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Abstract Nauplii hatching from Artemia cysts are crucial in larviculture nutrition. Art-

emia cysts may be exposed to repeated hydration/dehydration (H/D) cycles pre-harvesting

or during processing and storage. To observe the effect of these cycles on cyst quality,

Artemia franciscana cysts were exposed to a comprehensive set of various H/D treatments,

differing in the number of cycles (1, 2, or 3) and the duration of the freshwater hydration

period (2 or 4 h). Cyst quality was assessed using the criteria of immediate relevance for

aquaculture use, such as hatching percentage directly after H/D treatment and after -18 �C

storage up to 1 month, longevity of axenically hatched starved nauplii, cyst and naupliar

energy content, and (for the most extreme H/D treatment) cyst and naupliar fatty acid and

vitamin C content. Repeated H/D cycles resulted in significantly (P \ 0.05) decreased cyst

hatching, reduced starved naupliar longevity and individual energy content, loss in vitamin

C and fatty acid content, and moreover a close correlation between these parameters as a

function of progressive H/D treatments. This is of immediate relevance for aquaculture

nutrition, as commercial Artemia cysts may have gone through an unknown sequence of

H/D cycles in nature or in the processing line, which affects the nutritional quality of the

nauplii used in larviculture operations.
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Introduction

The brine shrimp Artemia (Crustacea, Anostraca) is the main zooplanktonic organism that

inhabits hypersaline environments all over the world (Triantaphyllidis et al. 1998). This

branchiopod has acquired extremely capable adaptive mechanisms to survive and evolve in

habitats with extensive and often abrupt fluctuations in abiotic conditions such as salinity,

UV irradiation, temperature, and oxygen concentration (Persoone and Sorgeloos 1980).

These mechanisms are poorly understood, although several studies have shown the ways

that Artemia responds to varying abiotic conditions prevailing in its natural habitats (for

review, see Abatzopoulos et al. 2002 and references therein). To survive environmental

stress, Artemia has developed two different reproductive patterns, with females releasing

either swimming larvae (nauplii) or encysted gastrulae (cysts) (MacRae 2003). When cysts

are produced, the embryo enters diapause, a reversible physiological condition during

which metabolism is greatly reduced and stress tolerance is increased (Drinkwater and

Clegg 1991; Clegg 1997; MacRae 2003, 2005). Exposure to habitat-specific environmental

stimuli, such as desiccation and/or low temperature, promotes resumption of cyst devel-

opment and metabolism (Drinkwater and Crowe 1987; Van Der Linden et al. 1988;

Drinkwater and Clegg 1991; Nambu et al. 2008).

The first use of Artemia nauplii, hatched from cysts, is known from the 1930s when this

zooplankton organism was used as a suitable food source for fish larvae in the culture of

commercially important species (Sorgeloos 1980; Léger et al. 1986). Since then, Artemia

has been found to be a suitable food for diverse groups of organisms of the animal

kingdom, especially for a wide variety of marine and freshwater crustaceans and fishes

(Sorgeloos 1980).

Cyst hatching is determined by a variety of factors, including genetic factors, the degree

of diapause termination, ambient conditions before and during harvesting, processing and

storage procedures, and ambient conditions during the hatching incubation process itself.

One of the most effective methods for deactivating diapause in cysts of the San Francisco

Bay (SFB)-type Artemia franciscana (Kellogg 1906) in laboratory conditions is dehydration

or well-controlled consecutive hydration/dehydration (H/D) cycles (Sorgeloos et al. 1976;

Vanhaecke and Sorgeloos 1982; Lavens et al. 1986). Quiescent cysts (out of diapause) on

the other hand may go through H/D cycles when being exposed to ambient conditions pre-

harvest in natural habitats or during processing procedures. This may result in variable

quality loss exemplified by reduced and/or delayed hatching especially after storage

(Vanhaecke and Sorgeloos 1982; Lavens and Sorgeloos 1987). Though some H/D exposure

is, to a certain extent, an almost unavoidable element in the history of any commercial cyst

sample from pre-harvesting until marketing, and though the related decline in hatching can

be substantial, no systematical research has been done in this respect.

