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Quantifying the effective connectivity between coupled neuronal sources corresponds to 

inferring the causal relationships among them, in relation to a model of those dependencies 

(Stephan et al. 2007). The nodes of dynamical causal models can reflect different regions in 

the brain that are connected by (extrinsic) forward and backward connections according to 

the laminar specificity established by Felleman and Van Essen (Felleman and Van Essen, 

1991). Different models can be used within DCM depending on the question of interest and 

the most informative data features at hand (Moran et al., 2013).  

The analysis described in this section uses standard procedures developed in DCM for cross 

spectral density (CSD) (Friston et al., 2012), which is a generalisation of DCM for steady 

state responses. The CSD is the Fourier transform of the cross-correlation function, which 

summarizes the activity and statistical dependencies among channels in frequency space. It 

can be thought of as reporting the correlations at each frequency. Usually, DCM for CSD is 

applied to a single cross spectrum (for a given timeseries). However here, we model 

successive time windows; effectively summarizing the timeseries with its time-frequency 

decomposition. The reason that we choose these (cross spectral) data features is that they 

contain information about the underlying connectivity that can be accessed through 

estimating the spectral density (second-order statistics) of endogenous activity. This 

contrasts with modelling of the timeseries per se, which would require the time-dependent  

(first-order statistics) endogenous input (e.g., the input associated with a stimulus in the 

event related potential studies). 

This DCM has been applied in several contexts previously. Technical details can be found in  

(Moran et al., 2007, 2009) and its applications to in vivo synaptic assays are described in 

(Moran et al., 2011a, 2011b). In brief, parameter estimation uses standard (variational) 

Bayesian model inversion, where the forward or generative model predicts cross spectral 

responses from models of coupled neuronal masses. These models are specified in terms of 

equations of motion (i.e., state space models in continuous time). The equations are based 

upon standard neural mass models and define transfer functions linking endogenous activity 
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at each source to spectral responses measured over channels. This allows one to predict 

observed cross spectra for any given model architecture and parameters; thereby providing 

an observation or forward model of spectral responses. Inversion of this model provides the 

model evidence (for model comparison) and posterior densities over model parameters in 

the usual way. Usually, one tries to explain differences in spectral responses among 

conditions, in terms of changes in a small number of synaptic parameters, where these 

changes define the model. 

The novel aspect of the current analysis is the application of a standard DCM to test for slow 

changes in model parameters (e.g., the strength of inhibitory recurrent connections). We do 

this by exploiting the differences in timescales between the fast neuronal activities and slow 

changes in synaptic efficacy. This allows one to make local stationarity assumptions and 

treat successive epochs of data as different conditions – where these conditions or epochs 

induce fluctuations in specified parameters. Again, using the usual Bayesian model 

comparison procedures, we can then identify changes in parameters during seizure onset 

that best explain the sequence of (cross spectral) responses. 

For this study, we employ a DCM for cross spectral densities (CSD) (Friston et al., 2012), 

which is a generalisation of DCM for steady state responses (Moran et al., 2007, 2009) to 

the complex domain. In brief, this form of DCM is used to explain complex cross spectral 

responses from multiple channels (here two channels) in terms of coupled sources, each 

comprising several neuronal populations or neural masses (here four neuronal populations). 

Given the parameters of a neural mass model, it is easy to compute the transfer functions 

that map from endogenous neuronal fluctuations within each source to the observed 

responses in channel space. These transfer functions specify the cross spectral densities 

one would expect to observe empirically. Effectively, the dynamic causal model is a forward 

model that includes the neuronal process generating neuronal states and the 

(electromagnetic) mapping from neuronal states to measured data. Bayesian model 

inversion is then used to estimate the parameters that best explain empirical spectra and 
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provide the Bayesian model evidence for the particular model used (e.g., with or without 

changes in particular connections).  

