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Abstract—Algorithmic improvements to the parallel,
distributed-memory Multilevel Fast Multipole Algorithm
(MLFMA) have resulted in implementations with favorable
weak scaling properties. This allows for the simulation
of increasingly larger electromagnetic problems, provided
that sufficient computational resources are available. This
is demonstrated by presenting the full-wave simulations of
extremely large perfectly electrically conducting (PEC) sphere
and Thunderbird geometries. Both problems are formulated
using the combined field integral equation (CFIE) and discretized
in over respectively 3 and 2.5 billion unknowns. They are solved
using 4 096 CPU cores and 25 TByte of memory. To the best
of our knowledge, this is the largest number of unknowns and
the highest amount of parallel processes reported to date, for
this type of simulation. Additionally, it is demonstrated that the
implementation attains a high parallel speedup and efficiency.

Index Terms—MLFMA, Method of Moments (MoM), parallel
computing, distributed-memory

I. INTRODUCTION

The Multilevel Fast Multipole Algorithm (MLFMA) is

one the most popular methods to accelerate the matrix-

vector multiplication during the iterative Method of Moments

(MoM) solution of electromagnetic scattering problems for-

mulated by means of boundary integral equations (BIE). The

MLFMA reduces the computational complexity from O(N2)
to O(N logN), with N the number of unknowns. For an in-

troduction to the MLFMA, we refer the reader to [1]. State-of-

the-art MLFMA implementations can handle several millions

of unknowns on a single workstation. However, electrically

large scattering problems (i.e. geometry size ≫ wavelength λ)

might require a discretization into hundreds of millions, if not

billions, of unknowns. Therefore, significant efforts have been

devoted to the development of distributed-memory parallel

MLFMA implementations that can make efficient use of large

computational clusters [2]–[17].

Baseline approaches to the parallel, distributed-memory

MLFMA rely on spatial partitioning, i.e., the distribution

of boxes in the MLFMA tree among the computational

nodes [2]–[5]. Such implementations fail to properly distribute

the workload at higher levels of the MLFMA tree and do

not scale well beyond a few tens of nodes. In [6], [7], this

bottleneck was partly addressed by a hybrid approach: spatial

partitioning is used for the lower levels of the MLFMA

tree whereas k-space partitioning is used at the top levels.

Rather than distributing boxes, k-space partitioning relies on

the distribution of the radiation pattern sampling points among

nodes. Further improvements were proposed in [8], [9], by
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means of a hierarchical partitioning scheme that allows for a

gradual transition between spatial and k-space partitioning.

In [14], the three existing schemes (spatial, hybrid and

hierarchical) were found to exhibit unfavorable weak scaling

behavior. In a weak scaling analysis, both the problem size

N and the number of parallel processes P are increased

proportionally, keeping the problem size per process N/P
constant. In [14], it was found that at least one of the processes

has a per-level computational complexity of O(N) when using

spatial partitioning and O(
√
N) when using the hybrid or

hierarchical scheme. This means that these schemes fail to

distribute the workload evenly among nodes for a sufficiently

high N and P . This load imbalance becomes even more

stringent when N and P are increased further, putting a limit

on the problem size N that can be handled in practice.

In [14], [15], we proposed a modification to the hierarchical

scheme (called B-HiP – Blockwise Hierarchical Partitioning)

with a computational complexity of O(logN) per process.

Whereas the ‘original’ hierarchical partitioning scheme [8],

[9] relies on a distribution of radiation pattern samples in one

angular direction (e.g. elevation), the proposed algorithm relies

on a two-dimensional partitioning of the radiation pattern sam-

ples in both elevation and azimuth. As elaborated on in [14],

this two-dimensional partitioning overcomes a bottleneck in

the partitioning of radiation patterns that becomes apparent

only for very large problem sizes and a very high number of

CPU cores. As the current trend is to incorporate more and

more parallelism to advance compute power, such computa-

tional architectures will become increasingly widespread.

