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Abstract

We present the FRB package for R, which implements the fast and robust bootstrap.
This method constitutes an alternative to ordinary bootstrap or asymptotic inference pro-
cedures when using robust estimators such as S-, MM- or GS-estimators. The package
considers three multivariate settings: principal components analysis, Hotelling tests and
multivariate regression. It provides both the robust point estimates and uncertainty mea-
sures based on the fast and robust bootstrap. In this paper we give some background on
the method, discuss the implementation and provide various examples.
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1. Introduction

In this paper we introduce the FRB package for R (R Core Team 2012) which implements ro-
bust multivariate data analysis with inference based on the fast and robust bootstrap (FRB)
method of Salibian-Barrera and Zamar (2002). The package is available from the Compre-
hensive R Archive Network (CRAN) at http://CRAN.R-project.org/package=FRB. Three
multivariate settings are considered: 1. principal components analysis; 2. hypothesis testing
for multivariate means; and 3. multivariate linear regression. The settings have in common
that the classical analysis methods are easily robustified by the use of multivariate robust
estimates of the type of S-, MM- or GS-estimates. These specific estimates allow the FRB to
be applied in order to extend the robust point estimates with accompanying standard errors,
confidence intervals or p values. We first give a short overview of the three concerned settings.
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1.1. Principal components analysis (PCA)

Suppose we have a sample Xn = {x1, . . . ,xn} ⊂ IRp from an unknown p-variate distribution
G with center µ and scatter matrix Σ. Principal components analysis aims to explain the
covariance structure of G. It can be used to reduce the dimension of the data without too
much loss of information, by projecting the observations onto a small number of principal
components which are linear combinations of the original p variables. On the population
level the principal components are given by the eigenvectors of Σ. In classical PCA, the
components are estimated by the eigenvectors of the sample covariance or shape matrix. The
corresponding eigenvalues measure the amount of variance explained by the components.

1.2. Hotelling T 2 tests

Consider again a sample Xn = {x1, . . . ,xn} ⊂ IRp from a p-variate distribution G with center
µ and scatter matrix Σ. The one-sample Hotelling test is the standard tool for inference about
the center µ. With Xn and Sn denoting the sample mean and sample covariance matrix, the
hypothesis H0 : µ = µ0 is tested via the Hotelling T 2 statistic:

T 2 = n(Xn − µ0)>S−1
n (Xn − µ0).

Now, consider two samples X (1)
n1 and X (2)

n2 from p-variate distributions G1 and G2 with re-

spective centers µ1 and µ2 and common scatter matrix Σ. Let X
(j)
nj

denote the sample mean

of the j-th sample and let Spn be the pooled sample covariance matrix. Then, the two-sample
Hotelling statistic

T 2 =
n1n2

n1 + n2
(X

(1)
n1
−X(2)

n2
)>Spn

−1(X
(1)
n1
−X(2)

n2
),

can test the hypothesis H0 : µ1 = µ2. In both the one- and two-sample case, and under the
assumption of underlying normality, the null distribution of the T 2 statistic is a multiple of
an F -distribution.

1.3. Multivariate linear regression

Consider a sample of the form Zn = {(y>1 ,x>1 )>, . . . , (y>n ,x
>
n )>} ⊂ IRq+p. The multivariate

linear regression model is given by

yi = B>xi + εi, i = 1, . . . , n , (1)

where B is the p × q matrix of regression coefficients. It is assumed that the q-variate error
vectors εi are independent and identically distributed with zero center and scatter matrix Σε.
The interest usually lies in the coefficient matrix B which classically is estimated through
least squares.

It is well known that sample means, sample covariances and least squares estimates in linear
regression are very sensitive to outliers in the data. Hence, statistical inference based on
such estimates can be severely distorted, even by a few atypical observations. In the last
few decades a considerable number of alternative multivariate estimators have been proposed,
which were designed to be robust against outliers (see e.g., Maronna and Yohai 1998; Maronna,
Martin, and Yohai 2006; Hubert, Rousseeuw, and Van Aelst 2008). A primary measure of
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robustness is the breakdown point of the estimator. It is roughly defined as the minimum
fraction of observations in the data that would need to be replaced by arbitrary values in
order to arbitrarily change the original estimate. Intuitively, it reveals the maximum fraction
of outliers that the estimator can withstand. The classical estimators mentioned above have a
breakdown point of 0% (asymptotically), whereas so-called high-breakdown robust estimators
can go up to 50%.

Among the range of available robust estimators, we here focus on the class of S-estimators
(Rousseeuw and Yohai 1984; Davies 1987) and the related classes of MM-estimators (Tatsuoka
and Tyler 2000) and GS-estimators (Croux, Rousseeuw, and Hössjer 1994; Roelant, Van Aelst,
and Croux 2009). These classes of estimators succeed in combining a high degree of robustness
with relatively good efficiency properties. The second main reason to opt for these estimators
is that they fall into a framework that allows the application of the FRB method.

Indeed, when aiming beyond point estimation, that is, when one is also interested in standard
errors, confidence intervals and hypothesis tests, the use of robust estimators poses difficul-
ties. While the least-squares normal-theory is well established, the available theory for robust
estimators is limited to asymptotic results, often requiring quite stringent assumptions. Re-
sampling methods such as bootstrap provide an interesting alternative, but are hampered by
two specific problems. The first of these (and often the most serious) is the computational
complexity of robust estimators. All affine equivariant high-breakdown estimators require
time-consuming algorithms to find a sufficiently accurate approximation (exact computation
is usually even not feasible). Hence, resampling is often not practical, especially for large
data sets. The second problem is the instability of the bootstrap in case of outliers: due to
possible outlier propagation in the resamples, there is no guarantee that inference based on
the bootstrap is as robust as the estimate in the original sample itself.

The FRB method was first introduced in the context of univariate regression MM-estimators
by Salibian-Barrera and Zamar (2002), and later generalized to multivariate settings by
Van Aelst and Willems (2005) and Salibian-Barrera, Van Aelst, and Willems (2006). It
is based on the fact that S-, MM- or GS-estimators can be represented by smooth fixed
point equations which allows us to calculate only a fast approximation of the estimates in
each bootstrap sample. Hence, the computation is much easier than for ordinary bootstrap.
Furthermore, stability is ensured since observations that were downweighted in the original
sample will automatically be downweighted in the bootstrap samples as well.

The primary aim of the FRB package is to provide a software implementation of the FRB
method. The package then enables robust multivariate data analysis that includes uncertainty
measures such as standard errors, confidence limits and p values. Note however that in
the FRB method the bootstrap component is tightly linked to the chosen point estimator.
Therefore the functions in the FRB package perform both the computation of the point
estimates and the subsequent actual FRB procedure. The FRB package thus offers the FRB
method instead of the ordinary bootstrap method, but it can only be applied to the point
estimates that are made available in the package. In this sense its concept differs from e.g.,
the well-known boot package (Canty and Ripley 2013), which provides only the bootstrap
component and can be applied to any estimator of choice (implemented in R).