This study assumed that the loss of hatching quality as a consequence of one or more

H/D cycles would be proportional to the magnitude of the exposure and the duration of

subsequent storage. It further assumed that this treatment would also result in deterioration

of other quality characteristics relevant for the use of brine shrimp as live food in larvi-

culture. For this purpose, cysts of two A. franciscana strains (Great Salt Lake, USA, and

the San Francisco Bay-type Vinh Chau, Vietnam) that are of prime importance for global

cyst supply were subjected to different treatments each including one or more H/D steps in

well-defined experimental conditions. The quality of the resulting embryos was assessed

using practical criteria relevant for their use in aquaculture: hatching quality, longevity of

starved nauplii and nutritional quality measured as energy content, HUFA, and vitamin C

levels of cysts and nauplii.
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Materials and methods

Cyst samples

Experiments were performed with two strains of A. franciscana: one commercial dry

sample (water content 4.5 ± 0.2 %) originating from Great Salt Lake (GSL), Utah, USA

(INVE Aquaculture Belgium, Type EG (batch number: 21425), and a second sample from

Vinh Chau (VC) salt fields, Vietnam (ARC code 1718), supplied by Can Tho University,

Vietnam, being dehydrated and stored in saturated NaCl brine (water content

34.8 ± 1.8 %). Both samples had been stored at ?4 �C since their arrival at the Laboratory

of Aquaculture & Artemia Reference Center. Water content of cysts was determined by

drying a subsample of raw cysts in an oven for 4 h at 103 �C to a constant weight.

Hydration/dehydration cycles

Cysts were exposed to successive hydration/dehydration (H/D) cycles by incubating 1.6 g

of cysts of each strain in a 1-l cylindroconical glass cone containing 800 ml of medium

(freshwater for the hydration step and NaCl-saturated brine (280–300 g l-1) for the

dehydration step) at 28 �C under strong aeration. A first group of three cones was set up;

the cysts in the first cone were exposed to one H/D cycle (2-h hydration and 24-h dehy-

dration), the second one to two cycles, and the third one to three (named A1, A11, and

A111, respectively). In parallel, for each strain, three other cones went through a similar

setup, but with each hydration period lasting for 4 h (the corresponding treatments named

A2, A22, and A222). After the H/D steps, the cyst samples were immediately stored in

?4 �C in NaCl-saturated brine (280–300 g l-1) until use for any of the tests described

under 2.4, 2.5, 2.6, and 2.7.

Determination of hatching percentage (H %)

For the determination of H % of hydrated/dehydrated cysts, the above procedure was

performed in triplicate for each treatment; determination of the hatching percentage was

accordingly performed in triplicate. Each sample having gone through the H/D cycles (and

a control, not exposed to H/D) was incubated in 800 ml Instant Ocean� solution of

32 ± 1 g l-1 in 1-l cylindroconical glass cones under continuous illumination (2000 lux)

at 28.0 ± 0.5 �C (Lavens and Sorgeloos 1996). Aeration was provided from the bottom to

keep all the cysts in suspension.

After 24 h of incubation, six subsamples of 250 ll each were taken from each cone with

a micropipette and placed in a small vial. Nauplii were fixed by adding a few drops of lugol

solution and tap water. The nauplii as well as the umbrellae were counted under the

microscope. The unhatched cysts were subsequently decapsulated by adding a few drops of

NaOCl and NaOH solution to each vial (Bruggeman et al. 1980), and the orange-colored

embryos were counted, according to the procedure described by (Lavens and Sorgeloos

1996). The hatching percentage was calculated as follows:

H % ¼ N= N þ U þ Eð Þ � 100

where N = number of nauplii, U = number of umbrellae, E = number of embryos.

The mean hatching value per cone was recorded, and the overall mean hatching per-

centage and standard deviation for the three replicate cones were calculated. H % was
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determined at day 0 (= immediately after the H/D treatment), after 1 week, and 1 month of

storage at -18 �C. The stored samples were placed at room temperature (±22 �C) for one

day before H % testing.

The hatching rate was only determined for non-treated cysts (control), by the deter-

mination of the hatching percentage obtained after a hatching incubation period of 10, 12,

14, 16, 18, 20, 22, 24, and 48 h.

Axenic Artemia culture

Axenic Artemia nauplii of each strain were obtained following decapsulation of samples of

hydrated/dehydrated cysts (obtained according to the procedure described above) and

subsequent hatching procedures described by Marques et al. (2004). A few grams of

hydrated/dehydrated cysts were hydrated in 90 ml tap water for 1 h with strong aeration in

non-axenic conditions. The recipient with the cysts was then transferred to a laminar flow

hood, where decapsulation was performed using autoclaved and sterile tools. Aeration of

the Artemia cysts was pumped through a 0.22-lm filter. Then, 50 ml of cold NaOCl

containing 15 % (w/v) active chlorine and 3.3 ml of 32 % (w/v) NaOH was added to the

hydrated cysts. The reaction was stopped after 150 s by adding 70 ml of sterile

Na2S2O3�5H2O (10 mg l-1). Decapsulated cysts were washed several times carefully with

filtered autoclaved seawater (FASW) and collected over a 50-lm sterile sieve. A few mg of

these cysts were then transferred to separate, sterile 50-ml falcon tubes (four replicates per

H/D treatment) containing 30 ml of FASW and capped. For hatching incubation, the tubes

were placed on a rotor at 4 cycles/min to prevent clogging and sedimentation of the cysts.

