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Abstract—This paper presents a systematic approach for the
statistical simulation of nonlinear networks with uncertain circuit
elements. The proposed technique is based on spectral expansions
of the elements’ constitutive equations (I-V characteristics) into
polynomial chaos series and applies to arbitrary circuit compo-
nents, both linear and nonlinear. By application of a stochastic
Galerkin method, the stochastic problem is cast in terms of an
augmented set of deterministic constitutive equations relating the
voltage and current spectral coefficients. These new equations
are given a circuit interpretation in terms of equivalent models
that can be readily implemented in SPICE-type simulators, as
such allowing to take full advantage of existing algorithms and
available built-in models for complex devices, like diodes and
MOSFETs. The pertinent statistical information of the entire
nonlinear network is retrieved via a single simulation. This
approach is both accurate and efficient with respect to traditional
techniques, such as Monte Carlo sampling. Application examples,
including the analysis of a diode rectifier, a CMOS logic gate and
a low-noise amplifier, validate the methodology and conclude the
paper.

Index Terms—Circuit design, circuit simulation, nonlinear cir-
cuits, polynomial chaos, SPICE, statistical analysis, uncertainty.

I. INTRODUCTION

The increasing miniaturization of electronic equipment is
amplifying the impact of tolerances and uncertainties on circuit
performance. The variability has several sources, ranging from
the manufacturing process to temperature fluctuations and
aging, and requires the electrical response to be addressed
from a statistical standpoint. A common practice to handle
this inherent randomness in circuit simulators is to use Monte
Carlo [1] or similar sampling-based methods. A sufficiently
large set of different scenarios is generated according to the
statistical properties of the random parameters and simulated
to collect samples of the output response. Despite its simplic-
ity, the main drawback lies in the large number of instances
that must be considered, thus often making the computational
time prohibitive. To speed-up the design phase, engineers have
been seeking for more efficient techniques (e.g. [2]).

Great attention has been recently attracted by the framework
of the polynomial chaos (PC) theory [3]. Leveraging PC,
random quantities and their governing equations are expanded
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into series of orthogonal polynomials, suitably chosen depend-
ing on the probability distribution [4]. The unknown expansion
coefficients are computed via the solution of an augmented
system of equations, constructed using a stochastic Galerkin
method (SGM). Pertinent statistical information is then readily
obtained from these coefficients.

On the one hand, the technique has been used in [5]
and [6] to analyze linear RLC networks. A more systematic
and circuit-oriented approach was proposed in [7], where
equivalent circuit models were proposed to model uncertainties
in lumped linear electrical devices. The approach was later
implemented in a customized circuit analysis tool having a
(limited) capability of handling also nonlinear components [8].
However, an important limitation is that device nonlinearities
are handled using either small-signal, linearized equivalent
models, or approximate Taylor expansions. Furthermore, an
ad-hoc software, with customized library models, is required,
rather than relying on available and standard circuit solvers.
Compatibility with commercial tools is a very desirable
requirement for circuit designers, so that well-consolidated
algorithms and device models can be exploited.

On the other hand, the authors of this paper proposed
a PC-based modeling strategy for the statistical assessment
of stochastic distributed networks in standard SPICE-type
design environments [9]. Nonetheless, the methodology pre-
sented in [9] focuses exclusively on the variability provided
by transmission-line elements with random properties, while
lacking the inclusion of random lumped elements as well as
of nonlinear components. The present paper covers this gap
by outlining a very general framework for stochastic circuit
simulation, consisting of random distributed and nonlinear
lumped components. The latter include elements with user-
defined I-V-characteristic or built-in device models, like those
for diodes and MOSFETs available in many SPICE-type
simulators. It is important to stress that the proposed modeling
technique is fully compatible with standard and commercially-
available circuit solvers.