In summary, DCM solves the inverse problem of recovering plausible parameters (of both 

neuronal dynamics and noise) that explain observed cross spectra. It uses standard 

variational Bayesian procedures (Friston et al., 2007) to fit time-series or cross spectra – 

under model complexity constraints – to provide maximum a posteriori estimates of the 

underlying model parameters and the evidence for any particular model; see (Friston et al., 

2012) for more details in this particular setting. Figure 2 illustrates the basic idea behind the 

application of dynamic causal modelling to cross spectral responses. The key point made by 

this figure is that changes in connectivity can have profound effects on spectral behaviour 

responses to endogenous input. It is these effects that are used to estimate (changes in) the 

underlying connectivity (Friston, 2014).  If we take the modifications in the amplitude and 

frequencies produced by changes in model parameters as a simple model of seizure onset, 

one can use the predicted spectral responses as a likelihood model of empirical responses 

and thereby estimate the time-dependent changes in parameters. The simulations reported 

in Figure 2 can be reproduced using the seizure onset demonstration in the neuronal 

modelling toolbox of the academic SPM freeware (http://www.fil.ion.ucl.ac.uk/spm). These 

simulation results use standard parameter values (prior expectations: see Table 1). 

In the analyses reported below, we modelled frequencies between 8 and 48 Hz, thereby 

removing fluctuations in the theta range and allowing the model to explain activity at higher 

frequencies before and after seizure onset. The choice of frequencies to model is partly 

dictated by the phenomenology of observed seizure activity and the level of modelling 

supported by the data. Clearly, seizure activity encompasses both low (e.g., theta) and high 

(gamma) frequencies – so why did we restrict the range? This choice was partly motivated 

by the level of detail in the models (i.e., complexity) supported by the data. In other words, to 

maximize model evidence, models should provide an accurate account of spectral 

responses but in a parsimonious way (see below). This places constraints on the range of 
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frequencies that can be modeled (given a limited number of parameters that entail synaptic 

time constants that shape spectral responses). The neural mass model used in this paper 

was chosen to explain frequencies between alpha and (high and low) gamma. In this case, 

the most prominent seizure related changes were observed largely in the beta band.  

 

The neural mass model  

Neural mass models comprise ordinary differential equations that (using a mean field 

approach) model the dynamical behaviour of neuronal populations. These models have 

been developed to accommodate interacting cell types and their connectivity (Moran et al., 

2013). In this work we use the canonical microcircuit neural mass model (CMC) based on 

the extrinsic and intrinsic connectivity described in Bastos et al. (Bastos et al., 2012). This 

particular model has been used previously to characterise phenomena like intrinsic gain 

control mechanisms in hierarchical visual processing (Brown and Friston, 2012)  to impaired 

top-down connectivity in minimally conscious states (Boly et al., 2011). 

The CMC model distinguishes between forward and backward connections that arise from 

different types of principal cells (e.g., superficial and deep pyramidal cells in the cortex). In 

addition, this model includes excitatory and inhibitory populations that send intrinsic 

connections to other populations (e.g., of excitatory spiny stellate and inhibitory interneurons 

in the cortex). Figure 3 shows the architecture of the two source CMC model we used, with 

four populations per source and extrinsic connections between the sources. The boxes detail 

the equations of motion that constitute the neural mass model of a single source. These are 

delay differential equations because the sigmoid function of presynaptic input operates on 

the mean depolarisation of the presynaptic source in the recent past – to accommodate 

axonal conduction delays. Intrinsic conduction delays are about 1 ms while extrinsic delays 

are about 8 ms. This figure shows the four populations in relation to their laminar 

relationships in the cortex. Note that the equations of motion in the figure appear to violate 
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Dale’s principle of one transmitter per cell type; for example, they include inhibitory 

connections from excitatory populations. This reflects the complexity of neural mass models 

that can be supported by the data at hand. In short, for any given data there will be an 

optimal model evidence (or marginal likelihood) that can be decomposed into accuracy and 

complexity. This means that models have to have the optimal level of complexity (i.e., 

number of parameters) to maximize model evidence. In the context of the neural mass 

model used in this work, several inhibitory interneurons populations have been absorbed into 

a negative effective connectivity. For example, recurrent connections among superficial 

pyramidal cells are assumed to be mediated bi-synaptically by intervening inhibitory 

interneurons (that are not modeled). This reproduces the same dynamics but avoids using 

too many model parameters. 