S and MM-estimators for multivariate location and scatter are already implemented in the R
package rrcov (Todorov and Filzmoser 2009). We take advantage of this fast implementation,
based on C code, to obtain these point estimates in the FRB package. The rrcov package also
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offers PCA based on robust covariance estimates, but does not go beyond point estimation.
Univariate regression MM-estimators are available in the R package robustbase (Rousseeuw
et al. 2012) and have accompanying standard errors and p values based on its asymptotic
distribution. The multivariate analogue of MM-regression is not publicly available in R and,
to the best of our knowledge, neither are any other robust multivariate regression methods.
We may therefore summarize the contributions of the package FRB as follows:

– the package makes available the FRB method for robust inference.

– the package is the first to make available robust multivariate regression methods (specif-
ically S-, MM- and GS-estimates).

While the point estimates for multivariate regression are part of the package, its name FRB
reflects the essential component of the robust inference provided by the package.

The rest of the paper is organized as follows. Section 2 discusses multivariate S-, MM- and
GS-estimators and describes how they can be used to obtain robust data analysis procedures.
Section 3 explains the FRB method. Section 4 then covers the implementation of the estimates
and the FRB method and gives an overview of the package FRB. Section 5 illustrates the use
of the package through various examples, while Section 6 contains some concluding remarks.

2. Robust analysis based on S-, MM- or GS-estimators

2.1. Definitions

In this paper, ρ0 and ρ1 : [0,∞[→ [0,∞[ are so-called ρ-functions, which satisfy:

(R1) ρ is symmetric, twice continuously differentiable and ρ(0) = 0.

(R2) ρ is strictly increasing on [0, c] and constant on [c,∞) for some finite constant c.

Rousseeuw and Yohai (1984) introduced S-estimators in univariate regression. One-sample
multivariate S-estimators for location and scatter were later investigated by Davies (1987)
and Lopuhaä (1989). Two-sample S-estimators, for robustly estimating two location vectors
and a common covariance matrix, were considered by He and Fung (2000). A generalization
to multivariate regression was considered in Van Aelst and Willems (2005). Note that the
multivariate regression model encompasses the one- and two-sample location-covariance mod-
els (as well as the univariate regression model) as special cases. Nevertheless, we use separate
definitions here for ease of understanding and because the applications are different for these
special settings. The S-estimators can be defined as follows.

One-sample S-estimators. Consider a sample {x1, . . . ,xn} ⊂ IRp. Then, for a chosen
function ρ0, S-estimates of location and scatter (µ̂n, Σ̂n) minimize |C| subject to

1

n

n∑
i=1

ρ0

(
[(xi −T)>C−1(xi −T)]

1
2

)
= b0, (2)

among all T ∈ IRp and C ∈ PDS(p).
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Two-sample S-estimators. Consider two p-variate samples {x11, . . . ,x1n1} and
{x21, . . . ,x2n2}. S-estimates for the location vectors and common scatter matrix (µ̂1,n,

µ̂2,n, Σ̂n) minimize |C| subject to

1

n

2∑
j=1

nj∑
i=1

ρ0

(
[(xji −Tj)

>C−1(xji −Tj)]
1
2

)
= b0, (3)

among all T1,T2 ∈ Rp and C ∈ PDS(p).

Multivariate regression S-estimators. Consider a sample {(y>1 ,x>1 )>, . . . , (y>n ,x
>
n )>} ⊂

IRq+p and the linear regression model of (1). Then, the S-estimates for the regression coeffi-
cients and error scatter matrix (B̂n, Σ̂n) minimize |C| subject to

1

n

n∑
i=1

ρ0

(
[(yi −B>xi)

>C−1(yi −B>xi)]
1
2

)
= b0, (4)

among all B ∈ IRp×q and C ∈ PDS(q).

Here, PDS(p) denotes the set of positive definite symmetric p × p matrices and by |C| we
denote the determinant of the square matrix C. The constant b0 is usually chosen such that
b0 = EΦ[ρ0(‖x‖)], which ensures consistency at the normal model. In this paper and in
the FRB package we use Tukey biweight ρ-functions, given by ρ(t) = min(t2/2 − t4/(2c2) +
t6/(6c4), c2/6). The constant c can then be tuned to achieve any given degree of robustness,
in terms of breakdown point (between 0% and 50%).

However, tuning ρ0 involves a compromise since a higher degree of robustness corresponds to
a lower Gaussian efficiency for the S-estimator. This trade-off can be avoided by computing a
more efficient M-estimator as a follow-up step for the S-estimator, in which the robustly esti-
mated S-scale is kept fixed. The resulting estimators are called multivariate MM-estimators,
as introduced by Tatsuoka and Tyler (2000) for the one-sample location-covariance setting.
The definition is straightforwardly generalized to the two-sample or the regression context as
explained below (see also Van Aelst and Willems 2011).

In the following, let σ̂n := |Σ̂n|1/(2p) denote the S-scale corresponding to the S-estimates
defined above. Then, based on a function ρ1 which typically differs from ρ0 by having a larger
tuning constant c, multivariate MM-estimators are defined as follows.

One-sample MM-estimators. Given the S-scale σ̂n, the MM-estimates for location and
shape (µ̃n, Γ̃n) minimize

1

n

n∑
i=1

ρ1

(
[(xi −T)>G−1(xi −T)]

1
2 /σ̂n

)
,

among all T ∈ IRp and G ∈ PDS(p) for which |G|=1.
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Two-sample MM-estimators. Given the S-scale σ̂n, MM-estimates for the location vectors
and common shape matrix (µ̃1,n, µ̃2,n, Γ̃n) minimize

1

n

2∑
j=1

nj∑
i=1

ρ1

(
[(xji −Tj)

>G−1(xji −Tj)]
1
2 /σ̂n

)
,

among all T1,T2 ∈ Rp and G ∈ PDS(p) with |G|=1.

Multivariate regression MM-estimators. Given the S-scale σ̂n, the MM-estimates for the
coefficients and error shape matrix (B̃n, Γ̃n) minimize

1

n

n∑
i=1

ρ0

(
[(yi −B>xi)

>G−1(yi −B>xi)]
1
2 /σ̂n

)
,

among all B ∈ IRp×q and G ∈ PDS(q) with |G|=1.

The MM-estimate for the scatter matrix is then defined as Σ̃n = σ̂2
nΓ̃n. The function ρ1 can be

tuned to achieve any given efficiency for the MM-estimates without affecting the breakdown
point of the estimates, which is the same as that of the initial S-estimates and thus determined
only by ρ0. In practice, one usually chooses the constant c0 in the (biweight) ρ0-function for
the S-scale that yields the maximal breakdown value of 50%, while c1(> c0) in ρ1 is tuned
to additionally achieve 95% Gaussian efficiency. There is a limited cost associated with the
M-step, in the sense that MM-estimates of location or regression have a higher maximum
bias than S-estimates, if indeed c1 > c0 (see Berrendero, Mendes, and Tyler 2007). Salibian-
Barrera et al. (2006) give some efficiency comparisons between S- and MM-estimates.

Generalized S-estimators (GS) were introduced by Croux et al. (1994) in univariate regression
and are generally more efficient than regular S-estimators. They minimize a robust scale of
the differences between residuals rather than of the residuals themselves. By using differences
of residuals, the estimation procedure is “intercept-free” and consequently cannot be used to
estimate the intercept or location vectors in general. However, the intercept can easily be
estimated e.g., by an additional M-step, in which the GS-regression slope coefficients and
error scatter are kept fixed. (Roelant et al. 2009) introduced GS-estimators for multivariate
regression which is the setting that we consider here as well.