In this Communication, we demonstrate that an imple-

mentation of the B-HiP algorithm is indeed able to scale

beyond thousands of CPU cores by solving two problems with

respectively 3 and 2.5 billion of unknowns, using 4096 CPU

cores. To the best of our knowledge, this is the highest number

of parallel processes and the largest number of unknowns

reported for the high-frequency MLFMA. Additionally, we

demonstrate that the implementation attains a very high par-

allel speedup and efficiency

II. RESULTS

The simulations are performed on a Tier 1 cluster consisting

of 512 nodes, each node containing two 8-core Intel Xeon E5-

2670 processors and 64 GByte of RAM. This amounts to a

total of 8 192 CPU cores and 32 TByte of RAM. The nodes

are interconnected by an FDR Infiniband network (fat tree

topology with a 1:2 oversubscription).

The parallel MLFMA solver is implemented in C/C++.

The inter-process communication is handled by the Message

Passing Interface (MPI). All numerical computations were

performed in single-precision. In our implementation, the

number of radiation pattern partitions is a power of four (i.e.,

1, 4, 16, 64, . . .). Hence, the number of processes P is also

required to be a power of four. This means that only 4 096
CPU cores on this cluster can be used.

A. Parallel Speedup and Efficiency

We consider the scattering of a plane wave by a 40.03λ
perfectly electrically conducting (PEC) sphere. The problem is

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55710162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


IEEE ***, VOL. ?, NO. ?, ? ? 2

TABLE I
RUNTIME tP , SPEEDUP SP AND EFFICIENCY ηP FOR A SINGLE TFQMR

ITERATION AS A FUNCTION OF AN INCREASING NUMBER OF PROCESSES P
AND A FIXED-SIZE PROBLEM (N = 6027 555).

P 1 4 16 64 256 1024 4 096
tP (s) 3 579 1 148 303.5 76.58 18.80 5.131 1.589
SP 1.00 3.12 11.79 46.73 190.4 696.0 2 252

ηP (%) 100 77.93 73.70 73.01 74.36 67.97 54.98

TABLE II
SIMULATION DETAILS

Sphere Thunderbird

Object size 1 801.25 λ 2 695.43 λ
Total number of unknowns N 3 053 598 633 2 506 261 716

RWG discretization λ/10 λ/10
Integral Equation (IE) CFIE, α = 0.5 CFIE, α = 0.5

Total number of CPU cores P 4 096 4 096
Total memory usage 24.9 TByte 24.2 TByte

Number of MLFMA-levels 15 15
Minimal box size 0.2λ 0.2λ

Number of multipoles L 8, 10, . . . , 35 780 10, 11, . . . , 35 781
Krylov method TFQMR TFQMR

Block-Jacobi preconditioner 0.2λ× 0.2λ 0.2λ× 0.2λ
MLFMA precision 10−2 10−2

Number of iterations 150 150
Relative residual norm 0.0238 0.0387

Matrix-vector product time 4m 53s 4m 8s

discretized into 6 027 555 unknowns and is sufficiently small to

be handled by a single computing node. This problem is solved

repeatedly for an increasing number of parallel processes (P =
1, 4, 16, . . . , 4 096) and the time for a TFQMR iteration tP is

measured accordingly (averaged over a number of iterations).

The speedup SP and the parallel efficiency ηP with respect to

the computations on a single core are defined as

SP =
t1
tP

(1)

and

ηP =
SP

P
(2)

respectively.

In the ideal case, the speedup is equal to the number of

processes used (i.e., SP = P ) and the efficiency ηP = 1
(100%). However, from Amdahl’s law [18] it follows that

ηP → 0 when P → +∞ for any parallel algorithm, as the

unavoidable sequential part prevents tP to decrease below a

certain threshold.