One might ask whether using a (cortical) canonical microcircuit model is appropriate for sub 

cortical structures such as the hippocampus modeled in this paper. Strictly speaking, this is 

an issue that would be best addressed using Bayesian model comparison, for example 

comparing the canonical microcircuit with the bespoke model of hippocampal circuitry 

described in (Moran et al., 2014). However, for our current purposes having four 

subpopulations appears to be sufficient. Our previous experience with these models 

suggests that the canonical microcircuit model is sufficient to model hippocampal responses; 

perhaps because the basic connectional architecture is conserved over cortex and 

structures like the hippocampus (i.e., a circuit with excitatory input and output cells and an 

inhibitory and excitatory pair). 

Bayesian Model Comparison  

DCM was used to compare alternative hypotheses about which synaptic parameters were 

responsible for changes in cross spectral density during seizure onset – after establishing 

the basic architecture of extrinsic connections between the two sources. Our analyses were 

therefore based upon a two-step Bayesian model comparison procedure. In the first step, we 
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identified the best model architecture – distinguishing between extrinsic forward and 

backward connections between the primary ictal source (LH4-LH5) to the secondary source 

(LH6-LH7) and the reverse architecture with backward connections from the primary to 

secondary source (Figure 4a). To disambiguate these two architectures we inverted all 18 

time windows, allowing only a number of connections to change over time (see below). The 

most likely architecture was identified using Bayesian model comparison by pooling the 

evidence for the two alternative models over windows from all three seizures. This allowed 

us to establish whether the extrinsic connections from the first to the second source were of 

a forward or backward type (and vice versa). 

The second stage of the analysis focused on the changes in intrinsic and extrinsic 

connectivity over time windows – and implicitly between pre-ictal and ictal states. Using the 

most likely model from the first step, we allowed various combinations of intrinsic and 

extrinsic connections to change over time (using third order polynomial functions of time, for 

the pre-and post-ictal windows). This allowed us to estimate the trajectory of coupling 

parameters within and between pre-ictal and ictal time windows – while holding all other 

parameters at the same values (e.g., conduction delays that should not change over time). 

The parameters we allowed to vary corresponded to extrinsic connection strengths between 

the two sources and their intrinsic connectivity. Following Wendling et al. (Wendling et al., 

2005) we associated changes in intrinsic connectivity with the influence of inhibitory 

interneurons on (superficial) principal cells. The possible combinations are described by 16 

models, with and without changes in: intrinsic connectivity in the primary source, intrinsic 

connectivity in the secondary source, forward connectivity and backward connectivity. A 

schematic of the 16 models tested is provided in Figure 4b. It is changes in these 

connections that we hoped would explain both variability within the pre-and ictal states and 

the slow changes that underlie seizure onset. 

Face validation studies 
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To establish the face validity of this application of DCM, we analysed both simulated and real 

data. Crucially, the parameters used to simulate the (cross spectral) data were based upon 

biologically plausible estimates from the empirical data. However, because the simulated 

data were generated under known model parameters (connectivity and time-dependent 

changes) we knew the ground truth and we could establish that the true values fall within the 

90% posterior confidence intervals. For the simulation studies, we generated 18 time 

windows of cross spectral data using the prior expectations for intrinsic and extrinsic 

connectivity for the first (nine pre-ictal) windows and mono exponentially decaying 

connection strengths during the (nine) ictal windows. We used forward connections from the 

primary to the secondary source and restricted seizure-related changes in connectivity to the 

forward connectivity and intrinsic inhibitory connections to superficial principal cells in both 

sources. These changes modelled a transient increase in the excitability of principal cells 

mediated by both intrinsic and extrinsic connectivity. The time constant of extrinsic decay 

(back to the prior expectation) was two seconds and the time constant of intrinsic decay was 

eight seconds. The values of all other parameters were set at the posterior estimates from 

the empirical analysis of the first seizure described below.  