Multivariate regression GS-estimators. Consider again a sample
{(y>1 ,x>1 )>, . . . , (y>n ,x

>
n )>} ⊂ IRq+p and the linear regression model (1). Suppose x>i =

(1,u>i ), i.e., an intercept term is included. Then, the GS-estimates for the slope coefficients

and error covariance (B̂s
n, Σ̂n) minimize |C| subject to(
n
2

)−1∑
i<j

ρ0

(
[(ri − rj)

>C−1(ri − rj)]
1
2

)
= b0,

with ri = yi −B>ui, among all B ∈ IR(p−1)×q and C ∈ PDS(q).
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Computing the S-, MM- or GS-estimates requires computationally demanding approximative
algorithms. Details about their implementation in the FRB package are given in Section 4.1
below.

2.2. Robust analysis

In order to obtain statistical procedures which are more resistant to outliers, it generally
suffices to replace the classical estimates by robust estimates such as the ones described
above, as briefly explained in this section.

Robust principal components analysis

Robust estimates of the population principal components are obtained by taking the eigen-
vectors of the robust scatter estimates Σ̂n or Σ̃n, instead of those of the sample covariance
matrix. This is the plug-in approach to robust PCA, as applied in Salibian-Barrera et al.
(2006) (and see references therein for other authors).

Robust Hotelling T 2 test

Replacing the sample mean(s) and sample covariance in the Hotelling T 2 statistic by the robust
one- or two-sample location and covariance estimates (which is again the plug-in approach),
yields a robust test statistic. For example, the one-sample robust T 2 based on S-estimates is
given by

T 2
R = n(µ̂n − µ0)>Σ̂

−1
n (µ̂n − µ0), (5)

while the two-sample version is

T 2
R =

n1n2

n1 + n2
(µ̂1,n − µ̂2,n)>Σ̂

−1
n (µ̂1,n − µ̂2,n). (6)

For the two-sample test, one can either use the two-sample estimates discussed above, or one
can consider one-sample estimates in each group separately and pool the covariance estimates.
In this paper we focus on the first approach (although the FRB package provides both options).
The difficulty in any case is to obtain an estimate of the null distribution since the classical
F -distribution does not hold anymore. However, bootstrapping can be used as explained
in Roelant, Van Aelst, and Willems (2008).

Robust multivariate regression

Robust regression analysis is immediately obtained by using S-, MM-, or GS-estimates instead
of the least squares estimates. S- and MM-estimates are nowadays quite routinely used for
robust univariate linear regression, see e.g., the R package robustbase (Rousseeuw et al. 2012).
The developments for the multivariate regression setting have only received attention in recent
years, see e.g., Roelant et al. (2009) and references therein.

In each of these settings, both classical bootstrap and asymptotic inference have serious
disadvantages, as explained above. Therefore, the option to perform FRB is most welcome.
In the next section this method is reviewed.
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3. Fast and robust bootstrap

The fast and robust bootstrap method was introduced by Salibian-Barrera and Zamar (2002).
The idea is to draw bootstrap samples as usual, but instead of computing the actual (algo-
rithm) estimator in each bootstrap sample, a fast approximation is computed based on the
estimating equations of the estimator. For example, the following system of fixed-point equa-
tions holds for the multivariate regression S-estimator:

B̂n =

(
n∑
i=1

ρ′0(di)

di
xix
>
i

)−1 n∑
i=1

ρ′0(di)

di
xiyi, (7)

Σ̂n =
1

nb

n∑
i=1

p
ρ′0(di)

di
(yi − B̂>nxi)(yi − B̂>nxi)

> +
( n∑
i=1

si

)
Σ̂n, (8)

where di = [(yi − B̂>nxi)
>Σ̂
−1
n (yi − B̂>nxi)]

1/2, si = ρ0(di)− ρ′0(di)di.

In general, let Θ̂n ∈ IRm contain all estimates in vectorized form, for example in case of
multivariate regression S-estimates Θ̂n = (vec(B̂n)> vec(Σ̂n)>)>. Suppose further that Θ̂n

can be represented as a solution of fixed-point equations as

Θ̂n = gn(Θ̂n), (9)

where the function gn : IRm → IRm depends on the sample. Given a bootstrap sample,
randomly drawn with replacement from the original sample, the recalculated estimates Θ̂

∗
n

then solve

Θ̂
∗
n = g∗n(Θ̂

∗
n), (10)

where the function g∗n now depends on the bootstrap sample. As explained above, calculating

the robust estimates Θ̂
∗
n for every bootstrap sample can be a computationally expensive task.

Moreover, even though we may assume that the solution to (9) was resistant to outliers, this
does not guarantee that we will obtain an equally resistant solution to (10) as g∗n is potentially

more severely affected by outliers than gn is. Instead of Θ̂
∗
n, however, we can easily calculate

Θ̂
1∗
n := g∗n(Θ̂n) (11)

which can be viewed as a one-step approximation of Θ̂
∗
n starting from the initial value Θ̂n. It

can be shown that, under certain conditions, the distribution of Θ̂
∗
n consistently estimates the

sampling distribution of Θ̂n. It is intuitively clear, however, that the distribution of Θ̂
1∗
n does

not have this property in general. Indeed, the recalculated Θ̂
1∗
n typically underestimate the

actual variability of Θ̂n, mainly because every bootstrap sample uses the same initial value
in the one-step approximation. To remedy this, a linear correction can be applied as follows.
Using the smoothness of gn, we can apply a Taylor expansion about Θ̂n’s limiting value Θ,

Θ̂n = gn(Θ) +∇gn(Θ)(Θ̂n −Θ) +Rn, (12)

where Rn is the remainder term and ∇gn(.) ∈ IRm×m is the matrix of partial derivatives. The
remainder term is typically of order Op(n

−1), and then equation (12) can be rewritten as

√
n(Θ̂n −Θ) = [I−∇gn(Θ)]−1√n(gn(Θ)−Θ) +Op(n

−1/2), (13)
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Similarly, for the bootstrap estimates we obtain

√
n(Θ̂

∗
n − Θ̂n) = [I−∇gn(Θ̂n)]−1√n(g∗n(Θ̂n)− Θ̂n) +Op(n

−1/2). (14)

When gn(.) is essentially a smooth function of means, as in (7)-(8) for example, it is straight-
forward to show that under certain regularity conditions

[I−∇g∗n(Θ̂n)]−1√n(g∗n(Θ̂n)− Θ̂n) = [I−∇gn(Θ)]−1√n(gn(Θ)−Θ) + op(1), (15)

where the left side should be considered as conditionally on the sample. Now, define the
linearly corrected version of the one-step approximation (11) as

Θ̂
R∗
n := Θ̂n + [I−∇gn(Θ̂n)]−1(Θ̂

1∗
n − Θ̂n). (16)

If (14) indeed holds, then Θ̂
R∗
n will be estimating the same limiting distribution as the actual

bootstrap calculations Θ̂
∗
n, and by (13) and (15) both will be consistently estimating the lim-

iting distribution of Θ̂n as desired. For one-sample S- or MM-estimates, a formal consistency
proof under relatively mild conditions can be found in Salibian-Barrera et al. (2006), while
Roelant et al. (2009) prove consistency for multivariate regression GS-estimates.

