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We present an approximate Bayesian computation (ABC) scheme for estimating number con-
centrations of monodisperse diffusing nanoparticles in suspension by optical particle tracking mi-
croscopy. The method is based on the probability distribution of the time spent by a particle inside
a detection region. We validate the method on suspensions of well-controlled reference particles. We
illustrate its usefulness with an application in gene therapy, applying the method to estimate number
concentrations of plasmid DNA molecules and the average number of DNA molecules complexed
with liposomal drug delivery particles.
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I. INTRODUCTION

Understanding interactions of functional nanomateri-
als and nanoparticles with biological matter are at the
heart of interdisciplinary research in biological physics,
medicine, and nanotechnology [1, 2]. In particular, the
design of man-made functional nanoparticles has received
more and more attention in recent years. Applications
are vast, including targeted delivery of therapeutic agents
[3] and the use of tailor-made tracer particles for biomed-
ical imaging [4]. As a consequence, there is an interest
in the detection and characterization of particles of sub-
micron size, both artificial and natural, in a range of situ-
ations including particles suspended in complex fluids like
undiluted blood [5, 6]. Examples of applications are the
detection of blood-borne specific cell-derived extracellu-
lar vesicles that serve as biomarkers for metabolic and
systemic diseases [7, 8], of amyloid β aggregates in cere-
brospinal fluid or plasma for diagnosis of e.g. Alzheimer’s
[9], and of subvisible protein aggregates that are impor-
tant when developing protein-based drug formulations
[10, 11].
With several substantial scientific advances, e.g. highly

sensitive camera sensors with high spatial and temporal
resolution, high-quality optics and lasers, and increased
computer power for image analysis, optical microscopy
and particle tracking techniques have emerged as corner-
stone technology in this growing interdisciplinary field.
While nanoparticles are often too small to be character-
ized by optical microscopy, still they can be visualized as
diffraction limited spots of light in dark field or fluores-
cence microscopy. By imaging their Brownian motion in
suspension, particle parameters including size and con-
centration can be derived. Indeed, a number of analysis
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methods have emerged in recent years for characteriza-
tion of such suspended nanoparticles [6, 12–15].

In previous work of Röding et al. [13], we demonstrated
that using fluorescence microscopy and tracking freely
diffusing particle species, an absolute concentration can
be estimated with good accuracy and precision. While
counting of the particles is relatively straightforward, a
particular challenge in order to arrive at a concentra-
tion estimate is to determine precisely the size of the
detection region in which the particles are detected. One
approach is to indirectly estimate this size by a prior cal-
ibration using reference particles of known concentration
[16]. However, the size of the detection region is affected
by several factors, including the microscope’s field of view
and depth of field, sample illumination, particle fluores-
cence intensity, and particle detection and tracking algo-
rithms. Consequently, a prior calibration using reference
model particles (e.g. polymer nanospheres) is inherently
flawed, because all these factors cannot be held constant
between experiments on different particles. Therefore,
we developed an approximate statistical model relating
the probability distribution of the time spent by a parti-
cle inside the detection region, the size of the detection
region, the diffusion coefficient estimated from particle
tracking videos, and the number concentration.

While this previous method has proven quite useful
in a number of applications [17–20], several approxima-
tions had to be introduced. No tractable, exact likeli-
hood function can be formulated for the problem of con-
centration estimation in this setting: As is discussed in
the Appendix of Röding et al. [13], formulating a likeli-
hood function involves alternating Gaussian convolutions
and multiplication with interval indicator functions, a
procedure which becomes analytically intractable rather
quickly. Moreover, for computational reasons, we had
to approximate the three-dimensional geometrical model
with a one-dimensional one. Nevertheless, the stochastic
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data generating process (DGP) is simple and thus the
problem naturally lends itself to simulation-based infer-
ence. In this work, we present an approximate Bayesian
computation (ABC) scheme for estimating number con-
centrations of nanoparticles in suspension by fluorescence
microscopy and particle tracking. First, we discuss as-
pects of the general concentration estimation problem
and the tailoring of the ABC framework to it. Then, we
validate the method experimentally on reference particles
with well-controlled concentration. Finally, we illustrate
its usefulness with an application in gene therapy, ap-
plying the method to estimating concentrations of plas-
mid DNA molecules and the average number of DNA
molecules with liposomal drug delivery particles.