Cysts were kept at 28.0 ± 0.5 �C and exposed to constant incandescent light (2,000 lux).

After 18–20 h, 20 hatched nauplii were picked and transferred to new sterile 50-ml falcon

tubes containing 30 ml of FASW, which were mounted on the rotor and incubation was

continued. After 12, 24, 36, and 48 h, during which the larvae were not fed, swimming

larvae were counted and survival percentage was calculated, as described by Baruah et al.

(2010).

Axenity of decapsulated cysts and Artemia culture at the end of each experiment was

checked by plating 100 ll of the culture medium on marine agar 2216 in two replicates

(Difco, Detroit, USA) and incubation for five days at 28.0 �C. In case of contamination,

cultures were discarded and the treatment was repeated.

Energy content determination

A subsample of a few g of decapsulated cysts of each H/D treatment was washed carefully

with sterile distilled water over a sterile net (50-lm pores); a few hundred mg of these cysts

was then oven-dried at 60.0 �C for 24 h. The remaining cysts were transferred to sterile

500-ml hatching bottles containing 400 ml of FASW. The bottles were incubated at

28.0 ± 0.5 �C and constantly exposed to light. After 24 h, hatched larvae were harvested

and oven-dried at 60.0 �C for 24 h. Energy content of decapsulated cysts and nauplii was

analyzed on one replicate sample of approximately 0.5 g dry material per treatment group

using a bomb calorimeter (C-7000, Ika, Heitersheim, Germany) at the Particle and Inter-

facial Technology Group, Faculty of Bioscience Engineering, Ghent University, Belgium.

In order to calculate the individual cyst energy content, the number of cysts per gram dry

weight was determined by counting the cysts under the microscope for three replicate

samples of 1 mg.
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Fatty acid analysis

To reduce analytical costs, for each strain, only the raw sample and the A222 treatment

(which corresponded with the most extreme H/D treatment) were subjected to fatty acid

analysis of decapsulated cysts and instar I nauplii (analysis run in one replicate). Fatty acid

composition was determined by gas chromatography according to a modified procedure of

Lepage and Roy (1984). This method involves direct acid catalyzed transesterification of

dry samples of 10–150 mg without prior extraction of total fat. Ten percent of an internal

standard 20:2(n-6) was added before the reaction. Fatty acid methyl esters (FAME) were

extracted with hexane. After evaporation of the solvent, the FAME was prepared for

injection by redissolving it in isooctane (2 mg ml-1). Quantitative determination was done

by a Chrompack CP9001 gas chromatograph equipped with an autosampler and a tem-

perature programmable on-column injector. Identification was based on standard reference

mixtures (Nu-Chek-Prep, Inc., USA). Integration and calculations were done using the

software program Maestro (Chrompack).

Vitamin C analysis

Vitamin C analysis was performed on the same limited set of samples as used for fatty acid

analysis. Vitamin C was determined by a paired-ion, reversed-phase, high-performance

liquid chromatography (HPLC) procedure coupled with electrochemical detection and

internal standard quantisation based on isoascorbic acid (IAA). The HPLC apparatus

consisted of a Varian 8500 pump (Varian Assoc., Palo Alto, CA, USA), an N60 valve

injector fitted with a 20-ll loop (Valco, Houston, TX, USA), and a Coulochem 5100A

electrochemical detector (ESA, Inc., Bedford, MA, USA) equipped with a model 5010 or

5011 analytical cell.

Statistical analysis

Hatching and survival percentages data were Arcsin-transformed, and normal distribution

and homocedasticity requirements were tested (using Levene’s test) before further statis-

tical analysis. For each strain and different duration of storage, the data of hatching

percentage for 24 h were subjected to one-way ANOVA to detect an effect of the

hydration/dehydration treatments. Similarly, for each strain and hydration/dehydration

treatment, the data of hatching percentage for 24 h were subjected to one-way ANOVA to

detect an effect of the storage period. Additionally, for each strain, survival data after 12,

24, 36, and 48 h of starvation of metanauplii were each subjected to a one-way ANOVA to

detect an effect of the hydration/dehydration treatments. Finally, for each strain, also the

values for the number of cysts per gram were subjected to a one-way ANOVA to detect an

effect of the hydration/dehydration treatments. For all one-way ANOVA’s, P \ 0.05 was

considered as significant. A two-factor ANOVA test (SPSS, version 12.0) was used to

detect significant interactions between the duration of the hydration period (2 or 4 h) and

the number of H/D cycles (1, 2, and 3 cycles) for hatching and survival percentages, and