Clearly, Θ̂
R∗
n is much faster to calculate than Θ̂

∗
n. It is also more resistant against a possibly

large number of outlier recurrences in the bootstrap sample, as can be seen by noting that
the estimating equations typically involve weighted least squares estimates (or means) and
covariances. The weights will be small or even zero for observations detected as outliers. The
approximation does not recompute the weights but instead gives each observation its original

weight, such that Θ̂
R∗
n is essentially equally robust as Θ̂n.

The principle outlined above can be applied to multivariate S-, MM- and GS-estimators.
Application possibilities for bootstrap methods in general are extremely wide, as almost any
conceivable statistical estimate can be “bootstrapped” to assess its uncertainty, see e.g., Davi-
son and Hinkley (1997). The method is obviously most useful when the concerned estimate
has limited distributional theory, which is the case for robust estimates in general. For the
robust estimates considered here, the FRB can do anything that classical bootstrap could do,
only much faster and with less instability problems. In Section 4.3 below we list the specific
applications that are available in the FRB package.

4. Implementation

4.1. Point estimates

Computing S- and GS-estimates is far from trivial. Exact computation is practically infea-
sible because it involves optimizing non-convex objective functions with possibly many local
minima, which on top require solving a non-linear equation to evaluate them. Since MM-
estimates need initial S-estimates, they too are obviously computationally demanding. In
practice this type of estimates is usually approximated by algorithms which combine ran-
dom subsampling with iterations of reweighted least squares (RWLS). Salibian-Barrera et al.
(2006) in the context of univariate S-regression presented a very effective version of such an
algorithm, called the fast-S algorithm. The algorithm involves the following steps:
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1. Randomly select N elementary subsamples on which to compute the least squares so-
lution, such that we have N different starting candidates for the S-estimates.

2. Locally improve each of the N candidates through k steps of RWLS.

3. Evaluate the objective function on each of the N candidates and retain the t best ones.

4. Further locally improve each of these t candidates until convergence and retain the best
one.

Typical values for the parameters here would be N = 500, k = 2 and t = 5, although the
optimality of these numbers depends on the data (see e.g., Salibian-Barrera, Willems, and
Zamar 2008). In particular, N would ideally increase exponentially with the dimension of the
data in order to preserve high robustness against outliers.

Generalization of the fast-S algorithm to multivariate settings is straightforward. The algo-
rithm is also easily adapted to compute GS-estimates. Finally, once S-estimates are available,
the second part in the MM-estimation requires only one iteration of RWLS. For multivariate
location and scatter the rrcov package (Todorov and Filzmoser 2009) provides implementa-
tions of the S and MM-estimators using the fast-S algorithm. Starting from rrcov version
1.3-01 the output of these functions provides all information that is needed to perform the
bootstrap part of the FRB method corresponding to the point estimates. However, for the
two-sample and multivariate regression settings, implementations of these estimators are not
yet available. In the FRB package, the functions

Sest_twosample() and Sest_multireg()

implement the fast-S algorithm in these two settings. They are also respectively called by the
functions

MMest_twosample() and MMest_multireg(),

to compute the S-part of the corresponding MM-estimates. These functions additionally do
the final iteratively RWLS part of these estimates. Finally, the function

GSest_multireg()

performs a version of fast-S which is adapted to GS-estimates. In these functions the parame-
ters N , k and t default to the values given above, but can be changed by the user. The tuning
of the ρ-functions in the estimates is by default set to obtain a 50% breakdown estimator in
all cases. The second ρ-function in case of the MM-estimates is chosen to additionally yield
95% Gaussian efficiency. These settings can all be changed by the user to any sensible values.

4.2. Bootstrap distribution estimate

The implementation of the FRB procedure is quite straightforward:

1. Based on the original sample, compute the gradient ∇gn(Θ̂n) and the corresponding
correction matrix as given in (16).

2. Draw R bootstrap samples as usual.
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3. For each bootstrap sample, compute the one-step approximation given by (11) and
multiply by the correction matrix to obtain the bootstrap recalculations of the estimates.

Note that the correction matrix only needs to be computed once. In the package, the FRB
in the various settings is performed by the functions

Sboot_loccov(), Sboot_twosample() and Sboot_multireg()

for the S-estimates, by the functions

MMboot_loccov(), MMboot_twosample() and MMboot_multireg()

for the MM-estimates, and by the function

GSboot_multireg()

for the GS-estimates. These “.boot_...” functions require the result from the respective
“.est_...” functions as input parameter. Ideally the functions return R recalculated S-, MM-
or GS-estimates. However, a few problems may sometimes occur with the approximation (16),
leading to less than R usable recalculations:

• in the regression setting: the number of distinct observations with non-zero weight
drawn into the bootstrap sample, needs to be sufficient to enable computation of the
weighted least squares approximation (11); this is not guaranteed, especially in small
samples, although failure is generally rare.

• in the PCA and Hotelling setting: due to the linear correction in (16) the FRB ap-
proximations to the scatter matrix estimates may lack positive definiteness, leading to
awkward results when used to compute e.g., eigenvalues; the frequency of occurrence
depends on the dimension and sample size.

If one of these problems occurs, the bootstrap sample is omitted from further calculations. An
exception is made in the PCA setting in the rare event that more than 75% of the samples have
failed to produce a positive definite scatter matrix. In that case, the make.positive.definite
function from the corpcor package (Schäfer, Opgen-Rhein, Zuber, Ahdesmäki, Silva, and
Strimmer 2012) is used in an attempt to rescue the bootstrap samples. If the attempt is
succesful (which it often is but not guaranteed), the bootstrap sample is used and a warning
is produced.

4.3. Bootstrap applications

Once we have the FRB-based estimate of the sampling distribution of the S-, MM- or GS-
estimates, we use it to derive several measures of uncertainty. Note that the FRB-estimate
can be applied in exactly the same way as one would apply the ordinary bootstrap estimate
(which again would be much more time-consuming and less robust). Here we give an overview
of the bootstrap applications that are available in the FRB package for the respective settings.
Examples and illustrations are presented in Section 5 below.
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Principal components analysis

Salibian-Barrera et al. (2006), while examining the performance of the FRB in robust PCA,
considered four ways in which the bootstrap can be useful. We follow their approach in
our implementation and provide the following uncertainty measures (in the following let Σ̂n

denote either S- or MM-estimates of scatter):

• Standard errors and confidence limits for the eigenvalues of Σ̂n, which estimate the
eigenvalues of the population scatter matrix Σ. The eigenvalues can also be seen as
estimates of the variance in the respective principal components.

• Standard errors and confidence limits for p̂k = (
∑k

i=1 λ̂i)/(
∑p

i=1 λ̂i), where λ̂i; i =

1, . . . , p are the ordered eigenvalues of Σ̂n. The statistic p̂k estimates the percent-
age of variance explained by the first k robust principal components (k = 1, . . . , p− 1)
and is often used to decide how many principal components are retained for further
analysis. Confidence limits for p̂k can give additional information on which to base such
a decision.