This paper is organized as follows: Section II outlines the
basic principles of PC; Section III introduces the modeling
of random linear circuit elements; Section IV describes the
modeling of nonlinear devices; Section V outlines the general
procedure for the PC-based simulation of stochastic networks;
in Section VI, the proposed approach is illustrated and vali-
dated by means of application examples; finally, conclusions
are drawn in Section VII.
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II. POLYNOMIAL CHAOS OVERVIEW

In an electrical network where some elements are stochastic,
voltages and currents also become stochastic. The underlying
idea for the simulation of such a stochastic network is to
expand voltages and currents into the spectral PC series [9],
i.e.

v(t, ξ) ≈
P∑

k=0

vk(t)φk(ξ), i(t, ξ) ≈
P∑

k=0

ik(t)φk(ξ), (1)

where ξ = [ξ1, . . . , ξd] is a vector collecting the independent
and normalized random variables (RVs) parameterizing all the
variations (e.g., manufacturing tolerances and/or temperature
fluctuations). Furthermore, vk(t) and ik(t) are deterministic
voltage and current coefficients to be determined. Finally,
{φk}Pk=0 forms a basis of multivariate polynomial functions
that are orthonormal with respect to the following inner
product:

⟨f, g⟩ =
∫
Rd

f(ξ)g(ξ)w(ξ)dξ, (2)

w(ξ) being the joint probability distribution of ξ.
According to the Wiener-Askey scheme, for standard distri-

butions, the orthogonal polynomials for d = 1 are well-known
and correspond to Hermite polynomials for Gaussian RVs,
Legendre polynomials for uniform RVs, etc. [4]. It is important
to point out that, in order to preserve symmetry and reciprocity
of the models, we adopt here a normalized (i.e., rescaled)
version of such polynomials [10], rendering ⟨φk, φj⟩ = δkj
(Kronecker’s delta). When d > 1, the multivariate polynomials
are built as product combinations of univariate ones, in order
to preserve their orthonormality [3].

The expansions (1) are truncated to a maximum total
degree p of the multivariate polynomials φk, so that the total
number of terms is

P + 1 =
(p+ d)!

p!d!
. (3)

As shown e.g. in [9], for a broad class of problems, choosing
p = 2 generally provides satisfactory modeling accuracy.

The main advantage of the PC representation (1) is that
the spectral voltages and currents are deterministic, the ran-
domness being confined into the polynomials. Thanks to the
orthogonality properties, the first two statistical moments of
the circuit variables are readily obtained as [3]

E{v(t, ξ)} = v0(t), E{i(t, ξ)} = i0(t) (4)

and

Var{v(t, ξ)} =
P∑

k=1

v2k(t), Var{i(t, ξ)} =
P∑

k=1

i2k(t). (5)

Higher order moments as well as probability density functions
(PDFs) are obtained by randomly sampling (1) in accordance
with the distribution of ξ. This post-processing procedure is
very fast because (1) is merely a polynomial function.

III. MODELING OF LINEAR ELEMENTS

As discussed in the previous section, the statistical informa-
tion on the circuit response is readily obtained, provided that
the spectral coefficients vk(t) and ik(t) of the node voltages
and branch currents are known. In order to avoid repeated and
time-consuming simulations of the stochastic network, in [9]
pertinent equivalent circuit models are created, connected and
simulated in a SPICE-type tool to retrieve vk(t) and ik(t).

Unfortunately, in [9], only (multiconductor) transmission
lines with random cross-sectional properties in combination
with deterministic linear lumped elements are discussed. In
this paper, a far more general framework is outlined, in
which both linear and nonlinear elements, possibly subject to
variability themselves, can be included. The discussion starts
from the basic linear elements, i.e. resistors, capacitors and
inductors. The modeling of nonlinear devices is discussed in
the next section.

A. Resistors

The current-voltage relationship of a resistor, shown in
Fig. 1a, is governed by Ohm’s law:

i(t) = G(v+(t)− v−(t)) = Gv(t), (6)

with G = 1/R. If the resistance R is random, e.g. due to
manufacturing tolerances or temperature variations, its con-
ductance can be expressed with a PC expansion analogous
to (1), i.e.