To create realistic simulated data, residuals from the empirical analyses (randomly permuted 

over windows) were added to the simulated cross spectra to ensure that the sampling noise 

and its correlation structure had the same amplitude and form that would be encountered 

empirically. We used a signal to noise ratio of four, over all channels and time windows. 

Analysis of real data 

We performed model comparison and repeated the above analysis to estimate the trajectory 

of model parameters for the three successive seizures. These analyses used Bayesian 

updating, where the posteriors from the first seizure were used as priors for the second 

seizure and similarly for the second and third seizures. This enabled us to accumulate 

evidence for different models, while allowing for changes in parameters that could change 
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from seizure to seizure (for example electrode gain). We then pooled the evidence over 

seizures to identify the best model. Finally, we identified the parameter estimates of the best 

model to quantify trajectories in the parameter space for each seizure.  
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Results 

Face validation 

The results of the face validation (simulation) study are shown in Figure 5a: this shows the 

time-dependent changes in (log scaling of) the intrinsic and extrinsic connections as a 

function of window number. The posterior expectations correspond to the coloured lines 

(blue and cyan correspond to intrinsic connectivity, while green and red lines report the 

forward and backward connectivity respectively). The true values are shown as broken lines 

and the posterior estimates as full lines. In this example, we precluded changes in the 

backward connections from first to the second source. There is a pleasing correspondence 

between the posterior estimates and the true values. Indeed, for the intrinsic changes (blue 

and cyan) they are virtually indistinguishable. Note the characteristic overconfidence of these 

estimators (due to the mean field approximation in the variational scheme). This means that 

in some cases the true value lies just outside the 90% confidence intervals (grey areas). This 

is particularly evident for the forward connectivity (green) shortly after seizure onset. These 

results suggest that the trajectory of parameters can be recovered even under fairly realistic 

levels of sampling noise and biologically plausible values for the neuronal dynamics. 

Empirical analyses 

A typical model fit to the observed (empirical) cross spectra is provided in Figure 5b – 

showing the characteristic changes in complex cross spectra from a pre (blue) to post (red) 

ictal window. This example shows the typical excess of power (and coherence) in the beta 

band following seizure onset. Bayesian model comparison of competing models with 

different extrinsic (forward and backward) connections suggested that we can be almost 

certain that the forward connection originates in the primary source, with a log evidence 

difference of over 100 (Penny et al.2004). Differences in log evidence are the same as log 
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Bayes factors, where the Bayes factor is an odds ratio comparing the evidence or marginal 

likelihood of two models.  

Having established the most probable model architecture, we then compared the 16 models 

of time-dependent changes in intrinsic and extrinsic connectivity. One model (model 11) 

failed to converge during model inversion and was excluded from subsequent analysis. The 

pooled evidences of the remaining 15 models are shown in Figure 6a. 

The winning model (model 12) allowed changes in intrinsic connectivity in both the primary 

and the secondary sources. This model had greater evidence than any competing model. 

Typically, a difference in log evidence of three is considered strong evidence in favour of one 

model over another (this corresponds to a log marginal likelihood ratio of about 20 to 1). The 

difference between the best and next best models was much greater than three. Note that 

the model with the highest evidence was not the model with the greatest number of 

parameters (model 1). This reflects the complexity penalty inherent in Bayesian model 

comparison. In other words, changes in forward and backward connectivity did not improve 

accuracy sufficiently to justify their inclusion. 

Finally we examined the posterior estimates (expectations) to quantify fluctuations in the 

parameters around seizure onset. The results are shown in Figure 6b. Intrinsic connectivity 

increases markedly in both sources with seizure onset and then decreases within the first 20 

seconds of seizure activity (the observed change in log scaling of about two corresponds to 

an eightfold increase in intrinsic connectivity). The trajectories are qualitatively consistent, 

given that they were estimated from independent data. The intrinsic connectivity modelled 

here is a sensitivity of (superficial) principal cells to presynaptic inputs from inhibitory 

interneurons. This fits comfortably with the conclusions of Wendling et al.(Wendling et al., 