• A distribution estimate of the angles between the eigenvectors of Σ̂n and those of Σ.
The estimate is given by the empirical distribution of the angles between the bootstrap

recalculated eigenvectors of Σ̂
R∗
n and the eigenvectors of Σ̂n. For example, an eigenvector

of Σ̂n which is relatively aligned with its recalculations based on Σ̂
R∗
n , can be considered

an accurate estimate of the corresponding eigenvector of Σ.

• Standard errors and confidence limits for the loadings of the robust principal compo-
nents, which are the coefficients of the normalized eigenvectors of Σ̂n and which estimate
the loadings of the population level principal components.

Hotelling T 2 tests

In general, using the bootstrap to perform hypothesis tests requires some care because one
needs to ensure that the resampling is done under conditions that agree with the null hypoth-
esis. However, when a test statistic is pivotal, it suffices to draw ordinary bootstrap samples
(that is, with replacement from the original sample). The pivotal assumption is usually rea-
sonable for test statistics such as z- and t-type statistics and their multivariate T 2 variants,
see e.g., Davison and Hinkley (1997, p. 139). Hence, following Roelant et al. (2008) we may
assume that the distribution of the robust T 2

R in (5) does not depend on the true value of µ0.
Therefore, the null distribution of T 2

R can be approximated by the distribution of

T 2∗
R = n(µ̂R∗n − µ̂n)>Σ̂

R∗,−1
n (µ̂R∗n − µ̂n),

where (µ̂R∗n , Σ̂
R∗
n ) are the FRB approximations for the location and covariance S-estimates in

the bootstrap sample. Similarly, the null distribution of the robust two-sample test statistic
(6) can be approximated by the distribution of

T 2∗
R =

n1n2

n1 + n2
((µ̂R∗1,n − µ̂R∗2,n)− (µ̂1,n − µ̂2,n))>Σ̂

R∗,−1
n ((µ̂R∗1,n − µ̂R∗2,n)− (µ̂1,n − µ̂2,n)),

with analogous notation. For both tests, the 5% critical value is then the 95% empirical
quantile of the R recalculated T 2∗

R statistics, where e.g., R = 1000. Rather than a single
critical value, we consider two main bootstrap results for the Hotelling tests:
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• An estimated bootstrap p value, naturally obtained as the fraction of the recalculated
T 2∗
R statistics which exceed the value of the original T 2

R.

• Simultaneous confidence intervals for the components of the true location vector (or
difference between the two location vectors), based on the empirical quantiles of T 2∗

R ,
similarly to the classical T 2-based intervals (Johnson and Wichern 1988, p. 239).

Multivariate linear regression

In the regression model (1), the bootstrap is mainly used to provide an uncertainty measure
on the estimates of the coefficients in B. Specifically, we use the FRB to provide the following
inference:

• Standard errors and confidence limits for the coefficient estimates.

• Bootstrap p values corresponding to each coefficient, obtained by exploiting the duality
between confidence intervals and hypothesis tests. The p value is defined as the proba-
bility p∗ such that 1− p∗ is the smallest coverage level for which the confidence interval
would include zero.

Van Aelst and Willems (2005) and Roelant et al. (2009) investigated the performance of FRB-
based confidence intervals for B, respectively in case of S- and GS-estimates. Hypothesis tests
that concern more than one parameter, such as for comparing nested models, require adapted
resampling schemes. Salibian-Barrera (2005) investigated such tests in the univariate case.
However, they have not yet been considered in the multivariate setting and thus are not avail-
able in the FRB package.

Confidence interval methods

In both the PCA and the regression setting we consider bootstrap confidence intervals. There
are several well-known methods to compute such intervals from the bootstrap result. We
implemented two of these: bias-corrected and accelerated (BCa) intervals, as considered by
all FRB references mentioned above, and so-called basic bootstrap intervals (see e.g., Davison
and Hinkley 1997, p. 204 and p. 29 respectively).

BCa intervals are defined as follows. Suppose θ̂n is estimating the scalar parameter θ. Let

θ̂
∗(α)
n be the 100α-th percentile of the R bootstrap estimates θ̂∗,1n , . . . , θ̂∗,Rn for that parameter.

Then, the BCa interval for θ with coverage 1− 2α is given by

(θ̂∗(α1)
n , θ̂∗(α2)

n ),

where

α1 = Φ

(
w +

w + zα
1− a(w + zα)

)
,

α2 = Φ

(
w +

w + z1−α
1− a(w + z1−α)

)
.

Here Φ is the standard normal cumulative distribution function, zα is the 100α-th percentile
of the standard normal distribution, w is the bias-correction parameter and a the acceleration



14 FRB: Fast and Robust Bootstrap for Multivariate Inference

factor. Both w and a need to be estimated from the data. Estimation of w is straightforward,
while for a we use empirical influences computed from the theoretical influence function
assuming normality (see Davison and Hinkley 1997, p. 209).

The basic bootstrap interval on the other hand, with coverage 1− 2α, is given by

(2θ̂n − θ̂∗(1−α)
n , 2θ̂n − θ̂∗(α)

n ).

These intervals have been formally shown to be inferior to BCa intervals regarding accuracy.
However, they may be more appealing because of their simpler definition and calculation.

4.4. R functions overview

The main functions in the FRB package are listed in Table 1. These functions can be called
with a formula interface or by providing a dataframe(s) or matrix (matrices). They process
the results from the FRB as described in Section 4.3 and produce objects which have print,
plot and summary methods.

Figure 1 displays the functional structure of the package, with E standing for either S, MM
or GS. Here, a solid arrow from foo1 to foo2 indicates that foo2 is called by foo1, while
a dashed arrow would mean that foo1 requires the result of foo2. Note for example that

PCA Hotelling Regression

FRBpcaS() FRBhotellingS() FRBmultiregS()

FRBpcaMM() FRBhotellingMM() FRBmultiregMM()

FRBmultiregGS()

Table 1: Main functions in package FRB.

plot()

summary()

print()

FRBmultiregE()
(E = S, MM or GS)

FRBpcaE()
(E = S or MM)

FRBhotellingE()
(E = S or MM)

Eboot_multireg()

Eest_multireg()

rrcov:CovEest()

Eboot_loccov()

Eest_twosample()

Eboot_twosample()

Econtrol()
diagplot()

Figure 1: Structure of the FRB package.
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the two-sample location-scatter functions are called only in the (two-sample) Hotelling test
procedure, while the respective one-sample functions are used both for (one-sample) Hotelling
tests and for PCA.

The function Scontrol() allows to change the default settings for the fast-S algorithm. It can
directly be used in the input of the main functions such as FRBpcaS(). For the GS-estimates
the GScontrol() function acts analogously. For MM-estimates, the MMcontrol() function
sets the fast-S parameters for the S-part and additionally allows e.g., to change the Gaussian
efficiency, which defaults to 95%.

The main functions listed above return objects of respective classes

FRBpca, FRBhot and FRBmultireg.

For each of these classes the following methods exist:

plot(), summary() and print().

