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Abstract In cognitive neuroscience, electrical brain

activity is most commonly recorded at the scalp. In order to

infer the contributions and connectivity of underlying

neuronal sources within the brain, it is necessary to

reconstruct sensor data at the source level. Several

approaches to this reconstruction have been developed,

thereby solving the so-called implicit inverse problem

Michel et al. (Clin Neurophysiol 115:2195–2222, 2004).

However, a unifying premise against which to validate

these source reconstructions is seldom available. The

dataset provided in this work, in which brain activity is

simultaneously recorded on the scalp (non-invasively) by

electroencephalography (EEG) and on the cortex (inva-

sively) by electrocorticography (ECoG), can be of a great

help in this direction. These multimodal recordings were

obtained from a macaque monkey under wakefulness and

sedation. Our primary goal was to establish the connec-

tivity architecture between two sources of interest (frontal

and parietal), and to assess how their coupling changes

over the conditions. We chose these sources because pre-

vious studies have shown that the connections between

them are modified by anaesthesia Boly et al. (J Neurosci

32:7082–7090, 2012). Our secondary goal was to evaluate

the consistency of the connectivity results when analyzing

sources recorded from invasive data (128 implanted ECoG

sources) and source activity reconstructed from scalp

recordings (19 EEG sensors) at the same locations as the

ECoG sources. We conclude that the directed connectivity

in the frequency domain between cortical sources recon-

structed from scalp EEG is qualitatively similar to the

connectivity inferred directly from cortical recordings,

using both data-driven (directed transfer function) and

biologically grounded (dynamic causal modelling) meth-

ods. Furthermore, the connectivity changes identified were

consistent with previous findings Boly et al. (J Neurosci

32:7082–7090, 2012). Our findings suggest that inferences

about directed connectivity based upon non-invasive elec-

trophysiological data have construct validity in relation to

invasive recordings.

Keywords Brain connectivity � Dynamic causal

modeling � Directed transfer function

Introduction

Oscillatory synchronous activity of local or distributed

neuronal populations is an ubiquitous phenomenon in

neural systems and may represent a key neuronal mecha-

nism underlying cognitive or perceptual processing (Buz-

sáki 2006). Neuronal oscillations are traditionally

measured by electroencephalography (EEG), recordings of

local field potentials (LFP), or multi-unit recordings.

Beyond the depiction of this neuronal synchronization,

identifying driver-response relationships between inter-

connected brain sources and understanding their directed

interactions and dynamics can also inform the functional

architecture of sensory and cognitive processing, in both

healthy and diseased brains (Bressler 1995). There are

various measures that have been developed to identify
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driven and driving interactions between brain sources.

These measures vary from linear to nonlinear, bivariate to

multivariate, and many rely on the Granger causality

principle (Granger 1969). This approach quantifies

improvement in the predictions of a time series, given its

past, when information from the past of another time series

is considered (Baccalá and Sameshima 2001; Kamiński

and Blinowska 1991). These measures, which are based

upon statistical dependencies in data over time, are thought

to provide measures of directed functional connectivity.

Another approach, dynamic causal modelling (DCM)

(David and Friston 2003), is used to infer (directed)

effective connectivity, that is, how one source or neural

system influences another. The main distinction between

DCM (model-based) and Granger-based (data-based)

methods is that DCM is based on biologically plausible

neural mass models that are inherently causal in nature. In

other words, the question is not whether there is (Granger)

causality––but which (causal) models best accounts for

data. This enables one to identify how a system of pre-

specified neuronal populations generates the measured

signal (Schoffelen and Gross 2009), and to compare dif-

ferent hypotheses or architectures in terms of their model

evidence.

Measuring connectivity at the scalp level can be infor-

mative but one has to be careful about its interpretation in

terms of brain dynamics. This is because scalp data sees

neuronal sources through a specific ‘lens’ which distorts,

mixes and loses information about the exact location of the

underlying sources. A fundamental problem with scalp

recordings is electrical conduction through the head vol-

ume. This means that instead of recording brain activity

from one specific brain source, each sensor measures a

linear superposition of signals from all over the brain. This

mixing introduces instantaneous correlations in sensor

data, so that the interpretation of directed connectivity has

to proceed with caution because spurious connectivity

patterns can arise. In short, scalp recordings provide an

indirect measure of source activity (with rather low signal

to noise ratio), which is not easily interpretable. A critical

assessment of directed connectivity measures based on

EEG recordings can been found in Haufe et al. (2013). The

authors report a series of simulations to assess the sensi-

tivity of sensor-based functional connectivity when infer-

ring source interactions from synthetic EEG recordings.