G(ξ) =
1

R(ξ)
≈

P∑
k=0

Gkφk(ξ), (7)

and hence, the voltage and current in (6) become random
themselves. Given the orthonormality of the polynomials, the
coefficients Gk are given by

Gk = ⟨G,φk⟩ =
∫
Rd

1

R(ξ)
φk(ξ)w(ξ)dξ. (8)

Introducing (7) and (1) into (6) yields
P∑

k=0

ik(t)φk(ξ) ≈
P∑

k=0

P∑
j=0

Gkvj(t)φk(ξ)φj(ξ). (9)

Application of a SGM, i.e. multiplying the left- and right-
hand sides of (9) by φm(ξ) and integrating them using the
inner product (2), yields

im(t) =
P∑

j=0

G̃mjvj(t) =
P∑

j=0

G̃mj(v
+
j (t)− v−j (t)), (10)

where we defined

G̃mj =
P∑

k=0

Gkαkjm, (11)

with αkjm = ⟨φkφj , φm⟩.
It is worthwhile noting that (10) is now a deterministic

equation relating the mth spectral current coefficient to all the
spectral voltage coefficients and can be implemented in any
circuit solver using the equivalent circuit illustrated in Fig. 1b.
As shown in the figure, the terms G̃mm are still implemented
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Fig. 1. Resistor element (a) and corresponding equivalent circuit for the mth
spectral current coefficient (b).

using a resistor, while the terms G̃mj (with m ̸= j) correspond
to voltage-dependent current sources, which provide the nec-
essary coupling among the branches. By letting m run from 0
to P , a set of P + 1 deterministic equations is obtained, that
correspond to the sought-for constitutive relationships linking
all the spectral voltage and current coefficients.

B. Capacitors

The constitutive equation of a capacitor, shown in Fig. 2a,
is

i(t) = C
d

dt
(v+(t)− v−(t)) = C

d

dt
v(t). (12)

Application of the SGM leads to

im(t) =
P∑

j=0

C̃mj
d

dt
vj(t), ∀m = 0, . . . , P, (13)

with C̃mj =
∑P

k=0 Ckαkjm. The equivalent circuit for the
mth spectral equation is shown in Fig. 2b. In this case,
the coupling among the spectral coefficients is obtained via
current-dependent current sources.

Cv
+

v
−

i

v

C̃mm

C̃mj

C̃jj

iC̃jj

v+m v−m

im

iC̃mm

...

...

(a) (b)

Fig. 2. Capacitor element (a) and corresponding equivalent circuit for the
mth spectral current coefficient (b).

C. Inductors

The behavior of an inductor, shown in Fig. 3a, is governed
by the following equation

v+(t)− v−(t) = v(t) = L
d

dt
i(t). (14)

The same SGM-based procedure used for resistors and capac-
itors leads to

vm(t) = v+m(t)− v−m(t) =
P∑

j=0

L̃mj
d

dt
ij(t), (15)

where once again L̃mj =
∑P

k=0 Lkαkjm. The mth spectral
equation corresponds to the voltage across a coupled inductor
and the pertinent equivalent circuit is illustrated in Fig. 3b.

L
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v
−

i
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L̃mm

L̃jj

L̃mj

v+m v−m

im

...

...
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Fig. 3. Inductor element (a) and corresponding equivalent circuit for the
mth spectral voltage coefficient (b).

The equivalent circuits in Figs. 1–3 are readily imple-
mented in any, e.g. SPICE-type, circuit simulator. However,
it is important to remark that the augmented constitutive
equations derived so far for resistors (10), capacitors (13)
and inductors (15), were proven to describe passive models,
independently of their specific circuit implementation [11]. So,
adopting the new implementation as proposed in the present
paper, guarantees stability during, e.g., transient simulations.

IV. MODELING OF NONLINEAR ELEMENTS

When the governing equations are nonlinear, the derivation
of the constitutive equations relating the voltage and current
coefficients is hindered by the fact that, in general, no closed-
form expression exists for the integrals appearing in the SGM.
A novel, efficient and SPICE-compatible modeling strategy to
tackle this issue is outlined in this section, starting from the
case of two-terminal nonlinear elements having a deterministic
I-V-characteristic. The formulation is later extended to three-
terminal elements (transistors) as well as to nonlinear elements
with randomness in their characteristic.