These will be illustrated in the next section, but we first give an overview. The plot method
acts as follows:

� plot.FRBpca(): The function produces graphs depicting the FRB inference results,
essentially as listed in Section 4.3, or in particular:

1. FRB confidence intervals for the eigenvalues or the variances explained by the
components.

2. FRB confidence intervals for the cumulative percentage of variance explained by
the components.

3. Histograms of the angles between the FRB recalculated components and the orig-
inal components.

4. FRB confidence intervals for the loadings of the principal components.

� plot.FRBhot(): The function produces graphs depicting:

1. The histogram of the FRB recalculated test statistics.

2. FRB simultaneous confidence intervals for the components of the location or dif-
ference between locations.

� plot.FRBmultireg(): The function depicts histograms for each of the FRB recalculated
coefficient estimates with indication of the corresponding confidence intervals.

Moreover, the diagplot() method is available for outlier detection purposes. The plot is
based on robust (Mahalanobis-type) distances of the observations. It is thus not related
to the FRB, but solely uses the point estimates of the original sample. Therefore, for the
multivariate regression methods provided by the FRB package, the diagplot function can
also be applied directly on the point estimates. In particular, the following diagnostic plots
are presented:
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� diagplot.FRBpca(): Based on the location and covariance estimates, robust distances

di are computed for each observation. E.g., for S-estimates di = [(xi − µ̂n)>Σ̂
−1
n (xi −

µ̂n)]1/2. These are plotted either versus the observation index, or versus a measure of
the overall empirical influence that the observation would have on the classical principal
components. The latter demands some additional computation time in order to obtain
a simulation-based cutoff value for the empirical influences (see Pison and Van Aelst
2004, for details).

� diagplot.FRBhot(): Based on the one- or two-sample location and covariance esti-
mates, robust distances are computed for each observation and are plotted against their
index (separately for each sample in the two-sample case).

� diagplot.FRBmultireg(): Based on the estimates for the regression coefficients and
the error covariance matrix, robust distances di are computed for each residual. E.g.,

for S-estimates di = [(yi − B̂>nxi)
>Σ̂
−1
n (yi − B̂>nxi)]

1/2. These are again plotted ei-
ther versus the observation index, or versus the robust distance of the observation
in the covariate space. This last option is the typical diagnostic plot as introduced
by Rousseeuw and Van Zomeren (1990) in univariate regression and by Rousseeuw,
Van Aelst, Van Driessen, and Agulló (2004) in multivariate regression. The plot makes
a distinction between three types of outliers: so-called bad leverage, good leverage or
vertical outliers. It demands additional computation time since robust estimates for the
location and scatter in the covariate space are required. For these additional compu-
tations the function uses the same type of estimate as that was used to produce the
FRBmultireg object, with the same breakdown point and control settings.

The summary and print methods give formatted output that resembles well the output of
the R functions for the corresponding classical methods. this should make the output easy to
understand, even by non-experts in robustness, and facilitates comparison with the output of
the classical method. For a large part the formatted output provides the numerical counterpart
of the graphical representation produced by the plot method. However, it sometimes provides
additional information. For example the function summary.FRBmultireg() lists p values for
each regression coefficient, as explained in Section 4.3.

5. Examples

We now illustrate the use of the FRB package through some examples (a few more examples
are available in the documentation of the package). Throughout this section we focus on
MM-estimates. The use of S- or GS-estimates would obviously be similar.

5.1. Principal components analysis

Our first example concerns the Swiss Bank Notes data (Flury and Riedwyl 1988), which
consists of p = 6 measurements on 100 real and 100 forged Swiss 1000 francs bills. We here
consider only the forged bills. These data are available in the package through

R> data("ForgedBankNotes")
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Suppose we are interested in the covariance structure of the data. To guard against the
influence of possible outliers, robust PCA is advisable. PCA based on MM-estimates with
FRB inference is obtained via

R> res <- FRBpcaMM(ForgedBankNotes, R = 999, conf = 0.95)

or alternatively, by using the formula interface

R> res <- FRBpcaMM(~ ., data = ForgedBankNotes, R = 999, conf = 0.95)

Note that we have specified that the number of bootstrap samples should be R = 999 and
the confidence intervals should have nominal coverage of 95%. These are also the default
settings for the FRB functions in the package. The summary method presents an overview of
the results:

R> summary(res)

PCA based on multivariate MM-estimates (bdp = 0.5, eff = 0.95)

Eigenvalues:

PC1 PC2 PC3 PC4 PC5 PC6

estimates 10.10 1.92 1.051 0.502 0.412 0.238

BCa 95% lower 7.44 1.27 0.798 0.365 0.327 0.190

BCa 95% upper 12.66 2.61 1.399 0.606 0.586 0.350

Principal components loadings:

PC1 PC2 PC3 PC4 PC5 PC6

Length -0.0710 0.36087 0.219 0.8519 -0.131 -2.72e-01

Left 0.0267 0.42366 0.256 -0.0175 -0.257 8.30e-01

Right -0.0197 0.53517 0.205 -0.5015 -0.434 -4.81e-01

Bottom 0.8160 -0.00833 0.485 -0.0309 0.304 -7.80e-02

Top -0.5651 -0.15725 0.725 -0.1213 0.339 -2.24e-02

Diagonal -0.0930 0.61570 -0.291 -0.0828 0.722 -1.57e-05

Average angle between PC and its bootstrapped versions:

PC1 PC2 PC3 PC4 PC5 PC6

0.086 0.247 0.340 0.641 0.808 0.402

(in [0 - pi/2], cf. aligned - perpendicular)

Percentage of variance explained by first k components:

Est. (BCa 95% lower upper)

k=1 71.0 63.9 76.9

k=2 84.5 78.7 87.7

k=3 91.9 88.1 93.9

k=4 95.4 93.0 96.3

k=5 98.3 97.5 98.7

k=6 100.0 100.0 100.0
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Figure 2: Bank notes data. Percentage of variance explained with FRB-based confidence
intervals. Result of plot method on object of type FRBpca.

The output is intended to be self-explanatory. The confidence intervals shown are of the BCa
type, which is the default in all applications. If interested, basic bootstrap intervals can be
asked for instead by the command summary(res, confmethod = "basic"). The intervals
for the loadings are not listed but are available graphically through the plot method, together
with the graphical FRB results for the angles and the percentages of explained variance:

R> plot(res)

The result of the plot method consists of various pages of output and the user is prompted
before starting each new page. Figure 2 shows the first page, which in the top panel displays
the (cumulative) percentage of variance explained by each component and in the bottom
panel the variances in absolute terms, which are the eigenvalues. The FRB-based confidence
intervals are indicated by the dashed lines. Again, basic bootstrap instead of BCa intervals
can be requested by specifying plot(res, confmethod = "basic").

We see in this example that the first two principal components seem to explain more than 80%
of the total variation. However, the lower confidence limit is actually below 80%. In general,
when selecting the number of components to retain for further analysis on the basis of such
percentages, it may be safer to consider the lower limits instead of the estimated percentages.

In Figure 3 we have the second output page of the plot method. It shows for each principal
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Figure 3: Bank notes data. Histograms of angles between original and bootstrap estimates
of principal components. Result of plot method on object of type FRBpca.

component the histogram of the angles between the original component and the corresponding
bootstrap components. The angle between two components is expressed by a value between
0 and π/2. These limits are indicated by thick vertical lines on the histograms. We see for
example that the estimate of the first component is very much aligned with its bootstrap
versions (most angles are close to zero) indicating low variability of that estimate. For the
other components quite some more instability is observed.