P \ 0.05 was considered as significant. Tukey’s test was used to detect significant dif-

ferences between the experimental sample means, and P \ 0.05 was considered as sig-

nificant. Linear regression was used to determine the relationship between parameters in

the H/D experiment and P \ 0.05 was considered as significant. For this analysis, hatching

percentages after different period of storage were linearly regressed against the energy

content of the cysts exposed to various H/D cycles using a scatterplot in Microsoft Excel.
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Similarly, survival percentages after different periods of starvation of metanauplii were

linearly regressed against the energy content of instar I nauplii after exposure of cysts to

various H/D cycles. Per strain and storage period, pooled standard error of means (PSEM)

of hatching percentage was calculated using the formula PSEM = HMSE/n (whereby

MSE is mean square of groups, and n is number of observations), pooling the values

obtained after different H/D cycles. Similarly, for each strain, PSEM was calculated for the

survival percentages found after a starvation period of 12, 24, 36, and 48 h.

Results

Hatching characteristics

The hatching percentage of the raw material was 90.1 ± 0.3 % for GSL and 95.1 ± 1.2 %

for VC. From the hatching curve (Fig. 1), T0 (time of first cyst hatching) and T10 (time of

10 % hatching), derived graphically, were 10 and 11 h for GSL and 10 and 10.5 h for VC,

respectively. The cysts showed 90 % of their maximum hatchability (T90) at 24 h for GSL

and 20 h for VC. The hatching synchrony (TS = T90 – T10) was different between the

strains (13 h for GSL and 9.5 h for VC) (Fig. 1).

Successive hydration/dehydration cycles increasingly affected the hatching percentage.

For GSL cysts of the A1 group, H % was 84.8 % on day zero, 80.6 % after 1 week, and

79.6 % after 1 month of storage. H % values for the equivalent VC samples were very

similar (Table 1). For each strain, H % of the untreated cysts was significantly higher than

that of H/D cysts regardless of the number and duration of H/D cycles and the duration of

storage, except for A1/day 0 GSL cysts and A1/1 month VC cysts, where the difference

with the untreated cysts was not significant. For GSL cysts, hatchability significantly

decreased (Table 1; Fig. 2a) with increasing hydration time and H/D cycles; this decrease

was much more prominent for the samples of the A2 series than for the A1 samples, finally

resulting for the A222 group in hatching percentages of 42.7 % on day zero, 41.6 % after

1 week, and 36.4 % after 1 month of storage. Interaction between the duration of hydration

and the number of H/D cycles was significant, when analyzing the hatching percentage

values before storage, after 1 week, and 1 month of storage (P \ 0.05). The results for the

VC cysts showed a similar trend (Table 1; Fig. 2b). Storage always resulted in loss of

hatching, though the decrease was generally not significant (Table 1).
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Fig. 1 Hatching curves of untreated cysts from Great Salt Lake (GSL) and Vinh Chau (VC). Mean values
and standard deviation (error bars) of three replicates
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Survival of starved nauplii under axenic conditions

At the first observation (12-h post-hatching), nauplii of the control group (both for GSL

and VC) showed the highest survival (78.8 and 86.3 %, respectively) (Table 2); in the

treatment groups, survival was inversely proportional to the number of H/D cycles and

especially to the duration of the hydration period (2 vs. 4 h). Interaction between the

duration of the hydration period (2 h and 4 h) and the number of H/D cycles was only

significant (P \ 0.05) for the survival at 12 h of the GSL strain. All groups of nauplii

showed increasing mortality throughout the 48-h observation period. This resulted in a

significantly lower (P \ 0.05) GSL and VC survival for all A2 treatments as compared to

the control for any moment of observation. Also, for the A1 treatments, the divergence

from the control value grew as the number of H/D cycles increased. Overall, the

Table 1 Hatching percentage (after 24-h hatching incubation) of cysts from GSL and VC strains previously
exposed to different duration of the hydration period (2 or 4 h) and different number of H/D cycles (1, 2, and
3 cycles)

Strain Treatment Hatching percentage after storage at -18 �C for different durations