To make inferences about directed connectivity among

brain sources one can either apply source reconstruction

techniques to estimate source activity or use intracranial

EEG (iEEG) data from electrodes implanted in human

subjects (e.g., patients with brain tumours and epilepsy).

Invasive iEEG recordings are difficult to obtain but they

have been of great help, not only as a part of pre-surgical

evaluation for patients, but also in the study of responses

induced by cognitive tasks. These responses would be

almost impossible to study with high precision on the scalp

level. Finally, invasive (but rare) electrophysiological

recordings can be used to validate the reconstruction and

modelling of (readily available) sensor level data. This is

one of the aims of our paper.

There are two prevalent approaches to measuring

directed connectivity in the spectral domain. These are

exemplified by (data-based) DTF (Kamiński and Bli-

nowska 1991) and (model-based) biologically informed

DCM (Friston et al. 2003). The first approach generalizes

the concept of Granger causality to the spectral domain. It

has been applied to iEEG recorded from patients with

epilepsy: (i) around the seizure onset, to identify the

putative epileptogenic zone (van Mierlo et al. 2011;

Papadopoulou et al. 2012) or (ii) during the performance of

cognitive tasks, to investigate distributed neuronal pro-

cessing (Brázdil et al. 2009; Flinker et al. 2015). DTF has

also been used to infer directed functional connectivity

between reconstructed sources (RS) in humans (Dai et al.

2012) and from intracranial recordings of monkeys (Liang

et al. 2000). Similar approaches have addressed connec-

tivity at the source level using Independent Component

Analysis (Haufe et al. 2010), where DTFs have also been

computed (Gómez-Herrero et al. 2008; Cantero et al.

2009).

In contrast to these data-based measures, DCM uses

neurobiologically plausible models that are fitted to

empirical observations, which are then subjected to Baye-

sian model comparison or selection (BMS). BMS allows

one to evaluate competing hypotheses (or architectures) in

terms of their Bayesian model evidence or marginal like-

lihood. In brief, DCM treats the brain as a nonlinear

dynamical system that receives inputs and generates out-

puts. In this setting, an experiment is regarded as a pertur-

bation (induced by the inputs) of coupled electromagnetic

sources, which produces source-specific responses (Kiebel

et al. 2009). The basic idea behind the method is to model

the influence of each source on others––and identify the

mechanisms that underlie distributed network responses.

DCM has been applied to functional magnetic resonance

imaging (fMRI) and magnetoencephalography (MEG)/EEG

data.

DCM for MEG/EEG is based on a spatiotemporal gen-

erative model of electromagnetic brain activity, where the

temporal dynamics are described by neural mass models of

equivalent current dipole (ECD) sources, and their spatial

expression at the sensor level is modelled by parameterized

lead-field functions. Generally a DCM comprises a model

of interacting cortical sources, where each source corre-

sponds to a canonical circuit of neural populations, and its

electromagnetic output is generated by the modeled aver-

age depolarization of pyramidal cell populations. These
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electromagnetic outputs are then passed through an elec-

tromagnetic model of the head, accounting for volume

conduction effects, to finally generate predictions at the

M/EEG sensor level (Fastenrath et al. 2009). This process

is called the forward problem, as opposite to the inverse

problem which infers the activity in the brain starting from

scalp recordings. Equipping neuronal models with a lead

field effectively subsumes the source reconstruction prob-

lem into model inversion or fitting. In other words, DCM

can estimate directed effective connectivity among sources

using sensor data directly. DCM has been extensively

applied to sensor space data to infer directed effective

connectivity in healthy and diseased subjects (e.g., Garrido

et al. 2008, 2009; Herz et al. 2012, 2013, 2014). It has also

been applied to LFP recordings in rodents (Moran et al.