A. Deterministic Two-Terminal Devices

Let us consider the case of a generic nonlinear conductance
(Fig. 4a):

i(t) = F (v+(t)− v−(t)) = F (v(t)). (16)

Substitution of the expansions (1) into (16) yields
P∑

k=0

ik(t)φk(ξ) = F

(
P∑

k=0

vk(t)φk(ξ)

)
. (17)

Application of the SGM produces, ∀m = 0, . . . , P ,

im(t) =

∫
Rd

F

(
P∑

k=0

vk(t)φk(ξ)

)
φm(ξ)w(ξ)dξ. (18)
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As anticipated, in general the integral in the right-hand side
cannot be resolved in closed form, except when the nonlinear
function F (·) is of the polynomial type [12].

When the function is not polynomial, but for example
an exponential diode equation, a very general, approximate
formulation to solve the issue has been presented in [13]. The
integral in (18) is discretized by means of a quadrature rule
∀m = 0, . . . , P :

im(t) ≈
Q∑

q=1

F

(
P∑

k=0

vk(t)φk(ξq)

)
φm(ξq)wq

=

Q∑
q=1

jq(t, v0(t), . . . , vP (t))amqwq,

(19)

where we introduced the notation aij = φi(ξj) and

jq(t, v0(t), . . . , vP (t)) = F

(
P∑

k=0

vk(t)akq

)
. (20)

In (19), Q is the number of quadrature points, whereas ξq
are predefined multivariate samples of the RVs ξ and wq are
the corresponding weights, both depending on the quadrature
rule. As such, aij are merely (precomputable) coefficients,
thus rendering (19) a deterministic equation. Such an equa-
tion involves linear combinations of all the voltage spectral
coefficients in the argument of the nonlinear function, as well
as linear combinations of the nonlinear currents. As shown in
the application examples, by using proper Gaussian quadrature
rules [14], a very good modeling accuracy can be achieved
with a low number of quadrature points.

F (v)
v
+

v
−

i

v

(a)

P∑

k=0

vkakqF (v)

jq

Q∑

q=1

jqamqwq

im

v+m v−mvm

(b) (c)

Fig. 4. Nonlinear conductance (a), illustration of the corresponding qth
companion cell (b) and equivalent circuit for the mth spectral current
coefficient (c).

When the nonlinear I-V-characteristic is known in analytical
form, like for example the Schottky diode equation i(t) =
F (v(t)) = Is(exp(v(t)/VT ) − 1), equations (19) could be
implemented using behavioral dependent sources available in
advanced circuit simulators. Nonetheless, we propose a more
efficient and elegant circuit implementation of (19), which
is also valid for user-defined and library elements with non-
analytical characteristics. This implementation is inspired by

the observation that, for every m, the summation over q always
involves the same nonlinear terms jq (20). Therefore, the idea
is to introduce an auxiliary, companion circuit cell responsible
for the sampling of these nonlinear currents, as illustrated
in Fig. 4b. A voltage-dependent voltage source is used to
linearly combine the spectral voltage coefficients appearing in
the argument of the nonlinear function. The nonlinear element
with the pertinent I-V-characteristic F (v(t)) guarantees that
the current jq flows in the companion circuit. In total, Q such
companion cells are defined and the Q nonlinear currents jq
are linearly combined in the main circuit by means of current-
dependent current sources, as shown in Fig. 4c.

It is important to note that, according to this implementation,
the overall circuit model involves the same type of nonlinearity
F (v) as the original circuit. This makes this implementation
very efficient, despite the additional number of auxiliary nodes
required by the companion cells. Moreover, as stated above,
the nonlinear element can now be any user-defined device or
library element (e.g., a diode) available in the solver, as there is
no more need to have an explicit analytical I-V-characteristic.