II. APPROXIMATE BAYESIAN
COMPUTATION

Approximate Bayesian computation (ABC) is a widely
used Bayesian inference framework for complex statisti-
cal models where the likelihood is intractable or compu-
tationally expensive. Although some underlying ideas for
simulation-based inference date back to Rubin [21] and
Diggle and Gratton [22], the original paper on the mod-
ern ABC framework is arguably Tavaré et al. [23], with
other notable early contributions being Pritchard et al.
[24] and Beaumont et al. [25], the latter in which the
term ’ABC’ was coined. Consider a data set D ∈ S and
a model class indexed by a general parameter vector θ.
In Bayesian statistics, inference is drawn from the full
posterior distribution

f(θ|D) =
P (D|θ)π(θ)

P (D)
, (1)

where P (D|θ) is the likelihood, π(θ) is the prior distribu-
tion, and P (D) is the evidence. Conventionally, posterior
inference relies on some method of generating random ob-
servations from f(θ|D) by means of actual computation
of the likelihood, such as a simple rejection method. The
rejection method involves generating a random θ from
π(θ), and accepting θ as an observation from f(θ|D) with
probability h = P (D|θ). Now, if the likelihood cannot
be explicitly computed but the stochastic data generat-
ing process (DGP) is known and it is simple to simulate
realizations, one can

1. Generate a random θ from π(θ).

2. Simulate a realization D′ from the DGP for param-
eter θ.

3. Accept θ if and only if D′ = D.

The obtained result after iterating this procedure many
times is still a sample from the exact posterior. However,
since P (D′ = D|θ) is likely to be very small in most
realistic settings this is an impractical approach. A way
forward is to introduce a ’distance metric’ ρ : S × S →

R+, such that ρ = 0 if and only if D′ = D, and a tolerance
level ϵ ∈ R+. Then, one can

1. Generate a random θ from π(θ).

2. Simulate a realization D′ from the DGP for param-
eter θ.

3. Compute the ’distance’ ρ(D,D′) between the real
data and the simulated realization.

4. Accept θ if and only if ρ(D,D′) ≤ ϵ.

Whereas f(θ|ρ(D,D′) = 0) is the exact posterior,
f(θ|ρ(D,D′) ≤ ϵ) for a non-zero ϵ constitutes a relax-
ation, the nature of which is determined by ρ and ϵ. The
acceptance probability now depends on ϵ that indexes a
continuous set of distributions from the posterior (ϵ = 0)
to the prior (ϵ → ∞). There are recent developments in
the selection of ϵ such as cross-validation techniques [26],
but we choose a more simple and pragmatic approach of
carefully choosing ϵ manually such that a good trade-off
between accuracy and computability can be found.

Since its introduction, different flavours of the ABC
framework have emerged such as MCMC ABC [27] and
sequential Monte Carlo ABC [28] (with correction, [29]).
We shall focus on the rejection case herein while proceed-
ing to the field of application.

III. ESTIMATING PARTICLE
CONCENTRATIONS USING ABC

Consider a particle tracking experiment with freely dif-
fusing, Brownian particles in a liquid suspension Ω =
[−A/2, A/2]3 ⊂ R3. Assuming diffusion equilibrium and
a concentration (density) c, a (fixed) number of particles
with distribution Poi(c |Ω|) are distributed (marginally)
uniformly in Ω at any time. A fluorescence micro-
scope setup is used to image and track particles in
two dimensions inside a cuboid mid-section of the liq-
uid suspension which we denote the detection region,
ω = [−ax/2, ax/2] × [−ay/2, ay/2] × [−az/2, az/2] ⊂ Ω.
Figure 1 shows the experimental setup. The lateral sizes
(perpendicular to the optical axis z) ax and ay of the de-
tection region are determined by the field of view of the
microscope. Hence, they are known prior to the experi-
ment with near-perfect accuracy. The axial size (parallel
to the optical axis z) az, on the other hand, depends
on experimental factors such as the depth of field of the
microscope optics, sample illumination, particle fluores-
cence intensity, and particle detection and tracking algo-
rithms. Hence, it is not known prior to the experiment
because it may vary depending not only on the experi-
mental setup but also on the image analysis settings. It is
perhaps worth noting at this point that we do not know
the particular shape of the liquid suspension, only do we
know that |Ω| ≫ |ω| and that ω is far from the boundary
of Ω so that any edge effects are negligible; the cuboid
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FIG. 1. (Color online) The experimental setup. Particles in-
side the cuboid-shaped detection region (green) are detected
and tracked in two dimensions (x and y) using a fluorescence
microscope. The x and y dimensions of the detection region,
ax and ay, are known. The z dimension az needs to be esti-
mated from the particle tracking data.
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FIG. 2. (Color online) Example of a set of experimentally
acquired trajectories superimposed on a still video frame.