2005) who model seizure onset in terms of slow ensemble dynamics involving pyramidal 

cells and local interneurons, highlighting the increases in excitability that peak at seizure 

onset.  
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In summary, these results show that seizure onset appears to be mediated by an inhibition 

of superficial pyramidal cells in both sources. The key observation here is that the synaptic 

changes necessary to explain observed seizure activity (in terms of cross spectral density) 

are distributed, i.e. not restricted to the sole SOZ, and show slow dissociable time courses 

over several seconds. Furthermore, these changes are restricted to local or intrinsic 

fluctuations in synaptic parameters that are (presumably) a response to interactions among 

distal sources. Notice that the (reciprocal) extrinsic connections play a crucial role in the 

ensemble dynamics, in the sense that they mediate distributed interactions both before and 

after seizure onset. In short, the changes we have identified speak to a change in the 

recurrent interactions between excitatory principal cells (that originate forward type 

connections) and local inhibitory interneurons, reflecting a transient loss excitatory-inhibitory 

balance or gain control within a distributed epileptogenic network. 

The reason that we can make definitive statements about directed connections among 

specific populations is that the (winning) DCM entails these specific changes. This illustrates 

the utility of having a biophysically explicit and plausible model of how data are caused – and 

the importance of Bayesian model comparison in adjudicating among different hypotheses.  
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Discussion 

Neuronal models are being increasingly used to characterize brain activity in different states, 

and the transition between these states. These transitions are most evident and crucial when 

the phenomenon to be modelled is the onset of an epileptic seizure. 

A neuronal model of activity during different stages preceding and following seizure onset 

was proposed (Wendling et al., 2005), highlighting that the transition from the pre-ictal to the 

ictal state may not only be due to an increase of excitation (and a decrease of an inhibition) 

but rather to slow ensemble dynamics involving pyramidal cells and local interneurons,  

highlighting their increases in excitability that peak at seizure onset. A recent study (Nevado-

Holgado et al., 2012) characterized the evolution of an absence seizure as a path through 

the parameter space of a neural mass model. In another approach (Hocepied et al., 2013) a 

similar scheme was proposed for early seizure detection. In both cases, the authors suggest 

that tracking a set of parameters over time can disclose the nature of ictogenesis. 

Characterising the trajectory of biophysical neural model parameters during seizure onset 

may provide insights into the underlying slow metabolic mechanisms. 

The common theme in studies modelling seizure generation is a departure from the normal 

regime of functioning in populations of cells. This departure appears to be based on the 

interactions among excitatory pyramidal cells (Thomson and Radpour, 1991; Whittington et 

al., 1997) and their inhibitory interneurons (Miles et al., 1996; Banks et al., 1998; White et al., 

2000). Several studies have investigated and reviewed the intracellular and extracellular 

mechanisms underlying slow changes in synaptic parameters during seizure activity 

(Jefferys et al., n.d.; McNamara, 1994, 1995; Isomura et al., 2008). McCormick and 

Contreras (McCormick and Contreras, 2001) reported how periods of excitation, followed by 

synaptic inhibition and/or activation of intrinsic hyperpolarizing conductances can give rise to 

inter-ictal spikes, which can then be sustained during seizure activity.  
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Both David et al. (David et al., 2008b) and Krishnan et al. (Krishnan et al., 2013) addressed 

the causes of pathological synchronization, pointing out that changes in the extracellular 

ionic concentrations or modifications to excitation and inhibition can contribute to 

synchronized epileptiform firing. Increase in extracellular K+ concentration and decrease in 

Ca2+ are the most likely candidates for mediating these slow changes in excitability (and 

disinhibition). Other variables related to energy metabolism (levels of extracellular K+, 

oxygen, ATP consumption) have been modelled as a slow permittivity variable in a 

dynamical model of seizure generation (Jirsa et al., 2014). This model highlights the 

separation of temporal scales in the genesis of seizure activity and highlights the role of slow 

fluctuations in excitability that our results appear to be consistent with. 