Table I lists the time tP per TFQMR iteration, the speedup

SP and the parallel efficiency ηP as a function of P . Note that

a single TFQMR iteration involves two matrix-vector products

in order to compute a new solution vector and a third matrix-

vector product to compute the relative residual norm. For P =
1 and P = 4, a single node was used with the remaining

cores left idle. For all other cases, nodes were filled to full

capacity, i.e., 16 processes per node. Using 4096CPU cores, a

speedup of 2 252 is obtained compared to the sequential case

(P = 1), reducing tP from one hour to only one and a half

seconds. This corresponds to an efficiency of η = 55%. Using

P = 4 096 processes, the average number of unknowns per

process (i.e., N/P ) is only about 1 500. Such low N/P ratios

make it more difficult to achieve an evenly balanced load,
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Fig. 1. The normalized radiation pattern for a PEC sphere with a diameter
d = 1801.25λ. Inset: convergence behavior over 150 iterations.
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Fig. 2. A detailed view of the normalized radiation pattern for a PEC sphere
with a diameter d = 1801.25λ around the forward scattering direction.

explaining the loss of efficiency. Nevertheless, the observed

parallel efficiencies are among the highest reported in literature

and for larger problems, such as the ones presented below,

even higher efficiencies can be expected.

B. Extremely large-scale simulation of a sphere

We consider the scattering of a plane wave by an extremely

large sphere, with a diameter of 1801.25λ, discretized into

more than three billion unknowns and formulated using the

Combined Field Integral Equation (CFIE) [20] with a com-

bination factor α = 0.5. For each of the 512 nodes in the

cluster, 8 CPU cores were used (4 096 in total) in order to be

able to employ the full memory capacity of the 512 nodes.

The MLFMA tree consists of 15 levels. At the four lowest

levels of the tree, spatial partitioning is used. From the 5th

to the 10th level, the radiation pattern sampling points are

distributed among an increasing number of 4, 16, . . . , 4 096
partitions until full k-space partitioning is obtained at the

10th and higher levels. This corresponds to the hierarchical
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Fig. 3. Histogram of the memory usage per process (left) and the total com-
munication volume (send + receive) per process (right) for the ‘Thunderbird’
geometry.

partitioning scheme, however, crucial to the B-HiP scheme

is that the radiation patterns are distributed in both elevation

and azimuth. A block-Jacobi preconditioner was used, with

diagonal blocks corresponding to the self-interactions of the

lowest level boxes of the MLFMA tree. After 150 iterations,

a relative residual error of 0.0238 was obtained, using the

TFQMR iterative method. The total solution time was com-

posed of 6 hours and 40 minutes of setup time, 38 hours and

28 minutes of solving and 2 minutes to compute the output

radiation pattern. The latter was computed recursively, similar

to the aggregation phase in the MLFMA. In total, 25 TByte

RAM was used. Additional simulation details are presented

in Table II. Parameters were chosen such that memory use is

minimized, rather than runtime.

Fig. 1 displays the absolute value of 4

d
fθ(θ, φ = 0), the

θ-component of the normalized radiation pattern in the φ = 0
plane for the full θ = 0◦ . . . 360◦ range, with d the diameter

of the sphere. Fig. 2 shows the forward scattering direction for

θ = 0◦ . . . 0.5◦. The result of the simulation corresponds very

well to the analytical Mie solution [19], with a root mean

square (RMS) error of 0.568 dB. Here, the RMS error is

defined as
√

√

√

√

1

N

N
∑

i=1
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∣

∣
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∣

∣

2

(3)

with 4

d
fθ(θ, φ = 0) the normalized radiation pattern evaluated

in N = 71 564 equidistant directions θi ∈ [0◦ . . . 360◦] and

expressed in dB.