shape is only a convenient assumption and we choose ar-
bitrarily to let A = 100 µm.

Recording a number of time-lapse video sequences with
sampling interval ∆t and performing subsequent particle
detection and tracking (in two dimensions) yields a set
of particle trajectories. Figure 2 shows an example of
particle trajectories taken from the data sets analyzed
herein.

Because the particles move randomly in and out of the
detection region, the trajectory durations are random,
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FIG. 3. (Color online) Example of an experimentally acquired
trajectory duration distribution.

the number of positions being between 1 and kmax (the
number of frames in the longest video recorded). The real
length of a trajectory can be longer than the duration of
a video in principle; however, the experiments and the
simulations share the property that trajectories longer
than the duration of a video is recorded as being equally
long as the video. Hence, the ABC framework elegantly
takes care of this truncation. Figure 3 shows an example
of a trajectory duration distribution taken from the data
sets analyzed herein.

In practice, because very short trajectories often in fact
are false positives due to noise in the images [30], a lower
threshold kmin (equal to, say, 2 or 3) is also introduced
and shorter trajectories with k < kmin are discarded (this
step reduces ambiguity in particle tracking). By defini-
tion of free diffusion and the mean squared displacement
relation from statistical physics, between any two consec-
utive frames, each observed particle performs a Gaussian
random walk with incremental (and mutually indepen-
dent) displacements ∆x,∆y ∼ N (µ = 0, σ2 = 2D∆t)
(and a third, unobserved displacement ∆z with the same
distribution) [31]. The data thus constitutes (i) a list of
trajectory durations k1, k2, ..., represented by a vector of
non-negative integers (a histogram) k ∈ Zkmax

+ , where ki

is the number of trajectories consisting of i positions, and
(ii) a list of two-dimensional particle displacement vec-
tors (∆x1,∆y1), (∆x2,∆y2), ... of (random) length m =
(k1−1)+(k2−1)+ ... (since the number of displacements
in each trajectory is the number of positions minus 1)
summarized by their mean squared displacement

r2 =
1

m

m∑
i=1

(
∆x2

i +∆y2i
)
. (2)

We proceed to the setting of the ABC rejection frame-
work. The ultimate goal is to estimate the concentration
(density) of particles c, but that also requires knowledge
of their (common) diffusion coefficient D and the axial
size of the detection region az. Hence, we wish to sample
from the posterior for the entire parameter set (D, az, c),

f(D, az, c|k, r2) =
P (k, r2|D, az, c)π(D, az, c)

P (k, r2)
. (3)
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We note that inasmuch as az and c influence the number
of observed incremental displacements of particles con-
siderably, their impact on the value of r2 as such is very
minor. This is related to the fact that the lateral dimen-
sions of the detection region ax and ay are much larger
than az (typically, 20-100 times larger). Therefore, parti-
cles mainly enter and exit the detection region along the
axial dimension (in parallel to the optical axis), as a re-
sult of the unobserved displacements in the axial dimen-
sion rather than as a result of the observed displacements
in the lateral dimensions. As a consequence, k and r2 are
approximately conditionally independent (the exception
being negligible ’edge effects’ close to the lateral bound-
aries of the detection region, causing a very slight cut-off
effect in the normal distribution of displacements). We
utilize this by factoring the likelihood,

P (k, r2|D, az, c) ≈ P (k|D, az, c)P (r2|D, az, c) ≈ (4)

P (k|D, az, c)P (r2|D).