Day 0 (prior to storage) 1 week 1 month

GSL Control 90.1 ± 0.3aA 89.1 ± 1.1aA 87.7 ± 2.2aA

A1 84.8 ± 0.2abA 80.6 ± 1.8bB 79.6 ± 2.5bB

A11 79.1 ± 2.6bA 78.9 ± 3.3bA 78.7 ± 0.8bA

A111 77.3 ± 2.5bA 76.0 ± 1.7bA 75.5 ± 1.4bA

A2 66.7 ± 2.5cA 64.0 ± 1.2cA 61.9 ± 2.2cA

A22 55.8 ± 1.3dA 54.1 ± 1.4dA 52.9 ± 2.3dA

A222 42.7 ± 5.9eA 41.6 ± 3.8eA 36.4 ± 5.7eA

Pooled SEM* ±1.6 ±1.3 ±1.6

Interaction** P = 0.010 P = 0.001 P = 0.000

VC Control 95.1 ± 1.2aA 92.7 ± 0.8aAB 91.2 ± 1.1aB

A1 88.9 ± 0.2bA 87.6 ± 1.7bA 87.5 ± 1.7abA

A11 85.0 ± 1.9cA 83.9 ± 1.4cA 83.2 ± 1.0bcA

A111 83.8 ± 0.8cA 82.3 ± 0.9cAB 80.9 ± 1.1cB

A2 64.2 ± 1.2dA 61.8 ± 1.7dAB 60.0 ± 1.3dB

A22 52.8 ± 0.8eA 50.8 ± 1.2eA 50.6 ± 1.1eA

A222 42.9 ± 0.8fA 40.9 ± 0.1fA 35.7 ± 3.1fB

Pooled SEM* ±0.6 ±0.7 ±0.9

Interaction** P = 0.000 P = 0.000 P = 0.000

For each strain and different duration of storage, small superscripts in each column show significant
difference between different hydration/dehydration treatments (one-way ANOVA). For each strain and each
hydration/dehydration treatment, capital superscripts in each row show significant differences between
different duration of storage (one-way ANOVA). ** Interaction between duration of hydration (2 or 4 h)
and number of H/D cycles (1, 2, or 3 cycles) (two-way ANOVA). Data are mean value (n = 3) ± standard
deviation and * pooled standard error of means (pooled SEM). Significance level was set at P \ 0.05

GSL Great Salt Lake, VC Vinh Chau. A1 = 2-h hydration ? 24-h dehydration (1 cycle). A2 = 4-h
hydration ? 24-h dehydration (1 cycle), A11 = 2-h hydration ? 24-h dehydration (2 cycles). A22 = 4-h
hydration ? 24-h dehydration (2 cycles), A111 = 2-h hydration ? 24-h dehydration (3 cycles). A222 = 4-h
hydration ? 24-h dehydration (3 cycles)
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Table 4 Fatty acid methyl esters (FAME) composition (mg g-1 DW) and vitamin C contents
(mg g-1 DW) in control and A222 decapsulated cysts and in the corresponding instar I nauplii of GSL and
VC Artemia