2009, 2011, 2015) and intracranial electroencephalographic

(iEEG) in humans (Papadopoulou et al. 2015). In some

applications, DCM is applied to source reconstructed data

in source space, as opposed to modelling responses in

sensor space. This allows one to make inferences about

connectivity among a predefined set of sources, without

having to consider all the sources generating sensor data

(e.g., Boly et al. 2012). This is the approach we adopt in the

current paper, as we wanted to focus on a subset of sources

for which we had invasive or direct recordings.

In this work we analyzed ECoG and source recon-

structed data from one monkey during wakefulness and

propofol anaesthesia. Our aims were twofold; first, we

wanted to see whether directed connectivity in the fre-

quency domain between cortical sources reconstructed

from scalp EEG is qualitatively similar to estimates based

on ECoG recordings, using both DTF and DCM. Our

second focus was on how the information flow between

two pre-specified sources (frontal and parietal) was mod-

ulated in wakefulness and sedation.

It is worth mentioning that our aim is to compare the

connectivity results obtained by reconstructed sources on

one hand and the corresponding intracranial recordings on

the other; a comparison of data-driven (DTF) and bio-

physical (DCM) models for directed dynamical connec-

tivity is not the scope of the present work.

Methods

Data

These data are part of a dataset collected at a workshop

titled ‘‘Controversies in EEG source imaging’’, held in

August 2014 at the University of Electronic Science and

Technology in Chengdu, China, with the aim of discussing

the major issues at stake when brain activity is recorded or

modelled as electrical potentials. All the simulations and

data are available from the following website http://neu

roinformation.incf.org/ and will be described in detail in a

technical report. Specifically for this study we used pub-

licly available data (http://neurotycho.org/) that were

originally analyzed and published in Yanagawa et al.

(2013). ECoG and EEG signals were simultaneously

recorded from the same monkey (Macaca mulatta). The

monkey was implanted with a 128 channel ECoG array that

covered the lateral cortical surface of the left hemisphere

with 5 mm spacing. EEG signals were recorded from 19

channels. The EEG electrodes locations conformed to the

10–20 system without Cz (to avoid interference with an

ECoG connector). ECoG and EEG data were sampled at

1000 Hz. The monkey was seated in a primate chair with

eyes closed and both arms constrained––and injected with

an anaesthetic drug (propofol) during the recording to

induce loss of consciousness.

In the following we report the steps for the leadfield

reconstruction. Using BrainSuite2, a T1 MRI was corrected

for intensity bias and segmented into tissues (i.e., grey and

white matter) and cerebrospinal fluid. The white/grey

matter interface was chosen as the source space model for

EEG/ECoG, i.e., each node of the mesh was a potential

source. The head was then divided into brain (enclosed by

the pial surface), brain plus surrounding cerebrospinal

fluid, skull and skin. This segmentation was checked and

adjusted manually by an expert. The volume conductor

model was based on the above segmentation, assuming

constant electrical conductivities within each compartment.

The skull-to-other conductivity ratio was set to 1/25.

1 mm-thick silicone strips (housing the ECoG electrodes)

were also included in the model because silicone has very

low conductivity and can influence EEG signals. An X-ray

2D image was spatially registered to the pial surface. The

transformed electrode positions were then projected onto

the 3D pial surface. The silicone stripes were modelled

according to Fig. 1 in Nagasaka et al. (2011). These were

modelled as a grid of 1 mm thick silicone rings of 3.5 mm

radius, each surrounding an electrode of 2.0 mm radius.

The conductivity of the silicone was set to a negligible

value relative to the other compartments. The EEG elec-

trodes were manually located on the monkey’s scalp using

IMAGIC (www.neuronicsa.com) and projected onto their

corresponding mesh faces.