B. Three-Terminal Devices
Reasoning along the same lines, three-terminal devices, like

transistors, can also be dealt with. The structure of the com-
panion cell and the spectral equivalent model are illustrated
in Fig. 5 for a MOSFET. In this case, two voltage sources
are required in the companion cell to linearly combine the
input and output voltages, i.e. the gate-source and drain-source
voltages, respectively. The resulting nonlinear gate and drain
currents are then linearly combined in the spectral equivalent
circuit by means of two dependent current sources. The current
in the source terminal is determined by the Kirchhoff current
law (KCL).
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Q∑

q=1

jG,qamqwq

iG,m

iD,m

iS,m

vGS,m

vDS,m

Fig. 5. Illustration of the qth companion cell (top left) and the equivalent
circuit for the mth spectral current coefficients (bottom right) of a nonlinear
three-terminal device.
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Fig. 6. Illustrative example: rectifier circuit. Left panel: original stochastic network; right panel: spectral circuits for m = 0 and m = 1 and pertinent
companion cells for q = 1 and q = 2.

C. Stochastic Nonlinear Devices
If the nonlinear elements also exhibit variability, their

characteristic inherently depends on the random vector ξ, i.e.
F = F (v(t), ξ). As the integral in (18) is already sampled
at the quadrature points ξq , now the nonlinear currents (20)
become

jq(t, v0(t), . . . , vP (t)) = F |ξq

(
P∑

k=0

vk(t)akq

)
, (21)

where F |ξq
= F (v(t), ξq) denotes the sampled nonlinear

characteristic. Again, the nonlinear circuit component may be
simulated using the built-in device models. It suffices to define
companion cells for each ξq . This reasoning applies to both
two- and three-terminal devices.

V. SIMULATION PROCEDURE

Given the equivalent spectral circuit models introduced in
the previous sections, the strategy for the PC-based simulation
of a stochastic electrical network is as follows:

1) Assume node voltages and branch currents to be ex-
panded according to (1).

2) For each component in the original network, build the
P+1 spectral models as described in Sections III and IV.

3) Create a new augmented network, by associating a
node to each voltage spectral coefficient, and properly
connect these nodes in accordance with the original
circuit topology.

4) Simulate the obtained network to calculate the sought-
for spectral voltage and current coefficients of the
stochastic network, coinciding with the deterministic
voltages and currents of the augmented network.

The above procedure can be easily automated and the inclu-
sion of independent sources in the modeling is straightforward.
For a deterministic voltage source e(t), we get

v(t) = v+(t)− v−(t) = e(t). (22)

and application of the SGM produces

vm(t) = v+m(t)− v−m(t) =

{
e(t) m = 0
0 ∀m ̸= 0

. (23)

A similar reasoning equivalently applies to independent
current sources. Although not often done in practice, stochastic
sources can be modeled as well.

Since now P + 1 spectral coefficients are associated to
each node voltage, for a stochastic circuit with N nodes, the
corresponding augmented network has an overall number of
(P + 1)N nodes. Performing a single circuit simulation of
this deterministic augmented network is, however, often much
faster than running a large number of Monte Carlo simulations
of the original stochastic network, as will be shown in the next
section.

The outlined procedure is illustrated in Fig. 6, where a
rectifier circuit with three nodes, namely A, B and C, is
considered. For the sake of clarity, a PC expansion with only
P + 1 = 2 terms is assumed. Two spectral networks are
therefore present. Moreover, a number Q = 2 of companion
cells are considered for the spectral model of the diode. The
labels D|ξ1

and D|ξ2
attached to the diodes indicate that the

random parameters of the diode model D are sampled at the
two quadrature points ξ1 and ξ2. Of course, the null excitation
in Fig. 6, evolving from (23), could have been replaced by a
short circuit.

VI. VALIDATION AND NUMERICAL RESULTS

This section discusses three validation and application ex-
amples, illustrating the accuracy, efficiency and appositeness
of the proposed simulation methodology. All the simulations
are carried out with HSPICE on an ASUS U30S laptop with
an Intel(R) Core(TM) i3-2330M, CPU running at 2.20 GHz
and 4 GB of RAM.