Now, P (r2|D) is tractable and based on the normal dis-
tribution likelihood for the two-dimensional particle dis-
placement vectors, for which r2 is a sufficient statistic
(the right hand side is a product of m normal densities),

P (r2|D,m) = (4πD∆t)−m exp

(
− mr2

4D∆t

)
. (5)

Note that this part of the likelihood is also conditional
on a fixed number of trajectories. Normalizing so that
this forms a pdf for D, we obtain that P (D|r2,m) is an
inverse gamma distribution,

D|r2,m ∼ Γ−1

(
α = m− 1, β =

mr2

4∆t

)
, (6)

and in effect, sampling values of D (marginally) is easy.
The other factor in the likelihood, P (k|D, az, c), is han-

dled by straightforward simulation, and we can therefore
easily cope with the fact that the number of trajecto-
ries is random. For a given candidate parameter vec-
tor (D, az, c), Poi(c |Ω|) noninteracting point particles are
placed uniformly in the virtual liquid suspension Ω. For
each time step ∆t, particle positions are displaced in nor-
mally distributed increments with µ = 0 and σ2 = 2D∆t
in each direction. Periodic boundary conditions are as-
sumed for Ω. When particles enter the virtual detection
region ω, they are detected and tracked. The lateral sizes
of the detection region is known prior to the experiment.
The displacements from the simulation are not used, only
the trajectory durations represented by k′. As the ’dis-
tance metric’ ρ, we choose simply

ρ(k,k′) =

kmax∑
i=kmin

(ki − k′
i)

2
, (7)

i.e. the Euclidean norm (it was found that other ’dis-
tance metrics’ considered, also based on norms of ’his-
togram’ differences, such as the total variation or the

Euclidean norm of the ’cumulative histograms’ produced
near-identical results). We mention in this context that
there are recent investigations on optimal ways of sum-
marizing the differences between data and simulations,
including dimensionality reductions [32, 33]. However,
our ’distance metric’ does not constitute a dimensionality
reduction in this sense, because the data is not reduced
to e.g. moments. We choose a flat (improper) prior over
(D, az, c) ∈ (0,∞) × [az,min, az,max] × [cmin, cmax]. Re-
stricting the choice of candidate values in this fashion is
necessary because computational workload for each sim-
ulation is approximately linear in c, so extremely large
candidate values of c must be avoided. It is also sen-
sible from a physical point of view: the assumption of
independence between particles requires c to be upper
bounded, and to make meaningful inference possible by
observing a sufficient number of trajectories, c must be
lower bounded. Also, az is upper bounded by optical and
other limitations, in practice this is in the order of a few
micrometers. This prior is essentially non-informative
from the point of inference, but still avoids the compu-
tation of extremely heavy cases (high c). The algorithm
now becomes

1. Generate a random D ∼
Γ−1

(
α = m− 1, β = mr2/(4∆t)

)
, using the

estimated mean squared displacement r2 and the
number of observed increments m.

2. Generate random az ∼ U [az,min, az,max] and c ∼
U [cmin, cmax].

3. Simulate a realization of a tracking experiment us-
ing the parameter vector (D, az, c), yielding simu-
lated trajectory durations represented by k′.

4. Compute the ’distance’ ρ(k,k′) between the trajec-
tory duration distributions of the real data and of
the simulated realization.

5. Accept (D, az, c) as a sample from the (approxi-
mate) posterior if and only if ρ(k,k′) ≤ ϵ.

In a sense, from the point of view of the ABC frame-
work, P (r2|D,m)π(D, az, c) now constitutes the prior
(one could introduce the notation π(D, az, c|r2,m)), and
P (k|D, az, c) takes on the role of the full likelihood.
There are several benefits to this factorization of the like-
lihood. First, the prior (incorporating the ’partial’ pos-
terior) comes ’closer’ to the full posterior, so that less
rejections are necessary to retain a certain accuracy of
approximation of the posterior. Second, the choice of ρ
is easier when r2 is accounted for separately, and ρ does
not incorporate a ’trade-off’ between r2 and k.