Dynamical causal modelling was applied to intracranial EEG data recorded during 1 Hz 

electrical stimulation in patients with drug-resistant focal epilepsy (David et al., 2008b). DCM 

was used to model short term plasticity – as modulations of synaptic efficacies in either 

intrinsic or extrinsic connections.  The observed fast transition from the pre-ictal to the ictal 

state may be due to changes in intrinsic connectivity. DCM revealed variations of the 

postsynaptic efficacies at the ictal zone. Their results suggested that electrically induced 

seizures in the temporal lobe could depend in part on a pre-ictal increase in sensitivity to 

hippocampal afferents from the temporal pole. Again, this is consistent with the notion that 

seizure activity results from distributed ensemble dynamics engaging both intrinsic and 

extrinsic connections. 

It is clear that (slow) drifts in synaptic efficacy or coupling provide a sufficient account for the 

(fast) neuronal dynamics characteristic of seizure activity – and that these drifts involve 

involving regions distributed beyond the seizure onset zone. This perspective has been 

recently exploited. A bifurcation analysis of a physiological model of large-scale brain activity 

was used to obtain a parsimonious and unifying explanation of the defining features of 

seizure onset and spreading in (Breakspear et al. 2006).  Goodfellow at al. (Goodfellow et 

al., 2011) associated the emergency of epileptiform rhythms to two different scales of 
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inhibition in a cortical neural mass model; in the work mentioned above: Jirsa et al. (Jirsa et 

al., 2014) propose a minimal canonical model of epileptogenesis based upon a careful 

bifurcation analysis. This model exhibits spontaneous transitions between multi-stable states 

– resting on both slow and fast state variables. The dynamics emerging from both studies 

may provide a formal framework to study the neurophysiological mechanisms considered 

above.  

In this paper we adopt a similar if complementary approach.  We start from a canonical 

microcircuit model of neuronal sources and infer the evolution of its synaptic parameters 

around seizure onset. However, dynamic causal modelling takes its constraints from the 

known anatomy and physiology of neuronal circuits – as opposed to the formal 

(phenomenological) constraints offered by bifurcation analyses and dynamical systems 

theory. This means that the agenda is to parameterise seizure activity in terms of underlying 

synaptic mechanisms as opposed to their mathematical architecture. Crucially, we do not 

model a single epileptogenic region, but consider the distributed interactions with another 

population. This allowed us to use Bayesian model comparison to ask whether seizure 

activity was sufficiently explained by changes in one (epileptogenic) source – or required 

distributed changes throughout a simple network. Our results clearly point to a distributed 

explanation that rests upon coupled dynamics over both space and time. Nonetheless, given 

that the pathophysiology of epilepsy may be local (and mediated by non-specific 

extracellular factors), intrinsic plasticity may play a predominant role in seizure onset. In 

principle, it should be possible to extend this dynamic causal modelling approach to identify 

the causal architecture of these changes by explicitly modelling a slow (hidden) permittivity 

variable (such as extracellular potassium concentration) and testing different models. An 

important aspect of the current results is the dissociation in the temporal evolution of 

extrinsic (negligible) and intrinsic (marked) synaptic parameters. The nature of this 

dissociation may be important for understanding the intracellular and extracellular 

pathophysiology (what causes what) and clearly motivates further study in this area. 
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As with all dynamic causal modelling, the qualities of the models (model evidence) are only 

defined in relation to each other – and there is no supposition that the selected model 

represents some true or veridical architecture generating the data. In this sense, model 

comparison – and the interpretation of posterior estimates – is better thought of as testing 

specific hypotheses. In this instance, we wanted to test the hypothesis that a small number 

of (intrinsic) coupling strengths were sufficient to explain fluctuations in cross spectral 

density associated with seizure onset. To test more detailed hypotheses, one would have to 

specify a greater range of competing models and evaluate their evidence. A key point here is 

(as noted above) that at some point, the data at hand will not be able to disambiguate 

between models that are too complex (because their evidence will fall). It is at this point that 

one might turn to alternative sources of data – such as laminar-specific intracranial 

recordings. 