Tetrahedral meshes were created from the surfaces of

the head model using Tetgen 2.0 (open source). Both EEG

and ECoG lead fields were calculated using NeuroFEM, a

program for computing lead fields using the Finite Element

Method, which is part of the SimBio software package

(SimBio Development Group. ‘‘SimBio: A generic envi-

ronment for bio-numerical simulations’’, https://www.mrt.

uni-jena.de/simbio). Source reconstruction in the time

domain (for the EEG data) was performed by LORETA

Brain Topogr

123

http://neuroinformation.incf.org/
http://neuroinformation.incf.org/
http://neurotycho.org/
http://www.neuronicsa.com
https://www.mrt.uni-jena.de/simbio
https://www.mrt.uni-jena.de/simbio


(free academic software for source localization of EEG

data: http://www.uzh.ch/keyinst/loreta) (Pascual-Marqui

et al. 1994). The estimated current sources were con-

strained to be perpendicular to the cortical surface. No

absolute value or norm was taken for the dipole or the

resulting data, so no period doubling effects are to be

expected. EEG sources were reconstructed in both hemi-

spheres. For this study we only retained the RS nearest to

the ECoG channels considered in the connectivity analyses.

The correspondence between cortical and reconstructed

activity was assessed by means of canonical correlation

analysis to provide a goodness of fit measure (results not

shown here).

The pre-processing steps for both ECoG and RS inclu-

ded average reference removal, notch filtering at 50 Hz,

artefact removal by visual inspection and local detrending

with the L1 norm technique (Kim et al. 2009). In the

current validation study we restrict our analysis to a single

pair of sources, a frontal source (F) and a parietal source

(P), as indicated in Fig. 1. This choice was motivated by a

previous study using RS from scalp EEG recordings in

humans that measured directed connectivity between cor-

tical sources in these areas (Boly et al. 2012), and func-

tional connectivity in anesthetized macaque monkeys

(Moeller et al. 2009; Barttfeld et al. 2015). 30 s of brain

activity were used for each condition (wakefulness and

anaesthesia).

The spectra of the two channels in the two conditions

are reported in Fig. 2, together with the spectra of the data

modelled with an autoregressive model of the composite

system of the two sources, of order seven, as the one used

for DTF.

As shown in http://wiki.neurotycho.org/EEG-ECoG_

recording EEG signals don’t include high frequency

([60 Hz) components of the ECoG signal.

Directed Transfer Function

The DTF is a multivariate directed functional connectivity

measure, usually based on an autoregressive model (AR) in

the frequency domain (Kamiński and Blinowska 1991).

The AR model is of the form

Xp

j¼0

Âjxt�j ¼ et ð1Þ

where xt ¼ ðx1;t; x2;t; . . .xk;tÞ is a vector of k-channel mul-

tivariate processes, et ¼ ðe1;t; e2;t; . . .ek;tÞ is a vector of

multivariate uncorrelated white innovations or noise pro-

cesses and Â1; Â2; . . .Âp are the k 9 k matrices of model

coefficients. Multiplying both sides of (1) by xTt�s and

taking the expectation returns the coefficients Âi, as follows

R̂ð�sÞ þ Â1R̂ð1 � sÞ þ � � � þ ÂpR̂ðp� sÞ ¼ 0 ð2Þ

where R̂ðsÞ ¼ E½xt; xTtþs� is the covariance matrix for time

lag s. To characterize Granger causal coupling between

signals in the spectral domain, the Fourier transformation of

Eq. (1) is calculated, where the transform functions are of

the form X̂ðzÞ ¼ ĤðzÞÊðzÞ where ĤðzÞ ¼ ðRp
j¼0Âje

�2pfDtÞ�1
.

The DTF then is derived from the transfer matrix and can be

expressed as:

DTFijðf Þ ¼ Hijðf Þ
�� ��2 ð3Þ

Usually, the DTF is normalized with respect to the

incoming to the incoming information flow so that it takes

the form

DTFijðf Þ ¼
Hijðf Þ2
�� ��

PK
m¼1 Himðf Þj j2

ð4Þ

Consequently, the element Hijðf Þ of the matrix

describes the connection between the jth input and the ith

output at each frequency. The values of the normalized

DTF are located in the range [0, 1] where a high value

indicates a greater information transfer in the direction

j ? i and a low value indicates little or no transfer. For

the present study we used seven as the autoregressive

model order, as determined by the Bayesian Information

Criterion.

In a recent Opinion paper, Kaminski and Blinowska

(2014), the inventors of DTF, postulated that this measure

is not sensitive to volume conduction, since it is insensi-

tive to phase shifts. However, while it is true that a phase

shift in sensor data indicates information transfer, no

inference can be made about where the implicit sources

are located, except in special cases in which the experi-

mental protocol or the anatomy ensure that the activity of

a single source is expressed at a single sensor (Plomp et al.