It is hard to provide precise guidelines or rules-of-
thumb for the number of draws in the sample that are
necessary in order to obtain a certain accuracy, because
this depends on the problem, the prior knowledge about
the problem, and the parameter bounds set in the prior.
In the studies performed herein, we use approximately
2× 107 draws for each estimation.
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The ABC algorithm is implemented in the high-
performance scientific computing language Julia [34–36].
Matlab (Mathworks, Natick, MA, US) is used for graph-
ics.

IV. EXPERIMENTS

A. Validation on polymer nanospheres

We perform a series of validation experiments on water
dispersions of fluorescent polymer nanospheres with very
narrow distribution in diameter (d ≈ 497±9 nm). From a
batch of known concentration, five different dilutions are
made. Based on knowledge of the diameter, mass density,
and weight percentage of particles in the water solution
as well as the dilution factor, theoretical concentrations
can be obtained including 95 % confidence intervals (see
Röding et al. [13]). For more details on the experiment,
refer to Section IVC.
The proposed ABC framework is then used to generate

a sample from the approximate posterior for (D, az, c).
After carefully assessing the impact of the choice of the
tolerance level ϵ by manual inspection, it is chosen so that
P (ρ ≤ ϵ) = 10−3, keeping approximately 2 × 104 draws
from each approximate posterior (from a total of approx-
imately 2 × 107). Further decreasing the value of ϵ pro-
vides no substantial change in mean and variance of the
approximate posterior (and some increase provides very
little change, so the choice is not absolutely crucial). Fig-
ure 4 shows estimated concentrations (posterior mean)
with credible intervals (2.5 % and 97.5 % percentiles of
the marginal posterior) compared to the expected (theo-
retical) concentrations.
As is clear, good agreement is found between the esti-

mated concentrations and the expected reference concen-
tration (and with the ones estimated before using another
method, as can be seen when comparing with Figure 4
in Röding et al. [13]), confirming the validity of the ap-
proach in a highly controlled setting.

B. An application in gene therapy

We illustrate the application of the method with an
example related to nanomedicine mediated gene ther-
apy. The genes come in the form of plasmid DNA,
small ring-shaped DNA molecules that can be manip-
ulated for therapeutical purposes. These therapeutic
macromolecules are typically incorporated into nanocar-
riers such as liposomes to enable their delivery into target
cells. Complexes consisting of liposomes and DNA are
termed lipoplexes (LPX). To allow for accurate dosing,
a crucial question is to determine how many DNA parti-
cles are on average incapsulated in a single lipoplex. It is
useful to design particles with a high number of DNA per
LPX, because this means that less material is needed to
bring the DNA to the cell nucleus. Hence, this reduces
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FIG. 4. (Color online) Estimated vs expected concentrations
of a dilution series of water dispersions of fluorescent polymer
nanospheres. Concentrations estimated with the proposed
ABC framework (posterior mean) with credible intervals (2.5
% and 97.5 % percentiles) are compared to the expected (the-
oretical) concentrations (solid line) with error bounds (dashed
lines). As is clear, good agreement is found between the esti-
mated concentrations and the expected reference concentra-
tion. Furthermore, the results are slightly improved compared
to the concentrations estimated before using the method of
Röding et al. [13] (circles, partly occluded).

the toxicity of the treatment (even biological materials
are toxic in high concentration) and the risk of an im-
munoresponse from the organism.

We demonstrate how this number can be estimated us-
ing particle tracking in fluorescence microscopy and the
proposed ABC framework for estimating number con-
centrations for both DNA and LPX. To the best of our
knowledge, currently there is no alternative method for
accurately estimating the concentration of LPX other
than that proposed herein and in Röding et al. [13].
Hence, this small example is an effective demonstration
of the usefulness of the method in pharmaceutical appli-
cations.

