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Information visualization aimed at facilitating human perception is an important tool for the interpretation of 

experiments on the basis of complex multidimensional data characterizing the operational space of fusion 

devices. This work describes a method for visualizing the operational space on a two-dimensional map and 

applies it to the discrimination of type I and type III edge-localized modes (ELMs) from a series of ELMy 

discharges at JET. The approach accounts for stochastic uncertainties that play an important role in fusion 

data sets, by modeling measurements with probability distributions in a metric space. The method is aimed at 

contributing to physical understanding of ELMs as well as their control. Furthermore, it is a general method 

that can be applied to the modeling of various other plasma phenomena as well. 

 

I. INTRODUCTION 

1Visualization of the operational space of fusion devices is an 

important aid for exploratory and confirmatory analysis of the 

behavior of specific operational regimes and plasma instabilities. 

It entails the representation of multidimensional and often 

complex nonlinear experimental data models, describing the 

plasma state, in a two-dimensional diagram. This can provide 

physicists and machine operators with a convenient means and a 

useful tool for studying data patterns (relationships, clusters) 

reflecting key regimes and their underlying physics. 

High-confinement tokamak plasmas are characterized by 

repetitive bursts called edge-localized modes (ELMs), which lead 

to partial collapse of the pedestal pressure and consequent exhaust 

of energy and particles towards the wall and divertor targets. 

Characteristics of ELMs, their control and physical understanding 

are important for ITER and next-step fusion devices. As a result, 

investigation into the precise effect of plasma parameters on the 

ELM behavior and type is crucial. 

In this work, we present an information visualization tool for 

projecting high-dimensional plasma data into a two-dimensional 

(2D) map and apply it for detecting cluster structure 

corresponding to type I and type III ELMs in an assembled dataset 

of JET plasma discharges. Further, this work attempts to 

incorporate the substantial stochastic uncertainty affecting the 

ELM properties, by representing the measurements of each 

discharge by a probability distribution. Through a probabilistic 

description of plasma signals, our method tries to utilize the 

information content residing in the error bars associated with each 
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measurement alongside being potentially capable of taking into 

account higher-order statistical moments. 

II. Visualization of data probability distributions 

An important goal in information visualization is often to assess 

the proximity, or alternatively the dissimilarity, of data points.   

Multi-dimensional scaling (MDS)1-2, illustrated in FIG.1,  is an 

established technique which yields a projection in the 2D 

Euclidean plane of high-dimensional data, while ensuring minimal 

information loss during dimensionality reduction.  

Let   {      } be a set of   high dimensional data points 

where the distance (or dissimilarity) between the  th and  th data 

point is    . Given a pair-wise distance matrix, for high 

dimensional data points in  , MDS  finds two (or possibly 3) 

dimensions for mapping the high dimensional data points such 

that    
        for all data points, where,    

  is the distance 

between  th and  th data point in two dimensions. Hence, the 2D 

maps resulting from MDS ensure minimal distortion of all 

pairwise distances between data points. 

Data points in our context are probability distributions, with each 

  

  

   
         

FIG. 1. Illustration of MDS.  High dimensional data points are 

projected in 2 dimensions, such that    
        where     and     

  

are distances between data points   and   in high dimensions and 

in 2D respectively. 
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plasma measurement being represented by a unique probability 

density function (PDF). Since distance is essentially a geometric 

concept, a description of the geometry of probability distributions 

is required. To this end, we employ the mathematical framework 

of information geometry, which treats a family of PDFs, e.g. the 

Gaussian family, as a space wherein each point represents a single 

PDF. The Fisher information provides a metric in this space, 

defining the concept of a distance between PDFs which is known 

as the Rao geodesic distance (GD). The GD is a natural and 

theoretically motivated measure between the PDFs3-4. A closed-

form expression for the GD, also, exists in the case of a univariate 

Gaussian model,       , parameterized by its mean   and 

standard deviation  . This allows fast computation of the distance. 

Further, in the case of multiple independent Gaussian variables, 

the squared GD between two sets of products of distributions is 

given by the sum of the squared GDs between corresponding 

individual distributions2-3.  

In this paper we present MDS utilizing GDs between PDFs as an 

information visualization tool for yielding 2D maps for high-

dimensional plasma data.  

III. PLASMA PARAMETERS FOR EDGE-
LOCALIZED MODES 

Discrimination of various observed classes of ELMs is a 

significant challenge. The presented visualization methodology is 

employed here for discrimination of type I and type III ELMs 

from a series of carbon-wall JET plasmas between the years 2000 

and 2009 with MarkGB and MarkGBRS as divertors. To this 

purpose, from the range of discharge numbers [50564, 76871], a 

database of 68 JET plasmas pertaining to type I ELMs, 26 JET 

plasmas of type III ELMs and 5 JET plasmas [66105-66109] of 

so-called type I high-frequency ELMs have been analyzed. This is 

an extension of the data set used earlier by Webster et al.5 for 

statistical characterization of ELM types. We call this dataset 

JET_CW ELMy database (DB1), henceforth referred as 

JET_CW_ELM (DB1). The analysis, in this work, has been 

restricted to time intervals in which the plasma conditions were 

quasi-stationary. Further, all experiments dealing with ELM 

control and mitigation techniques have been excluded so as to 

obtain the current version (v1) of the ‘standard subset’ of 

JET_CW_ELM (DB1).  

A robust ELM algorithm was employed for the extraction of inter-

ELM time intervals for each plasma discharge from the measured 

Balmer-alpha radiation signal from deuterium (Dα) at JET’s inner 

divertor. Gaussian probability density functions (PDFs) have then 

been used for capturing the statistics of inter-ELM waiting times, 
as shown in FIG 2.  