2014).
Fig. 1 Layout of the ECoG contact locations. The frontal (F) and

parietal (P) channels used in this study are indicated by white circles
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As mentioned above, DTF is applied to two sources, a

frontal and a posterior one, for each level of consciousness,

using 15 non-overlapping segments of 2 s.

Dynamic Causal Modelling

For this study we used DCM for cross-spectral density

(CSD), which is a generalization of DCM for steady state

responses. All our analyses used the standard procedures

described in (Friston et al. 2012). CSD is the Fourier

transform of the cross-correlation function and can be

thought of as reporting the correlations at each frequency.

CSD therefore describes the similarity between two sig-

nals, that is, how much power is shared for each

frequency.

The neural mass model used here was the LFP variant.

This particular neural mass model has been used previously

in modelling intracortical LFP from rats, to assess changes

in directed effective connectivity under pharmacological

manipulations (Moran et al. 2009, 2015). It has also been

used as a generative model for non-invasive EEG studies,

in source-reconstructed data from frontal and parietal cor-

tices during normal wakefulness, propofol-induced mild

sedation and loss of consciousness in humans (Boly et al.

2012).

One can regard each neural mass as a cortical source,

where each source comprises three subpopulations that

contribute to the ongoing dynamics. These subpopulations

include spiny stellate cells in the granular layer and pyra-

midal cells and inhibitory interneurons in supragranular

layers.

Each of the subpopulations is modelled with pairs of

first order differential equations of the following form:

_xv ¼ x1

_x1 ¼ jHðEðxÞÞ þ CððuÞÞ � 2jx1 � j2xv
ð5Þ

The column vectors xv and x1, correspond to the mean

voltages and currents where E(x) and C(u) correspond to

endogenous and exogenous inputs respectively that the

presynaptic input to each subpopulation comprises (see

Moran et al. 2009).

The nodes (sources) of DCM model sources in the brain

are connected by (extrinsic) forward and backward con-

nections according to anatomical connectivity rules estab-

lished in Felleman and Van Essen (1991). Feedforward

connections target the granular layer, while feedback

Fig. 2 Power spectral densities

of real data (full line) and data

simulated with the coefficient of

an autoregressive model of

order 7 of the real data (dashed

line) for ECoG (blue) and

reconstructed sources (red). Left

column frontal source (F). Right

column parietal source (P). Top

panels wakefulness (W). Bottom

panels anaesthesia (A) (Color

figure online)
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connections target the superficial and deep layers (Bastos

et al. 2012). More details about the different models that

can be used within the DCM framework can be found in

Moran et al. (2013).

Here, we first use DCM to test hypotheses about the

connectivity architecture between the two sources of

interest in frontal and parietal regions. We tested two

physiologically plausible models. Our first model connects

the parietal to the frontal source by forward connections

and frontal to parietal with backward connections, while

the second model constitutes the reverse architecture

(Fig. 3).

The designation of fronto-parietal and parieto-frontal

connections as backward and forward is based on the

functional asymmetries in the anatomy and physiology of

projections––extrapolating from the visual system. A brief

review of this evidence, from the point of view of the

extended motor system can be found in Shipp et al. (2013).

We inverted the two models using both sets of empirical

data and then performed (fixed effects) BMS to identify the

most likely model. We then modelled the condition-

specific effects under the best model, corresponding to

wakefulness and anaesthesia. These effects were modelled

in terms of changes in intrinsic and extrinsic connections

relative to the first condition (wakefulness) (Fig. 4).

Results

In this study we evaluated directed connectivity in the

frequency domain between two sources located in frontal

and posterior brain regions, and determined how the

information flow between the two sources is modulated by

anaesthesia. This evaluation used both ECoG and

reconstructed source activity, enabling us to assess the

validity of connectivity estimates based upon non-invasive

EEG signals.