The last type of graph presented by the plot method displays the loadings for a given prin-
cipal component along with FRB-based confidence intervals. By default the first 5 principal
components are shown, on separate pages. Figure 4 shows the graph corresponding to the
first component. Next to the histogram of the angles, this yields another way of assessing
the stability of the component. Note that the loadings are the coefficients of the normalized
eigenvectors and hence lie within the interval [−1, 1]. We again conclude that the estimate
of the first principal component should be quite accurate, since the confidence intervals are
relatively small.

The three types of graphs produced by the plot method can also be requested through sep-
arate functions, called plotFRBvars(), plotFRBangles() and plotFRBloadings() respec-
tively.

The purpose of using robust estimates instead of the classical ones is often twofold: (1) en-
suring that the analysis is reasonably well protected against the influence of possible outliers,
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Figure 4: Bank notes data. Loadings of the first principal component with FRB-based confi-
dence intervals. Result of plot method on object of type FRBpca.
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Figure 5: Bank notes data. Diagnostic plot. Result of diagplot method on object of type
FRBpca.

and (2) detecting actual outliers in the data. For this last purpose, the package provides the
diagplot method:

R> diagplot(res)

For objects of class FRBpca it draws by default the diagnostic plot of Pison and Van Aelst
(2004), as explained in Section 4.4. The result is shown in Figure 5. The simpler plot of
robust distances versus the index can be obtained through diagplot(res, EIF = FALSE).
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The horizontal cutoff line, here and in all other diagnostic plots, is drawn at the square root of
the 97.5% quantile of the χ2

p distribution. We notice a total of 15 observations for which the
robust distance clearly exceeds the cutoff and hence these should be regarded as outliers. The
points also have a large empirical influence measure, which means that they would heavily
influence the classical PCA analysis. Note that they did not have much influence on the
robust PCA analysis because large robust distances by definition correspond to small weights
in the robust estimates.

5.2. Hotelling test

Let us now consider the same data to illustrate the one-sample robust Hotelling test. We
apply the test to demonstrate again the impact of the 15 outliers in this data set. That is,
we formally test whether the robust test rejects the empirical (classical) mean of the data as
the hypothesized true location. If so, we can conclude that the outliers severely influenced
the empirical mean. We proceed as follows:

R> samplemean <- apply(ForgedBankNotes, 2, mean)

R> res <- FRBhotellingMM(ForgedBankNotes, mu0 = samplemean)

or using the formula interface

R> res <- FRBhotellingMM(

+ cbind(Length, Left, Right, Bottom, Top, Diagonal) ~ 1,

+ data = ForgedBankNotes, mu0 = samplemean)

Note that multivariate responses in a formula in R should be combined through cbind. An
overview of the results is obtained by

R> summary(res)

which produces the following output:

One sample Hotelling test based on multivariate MM-estimates

(bdp = 0.5, eff = 0.95)

data: ForgedBankNotes

T^2_R = 128.68

p-value = 0

Alternative hypothesis : true mean vector is not equal to

(214.823 130.3 130.193 10.53 11.133 139.45)

95 % simultaneous confidence intervals for components of mean :

Length Left Right Bottom Top Diagonal

Lower bound 214.65 130.15 130.04 10.468 10.809 139.47

Upper bound 214.91 130.38 130.32 11.251 11.394 139.78

Sample estimates :

location:
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Bootstrap null distribution (Tsq = 128.68)
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Figure 6: Bank notes data. Histogram of FRB test statistic (top) and scaled FRB-based
simultaneous confidence intervals (bottom). Result of plot method on object of type FRBhot.

Length Left Right Bottom Top Diagonal

MM-loc vector 214.78 130.27 130.18 10.86 11.101 139.63

covariance:

Length Left Right Bottom Top Diagonal

Length 0.1010 0.0390 0.0368 -0.0671 0.0539 0.0489

Left 0.0390 0.0837 0.0597 0.0422 -0.0172 0.0441

Right 0.0368 0.0597 0.1163 -0.0136 0.0112 0.0651

Bottom -0.0671 0.0422 -0.0136 0.9509 -0.5831 -0.1155

Top 0.0539 -0.0172 0.0112 -0.5831 0.5323 0.0313

Diagonal 0.0489 0.0441 0.0651 -0.1155 0.0313 0.1512

We see that T 2
R = 128.68 with an FRB-based p value of 0, implying that all of the bootstrap

T 2∗
R values are smaller than 128.68. Note that by default the number of bootstrap samples is
R = 999. In order to learn more about the difference between the robust location estimate
and the hypothesized location vector (in this case the non-robust location estimate), one can
consider the simultaneous confidence intervals displayed in the output. From these intervals
we notice that the difference mainly lies in the variables Bottom and Diagonal. Interpreting
these intervals should be somewhat easier in the graphical representation obtained via

R> plot(res)

for which the result is shown in Figure 6. The top panel, first, shows the histogram of the T 2∗
R

values, which gives a somewhat better idea of the magnitude of the T 2
R value (if the value of
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T 2
R in the original sample would be below 100, it would be superimposed on the histogram).

We may conclude that 128.68 is in fact huge.

The bottom panel then displays the confidence interval for each variable. In particular,
each variable is scaled such that the interval has unit length and then centered around the
hypothesized location vector mu0. In this way, all intervals can immediately be compared
with regard to the significance of the difference between mu0 (horizontal line) and the robust
location estimate (bullets). As expected, we see that Diagonal exhibits the largest difference,
followed by the Bottom variable. The least significant differences are found for variables Right
and Top. Note that these confidence intervals are generally conservative in the sense that the
simultaneous confidence level holds for all linear combinations of the location components and
here only p of these are considered.

Further inspection of the data would indeed reveal that the 15 outliers have particularly
deviating values in the variables Bottom and Diagonal. For example, these 15 bank notes
tend to have a shorter diagonal than the rest of the notes. Note that the 15 outliers would
show up again in the diagnostic plot obtained through diagplot(res).

For an illustration of the two-sample Hotelling test, we turn to the Hemophilia data (Habe-
mma, Hermans, and Van den Broek 1974), which are also available in the package:

R> data("hemophilia")

This data set contains two measurements on 75 women, belonging to two groups: n1 = 30 of
them are non-carriers and n2 = 45 are known hemophilia A carriers. We would like to robustly
test whether the difference between the two group means is significant. The MM-based test
is obtained as follows:

R> grp <- as.factor(hemophilia[, 3])

R> x <- hemophilia[which(grp == levels(grp)[1]), 1:2]

R> y <- hemophilia[which(grp == levels(grp)[2]), 1:2]

R> res <- FRBhotellingMM(x, y)

Equivalently, using the formula interface, we have

R> res <- FRBhotellingMM(cbind(AHFactivity, AHFantigen) ~ gr,

+ data = hemophilia)

The short output, via the print method, is

R> res

Two sample Hotelling test based on multivariate MM-estimates (bdp =

0.5, eff = 0.95) (common covariance estimated by He and Fung method)

data: x and y

T^2_R = 79.0532, p-value < 2.2e-16

alternative hypothesis: true difference in mean vectors is not equal to (0,0)

sample estimates:
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Bootstrap null distribution (Tsq = 79.05)
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Figure 7: Hemophilia data. Histogram of FRB test statistic (top) and scaled FRB-based
simultaneous confidence intervals (bottom). Result of plot method on object of type FRBhot.