Strain GSL VC

Cysts Nauplii Cysts Nauplii

FAME Control A222 Control A222 Control A222 Control A222

14:00 1.3 1.1 0.9 0.9 3.3 3.0 3.0 2.9

14:1n-5 1.7 1.6 1.7 1.6 1.1 1.0 1.1 1.1

15:00 0.3 0.3 0.2 0.2 6.1 5.7 5.6 5.6

15:1n-5 0.7 0.3 0.8 0.3 0.6 0.6 0.6 0.6

16:00 17.0 16.5 16.2 15.7 19.4 18.0 18.9 18.3

16:1n-7 3.8 3.7 3.2 3.0 17.0 15.8 17.0 16.9

17:00 1.1 1.0 1.1 1.0 6.7 4.8 7.0 5.4

17:1n-7 1.4 1.3 1.3 1.2 2.1 1.7 2.0 1.9

18:00 7.1 6.7 5.6 7.8 4.8 4.4 5.4 5.1

18:1n-9 27.5 25.8 27.3 26.2 20.9 19.2 22.8 20.7

18:1n-7 8.5 8.2 8.8 8.7 14.5 13.3 15.1 15.6

18:2n-6t 0.4 0.4 0.4 0.4 0.3 0.1 0.4 0.4

18:2n-6s 9.2 9.0 10.0 9.9 4.4 4.1 4.8 4.7

19:00 0.1 0.1 0.1 0.1 0.0 0.0 0.0 1.5

18:3n-6 1.3 1.3 1.4 1.4 1.3 1.3 1.3 1.3

19:1n-9 0.5 0.4 0.5 0.5 1.3 1.2 1.5 1.5

18:3n-3 43.6 43.4 51.4 51.8 3.8 3.6 4.4 4.3

18:4n-3 9.8 9.8 11.5 11.7 1.6 1.4 1.5 1.4

20:00 0.1 0.1 0.2 0.2 0.4 0.1 0.3 0.1

20:1n-9 0.7 0.6 1.0 0.9 1.4 1.2 0.8 1.2

20:1n-7 0.1 0.1 0.2 0.1 0.2 0.2 1.9 0.2

20:3n-6 0.2 0.1 0.2 0.2 0.5 0.4 0.5 0.5

20:4n-6 0.4 0.4 0.3 0.3 6.0 5.6 6.7 6.5

20:3n-3 1.5 1.4 2.2 2.2 0.1 0.1 0.2 0.1

20:4n-3 1.6 1.6 2.2 2.2 0.7 0.6 0.6 0.9

22:00 0.3 0.3 0.6 0.5 0.3 0.1 0.4 0.4

20:5n-3 1.6 1.6 1.2 1.2 17.6 17.0 19.9 19.6

22:6n-3 0.0 0.0 0.1 0.0 0.2 0.0 0.2 0.0

Total (n-3) 4.9 4.8 6.1 5.8 19.0 18.0 21.6 21.0

Total (n-6) 11.5 11.2 12.3 12.2 12.7 11.6 13.9 13.5

Total (SFA) 27.3 26.1 24.9 26.4 41 36.1 40.6 39.3

Total MUFA 44.9 42.0 44.8 42.5 59.1 54.2 62.8 59.7

Total PUFA 69.6 69.0 80.9 81.3 36.5 34.2 40.5 39.7

Total FAME 153.3 149.3 165.8 162.9 171.9 166.5 182.1 173.7

Vitamin C 0.367 0.112 0.803 0.724 0.289 0.111 0.676 0.611

Values correspond with one single analysis. For abbreviations, see Table 1
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discrepancy between the treated groups and the control grew as the nauplii grew older.

Overall performance of the VC nauplii (control and treatments) was better than for the

GSL sample (Table 2; Fig. 2a, b).

Energy content

The number of cysts per gram and the energy content of hydrated/dehydrated decapsulated

cysts and instar I nauplii (J/g dry weight) were higher for VC than for GSL, but the individual

cyst energy content was lower in VC cysts, which are smaller than GSL cysts (Table 3).

Moreover, in both strains, the individual energy content was higher in the control than in the

hydrated/dehydrated cysts, with a gradual decrease in energy content as the number of H/D

cycles and the duration of the hydration period increased, illustrating that the cysts consume

energy while being hydrated. The rate of energy loss during exposure to the various H/D

treatments was similar for both strains (Table 3; Fig. 2a, b). In both strains, cysts lost more

energy when being hydrated for 4 h, than when being hydrated twice for 2 h (e.g., 8.9 vs.

3.7 % for A2 and A11, respectively, VC cysts). In both strains, a double or a triple H/D cycle

did not result in a two- or threefold decrease in individual energy content.

Fatty acid composition

A total of 28 fatty acids were recorded (Table 4). The saturated fatty acids (SFA) were

dominated by 16:0 and 18:0 in the two strains. Among the monounsaturated fatty acids

(MUFA), 18:1n-9 was the most abundant in the two strains with values in the range

19.2–27.5 mg g-1 DW; this fatty acid showed higher levels in the GSL control and A222

cysts and nauplii than in the corresponding VC samples. Of all HUFAs, 18:3n-3 dominated

in the GSL samples (43.4–51.8 mg g-1 DW in cysts and nauplii), whereas in VC 20:5n-3

was the most abundant HUFA 17.0–19.9 mg g-1 DW in cysts and nauplii.

Though variations were found among the individual fatty acids, in general total (n-3),

total (n-6), and total fatty acids were higher in the nauplii than in the corresponding cyst

samples. In addition, total fatty acid levels of the samples exposed to H/D cycles were

slightly lower than in the control in both cysts and nauplii, but there was no effect of the

H/D cycles on the levels of highly unsaturated fatty acids, such as eicosapentaenoic acid

(EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3), arachidonic acid (ARA, 20:4n-6),

or linolenic acid (18:3n-3), illustrating that net breakdown of HUFAs during the hydration/

dehydration process is limited (Table 4).

Vitamin C content

Considerably higher vitamin C values, expressed as ascorbic acid, were found in the

control nauplii (0.676 and 0.803 mg g-1 DW) than in the control cysts (0.289 and

0.367 mg g-1 DW), for VC and GSL, respectively. In both strains, three H/D cycles with

4-h hydration decreased the vitamin C content with 62–69 % in cysts and about 10 % in

nauplii (Table 4).