A. Full-Bridge Diode Rectifier

The first example considers the full-bridge diode rectifier
shown in Fig. 7. The input signal vin is a sinusoidal volt-
age source with a peak amplitude of 5 V and a frequency
of 60 Hz. The load resistance and capacitance values are
R = 1 kΩ and C = 1 mF, respectively. For the diodes,
a standard SPICE model is used, having a series resistance
of 1 Ω, a junction capacitance of 2 pF and a saturation
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Fig. 7. Circuit schematic of the full-bridge diode rectifier.

current of 50 fA. The variability is provided by the operating
temperature of the device, which uniformly varies in the range
[0, 120] ◦C. The temperature fluctuation affects both the diodes
and the RC load. For the latter, temperature coefficients of
αR = 1500 ppm/◦C and αC = −750 ppm/◦C are assumed
for the resistor and the capacitor, respectively.
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average µ and µ± 3σ limits (PC)

Fig. 8. Output voltage vout of the rectifier in Fig. 7. Gray lines: subset of
100 samples from Monte Carlo simulation; blue lines: average value µ and
µ±3σ limits estimated with Monte Carlo analysis. The red asterisks indicate
the same statistical information obtained from the PC expansion.

Fig. 8 shows the result of the stochastic simulation. The
gray lines are a subset of 100 Monte Carlo samples providing
a qualitative idea of the fluctuation of the rectifier output
voltage vout due to temperature variations. The blue lines
indicate the average response (hereafter denoted as µ) as
well as the average ± three times the standard deviation
(denoted as σ). These curves are estimated from 10000 Monte
Carlo samples. Finally, the red markers denote the same
statistical information obtained via the PC-based simulation
of the deterministic spectral circuit, constructed considering
p = 2. For the modeling of the diodes, a Gauss-Legendre
quadrature with Q = 3 was considered. Excellent accuracy is
established.

To assess the convergence of the Monte Carlo analysis,
Fig. 9 shows the standard deviation of the rectifier output
computed both from the PC coefficients and with an increasing
number of Monte Carlo runs, i.e. 100, 1000 and 10000. The
relative accuracy between the PC curve and the Monte Carlo
estimation with 10000 samples is on the order of 0.1%.

As far as the CPU time is concerned, the circuit simulation
of the spectral network requires only 3 s, whereas the Monte
Carlo analysis takes about 42 min for 10000 runs. The speed-
up is thus 840× in this case.
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Fig. 9. Standard deviation of the rectifier output. Blue curves: results from
Monte Carlo simulations with increasing number of samples; red asterisks:
result from the PC-based approach.

B. CMOS NAND Gate

VDD

VA VB

VA

VB

Vout

CL

Fig. 10. Schematic of a two-input NAND gate in CMOS technology.

The second application example concerns a two-input
NAND gate in CMOS technology, whose schematic is de-
picted in Fig. 10. The load capacitance CL models the input
gate capacitance of the following stage and is considered as
a Gaussian random variable with a mean value of 10 pF
and a relative standard deviation of 10%. For the n- and p-
MOSFETs, a SPICE level-2 model is considered. Among the
many parameters, a gate length of 1.2 µm, an oxide thickness
of 20 nm, and gate-drain and gate-source capacitances of
0.43 nF are assumed. Finally, the power supply voltage is
VDD = 5 V.

Fig. 11 shows the response of the logic gate for time varying
inputs VA (solid black line) and VB (dashed gray line). The
gray area shows the fluctuation of the response due to the load
variability. The blue lines indicate the µ±3σ limits estimated
after 10000 Monte Carlo runs, whilst the red markers show the
same quantities obtained from the PC-based circuit simulation.
For the latter, we used again p = 2 and, for the transistors,
a Gauss-Hermite quadrature with Q = 3 was adopted. To
assess the accuracy, a comparison of the standard deviation
is provided in Fig. 12. Excellent agreement and a speed-up
factor of about 1270× — arising from a PC-based analysis
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Fig. 11. Simulation result of the NAND gate in Fig. 10. Solid black line
and dashed gray line: input gate voltages; gray area: subset of 100 samples of
the output voltage from Monte Carlo simulation; blue lines and red asterisks:
µ±3σ limits of the output estimated with Monte Carlo and PC, respectively.

taking 8.2 s against the 2 h and 54 min required by the Monte
Carlo simulation — are achieved.
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Fig. 12. Standard deviation of the NAND gate output voltage. Blue curve:
result from Monte Carlo simulation; red asterisks: result from the PC-based
analysis.