In this paper we have focused on modelling spectral responses over epochs or windows 

around seizure onset using dynamic causal modelling for cross spectral density. It is 

interesting to consider alternative approaches. The first choice that one has to make in this 

context is whether to model the first-order responses in time or the second-order (spectral) 

responses in frequency space. In modelling endogenous activity, of the sort presented by 

seizure activity, modelling the timeseries can be difficult. This is because the time varying 

neuronal states generating data are unknown and have to be estimated. Although this is 

possible, it can be inefficient because one has to estimate both hidden neuronal states and 

unknown (connectivity) parameters. There are generalized (variational) Bayesian filtering 

techniques – that generalize the Kalman filter – which have been applied to fMRI timeseries 

(Li et al., 2011); however, they are relatively less common in electrophysiological timeseries 

analysis, see (Freestone et al., 2011) for an application in the framework of neural field 

modelling. This is because the number of time bins and hidden neuronal states can be 

prohibitively large. In short, the more efficient way to model seizure activity is to focus on the 

time-frequency responses that reflect second-order statistics of neuronal activity. This 
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means that hidden neuronal states do not have to be estimated and the data can be used to 

estimate unknown parameters (e.g., transfer functions and cross spectral predictions). In 

principle, it should be possible to model time varying parameters causing time-dependent 

changes in cross spectral measurements; however, we have chosen the simpler approach of 

using a piecewise linear approximation to these slow parameter changes. This allows us to 

use established model procedures for modelling complex cross spectra. We hope to 

compare this approach to explicit models of time frequency responses and, possibly, 

stochastic DCMs that estimate hidden neuronal states in the future. 

This study is not meant to be a comprehensive illustration of dynamic causal modelling of 

seizure activity – rather a demonstration of the issues that are entailed and the nature of the 

questions that can be asked. The particular Bayesian updating scheme introduced here 

could be applied to measure synaptic modification on the scale of seconds to minutes. This 

may be useful for both epilepsy research and also studies of synaptic plasticity in studies of 

short or long-term potentiation or associative learning.  
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Figure legends 

Figure 1: Location of the two intracranial electrodes and sources considered in the dynamic 

causal modelling. The stereotactic trajectories of the electrodes are superimposed upon the 

individual structural MRI scan. The leftmost circle (LH4-LH5) corresponds to the first source 

– considered the onset zone, while the one on the right (LH6-LH7) indicates our second 

source. 

Figure 2: Left panels: Response characteristics of a single source within a dynamic causal 

model of the sort used in subsequent analyses (a canonical microcircuit neural mass model). 

The upper panels show the first and second order impulse response functions of time in 

terms of their impulse responses (Volterra kernels). These reflect the impact of inputs on 

observed responses and are a function of the model’s parameters. The equivalent 

formulation of the impulse response in frequency space is shown in the lower panels 

graphically (on the lower left) and in image format for different values of the inhibitory 

connection (on the lower right). These are called (modulation) transfer functions and 

represent the frequencies in the inputs that are expressed in the output. In this example, we 

have shown the responses as a function of (the log scaling of) recurrent inhibitory 

connectivity to one of four neuronal populations comprising the source (see figure 3). These 

response functions can be used to compute the expected cross spectral density for any 

values of the parameters. Right panels: these illustrate changes in neuronal activity when 

increasing recurrent inhibition. The top panel shows strength of recurrent inhibition as a 

function of time in seconds, while the second panel shows a simulated response obtained by 

integrating the neural mass model with random fluctuating inputs, with the value of inhibitory 

connection set to 1.5. The simulated time frequency response is shown below in terms of the 

spectral power over 4 to 96 Hz. The lowest panel shows the predicted power based upon the 

transfer functions shown on the left. 
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Figure 3: This schematic illustrates the state-space or dynamic causal model that we used 

for the dynamic causal modelling reported subsequent figures. Left panel: this shows the 

differential equations governing the evolution of depolarisation in four populations 

constituting a single electromagnetic source (of EEG, MEG or local field potential 

measurements). These populations are divided into input cells, inhibitory interneurons and 

(e.g., superficial and deep) principal cell populations that constitute the output populations. 