DTF quantifies information flow across brain areas for

each frequency bin. The curves for each condition and

modality are reported in Fig. 5. We have assessed the

significance of the modulations corresponding to the

spectral interval [3 40] Hz with a nonparametric Wilcoxon

Rank sum test. Significant decrease during loss of con-

sciousness is reported in the connectivity from the parietal

to the frontal source, for both the ECoG and reconstructed

EEG source activity (P\ 0.02, FDR corrected). The other

modulations, tested across consciousness state and across

imaging modalities, were not significant.

DCM and BMS of the directed effective connectivity

between the same sources identified model 1 as the most

plausible, with a forward connection from the parietal to

frontal region and backward connections from the frontal

to the parietal region (Fig. 3). The difference between the

best and next best model was much greater than three

reflecting strong evidence in favour of the first model over

competing hypotheses. The same winning model was

identified for ECoG and reconstructed EEG source activity.

For the second part of our DCM analysis, we modelled

condition-specific effects in terms of all the possible

combinations of condition-specific changes in the forward

connections, the backward connections, neither or both.

BMS identified model 1 as the winning model (Fig. 4).

This model allows for changes all the connections. As

before, the same winning model was identified for both

ECoG and reconstructed EEG sources. The differences in

log evidence among the four models were comparable for

the invasive data and to the reconstructed EEG data. This

suggests that there is roughly the same amount of infor-

mation in both modalities when it comes to disambiguate

the models or hypotheses. This is reflected also the poste-

rior probabilities (left panel of Fig. 6) over models, which

are also comparable.

Looking at the condition-specific effects on the extrinsic

connectivity (Fig. 6, right panel), the parameter estimates

based upon the ECoG data concur with the changes in

DTF; namely, a decrease is seen in both forward connec-

tivity from the parietal to the frontal source, and in back-

ward connectivity from the frontal to the parietal source. At

the same time a strong increase in self connections in

anaesthesia is reported in both sources for ECoG; a slight

decrease in the frontal source and a moderate increase in

the parietal source for reconstructed activity. These chan-

ges are relative to the 100 % connectivity strength in the

wakefulness condition.

One interesting aspect of DCM is that we can estimate

the DTF implicitly from the condition-specific effects on

the parameters. In other words, given the model
Fig. 3 The two architectures for connections between the sources of

interest tested with DCM
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parameters, we can compute the associated directed

transfer functions between the sources, as shown in Fig. 7.

This figure uses the same format as Fig. 5. The fact that

directed transfer functions (and Granger causality) can be

derived from the DCM results speaks to the fact that

Granger causality and directed transfer functions are

essentially data features (hence data-led measures), and not

the model attributes responsible for directed information

flow. It is pleasing to note that, qualitatively, the data-based

DTFs and those based upon DCM parameter estimates

show the same dependency on experimental condition.

Higher DTF values at frequencies higher than the main

peak are observed in from the frontal to the parietal source

for electrocorticogram but not for the reconstructed sour-

ces. The forms of the DTFs are more constrained under

DCM, because they have to be produced by a biologically

plausible mechanism. Furthermore, the DCM transfer

functions have been modulated by the spectral power of the

innovations (which is also estimated). Note that the

autoregressive evaluations of DTFs do not estimate the

spectral density of the innovations, which are assumed to

be white (see Eq. 1).

Fig. 4 The 16 possible models tested by DCM to explain changes in connectivity from wakefulness to anaesthesia
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Discussion

In a previous study that analyzed these data with directed

functional connectivity, all possible pairs of ECoG sources

(with a bipolar montage) were considered (Yanagawa et al.

2013). Functional connectivity differed significantly

between conscious and unconscious states in all combina-

tions of cortical sources, with the most dramatic change

occurring for the transfer functions that fell into a specific

spectral domain across conditions. This motivated the

authors to look for large-scale inter-region interactions

over the entire cortex by grouping the bipolar channels in

eight cortical regions, after which spectral Granger

causality was computed for each pairwise combination.

The changes in connectivity patterns after this grouping

confirmed that the spectral changes due to modulations of

consciousness affected large-scale communications across

the entire cortex.

Here we focused on a pair of sources since in many

experiments, in particular event-related ones, only a few

sources are considered, and in order to apply DCM

between two regions known to play a distinct joint role in

wakefulness versus anaesthesia.