First, the number concentration cDNA of a suspension
of only plasmid DNA molecules is estimated. Second, the
plasmid DNA suspension is mixed in equal volumes (so
that cDNA is in effect halved) with a liposome suspension.
LPX are formed and their number concentration cLPX is
estimated as well. The average number of DNA particles
incapsulated in a single LPX can thus be estimated by
the ratio

Q =
1

2

cDNA

cLPX
. (8)

The whole experiment is performed in triplicate to ac-
count for variations in e.g. dilution factors. The ABC
framework is used to generate samples from the approxi-
mate posterior for (D, az, c) for the whole set of DNA and
LPX suspensions. Once again, after carefully assessing
the impact of the choice of the tolerance level ϵ by manual
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inspection, it is chosen so that P (ρ ≤ ϵ) = 10−3, keeping
approximately 2×104 draws from each approximate pos-
terior (from a total of approximately 2 × 107). Further
decreasing the value of ϵ provided no substantial change
in mean and variance of the approximate posterior.
We proceed with reporting posterior mean and 2.5%

and 97.5% percentiles of the parameter values for diffu-
sion coefficient, axial detection region size and particle
number concentration for DNA and LPX as well as the
ratio Q, see Table I. Observations from the posterior for
the ratio Q in Eq. (8) can be formed simply by random
pairing of observations from the posteriors for cDNA and
cLPX.
We also illustrate the entire posterior distribution over

the parameter space (D, az, c) for the second LPX repli-
cate, see Figure 5. That az and c are clearly negatively
correlated in the posterior does not come as a surprise
because for a fixed number of trajectories, a larger de-
tection region suggests a smaller concentration, and vice
versa.
The average number of DNA per LPX is 1.59±0.06. It

would be expected that the numbers are between 1 and 2,
because the diameters of both DNA and LPX are roughly
100-150 nm. Although plasmid DNA can be compressed
during formation of LPX, it would be unlikely that 3 or
more would fit into one liposomal carrier.

C. Materials and experimental methods

Acquisition of video data and particle tracking is de-
scribed elsewhere in detail [6]. The experimental meth-
ods and the nanoparticles involved are briefly described
below.
Validation experiments are conducted using a custom-

built widefield epi-fluorescence microscope setup with
laser illumination and an EMCCD camera, based on a
Nikon TE2000E microscope. Image acquisition is per-
formed using the Nikon Elements R imaging software.
For each experiment, 40 videos with 15 second duration
of individual particles performing free diffusion in the
liquid suspension are acquired. The frame rate is ap-
proximately 17 frames per second and the resolution is
512 by 512 pixels. The physical pixel size is 0.1329 by
0.1329 µm; hence, the lateral size of the detection region
is ax = ay ≈ 68 µm. Particle detection and tracking
is performed using in-house software developed in Mat-
lab (Mathworks, Natick, MA, US). Fluorescent polymer
nanospheres (Bangs Laboratories, Fishers, US) with very
narrow distribution in diameter (d ≈ 497 ± 9 nm) and
of well-controlled concentration are used for validation
of the method. Trajectories shorter than kmin = 3 are
excluded from further analysis. The tracking was per-
formed at least 20 µm away from the cover glass to avoid
deviations from free diffusion due to wall interactions.
For the gene therapy experiments, suspensions of DNA

and LPX are used in triplicate. The experimental setup is
similar as for the validation experiments, except a Nikon
LiveScan Swept Field Confocal Microscope is now used.
For each replicate, 25 videos with 5 second duration of
individual particles performing free diffusion in the liquid
suspension are acquired. The frame rate is approximately
20 frames per second and the resolution is 512 by 512 pix-
els. The physical pixel size is 0.12 by 0.12 µm; hence, the
lateral size of the detection region is ax = ay ≈ 61 µm.
The DNA is labeled with YOYO-1 Iodide (Life Tech-
nologies, Thermo Fisher Scientific, Waltham, MA, US),
an intercalating dye whose quantum yield become 3200
times higher when complexed with DNA. This ensure
brightly fluorescing particles so that purification steps
are not necessary; moreover, the dye is quite photostable
so that photobleaching is limited. Once again, trajec-
tories shorter than kmin = 3 are excluded from further
analysis. The tracking was performed at least 10 µm
away from the cover glass to avoid deviations from free
diffusion due to wall interactions. Gel electrophoresis
experiments demonstrate no DNA band after complexa-
tion, suggesting complete complexation and hence that
no free DNA is left. This suggests that the proposed pro-
cedure to quantify the average number of DNA particles
incapsulated in a single LPX is appropriate.