Correlations between quality parameters

Linear regression analysis between hatching percentage (on day 0, after 1 week, and

1 month of storage) on the one hand and individual energy content of cysts on the other
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indicated a very strong positive correlation in both GSL and VC strains (R2 [ 0.99 for

GSL and R2 [ 0.98 for VC (Fig. 3a, b), A similar positive correlation was found between

survival of the starved nauplii and the energy content (expressed in J g-1 dry weight) of

instar I nauplii (R2 [ 0.95 for GSL and R2 [ 0.92 for VC (Fig. 4a, b). There were no

significant differences (P [ 0.05) between the slopes and between the intercepts of the

regression lines in Fig. 3a, b, whereas in both Fig. 4a, b all slopes and intercepts of the four

regression lines were significantly different (P \ 0.05) from each other.

Discussion

The ability of Artemia to form cysts accounts in part for its convenience as a larval food

source (Léger et al. 1986). Artemia cysts have a remarkable shelf life; the ease and

simplicity of hatching make brine shrimp one of the most convenient, least labor-intensive

live foods available for aquaculture.
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Fig. 3 a Linear regression between hatching percentage (on day 0, after 1 week, and 1 month of storage)
and energy content (mj cyst-1) in GSL cysts exposed to various H/D cycles. b Linear regression between
hatching percentage (on day 0, after 1 week, and 1 month of storage) and energy content (mj cyst-1) in VC
cysts exposed to various H/D cycles
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This study aimed to gauge to what extent cyclic H/D exposure of cyst samples from two

commercially important A. franciscana strains (Great Salt Lake, USA, and the San

Francisco Bay-type Vinh Chau, Vietnam) resulted in quality loss as assessed by aqua-

culture-relevant parameters such as hatching, longevity, and nutritional quality of nauplii.

The untreated cyst samples used in our study were in quiescence, as illustrated by the

high hatching percentage ([90 %). The hatching quality of the cysts was negatively

affected when cysts were stored after exposure to a succession of H/D cycles, and this

effect aggravated as the number of cycles increased from one to three, and as the hydration

period, preceding dehydration, was lengthened from 2 to 4 h, finally resulting in a loss of

hatching in the range 50–60 % of the control value. The loss as a result of multiple H/D

cycles was more marked when a hydration period of 4 h was used, as compared with

hydration during 2 h. The difference in water content of the VC and GSL control sample

(34.8 vs. 4.5 %, respectively) did not affect these results: after incubation in seawater, cysts

absorb water at a fast rate, reaching a maximal water content of 140 % of their dry weight

after 1.0–1.5 h at 28.0 �C, as described by (Lavens and Sorgeloos 1987).
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Fig. 4 a Linear regression between survival % (after 12, 24, 36, and 48 h) and energy content (J g-1 DW)
of GSL instar I nauplii after exposure of the cysts to various H/D cycles. b Linear regression between
survival % (after 12, 24, 36, and 48 h) and energy content (J g-1 DW) of VC instar I nauplii after exposure
of the cysts to various H/D cycles

1528 Aquacult Int (2014) 22:1515–1532

123



A similar effect was found for the axenically hatched nauplii with survival negatively

affected by increasing H/D cycles, longer hydration incubation, and prolonged starvation

over a 48-h observation period, as energy reserves were gradually depleted (Benijts et al.

1976). Analogously, the individual energy content, being maximal in the control cysts,

gradually declined as the number of H/D cycles and the duration of the hydration period

increased, corresponding with energy consumption during the repeated hydration process

(Morris 1971; Vanhaecke and Sorgeloos 1982; Vanhaecke et al. 1983). In both strains,

hydration for 4 h resulted to more than three times (3.5–3.8 times) the energy loss

resulting from hydration for 2 h, illustrating that as hydration continues, metabolism

intensifies and energy consumption proceeds at a faster rate (Lavens and Sorgeloos

1987). On the other hand, doubling or tripling the H/D cycle did not result in an

accordingly double or triple energy loss. This suggests that after the first cycle, a number

of metabolic mechanisms have been initiated, which are not repeated during the fol-

lowing cycles. The similarity in energy consumption during the successive H/D cycles,

observed in both strains, suggests that the underlying mechanisms are common within

the species A. franciscana and possibly within the genus Artemia. Nevertheless, as

energy content in the cysts dropped, cyst hatching and naupliar survival decreased faster

in VC than in GSL, as reflected in the slope of the regression curves (Figs 3b, 4b),

indicating that VC cysts are more sensitive to improper storage conditions than GSL,

which may be linked to their smaller size (generally with a diameter of approximately

225 lm for VC, as compared to about 250 lm for GSL cysts (Vanhaecke and Sorgeloos

1980; Dhont and Sorgeloos 2002).

Comparative literature information on the fatty acid contents of cysts and the nauplii

emerging from them is scarce (Garcia-Ortega et al. 1998; Dhont and Sorgeloos 2002),

and no information is available on the fatty acid metabolism involved in the hatching

process. Our FAME results of control decapsulated cysts and nauplii of the VC and GSL

strains, and the differences in dominating fatty acids between both strains, are similar to

the literature data published for those strains (Evjemo et al. 1997; Garcia-Ortega et al.