In this study, we have shown that the directed connec-

tivity in the frequency domain between cortical sources

reconstructed from scalp EEG is qualitatively similar to,

and statistically undistinguishable from, the connectivity

inferred directly from cortical recordings. The modulations

of DTFs across frequency are qualitatively the same

(although in a few cases the peaks differ slightly in position

or width). Concerning the effects of the anaesthesia, the

same pattern emerged from electrocorticographic and

reconstructed sources, with a decrease in the information

flow from the parietal to the frontal source. This modula-

tion is in general agreement with previous literature (Lee

et al. 2009; Ku et al. 2011; Boly et al. 2012). This com-

parison must stay qualitative since the studies mentioned

above consider human subjects and scalp EEG.

DCM produced BMS that were consistent between

electrocorticograms and reconstructed sources. These

models explained the decrease in coupling from parietal to

frontal sources in terms of condition-specific changes in

Fig. 5 DTF plotted against

frequency in the two directions

in Wakefulness (W) and

Anaesthesia (A) for ECoG and

RS. Shaded areas indicate

standard errors
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Fig. 6 Log evidences and posterior probabilities (left) and changes in connectivity in the winning model (model 1, right) for ECoG sources (top)

and reconstructed sources (bottom) across the two conditions: Wakefulness (W) and Anaesthesia (A), as estimated by DCM
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extrinsic (forward and backward) connectivity with the

frontal source as well to changes in intrinsic connectivity at

both sources. In these analyses, BMS based on the invasive

and non-invasive data was again consistent; however,

quantitative connectivity changes following inversion of

the EEG and ECoG data showed opposite changes in

extrinsic and intrinsic connectivity but similar directed

transfer functions. We mention this discrepancy to illus-

trate that the quantitative estimates of effective connec-

tivity can, in some instances, depend upon the nature of the

data, especially when there is a conditional dependency

among parameter estimates. In principle, one would base

their inferences on all the data at hand and model both the

ECoG and EEG data together. In this setting, the most

precise or informative data would supervene in terms of

model comparison and parameter estimates (the model

comparison results in Fig. 5 would suggest that the ECoG

data were more precise). In more realistic DCM analyses,

one generally includes several sources to disambiguate

between explanations based upon reciprocal changes in

intrinsic and extrinsic connectivity. One of the character-

istics of DCM is that it can also model hidden sources; for

example the thalamic sources in Boly et al. (2012). The

inclusion of hidden sources is sometimes required to

adjudicate among different hypothetical architectures,

using BMS in the usual way. Crucially, this is not an option

with data-led measures of directed functional connectivity.

Further discussion of the relationship between data-driven

functional connectivity in the spectral domain and DCM

based measures of effective connectivity can be found in

Friston et al. (2014).

The adequacy or quality of any model is generally

established through BMS. Good models have a high evi-

dence and entail a level of complexity that is suitable for

the data at hand. The DCM of source activity has been

refined over many years and provides the appropriate level

of detail––in terms of the number of sources and parame-

ters. These parameters include not just aspects of the

underlying neuronal (connectivity and synaptic) architec-

ture but how neuronal activity is measured. For example,

the contribution of different neuronal populations to dif-

ferent sorts of sensors is accommodated through free

parameters, that scale the relative contributions (with a

prior bias towards superficial populations).

Being aware of the limitations of single-subject studies,

we do not infer any pathophysiological explanations from

Fig. 7 Directed Transfer

functions obtained from DCM

under the winning model in the

two conditions: Wakefulness

(W) and Anaesthesia (A) for

ECoG and RS
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our results. Also, a task protocol with more localized

sources would definitely provide additional insight.

Nonetheless this unprecedented recording setup provides a

valid support for the exploratory analysis that we per-

formed with the sole protocol available at the moment,

which allowed us to explore modulations in steady-state

activity. It is worth to recall that whenever activity has to

be estimated or disambiguated with a fine spatial resolu-

tion, a large number of scalp electrodes is recommended.

Our provisional results suggest that directed connectiv-

ity in the frequency domain between cortical sources

reconstructed from scalp EEG is qualitatively similar to the

connectivity inferred directly from cortical recordings,

using both functional and effective connectivity measures.

These findings advocate that inferences about directed

connectivity based upon non-invasive electrophysiological

data can have construct validity in relation to invasive

constructs.
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