The workload for the simulation was partitioned such

that each process was attributed (almost) the same num-

ber of unknowns, namely 745 507 ±10 unknowns. Fig. 3

(left) displays a histogram representing the distribution of the

memory usage per process among all 4 096 processes. This

includes all required memory for geometry, near interactions

and (dis)aggregation matrices, radiation patterns, translation

operators and communication buffers. The memory usage per

process ranges from a minimum of 5.43 GByte to a maximum

6.95 GByte. On average, a process required 6.22 GByte of

memory, which corresponds to a total of 24.9 TByte for

the entire simulation. Similarly, Fig. 3 (right) displays the

distribution of the total communication volume per process

(both sending and receiving). On average, a process has to send

or receive 1.45 GByte of data. In the B-HiP algorithm, both
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Fig. 4. The normalized radiation pattern for a PEC ‘Thunderbird’ discretized
in over 2.5 billion unknowns. Inset: convergence behavior over 150 iterations.
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Fig. 5. Histogram of the memory usage per process (left) and the total
communication volume (send + receive) per process (right) for the sphere
geometry.

memory usage and communication volume are guaranteed to

increase only logarithmically when further increasing N and

P . The size of the problems that can be handled with the

current implementation is limited by the available memory on

the cluster.

C. Extremely large-scale simulation of a Thunderbird

In order demonstrate the ability of the method to handle

arbitrary geometries we consider a second example in the form

of a ‘Thunderbird’ geometry. This model was created using

GID and the initial mesh contained 11 214 faces. By applying

recursive subdivision of the triangles, a mesh with over 2.5

billion unknowns was obtained.

The problem was again solved using 4096 parallel processes

and identical parameters as for the sphere, with the exception

of a slightly higher multipole truncation number L (see Table

II). The latter was required to ensure the accurate evaluation

of FMM interactions even when RWGs protrude partly from

the box in which they are contained. After 150 iterations, a

relative residual error of 0.0387 was obtained. Fig. 4 depicts

the radiation pattern and convergence behavior. Finally, Fig. 5

shows the histogram of the memory requirements and com-

munication volumes per process. Note that for this geometry,
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the memory distribution is somewhat wider compared to that

of the sphere. This is due to a higher variation in the memory

requirements to store the near interactions, which is in turn a

consequence of the mesh that is less uniform than that of the

sphere.

III. DISCUSSION

Both for the sphere and Thunderbird geometry, we observe

a breakdown in convergence behavior at approximately 100

iterations after which the TFQMR method can apparently

no longer decrease the relative residual norm (see inset in

Fig. 1 and 4). This may be caused by a large condition

number of the system matrix, even though the CFIE was

used. Alternatively, a possible cause is the numerical roundoff

error arising from the summation of billions of floating point

numbers (as happens in the TFQMR algorithm). Unless special

summation techniques such as Kahan summation are used,

the relative errors caused by this are of the order of
√
Nǫ

(with ǫ the machine precision) which happens to be around

0.006 in this case. Therefore, singular values of the system

matrix below this value could be considered contaminated

with roundoff error. In principle, this tentative cause for the

convergence problem could be tested by adopting double

precision calculations, at the cost of requiring twice as much

memory. This is the subject for future research.

We can compare our results with [16], in which an MLFMA

simulation with more than one billion unknowns is presented.

In that work, a combined shared/distributed-memory approach

was adopted. The workload was distributed according to the

hybrid partitioning scheme and communication between nodes

was handled using MPI. Further parallelization within each

node was achieved using OpenMP. Because of this, fewer

parallel processes (distributed-memory) are needed, leading to

better ratios of iteration time and memory usage per unknown

that were obtained in [16]. On the other hand, in contrast to the

hybrid scheme, B-HiP is a weakly scalable algorithm, which

is the crucial success factor for the simulation presented in

this Communication.

IV. CONCLUSION

This Communication presents an implementation of the

distributed-memory parallel MLFMA for electromagnetic scat-

tering problems. By means of an improved hierarchical par-

titioning scheme, in which the radiation pattern sampling

points are decomposed in both angular directions, a weakly

scalable parallel algorithm is obtained. The weak scalability

property is required to perform extremely large simulations.

This Communication shows the solution, using 4 096 processes

of two problems that consist of over respectively 3 and 2.5

billion of unknowns, the largest problems solved to date using

high-frequency MLFMA. Additionally, it is demonstrated that

the implementation achieves high parallel efficiencies.
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