C. Low-Noise Amplifier

The third example deals with the low-noise amplifier de-
picted in Fig. 13, made up of three 0.25-µm-process n-
MOSFETs. The RF input is a 1-GHz sine wave with a peak
amplitude of 1 V and a DC bias of 0.595 V. The variability
is induced by the process tolerance on the inductors, whose
values are considered as two independent Gaussian RVs with
means L1 = 13 nH and L2 = 0.9 nH and a relative standard
deviation of 5%. The values of the remaining circuit elements
are RS = 50 Ω, R1 = 400 Ω, R2 = 255 Ω, R3 = 120 Ω, and
Vbias = 1.19 V. The power supply voltage is VDD = 2.3 V
and the three MOSFET devices are simulated using accurate
level-49 SPICE models. For the PC-based modeling of the
MOSFETs, a bivariate Gauss-Hermite quadrature with Q = 9
is adopted.

Fig. 14 provides the result of a stochastic simulation of the
current iL2 flowing through inductor L2. Again, the fluctuation
of the current due to variability of the inductors is illustrated
by means of Monte Carlo samples indicated in gray. The
µ ± 3σ bounds obtained with both Monte Carlo and PC
are also shown. A comparison of the standard deviation (see

VDD

M1

M2

M3

Vout

L1

L2

R1 R3

R2

RS

Vrf

Vbias

iL2

Fig. 13. Circuit schematic of the low-noise amplifier.

Fig. 15 and, in particular, the two close-ups) shows that, for
a comparable accuracy between Monte Carlo and PC, up to
10000 runs are necessary, leading to a simulation time of
about 40 min. The simulation of the PC-based spectral circuit
requires 4.6 s, thus yielding a speed-up of 520×.
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Fig. 14. Current iL2 . Gray area: subset of 100 samples from Monte Carlo
simulation; blue lines and red asterisks: µ±3σ limits of the output estimated
with Monte Carlo and PC, respectively.
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Fig. 15. Standard deviation of iL2 . Blue curves: results from Monte Carlo
analyses with increasing number of samples; red asterisks: result from the
PC-based simulation.

From the PC expansion it is also possible to extract proba-
bility distributions. For instance, the PDF of iL2 at t = 3.12 ns
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is given in Fig. 16. The gray bars are the histogram obtained
from the Monte Carlo samples, whilst the red line is the
PDF evaluated from the PC expansion. Very good accuracy
is established. The shape of this PDF differs substantially
from a Gaussian distribution, therefore average and standard
deviation are not sufficient to fully characterize the statistics
of the circuit waveforms.

13 13.5 14 14.5 15 15.5 16
0

0.5

1
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P
D
F

 

 
MC
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Fig. 16. Probability density function of iL2 (t) at t = 3.12 ns. Gray bars:
estimation of Monte Carlo analysis. Red line: result from the PC expansion.

VII. CONCLUSIONS

This paper outlines a systematic procedure for the efficient
statistical simulation of general nonlinear circuits in standard
SPICE-type design environments. More specifically, it shows
that a stochastic circuit containing linear and nonlinear com-
ponents, including nondeterministic two- and three-terminal
devices, is converted into a single deterministic augmented
circuit that is readily implemented in SPICE. The proposed
procedure is based on the expansion of circuit voltages and
currents in terms of PC series, from which the desired statis-
tical information is quickly derived. The PC-based technique
provides excellent accuracy and superior efficiency compared
to standard sampling-based methods like Monte Carlo.
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