AHFactivity AHFantigen

MM-loc x-vector -0.305 -0.006

MM-loc y-vector -0.128 -0.071

We find an extremely small p value, such that the difference is highly significant. More details
are available via the summary method or graphically via

R> plot(res)

the result of which can be seen in Figure 7. It is clear from the top panel that T 2
R =

79.0532, indicated by the thick vertical line, represents quite a large value. In the bottom
panel the scaled simultaneous confidence limits are shown, which reveal that the means differ
significantly in both variables, although the difference is relatively larger for the AHFactivity
component.

Wondering whether the data contain any outliers, we examine the robust distances through
the diagplot method:

R> diagplot(res)

The diagnostic plot is shown in Figure 8 and suggests that the data set is more or less outlier-
free. Note that the robust distances are plotted versus their index within the group. The
dashed line separates the two groups.
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Figure 8: Hemophilia data. Diagnostic plot. Result of diagplot method on object of type
FRBhot.

5.3. Multivariate linear regression

Finally consider the School data from Charnes, Cooper, and Rhodes (1981) for an example
of robust multivariate regression:

R> data("schooldata")

The data consist of q = 3 response variables (scores on three different tests) and p = 5
explanatory variables, all measured for 70 school sites. For multivariate MM-regression with
FRB inference, we use the function FRBmultiregMM() as follows.

R> res <- FRBmultiregMM(cbind(reading, mathematics, selfesteem) ~ .,

+ data = schooldata, R = 999, conf = 0.95)

Alternatively to the formula interface it would also be possible to pass the x and y data
matrices. Extended formatted output is again available through the summary method:

R> summary(res)

Multivariate regression based on MM-estimates (bdp = 0.5, eff = 0.95)

Call:

FRBmultiregMM(formula = cbind(reading, mathematics, selfesteem) ~ .,

data = schooldata, R = 999, conf = 0.95)

Response reading:
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Residuals:

Min 1Q Median 3Q Max

-13.826 -1.560 0.416 2.891 27.861

Coefficients:

Estimate Std.Error p-value

(Intercept) 2.1957 1.0428 0.03035 *

education 0.1259 0.0769 0.07348 .

occupation 5.0490 1.3752 0.00145 **

visit -0.0441 0.3967 0.83121

counseling -0.7290 0.2011 0.00000 ***

teacher -0.1677 0.1471 0.18875

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

p-values based on BCA method!

Response mathematics:

Residuals:

Min 1Q Median 3Q Max

-9.096 -2.078 -0.240 3.485 40.312

Coefficients:

Estimate Std.Error p-value

(Intercept) 2.7546 1.0479 0.00693 **

education 0.0490 0.0813 0.46411

occupation 5.6821 1.3304 0.00000 ***

visit -0.0162 0.3472 0.95402

counseling -0.7422 0.2405 0.00649 **

teacher -0.2384 0.1646 0.05695 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

p-values based on BCA method!

Response selfesteem:

Residuals:

Min 1Q Median 3Q Max

-2.099 -0.585 0.135 0.883 4.925

Coefficients:

Estimate Std.Error p-value

(Intercept) 0.27534 0.2746 0.37389
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education -0.01146 0.0232 0.65695

occupation 1.63797 0.3082 0.00000 ***

visit 0.24373 0.0862 0.00215 **

counseling 0.00646 0.0726 0.90406

teacher 0.03407 0.0361 0.26380

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

p-values based on BCA method!

Robust residual scale: 1.82

Error covariance matrix estimate:

reading mathematics selfesteem

reading 10.56 9.84 2.12

mathematics 9.84 14.29 1.88

selfesteem 2.12 1.88 1.10

For each of the three responses, the output shows the values for the MM-estimates of the
regression coefficients with the corresponding FRB standard error and p value for these co-
efficients. Significance is indicated by the usual codes. We conclude, for example, that the
coefficient for occupation is significant for each of the three responses, and the same holds
for counseling except for the response selfesteem.

The plot method provides a graphical representation of these results. Here we request the
FRB results for all explanatory variables except the intercept (by specifying expl = 2:6).

R> plot(res, expl = 2:6)

If desired, the user can also specify which response variables to include, as would be useful
in case q is large. Figure 9 shows the result of the above request. For each coefficient the
bootstrap distribution is shown in a histogram and the confidence limits are superimposed.
By default the BCa method is used for the intervals, but as before the confmethod argument
can be used in both summary and plot to obtain the basic bootstrap intervals instead. The
confidence level is as specified in the call to FRBmultiregMM(). The coefficients which are
significantly different from zero on this specific level are indicated in the graph by the red
color and a star in the corresponding title. For example, the second row of plots stands
out because these are the coefficients corresponding to the predictor occupation, which is
significant for all three responses.

For outlier diagnostics we again apply the diagplot method. By default, this function first
computes the MM-estimates of location and covariance in the space of the explanatory vari-
ables, based on which it computes the robust distances in the explanatory space. It then
plots the residual distances versus these leverages (see also Section 4.4). The additional com-
putations are time-consuming and can be avoided by setting the argument Xdist = FALSE,
in which case the residual distances would simply be plotted against the index of the obser-
vations. Here we choose the default option:

R> diagplot(res)
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Figure 9: School data. Histograms of FRB coefficients with confidence intervals. Result of
plot method on object of type FRBmultireg.
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Figure 10: School data. Diagnostic plot. Result of diagplot method on object of type
FRBmultireg.

Figure 10 contains the resulting diagnostic plot. It reveals at least one large outlier, observa-
tion 59, which can be categorized as a bad leverage point. Other observations which deserve
some attention based on this plot are 12, 21, 33, 35 and 44. We conclude that a classical
least squares analysis is likely to be overly influenced by a few outliers and especially by
observation 59. Note that the outlier diagnostics can also be obtained without applying the
FRB inference, but only based on the point estimates as follows:

R> res <- MMest_multireg(cbind(reading, mathematics, selfesteem) ~ .,

+ data = schooldata)

R> diagplot(res)

6. Conclusion

In this paper we provided some background on the fast and robust bootstrap method and we
introduced the R package FRB for robust multivariate inference.

Currently all functions in the package are written in plain R code. To speed up the computa-
tions, future work will therefore include replacing some of the code by an implementation in a
lower-level language such as C, in particular the fast-S algorithm for multivariate regression.
Furthermore, the recently introduced robust MANOVA tests with the FRB method (Van Aelst
and Willems 2011) are intended to be added to the package in the near future. Other appli-
cations and developments of FRB will be added in updates of the package when they become
available.



30 FRB: Fast and Robust Bootstrap for Multivariate Inference

References

Berrendero JR, Mendes BVM, Tyler D (2007). “On the Maximum Bias Functions of MM-
Estimates and Constrained M-Estimates of Regression.” The Annals of Statistics, 35,
13–40.

Canty A, Ripley BD (2013). boot: Bootstrap R (S-PLUS) Functions. R package version 1.3-9,
URL http://CRAN.R-project.org/package=boot.

Charnes A, Cooper WW, Rhodes E (1981). “Evaluating Program and Managerial Efficiency:
An Application of Data Envelopment Analysis to Program Follow Through.” Management
Science, 27, 668–697.
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