V. CONCLUSION

We have considered the problem of estimating number
concentrations of freely diffusing monodisperse nanopar-
ticles using optical fluorescence microscopy and particle
tracking. No tractable, exact likelihood function can
be formulated for the considered case, and in a previ-
ously published method approximations had to be intro-
duced. Nevertheless, the stochastic data generating pro-
cess is simple and thus paves the way for an approximate
Bayesian computation framework for joint estimation of
the diffusion coefficient, the size of the detection region in
which particles are tracked, and the particle number con-
centration. In an experiment performed on water disper-
sions of fluorescent polymer nanospheres with well-known
concentration, we have demonstrated the validity of the
proposed method in a controlled setting. Moreover, we
have demonstrated the usefulness of this approach in an
application related to nanomedicine mediated gene ther-
apy, applying the method to estimate concentrations of
plasmid DNA molecules and the average number of DNA
molecules complexed with liposomal drug delivery parti-
cles. In conclusion, approximate Bayesian computation,
although computationally heavy, provides a very suit-
able statistical estimation framework for this problem,
and we consider it the preferred method of inference over
the previously published method because no simplifying
approximations are needed for tractability.



7

TABLE I. Estimated parameter values

Data sets and variables Replicate no.
DNA suspensions 1 2 3
D (µm2/s) 0.420 [0.417, 0.423] 0.451 [0.447, 0.455] 0.453 [0.449, 0.456]
az (µm) 1.033 [0.955, 1.117] 0.894 [0.816, 0.977] 0.922 [0.848, 0.999]
c (109 part/ml) 8.900 [8.513, 9.294] 7.448 [7.074, 7.840] 8.700 [8.300, 9.113]
LPX suspensions
D (µm2/s) 0.495 [0.485, 0.505] 0.491 [0.481, 0.501] 0.410 [0.404, 0.416]
az (µm) 0.519 [0.433, 0.611] 0.579 [0.483, 0.683] 0.710 [0.621, 0.808]
c (109 part/ml) 2.844 [2.346, 3.489] 2.264 [1.916, 2.717] 2.841 [2.581, 3.127]
DNA per LPX ratios
Q (dimensionless) 1.583 [1.268, 1.909] 1.659 [1.363, 1.962] 1.536 [1.376, 1.705]
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[2] A. Nel, L. Mädler, D. Velegol, T. Xia, E. Hoek, P. Soma-
sundaran, F. Klaessig, V. Castranova, and M. Thomp-
son, Nature materials 8, 543 (2009).

[3] K. Remaut, N. Sanders, B. D. Geest, K. Braeckmans,
J. Demeester, and S. D. Smedt, Materials Science and
Engineering: R: Reports 58, 117 (2007).

[4] S. Nune, P. Gunda, P. Thallapally, Y.-Y.Lin, F. Laird,
and C. Berkland, Expert opinion on drug delivery 6, 1175

(2009).
[5] I. Montes-Burgos, D. Walczyk, P. Hole, J. Smith,

I. Lynch, and K. Dawson, Journal of Nanoparticle Re-
search 12, 47 (2010).

[6] K. Braeckmans, K. Buyens, W. Bouquet, C. Vervaet,
P. Joye, F. D. Vos, L. Plawinski, L. Doeuvre, E. Angles-
Cano, N. Sanders, J. Demeester, and S. D. Smedt, Nano
letters 10, 4435 (2010).

[7] G. Chironi, C. Boulanger, A. Simon, F. Dignat-George,
J.-M. Freyssinet, and A. Tedgui, Cell and tissue research



8

335, 143 (2009).
[8] L. Doeuvre, L. Plawinski, F. Toti, and E. Anglés-Cano,

Journal of neurochemistry 110, 457 (2009).
[9] S. Khare and N. Dokholyan, Current Protein and Peptide

Science 8, 573 (2007).
[10] V. Filipe, R. Poole, M. Kutscher, K. Forier, K. Braeck-

mans, and W. Jiskoot, Pharmaceutical research 28, 1112
(2011).

[11] V. Filipe, R. Poole, O. Oladunjoye, K. Braeckmans, and
W. Jiskoot, Pharmaceutical research 29, 2202 (2012).

[12] H. Saveyn, B. D. Baets, O. Thas, P. Hole, J. Smith, and
P. V. D. Meeren, Journal of colloid and interface science
352, 593 (2010).
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