The equations of motion are based upon standard convolution models for synaptic 

transformations, while coupling among populations is mediated by a sigmoid function of 

(delayed) mean depolarisation. The slope of the sigmoid function corresponds to the intrinsic 

gain of each population. Intrinsic (within source) connections couple the different 

populations, while extrinsic connections couple populations from different sources. See 

Table 1 for a list of key parameters and a brief description. Right panel: this shows the 

simple two source architecture used in the current paper. The intrinsic connectivity (dotted 

lines) and extrinsic connectivity (solid lines) conform to the connectivity of the canonical 

microcircuit and the known laminar specificity of extrinsic connections (Bastos et al. 2012). 

Excitatory connections are in red and inhibitory connections are in black. Endogenous 

fluctuations drive the input cells and measurements are based on the depolarisation of 

superficial pyramidal cells. 

Figure 4: a) Alternative model architectures for the extrinsic coupling between the primary 

and secondary sources. FW: forward connectivity; BW: backward connectivity. b) Schematic 

showing the 16 models we tested. These models correspond to alternative hypotheses 

about changes in synaptic coupling that can explain changes in spectral activity before and 

after seizure onset. The 16 models correspond to all combinations of changes in intrinsic 

connectivity (in the primary and secondary sources) and changes in forward and backward 

extrinsic connections. The changes in intrinsic connectivity were modeled as changes in the 

inhibitory recurrent or self connections among superficial pyramidal cells. 
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Figure 5: a). This panel shows the time-dependent changes in (log scaling of) the intrinsic 

and extrinsic connections as a function of window number. The posterior expectations 

correspond to the coloured lines (blue and cyan correspond to intrinsic connectivity, while 

green and red lines report the forward and backward connectivity respectively). The true 

values are shown as broken lines, the posterior estimates as full lines and the 90% 

confidence intervals as grey areas. b) Predicted (solid lines) and observed (dotted lines) 

cross spectra for pre-ictal (blue) and ictal (red) periods. This example uses average spectra 

from the first seizure to illustrate the quality of the model fit and the spectral data features 

that inform the posterior estimates of the model parameters. The absolute values of the 

(complex) cross spectra are shown in the upper right panel. 

Figure 6: a) Upper panel: these are the variational free energy approximations to log model 

evidence for the 15 models covering changes in one or more synaptic parameters before 

and after seizure onset. Lower panel: this shows the corresponding posterior probability 

over models and identifies a single model with almost 100% posterior confidence. b) 

Changes (across consecutive windows, for each of the three seizures) in the synaptic 

parameters that were allowed to change in the winning model. Changes are shown in terms 

of log scaling to clarify the profile of changes over time. Each window corresponds to one 

second. The blue and the green lines report the intrinsic inhibition of the primary and 

secondary sources respectively and the grey areas represent the 90% confidence intervals.  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
31 

 

Tables 

Description of parameter Prior mean  Prior variance 

 of log scaling  

Intrinsic connections 
ijd (Hz) 4 1

5 5
[ , , ] 1000K  1

8
 

Extrinsic connections (Hz) 1
5

1000  1
8

 

Rate constants i (Hz) 1 1 1 1
2 2 16 28

[ , , , ] 1000  1
16

 

Slope of sigmoid   2
3

 1
32

 

Intrinsic delays  (ms) 1  1
32

 

Extrinsic delays  (ms) 8   1
32

 

Amplitude of endogenous neuronal input 1 1
128

 

Power law exponent of neuronal input 1 1
128

 

Amplitude of measurement noise 1 1
128

 

Power law exponent of measurement noise 1 1
128

 

 

Table 1: Model parameters used for subsequent dynamic causal modelling. The left column lists the 

parameters (corresponding to the equations in Fig. 3). The final two columns provide the prior mean 

and variance for dynamic causal modelling. Note that the variance is not the prior variance of the 

value per se but on its log scaling. 
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Highlights 





We propose a framework to characterize slow dynamical changes in the brain 



Dynamical causal modelling finds the most likely connectivity among two brain areas 



The synaptic weights defining these connections are tracked in time 



We analyse brain activity of an epileptic subject, at the focus and just outside it 
 

We point to modulations of synaptic connections as responsible of the seizure 