1998; Dhont and Sorgeloos 2002; Ando et al. 2002). The effect of hydration and sub-

sequent dehydration on the fatty acid contents of cysts has not been the subject of

systematic studies in the past; in our study, differences between the control and A222

samples were limited, which suggests that net fatty acid breakdown during the hydration/

dehydration process is limited. This is also illustrated by the similarity between the data

of fatty acid contents reported in the literature by various authors for (GSL or VC)

samples, which may have a widely diverging history of exposure to hydration and

dehydration prior to analysis.

In general, fatty acid analysis showed that the two populations of Artemia from Vinh

Chau and from Great Salt Lake are essentially different in fatty acid composition,

especially in terms of EPA (20:5n-3) and linolenic acid (18:3n-3) contents. Variations

in cyst fatty acid profile are generally linked to the characteristics of the phytoplankton

population as food source for the maternal population (Navarro and Amat 1992,

Navarro et al. 1992; Zhukova et al. 1998; Thinh et al. 1999, Torrentera and Dodson

2004), though also other environmental parameters, such as ambient temperature, and

genetic factors may have an effect (Ruiz et al. 2007, 2008; Nguyen Thi Hong Van,

unpublished results).

In order to meet the nutritional requirements of especially marine fish and shellfish

larvae, enrichment of Artemia metanauplii is a standard procedure in many hatcheries

when using the HUFA-deficient GSL strain. HUFA levels post-enrichment thus over-

whelm the levels of the freshly hatched nauplius, or of the metanauplius having gone
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through some period of starvation. Enrichment is not applied for the VC strain,

however, which contains relatively high levels of highly unsaturated fatty acids.

Moreover, strict hatching procedures (e.g., harvesting of nauplii after a hatching

incubation period of 24 h) generally reduce the risk of starved (meta) nauplii being fed

to (shell) fish larvae.

Vitamin C levels were conforming to the conversion of vitamin C from ascorbic sulfate

into ascorbic acid during completion of the embryonic development into the nauplius stage

(Dabrowski 1991; Golub and Finamore 1972; Nelis et al. 1994) and comparable to the

range (162–428 lg g-1 DW) reported by (Dabrowski 1991) for cysts. The variation in

vitamin C contents found between cysts of different geographical origin (in the range

296–517 lg g-1 DW expressed as ascorbic acid), its conversion into free ascorbic acid

during the hatching process, and the role of ascorbic sulfate as storage form has been

studied in detail (Mead and Finnamore 1969; Merchie et al. 1995). The nutritional quality

of the A222 cysts and nauplii was lower than in the control, as shown by reduced fatty acid

and vitamin C levels. In the case of vitamin C, this loss amounted in both strains up to

62–69 % for A222 cysts as compared to the control, whereas fatty acid losses were

generally in the order of few percentages.

Knowledge of hatching characteristics in Artemia samples is important due to the

reported variability among batches and strains. The nutritional quality in Artemia varies

considerably as well, in relationship with its geographical origin (Léger et al. 1986).

(Vanhaecke and Sorgeloos 1982) reported that the poor hatchability of commercial batches

of Artemia cysts can be linked to improper processing of the cysts after collection in

nature, and that long-term storage of such material may result in a further substantial

decrease in hatching success. In natural conditions, cysts may be exposed to H/D cycles, as

they are floating driven by wind and currents, and may temporally or definitively accu-

mulate on the shore where they undergo the fluctuations of atmospheric conditions. Har-

vesting of good-quality cyst product requires collection of recently produced cyst batches

from the open water shortly followed by adequate processing, but these conditions are

seldom fulfilled, especially when harvesting natural production in inland lakes, when site

accessibility is limited, timing of harvesting is irregular, transport and storage is an issue,

and/or overall expertise is lacking. In Artemia pond production, such as in the Mekong

Delta, Vietnam, frequent harvesting (up to 2–3 times a day) followed by adequate pro-

cessing is currently done, which contributes to the good quality of the resulting cyst

product (Anh et al. 2009).

Our results confirm that cyst metabolism, as initiated after hydration, is to a certain degree

reversible and that cysts can be converted from a hydrated, metabolically active mass of cells

into a dehydrated, ametabolic state (and vice versa). They also show that repeated H/D cycles

not only result in a decreased hatching output, but also in an inferior quality of those nauplii

hatching, as quantified in our study by naupliar longevity, energy, FAME, and vitamin C

content. These observations are of fundamental importance in understanding the cysts quality

and they have significant potential for application in aquaculture.
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