 

 

 

In addition, density-normalized input power (<Pn>) [keV/s], 

normalized electron temperature (<Tn>) [keV] and line-integrated 

edge electron density (ne) [1019m-2], have also been included in the 

dataset. A probability distribution was used to model the data 

corresponding to each plasma parameter. For simplicity it was 

assumed that the error bars associated with each plasma parameter 

pertain to a statistical uncertainty in the data, specifically that they 

represent a single standard deviation. Theoretically, the underlying 

probability distribution is Gaussian with mean the measurement itself 

and standard deviation the error bar. <Pn> and <Tn> are given as 

follows: 
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It should be stressed that each plasma parameter is a two-dimensional 

quantity with the mean and standard deviation of the respective 

probability distribution constituting the two dimensions.  

IV. VISUAL MAPS 

2D visual mapping for the operational space pertinent to type I and 

type III ELMs are presented in FIG.3 to FIG.6. In FIG. 3 to FIG.5, 

MDS is coupled with GD between the probability distributions for 

projecting the information. In FIG.3, inter-ELM waiting times, 

modelled with Gaussian PDFs, are projected and the ELM type for 

each pulse is indicated. The projection appears to be consistent, as the 

type I HF ELMs that have frequencies similar to type III ELMS are 

mapped in the proximity of type III ELMS. In addition, the type III 

ELM pulse 50567, which has a frequency (fELM ≈ 40 Hz) more typical 

of type I ELMs, is projected close to the cluster of type I ELMs. 

FIG.4 explicitly tracks the change in ELM frequency and the 

consequent change in ELM type as one navigates through the map. 

FIG.4 is an indicator of the potential of these visual maps as they 

allow for tracking of changing values of a certain plasma parameter in 

the operational space. FIG.5a incorporates two additional parameters 

in the visual map, i.e. <Pn> and <Tn>. The striking observation is that 

as more information is incorporated in the visualization, type I HF 

ELMs and type III pulse 50567 now lie with the clusters of type I and 

type III, respectively. Hence, incorporating additional global plasma 

parameters improves the accuracy of the map. FIG. 5b incorporates ne 

as another additional parameter, and more correct placement of type I 

HF ELMS and pulse 50567 can also be observed here. In addition, the 

line of best separation between type I and type III ELMs is shown in 

FIG. 5a and FIG. 5b. This can aid in the classification of ELMs when 

the ELM type is unknown. Projection on this map of a new pulse for 

which the ELM type is unknown, can provide an indication of the 

ELM type. 

FIG. 3. Each pulse (plasma discharge) is represented as a 

series of waiting times, followed by modelling by a 

suitable probability distribution function (PDF), where 

there are M pulses and each pulse has N waiting times. 

FIG. 2. Projection of inter-ELM time intervals using MDS with 

GD. ELM types are indicated. 



 

 

 

In FIG.5a and FIG.5b cluster structure amongst the plasma 

discharges is identified. Further the trends in the changing values of 

plasma parameters along the clusters are also indicated. In both 

FIG. 5a and FIG. 5b <Pn> and <Tn> increase from the bottom of 

the map to the top, as a transition is made from the clusters of Type 

III ELMs to Type I ELMs.   Background color gradation indicates 

the changing ELM frequency within the map.  

Ordinary least squares linear regression using the two dimensions 

yielded by MDS (with GD) as predictors for plasma parameters 

which are successively regarded as the dependent variables yields 

appreciably good results. This provides an intuitive insight into the 

merit of the mappings as despite the lack of a direct relationship 

between the dimension coordinates and each of the plasma 

parameters, the mappings prove to be reasonably reliable predictors 

of the plasma parameters as indicated by root mean square error 

(RMSE and R-squared values for the models. The results are given 

in table 1.  

 

                        
    

   

For example :  

                              
        

  

Where,    and    are co-ordinates of the two dimensions yielded 

by MDS-GD 

 

Dependent variable 

(      
R-squared RMSE 

<Tn> 0.77 0.14 

<Pn> 0.76 0.14 

ne 0.61 0.20 

fELM 0.51 0.66 

 

Table 1: Regression for plasma parameters using the dimension 

coordinates yielded by MDS with GD as predictors 

V. CONCLUSIONS AND OUTLOOK 

An information visualization tool, that effectively incorporates 

measurement uncertainties, has been presented and its potential 

has been illustrated with an application to visualization of the 

operational space of different ELM types. The presented method 

is generic, potentially capable of visualizing multi-machine data in 

a single map and allows simultaneous viewing of numerous (more 

than three) plasma parameters on the same map. Further, it can be 

adapted with relative ease if the plasma parameters are best 

described by non-Gaussian PDF’s such as Weibull or log-normal. 

It can also be used for investigating the influence of plasma 

parameters on ELM characteristics. For example, the change of 

ELM types (type III to type I to type III) with input power within 

a single pulse can be mapped and monitored effectively. 

Furthermore, the developed tool can also potentially contribute to 

ELM control and mitigation, through visualization of e.g. ELM 

frequency and size distributions, and by quantifying the influence 

on these distributions of various control parameters.  
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FIG. 4. Projection of inter-ELM time intervals using MDS 

with GD. The change in ELM frequency is tracked. 

FIG. 5: Projections obtained using MDS with GD. (a) is a map 

of ELM waiting times, <Pn> and <Tn>. (b) is a map of ELM 

waiting times, <Pn>, <Tn> and ne. Clusters are identified and 

the mean value for each parameter for the respective cluster is 

given. The range of the parameter values for pulses in each 

cluster is specified within brackets. The line of best separation 

between the type I and type III ELMs is also depicted. Trends 

in change in plasma parameters across the map are also 

highlighted. 
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